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Abstract. NIST is currently conducting the 3rd round of a survey to find post-
quantum class asymmetric protocols (PQC) [1]. We participated in a joint-
team with a fellow researcher of the Interamerican Open University (UAI)
with a Key-Exchange Protocol (KEP) called HK17 [2]. The proposal was
flawed because Bernstein [3] found a weakness, which was later refined by
Li [4] using a quadratic reduction of octonions and quaternions, albeit no
objection about the published non-commutative protocol and the one-way
trapdoor function (OWTF). This fact promoted the search for a suitable
algebraic platform. HK17 had its interest because it was the only first-round
offer strictly based on canonical group theory [5]. At last, we adapted the
original protocol with the R-propping solution of 3-dimensional tensors [6],
yielding Bernstein attack fruitless. Therefore, an El Gamal IND-CCA2 cipher
security using Cao [7] arguments are at hand.
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1 Introduction

1.1  Goals of the original HK17 proposal

It is noteworthy that besides a couple of described solutions [8], there remains
overlooked solutions belonging to Non-Commutative (NCC) and Non-Associative (NAC)
algebraic cryptography. The general structure of these solutions relies on protocols
defining one-way trapdoor functions (OWTF) extracted from the combinatorial group
theory [5].

The main objective was to develop a parametric family of multifunctional
asymmetric protocols of the PQC class, based on the use of modular polynomials of
hypercomplex numbers (quaternions, octonions) and OWTF derived from abstract
algebra.

1.2 Flaw of the original HK17 platform

Choosing hypercomplex numbers like quaternions and octonions was a failure. As
Bernstein and later Li found, the following theorem lay the basis of the weakness.

Theorem 1. For any octonion o = a,e, + -+ + a,e,, when all the coordinates of o are in
Z,,, for any polynomial g(x) € Z,[x] there exist (a,b) € sz suchthatg(o) =ao+b m

Therefore, every eight unknowns octonion polynomial reduces to a pair of integer
unknowns. A similar deduction could be found for the renormalized quaternions version.
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Solution for the HK17 protocol

In this paper, we propose an algebraic patch to HK17 using theoretical well supported
combinatorial solutions. Specifically, we switch from hypercomplex numbers to 3-
dimensional matrices of AES-field polynomials (bytes) and from numerical operations to
field operations [9]. Obviously, this class of matrices are rank-3 tensors [9]. We refer to this
version as R-propped [6] HK17 or HK17+.

Essentially R-propping consists of replacing all numerical field operations (arithmetic
sum and multiplication), a typical scalar proposal, by algebraic operations using the AES
field, a vectorial proposal [9]. This scales up operations complexity foiling classical
linearization attacks like AES does and at same time quantum ones. This is a solid way to
achieve the best of two worlds, both pointing to cryptographic security

The R-propping solution is described as an Algebraic Extension Ring [9]

2 Schematic HK17+ key exchange protocol (KEP)

[ ALICE ]
@u Public

(ta, ts) random rank-3 tensors
(d-dim square byte matrices)
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ka-order polynomial [2, km]
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This is the R-propped version of the original HK17 protocol. The OWTF which protects
the KEP, is the generalized symmetric decomposition problem as defined in [[4][6][7].

3 Step-by-step numeric example of HK17+

We use as example the following parameters:

km = ka = ks (polynomial degree) = 31

d (tensor -square matrix- dimension) = 3

u (upper limit for exponents) = 232=4,294,967,296



o [ HK17+"];
Print["ALICE prepares..."];

dim = 3; Print[“dim=", dim];

degree = 31; Print[“degree=", degree];

zlimit = 2*32; Print["max exponent=", zlimit];

A = rmat; Print["tensor A=", MatForm[A]];

B = rmat; Print["tensor B=", MatForm[B]];

m = RandomInteger[{l, z1limit}]; Print["m=", m];

n = RandomInteger[{l, zlimit}]; Print["n=", nl;

coefA = Table[RandomInteger[255], {k, @, degreel}]; Print["coefficient
list of Ff{x)=", coefAl;

TPowerSet[A, degree]l; Print["tensor A power set=",
Table[MatrixForm[TPSet[k]1], {k, @, degreel}l];

fA = FieldPolyEval[dim, degree, coefA, Al; Print["f(A)=", fA]l;

r& = M3[TFastPower[fA, m], B, TFastPower[fA, nl]l; Print[“rA=", rAl;
Print["ALICE sends A, B, rA to BOB"];

3 o [ “13
Print["BOB prepares..."]1;

r = RandomInteger[{1, zlimit}]; Print["r=", rl;

s = RandomInteger[{1, zlimit}]; Print["s=", s];

coefB = Table[RandomInteger[255], {k, @, degree}]; Print["coefficient
list of h{x)}=", coefB];

TPowerSet[4, degree]; Print["tensor & power set=",
Table[MatrixForm[TPSet[k]], {k, @, degree}l]l;

h& = FieldPolyEwval[dim, degree, coefB, A]; Print["h{A)=", hA];

rB = M3[TFastPower[h&, r], B, TFastPower[h&, s]]; Print[“rB=", rB];
Print["BOB sends rB to ALICE"];

2 [ "1;

K& = M3[TFastPower[fA, m], rB, TFastPower[fA, n]]; Print["ALICE
session key=", MatrixForm[KA]];

KB = M3[TFastPower[hA, r], rA, TFastPower[h&, s]]; Print[" BOB
session key=", MatrixForm[KE]];

P T L™ e e e e et e e e e e e e e e e e e e e e e e e e e e e "]

Table 1. Mathematica 11.3 code of an interpreted session of HK17+. Detailed notebook with full
defined functionsis available upon request to the author. Here u=zlimit, the upper limit for exponents.



ALICE prepares...

dim=3

degree=31

max exponent=4294967 296
60 167 194

tensor A:[lEB 131 56
66 16 91
155 112 181

tensor B:[lBB 204 104
98 28 232

m=1793 503137

n=2624910638

coefficient list of f(x)={171, 8, 136, 7@, 254, 55, 178, 138, 47, 98, 87, 184, 92, 48,
143, 246, 202, 210, 44, 79, 240, 129, 248, 145, @, 92, 197, 52, 207, 134, 60, 36}

100 60 167 154, .42 166 219, . 207 207 191 50 156 50 150 70 85 4 112 42
mAmm:{[Olﬂ}mﬂlﬁ}ﬁlﬂN}[mEl m}[a 124 8],10221]2]38}34981]83],

oo i 66 16 91 & 52 161 B3 168 234/ | 183 190 180 M 177 151) | 158 195 42

219 146 134 91 189 72 32 110 202, 139 38 176, .21 56 5B 210 73 7B 131 239 222

[55 161 177}[1]3 77 210}[]50 159 m}[m 42 212],[W 212 39}[342 115 m}[us 187 m}

144 54 176 41 243 X 246 165 50 251 234 23/\2™ T 213/ \ W7 135 41 43 18 15

141 182 133 43 83 76 78 205 235 24 141 205 72 171 B3 77 31 186, 162 97 125

[zmmsss}[sx 228 24}[11309 103}[114?8 103],[23636 109],[17915651],[154&91&9}

174 153 33 221 163 158/ \ 163 121 15 209 224 51 196 107 213/ 1139 43 103) | 248 42 55

207 186 5B 26 3 202 B2 14 2 9B 246 144, 171 119 142, . 217 52 99 257 149 94

[224 175 IN}[M 42 WE}[QB 252 n}[m 214 ?34}[52 131 149}[41 3 92}[13} (2] m}

158 215 101/ \ 158 169 5% 157 18 6B/ \ 238 153 110/ \ 172 225 179 45 95 169/ \ 211 174 128

76 T3 209, 221 110 167, , 228 133 118, . 138 1968 217

[7914981}5411014?}16661 61}[13]3? EEB

36 255 20 o6 169 164/ |\ 155 250 104/ |\ 222 163 223

f(A)={{238, 175, 147}, {170, 142, 45}, {186, 90, 132} }
rA={{233, 62, 163}, {76, 50, 134}, {167, 131, 285} }
ALICE sends A, B, rA to BOB
BOB prepares...
r=3791845539
5=4075 263 003
coefficient list of h(x)={174, 13, 217, 229, 100, 171, 120, 198, 79, 192, 198, 25,
83, 11, 173, 223, 221, 106, 216, 174, 41, 67, 176, 207, 53, 4, 139, 135, 220, 228, 136, 217}

100 &0 167 154 4 166 1% 207 07 151 50 156 50 150 70 &5 4 117 42
hﬁur.lpmnsset:{[ﬂlﬂ} 168 131 56}95193 94],[2#6 51 M}[-‘l 124 8} 102 202 133} mmss],
001 66 16 91 8 52 161 B3 168 234 193 190 180 24 177 151 158 195 42
oS 146 134 91 188 T2 32 110 202 138 38 176 21 56 5B M0 73 TE 131 235 222
[55 161 17?}[113 77 210}[150 158 wn}[m 42 212],[90 22 ﬂ}[MZ 115 m}[us 187 m}
144 54 176 41 243 20 246 165 50 251 234 213 2K 7 2113 207 135 41 43 198 15
141 1EZ 133 43 E3 TE TE M5 135 24 141 M5 7 1X1 E3 77 31 1B6 163 &7 1235
[zmms 56}[58 28 M}[lu (=] 103}[114 T8 103],[2216 86 m}[1n15651],[154&9m
174 193 53 221 163 158 163 121 15 209 224 91 196 107 213 139 43 103 248 42 55
X7 1EE 5B % 3 M2 B 14 2 58 246 144 171 119 142 33 5 o0 35T 140 04
[22& 175 179}[2‘6 42 ms}[gg 52 m}[m 214 ?34}[52 131 m}[-u 31 92}[131 =1 lﬂ}
198 219 101 158 169 59 157 18 &8 238 153 110 172 225 179 45 95 169 211 174 128
TE T3 09 3 110 167 IR 133 1iE 138 19E 217
[79149 81} 254 110 MT} 166 61 61}[1m 87 Sﬁp
36 255 20 96 169 164 155 250 104 222 163 223
h{A)={{3, 7, 154}, {14@, 34, 117}, {135, 127, 168} }

rB={ {179, 70, 197}, {255, 130, 212}, {30, 233, 160} }
BOB sends rB to ALICE

235
a7

ALICE session key= [
235

235
a7

BOB session key= [
235

222 114

96 236
186 B1
222 114

Table 2. Output of the Mathematica 11.3 code of an interpreted session of HK17+.



4 Cryptographic security of HK17+

There is no way to adapt Bernstein and Li attacks to this HK17+ instance and other
simplifying linear attacks would equally fail because of the field operations involved. There
are two brute-force attacks we consider:

41 First kind brute-force attack

As the private polynomial search space of does not depend on the dimension of public
tensors, there are 256*+! Field Element Coefficient Polynomial of degree k and coefficients
in Z,56. To evaluate the computational effort, this cardinal we must the multiplied with the
square of the integer exponent upper limit (zlimit) due to the private exponents pair (m, n).
Here we present classical and quantum security levels as functions of the private keys
polynomial degrees:

k-degree Conservative | [Grover] session time
of R-propped private Classical Quantum (Bt ML
key Polynomial and Security Security cudirupgioy | il A0k
. . . derivation) | proposals [6]
exponent “factor f=1 (bits) (bits) (sec)
7 64 32 2.5625 Insecure
15 128 64 2.7656 Category 1
23 192 96 3.1094 Category 3
31 256 128 3.3594 Category 5

Table 3. Expected security and mean session time (Interpreted Mathematica 11.3) of increasing
Polynomial degree used as private keys subject to classical and quantum attacks. To simplify
interpretation, we consider here unitary exponents but in general the classical securities must be
multiplied with a *factor f = |2log,u] for u>1. For the 3rd-round NIST PQC selection, Category 5
parameters must be supplied.

42 Second kind brute-force attack

This apparently more profitable attack searches directly the two unknown tensors
powers replacing:

T = fOM ()@t ®fC" (1) or 1z = h® (t,)®t, ®h® (t,) [1]
T = xQtzQy [2]
K, = x®1r,Qy [3]

With equation [2] witch depends on any public tensor r and unknown tensors (x,y) who
once solved allow computing [3], the session key. We assume that the u parameter is
sufficiently big to foil power set brute-force explorations. This reduces SGDP to the DP
problem [5] under field operations. A way to estimate present search difficulty is referring
to matrix field operations and overall complexity will be related to dimension of the square
matrices.

Suppose we work with 2-dim matrices (tensors), the pair (x,y) involves 8 unknown field
elements (bytes) and 8 known field elements, equation [2] against ALICE could be defined
as:

Ay TAp tBy; By, Vi1 Y2

( )= G iy R ) [4]
rA,, 1A, Xa1 X7 By tBy' Va1 Va2

In expanded form, the rA matrix become:



(tByy x9q + 1By Xpg) Yag + (tBup oy + tByg Xpa) Y1 (tByg Xuy +tByg Xug) yia + (1Byg Xg1 = 1By Xy ) Vo |
(tByy g1 + By Xag) yia + (tBup Xoy + 1By Xpa) Yo (tBuy Xoy + 1By Xpa) Yo + (tByy oy + Bpg Xpo) ¥ | [5]

As a result, 2-dim attack involves 32 field product and 12 field sum operation.
Considering that byte sums and multiplications in GF(28) could be hardcoded (like AES
does), each field operation involves 44 elementary lookup operations. Expanding the
exposed equations, they resume into a set of 4 nonlinear equations:

rhgy = g a1 ¥ar + tBay Maz ¥ar + £B12 Mg Wax + tBaz ¥azx ¥
rAgz = tBig ®a1 Wiz + tBay ®aa Wiz + £B1a M1 ¥z + tBaz ®aa ¥a2
FAzy = tBag a1 War + tBay Maz War + £B1a a1 Waa + tBaz a2 ¥
rfza = tB1a ®a1 Y12 + tBa1 ®az Wiz + TBia oy ¥ao + tBaz ®az ¥az [6]

This non-linear set of four equations in 8 variables could not be linearized so a residual
way to solve would be to perform a systematic exploration of 2-dim matrices space for each
variable. As a result, each variable takes 256 values giving a total of 2568 combinations, a
64-bit space. Similarly, given a greater dimension like 3, there would appear a nonlinear
system of 9 equations with 18 unknowns, yielded a search space of 144-bit. Table 4.
resumes further security levels.

Classical [ NIST security
d-degree ) Quantum
. Security . level for PQC
of matrices (tensors) . Security
(bits) . proposals [6]
(bits)
2 64 32 Insecure
3 144 72 Category 1
4 256 128 Category 5
5 400 200 Category>>5

Table 4. Expected security of increasing matrix (tensor) dimension of HK17+ against classical and
quantum attacks if the second kind of brute-force attack is used. Clearly any randomized polynomial
time attack must find a better algorithm to proceed.

5 Conclusions

We present a reasonable way to increase the security of the original HK17 protocol
simply switching from hypercomplex numbers to rank-3 tensors and GF(28) operations.
For real-life use we recommend using at least k=31 and d=4 to reach NIST Category 5
security. Further works of the author covering PQC can be found at [10].
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