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Abstract. NIST is currently conducting the 3rd round of a survey to find post-

quantum class asymmetric protocols (PQC) [1]. We participated in a joint-

team with a fellow researcher of the Interamerican Open University (UAI) 
with a Key-Exchange Protocol (KEP) called HK17 [2]. The proposal was 

flawed because Bernstein [3] found a weakness, which was later refined by 

Li [4] using a quadratic reduction of octonions and quaternions, albeit no 

objection about the published non-commutative protocol and the one-way 

trapdoor function (OWTF). This fact promoted the search for a suitable 
algebraic platform. HK17 had its interest because it was the only first-round 

offer strictly based on canonical group theory [5]. At last, we adapted the 

original protocol with the R-propping solution of 3-dimensional tensors [6], 

yielding Bernstein attack fruitless. Therefore, an El Gamal IND-CCA2 cipher 

security using Cao [7] arguments are at hand. 
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1 Introduction 
 

1.1 Goals of the original HK17 proposal 

It is noteworthy that besides a couple of described solutions [8], there remains 

overlooked solutions belonging to Non-Commutative (NCC) and Non-Associative (NAC) 

algebraic cryptography. The general structure of these solutions relies on protocols 

defining one-way trapdoor functions (OWTF) extracted from the combinatorial group 

theory [5].  

The main objective was to develop a parametric family of multifunctional 
asymmetric protocols of the PQC class, based on the use of modular polynomials of 

hypercomplex numbers (quaternions, octonions) and OWTF derived from abstract 

algebra. 

 

1.2 Flaw of the original HK17 platform 

Choosing hypercomplex numbers like quaternions and octonions was a failure. As 
Bernstein and later Li found, the following theorem lay the basis of the weakness. 

Theorem 1. For any octonion  � = ���� + ⋯ + �	�
, when all the coordinates of o are in 

ℤ� , for any polynomial g(x) ∈ ℤ�
�� there exist (a,b) ∈  ℤ�
� such that ���� = � � + �    ∎   

Therefore, every eight unknowns octonion polynomial reduces to a pair of integer 

unknowns. A similar deduction could be found for the renormalized quaternions version. 

 



1.3 Solution for the HK17 protocol 

In this paper, we propose an algebraic patch to HK17 using theoretical well supported 

combinatorial solutions. Specifically, we switch from hypercomplex numbers to 3-

dimensional matrices of AES-field polynomials (bytes) and from numerical operations to 

field operations [9]. Obviously, this class of matrices are rank-3 tensors [9].  We refer to this 

version as R-propped [6] HK17 or HK17+.  

Essentially R-propping consists of replacing all numerical field operations (arithmetic 

sum and multiplication), a typical scalar proposal, by algebraic operations using the AES 

field, a vectorial proposal [9]. This scales up operations complexity foiling classical 

linearization attacks like AES does and at same time quantum ones. This is a solid way to 

achieve the best of two worlds, both pointing to cryptographic security 

The R-propping solution is described as an Algebraic Extension Ring [9] 

 

2 Schematic HK17+ key exchange protocol (KEP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the R-propped version of the original HK17 protocol. The OWTF which protects 

the KEP, is the generalized symmetric decomposition problem as defined in [[4][6][7].  

 

3 Step-by-step numeric example of HK17+ 

We use as example the following parameters:  

km = kA = kB (polynomial degree) = 31 

d (tensor -square matrix- dimension) = 3 

u (upper limit for exponents) =  232 = 4,294,967,296 

 

ALICE 
BOB 

 Send 

    

tA,tB,u,km 

Setup (Public) 

(tA, tB) random rank-3 tensors  

(d-dim square byte matrices) 

(u) exponent limit (integer) 

(km) max polynomial order  

Setup (Private) 

(m, n) random integers [1,u]  

f(x) random byte coefficient 

 kA-order polynomial [2, km] 

              where f(��)∫0 
 

 
 

Setup (Private) 

(m, n) random integers [1,u]  

h(x) random byte coefficient 

kB-order polynomial [2, km] 

                    where h(��)∫0 

Alice compute her token 

�� = �⨂�����⨂��⨂�⨂����� 

         using GF(28) operations 

Bob compute his token 

�� = ℎ⨂ ����⨂��⨂ℎ⨂!���� 

         using GF(28) operations 

send 

rA 

send 

    rB 

Bob compute his key 

"� = ℎ⨂ ����⨂��⨂ℎ⨂!���� 

          using GF(28) operations 

Alice compute her key 

"� = �⨂�����⨂��⨂�⨂����� 

         using GF(28) operations 

KA=KB 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Mathematica 11.3 code of an interpreted session of HK17+. Detailed notebook with full 

defined functions is available upon request to the author. Here u=zlimit, the upper limit for exponents. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Output of the Mathematica 11.3 code of an interpreted session of HK17+.  

 



 

4 Cryptographic security of HK17+ 

There is no way to adapt Bernstein and Li attacks to this HK17+ instance and other 

simplifying linear attacks would equally fail because of the field operations involved. There 

are two brute-force attacks we consider: 

 

4.1 First kind brute-force attack 

As the private polynomial search space of does not depend on the dimension of public 

tensors , there are 256&'( Field Element Coefficient Polynomial of degree k and coefficients 

in ℤ�)* . To evaluate the computational effort, this cardinal we must the multiplied with the 

square of the integer exponent upper limit (zlimit) due to the private exponents pair (m, n).  

Here we present classical and quantum security levels as functions of the private keys 

polynomial degrees: 

 

k-degree 

 of R-propped private 

key Polynomial and 

exponent *factor f=1 

Conservative 

Classical 

Security 

(bits) 

[Grover] 

Quantum 

Security 

(bits) 

session time  

(setup-

exchange-key 

derivation) 

(sec) 

NIST security 

level for PQC 

proposals [6] 

7 64 32 2.5625 Insecure 

15 128 64 2.7656 Category 1 

23 192 96 3.1094 Category 3 

31 256 128 3.3594 Category 5 

Table 3. Expected security and mean session time (Interpreted Mathematica 11.3) of increasing 

Polynomial degree used as private keys subject to classical and quantum attacks. To simplify 

interpretation, we consider here unitary exponents but in general the classical securities must be 

multiplied with a *factor � = ⌊2./��0⌋ for u>1. For the 3rd-round NIST PQC selection, Category 5 

parameters must be supplied.  

 

4.2 Second kind brute-force attack 

This apparently more profitable attack searches directly the two unknown tensors 
powers replacing:  

�� = �⨂�����⨂��⨂�⨂�����  or  �� = ℎ⨂ ����⨂�2⨂ℎ⨂!����             [1] 

�� = �⨂��⨂3                                                            [2] 

"� = �⨂ ��⨂3                                                             [3] 

With equation [2] witch depends on any public tensor r and unknown tensors (x,y) who 

once solved allow computing [3], the session key. We assume that the u parameter is 
sufficiently big to foil power set brute-force explorations. This reduces SGDP to the DP 

problem [5] under field operations. A way to estimate present search difficulty is referring 

to matrix field operations and overall complexity will be related to dimension of the square 
matrices. 

Suppose we work with 2-dim matrices (tensors), the pair (x,y) involves 8 unknown field 
elements (bytes) and 8 known field elements,  equation [2]  against ALICE could be defined 

as: 

�
rA(( rA(�

rA�( rA��
� = �

�(( �(�

��( ���
�. �

tB(( tB(�

tB�( tB��
�. �

3(( 3(�

3�( 3��
�                                  [4] 

 

In expanded form, the rA matrix become:                                                               



    [5] 

As a result, 2-dim attack involves 32 field product and 12 field sum operation. 

Considering that byte sums and multiplications in GF(28) could be hardcoded (like AES 

does), each field operation involves 44 elementary lookup operations. Expanding the 

exposed equations, they resume into a set of 4 nonlinear equations: 

                [6] 

This non-linear set of four equations in 8 variables could not be linearized so a residual 
way to solve would be to perform a systematic exploration of 2-dim matrices space for each 

variable. As a result, each variable takes 256 values giving a total of 2568 combinations, a 

64-bit space. Similarly, given a greater dimension like 3, there would appear a nonlinear 
system of 9 equations with 18 unknowns, yielded a search space of 144-bit. Table 4. 

resumes further security levels. 

 

 d-degree 

 of matrices (tensors) 

Classical 

Security 
(bits) 

[Grover] 

Quantum 

Security 

(bits) 

NIST security 

level for PQC 
proposals [6] 

2 64 32 Insecure 

3 144 72 Category 1 

4 256 128 Category 5 

5 400 200 Category>>5 

Table 4. Expected security of increasing matrix (tensor) dimension of HK17+ against classical and 

quantum attacks if the second kind of brute-force attack is used. Clearly any randomized polynomial 

time attack must find a better algorithm to proceed. 

 

5 Conclusions 

We present a reasonable way to increase the security of the original HK17 protocol 

simply switching from hypercomplex numbers to rank-3 tensors and GF(28) operations. 

For real-life use we recommend using at least k=31 and d=4 to reach NIST Category 5 

security. Further works of the author covering PQC can be found at [10]. 
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