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Abstract

Most functional encryption schemes implicitly assume that inputs to decryption algorithms,
i.e., secret keys and ciphertexts, are generated honestly. However, they may be tampered by
malicious adversaries. Thus, verifiable functional encryption (VFE) was proposed by Badri-
narayanan et al. in ASIACRYPT 2016 where anyone can publicly check the validity of secret
keys and ciphertexts. They employed indistinguishability-based (IND-based) security due to
an impossibility result of simulation-based (SIM-based) VFE even though SIM-based security is
more desirable. In this paper, we propose a SIM-based VFE scheme. To bypass the impossibility
result, we introduce a trusted setup assumption. Although it appears to be a strong assumption,
we demonstrate that it is reasonable in a hardware-based construction, e.g., Fisch et al. in ACM
CCS 2017. Our construction is based on a verifiable public-key encryption scheme (Nieto et al.
in SCN 2012), a signature scheme, and a secure hardware scheme, which we refer to as VFE-HW.
Finally, we discuss an our implementation of VFE-HW using Intel Software Guard Extensions
(Intel SGX).

1 Introduction

Functional Encryption: Cloud computing has gained increasing attention since it support several
functionalities, e.g., data analysis. However, sensitive user data must be secured, and protected.
Thus, functional encryption [9], an extension of Public-Key Encryption (PKE), has been proposed.
functional encryption allows clients to flexibly access sensitive data toward usual “all or nothing”
decryption procedure. Briefly, a Trusted Authority (TA) first generates a master public key mpk
and a master secret key msk. A client sends the information of function P to the TA. Generally,
P can enforce sophisticated functions, e.g., access control etc. The TA generates a secret key skP
using the msk, and gives it to the client. A plaintext msg is encrypted by the mpk, where CT is
ciphertext. Finally, the client obtains P(msg) by decrypting the CT using skP.

The security of functional encryption is guaranteed by indistinguishability-based (IND-based)
or simulation-based (SIM-based) notions. IND-based security guarantees that no adversary can
distinguish, which plaintext was encrypted. IND-based functional encryption schemes have been
proposed for the class of all (polynomial-sized) functionalities under inefficient assumptions, e.g.,
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Table 1: Comparison of Verifiable Functional Encryption
Security Functionality Verifiability Secure HW Trusted

Setup

Fisch et al. [18] SIM-based Any Not Considered Yes Yes 1

(Functional Encryption)

Badrinarayanan et al. [7] IND-based Limited Normal No No

Soroush et al. [30] IND-based Limited Normal No No

Our VFE scheme SIM-based Any Weak Yes Yes

multi-linear maps, or indistinguishability obfuscation [10,20,21,32]. Consequently, Abdalla et al. [2]
proposed an IND-based functional encryption scheme that supports inner products under simple
assumptions, and several works followed this direction [14, 16, 17, 31]. However, Boneh et al. [9]
and O’Neil [28] demonstrated that IND-based functional encryption yields insufficient security. For
example, an adversary is allowed to obtain secret keys for a function P selected by the adversary with
the restriction P(msg∗0) = P(msg∗1) where msg∗0 and msg∗1 are challenge plaintexts with the condition
msg∗0 ̸= msg∗1. Thus, the class of P remains restricted, e.g., we cannot specify a cryptographic hash
fuction as P due to collision resistance. Thus, SIM-based security is more desirable. Several SIM-
based functional encryption schemes [3–5, 9, 13, 28] have been proposed recently. However, several
works [3, 4, 9, 13] have shown that achieving SIM-based functional encryption that supports all
(polynomial-sized) functionalities is impossible.

Functional Encryption using Intel SGX: To overcome this impossibility result, Fisch et al. [18]
proposed IRON, an SIM-based functional encryption scheme that uses Intel SGX [6, 24–26]. Intel
SGX is a hardware protection set that protects sensitive data (e.g. medical data) from malicious
adversaries by storing them in enclaves generated as isolated spaces in an application.

Briefly, IRON is described as follows. The TA generates a public key pk and a decryption key
dk for the PKE scheme, as well as a verification key vk and a signing key sk for the signature
scheme (SIG). Then, the TA generates a secret key skP, where P is a function for the client. The
TA generates a signature of P as a secret key skP using sk in a Key Manager Enclave (KME), and
sends it to the client. Let CT be the ciphertext of a plaintext msg under pk. In the decryption
procedure, if skP is a valid signature, CT is decrypted inside an enclave, and P(msg) is output.

Verifiable Functional Encryption: Most functional encryption schemes implicitly assume that
inputs to decryption algorithm, i.e., skP and CT, are generated honestly according to the algorithmic
procedures. However, they may be tampered by malicious adversaries. Badrinarayanan et al. [7]
proposed Verifiable Functional Encryption (VFE). With VFE, anyone can publicly check the validity
of skP and CT. If verification of skP and CT passes, the decryption algorithm of VFE correctly
outputs P(msg). Badrinarayanan et al. insisted that VFE are useful for some applications, e.g.,
storing encrypted images [9] and audits [23]. As a drawback, they demonstrated that SIM-based
VFE implies the existence of one message zero-knowledge proof systems for NP in the plain model.
This implication contradicts the impossibility result (Section 3) shown by Goldreich et al. [22].
We emphasis that IRON does not help us to bypass this impossibility result. As a result, they
employed IND-based security as shown in Table 1. A VFE proposed by Soroush et al. [30], which
supports inner products, employs the same IND-based security definition. Thus, no SIM-based
VFE has been proposed so far.

Our Contribution: We propose a SIM-based VFE scheme that supports any (polynomial-sized)

1The HW.Setup algorithm in the pre-processing phase is required to be honestly run by the TA.
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functionality. To support such functionality, we employ the hardware-based construction given in
IRON [18], and, to achieve SIM-based security, we relax the verifiability of the definition given by
Badrinarayanan et al. without losing the practicability. Intuitively, we assume thatmpk andmsk are
generated honestly whereas those can be arbitrary values in the definition given by Badrinarayanan
et al. Due to this trusted setup assumption, mpk can be considered a common reference string (CRS)
in the one message zero-knowledge context [8]. One may think that this trusted setup assumption
is unreasonable and too strong in practice. However, this is not the case in the hardware-based
construction. We will explain it in detail in Section 3.

In addition to provide a security definition that bypasses the impossibility result, we also give
a SIM-based VFE construction. The original IRON has supported public verifiability of secret keys
(because these are signatures), thus we focus on how to support public verifiability for ciphertexts.
Therefore, we employ (publicly) Verifiable PKE (VPKE) [27] proposed by Nieto et al. in addition
to the ingredients of IRON (PKE, SIG, and HW). We employ HW as in IRON, thus we refer to
proposed system as VFE-HW. Note that publicly executable computations should be run outside
of memory-constrained enclaves as much as possible. Simultaneously, as in IRON, ciphertexts
input to enclaves require to be non-malleable, and thus the underlying (V)PKE scheme needs to be
CCA-secure. Consequently, we modify the definition of VPKE (Section 2).

Finally, we give our implementation of the proposed VFE-HW scheme for a cryptographic hash
function H as the function P, i.e., the decryption algorithm for a ciphertext of msg outputs H(msg).
Due to the nonlinearity of the hash function, the functionality seems hard to be supported by
functional encryption with linear computations, e.g., inner products. Moreover, the IND-based
VFE scheme does not support the function due to the key generation query restriction. In addition
to these theoretical perspectives, it seems meaningful to support this functionality in practice, e.g.,
a password PW is encrypted and H(PW) can be computed without revealing PW. Here, we employ
the Pairing-Based Cryptography (PBC) library [1] to implement the VPKE scheme proposed by
Nieto et al. Briefly, the encryption algorithm runs in 0.11845 sec, the verification algorithm for
ciphertexts runs in 0.12329 sec, the verification algorithm for secret keys runs in 0.00057 sec, and
the decryption algorithm runs in 0.06164 sec.

2 Preliminaries

Here, we define PKE, VPKE, SIG, and HW. When x is selected uniformly from set S, we denote

this as x
$←− S, and y ← A(x) represents that y is the output of an algorithm A with an input x.

First, we define PKE as follows. Here, letMpke be a plaintext space of PKE. The setup algorithm
PKE.KeyGen(1λ) generates (pkpke, dkpke), the encryption algorithm PKE.Enc(pkpke, msg) outputs
CT, and the decryption algorithm PKE.Dec(dkpke, CT) outputs msg or ⊥. We require that the
PKE provides the indistinguishability against chosen ciphertext attack (IND-CCA) security, which
is defined in Appendix A.1.

Next, we define SIG as follows. Here, letMsig be a message space. The key generation algorithm
SIG.KeyGen(1λ) generates (sksign, vksign), the signing algorithm SIG.Sign(sksign,msg) outputs σ, the
verification algorithm SIG.Verify(vksign,msg, σ) outputs 0 or 1. We require that the SIG provides
the existential unforgeability against chosen message attack (EUF-CMA) security, which is defined
in Appendix A.2.

Next, we introduce VPKE as defined by Nieto et al. [27]. VPKE provides public verifiability,
where anyone can check the validity of ciphertexts without using any secret value. They defined
the decryption algorithm VPKE.Dec using two algorithms, i.e., the verification algorithm VPKE.Ver
and the decryption algorithm for converted ciphertext VPKE.Dec′. VPKE.Ver verifies ciphertext CT
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and converts CT to CT′ if CT is valid. VPKE.Dec′ decrypts CT′, and outputs msg. In this paper,
we further decompose VPKE.Ver into two algorithms, i.e., VPKE.Ver and VPKE.Conv, which will
be explained later. The verification algorithm VPKE.Ver verifies CT and the conversion algorithm
VPKE.Conv converts CT into CT′.

Next, we define VPKE. Here, letMvpke be a plaintext space of VPKE.

Definition 1 (Syntax of VPKE).

VPKE.PGen(1λ): This public parameter generation algorithm takes the security parameter λ ∈ N
as input, and returns a public parameter pars.

VPKE.KeyGen(pars): This key generation algorithm takes pars as input, and returns a public key
pkvpke and a secret key dkvpke.

VPKE.Enc(pars, pkvpke,msg): This encryption algorithm takes pars, pkvpke and a plaintext msg ∈
Mvpke as input, and returns a ciphertext CT.

VPKE.Dec(pars, pkvpke, dkvpke,CT): This decryption algorithm takes pars, pkvpke, dkvpke and CT
as input, and returns a plaintext msg or reject symbol ⊥. Internally the algorithm runs
VPKE.Ver, VPKE.Conv, and VPKE.Dec′, which are defined as follows.

VPKE.Ver(pars, pkvpke,CT): This verification algorithm takes pars, pkvpke and CT as input, and
returns 1 or 0.

VPKE.Conv(pars, pkvpke,CT): This conversion algorithm takes pars, pkvpke and CT as input, and
returns a ciphertext CT′.

VPKE.Dec′(pars, pkvpke, dkvpke,CT
′): This decryption algorithm takes pars, pkvpke, dkvpke and CT′ as

input, and returns a plaintext msg.

Correctness is defined as follows: For all pars← VPKE.PGen(1λ), all (pkvpke, dkvpke)← VPKE.KeyGen
(pars), all msg ∈ Mvpke,VPKE.Dec

′(pars, pkvpke, dkvpke and VPKE.Conv(pars, pkvpke,CT)) = msg
holds, where CT← VPKE.Enc(pars, pkvpke,msg) and VPKE.Ver(pars, pkvpke,CT) = 1.

Next, we define strictly non-trivial public verification. Condition 1 requires that the decryption
of a ciphertext CT succeeds if and only if its verification outputs 1, and Condition 2 excludes
CCA-secure schemes where the decryption algorithm does not output ⊥.

Definition 2 (Strictly Non-Trivial Public Verification). For any PPT adversary A and the security
parameter λ ∈ N, let pars ← VPKE.PGen(1λ). We define the VPKE.Ver algorithm is strictly non-
trivial public verifiable if (1) (pkvpke, dkvpke)← VPKE.KeyGen(pars), and VPKE.Ver(pars, pkvpke,CT) =
0 ⇐⇒ VPKE.Dec(pars, pkvpke, dkvpke,CT) = ⊥ for all CT, and (2) there exists a ciphertext CT for
which VPKE.Dec(pars, pkvpke, dkvpke,CT) = ⊥ are provided.

Next, we define IND-CCA as follows.

Definition 3 (IND-CCA). For any PPT adversary A and the security parameter λ ∈ N, we define
the experiment ExpIND-CCA

VPKE,A (λ) as follows. Here, state is state information that an adversary A can
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preserve any information, and state is used for transferring state information to the other stage.

ExpIND-CCA
VPKE,A (λ):

pars← VPKE.PGen(1λ); (pkvpke, dkvpke)← VPKE.KeyGen(pars)

(msg∗0,msg∗1, state)← AVPKE.DEC(find, pars, pkvpke)

msg∗0,msg∗1 ∈Mvpke; |msg∗0| = |msg∗1|

µ
$←− {0, 1}; CT∗ ← VPKE.Enc(pars, pkvpke,msg∗µ)

µ′ ← AVPKE.DEC(guess,CT∗, state)

If µ = µ′ then output 1, and 0 otherwise

• VPKE.DEC: This decryption oracle takes a ciphertext CT ̸= CT∗ as input. If VPKE.Ver(pars,
pkvpke,CT) = 0, output ⊥. Otherwise, compute CT′ ← VPKE.Conv(pars, pkvpke,CT), and
return msg by running the VPKE.Dec′(pars, pkvpke, dkvpke,CT

′) algorithm.

We say that VPKE is IND-CCA secure if the advantage AdvIND-CCA
VPKE,A (λ) :=

| Pr[ExpIND-CCA
VPKE,A (λ) = 1]− 1/2 | is negligible for any PPT adversary A.

For clarity, we describe the VPKE scheme proposed by Nieto et al. in Appendix B. This scheme is
used in our implementation.

Next, we define the secure hardware scheme (HW scheme) [18]. In this paper, the hardware
instance HW denotes an oracle that provides the functionalities given in Definition 8. Furthermore,
the hardware oracle HW(·) denotes an interaction with other local secure hardware in addition to
HW, and the Key Manager oracle KM(·) denotes an interaction with a remote secure hardware over
an untrusted channel.

Definition 4 (Syntax of HW Scheme). A HW scheme for a set of probabilistic programs Q com-
prises the following seven algorithms. HW has variables HW.skreport, HW.skquote, and a table T.
Here, HW.skreport and HW.skquote are leveraged to store keys, and the table T is leveraged to manage
the internal state of loaded enclave programs.

• HW.Setup(1λ): This hardware setup algorithm takes the security parameter λ ∈ N as input,
and returns a public parameters params. This algorithm also generates the secret keys skreport
and skquote, and stores these keys in the HW.skreport and HW.skquote valuables respectively.

• HW.Load(params,Q): This loading program algorithm takes params and a program Q ∈ Q as
input, and returns a handle hdl. Intuitively, this algorithm loads the stateful program into the
enclave to be launched. Here, hdl is leveraged to identify the enclave running Q.

• HW.Run(hdl, in): This running program algorithm takes hdl and a symbol in as input, and
returns out corresponding to an enclave running a designated program Q. Intuitively, this
algorithm runs Q at state T[hdl] with in, and records out.

• HW.Run&Reportskreport(hdl, in): This running program and generating report algorithm, which
can be verified by an enclave program on the same hardware platform for a local attestation,
takes hdl and in as input, and returns a report report := (mdhdl, tagQ, in, out,mac), where
mdhdl is a metadata relative enclave, tagQ is a program tag that identifies the program run-
ning inside an enclave, and mac is a message authentication code produced using skreport for
(mdhdl, tagQ, in, out).
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• HW.Run&Quoteskquote(hdl, in): This running program and generating quote algorithm, which
can be publicly verified different hardware platform for a remote attestation, takes hdl and
in as input, and returns a quote quote := (mdhdl, tagQ, in, out, σ), where mdhdl is a metadata
relative enclave, tagQ is a program tag that identifies the program running inside an enclave,
and σ is a signature produced using skquote for (mdhdl, tagQ, in, out).

• HW.ReportVerifyskreport(hdl, report): This report verification algorithm takes hdl and report as
input, and uses skreport to verify mac. If mac is valid, then the algorithm outputs 1 and adds
a tuple (1, report) to T[hdl]. Otherwise, the algorithm outputs 0 and adds tuple (0, report) to
T[hdl].

• HW.QuoteVerify(params, quote): This quote verification algorithm, takes params and quote as
input. This algorithm verifies σ. If the verification of σ succeeds, then the algorithm outputs
1. Otherwise, 0 is output.

We require that the HW provides local attestation unforgeability (LOC-ATT-UNF) and remote
attestation unforgeability (REM-ATT-UNF) security, which are defined in Appendix A.3.

3 Impossibility Result of VFE and Our Solution

In this section, we introduce the impossibility result of VFE demonstrated by Badrinarayanan et
al. [7]. This impossibility is caused by the verifiability of VFE. Thus, they indicated that the
impossibility of VFE remains even if the impossibility of the SIM-based security given by Agrawal
et al. [3] is bypassed.

Their VFE syntax differs from our VFE-HW. Thus, we first introduce their syntax. The setup
algorithm VFE.Setup(1λ) generates (mpk, msk), the key-generation algorithm VFE.KeyGen(mpk,
msk, P) outputs skP, the encryption algorithm VFE.Enc(mpk, msg) outputs CT, and the decryption
algorithm VFE.Dec(mpk, P, skP, CT) outputs P(msg) or ⊥. In addition, VFE supports two verifica-
tion algorithms, i.e., ciphertext verification algorithm VFE.VerifyCT(mpk, CT) outputs 0 or 1, and
the secret key verification algorithm VFE.VerifyK(mpk, P, skP) outputs 0 or 1.

Next, we introduce verifiability as defined by them. Here, verifiability guarantees that if ci-
phertexts and secret keys are verified by the respective algorithms, then each ciphertext should be
associated with a unique message msg, and the decryption result is P(msg). Note that it holds even
under a possibly maliciously generated mpk. Let PVFE andMVFE be a family of function for VFE
and a plaintext space of VFE respectively.

Definition 5 (Verifiability). For all security parameters λ ∈ N, mpk ∈ {0, 1}∗, and all CT ∈
{0, 1}∗, there exists msg ∈MVFE such that for all P ∈ PVFE and skP ∈ {0, 1}∗, if VFE.VerifyCT(mpk,
CT) = 1 and VFE.VerifyK(mpk,P, skP) = 1, then Pr[VFE.Dec(mpk,P, skP,CT) = P(msg)] = 1 holds.

The probability that the VFE.Dec algorithm will output P(msg) is exactly 1 if CT and skP are valid.
Thus, Badrinarayanan et al. assumed that perfect correctness holds (otherwise, a non-uniform
malicious authority can sample ciphertexts/keys from the space where it fails to be correct). Note
that the probability being exactly 1 yields perfect soundness for all adversaries when a proof system
is constructed from VFE.

Next, we describe the impossibility result.

Theorem 1 (Theorem 3 [7]) There exists a family of functions, each of which can be repre-
sented as a polynomial sized circuit, for which there does not exist any simulation secure verifiable
functional encryption scheme.
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To prove this theorem, Badrinarayanan et al. demonstrated that SIM-based VFE implies the
existence of one message zero-knowledge proof system for NP in the plain model which is known
to be impossible. Concretely, let L be an NP complete language and R be the relation of L that
takes a string x and a polynomial sized (in the length of x) witness ω. R(x, ω) outputs 1 if and only
if x ∈ L and ω is its witness as input. Here, we denote R(x, ·) for all x ∈ {0, 1}λ. A one message
zero-knowledge proof system (P,V) for the language L with relation R is constructed from VFE as
follows. For (x, ω), the prover P runs (mpk, msk) ← VFE.Setup(1λ) where λ = |x|, computes CT
← VFE.Enc(mpk, ω) and skR(x,·) ← VFE.KeyGen(mpk, msk, R(x, ·)), and outputs a proof π = (mpk,
CT, skR(x,·)). The verifier V accepts π if VFE.Dec(mpk, R(x, ·), skR(x,·), CT) = 1. Obviously, the
proof system is perfectly complete if the underlying VFE scheme is perfectly correct. In addition,
due to the verifiability property, the system is perfectly sound, and, since the verifiability holds
even for maliciously generated mpk, CT, and sk, no trusted setup is assumed. Due to the SIM-based
security, i.e., the existence of a simulator that can produce a ciphertext from only R(x, ω) without
knowing ω (here, 1 = R(x, ω) in this case), the system provides computational zero knowledge.

Our Solution: To bypass the impossibility result, we introduce the trusted setup where (mpk,
msk) is generated honestly, and mpk is considered as a CRS. 2 One may think that this trusted
setup assumption is unreasonable and too strong in practice. However, this is not the case in the
hardware-based construction. For example, a TAmanages a TAP and setups the KME in the TAP. In
our system, mpk and msk are generated by running a setup program in the KME, and it is implicitly
assumed that the setup program is executed correctly (Q in our scheme). In other words, anyone
can verify the description of the function. In addition, we assume that the program is hardcoded
as the static data, and cannot be tampered using attestation. The remaining problem can be
solved since we use trusted computer that correctly runs the program, which is widely assumed
in the implementation of cryptographic protocols. Thus, we claim that the trusted assumption is
reasonable, and we leave how to remove this assumption without losing the SIM-based security as
a future work.

Even if one message zero-knowledge proof system in the CRS model can be constructed from
SIM-based VFE, this does not bypass the impossibility result since the proof system in the plain
model implies a proof system in the CRS model. We emphasis that the setup algorithm that
generates (mpk, msk) must be run first since other algorithms take mpk or msk as input. Therefore,
we can bypass the impossibility result of Badrinarayanan et al. since any VFE-based one message
zero-knowledge proof system or argument need to run the Setup algorithm first, and then mpk can
be considered as a CRS.

Regarding the CRS model, Badrinarayanan et al. have mentioned that VFE appears to be
constructed from a functional encryption scheme with Non-Interactive Zero-Knowledge (NIZK)
proof systems. However, the CRS may be generated maliciously, and then soundness does not
hold. As a result, they gave up for employing NIZK proof systems and employed non-interactive
witness indistinguishable proof (NIWI) systems as the ingredients. We introduce the trusted setup
assumption. Thus, we may be able to construct VFE accordingly without employing a HW scheme.
However, even then, another impossibility arises, where SIM-based functional encryption cannot
support all (polynomial-sized) functionalities [3]. For bypassing the impossibility, we employ a HW
scheme. Random oracles may be employed to avoid introducing the trusted setup assumption.
However, as mentioned by Agrawal, Koppula, and Waters [4], there is an impossibility result of

2We note that we also relax the condition that the verifiability holds where the probability that the decryption
algorithm outputs P(msg) is not exactly 1 (concretely 1-negl(λ)) in our definition. Because the underlying local
or remote attestations require non-perfect correctness, this relaxation is reasonable. This relaxation provides the
converted proof system to be an argument, i.e., soundness holds only for computationally bounded adversaries.
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SIM-based security in the random oracle model. Thus, we do not further consider the random
oracle in this paper.

4 Definitions of VFE-HW

In this section, we define VFE-HW. Here, let HW be a hardware instance that takes a handle hdl
that identifies an enclave. If an algorithm is allowed to access HW, then the algorithm can use the
secure hardware functionality given in Definition 4. Let HW(·) (resp. KM(·)) be a hardware (resp.
a key manager) oracle that takes hdl and an authentication information (Report (resp. Quote) in our
construction), interacts with other local enclave specified by hdl, and runs the function contained in
the authentication information. Let PVFE-HW andMVFE-HW be a family of functions for VFE-HW
and a plaintext space of VFE-HW respectively.

Definition 6 (Syntax of VFE-HW). A VFE-HW scheme comprises the following seven algorithms:

VFE-HW.SetupHW(1λ): This setup algorithm takes the security parameter λ ∈ N as input, and
returns a master public key mpk and a master secret key msk.

VFE-HW.KeyGenHW(msk,P): This key generation algorithm takes msk and a function P ∈ PVFE-HW

as input, and returns a secret key skP for P.

VFE-HW.Enc(mpk,msg): This encryption algorithm takes mpk and a plaintext msg ∈MVFE-HW as
input, and returns a ciphertext CT.

VFE-HW.DecSetupHW,KM(·)(mpk): This decryption node setup algorithm takes mpk as input, and
returns a handle hdl.

VFE-HW.VerifyCT(mpk,CT): This ciphertext verification algorithm takes mpk and CT as input, and
returns 1 or 0.

VFE-HW.VerifyK(mpk,P, skP): This secret key verification algorithm takes mpk,P, and skP as input,
and returns 1 or 0.

VFE-HW.DecHW(·)(mpk, hdl,P, skP,CT): This decryption algorithm takes mpk, hdl, skP, and CT as
input, and returns a value P(msg) or a reject symbol ⊥.

Correctness is defined as follows: For all P ∈ PVFE-HW, all (mpk,msk) ← VFE-HW.SetupHW(1λ),
all skP ← VFE-HW.KeyGenHW(msk,P), all hdl ← VFE-HW.DecSetupHW,KM(·)(mpk), and all msg ∈
MVFE-HW, let CT ← VFE-HW.Enc(mpk,msg), then Pr[VFE-HW.DecHW(·)(mpk, hdl, skP,CT) =
P(msg)] = 1− negl(λ) holds.

Next we define weak verifiability. As mentioned in Section 3, we somewhat relax the original
verifiability definition, i.e., we employ the trusted setup and the probability of verifiability is not
exactly 1 due to the correctness of HW scheme. Thus, we call our definition weak verifiability. Weak
verifiability guarantees that if ciphertexts and secret keys are verified by the respective algorithms,
then each ciphertext should be associated with a unique message msg, and the decryption result is
P(msg). Note that this holds only when mpk is generated honestly and hdl is non-⊥.

Definition 7 (Weak Verifiability). For all security parameters λ ∈ N, (mpk,msk) ← VFE-HW.
SetupHW(1λ), and hdl ← VFE-HW.DecSetupHW,KM(·)(mpk) where hdl ̸= ⊥, and all CT ∈ {0, 1}∗,
there exists msg ∈MVFE-HW such that for all P ∈ PVFE-HW and skP ∈ {0, 1}∗, if VFE-HW.VerifyCT
(mpk,CT) = 1 and VFE-HW.VerifyK(mpk,P, skP) = 1, then Pr[VFE-HW.DecHW(·)(mpk, hdl,P, skP,
CT) = P(msg)] = 1− negl(λ) holds.
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Next we define the simulation security of VFE-HW as follows. This security guarantees that no
adversary can distinguish REAL and IDEAL, where REAL represents the actual environment. Note
that msk and the challenge plaintext msg∗ are not explicitly used in IDEAL.

Definition 8 (Simulation security). For a stateful PPT adversary A, a stateful PPT simulator
S and the security parameter λ ∈ N, we define the real experiment ExpREAL

VFE-HW(λ) and the ideal
experiment ExpIDEAL

VFE-HW(λ) as follows. Here, let Umsg(·) denote a universal oracle where Umsg(P ) =
P(msg).

ExpREAL
VFE-HW(λ):

(mpk,msk)← VFE-HW.SetupHW(1λ); msg∗ ← AVFE-HW.KeyGenHW(msk,·)(mpk)

CT∗ ← VFE-HW.Enc(mpk,msg∗); α← AVFE-HW.KeyGenHW(msk,·),HW(·),KM(·)(mpk,CT∗)

Output (msg∗, α)

• HW: A can access the instance as follows.

- HW.LOAD: A queries the instance as input params and Q, and the instance returns hdl by
running the HW.Load(params, Q) algorithm.

- HW.RUN: A queries the instance as input hdl and in, and the instance returns out by
running the HW.Run(hdl, in) algorithm.

• VFE-HW.KeyGenHW: A queries this key generation oracle as input msk and P. The oracle
accesses HW.RUN as input hdl = msk and in = P, and the oracle returns skP as out by running
the HW.Run(hdl, in) algorithm.

• HW(·): A can access HW.RUN&REPORT in addition to HW as input hdl and in, and the
oracle returns report by running the HW.Run&Reportskreport(hdl, in) algorithm.

• KM(·): A can access HW.RUN&QUOTE as input hdl and in, and the oracle returns quote by
running the HW.Run&Quoteskquote(hdl, in) algorithm.

ExpIDEAL
VFE-HW(λ):

mpk← S(1λ); msg∗ ← AS(·)
(mpk)

CT∗ ← SUmsg(·)(1λ, 1|msg∗|); α← ASUmsg(·)(·)(mpk,CT∗)

Output (msg∗, α)

• S(·): S simulates the HW, VFE-HW.KeyGenHW, HW(·) and KM(·) oracles.

• SUmsg(·)(·): S simulates the HW, the VFE-HW.KeyGenHW, the HW(·) and the KM(·) oracles.
Here, if A queries this oracle as input CT∗ and skP, S outputs P(msg) using the universal
oracle Umsg(·) that inputs P queried in the VFE-HW.KeyGenHW oracle.

If there exists a stateful simulator S and ExpREAL
VFE-HW(λ) and ExpIDEAL

VFE-HW(λ) are computationally
indistinguishable, then we say that the VFE-HW scheme is simulation secure against a stateful
PPT adversary
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5 Proposed Scheme

In this section, we describe the proposed VFE-HW scheme. The proposed scheme is constructed
from IND-CCA secure and strictly non-trivial public verifiable VPKE, IND-CCA secure PKE, EUF-
CMA secure SIG and REM-ATT-UNF, and LOC-ATT-UNF secure HW.

High-Level Description: Essencially, we follow the construction of IRON. IRON has supported
public verifiability of secret keys (since these are signatures), we focus on supporting the public
verifiability of ciphertexts. Therefore, we replace a PKE scheme employed to encrypt msg with a
VPKE scheme.

In our VFE-HW scheme, the (function) enclave securely executes computations that require se-
cret values, however, its computational power and memory are constrained. Thus, the verification
part should be run outside of the enclave, and we employ the public verifiability of VFE. However,
the ciphertext is converted if the original VPKE.Ver algorithm is employed. Thus, the converted
ciphertext CT′ is decrypted via VPKE.Dec′ in the enclave. Although at least IND-CPA security
is guaranteed if VPKE.Dec is replaced with VPKE.Dec′ [27], the underlying VPKE scheme is re-
quired to be CCA-secure. Thus, we decompose VPKE.Ver to VPKE.Ver and VPKE.Conv, and run
VPKE.Conv inside of the enclave.

We consider the following assumptions in the construction of the VFE-HW. The first two as-
sumptions are the same as those of IRON, and we introduce the last assumption in this paper.

• Pre-Processing: The TA and a client need to complete the pre-processing phase before using
VFE-HW scheme. In our construction, we consider that a manufacturer setups and initializes
the secure hardware. A public parameter is generated by this phase independent of the
VFE-HW algorithms, and this parameter is implicitly given to all algorithms.

• Non-Interaction: In VFE-HW, a plaintext is encrypted using a public key of a VPKE scheme,
and thus the decryption of the ciphertext requires the corresponding decryption key, which
differs from a secret key skP. To obtain the decryption key from the KME, we require a
one-time hardware setup operation. The VFE-HW.DecSetupHW,KM(·) algorithm interacts with
the KME via the KM(·), and the VFE-HW.DecHW(·) algorithm is non-interactive.

• Trusted Setup: VFE-HW.SetupHW and VFE-HW.DecSetupHW,KM(·) are executed honestly. In
short, mpk, msk and hdl are generated honestly.

The proposed scheme is given as follows. First, we describe the programs QKME (for the KME),
QDE (for a Decryption Enclave DE) and QFE (for a Function Enclave FE). QFE is parameterized
by a function P, and thus we denote QFE(P). Let T be an internal state valuable, tagQDE

be a
measurement of QDE hardcoded in the static data of QKME, and tagQFE(P) be a measurement of
QFE(P).

QKME :

• On input (“init”, 1λ):

1. Run pars← VPKE.PGen(1λ).

2. Run (pkvpke, dkvpke)← VPKE.KeyGen(pars) and (sksign, vksign)← SIG.KeyGen(1λ).

3. Update T to (dkvpke, sksign, vksign) and output (pars, pkvpke, vksign).

• On input (“provision”, quote, params):

1. Parse quote = (mdhdlDE
, tagQDE

, in, out, σ). If tagQDE
is not matched to tag hardcoded as

static data, then output ⊥.
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2. Parse in = (“init setup”, vksign) and check if vksign matches with one in T.

3. Parse out = (sid, pkra) and run b← HW.QuoteVerify(params, quote). If b = 0 output ⊥.
4. Retrieve dkvpke from T and compute ctdk = PKE.Enc(pkra, dkvpke) and σdk = SIG.Sign

(sksign, (sid, dkvpke)), and output (sid, ctdk, σdk).

• On input (“sign”, msg): Compute sig← SIG.Sign(sksign,msg) and output sig.

QDE :

• On input (“init setup”, vksign):

1. Run (pkra, dkra)← PKE.KeyGen(1λ).

2. Generate a session ID, sid← {0, 1}λ.
3. Update T to (sid, dkra, vksign) and output (sid, pkra).

• On input (“complete setup”, pkra, sid, ctdk, σdk):

1. Look up T to obtain the entry (sid, dkra, vksign). If no entry exists for sid, output ⊥.
2. If SIG.Verify(vksign, (sid, ctdk), σdk) = 0, output ⊥. Otherwise, run dkvpke ← PKE.Dec

(dkra, ctdk).

3. Add the tuple (dkvpke, vksign) to T.

• On input (“provision”, report, sig):

1. Check to see that the setup has been completed, i.e. T contains the tuple (dkvpke, vksign).
If not, output ⊥.

2. Check to see that the report has been verified, i.e. T contains the tuple (1, report). If
not, output ⊥.

3. Parse report = (mdhdlP , tagQFE
(P), in, out,mac) and parse out = (sid, pkla).

4. If SIG.Verify(vksign, tagQFE(P), sig) = 0, then output ⊥. Otherwise, output (sid, ctkey =
PKE.Enc(pkla, dkvpke)).

QFE(P) :

• On input (“init”, sig):

1. Run (pkla, dkla)← PKE.KeyGen(1λ).

2. Generate a session ID, sid← {0, 1}λ.
3. Update T to (sid, dkla) and output (sid, pkla).

• On input (“run”, pars, params,mpk, pkla, reportdk,CT):

1. Parse mpk = (pkvpke, vksign).

2. Check to see that the report has been verified, i.e. T contains the tuple (1, reportdk). If
not, output ⊥.

3. Parse reportdk = (mdhdlDE
, tagQDE

, in, out,mac). Parse out = (sid, ctkey).

4. Look up T to obtain the entry (sid, dkla, skP). If no entry exists for sid, output ⊥.
5. Compute dkvpke ← PKE.Dec(dkla, ctkey).

6. Compute CT′ ← VPKE.Conv(pars, pkvpke,CT).
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7. Compute msg← VPKE.Dec′(pars, pkvpke, dkvpke,CT
′).

8. Evaluate P on msg using skP and record the output out := P(msg). Output out.

Next, we describe the proposed scheme as follows. Here, without loss of generality, prior to
running VFE-HW.Dec, we assume that a ciphertext CT is verified by VFE-HW.VerifyCT, and a
secret key skP is verified by VFE-HW.VerifyK. Then, CT and skP are input to VFE-HW.Dec only
when these are valid, and VFE-HW.Dec does not check their validity. This assumption is natural
because we consider public verifiability for both CT and skP.

Proposed scheme:

Pre-Processing phase : The trusted authority platform and decryption node run respectively.

1. Call params← HW.Setup(1λ), and output params.

VFE-HW.SetupHW(1λ):

1. Call hdlKME ← HW.Load(params,QKME).

2. Call (pars, pkvpke, vksign)← HW.Run(hdlKME, (“init”, 1
λ)).

3. Output mpk = (pars, pkvpke, vksign),msk = hdlKME.

VFE-HW.KeygenHW(msk,P):

1. Parse msk = hdlKME.

2. Compute tagP by using a function P.

3. Call sig← HW.Run(hdlKME, (“sign”, tagP)).

4. Output skP = sig.

VFE-HW.Enc(mpk,msg):

1. Parse mpk = (pars, pkvpke, vksign).

2. Compute CT← VPKE.Enc(pars, pkvpke,msg).

VFE-HW.DecSetupHW,KM(·)(mpk):

1. Call hdlDE ← HW.Load(params,QDE).

2. Parse mpk = (pars, pkvpke, vksign).

3. Call quote← HW.Run&Quoteskquote(hdlDE, (“init setup”, vksign)).

4. Call KM(quote) which internally run (sid, ctdk, σdk) ← HW.Run(hdlKME, (“provision”,
quote, params)).

VFE-HW.VerifyCT(mpk,CT):

1. Parse mpk = (pars, pkvpke, vksign).

2. If VPKE.Ver(pars, pkvpke,CT) = ⊥, then output 0. Otherwise, output 1.

12



𝐏

TA

𝐦𝐩𝐤 = 𝐩𝐚𝐫𝐬, 𝐩𝐤𝐯𝐩𝐤𝐞, 𝐯𝐤𝐬𝐢𝐠𝐧

𝐏

𝐬𝐤𝐏
𝐬𝐤𝐏Client

𝐝𝐤𝐯𝐩𝐤𝐞

FE DE

𝐒𝐈𝐆. 𝐕𝐞𝐫𝐢𝐟𝐲 𝐯𝐤𝐬𝐢𝐠𝐧, 𝐏, 𝐬𝐤𝐏
?
=𝟏

𝐂𝐓′ ← 𝐕𝐏𝐊𝐄. 𝐂𝐨𝐧𝐯(𝐩𝐚𝐫𝐬, 𝐩𝐤𝐯𝐩𝐤𝐞, 𝐂𝐓)

𝐦𝐬𝐠 ← 𝐕𝐏𝐊𝐄.𝐃𝐞𝐜′(𝐩𝐚𝐫𝐬, 𝐩𝐤𝐯𝐩𝐤𝐞, 𝐝𝐤𝐯𝐩𝐤𝐞, 𝐂𝐓′)

𝐏(𝐦𝐬𝐠)

𝐕𝐅𝐄-𝐇𝐖.𝐕𝐞𝐫𝐢𝐟𝐲𝐂𝐓(𝐦𝐩𝐤, 𝐂𝐓)?=𝟏
𝐕𝐅𝐄-𝐇𝐖.𝐕𝐞𝐫𝐢𝐟𝐲𝐊(𝐦𝐩𝐤, 𝐏, 𝐬𝐤𝐏)

?
=𝟏

(𝐂𝐓, 𝐬𝐤𝐏)

(𝟐)

(𝟓)

{
𝐂𝐓 ≔ 𝐕𝐏𝐊𝐄. 𝐄𝐧𝐜(𝐩𝐚𝐫𝐬, 𝐩𝐤𝐯𝐩𝐤𝐞,𝐦𝐬𝐠)

(𝟕)

Untrusted platform 

KME

𝐩𝐤𝐯𝐩𝐤𝐞, 𝐝𝐤𝐯𝐩𝐤𝐞 ← 𝐕𝐏𝐊𝐄.𝐊𝐞𝐲𝐆𝐞𝐧(𝐩𝐚𝐫𝐬)

𝐯𝐤𝐬𝐢𝐠𝐧, 𝐬𝐤𝐬𝐢𝐠𝐧 ← 𝐒𝐈𝐆.𝐊𝐞𝐲𝐆𝐞𝐧(𝟏𝝀)

𝐦𝐬𝐤 = 𝐡𝐝𝐥𝐊𝐌𝐄

𝐬𝐤𝐏 ← 𝐒𝐈𝐆. 𝐒𝐢𝐠𝐧(𝐬𝐤𝐬𝐢𝐠𝐧, 𝐏)

𝐩𝐚𝐫𝐬 ← 𝐕𝐏𝐊𝐄. 𝐏𝐆𝐞𝐧(𝟏𝝀)(𝟏)

(𝟔)

(𝟒)
(𝟖)

(𝟑)

(𝟗)

(𝟏𝟎)

(𝟏𝟏)

(𝟏𝟑)

𝐬𝐤𝐏

𝐝𝐤𝐯𝐩𝐤𝐞

(𝟏𝟐)

(𝟏𝟒)

(𝟏𝟓)

(𝟏𝟔)

TAP

DNP

Figure 1: Protocol flow. Steps (1) and (2) specify VFE-HW.Setup, step (3) specifies VFE-
HW.DecSetup, steps (4), (5), (6), (7) and (8) specify VFE-HW.KeyGen, step (9) specifies VFE-
HW.Enc, steps (10) and (11) specify VFE-HW.VerifyK and VFE-HW.VerifyCT, and steps (12),
(13), (14), (15) and (16) specify VFE-HW.Dec.

VFE-HW.VerifyK(mpk,P, skP):

1. Parse mpk = (pars, pkvpke, vksign), and skP = sig.

2. If SIG.Verify(vksign, skP,P) = 0, then output 0. Otherwise, output 1.

VFE-HW.DecHW(·)(mpk, hdl,P, skP,CT):

1. Parse mpk = (pars, pkvpke, vksign), hdl = hdlDE, skP = sig.

2. Call hdlFE(P)← HW.Load(params,QFE(P)).

3. Call report← HW.Run&Reportskreport(hdlFE(P), (“init”, sig)).

4. If HW.ReportVerifyskreport(hdlDE, report) = 0, then output ⊥. Otherwise, call reportdk ←
HW.Run&Reportskreport(hdlDE, (“provision”, report, sig)).

5. If HW.ReportVerifyskreport(hdlFE(P), reportdk) = 0, then output ⊥. Otherwise, call out ←
HW.Run(hdlP, (“run”, pars, params, mpk, pkla, reportdk,
CT)), and output out.

Obviously, correctness holds if VPKE, PKE, SIG, and HW are correct. For clarity, we describe
the protocol flow of VFE-HW using Figure 1, where the gray areas represent the untrusted space
of each platform, orange areas represent the trusted space of each platform, and the procedures
inside dashed boxes are run within enclaves. For example, the TA manages the Trusted Authority
Platform (TAP), and setups the KME in the TAP. A client manages a Decryption Node Platform
(DNP), and setups a DE in the DNP. The TA generates a public key pkvpke and a secret key dkvpke, as
well as a signing key sksign and a verification key vksign as step (1) within KME. Here, mpk generated
by the VFE-HW.SetupHW algorithm consists of pars, pkvpke and vksign as step (2). Furthermore, msk
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generated by the VFE-HW.SetupHW algorithm is a handle hdlKME used to confirm the KME. Next,
the client preserves dkvpke into the DE via a remote attestation as step (3). Next, the client gets the
secret key skP of the VFE-HW.KeyGenHW algorithm which KME issues as a signature on a function
P via a secure channel as step (4) to (8). Here, let CT be a ciphertext of a plaintext msg under pk
using the VFE-HW.Enc algorithm as step (9). If an external encryptor generates CT, it is sent to
the client. Note that we omit this procedure in Figure 1. In the decryption procedure, the client
setups a FE parameterized P in the DNP. Then, the client checks the validity of skP and CT using
the VFE-HW.VerifyK and VFE-HW.VerifyCT algorithms respectively as step (10). If skP and CT
are valid, the client inputs them into the FE via hardware invocation as step (11). If the DNP is
managed remotely by the client, then a remote attestation is employed in this case. Next, the FE
transfers skP to the DE via a local attestation as step (12). The validity of skP is confirmed by
using the SIG.Verify algorithm as step (13). If skP is valid, the DE transfers dkvpke to FE via a local
attestation as step (14). The FE decrypts CT as step (15) using the aVPKE.Conv and VPKE.Dec′

algorithms. Finally, the client obrtains P(msg) as step (16).

6 Security Analysis

We provide two proofs to demonstrate that the proposed scheme provides weak verifiability and
simulation security.

6.1 Weak Verifiability

In this section, we prove the weak verifiability of VFE-HW. Essencially, we employ the strictly
non-trivial public verifiability of VPKE. To do so, we need to guarantee that dkvpke used in the
VPKE.Dec algorithm is generated correctly by the VPKE.KeyGen algorithm. We guarantee this
using the correctness of HW. Formally, the following theorem holds.

Theorem 2 VFE-HW is weak verifiable if VPKE is strictly non-trivial public verifiable, and HW is
correct.

Proof. According to our trusted setup assumption, VFE-HW.SetupHW and VFE-HW.DecSetupHW,KM(·)

algorithms were honestly run which means that dkvpke was correctly generated, and sent from the
KME to a DE. Moreover, VFE-HW.VerifyCT(mpk,CT) = 1 and VFE-HW.VerifyK(mpk,P, skP) = 1
hold. Now, we need to guarantee that dkvpke is correctly sent from the DE to a FE in the

VFE-HW.DecHW(·) algorithm. This holds with probability 1− negl(λ) due to the correctness of HW.
Next, by using this dkvpke, VPKE.Ver(pars, pkvpke,CT) = 1 ⇒ VPKE.Dec(pars, pkvpke, dkvpke,CT) ̸=
⊥ holds due to the strictly non-trivial public verifiability of VPKE. Thus, decryption result of CT
is determined to be unique since the VPKE.Dec algorithm is deterministic algorithm. Let the de-
cryption result denote msg. Then, the VFE-HW.Dec algorithm outputs P(msg) from P and msg.

6.2 Simulation Security

Here, we prove the simulation security of the VFE-HW scheme. We replace the PKE scheme of
IRON with a VPKE scheme. In this case, we primarily consider whether the SIM-based security
is preserved after the replacement. In other words, an adversary A can check the validity of
ciphertexts and it may use for distinguishing REAL and IDEAL. For example, if the challenge
ciphertext is changed as a random number (typically employed to provide key privacy/anonymity
in the PKE/IBE context), then the public verifiability helps A to distinguish REAL and IDEAL, and
the proof fails. Fortunately, the security proof of IRON does not employ the step, and hence we
can replace the PKE scheme with the VPKE scheme.
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Theorem 3 VFE-HW is simulation secure if VPKE is IND-CCA secure, PKE is IND-CCA secure,
SIG is EUF-CMA secure, and HW is a secure hardware scheme.

Proof. We construct a simulator S. First, S needs to simulate the Pre-Processing phase as REAL.
S runs HW.Setup(1λ) and records (skreport, skquote). S measures the designated program QDE, and
stores the program tag tagQDE

. Finally, S creates seven empty lists LK ,LR,LD,LKM ,LDE ,LDE2,
and LFE .

We use sequences of games Game0, ... , Game7 to prove that adversary A cannot computation-
ally distinguish between REAL and IDEAL as follows.

Game0 S runs REAL.

Game1 S runs as Game0 with the following exceptions

• HW.LOAD(params,QDE): If A queries this oracle as input params and QDE, S responds hdlDE

by running the HW.Load(params, QDE) algorithm, and storing it in LD.

• HW.LOAD(params,QFE(P)): If A queries this oracle as input params and QFE(P), S re-
sponds hdlP by running the HW.Load(params, QFE(P)) algorithm, and storing it in LK . If
tagQFE(P) /∈ LK , then S stores (0, tagQFE(P), hdlFE(P)) in LK .

• HW.RUN(hdl, in): If A queries this oracle as input hdl and in, S responds out by running the
HW.Run(hdl, in) algorithm. If vksign, which is queried by A as the HW.Run(hdlDE, in = (“init
setup”, vksign)) algorithm, is not the same as that of mpk, S removes hdlDE from LD.

• VFE-HW.KeyGenHW(msk,P): If A queries to this oracle as input P, S responds skP by running
the HW.Run(hdl, in) algorithm as follows. Parse msk = hdlKME. S computes tagQFE(P), calls
sig ← HW.Run(hdlKME, (“sign”, tagQFE(P))), and outputs skP := sig. If tagQFE(P) already has
an entry in LK , S creates the first entry 1 (we call “honest-bit” for the first entry in LK);
otherwise, S adds the tuple (1, tagQFE(P), {}) to LK .

• VFE-HW.Enc(mpk, msg): If A queries this encryption algorithm as input msg, S responds CT
by running the VPKE.Enc(pars, pkvpke,msg) algorithm. If msg is a challenge plaintext msg∗,
S responds CT∗by running the algorithm, and stores it in LR.

Game2 S runs as Game1 with the following exceptions.

HW.RUN&REPORT(hdl, in): If A queries this oracle as input hdl = hdlDE and in = (“provision”,
report, sig), then S responds reportdk by running the HW.Run&Reportskreport(hdlDE, (“provi-
sion”, report, sig)) algorithm. If tagQFE(P) in report is not contained as a component of an
honest-bit tuple in LK , S outputs ⊥.

Here, we consider a case where the HW.RUN&REPORT(hdlDE, (“provision”, report, sig)) algorithm
outputs non ⊥ even if tagQFE(P) is not contained as an honest-bit tuple in LK . If A can make a query
while ensuring this case, we can break the existentially unforgeability for SIG with non-negligible
probability. The following Lemma is the same as Lemma C.1 of IRON.

Lemma 1 If the signature scheme SIG is EUF-CMA secure, then Game2 is indistinguishable from
Game1.

Game3.0 S runs as Game2 with the following exceptions.
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1. HW.RUN&QUOTE(hdl, in): IfA queries this oracle as input hdl = hdlDE and in= (“init setup”,
vksign), S responds quote by running the HW.Run&Quoteskquote(hdlDE, (“init setup”, vksign))
algorithm, and stores out = (sid, pkra) as a component of quote in LDE2.

2. HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlKME and in = (“provision”,
quote, params), S responds (sid, ctdk, σdk) by running the HW.Run(hdlKME, (“provision”, quote,
params)) algorithm. If (sid, pkra) /∈ LDE2, then S outputs ⊥.

Here, we consider a case where the HW.RUN(hdlKME, (“provision”, quote, params)) algorithm out-
puts non ⊥ even if (sid, pkra) /∈ LDE2. Here, if A can make a query while ensuring this case, then
we can break the remote attestation unforgeability for HW with non-negligible probability. The
following Lemma is the same as Lemma C.4 of IRON.

Lemma 2 If the secure hardware scheme HW is REM-ATT-UNF secure, then Game3.0 is indis-
tinguishable from Game2.

Game3.1 S runs as Game3.0 with the following exceptions.

1. HW.RUN&REPORT(hdl, in): If A queries this oracle as input hdl = hdlFE(P) and in = “init”,
then S responds report by running the HW.Run&Reportskreport(hdlFE(P), “init”) algorithm, and
storing out = (sid, pkla) as a component of report in LFE .

2. HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlDE and in = (“provision”,
report, sig), S responds reportdk by running the HW.Run(hdlDE, (“provision”, report, sig)) al-
gorithm. If (sid, pkla) /∈ LFE , S outputs ⊥.

Here, we consider a case where the HW.RUN&REPORT(hdlDE, (“provision”, report, sig)) algorithm
outputs non ⊥ even if (sid, pkla) /∈ LFE . If A can make a query while ensuring this case, we can
break the local attestation unforgeability for HW with non-negligible probability. The following
Lemma is the same as Lemma C.5 of IRON.

Lemma 3 If the secure hardware scheme HW is LOC-ATT-UNF secure, Game3.1 is indistinguish-
able from Game3.0.

Game4.0 S runs as Game3.1 with the following exceptions.

HW.RUN(hdl, in):

1. If A queries this oracle as input hdl = hdlKME and in = (“provision”, quote, params), S
responds (sid, ctdk) by running the HW.Run(hdlKME, (“provision”, quote, params)) algo-
rithm, and storing it in LKM .

2. If A queries this oracle as input hdl = hdlDE and in = (“complete setup”, sid, ctdk, σdk),
S runs the HW.Run(hdlDE, (“complete setup”, sid, ctdk)) algorithm. If (sid, ctdk) /∈ LKM ,
then S outputs ⊥.

Here, we consider a case that the HW.RUN(hdlDE, (“complete setup”, sid, ctdk, σdk)) algorithm
outputs non ⊥ even if (sid, ctdk) /∈ LKM . If A can make a query while ensuring this case, we can
break the existentially unforgeability for SIG with non-negligible probability. The following Lemma
is the same as Lemma C.2 of IRON.
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Lemma 4 If the signature scheme SIG is EUF-CMA secure, Game4.0 is indistinguishable from
Game3.1.

Game4.1 S runs as Game4.0 with the following exceptions.

1. HW.RUN&REPORT(hdl, in): If A queries this oracle as input hdl = hdlDE and in = (“provi-
sion”, report, sig), S responds reportdk by running the HW.Run&Reportskreport(hdlDE, (“provi-
sion”, report, sig)) algorithm, and storing out = (sid, ctkey) as a component of reportdk in
LDE .

2. HW.RUN(hdl, in): IfA queries this oracle as input hdl =hdlFE(P) and in= (“run”, params,mpk,
pkla, reportdk, CT), S responds P(msg) by running the HW.Run(hdlFE(P), (“run”, params,mpk,
pkla, reportdk,CT)) algorithm. If (sid, ctkey) /∈ LDE , S outputs ⊥.

Here, we consider a case where the HW.RUN(hdlP, (“run”, params,mpk, pkla, reportdk,CT)) algo-
rithm outputs non ⊥ even if (sid, ctkey) /∈ LDE . If A can make a query while ensuring this case, we
can break the local attestation unforgeability for HW with non-negligible probability. The following
Lemma is the same as Lemma C.3 of IRON.

Lemma 5 If the secure hardware scheme HW is LOC-ATT-UNF secure, Game4.1 is indistinguish-
able from Game4.0.

Game5 S runs as Game4.1 with the following exceptions.

HW.RUN(hdl, in): IfA queries this oracle as input hdl = hdlFE(P) and in= (“run”, params,mpk, pkla,
reportdk,CT), S evaluates CT as follows.

• If CT /∈ LR, S retrieves dkvpke from ctkey, and computes msg ← VPKE.Dec(pars, pkvpke,
dkvpke,CT). Finally, S evaluates P on msg, and outputs out := P(msg)

• If CT ∈ LR, S uses the Umsg∗(P) oracle, and responds with P(msg∗).

Game6 S runs as Game5 with the following exceptions.

KM(quote): If A queries this oracle as input quote = (mdhdlDE
, tagQDE

, in = (“run”, vksign),
out = (sid, pkra), σ), S runs the HW.Run(hdlKME, (“provision”, quote, params)) algorithm,
which internally runs ctdk ← PKE.Enc(pkra, 0

|dkvpke|), and outputs (sid, ctdk, σdk).

The following Lemma is the same as Lemma C.6 of IRON.

Lemma 6 If the public key encryption scheme PKE is IND-CCA secure, Game6 is indistinguishable
from Game5.

Game7 S runs as Game6 with the following exceptions.

VFE-HW.Enc(mpk, 0|msg∗|): If A queries this algorithm as input msg, S responds CT by running
VPKE.Enc(pars, pkvpke, 0

|msg|). Ifmsg is a challenge plaintextmsg∗, S responds CT∗ by running
the algorithm, and storing it in LR.

Here, no step replaces a valid ciphertext with an invalid ciphertext, e.g., a random number;
therefore, the public verifiability does not affect the security proof.
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Lemma 7 If the verifiable public key encryption scheme VPKE is IND-CCA secure, Game7 is
indistinguishable from Game6.

Proof. Let A be an adversary who distinguishes between Game6 and Game7, and letC be the
challenger of IND-CCA security. We construct an algorithm B that breaks IND-CCA as follows.
First, C runs pars ← VPKE.PGen(1λ), then (pkvpke, dkvpke) ← VPKE.KeyGen(pars), and gives pars
and pkvpke to B. B runs (sksign, vksign) ← SIG.KeyGen(1λ) and params ← HW.Setup(1λ), and gives
params and mpk = (pars, pkvpke, vksign) to A.

For key generation query P, B derives tagQFE(P) from P, and calls sig← HW.Run(hdlKME, (“sign”,
tagQFE(P))). Then, B sends skP := sig to A, and stores tagQFE(P)

in LK .
For run query (hdlFE(P), (“run”, params,mpk, pkla, reportdk,CT)) where reportdk is valid and

hdlFE(P) ∈ LK with honest-bit, B forwards CT to C as a decryption query. C returns msg by running
the VPKE.Dec(pars, pkvpke, dkvpke,CT) algorithm to B. If msg = ⊥, B outputs ⊥; otherwise, B runs
P on msg, and sends P(msg) to A.

In the challenge phase, A sends (msg∗, 0|msg∗|) to B. B sets msg∗ = M∗
0 and 0|msg∗| = M∗

1, and
sends (M∗

0,M
∗
1) to C. C computes challenge ciphertext CT∗ = VPKE.Enc(pars, pkvpke,M

∗
µ) where

µ ∈ {0, 1}, and sends CT∗ to B. B sends CT∗ to A, and stores CT∗ in LR.
For key generation query P , B derives tagQFE(P)

from P, and calls sig← HW.Run(hdlKME, (“sign”,
tagQFE(P))). B sends skP := sig to A, and stores tagQFE(P)

in LK .
For run query (hdlFE(P), (“run”, params,mpk, pkla, reportdk,CT)) where reportdk is valid and

hdlP ∈ LK with honest-bit:

• CT ∈ LR: B uses the universal oracle Umsg∗(P), and sends P(msg∗) to A.

• CT /∈ LR: B forwards CT to C as a decryption query. C returns msg by running the
VPKE.Dec(pars, pkvpke, dkvpke,CT) algorithm to B. If msg = ⊥, B outputs ⊥; otherwise,
B runs P on msg, and sends P(msg) to A.

Finally, A outputs µ′ ∈ {0, 1}. B outputs µ′, and breaks IND-CCA security.

7 Implementation

In this section, we give an implementation result when we employ a cryptographic hash function H
as a function P, i.e., the decryption algorithm outputs H(msg). As mentioned before, theoretically
the function is not realized in the IND-based VFE scheme [7], and practically the function seems
attractive when we compute a hashed value for a sensitive data such as a password. This system
can be achieved by IRON, however no verifiability is guaranteed. On the other hand, in our scheme
the server can verify the ciphertext, and can delegate the verification to other server as an option.
Considering a concrete application is left as future work of this paper.

We measured the average times and standard deviations of the VFE-HW.Enc, VFE-HW.VerifyCT,
VFE-HW.VerifyK and VFE-HW.Dec algorithms because we estimate the runtime of the algorithms
related to msg for the proposed scheme. Here, except for the VFE-HW.Dec algorithm, all algo-
rithms were run outside enclaves. In the VFE-HW.Dec algorithm, the FE runs the VPKE.Conv and
VPKE.Dec′ algorithms, and evaluates H on msg. We employ the VPKE scheme [27] (see Appendix
B), ECDSA as SIG, and SHA-256 as H.

The VPKE.Ver algorithm checks whether (part of) the ciphertext is a DDH tuple, we employed
symmetric pairings even though asymmetric pairings are desirable for efficient implementation [19].
We used the PBC library [1], which supports the symmetric pairings. We generated parameters for
a Type-A curve with 128-bit security, defined over the field Fp with a 256-bit prime p, where the
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Table 2: Implementation results of VFE-HW scheme
Algorithms Average Running Time (sec) Standard Deviation

VFE-HW.Enc 0.11828 0.00228

VFE-HW.VerifyCT 0.12329 0.00252

VFE-HW.VerifyK 0.00054 0.00001

VFE-HW.Dec 0.06164 0.00145

order is a 1536-bit prime, using a function called pbc param init a gen. The parameter is given
in Appendix C.

For running the PBC library in enclaves, we employed the PBC for SGX given by Contiu et
al. [15]. In our implementation, we set input-output of enclaves is as an array of unsigned char
values regarding a valuable of PBC. We transformed the binary data into an element of elliptic
curves using the element from bytes function supported by PBC within enclaves.

Our implementation environment includes the CPU: Intel(R) Core(TM) i3-7100U (2.40GHz),
and the libaries openssl 1.0.2g, Intel SGX 1.5 Linux Driver, Intel SGX SDK, Intel SGX PSW,
GMP, PBC, and PBC for SGX [15]. Note that, some vulnerablities of Intel SGX have been
reported [11,12,29]. It is possible to use a different secure HW.

We show the average times and the standard deviations of those algorithms over 10000 samples
in Table 2. The average times of all algorithms (except the VFE-HW.VerifyK algorithm) were
approximately 0.1 sec. The average time of the VFE-HW.VerifyK algorithm was 0.00054 sec.
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A Security Definitions

Here, we introduce the security definition of PKE, SIG and HW.

A.1 Security Definition of PKE

First, we introduce IND-CCA security of PKE as follows.

Definition 9 (IND-CCA). For any probabilistic polynomial-time (PPT) adversary A and the se-
curity parameter λ ∈ N, we define the experiment ExpIND-CCA

PKE,A (λ) as follows. Here, state is state
information that an adversary A can preserve any information, and state is used for transferring
state information to the other stage.

ExpIND-CCA
PKE,A (λ) :

(pkpke, dkpke)← PKE.KeyGen(1λ)

(msg∗0,msg∗1, state)← APKE.DEC(find, pkpke)

msg∗0,msg∗1 ∈Mpke; |msg∗0| = |msg∗1|

µ
$←− {0, 1}; CT∗ ← PKE.Enc(pkpke,msg∗µ)

µ′ ← APKE.DEC(guess,CT∗, state)

If µ = µ′ then output 1, and 0 otherwise
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• PKE.DEC: This decryption oracle takes as input a ciphertext CT ̸= CT∗ and returns msg by
running the PKE.Dec(dkpke,CT) algorithm.

We say that PKE is IND-CCA secure if the advantage

AdvIND-CCA
PKE,A (λ) :=| Pr[ExpIND-CCA

PKE,A (λ) = 1]− 1/2 |

is negligible for any PPT adversary A.

A.2 Security Definition of SIG

Next, we introduce EUF-CMA security of SIG as follows.

Definition 10 (EUF-CMA). For any PPT adversary A and the security parameter λ ∈ N, we
define the experiment ExpEUF-CMA

SIG,A (λ) as follows.

ExpEUF-CMA
SIG,A (1λ) :

(sksign, vksign)← SIG.KeyGen(1λ); QUERY := ∅
(msg∗, σ∗)← ASIG.SIGN(vksign)

If SIG.Verify(vksign,msg∗, σ∗) = 1 and msg∗ /∈ QUERY

then output 1, and 0 otherwise

• SIG.SIGN: This signing oracle takes as input a message msg, and returns σ by running the
SIG.Sign(sksign,msg) algorithm. Finally, the challenger stores msg in QUERY.

We say that SIG is EUF-CMA secure if the advantage

AdvEUF-CMA
SIG,A (λ) := Pr[ExpEUF-CMA

SIG,A (λ) = 1]

is negligible for any PPT adversary A.

A.3 Security Definition of HW

Next, we introduce LOC-ATT-UNF of HW as follows. This security guarantees that no adversary
that does not have skreport can produce a valid report.

Definition 11 (LOC-ATT-UNF) For any PPT adcersary A and the security parameter λ ∈ N, we
define the experiment ExpLOC-ATT-UNF

HW,A (λ) as follows.

ExpLOC-ATT-UNF
HW,A (λ) :

(params, skreport, skquote, state)← HW.Setup(1λ); QUERY := ∅
(hdl∗, report∗)← AHW,HW(·)(params)

If HW.ReportVerifyskreport(hdl
∗, report∗) = 1 where

report∗ = (md∗hdl, tag
∗
Q, in

∗, out∗,mac∗) and

(md∗hdl, tag
∗
Q, in

∗, out∗) /∈ QUERY

then output 1, and 0 otherwise

• HW: A can access the instance as follows.
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- HW.LOAD: A queries the instance as input params and Q, and the instance returns the
handle hdl by running the HW.Load(params, Q) algorithm.

- HW.REPORTVERIFY: A queries the instance as input hdl and report, and the instance
returns the result by running the HW.ReportVerifyskreport(hdl, report) algorithm.

• HW(·): A can access the oracle as follows.

- HW.RUN&REPORT : A queries the oracle as input hdl and in, and the oracle returns
report := (mdhdl, tagQ, in, out,mac) by running the HW.Run&Reportskreport(hdl, in) algo-
rithm. Finally, the oracle stores (mdhdl, tagQ, in, out) in QUERY.

We say that HW is LOC-ATT-UNF secure if the advantage

AdvLOC-ATT-UNF
HW,A (λ) := Pr[ExpLOC-ATT-UNF

HW,A (λ) = 1]

is negligible for any PPT adversary A.

Next, we define REM-ATT-UNF of HW as follows. This security guarantees that no adversary
that does not have skquote can produce a valid quote.

Definition 12 (REM-ATT-UNF) For any PPT adcersary A and the security parameter λ ∈ N,
we define the experiment ExpREM-ATT-UNF

HW,A (λ) as follows.

ExpREM-ATT-UNF
HW,A (λ) :

(params, skreport, skquote, state)← HW.Setup(1λ); QUERY := ∅
quote∗ ← AHW,KM(·)(params)

If HW.QuoteVerify(params, quote) = 1 where

quote∗ = (md∗hdl, tag
∗
Q, in

∗, out∗, σ) and

(md∗hdl, tag
∗
Q, in

∗, out∗) /∈ QUERY

then output 1, and 0 otherwise

• HW: A can access the instance as follows.

- HW.LOAD: A queries the instance as input params and Q, and the instance returns the
handle hdl by running the HW.Load(params,Q) algorithm.

• KM(·): A can access the oracle as follows.

- HW.RUN&QUOTE: A queries the oracle as input hdl and in, and the oracle returns
quote := (mdhdl, tagQ, in, out, σ) by running the HW.Run&Quoteskquote(hdl, in) algorithm.
Finally, the oracle stores (mdhdl, tagQ, in, out) in QUERY.

We say that HW is REM-ATT-UNF secure if the advantage

AdvREM-ATT-UNF
HW,A (λ) := Pr[ExpREM-ATT-UNF

HW,A (λ) = 1]

is negligible for any PPT adversary A.
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B VPKE Scheme by Nieto et al.

Here, we introduce the Nieto et al. VPKE scheme proposed by Nieto et al. (Figure 4 [27]) as
follows. For the underlying One-Time Signature (OTS) scheme, we employ the discrete-log-based
Wee OTS scheme [33]. For the DDH test, we employ symmetric pairings whether e(g, π) is the
same as e(c1, u

tv) or not.

VPKE.PGen(1λ): Choose (p, e, g, G, GT ) where G and GT are groups of λ-bit prime order p,
g ∈ G is a generator, and e : G × G → GT is a bilinear map. Let H : G → {0, 1}poly(λ),
HOTS : {0, 1}∗ → {0, 1}poly(λ), and TCR : G × {0, 1} → Zp be collision or target collision
resistant hash functions where poly(λ) is a polynomial in λ. Output pars = (p, e, g, G, GT ,
H, HOTS , TCR).

VPKE.KeyGen(pars): Parse pars = (p, e, g, G, GT , H, HOTS , TCR). Choose x1
$←− Z∗

p and v
$←− G

and compute u = gx1 . Output pk = (u, v) and dk = x1.

VPKE.Enc(pars, pk, msg): Parse pars = (p, e, g, G, GT , H, HOTS , TCR) and pk = (u, v).

Choose s0, s1, x2, r, n
$←− Z∗

p and compute u0 = gs0 , u1 = gs1 , c′ = gx2 , c1 = gr, t ←
TCR(c1, (u0, u1, c

′)), K ← H(ur) and π ← (utv)r. Set c2 ← msg ⊕ K and c = (c1, c2, π).
Compute w ← x2 + ns0 + s1(HOTS(c) + n). Output CT← (c, (n,w), (u0, u1, c

′))

VPKE.Ver(pars, pk, CT): Parse pars = (p, e, g, G, GT , H, HOTS , TCR), pk = (u, v), CT =
(c, (n,w), (u0, u1, c

′)) and c = (c1, c2, π). Compute t ← TCR(c1, (u0, u1, c
′)) and π ← (utv)r.

If e(g, π) ̸= e(c1, u
tv) or gw ̸= c′un0 · u

HOTS(c)+n
1 , then output 0. Otherwise, output 1.

VPKE.Conv: Parse pars= (p, e, g, G, GT , H, HOTS , TCR), pk= (u, v), CT = (c, (n,w), (u0, u1, c
′))

and c = (c1, c2, π). Output CT′ = (c1, c2).

VPKE.Dec′(pars, pk, dk, CT′): Parse pars = (p, e, g, G, GT , H, HOTS , TCR), pk = (u, v), dk = x1
and CT′ = (c1, c2). Compute K ← H(cx1

1 ) and set msg← c2 ⊕K. Output msg.

C Type A Curve with 128-bit Security

Here, we indicate the parameters as shown in Table 3. h is defined as h := (p+ 1)/Order and is a
multiple of 12, and sign0, sign1, exp1, and exp2 are defined as Order = 2exp2+ sign1 ·2exp1+ sign0 ·1.
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Table 3: Type A curve with 128-bit security
p 137829182137841914660939203166562778481072472868799212883736033373776389423

275856600849965727557905145379787147011573918838400696256791520969790954647
234026134149836279179970069912941702077185846892228741645147037546137834958
016993449032368771117716800854231045245128514829131301048171717614739196745
940412209360282518205988243325127502858859823618043686336864956271850425997
773219601256420082271109126943413847132693452774733004856610405223161761104
4807535038087

Order 578960446186580977117854925043439539266349923328202820197287920061555880755
21

h 238063209750643048886022474472094216560766062709758760649150166949046752384
245829423385367442267660654963459018826556642656137089040285666790582182002
598333807307620189224986606097900823156136453183171049170543365773619829534
386565283791806164145599669023668121875720159425971381043029195875236768247
182750347222425692281034022570346337224333818783563819554407177204040132394
72452603528

exp1 41

exp2 255

sign0 1

sign1 1
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