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Abstract. In this work, we introduce the first practical post-quantum
verifiable random function (VRF) that relies on well-known (module) lat-
tice problems, namely Module-SIS and Module-LWE. Our construction,
named LB-VRF, results in a VRF value of only 84 bytes and a proof of
around only 5 KB (in comparison to several MBs in earlier works), and
runs in about 3 ms for evaluation and about 1 ms for verification.
In order to design a practical scheme, we need to restrict the number of
VRF outputs per key pair, which makes our construction few-time. De-
spite this restriction, we show how our few-time LB-VRF can be used in
practice and, in particular, we estimate the performance of Algorand us-
ing LB-VRF. We find that, due to the significant increase in the commu-
nication size in comparison to classical constructions, which is inherent
in all existing lattice-based schemes, the throughput in LB-VRF-based
consensus protocol is reduced, but remains practical. In particular, in a
medium-sized network with 100 nodes, our platform records a 1.16× to
4× reduction in throughput, depending on the accompanying signature
used. In the case of a large network with 500 nodes, we can still main-
tain at least 66 transactions per second. This is still much better than
Bitcoin, which processes only about 5 transactions per second.

Keywords: Post-Quantum · Verifiable Random Function · Blockchain
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1 Introduction

The notion of verifiable random function (VRF) was put forth by Micali,
Rabin and Vadhan [37]. It allows a user to generate a random value that is
both authenticated and publicly verifiable. VRFs have been used in prac-
tice, for example, in DNSSEC protocol [24], and in blockchain consensus
protocols [23,12] to establish Proof-of-Stake. In both cases, a VRF serves
as a fundamental building block to provide verifiable random inputs to
the protocol. There are currently two main VRF constructions namely,



ECVRF [40] (based on elliptic curves), and BLS-VRF [8,7] (based on
pairings). Specifically, ECVRF over curve25519 is currently in the stan-
dardization process by CRFG [25] and is deployed by Algorand [23,12],
while BLS-VRF is adopted by Dfinity [28].

The main drawback of the above-mentioned VRF constructions is
that they are vulnerable to quantum attacks. This is a significant concern
especially in the blockchain setting since attackers may “rewrite history”
if they are able to forge the VRF (with a quantum computer). Let us
explain why this is a major concern even today. In a blockchain use case
as in Algorand, VRF is used to ensure that the committee members are
selected honestly for all the blocks that are already committed on the
chain. A new user, who has no record of the previous blocks, can be
assured of the validity of the blocks by looking at the votes that has
been recorded as long as VRF remains secure. In such protocols, since
a block is agreed by the majority of the committee members, there will
never be a fork of the blockchain. However, when the VRF security is
compromised, one can “rewrite history” by re-selecting corrupted users
as committee members for any given round (including rounds in the past),
and then can create a fork to the blockchain subsequent to that round. As
a result, a potential future security threat against the integrity of VRFs
is important even today. To circumvent such a threat, in this paper we
introduce the first post-quantum VRF construction that does not rely on
heavy machinery and meets practical efficiency levels. We emphasize that
our focus in this paper is realization of practical constructions.
Technical challenges in the lattice setting. Construction of an effi-
cient lattice-based VRF is quite challenging as realizing long-term pseudo-
randomness and uniqueness properties together (while maintaining prac-
ticality) does not go well in the lattice setting. To understand why that
is the case, let us first briefly explain how ECVRF works.

In ECVRF, the secret key is a field element x and the correspond-
ing public key is a group element xG for some public generator G. The
ECVRF output is then a group element xP , where P = H(xG, µ) is com-
puted deterministically from the VRF input µ and a public key xG for
some publicly computable function H. Then, a sigma protocol (with Fiat-
Shamir transformation) is applied to prove that both the VRF output xP
and the public key xG have the same discrete logarithm with respect to
P and G, respectively (i.e., x = logG(xG) = logP (xP )). In essence, pseu-
dorandomness follows from DDH assumption and the uniqueness comes
from the fact that, for a fixed input µ and a fixed public key xG, there is
a unique xP such that x = logG(xG) and P = H(xG, µ).
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Issue with long-term pseudorandomness in the lattice setting. The main
technique to hide a secret key s in lattice-based cryptography is to disturb
a lattice point by computing t = 〈b, s〉 + e, where b is a public vector,
s is the secret vector and e is a small (secret) error sampled from some
error distribution. Assuming that computations are done over a ring R, t
is precisely a Module-LWE (MLWE) sample in R and is indistinguishable
from a uniformly random element in R based on MLWE.

Now, let us see the difficulty in constructing an MLWE-based lattice
analogue of the above DDH-based VRF. In this lattice-based VRF con-
struction, for a fixed user secret key s, one can map an input message µ
together with the user public key to a vector b = H(pk, µ) using a deter-
ministic function H (modelled as a random oracle). From here, with the
hope of hiding the secret s, one may attempt to compute the correspond-
ing VRF value as v = 〈b, s〉 + e for some error e sampled from an error
set of many elements. However, unlike the DDH-based setting above, this
approach violates the uniqueness property as there are multiple small e
values that can be used, and thus multiple possible VRF values for a
given (pk, µ).

An alternative approach could be to choose the error in a deterministic
way. In particular, one may compute v = Round(〈b, s〉) for some rounding
function Round(·), which simply chops off some least significant bits, and
rely for pseudorandomness on the learning with rounding (LWR) prob-
lem [4]. In fact, this approach has been used to construct lattice-based
pseudorandom functions (PRFs) [33,43]. The issue here is that currently,
there is no known efficient zero-knowledge proof to prove that the VRF
evaluator indeed computed v in this fashion. For example, the recent re-
sults from [43] yield such a proof of size in the order of several MBs.
Therefore, this approach does not address our practical goals.

Issue with uniqueness in the lattice setting. Another orthogonal issue is
in relation to uniqueness. Efficient lattice-based signature schemes are
non-deterministic and therefore standard transformation from a unique
signature to a VRF (as given in [37]) does not trivially work. Moreover, the
approach taken in [40] to prove uniqueness of the ECVRF construction
also does not apply in the lattice setting. In particular, the authors in
[40] show that for any given VRF output that is not generated honestly
and any valid proof, there exists a single random oracle output c that can
make the proof verify. As the chance of hitting that challenge is negligibly
small, the uniqueness follows. However, the same idea does not work in
the lattice setting.
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1.1 Our Contribution

We propose the first practical verifiable random function, named LB-
VRF, based on standard post-quantum hardness assumptions, namely
Module-SIS (MSIS) and Module-LWE (MLWE). A single LB-VRF proof
costs around 5KB and runs in about 3 ms for evaluation and 1 ms for veri-
fication. To show the practicality of our results, we implemented LB-VRF
and tested it in practice. We discuss the implementation and evaluation
further below.

The main drawback of our construction is that a single key pair can
only be used to generate a limited number k of VRF outputs. Therefore,
we say that our LB-VRF construction is ‘k-time’. However, we show that
this aspect is not a significant disadvantage in the blockchain setting as
the users can frequently update their keys. In fact, some privacy-enhanced
blockchain applications such as Monero and Zcash employ one-time public
keys per transaction (see, for example, [42,39,41,44,38,5,20]). For instance,
as detailed in Section 4.1.6 of Zcash specification [30], a fresh signature
key pair is generated for each transaction.

We also note that the aspect of being k-time is only required to sat-
isfy pseudorandomness (i.e., to prevent the user secret key from being
leaked), and is not related to the soundness (i.e., uniqueness). That is, it
is infeasible for a cheating prover, even by violating the k-time property,
to produce incorrect VRF outputs that pass the verification algorithm.
Main idea. A user secret key in LB-VRF is a short vector s, and the
public key becomes t = As for a public matrix A. Then, we use the
so-called “Fiat-Shamir with Aborts” technique [35] to prove knowledge
of the secret key. However, this proof is relaxed in the sense that it only
proves knowledge of s′ such that c̄t = As′ for some secret relaxation
factor c̄ (i.e., the proof has a knowledge gap). This relaxation complicates
the uniqueness proof. If we would want to prove an exact relation, then
such a proof alone would require about 50 KBs [18], which we consider
too costly for our target blockchain application.

From the discussion about the pseudorandomness in the introduction,
the option that remains at hand, and the one we employ in LB-VRF for
the computation of the VRF value v, is to use no error at all, i.e. set
v = 〈b, s〉. This method only leaks a limited amount information on s for
a relatively small number k of VRF outputs, but fortunately it suffices for
our application of VRF to blockchain protocols. This method does, how-
ever, leak too much information on the secret s when many VRF outputs
are computed with the same key. In particular, one cannot output, say,
264 VRF values vi = 〈bi, s〉 where bi = H(pk, µi) (at least while still pre-
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ECVRF[3] BLS-VRF[2] LB-VRF
PK size 32 bytes 96 bytes 3.29 KB
Proof size 80 bytes 48 bytes 4.66 KB
Prove time 0.2 ms 0.6 ms 3.1 ms
Verification time 0.2 ms 2.0 ms 1.3 ms

Table 1. Comparison of our scheme and classical VRFs.

serving practicality). This issue with long-term pseudorandomness does
not seem to be efficiently addressable with the existing lattice-based tools.

More concretely, we map the VRF input µ and the user public key t to
a vector b using a random oracle. We then prove in zero-knowledge that
the VRF value computed as v = 〈b, s〉 is well-formed. However, again
due to the relaxed nature of the underlying zero-knowledge proof that we
use to achieve short proofs, the uniqueness does not immediately follow.
To handle this, we show via a “double rewinding” argument that as long
as the MSIS problem is hard (with certain parameters), any two VRF
outputs computed by an efficient uniqueness attack algorithm under the
same public key and input must be the same (see the proof of Theorem
3.1). Therefore, we can only achieve computational uniqueness, based on
the standard MSIS hardness assumption. In regards to pseudorandomness,
we show that it follows from MLWE as long as at most k VRF outputs
are produced under a single key pair.

To further reduce the VRF value size and increase computational effi-
ciency, we introduce an additional optimization technique which performs
the VRF value computation in a subring of a commonly-used cyclotomic
ring. We show that the uniqueness security property is still preserved
even when using this optimisation technique. This technique results in
≈ 8× smaller VRF values for typical parameters compared to outputting
the full ring element as the VRF output, and approximately doubles the
evaluation and verification speed.
Implementation and deployment. We present an efficient implemen-
tation of our k-time LB-VRF. In particular, we implement the “worst-
case” (in terms of performance) setting where a single key pair is used
only once (i.e., k = 1) and show that even that case is practical. Our code
is open-sourced5. We compare the performance of our scheme against
ECVRF over curve25519 and BLS-VRF over BLS12-381 curve. The im-
plementation details are provided in Section 4.

5 https://github.com/zhenfeizhang/lb-vrf
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VRF Type ECVRF LB-VRF LB-VRF LB-VRF LB-VRF
Sign. Type + Ed25519 + Ed25519 + Dilithium + Falcon + Rainbow
10 nodes 1000 1000 330 600 1000

100 nodes 1000 840 280 500 840
500 nodes 1000 200 66 120 200

Assumption ECC lattice + ECC lattice lattice lattice + MQ
Table 2. Performance comparison in terms of TPS (the numbers are approximate).
TPS (transactions per second) is a generic metric used by multiple blockchain plat-
forms. In comparison, Bitcoin achieves about 5 TPS.

Since our construction increases sizes significantly, it is important to
understand how practical our scheme can really be in real world proto-
cols. For a fair comparison, we also investigate the impact of integrating
our scheme to the Algorand protocol. With both ECVRF and Ed25519
signatures, Algorand blockchain is able to transmit 5 MB of data per
block, with a block generation time of less than 5 seconds. This allows
Algorand to achieve 1000 transactions per second (TPS), with over 1000
nodes, as of today.

We report the performance of our LB-VRF with four different signa-
tures, Ed25519 (used by Algorand), and 3 NIST PQC candidates. The
data is presented in Table 2, and more details are provided in Section 4.

1.2 Related Work

Originally introduced by Micali, Rabin and Vadhan [37], VRFs have be-
come an important cryptographic primitive in several applications. In [37],
the authors show a relation between VRFs and unique signatures by com-
bining the unpredictability property of a unique signature with the veri-
fiability by extending the Goldreich-Goldwasser-Micali construction of a
pseudorandom function [26]. The concept of a VRF has been investigated
further in [34] and [16]. In [34] the authors provide a construction of a ver-
ifiable unpredictable function (VUF) from a unique signature scheme and
turn it into a VRF using the original transform from [37]. The aforemen-
tioned VRFs are constructed from number-theoretic assumptions. More
number-theoretic constructions are given in [15,29,31,1,6]. In [9] the au-
thors introduced the notion of weak VRF where pseudorandomness is
required to hold only for randomly selected inputs. Further VRF-related
primitives such as simulatable VRF, constrained VRF have been intro-
duced in [11,21].

On the side of quantum-safe proposals, feasibility of a lattice-based
VRF was given in [27,43]. The construction in [27] relies on heavy ma-
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chinery such as constrained PRFs and there is no practical efficiency eval-
uation provided. In the latter work, the authors in [43] briefly mention
in a remark (without a rigorous security or performance analysis) that
their zero-knowledge proofs give rise to a lattice-based VRF construction.
However, the authors claim that this construction satisfies only trusted
uniqueness, which is not sufficient for blockchain applications. Moreover,
this construction is expected to be far from practical as even more basic
proofs in [43] require MBs of communication.

2 Preliminaries

We use λ to denote the security parameter and by negl(λ) a function
that is negligible in λ. We define the polynomial rings R ..= Z[x]/(xd + 1)
and Rq ..= Zq[x]/(xd + 1) for d a power of 2. We denote by bold, capital
letters (e.g. M) matrices whose elements are in R and denote by bold,
lower case letters (e.g. v), vectors whose elements are in R. Sc denotes
the set of polynomials in R with infinity norm at most c ∈ Z+. We write
0n to denote the n-dimensional zero vector and In for the n-dimensional
identity matrix.

LetRp ∼= R(1)
p ×· · ·×R(s)

p for some s ≥ 1. That is,R(i)
p = Zp[x]/(fi(x))

such that fi with deg(fi) = d/s is an irreducible factor of xd + 1 mod
p for each i = 1, . . . , s. In our LB-VRF construction, a set of operations
will be performed in R(1)

p for better efficiency. We will denote this ring
by R̄p = Zp[x]/(f(x)) (see Table 3 for the concrete ring R̄p). The other
subrings R(2)

p , . . . ,R(s)
p of Rp will not be of concern for our construction.

Definition 2.1 (MSISq,n,m,β [32]). Let R be some ring and K a uniform
distribution over Rn×mq . Given a random matrix A ∈ Rn×mq sampled from
K, find a non-zero vector v ∈ Rmq such that A · v = 0 and ‖v‖ ≤ β.

Definition 2.2 (MLWEq,n,m,χ [32]). Let χ be a distribution over Rq,
s $← χm be a secret key. The MLWEq,s distribution is obtained by sam-
pling A $← Rn×mq and error e $← χn and outputting (A,A · s + e). The
goal is to distinguish the MLWEq,s output from the uniform distribution
U(Rn×mq ,Rnq ).

In our analysis, we use the following result that helps us argue the
invertibility of challenge differences.

Lemma 2.3 ([36]). Let n ≥ k > 1 be powers of 2 and p ≡ 2k + 1
(mod 4k) be a prime. Any f in Zp[X]/(Xn + 1) is invertible if one of the
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following is satisfied

0 < ‖f‖∞ <
1√
k
p1/k or 0 < ‖f‖ < p1/k.

2.1 Verifiable Random Function

Definition 2.4 (Verifiable Random Function [37]). Let ParamGen,
KeyGen, VRFEval, Verify be polynomial-time algorithms where:

ParamGen(1λ): On input a security parameter 1λ, this probabilistic algo-
rithm outputs some global, public parameter pp.

KeyGen(pp): On input public parameter pp this probabilistic algorithm
outputs two binary stings, a secret key sk and a public key pk.

VRFEval(sk, x): On input a secret key sk and an input x ∈ {0, 1}`(λ),
this algorithm outputs (v, π) for the VRF value v ∈ {0, 1}m(λ) and the
corresponding proof π proving the correctness of v.

Verifypk(v, x, π): On input (pk, v, x, π), this probabilistic algorithm out-
puts either 1 or 0.

A VRF is required to have the following security properties [37]:

Provability: If (v, π) is the output of VRFEval(sk, x), then Verifypk(v,
x, π) outputs 1.

Pseudorandomness: Let A = (A1,A2) be a polynomial-time adversary
playing the following experiment Exp-PRand:
1. pp← ParamGen(1λ)
2. (pk, sk)← KeyGen(pp)
3. (x, st)← AOVRFEval(·)

1 (pk)
4. (v0, π0)← VRFEval(sk, x)
5. v1

$← {0, 1}m(λ)

6. b $← {0, 1}
7. b′ ← AOVRFEval(·)

2 (vb, st)
where OVRFEval(·) is an oracle that on input a value x outputs the VRF
value v and the corresponding proof of correctness π(sk, x).
The adversary A that did not issue any queries to OVRFEval on the
value x, wins the above game with probability:

Pr
[
b = b′ | A runs Exp-PRand

]
≤ 1

2 + negl(λ).

Unconditional Full Uniqueness: No values (pk, v1, v2, x, π1, π2) can
satisfy Verifypk(v1, x, π1) = Verifypk(v2, x, π2) = 1 when v1 6= v2.
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In our work, we make two modifications to the above standard VRF secu-
rity model. First, we use a k-time variant of the pseudorandomness prop-
erty, where the OVRFEval(·) oracle can be queried at most k−1 times by the
adversary (together with the challenge query to VRFEval(·) in the pseu-
dorandomness experiment, this gives a total of k VRFEval(·) queries in
the experiment). We also define the VRF output space to be R̄p (which is
determined by our scheme’s public parameters pp), rather than {0, 1}m(λ)

used in the original definition. The latter change does not introduce any
difficulties since a pseudorandom output in R̄p can be easily mapped into
a pseudorandom binary string with a cryptographic hash function or a
randomness extractor.

Second, we slightly modify the “Unconditional Full Uniqueness” prop-
erty of a VRF to a weaker “Computational Full Uniqueness”, where the
adversary is assumed to run in polynomial time. In particular, we define
it as follows.

Definition 2.5 (Computational Full Uniqueness). Let
pp ← ParamGen(1λ). A VRF is said to satisfy computational
full uniqueness, if, on input pp, a polynomial-time adversary A
outputs (x, pk, v1, π1, v2, π2) ← A(pp) such that Verifypk(v1, x, π1)
= Verifypk(v2, x, π2) = 1 and v1 6= v2 with at most negl(λ) probability.

Remark 2.6. The notion of computational uniqueness has been first in-
troduced in [22]. However, it is defined w.r.t. VRF without parameter
generation algorithm ParamGen(1λ), implying that public parameters can
also be set maliciously. Such a notion was actually defined in the context
of anonymous VRF, which is an extension of a standard VRF.

Remark 2.7. There is also a notion of computational trusted unique-
ness [40] in the literature, in which one roughly requires that, given the
VRF public key pk, each VRF input corresponds to a unique VRF output.
The word “trusted” is basically used to indicate that the key generation
process is trusted. Hence, in such a model, uniqueness with respect to
untrusted key generation process is not a concern.

In the application of VRF to the blockchain consensus proto-
cols [23,12], it was observed in [13] that pseudorandomness is not suf-
ficient, and in fact an additional security property is needed, which is
called the unpredictability under malicious key generation in [13, Section
3.2]. Informally, it means that an attacker that can maliciously choose
the VRF key cannot bias the VRF output on a randomly chosen input,
as long as the attacker has no information on the random input when
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choosing its VRF key. Accordingly, we formally define below an unbi-
asability property that captures this requirement in the same spirit with
[13]. However, for consistency with the rest of our game-based security
notions, we provide a game-based definition, whereas the one in [13] is in
the universal composability (UC) framework.

Unbiasability: Let A = (A1,A2) be a polynomial-time adversary play-
ing the following experiment Exp-Bias:
1. pp← ParamGen(1λ)
2. (st, pk, v∗)← A1(pp)
3. x $← {0, 1}`(λ)

4. (π, v)← A2(x, st)
5. b← Verifypk(v, x, π)
A wins if b = 1 and v = v∗. We say that a VRF is unbiasable if

Pr[A wins Exp-Bias] ≤ 2−m(λ) + negl(λ).

3 Lattice-Based Few-Time Verifiable Random Function

3.1 k-time LB-VRF Construction

We use the parameter k ∈ Z+ to denote that a particular public-secret
key pair output by KeyGen below is used to generate at most k VRF
outputs. We further define the following challenge set:

C = { c ∈ R : ‖c‖∞ ≤ 1 ∧ ‖c‖1 ≤ κ }. (1)

When performing operations over R̄p, if a term x is initially defined
over R, then we first compute x̄ = x mod (p, f(x)) and then perform the
remaining operations over R̄p. For example, given x ∈ Rs and y ∈ R̄sp
for s ≥ 1, 〈x,y〉 ∈ R̄p indicates that 〈x̄,y〉 is computed over R̄p, where
x̄ = x mod (p, f(x)).

ParamGen(1λ): On input a security parameter λ, it outputs a pub-
lic parameter pp = (A, G,H), where G : {0, 1}∗ → R̄n+`+k

p and
H : {0, 1}∗ → C are two hash functions, and A $← Rn×(n+`+k)

q .
KeyGen(pp): On input the public parameters pp, it randomly samples

s $← Sn+`+k
1 , computes t = A ·s ∈ Rnq and outputs pk = t and sk = s.

VRFEval(A, t, s, µ): On input public parameters pp, a public key t, a
secret key s, and a message µ ∈ {0, 1}∗, perform the following.
1. Compute b = G(A, t, µ) ∈ R̄n+`+k

p .
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2. Compute v = 〈b, s〉 ∈ R̄p.
3. Pick y $← Sn+`+k

β .
4. Compute w1 = A · y ∈ Rnq .
5. Compute w2 = 〈b,y〉 ∈ R̄p.
6. Compute c = H(A, t, µ,w1, w2, v).
7. Compute z = y + c · s ∈ Rn+`+k; if ‖z‖∞ > β − κ goto step 3.
The algorithm outputs the VRF proof π := (z, c) and the VRF value
v.

Verifypk(π, v,A, µ): On input VRF public key pk = t, the VRF proof
π = (z, c), the VRF value v, public parameter A and a message µ the
algorithm computes:

1. Check ‖z‖∞
?
≤ β − κ.

2. Compute w′1 := A · z− c · t over Rq.
3. Compute w′2 := 〈b, z〉− c ·v over R̄p for b = G(A, t, µ) ∈ R̄n+`+k

p .
4. Check c ?= H(A, t, µ,w′1, w′2, v).

Table 3 summarizes the 3 different concrete parameter settings. For a
detailed rationale behind these settings, please refer to Appendix A.

3.2 Security Analysis

The provability of our k-time LB-VRF construction follows via straight-
forward investigation. The pseudorandomness and unbiasability proper-

Param. Explanation Set I Set II Set III
k # of VRF outputs per key pair 1 3 5
d d = dim(Rq) 256 256 256
q prime q ≡ 1 mod 2d 100679681 ∼ 226.8 ∼ 227.1

p prime p ≡ 17 mod 32 2097169 ∼ 220 ∼ 220

Rq polynomial ring Zq[x]/(xd + 1)
f(x) a factor of xd + 1 mod p x32 + 852368
R̄p polynomial ring Zp[x]/(f(x))
n MSIS rank 4 4 4
` MLWE rank 4 4 4
κ Hamming weight of a challenge 39 39 39
β max. coeff of masking randomness 89856 109824 129792

average number of restarts < 3 < 3 < 3
RHF MSIS/MLWE root-Hermite factor ≈ 1.0045 ≈ 1.0046 ≈ 1.0047

Proof Size size of a proof (c, z) 4.94 KB 6.13 KB 7.34 KB
VRF Size size of a VRF evaluation v 84 Bytes 84 Bytes 84 Bytes
PK Size size of a public key t 3.32 KB 3.34 KB 3.39 KB

Table 3. Summary of identifiers and results of the parameter setting.
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ties are also discussed and proved in Appendix B and C, respectively. We
now focus on computational full uniqueness of our scheme.

Computational Full Uniqueness. For the computational full unique-
ness property, the following are the two main requirements:
– hardness of MSISq,n,n+`+k,γ for γ = 8κβ

√
n+ `+ k,

• Looking ahead, this implies that (13) below holds without mod q
and therefore also over R̄p.

– any challenge difference is invertible in R̄p.

Theorem 3.1 (Uniqueness). Let γ = 8κβ
√
n+ `+ k for the parame-

ters κ, β, n, `, k defined in Table 3 and assume that MSISq,n,n+`+k,γ is hard
with q > γ/2. Further, let p > 220 be a prime such that p ≡ 17 mod 32.
Then, k-time LB-VRF construction satisfies computational full unique-
ness in the random oracle model.

Proof. Let A be a PPT adversary against computational full uniqueness
of k-time LB-VRF construction. We will show that two valid VRF eval-
uations produced by A on the same input must be the same, or else the
MSISq,n,n+`+k,γ problem is solved, which occurs with negligible probabil-
ity by the assumed hardness of the latter problem.

Let A $← Rn×(n+`+k)
q , and G and H be two random oracles. Denote

pp = (A, G,H) as the public parameters output by ParamGen. Then,
A(pp) outputs two valid VRF proof-evaluation pairs (π0, v0) with π0 =
(z0, c0) and (π′0, v′0) with π′0 = (z′0, c′0).
Rewind 1: Using a standard forking argument, we rewind A to the point
c0 = H(A, t, µ,Az0 − c0t, 〈b, z0〉 − c0v0, v0) was queried, and return an-
other challenge c1 for the same input. With non-negligible probability, A
produces another valid VRF output using c1 such that (π1 = (z1, c1), v1)
is a valid VRF proof-evaluation pair. Here, A may output a second valid
pair, but we simply discard it.
Rewind 2: In a similar fashion as above, we rewind A to the point
c′0 = H (A, t, µ,Az′0 − c′0t, 〈b, z′0〉 − c′0v′0, v′0) was queried, and return an-
other challenge c′1 for the same input. With non-negligible probability, A
produces another valid VRF output using c′1 such that (π′1 = (z′1, c′1), v′1)
is a valid proof-evaluation pair. Again, A may output a second valid pair,
but we simply discard it.

Overall, we have the following satisfied for (π0 = (z0, c0), v0), (π1 =
(z1, c1), v1), (π′0 = (z′0, c′0), v′0), (π′1 = (z′1, c′1), v′1)

(A, t, µ, Az0 − c0t, 〈b, z0〉 − c0v0, v0)
= (A, t, µ, Az1 − c1t, 〈b, z1〉 − c1v1, v1) ,

(2)
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(
A, t, µ, Az′0 − c′0t, 〈b, z′0〉 − c′0v′0, v′0

)
=
(
A, t, µ, Az′1 − c′1t, 〈b, z′1〉 − c′1v′1, v′1

)
.

(3)

The above two equalities implies the following

v0 = v1 =: v, (4)
v′0 = v′1 =: v′, (5)

Az0 − c0t = Az1 − c1t over Rq, (6)
Az′0 − c′0t = Az′1 − c′1t over Rq, (7)

〈b, z0〉 − c0v0 = 〈b, z1〉 − c1v1 over R̄p, (8)
〈b, z′0〉 − c′0v′0 = 〈b, z′1〉 − c′1v′1 over R̄p. (9)

From now on, we stick to the notations v and v′ due to (4) and (5).
Rewriting (6) and (7), we get

A(z0 − z1) = (c0 − c1)t, (10)
A(z′0 − z′1) = (c′0 − c′1)t, (11)

Define z̄ := z0−z1, z̄′ := z′0−z′1, c̄ := c0−c1 and c̄′ := c′0−c′1. Multiplying
(10) by c̄′ and (11) by c̄ and subtracting off the results, we get

A
(
c̄′z̄− c̄z̄′

)
= 0. (12)

Note that the following holds

‖c̄′z̄− c̄z̄′‖ ≤ ‖c̄′z̄− c̄z̄′‖∞ ·
√
n+ `+ k ≤ 2 · ‖c̄′‖1‖z̄‖∞ ·

√
n+ `+ k

≤ 2 · 2κ · 2β ·
√
n+ `+ k = 8κβ

√
n+ `+ k.

By the assumption that MSISq,n,n+`+k,γ for γ = 8κβ
√
n+ `+ k is

hard, we conclude from (12) that, except for negligible probability,

c̄′z̄ = c̄z̄′ over R. (13)

The fact that there is no mod q reduction comes from the following:
‖c̄′z̄‖∞, ‖c̄z̄′‖∞ < γ < q/2.

Next, from (8), we get (replacing v0 and v1 with v)

〈b, z0〉 − c0v = 〈b, z1〉 − c1v over R̄p,
⇐⇒ 〈b, z̄〉 = c̄v over R̄p. (14)

Similarly, from (9), we get

〈b, z̄′〉 = c̄′v′ over R̄p. (15)
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Multiplying (14) by c̄′ and (15) by c̄, and then subtracting off the results,
we get

〈b, c̄′z̄− c̄z̄′〉 = c̄c̄′
(
v − v′

)
over R̄p. (16)

Now since (13) holds overR, by reducing mod p, it also holds overRp, and
by further reducing mod f it also holds over R̄p. Therefore, the left-hand
side of (16) is equal to 0. By the assumption on p and Lemma 2.3, any
challenge difference is invertible in Rp and thus also in R̄p. This implies
that v = v′. ut

4 Implementation

4.1 Implementation of LB-VRF

We implemented Set I parameters (see Table 3) of our LB-VRF using Rust
language. The source code of our implementation is available on GitHub6.
The core operations are ring arithmetic over Rq and R̄p, hash functions,
and extendable output functions. We use SHA512 as our hash function,
and ChaCha20 to extend hash digests into vector b and challenge c. For
ring multiplications, we use index based method for polynomial multipli-
cations involving secret keys or challenges (both are ternary polynomi-
als); school book multiplication for R̄p; and NTT multiplications for Rq.
We also hand-picked p, q and f(x) for efficient mod reduction. We leave
architecture-dependent optimizations, such as AVX2, to future work.

Our tests were conducted over a MacBookPro 2018, with an Intel(R)
Core(TM) i7-8559U CPU @ 2.70GHz. The benchmark was conducted
with Rust’s benchmark tool known as criterion. The benchmark data
is shown in Table 1. One may see that although the speed of LB-VRF
is on par with classical VRFs, the size is significantly increased. This is
unfortunately an inherit drawback from the current state of post-quantum
cryptography.

4.2 Integration into Algorand Blockchain

To illustrate our benchmark results better, it is important to understand
the bottleneck of the current Algorand protocol. Algorand’s mainnet cur-
rently employs over 1000 nodes, and allows for roughly 5 MB of data per
block as a result of their efficient consensus protocol. To break up this
data, 1000 nodes implies 1000 ECVRF proofs, which is 80 KB of data.
It is straightforward to see that the majority of the data is reserved for

6 https://github.com/zhenfeizhang/lb-vrf
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transactions. If we assume that a transaction is 1KB on average, then Al-
gorand allows for 5K transactions per block, or, roughly 1K transaction
per second (TPS). Therefore, we estimate the Algorand TPS throughput
as follows:

TPS = Blocksize− total VRF cost×#nodes
(transaction size + signature size)× blocktime .

It is easy to see that our LB-VRF cannot scale to 1K nodes as 1K
nodes already imply 8 MB of LB-VRF data (see below). We therefore
compare our scheme with a maximum of 500 nodes. We note that although
this number is smaller than the current status of Algorand, it is already
sufficient for large blockchain platforms, and already exceeds the number
of nodes of Algorand when it was launched.

Using the above formula, we computed estimates for the TPS through-
put of Algorand using our LB-VRF in combination with a variety of post-
quantum signature schemes, in Table 2. In this computation, we make the
following assumptions. We assume a blocksize of 5 MB. Since our LB-VRF
is a one-time VRF, we assume that in the Algorand consensus protocol, a
node publishes both the VRF output, as well as the next VRF public key
the node is committed to use. Therefore, in the TPS estimation formula
above, we take total VRF cost to be the sum of LB-VRF’s VRF size (84
bytes), proof size (4.94 KB), and public-key length (3.32 KB), which is
around 8 KB, using parameter set I in Table 3. We follow Algorand and
assume 1 KB data for transaction size. As Algorand generates a block in
about 5 seconds, we take blocktime as 5 seconds. The last moving part in
the equation is the signature size, which we set as 64 bytes for Ed25519,
700 bytes for Falcon, 2 KB for Dilithium, and 48 bytes for Rainbow.

Note that the post-quantum security of the signature scheme used in
the consensus protocol is not of as a big concern as the VRF because the
adversary cannot affect the consensus steps in the past by breaking the
signature scheme. Therefore, until the quantum threat is imminent, one
may opt to keep using Ed25519 as the signature in the hybrid “LB-VRF
+ Ed25519” mode, and switch to a post-quantum signature only when
large-scale quantum computers are expected very soon.
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A Concrete Parameter Setting Rationale

We first summarize the requirements on the parameters of our k-time
VRF construction.

– β ≈ κd(n+ `+ k),
– hardness of MLWEq,n+k,`,χ for χ = U(S1),
– hardness of MSISq,n,n+`+k,γ for γ = 8κβ

√
n+ `+ k,

– invertibility of challenge differences in R̄p.

We refer to Section 3.2 for more details and rigorous analysis.
Recall that our VRFEval uses rejection samplings to seal the infor-

mation leakage on z. In order to have a constant number of restarts on
average, we simply set β = κd(n+ `+k). Then, we fix d = 256 to balance
the following aspects: (i) flexibility in implementation, (ii) the size of v
and (iii) efficient polynomial arithmetic. Then, we set κ = 39 so that the
challenge set C is sufficiently large, in particular, |C| > 2192. Then, we
need to set (q, n, `) to make sure that MSIS and MLWE are hard against
best known attacks.
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In order to estimate the hardness of MSIS and MLWE in practice
against known attacks, we follow the methodology detailed in [17, Section
3.2.4]. In particular, we aim for a “root-Hermite factor” of δ ≈ 1.0045.
The same target root-Hermite factor has been used in various works, e.g.,
[19,20] when aiming for 128-bit post-quantum security.

Finally, to argue invertibility of challenge differences in R̄p, we rely
on the results of [36] given in Lemma 2.3. By Lemma 2.3, it follows that
if p > 220 and p is a prime with p ≡ 17 mod 32, then the difference of
any two challenges in C is invertible in Rp. Since R̄p as defined in Table
3 is one of the factors of Rp, our parameter setting satisfies the challenge
difference invertibility condition in R̄p. For a summary of the parameters
of our scheme and our parameter sets, we refer to Table 3. The first set of
parameters represents the exact values used in our implementation while
the last two do not specify q, p and f(x) concretely.

It is clear that the main cost of the VRF proof size is due to the vector
z ∈ Rn+`+k, which of d(n+ `+ k) dimension if we see it as a vector over
Z. From MSIS and MLWE security, the values of nd and n` are roughly
fixed. However, the additional cost due to dk can be significantly smaller
if d is decreased. Especially for k > 1, choosing d smaller than 256 results
in smaller VRF proof lengths. But, we avoided this to have a fixed d for
all parameter sets.

B Pseudorandomness

To prove pseudorandomness, we first assume that all the computations in
VRFEval are done over Rq (i.e., R̄p = Rq). Then, we argue why changing
some computations to be done over R̄p does not affect the pseudoran-
domness.

Assume that all the computations in VRFEval are done over Rq.
Let pp = (A, G,H) ← ParamGen(1λ) and suppose that k VRF outputs
(π1, v1), . . . , (πk, vk) are generated for messages µ1, . . . , µk under a public-
secret key pair (pk, sk) = (t, s)← KeyGen(pp), where πi = (ci, zi). Then,
we can write

t̂ :=


t
v1
...
vk

 =


A
b1
...

bk

 s, (17)

where bi = G(A, t, µi) for i = 1, . . . , k (bi’s are treated as row vectors).
The above structure is precisely a commitment to the zero vector over
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Rq for the “hashed-message commitment” (HMC) scheme in [20]. As dis-
cussed in [20, Appendix C], t̂ is computationally indistinguishable from
a uniformly random element in Rn+k

q if MLWEq,n+`+k,`,χ for χ = U(S1)
is hard (see also [17, Lemma 3.4] for more details). This argument forms
the basis for the following result.

Theorem B.1 (Pseudorandomness). For the parameters q, n, k, ` and
χ = U(S1), assume that MLWEq,n+`+k,`,χ is hard and q is prime with
(n+`)d
q`+1 negligible in λ. Then, no PPT adversary can win Exp-PRand with

non-negligible probability while making at most k − 1 OVRFEval(·) queries
against the k-time LB-VRF construction in the random oracle model,
when R̄p = Rq.

Proof. We use the simulation of the zero-knowledge proof underlying our
LB-VRF construction. Let AdvLWE

A be the advantage of A over solving
MLWEq,n+`+k,`,χ for χ = U(S1).
Game0 : This is identical to Exp-PRand.
Game1 : First, the challenger simulates the response z, where the rejec-
tion sampling is applied. That is, in VRFEval, it replaces z by a uniformly
random element in Sn+`+k

β−κ . This game is perfectly indistinguishable from
the previous game due to rejection sampling [35].

AdvGame0
A −AdvGame1

A = 0.

Game2 : In VRFEval, the challenger replaces v by a uniformly random
element in R̄p = Rq. It follows from the discussion given before the theo-
rem that this game is computationally indistinguishable from Game1 by
MLWEq,n+`+k,`,χ assumption for χ = U(S1). Note that in our Exp-PRand
experiment, the adversary can make at most k− 1 queries to OVRFEval(·).∣∣∣AdvGame1

A −AdvGame2
A

∣∣∣ ≤ AdvLWE
A .

Now, in Game2, the output of VRFEval is independent of the secret
key and the input message. Therefore, in Game2, the challenger can
simulate all OVRFEval(·) queries and the output v0 is perfectly indistin-
guishable from v1. ut

Now, in the real construction, the only change to the above discussion
is that the top part of (17) corresponding to t holds over Rq, while the
remaining bottom part corresponding to (v1, . . . , vk) holds over R̄p. The
technique of using two distinct moduli for a similar commitment scheme
has already been employed, e.g., in [14] (see Section 2.5 and Lemma 6.2 in
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[14]). The only difference in [14] is that the commitment key constructed
by A and bi’s is more structured, which does not affect the hardness
assumption. As in [14], we consider the MLWE hardness with respect to
the larger modulus (i.e., q ≥ p). It is well known that as the modulus gets
smaller, the MLWE problem gets harder against known attacks. More-
over, vi = 〈bi, s〉 over R̄p in our construction is not a full MLWE sample
in Rp, but rather only a single CRT coefficient of an MLWE sample in
Rp. The mapping vi = 〈bi, s〉 7→ vi mod (f(x), p) maps the uniform dis-
tribution on Rp to the uniform distribution on R̄p, so preserves the pseu-
dorandomness of vi (that’s why the amount of information leaked in our
construction is strictly less than the case of having vi = 〈bi, s〉 over Rp).
Therefore, we conclude that assuming the hardness of MLWEq,n+`+k,`,χ for
χ = U(S1), our LB-VRF construction satisfies pseudorandomness. For a
more detailed discussion on the security reduction between two (M)LWE
problems with distinct moduli, we refer the reader to [10] and [14, Section
6.1].

C Achieving Unbiasability

Extending our LB-VRF construction to be unbiasable is easy. In partic-
ular, we modify VRFEval such that it outputs (v̂, π), where π = (z, c, v)
and v̂ = H(v, µ) for some hash function H (modelled as a random oracle).
In this case, the verification additionally needs to check that v̂ = H(v, µ).
A similar idea was also used in [13]. Note that this extension does not af-
fect the other properties (provability, pseudorandomness and uniqueness)
as computation of v̂ = H(v, µ) is a deterministic function with publicly
known inputs.

As we work in the random oracle model, hashing a random input µ
will result in a random output as long as the input has enough entropy.
Therefore, for a given v̂∗ and a random oracle H,

Pr
µ

$←{0,1}`(λ)
[H(v, µ) = v̂∗] ≤ negl(λ)

independent of how v is generated. From here, unbiasability of our k-time
LB-VRF construction follows.
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