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Abstract
Secure Multi-party Computation (MPC) allows a set of
mutually distrusting parties to jointly evaluate a function on
their private inputs while maintaining input privacy. In this
work, we improve semi-honest secure two-party computation
(2PC) over rings, with a focus on the efficiency of the online
phase.

We propose an efficient mixed-protocol framework,
outperforming the state-of-the-art 2PC framework of
ABY. Moreover, we extend our techniques to multi-
input multiplication gates without inflating the online
communication, i.e., it remains independent of the fan-in.
Along the way, we construct efficient protocols for several
primitives such as scalar product, matrix multiplication,
comparison, maxpool, and equality testing. The online
communication of our scalar product is two ring elements
irrespective of the vector dimension, which is a feature
achieved for the first time in the 2PC literature.

The practicality of our new set of protocols is showcased
with four applications: i) AES S-box, ii) Circuit-based Private
Set Intersection, iii) Biometric Matching, and iv) Privacy-
preserving Machine Learning (PPML). Most notably, for
PPML, we implement and benchmark training and inference
of Logistic Regression and Neural Networks over LAN and
WAN networks. For training, we improve online runtime (both
for LAN and WAN) over SecureML (Mohassel et al., IEEE
S&P’17) in the range 1.5×–6.1×, while for inference, the
improvements are in the range of 2.5×–754.3×.

1 Introduction

Secure Multi-Party Computation (MPC) [14, 48, 101] allows
n mutually distrusting parties to jointly compute a function on
their private inputs. The computation guarantees i) privacy–
no set of t corrupt parties can learn more information than
the output, and ii) correctness– corrupt parties cannot force

∗This article is the full and extended version of an article to appear in
USENIX Security’21.

others to accept a wrong output. Due to its immense potential,
MPC can be used for solving real-life applications such as
privacy-preserving auctions [81] and remote diagnostics [25],
secure genome analysis [15, 99], and recently in the domain
of privacy-preserving machine learning (PPML) [17,29, 32,
33, 55, 61, 71, 79, 87, 94, 104].

MPC protocols can be broadly classified into two
categories: i) low-latency [30, 49, 78, 85] and ii) high-
throughput [4, 29, 32, 33, 71, 87] protocols. The low-
latency protocols are built using Yao’s garbled circuits
(GC) [11, 70, 101, 102] and result in constant-round solutions.
Secret-sharing (SS) based solutions have been used for high-
throughput protocols, but require a number of communication
rounds linear in the multiplicative depth of the circuit.
However, less communication than GC-based protocols
facilitates several instances of SS-based protocols to be
executed in parallel, leading to high throughput. The
characteristics of the categories mentioned above put forth the
need for a mixed-protocol framework [33,41,77,79,95], where
the protocol is split into blocks and each block is executed in
one of the following three worlds: i) Arithmetic, ii) Boolean,
and iii) Yao. While the arithmetic world performs operations
on `-bit rings (or fields), both boolean and Yao world perform
operations on bits. Also, arithmetic and boolean worlds
operate using an SS-based approach while the Yao world
uses a GC-based approach.

To achieve practical runtimes, several works [13, 28, 29,
32, 33, 40, 65, 71, 94] considered the paradigm of having an
input-independent setup phase where the parties generate
a lot of correlated randomness (e.g., Beaver multiplication
triples [9]) which are then used in the input-dependent online
phase to enable a very fast computation on the parties’
inputs. Moreover, the benchmarking results of [97] and the
works of [18, 36, 37, 39, 41] have showcased the efficiency
improvements of protocols compared to rings over their field
counterparts. The 32/64-bit computations done in standard
CPUs, emulating ring operations, allow for very simple and
efficient implementations. Also, several algorithms as well
as hardware have been optimized for this domain since it has

1



been the norm for several years.
In this work, we focus on the specific problem of secure

two-party computation (2PC) [40, 41] with mixed protocols
over rings. Our aim is to minimize the online communication
and rounds keeping high throughput as our end-goal.

1.1 Our Contributions
We propose an efficient mixed-protocol framework for secure
2PC over an `-bit ring. Our protocols are secure against a
semi-honest adversary and use an input-independent setup.
We build several building blocks with the focus on online
efficiency. Our contributions can be summed up as follows:

2PC (§3) We propose an efficient 2PC protocol over `-bit
rings, requiring a communication of just 2 ring elements per
multiplication in the online phase. Our construction relies
on Beaver’s circuit randomization technique [9] (§3.1.1),
but uses a different perspective of the technique. Moreover,
our protocol helps in realising efficient primitives as will be
shown in §5. We believe that our new perspective can bring
several further optimizations where Beaver’s randomization
technique is currently being used.

Protocol Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

MULT
y = ab

[41] 2`(κ+ `) 4` 1
[13] 2`(κ+ `) 222`̀̀ 1
[82] 2`(κ+ `) 4` 1

ABY2.0 2`(κ+ `) 222`̀̀ 1

MULT3
y = abc

[41] 4`(κ+ `) 8` 2
[13] 4`(κ+ `) 4` 2
[82] 8`(κ+ `) 6` 1

ABY2.0 8`(κ+ `) 222`̀̀ 1

MULT4
y = abcd

[41] 6`(κ+ `) 12` 2
[13] 6`(κ+ `) 6` 2
[82] 22`(κ+ `) 8` 1

ABY2.0 22`(κ+ `) 222`̀̀ 1

Table 1: Comparison of ABY2.0 and existing works for 2PC
protocols. Best values for the online phase are marked in bold.

Tab. 1 shows our improvement over previous works. For 2-
input multiplication, we achieve the same complexity as [13],
but using a completely different approach. Moreover, for an N-
input multiplication gate, our solution has a constant cost of 2
ring elements and one round of interaction. This is a massive
improvement over [82], where they require communication of
2N ring elements. Round complexity wise, the naive method
of multiplying N elements by taking two at a time requires
log2(N) online rounds and overall communication of 4(N−1)
ring elements for [41] and 2(N−1) for [13].

Mixed Protocol Conversions (§4) The mixed world
conversions, that enable easy transition between
Arithmetic (A), Boolean (B) and Yao (Y) sharing, are
now celebrated in the literature [3, 28, 61, 79, 94] due to
their potential in building practically-efficient protocols.

We propose a new set of conversions that outperform the
state-of-the-art conversions of ABY [41] in the online phase.
Our solution reduces the number of online rounds of ABY
from 2 to 1 for most of the conversions. We achieve this
because, in contrast to ABY, we forgo OTs in the online
phase of our conversions.

Tab. 2 provides the concrete costs for the mixed protocol
conversions. The conversion from sharing type S to sharing
type D is denoted as S2D, where S,D ∈ {A,B,Y}. For the
setup phase, we use correlated OTs (cOT) [5] which incur a
communication of `+κ bits per cOT on `-bit strings, where
κ is the computational security parameter. It is evident from
Tab. 2 that for all except the Y2B conversion, our conversions
outperform ABY’s in the online phase.

Conv. Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

Y2B
ABY [41] 0 0 0

ABY2.0 ` ` 1

B2Y
ABY [41] 2`κ `κ+ ` 2

ABY2.0 2`κ `̀̀κκκ 1

A2Y
ABY [41] 4`κ 2`κ+ ` 2

ABY2.0 4`κ `̀̀κκκ 1

Y2A
ABY [41] 2`κ (`2 +3`)/2 2

ABY2.0 3`κ+2` `̀̀ 1

A2B
ABY [41] 4`κ 2`κ+ ` 2

ABY2.0 4`κ+ ` `̀̀κκκ+++ `̀̀ 2

B2A
ABY [41] `κ (`2 + `)/2 2

ABY2.0 `κ+ `2 222`̀̀ 1

Table 2: Comparison of ABY2.0 and ABY for the conversions. The
values are reported for `-bit values. Best values for the online phase
are marked in bold.

Building Blocks (§5) We propose efficient constructions
for widely-used building blocks that include Scalar
Product, Depth-Optimized Circuits, Matrix Multiplication,
Comparison, Non-linear Activation functions, and Maxpool.
The highlights include:
– Scalar Product (§5.1): Our new protocol incurs an online
communication that is independent of the vector dimension
n. This feature is achieved for the first time in the 2PC
literature. Concretely, we require communication of just 2
ring elements as opposed to 4n elements of [41]. Since scalar
product forms an essential building block for most of the
widely used ML algorithms [29, 32, 33, 60, 77, 79, 94] such
as Linear Regression, Logistic Regression, and Clustering,
our solution substantially improves the performance of their
secure 2PC implementations by several orders of magnitude.
– Matrix Multiplication (§5.2): Matrix multiplication is the
fundamental building block in most ML algorithms. For
instance, the linear layer in a Neural Network (NN) can be
viewed as an instance of matrix multiplication. Also the
convolution operation in a Convolutional Neural Network
can be phrased as an instance of matrix multiplication using
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standard methods [98]. We extend the 2PC multiplication
protocol to support vector operations and provide an efficient
matrix multiplication protocol.
– Depth Optimized Circuits (§5.3): The Parallel Prefix Adder
(PPA) [8, 50] used in the recent PPML literature [77] incurs a
multiplicative depth of log2(`) since it uses two-input AND
gates only. We propose round efficient PPA constructions
using a combination of two, three, and four input AND gates.
Concretely, for a 64-bit ring, our solution has 2× fewer rounds
and also less online communication compared to the PPA
used in [77].
– Comparison (§5.4): Our new protocol for checking less
than relation improves the online communication of the
comparison protocol of [82] by 6× and reduces the number
of online rounds from 4 to 3.
– Maximum of three elements (§5.7): Our new protocol
improves the online communication of [82] by 14× while
reducing the online rounds from 5 to 4.
– Equality Test (§5.10): Our new protocol for checking the
equality of two `-bit values, improves the online rounds of
[90] from log2(`) to log4(`).

Applications (§6) The practicality of our constructions are
showcased in these four popular applications:
– AES S-box (§6.2): Using our protocol for 3-input
multiplication, we obtain an S-box with an AND-depth
of 3 instead of 4 before. This improves the online round
complexity of AES by factor 1.33×.
– Circuit-based PSI (§6.3): Using our efficient equality
testing protocol, we improve the online communication of
the state-of-the-art circuit-based PSI [90] by 2.35× and the
online round complexity by 1.3×.
– Biometric Matching (§6.4): We propose a round-optimized
as well as a communication-optimized solution for computing
the minimum Euclidean distance, which forms the core
for biometric matching. For the round-optimized variant,
we improve over ABY [41] by 2.2× in communication
and 1.6× in rounds in the online phase. Similarly, for the
communication-optimized variant, we improve over [82] by
20.8× in communication and 1.3× in rounds.
– Privacy-Preserving Machine Learning (§6.5): Here we
implement the training and inference of Logistic Regression
and Neural Networks in a LAN and a WAN setting and
benchmarked over datasets with various feature sizes. For

Algorithm Ref.
LAN WAN

TP (x104) Improvem. TP (x104) Improvem.

Logistic
Regression

[79] 1,344.4 333111...555××× 4.0 999...999×××ABY2.0 42,372.4 39.9

Neural
Networks

[79] 43.0 716.0× 0.1 710.7×ABY2.0 30,797.0 92.39

Table 3: Comparison of the online throughput (TP) of ABY2.0 and
SecureML [79] for inference on the MNIST [74] dataset.

training, we obtain online runtime improvements over
SecureML [79] in the range 2.7×–6.1× for LAN and 1.5×–
2.8× for WAN. For inference, we used throughput as one
metric to capture the effect of runtime and communication
utilization in a single shot. Our improvement for inference
ranges from 7.9×–754.3× for LAN, while it ranges from
2.5×–753.2× for WAN. Tab. 3 provides the concrete details
for inference over the MNIST [74] dataset.

1.2 Related Work

Here, we provide a concise summary of related work. More
details on the preliminaries are given in §A.

Secret Sharing (SS). The works of [40,65] proposed efficient
SS-based solutions for the dishonest majority setting over
fields, which was then extended to the ring setting in [35].
The solution involves the generation of Beaver multiplication
triples [9] in the setup phase and evaluation of the circuit
(multiplication gates) in the online phase using the generated
triples. For the 2PC case, the aforementioned approach
requires two public reconstructions among the parties per
multiplication gate in the online phase. In contrast, we
require only one public reconstruction among the parties.
Later, works like [63, 64, 83] focused on improving the
setup cost using techniques like Oblivious Transfer (OT) and
Homomorphic Encryption (HE). [13] improved the number
of public reconstructions required in the online phase from
two to one using a function-dependent preprocessing, but
requires additional communication of four ring elements in
the preprocessing phase.

Multi-Input Multiplication. In the boolean setting, [42]
extended two-input AND gates to the general N-input case
using lookup tables. As shown in §B.3.4, we have significantly
better online communication of N-input AND gates (ANDN)
by N×. Recently, [82] extended the multiplication from
two-input to arbitrary input using Beaver triple extension
with a focus on minimizing the online rounds. However, the
online communication of [82] scale with the fan-in of the
multiplication gates as opposed to ours, where we achieve an
online communication of 2 ring elements.

Mixed-Protocol Conversions. Mixed 2PC protocols that
combine GC-based and SS-based approaches benefit from
their respective advantages and were used in many privacy-
preserving applications such as face recognition [52],
fingerprint recognition [26], biometric matching [41], and
machine learning [61, 77, 79, 94]. The first mixed-protocol
framework for MPC was TASTY [52, 69], which combined
garbled circuits with homomorphic encryption. ABY [41]
then proposed an efficient framework in the semi-honest
model combining state-of-the-art 2PC approaches based on
Arithmetic sharing, Boolean sharing, and GCs. The work
of [95] shows conversions between MPC based on arithmetic
secret sharing and garbled circuits with malicious security.
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Later, the ABY framework was extended to the three and four
party honest-majority setting by [33,77]. HyCC [28] provides
a compiler to automatically partition a function (specified in
ANSI C) into sub-functions such that each sub-function is
evaluated with either Arithmetic sharing, Boolean sharing or
GCs. The partitioning takes into account the real-world setup
such as the network between the parties. The work of [59] has
shown a method to find an optimal partitioning in polynomial
time.

2 Preliminaries

Here, we describe our security model and the parameters and
notations used. More details along with a brief overview of
the state-of-the-art 2PC protocols are given in §A.

Semi-honest Security Model In this work, we consider
a semi-honest (aka passive) adversary [34, 56, 103], who
is “honest-but-curious”. The adversary is guaranteed to
follow the protocol steps but will try to learn additional
information from the messages that he has seen during
the protocol execution. Though not the strongest model,
this model forms the first step towards achieving protocols
with stronger security guarantees [6, 31, 72, 75]. Also,
the setting facilitates practically-efficient protocols with
higher performance especially for PPML applications [32,
79, 94]. In practical scenarios where the computation is
outsourced to a set of servers, the reputation of the servers
forces them to behave semi-honestly. Moreover, in many
application scenarios, semi-honest behaviour can be enforced
by attestation using tools like Intel SGX or ARM TrustZone.
We refer the reader to [47] for details on the model.

Parameters and Notation In our framework, we have two
parties P = {P0,P1} who are connected by a bidirectional
synchronous channel (eg. instantiated via TLS over TCP/IP).
Our protocols are designed to work over an `-bit ring denoted
by Z2` . κ denotes the computational security parameter. In
our implementation, we use `= 64 and κ = 128.

For two vectors ~a,~b of length n, the scalar dot product is
denoted by~a�~b = ∑

n
j=1 a jb j. Here a j and b j denote the jth

elements of vectors~a and~b respectively. For a bit u ∈ {0,1},
u denotes the complement value 1⊕u. For two matrices A,B,
matrix multiplication is denoted by A ◦B. Table 4 depicts
notation that we use throughout the paper.

Our protocols are cast into an input-independent setup
phase and an input-dependent online phase. To enable
parties to non-interactively sample a random value, parties
perform a one-time key-setup that establishes random keys
among them for a pseudo-random function (PRF) which can
be instantiated, for instance, using AES in counter mode.
Towards this, each party Pi for i ∈ {0,1} samples a random
key Ki ∈R {0,1}κ and sends it to the other party. The shared
key is now defined as K = K0 +K1.

For applications such as machine learning where the inputs

P0,P1 Parties performing secure computation
Z2` Ring of size ` bits; `= 64 in this work

κ Symmetric security parameter; κ = 128 in this work
a j j-th element of vector~a

~a�~b Scalar dot product between two vectors~a and~b
A◦B Multiplication of two matrices A and B
[v]i [·]-sharing of v ∈ Z2` held by Pi s.t. v = [v]0 +[v]1

〈v〉i = ([δv]i ,∆v) 〈·〉-sharing of v ∈ Z2` held by Pi s.t. v = ∆v− [δv]1− [δv]0
t ∈ {A,B,Y} Type of sharing: Arithmetic, Boolean, or Yao
xs = s2t(xt) Sharing conversion from source s to target t

OT Oblivious Transfer
HE Homomorphic Encryption

cOTn
` n instances of Correlated OT on `-bit strings

MSB/LSB Most / Least Significant Bit
FPA Fixed-point Arithmetic
SED Squared Euclidean Distance

Table 4: Notations used throughout this paper.

are decimal numbers, we use the Fixed-Point Arithmetic
(FPA) representation [29, 32, 33, 77, 79] to embed the value in
the underlying ring. Decimal value is treated as an `-bit integer
in signed 2’s complement representation. The most significant
bit (MSB) represents the sign while the least significant x bits
represent the fractional part. For our implementation, we use
`= 64 and x = 13.

3 2PC in Arithmetic, Boolean and Yao’s
World

The contribution of this section is our new 2PC over ring
Z2` . This construction gives us a new 2PC in the arithmetic
world and in the Boolean world. The latter is easily derived
by having `= 1. The 2PC in Yao’s world is borrowed from
ABY [41]. Below, we start with our new 2PC over Z2` .
We describe the secret-sharing semantics, the sharing and
reconstruction protocols, and the multiplication protocols
(both for setup and online phase) with various fan-ins. Our
final 2PC for any functionality represented over an arithmetic
circuit over Z2` can be obtained by running the following
steps in sequence: (a) sharing all the inputs via the sharing
protocols, (b) gate by gate evaluation (using linearity of our
secret sharing and the multiplication protocols) and (c) output
reconstruction via the reconstruction protocol.

3.1 2PC in Arithmetic World

We provide the details for our 2PC scheme here. Before
going into the details, we present a high-level overview of our
scheme and a side-by-side comparison with the well-known
Beaver’s circuit randomization technique [9]. Our protocol,
inspired by the 3PC protocol of ASTRA [32], achieves a
communication similar to [13]. The highlight of our protocol
is its effectiveness towards efficient realisations for multiple
input multiplication gates and dot product operations as will
be explained in §3.1.4 and §5.1 later.
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3.1.1 High-level Overview of Our 2PC over Ring

Consider two parties P0,P1 with values a,b additively shared
among them who want to compute a multiplication gate with
output c.

Beaver’s technique [9] on gate inputs (cf. left of Fig. 1) In
2PC, there has been a lot of works [40, 41, 61, 65, 94] that
use Beaver’s [9] circuit randomization technique to compute
the product a · b. In this technique (cf. left side of Fig. 1),
the inputs of the multiplication gate are randomized first
and the corresponding correlated randomness is generated
independently (preferably in a setup phase). In detail, parties
interactively generate an additive sharing of the multiplication
triple (δa,δb,δab) with δab = δaδb during the setup phase
before the actual inputs are known. Now, we can write

a ·b= ((a+δa)−δa)((b+δb)−δb)

= (a+δa)(b+δb)− (a+δa)δb− (b+δb)δa+δab.

Let ∆a = (a+ δa) and ∆b = (b+ δb) be the randomized
versions of the input values of a multiplication gate. Then,
during the online phase, parties locally compute an additive
sharing of ∆a using additive shares of a and δa. Similarly,
an additive sharing of ∆b is computed. This is followed by
the parties mutually exchanging the shares of ∆a and ∆b to
enable public reconstruction of ∆a and ∆b. Then using the
above equation, parties can locally compute a sharing of a ·b.
Note that this method requires communicating 4 elements per
multiplication (2 elements per reconstruction). We observe
that the communication is required for enabling parties to
obtain the value of ∆a and ∆b in clear.

ci = i ·∆a∆b− ∆a[δb]i − ∆b[δa]i − [δaδb]i ; i ∈ {0,1}

Pi : (ai, [δa]i),(bi, [δb]i), [δaδb]i

[∆c]i : ci +[δc]i

Beaver’s [9]: On Gate Inputs ABY2.0 : On Gate Output

a b

c

MULT

P0 P1

[∆a]0, [∆b]0

[∆a]1, [∆b]1

[∆a]i : ai +[δa]i

[∆b]i : bi +[δb]i

Pi : (∆a, [δa]i),(∆b, [δb]i), [δaδb]i

[∆c]1

[∆c]0
P1P0

Figure 1: High level overview of Beaver’s [9] and ABY2.0

Our technique on gate outputs (cf. right of Fig. 1) With
this insight, we modify the sharing semantics so that the
parties are ensured to have the ∆ value as a part of their
share, corresponding to every wire value (including the inputs
of a multiplication gate). As a result, the reconstructions of
∆a and ∆b are no longer required. This may give the wrong
impression that no communication is required for evaluating
a multiplication gate. It is true that now the parties can locally
evaluate the additive sharing of y = a · b. But in order to
proceed further, a sharing for y according to the new sharing
semantics needs to be generated. This requires both parties

to obtain ∆y in clear. Hence, the parties locally compute an
additive sharing of ∆y using the shares of y computed earlier
and mutually exchange their shares to reconstruct ∆y.

Our technique, in summary, shifts the need of
reconstruction (which alone causes communication
for a multiplication gate) from per input wire to the output
wire alone for a multiplication gate. For a traditional 2-input
multiplication gate, we reduce the number of reconstructions
(each involves sending 2 elements) from 2 to 1. As a result,
we improve communication by a factor of 2×. The impact is
much higher for an N-input multiplication gate (cf. §3.1.4)
and a scalar product of two N-dimensional vectors (cf. §5.1).
For scalar product, Beaver’s circuit re-randomization required
2N reconstructions, whereas our techniques need a single one,
offering a gain of 2N×. Our constructions can be generalized
to the n-party scenario (which is out of scope for this work)
and bring a significant pay-off, as the cost per reconstruction
depends linearly on the number of parties.

3.1.2 Sharing Semantics

[·]-sharing A value v ∈ Z2` is said to be [·]-shared among P ,
if party Pi for i ∈ {0,1} holds [v]i such that v = [v]0 +[v]1.
〈·〉-sharing A value v ∈ Z2` is said to be 〈·〉-shared among P ,
if there exist values δv,∆v ∈ Z2` such that i) δv is [·]-shared
among P0,P1, ii) ∆v = v+ δv, and iii) ∆v is known to both
P0,P1 in clear. We denote the shares of individual parties as
〈v〉i = ([δv]i ,∆v) for i ∈ {0,1}.

We use δv1...vn to represent the product δv1δv2 · · ·δvn .
Similarly, ∆v1...vn represents ∆v1∆v2 · · ·∆vn .

3.1.3 Protocols

Sharing Protocol Protocol SHARE enables party Pi for i ∈
{0,1} to generate a 〈·〉-sharing of its input value v. During
the setup, Pi samples random [δv]i while the parties together
sample [δv]1−i so that Pi will get to know δv = [δv]0 +[δv]1 in
clear. During the online phase, Pi computes ∆v = v+δv and
sends it to P1−i.
Reconstruction Protocol To reconstruct value v given 〈v〉,
protocol REC proceeds as follows: parties mutually exchange
their missing [·]-share of δv and locally compute v = ∆v−
[δv]0− [δv]1.
Linear Operations Our sharing scheme is linear in the
sense that given 〈a〉,〈b〉 and public constants c1,c2, parties
can locally compute 〈y〉 = c1 · 〈a〉+ c2 · 〈b〉. For this, Pi
for i ∈ {0,1} locally sets ∆y = c1 ·∆a + c2 ·∆b and [δy]i =
c1 · [δa]i + c2 · [δb]i.
Multiplication Protocol Given the 〈·〉-sharing of a,b, the
goal of protocol MULT (cf. Fig. 2) is to generate 〈y〉 where
y = ab. For correctness to hold, we will need

∆y = y+δy = ab+δy = (∆a−δa)(∆b−δb)+δy

= ∆a∆b−∆aδb−∆bδa+δaδb+δy.
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Setup:
• Pi for i ∈ {0,1} samples random [δy]i ∈R Z2` .
• Parties execute setupMULT([δa] , [δb]) to generate [δab].

Online:
• Pi for i ∈ {0,1} locally computes and sends to P1−i
[∆y]i = i ·∆ab−∆a [δb]i−∆b [δa]i +[δab]i +[δy]i.
• Pi for i ∈ {0,1} locally sets ∆y = [∆y]0 +[∆y]1.

Protocol MULT(〈a〉,〈b〉)

Figure 2: Multiplication Protocol

Since the δ-values are not available in clear to any of P0,P1,
they cannot compute the value ∆y on their own. But if we
enable the parties obtain a [·]-sharing of δab = δaδb, then
each of them can compute a [·]-sharing of ∆y which they
can mutually exchange to obtain ∆y in clear. So the problem
of multiplication reduces to generating [δab] given [δa] and
[δb]. We use protocol setupMULT to accomplish this task, the
details of which is provided later in this subsection. We note
that Turbospeedz [13] achieves same online cost as that of
ours, but with a more expensive preprocessing. We provide
more details in §A.3.

To summarize, during the setup phase, parties first locally
sample the [·]-shares for δy. In parallel, parties execute
the setupMULT protocol on [δa] and [δb] to obtain [δab].
During the online phase, the parties locally compute [∆y]
and subsequently reconstruct ∆y.

We now provide the details for instantiating setupMULT
using two of the well-known primitives: i) Oblivious
Transfer (OT) as used in [41, 63] and ii) Homomorphic
Encryption (HE) as used in [40,52,93]. These two approaches
have been rallied against each other in terms of practical
efficiency in the past and fair competition is still going on. In
our work, we make only black-box access to these primitives,
and hence any improvement in any of them will have a direct
impact on the overall efficiency of the setup phase of our
protocols.

Note that δab = ([δa]0+[δa]1)([δb]0+[δb]1) = [δa]0 [δb]0+
[δa]0 [δb]1 +[δa]1 [δb]0 +[δa]1 [δb]1. Here Pi for i ∈ {0,1} can
locally compute [δa]i [δb]i and hence the problem reduces to
computing [δa]0 [δb]1 and [δa]1 [δb]0.

OT based setupMULT In our OT-based approach, we
use Correlated OTs (cOT) [5] where the sender inputs a
correlation function f (·) to cOT and obtains (m0,m1), where
m0 is a random element and m1 = f (m0). We use cOTn

` to
represent n parallel instances of 1-out-of-2 Correlated OTs on
` bit input strings.

To compute [([δa]0 [δb]1)], the parties execute cOT`
` with

P0 being the sender and P1 being the receiver. For the j-
th instance of cOT where j ∈ {0, . . . , `− 1}, P0 inputs the
correlation f j(x) = x+2 j [δa]0 and obtains (m j,0 = r j,m j,1 =
r j + 2 j [δa]0). P1 inputs choice bit b j as the j-th bit of [δb]1
and obtains m j,b j as output. Now the [·]-shares are defined as
[([δa]0 [δb]1)]0 = ∑

`−1
j=0(−r j) and [([δa]0 [δb]1)]1 = ∑

`−1
j=0 m j,b j .

Computation of [([δa]1 [δb]0)] proceeds similarly with the role
of the parties reversed.

HE-based setupMULT In a HE based solution, P0, using
his public key pk0, encrypts its messages [δa]0 , [δb]0 in
independent ciphertexts and sends the ciphertexts to P1.
In parallel, P1 computes the ciphertexts corresponding to
[δa]1 , [δb]1 and a random element r ∈R Z2` using pk0. Upon
receiving the ciphertexts from P0, P1 computes the ciphertext
corresponding to v = [δa]0 [δb]1 + [δa]1 [δb]0 − r using the
homomorphic property of the underlying HE. P1 then sends
encryption of v to P0 who then decrypts it using his secret key
sk0. Note that (v, r) forms an additive sharing of the desired
value: [δa]0 [δb]1 +[δa]1 [δb]0 = v+ r.

Recently, Ring LWE-based AHE [93] was shown to
outperform the solutions based on OT for generating
multiplication triples. The work uses the Microsoft SEAL
library and ciphertext packing. A more detailed description
for instantiating setupMULT using OT and HE is provided
in §B.2.1.

3.1.4 Multi-Input Multiplication Gates

3-Input Multiplication gate We show how to compute a 3-
input multiplication gate with three inputs a,b, c with each
input being 〈·〉-shared. Protocol MULT3 (cf. Fig. 5 in §B.3.1)
generates 〈y〉where y= abc. Similar to 2-input multiplication,
we can write

∆y = abc+δy = (∆a−δa)(∆b−δb)(∆c−δc)+δy

= ∆abc−∆abδc−∆bcδa−∆acδb+∆aδbc+∆bδac

+∆cδab−δabc+δy.

Here we need to generate the [·]-sharing of four terms,
namely δab,δbc,δac and δabc which is done by protocol
setupMULT3. The protocol can be instantiated using either
OT or HE in a similar fashion to that of setupMULT and the
details are deferred to §B.

Multi-Input Multiplication gate We can extend our method
to handle a 4-input multiplication (MULT4) gate and
in the most general case, an N-input multiplication gate
(MULTN) for any positive constant N, without inflating the
online communication which remains just 2 ring elements
independent of the fan-in of the gate. In contrast, the previous
solution [82] requires an online communication of 2N ring
elements for an N-input multiplication gate. Note that our
improved online communication comes at the cost of an
expensive setup (cf. §B.3) and hence to maintain balance,
we use N ∈ {3,4} in our applications. A more detailed
description of MULT4 and MULTN is given in §B.3 and the
security proof is given in §F. Also, we provide more details
of [82] along with a comparison to our protocol in §A.3.
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3.2 2PC in Boolean World

All the protocols mentioned above work over a Boolean ring
(Z21) as well. This can be achieved by replacing additions
(or subtractions) with XORs and multiplications with ANDs.
Here, we introduce an additional protocol for secure negation
as below.

Negation Protocol Given the B-sharing of a bit u as 〈u〉B =
([δu] ,∆u), the goal of a NOT protocol is to generate the
boolean sharing of u. This can be done locally by setting
∆u = 1⊕∆u and [δu] = [δu].

3.3 2PC in Yao World

For the Yao world, we follow the sharing semantics introduced
by ABY [41]. For a wire u with value v ∈ {0,1}, party P0
acts as the garbler with the zero-key on the wire (K0

u) being
its share, while P1 acts as the evaluator with the actual key
(Kv

u) as its share. More formally, 〈v〉0 = K0
u and 〈v〉1 = Kv

u.
We use the free-XOR technique [70] in the garbling

scheme, which enables the XOR gates to be evaluated without
any communication. Here, the one-key for a wire is defined
as a fixed offset from the zero-key as K1

u = K0
u⊕R with the

least significant bit (LSB) of value R being set to 1 to enable
point-and-permute [11]. The value R is chosen by P0 and is
fixed across all the wires in the circuit.

To generate a 〈·〉-sharing of a bit v, protocol SHARE(Pi,v)
proceeds as follows: P0 chooses a random zero-key K0

u ∈R
{0,1}κ and sets K1

u = K0
u ⊕ R, where κ denotes the

computational security parameter. If Pi = P0, P0 sends Kv
u

to P1. For the case when Pi = P1, parties engage in a cOT1
κ

with P0 being the sender and P1 being the receiver. Here
P0 inputs the correlation function fR(x) = x⊕R and obtains
(K0

u,K
1
u =K0

u⊕R) while P1 inputs v as choice bit and receives
Kv
u as the output.
To generate a 〈·〉-sharing of an `-bit value v, parties execute

the SHARE() protocol on each of its bits (v[ j] for j ∈ {0, `−
1}) in parallel. For a value v ∈ Z2` , we abuse the notation
slightly and use 〈v〉 to denote the 〈·〉-sharing corresponding
to each bit of v. We refer readers to ABY [41] for a formal
description of the two-party Yao world and the operations
within it.

4 Mixed Protocol Conversions

In this section, we show techniques to convert the shared
values among the three protocols, namely– Arithmetic,
Boolean, and Yao. We use the superscripts {A,B,Y} to
distinguish the sharing and the respective protocols in the
Arithmetic, Boolean, and Yao respectively.

4.1 Standard Conversions
Here we detail the conversions amongst the three protocols.
While most of the conversions of ABY [41] demand the
execution of OT in the online phase, our protocols invoke
OT in the setup phase only. This makes the online phase
of the conversions– (a) free of any cryptographic operations
and (b) run for just one round as opposed to two rounds for
OT in ABY (cf. Tab. 2), except the Arithmetic to Boolean
conversion.

Y2BY2BY2B: Given the 〈·〉Y-sharing of a bit u ∈ {0,1}, the goal is
to generate its equivalent Boolean sharing. As observed in
ABY, since the last bit of the zero and one key are distinct,
XORing the LSB of K0

u and Ku
u results in the underlying bit u.

Hence, each Pi for i ∈ {0,1} Boolean-shares the LSB of their
respective shares 〈u〉Yi followed by locally XORing the shares
to obtain the desired result. We note that P0 can perform
SHAREB(P0,LSB(K

0
u)) already in the setup phase.

B2YB2YB2Y: To convert 〈u〉B to its equivalent 〈·〉Y-sharing, Pi for
i ∈ {0,1} first locally sets ui = (1− i) ·∆u⊕ [δu]i. It is easy to
verify that u= u0⊕u1. This is followed by party Pi generating
〈ui〉Y by executing the SHAREY(Pi,ui) protocol as described
in §3.3. Given 〈u0〉Y,〈u1〉Y, the parties can locally compute
〈u〉Y = 〈u0〉Y⊕〈u1〉Y using the free-XOR technique [70]. In
our solution, we observe that parties can generate 〈u1〉Y in the
setup phase, with u1 available in the setup phase itself. This
allows us to shift the OT run to the setup phase, as opposed
to ABY [41].

A2YA2YA2Y: The conversion from 〈v〉A to its equivalent 〈·〉Y-sharing
proceeds similar to that of the B2Y conversion. Party Pi for
i∈{0,1} locally sets vi =(1− i) ·∆v− [δv]i so that v= v0+v1.
During the setup phase, P0 garbles a two-input adder circuit
which computes y = x0 + x1, given the inputs x0,x1 ∈ Z2` .
The garbled circuit is then sent to P1. In parallel, parties
execute SHAREY(P1,v1) to generate 〈v1〉Y. During the online
phase, parties execute SHAREY(P0,v0) to generate 〈v0〉Y.
This is followed by P1 locally evaluating the garbled adder
circuit to generate 〈v〉Y which is our desired result. The adder
circuit consists of ` AND gates [21]. Using the half-gates
technique [102], this has setup communication of 2`κ bits.

Y2AY2AY2A: To convert 〈v〉Y to 〈v〉A, parties proceed similarly to
ABY [41] as follows: During the setup phase, P0 samples
a random value r ∈R Z2` and executes SHAREY(P0,r) and
SHAREA(P0,r) to generate 〈r〉Y and 〈r〉A respectively. In
parallel, P0 garbles an Adder circuit and sends the garbled
circuit along with the decoding information to P1. During
the online phase, P1 evaluates the garbled circuit with inputs
〈v〉Y and 〈r〉Y to generate 〈v+ r〉Y. Using the decoding
information, P1 obtains the value (v+ r) in clear followed
by executing SHAREA(P1,v+r) to generate 〈v+r〉A. Parties
then locally compute 〈v〉A = 〈v+ r〉A−〈r〉A.

A2BA2BA2B: To convert an arithmetic share 〈v〉A to its equivalent
Boolean share, parties use a Boolean Adder circuit similar
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to that of the A2Y conversion. Here, party Pi for i ∈ {0,1}
locally sets vi = (1− i) · ∆v − [δv]i followed by executing
SHAREB(Pi,vi) to generate 〈vi〉B. Parties then evaluate
the circuit using the 2PC protocol as described in §3. As
mentioned in ABY [41] and ABY3 [77], the adder circuit
can either be instantiated in its size-optimized [21] or depth-
optimized variant (Parallel-prefix Adder [73]) and both these
methods result in a non-constant (dependent on `) number of
rounds. A constant-round solution is to use Y2B(A2Y(〈v〉A)).
Bit2ABit2ABit2A: Here the goal is to generate the arithmetic sharing of
a bit v ∈ {0,1}, given its Boolean sharing 〈v〉B. Let va denote
the value of bit v when viewed over an `-bit ring. Then for
v= v0⊕v1, we can write va = va0 +va1−2va0v

a
1. We make use

of this observation in the rest of the paper several times. Note
that va = (∆v⊕δv)

a = ∆a
v+δav−2∆a

vδav.
During the setup phase, parties interactively generate the [·]

sharing of value δav. During the online phase, Pi for i ∈ {0,1}
locally computes [va]i = i ·∆a

v+(1−2∆a
v) · [δav]i and executes

SHAREA(Pi, [v
a]i) to generate 〈[va]i〉A. This is followed by

parties locally computing 〈va〉A = 〈[va]0〉A + 〈[va]1〉A.
Now we describe how to generate [δav] in the setup phase,

given the [·]-sharing of bit δv. Since δv = [δv]0⊕ [δv]1, we
can write δav = [δav]0 +[δav]1−2([δav]0 [δ

a
v]1). The parties first

execute cOT1
` with P0 as sender and P1 as receiver. P0 inputs

the correlation f j(x) = x + [δv]
a
0 and obtains (s0 = r,s1 =

r+[δv]
a
0). P1 inputs the choice bit as [δv]1 and obtains s[δv]1 =

r+[δv]1 · [δv]
a
0 as the output. P0 locally sets [([δv]

a
0 [δv]

a
1)]0 =

−r while P1 sets [([δv]
a
0 [δv]

a
1)]0 = s[δv]1 . Party Pi for i∈ {0,1}

locally sets the [·]-share of [δav] as [δav]i = (1− i) · [δv]a0 + i ·
[δv]

a
1−2 [([δv]

a
0 [δv]

a
1)]i.

B2AB2AB2A: To convert a value v ∈ Z2` from its 〈·〉B-sharing to its
equivalent arithmetic sharing 〈v〉A, one simple solution is
to follow steps similar to the Y2A conversion. Here, parties
evaluate a Boolean subtraction circuit with 〈v〉B and 〈r〉B as
the inputs, where r denotes a random value chosen by P0. In
addition, P0 executes SHAREA(P0,r) to generate 〈r〉A as well.
After the evaluation, the value (v− r) is reconstructed to P1,
who further generates 〈v− r〉A. Parties then locally compute
〈v〉A = 〈v+ r〉A−〈r〉A.

As the above solution results in a non-constant round
protocol in the online phase, we propose a novel round
efficient variant which makes use of the Bit2A protocol.
Our protocol was inspired from [33] that proposed a similar
solution for the four party honest majority case. Here we make
use of the fact that v=∑

`−1
j=0 2 j ·v[ j] where v[ j] denotes the jth

bit of v. Since the parties possess 〈v[ j]〉B for each j ∈ [0, `),
they execute Bit2A conversion on 〈v[ j]〉B to generate its
arithmetic equivalent 〈v[ j]〉A. This results in a communication
corresponding to ` instances of Bit2A conversions.

We observe that the online cost can be brought down
to just 2 ring elements using the following approach.
For each bit v[ j], parties locally compute the [·]-sharing
corresponding to (v[ j])a as mentioned in Bit2A. Now, instead

of generating the 〈·〉A-share corresponding to each bit, Pi
for i ∈ {0,1} locally computes [v]i = ∑

`−1
j=0 2 j · [(v[ j])a]i and

executes SHAREA(Pi, [v]i) to generate 〈[v]i〉A. Both parties
then locally compute 〈v〉A = 〈[v0]〉A + 〈[v1]〉A. It is easy to
verify that v = [v]0 +[v]1.

4.2 Special Conversions
For the three special conversions described below, the inputs
are either Boolean shares or a mix of Boolean and arithmetic
shares. The goal is to compute the equivalent arithmetic
sharing of the product of the inputs. These conversions use
the techniques of the Bit2A protocol (§4.1).

a) Protocol PQ(〈p〉B,〈q〉B) : 〈p〉B〈q〉B→ 〈pq〉A

Prep:
[
δap

]
,
[
δaq

]
,
[
δapδaq

]
(pq)a = (∆a

p+(1−2∆a
p)δ

a
p)(∆

a
q+(1−2∆a

q)δ
a
q)

b) Protocol PV(〈p〉B,〈v〉A) : 〈p〉B〈v〉A→ 〈pv〉A

Prep:
[
δap

]
,
[
δapδv

]
(pv)a = (∆a

p+(1−2∆a
p)δ

a
p)(∆v−δv)

c) Protocol PQV(〈p〉B,〈q〉B,〈v〉A) : 〈p〉B〈q〉B〈v〉A→ 〈pqv〉A

Prep:
[
δap

]
,
[
δaq

]
,
[
δapδaq

]
,
[
δapδv

]
,
[
δaqδv

]
,
[
δapδaqδv

]
(pqv)a = (∆a

p+(1−2∆a
p)δ

a
p)(∆

a
q+(1−2∆a

q)δ
a
q)(∆v−δv)

During the online phase, parties locally generate a [·]-
sharing of the value to be computed followed by executing the
SHAREA protocol on it to generate its equivalent arithmetic
sharing. Then, parties locally add the resulting arithmetic
shares to obtain the final result. The difference lies in the setup
required for each of the conversions. The expression provided
above shows the desired result in terms of corresponding
∆ and δ values and the setup data (labelled as Prep) to be
prepared.

As observed in the Bit2A protocol, the online phase of all
these conversions consists of both parties executing arithmetic
sharing of a single element resulting in one round with a
communication of just 2 ring elements. We defer a detailed
description of the conversions to §C.2.

5 Building Blocks for Applications

In this section, we provide details for our building blocks
that form the core of the applications that we explore in §6.
The formal details and communication cost analysis are given
in §D.

5.1 Scalar Product
Given the arithmetic sharing of n-element vectors~a,~b, the
goal is to generate 〈y〉A where y =~a�~b = ∑

n
j=1 aibi. One

trivial way is to invoke the multiplication protocol from §3.1.3
corresponding to each of the n underlying multiplications.
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This would result in online communication linear in the vector
size n. We now show how to make the online communication
independent of the vector size.

The parties first execute the preprocessing corresponding to
each of the n multiplications in parallel. Here we observe that
there is no need to sample the shares of

[
δy j

]
corresponding

to each of the underlying multiplications. Instead, the parties
locally sample the shares of [δy]. During the online phase,
parties first locally compute the [·]-sharing of value ∆y j where
y j denotes a jb j. Pi for i ∈ {0,1} now locally computes
[∆y]i = ∑

n
j=1
[
∆y j

]
i
. This is followed by the parties mutually

exchanging [∆y]-shares to reconstruct ∆y. The formal details
are shown in Fig. 7 in §D.1.

Compared with the state-of-the-art 2PC solutions in
ABY [41] which require communication of 4n elements in the
online phase, our protocol requires an online communication
of just 2 ring elements.

5.2 Matrix Multiplication
Here we provide the details for extending our 2PC
multiplication (§3.1.3) to the matrix setting. We abuse the
notation slightly and use ‘+’ for addition of matrices and ‘−’
for subtraction. Also, we follow the 〈·〉-sharing semantics for
matrices as well. For Xm×n, we have ∆X = X+[δX]0 +[δX]1.
Here ∆X, [δX]0 and [δX]1 are matrices with dimension m×n
and xi, j denote the [i : j]-th entry of X.

Given Ap×q,Bq×r, protocol MATMULT (Fig. 8 in §D.2),
proceeds as follows: During the setup phase, for i ∈ [p], j ∈
[q],k ∈ [r], parties execute setupMULT(

[
δai, j

]
,
[
δb j,k

]
) to

generate
[
δai, jb j,k

]
. This results in a [·]-sharing of γAB =

δA ◦δB among P0,P1. During the online phase, parties locally
compute a [·]-sharing of ∆C using the following relation:

∆C = C+δC = A◦B+δC = (∆A−δA)◦ (∆B−δB)+δC

= ∆A ◦∆B−∆A ◦δB−δA ◦∆B + γAB +δC.

Finally, parties mutually exchange [∆C] and obtain ∆C
completing the protocol. Our protocol improved the online
communication from O(pqr) to O(pr) ring elements,
eliminating the dependency on dimension q.

5.3 Depth-Optimized Circuits
Parallel-prefix Adders (PPA) offer a depth-optimized solution
to the binary addition between two `-bit binary numbers.
The best-known PPAs have log2(`) depth [50]. Using ideas
from [8, 50], we design a PPA using two, three, and four
input AND gates combined and obtain depth-optimized PPAs.
Concretely, for a 64-bit ring, we achieve a 2× improvement
in depth over existing designs along with a reduction in online
communication.

As shown in [77], the PPA circuit can be optimized to
obtain just the most significant bit (MSB), which we denote

Circuit ` #AND2 #AND3 #AND4 Depth

Adder 8 15 (24) 6 1 2 (3)
BitExt 8 7 (14) 4 1 2 (3)

Adder 64 216 (384) 184 179 3 (6)
BitExt 64 41 (126) 27 47 3 (6)

Table 5: Depth-optimized Circuits for `-bit rings. Previous circuits
from ABY3 [77] are given in brackets.

as Bit Extraction (BitExt) circuits. The efficiency gain in our
PPA construction extends to BitExt circuits as well. Tab. 5
provides a summary of the results and the details are given
in §E.

5.4 Comparison
As pointed out in [32, 77], checking x< y in the Fixed-Point
Arithmetic (FPA) representation is equivalent to checking the
sign of v = x−y, which is stored in the MSB position of v.

The corresponding protocol LT begins with parties locally
computing 〈v〉 = 〈x〉 − 〈y〉. Let v = a + b where a =
− [δv]0 and b = ∆v− [δv]1. P0,P1 execute SHAREB on a,b
respectively to generate its equivalent boolean sharing. The
parties then use the Bit Extraction (BitExt, §5.3) circuit to
compute MSB(v) in the boolean sharing format.

5.5 Truncation
In Fixed-Point Arithmetic (FPA), repeated multiplications
result in an overflow with the fractional part doubling up in
size after each multiplication. The naive solution of choosing
a large enough ring to avoid the overflow is impractical for ML
algorithms where the number of sequential multiplications
is large. To tackle this, truncation [33, 77, 79] is used where
the result of the multiplication is brought back to the FPA
representation by chopping off the last x bits.

Below we explain how to perform truncation without
affecting the communication cost for the multiplication. Our
protocol is inspired by SecureML [79] and works as follows:
During the online phase of multiplication, the parties first
locally compute [y] directly instead of [∆y]. This is possible
since [y] = [∆y]− [δy]. Now each party locally truncates [y] to
obtain the truncated value denoted by [yt ]. This is followed
by parties executing the SHAREA protocol on [yt ] to generate
its arithmetic sharing. Finally, the parties locally compute
〈yt〉A = 〈[yt ]0〉A + 〈[yt ]1〉A. The correctness of the method
follows trivially from SecureML. The formal details for
multiplication with truncation are given in Fig. 9 in §D.4.

5.6 MAX2 / MIN2

The MAX2 protocol is used to compute the maximum
among two values a,b in a secure manner given 〈a〉A
and 〈b〉A. For this, the parties execute the LT protocol
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from §5.4 on 〈a〉A,〈b〉A to obtain 〈u〉B = 〈a < b〉B. Note
that MAX2(a,b) = u · (b−a)+a. Hence, parties can use the
PV protocol from §4.2 to compute the desired result. The
MIN2 protocol proceeds similarly except that MIN2(a,b) =
u · (a−b)+b.

5.7 MAX3 / MIN3

Given the arithmetic sharing 〈a〉A,〈b〉A,〈c〉A, the goal of the
MAX3 protocol is to find the maximum value among the
three. For this, we optimize the solution proposed by [82]
which results in an improvement of 24.5× in terms of the
communication and 1.3× in rounds in the online phase. The
parties first securely compare the pairs (a,b),(a,c) and (b,c)
using the LT protocol from §5.4 and obtain 〈u1〉B,〈u2〉B and
〈u3〉B respectively. Here u1 = 1 if a< b and 0 otherwise. u2
and u3 are defined likewise . Now the maximum among the
three, denoted by y, can be written as y = u1 ·u2 ·a+u1 ·u3 ·
b+u2 ·u3 · c.

Given 〈u1〉B,〈u2〉B,〈u3〉B and 〈a〉A,〈b〉A,〈c〉A, the parties
can use the PQV protocol from §4.2 to obtain each term in the
expression for y and can locally add them to obtain the desired
result. As an optimization, we can combine the online phase
corresponding to all three executions of the PQV protocol
into one. This reduces the online communication from 6 to 2
ring elements. The details are given in Fig. 10 in §D.6.

The protocol for MIN3, which computes the minimum
among the three values can be obtained by slightly modifying
the protocol for MAX3. The difference lies in the expression
for computing the minimum which will now be y = u1 ·u2 ·
a+u1 ·u3 ·b+u2 ·u3 · c.

We observe that the protocol described above can be
modified slightly to compute the index of the maximum
(or minimum) among a set of three values. We use
ArgMax/ArgMin to denote such a protocol and the details
are given in §D.7.

5.8 Non-linear Activation Functions
We show how to compute two of the most widely used non-
linear activation functions for PPML: ReLU and Sigmoid.
While ReLU is used in Neural Networks, Sigmoid is used in
functions like Logistic Regression.
ReLU The ReLU function on a value v is defined as
ReLU(v) =max(0,v). To compute this, parties first execute
the LT protocol from §5.4 on v to obtain 〈u〉B, where u= 1 if
v < 0 and 0 otherwise. Parties can then locally compute 〈u〉B,
followed by executing the PV protocol from §4.2 on 〈u〉B and
〈v〉A to obtain the desired result.
Sigmoid We use the MPC-friendly version of the Sigmoid
function [32, 77, 79], which is defined as:

Sig(v) =


0 if v <− 1

2
v+ 1

2 if − 1
2 ≤ v ≤ 1

2
1 if v > 1

2

Note that the value Sig(v)= u1u2(v+1/2)+u2, where u1 = 1
if v+1/2 < 0 and u2 = 1 if v−1/2 < 0. To compute this, the
parties first execute the LT protocol from §5.4 on v+1/2 and
v−1/2 to generate 〈u1〉B and 〈u2〉B, respectively. Similar to
ReLU, both parties can then use PQV from §4.2 and Bit2A
from §4.1 to obtained the desired result.

5.9 Maxpool and Minpool
Given the arithmetic sharing of an n-element vector ~x =
(x1, . . . ,xn) of values with x j ∈ Z2` for j ∈ {1, . . . ,n}, the
goal of the Maxpool protocol is to compute the arithmetic
sharing of the maximum value among the n values.

For this, parties arrange the n values into an N-ary tree
(tournament) composed of MAXN blocks with depth logN(n)
and evaluate in a top-down fashion [68]. In the recent work
of [82], a maxpool using MAX3 was proposed where three
values are compared at a time. In this work, we use our
optimized MAX3 protocol from §5.7 as the building block
for computing Maxpool. The improvement in rounds as well
as communication of our MAX3 protocol over [82] directly
translates to this case as well. We provide an empirical
comparison for the Maxpool protocol in §6.1. Note that using
MIN3 instead of MAX3 will directly provide a solution for
Minpool, where the goal is to find the minimum among the
values.

5.10 Equality Testing
Given 〈a〉A,〈b〉A, the goal of the Equality Testing (EQ)

protocol is to check whether a ?
= b or not. An equivalent

formulation of the problem [19, 82] is to check if all the
bits of a− b are 0 or not. This simple primitive is crucial
in building efficient protocol for applications like Circuit-
based Private Set Intersection [88, 90, 91] (cf. §6.3), the Table
Lookup Protocol from [42], and Data Mining [19].

We begin with the observation that if x = y, then using
our sharing semantics we can write ∆x − [δx]0 − [δx]1 =
∆y− [δy]0− [δy]1. Assuming v0 = (∆x− [δx]0)− (∆y− [δy]0)
and v1 = [δx]1− [δy]1, the problem now reduces to checking

whether v0
?
= v1 or not. Note that the value vi can be locally

computed by party Pi for i ∈ {0,1}.
Protocol EQ (cf. Fig. 12 in §D.9) proceeds as follows:

Pi for i ∈ {0,1} locally computes vi and executes SHAREB

to generate 〈vi〉B. The parties then compute 〈v〉B =
NOT(〈v0〉B⊕〈v1〉B). Note that checking v0 = v1 is the same
as checking whether all the bits of v are 1 or not. For this,
the parties use AND4 gates and a tree structure, where 4 bits
are taken at a time and the AND of them is computed in
one go. This approach improves the round complexity by a
factor of 2 over the traditional approach using AND2 gates.
In concrete terms for a 64 bit ring, our solution improves over
the protocol of [19] by 2× in online rounds and by 2.4× in
online communication.
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6 Applications and Benchmarks

All secure two-party applications using Boolean sharing (B)
or Arithmetic sharing (A) directly benefit from our
improvement in the online phase of our protocols. In this
section, we give four applications with further improvements:
i) AES which benefits from AND3 gates (§6.2), ii) Circuit-
based Private Set Intersection (PSI) which benefits from
our improved Equality Tests (§6.3), ii) Biometric Matching
which benefits from our new dimension-independent Scalar
Product and Minpool protocols (§6.4), and iv) Privacy-
Preserving Machine Learning (PPML), specifically training
and inference of Logistic Regression and Neural Networks
which benefit from many of our improved protocol building
blocks (§6.5). Since Maxpool/Minpool is an essential building
block for several applications like K-means clustering [27],
face-recognition [96], and fingerprint-matching [16, 46], we
provide a separate analysis for Maxpool in §6.1.

To showcase the practicality of our constructions, we have
implemented our protocols and compare them with their
closest competitors. We implemented our protocols using
the ENCRYPTO library [43] in C++17 over a 64-bit ring.
Each experiment is run 15 times and the average values are
reported. The benchmarking is performed over a LAN of
25Gbps bandwidth and a WAN of 75Mbps bandwidth. Over
the LAN, we use two machines, each equipped with a 3.5
GHz Intel (R) Xeon (R) Gold 6144 CPU and 64 GB of RAM.
The WAN was instantiated using n1-standard-8 instances
of Google Cloud1 with machines located in East Australia
(P0) and South East Asia (P1). Over the WAN, machines are
equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors
supporting hyper-threading, with 8 vCPUs, and 30 GB of
RAM. The average round-trip time (rtt), which was taken as
the time for communicating 128 KB of data, turned out to be
0.056 ms for LAN and 60.19 ms for WAN.

6.1 Maxpool
Here we provide an empirical analysis of our Maxpool
protocol from §5.9 and compare it with its competitors.
For the analysis, we consider vectors with dimensions n ∈
{1024,65536}.

We have evaluated both round-optimized and
communication-optimized variants of the Maxpool protocol.
In the round-optimized variant proposed by SecureML [79],
a garbled circuit is used to evaluate the maximum among n
elements. This method requires converting Arithmetic shares
to Yao shares and back, which can be tackled using A2Y and
Y2A conversions. In the communication-optimized variant,
we use the tree-based approach where either two or three
elements are compared at a time as described in §5.9.

Based on the building block used to instantiate Maxpool,
the analysis can be divided into three cases – i) Case I: where

1https://cloud.google.com/

the garbled circuit is used, ii) Case II: only MAX2 is used, and
iii) Case III: a mix of MAX3 and MAX2 are used. For Case I,
we compare with SecureML [79], while ours is compared with
[82] for the rest. Table 6 summarizes the cost for the online
phase of the Maxpool protocol. It is evident from the table
that our protocols outperform [79,82] in both communication
and rounds for the online phase in all three cases.

Ref. Type
n= 1,024 n= 65,536

Comm [KB] Rounds Comm [KB] Rounds

[79] GC 2,056 4 131,584 4
ABY2.0 GC 1,024 2 65,536 2

[82] MAX2 258 50 16,512 80
ABY2.0 MAX2 53 40 3,408 64

[82] MAX3 492 35 31,679 55
ABY2.0 MAX3 63 28 4,080 44

Table 6: Online communication and rounds of Maxpool protocols.
Best results in bold. n is the number of input elements.

For Case I, our round-optimized variant has a 2×
improvement over SecureML [79] in both online
communication and rounds. This is due to our efficient A2Y
and Y2A conversions. For Case II, we improve upon [82] by
a factor of 6.2× in online communication and 1.3× in rounds.
Similarly, for Case III, the respective improvements over [82]
are 9.6× and 1.3×. For cases II&III, while the improvement
in online rounds is due to our efficient comparison protocol,
improvement in communication is primarily contributed by
our PQV protocol from §4.2. We also note that [82] improved
the online rounds by 1.4× by switching from MAX2 to
MAX3 as the building block for Maxpool at the expense of
1.9× higher online communication. In contrast, our solution
improves the online rounds by 1.4× with a minimal overhead
of 1.2× in online communication.

For the round-optimized variant, our protocol incurs an
additional communication of just 2KB over SecureML in the
setup phase. For the communication-optimized variant, we
improve upon [82] for both MAX2 and MAX3 in terms of
communication in the setup phase. This improvement results
from our improved comparison protocol.

6.2 Improved S-box for AES
In a privacy-preserving AES [54, 89], the goal is to enable P0
to encrypt her message x using a key k held P1. The privacy
guarantee is that P0 gets the corresponding ciphertext while
leaking nothing else. This has several applications in PSI [51,
62] and encrypted databases [2, 24]. Since the MixColumns
and AddRoundKey operations can be evaluated using only
free XOR gates [54], the focus was shifted to building efficient
protocols for evaluating S-boxes as its core block. While [22]
gives a depth-optimized S-box of 34 AND gates with an AND-
Depth of 4, [20] gives a size-optimized solution with 32 AND
gates and AND-Depth 6.
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We give a new construction for the AES S-box that results
in an effective AND-Depth of only 3. On a high level, we
start with the three-layer construction of [20,22] and optimize
the middle layer (inversion layer) by replacing some of the
AND2 gates with AND3 gates. This optimization is crucial
since AES-128, AES-192 and AES-256 have 10, 12, and 14
sequential calls to layers of S-boxes resulting in a respective
saving of 10, 12, and 14 rounds of interaction over [22]. We
provide the empirical analysis in Table 7 and defer a detailed
description to §E.3.

Cipher Ref. #AND
Setup Online

Comm [KB] Comm [KB] Rounds

AES
128

[22] 5,440 88.98 2.66 40
[20] 5,120 83.75 2.50 60

ABY2.0 5,440 98.13 1.33 30

Table 7: Communication and rounds for Secure evaluation of AES.
Best results in bold.

In the setup phase, we used 4-OT1
1 for AND2 gates and

8-OT1
4 for AND3 gates. With the optimization of [42] applied,

one instance of 4-OT1
1 requires communication of 134 bits

while 8-OT1
4 takes 253 bits. Our protocol outperforms its

competitors in terms of both online communication and
rounds.

6.3 Circuit-Based PSI
Circuit-based PSI [53] allows us to efficiently compute
variants of the Private Set Intersection (PSI) functionality by
securely evaluating a Boolean circuit. Today’s most efficient
protocols in this area [88, 90–92] do this by using hashing
techniques and then evaluating a Boolean circuit that checks
for equality among several bit strings using secure 2PC.

In fact, for today’s most efficient circuit-based PSI
protocol of [90], the majority of the computation, as well as
communication, is spent on this two-party Equality Checking
protocol. To be precise, 96% of the overall communication
(cf. [90, Tab. 3]) and 34%− 63% of the overall runtime
(cf. [90, Tab. 5]) is spent on Equality Checking. Plugging in
our efficient Equality Checking protocol from §5.10 into the
PSI protocol of [90] results in a direct improvement of≈ 1.3×
in runtime and ≈ 2.4× in communication in the online phase.

6.4 Biometric Matching (Minimum Euclidean
Distance)

Given a database owner with m biometric samples (~s1, . . . , ~sm)
and a party with its biometric sample~c, the goal of privacy-
preserving biometric matching is to find out the “minimum
distance" of ~c from the database. This method is used for
various traits of biometrics such as face-recognition [44, 52]
and fingerprint-matching [16, 54]. Some of these works use
the Squared Euclidean Distance (SED) as the metric to

compute the distance between two vectors. For two n-element
vectors ~a,~b, SED is defined as SED(~a,~b) = ∑

n
j=1(a j−b j)

2.
Note that for~y =~a−~b, SED(~a,~b) =~y�~y.

In our framework, P0 is the database owner while P1 is
the party with the sample to be checked. For finding the
nearest sample securely, the parties first generate an arithmetic
sharing of both the database samples and the query according
to our sharing semantics. Given 〈~s j〉A for j ∈ {1, . . . ,m} and
〈~c〉A, the parties locally compute 〈~x j〉A = 〈~s j〉A−〈~c〉A. This
is followed by running the dot product protocol from §5.1 on
each 〈~x j〉A with itself to generate 〈y j〉A = 〈~x j�~x j〉A. Note
that the vector 〈~y〉A = {〈y1〉A, . . . ,〈ym〉A} represents the SED
of the query with each of the database samples. To find
the minimum among the elements of~y given the arithmetic
sharing of its elements, the parties can use either of the two
methods described below.

In the first method, P0 generates a garbled circuit that
can compute the minimum among m inputs and sends this
circuit to P1. The parties then execute the A2Y conversion
on each 〈y j〉A for j ∈ {1, . . . ,m} to generate 〈y j〉Y. P1
evaluates the circuit to obtain the desired result in 〈·〉Y-
sharing. This method will result in a constant round solution,
but the communication will be large. Another option is
to use our Minpool protocol from §5.9 which results in
a communication-efficient solution, but will require a non-
constant number of rounds.

Ref. Type
m = 1,024 m = 4,096 m = 16,384

Rounds
Comm
[KB] Rounds

Comm
[KB] Rounds

Comm
[KB]

[41] A+Y 5 2,312 5 9,248 5 36,992
ABY2.0 A+Y 3 1,040 3 4,160 3 16,640

[82] A+B 36 748 41 3,003 46 12,014
ABY2.0 A+B 29 51 33 205 37 818

Table 8: Online rounds and communication of Minimum Euclidean
Distance. Best results in bold. m is the number of biometric samples.

An empirical analysis for the online phase of the two
aforementioned variants is given in Tab. 8. We consider
databases with m ∈ {1,024,4,096,16,384} samples. Each
biometric sample has a dimension of n= 8.

For the round-optimized variant, we improve upon
ABY [41] by 2.2× in communication and and by 1.6× in
rounds in the online phase. Similarly, for the communication-
optimized variant, our improvements over [82] are 14.7×
in communication and 1.3× in rounds. The overhead in the
setup cost for our protocol over ABY [41] and [82] is similar
to that of Maxpool (§6.1) since Minpool forms the majority
of the computation for Biometric Matching.

6.5 Privacy-Preserving Machine Learning
(PPML)

In the domain of PPML [32, 33, 77, 79], we show that
Logistic Regression and Neural Networks can be substantially
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improved with our building blocks. While we chose the above
applications, our building blocks are sufficient to perform
training and inference of Linear Regression and Convolutional
Neural Networks [33] as well as inference of Support Vector
Machines [32] and Binarized Neural Networks [29].

The training phase for the aforementioned algorithms
consists of two stages: (i) a forward propagation phase, where
the model computes the output given the input; and (ii) a
backward propagation phase, where the model parameters are
adjusted according to the difference in the computed output
and the actual one. The inference phase can be viewed as
one pass of the forward propagation alone. In our work, we
use the technique of Batching [77, 79], where the entire set
of samples is divided into batches of size B and a combined
update function is applied to the weight vectors.

For the training phase, we follow [33, 77] and benchmark
the number of iterations per minute (#it/min) over both
LAN and WAN. The values are reported over batch sizes
of {128,256,512} and with feature sizes n ∈ {100,900}.
For the inference, we report the online runtime as well
as the throughput (TP) for the aforementioned feature
sizes. Runtime shows the impact of rounds on the overall
performance, while TP denotes the numbers of queries the
framework can process in a minute and allows to analyse the
impact of communication.

Logistic Regression In Logistic Regression, one iteration
comprises of updation of the weight vector ~w using the
gradient descent algorithm (GD) as follows:

~w = ~w− α

B
XT

i ◦ (Sig(Xi ◦~w)−Yi) .

Here α denotes the learning rate and Xi denotes a subset of
batch size B, randomly selected from the entire dataset in the
i-th iteration.

Batch
Size Ref.

LAN (#it/min) WAN (#it/min)

n= 100 n= 900 n= 100 n= 900

128 [79] 29,112 27,273 108 104
ABY2.0 176,471 149,626 162 162

256 [79] 25,829 24,058 107 97
ABY2.0 163,043 117,188 162 162

512 [79] 23,292 22,247 104 83
ABY2.0 110,906 98,847 162 162

Table 9: Comparison of the online throughput of ABY2.0 and
SecureML [79] for Logistic Regression Training. Best results are in
bold and larger is better. n is the number of features.

For the case of training, the data owner possesses the
matrices X,Y and the initial weights (~w) are all set to 0.
During the forward propagation, Xi ◦~w is first computed
followed by applying the sigmoid (Sig) function on it. During
the backward propagation, the weight vector is updated
according to the equation above. The update function requires

computation of a series of matrix multiplications, which can
be achieved using our dot product protocol from §5.1. The
operations of subtraction as well as multiplication by a public
constant can be performed locally.

Tab. 9 gives our benchmarks for Logistic Regression
training. Over SecureML [79], we have improvements in
the range 4.4×-6.1× for LAN and in the range 1.5×-2.0×
for WAN. The improvement stems from our round efficient
comparison protocol from §5.4 that forms the building block
for the activation function ReLU as well as our scalar product
protocol from §5.1 that has a communication independent of
the size of the vector. Note that over WAN, the throughput
of our protocol remains unchanged across feature sizes as
well as batch sizes. This discrepancy is due to the effect of
communication on the rtt. In detail, the rtt is in the order of
microseconds for LAN and scales with the communication
size, whereas rtt in the WAN is in the order of milliseconds
and does not scale with communication up to a threshold,
within which all our protocols operate.

Parameter Ref.
LAN WAN

n= 100 n= 900 n= 100 n= 900

Runtime
(ms)

[79] 1.60 1.69 496.08 504.96
ABY2.0 0.29 0.29 308.16 308.16

Throughput
(Queries/min)

[79] 5,342.61 1,193.01 16.08 3.58
ABY2.0 42,372.41 42,371.11 39.88 39.88

Table 10: Comparison of the online runtime and throughput of
ABY2.0 and SecureML [79] for Logistic Regression Inference. Best
results in bold. n is the number of features.

Tab. 10 gives our benchmarks for Logistic Regression
inference. We improve the online runtime over
SecureML [79] by 5.5× for LAN and 1.6× for WAN,
and the online throughput by 7.9×-35.5× in LAN and
2.5×-11.1× in WAN.

Neural Networks (NN) Neural Networks are stronger than
regression algorithms since they can learn more complex
relationships between high dimensional input and output data.
NNs are used in a wide variety of applications such as image
processing, voice, and text recognition.

Batch
Size Ref.

LAN (#it/min) WAN (#it/min)

n= 100 n= 900 n= 100 n= 900

128 [79] 3,593 3,559 17 17
ABY2.0 12,448 12,343 42 42

256 [79] 3,578 3,521 17 17
ABY2.0 9,259 9,156 42 42

512 [79] 3,330 3,323 15 15
ABY2.0 9,177 9,146 42 42

Table 11: Comparison of the online throughput of ABY2.0 and
SecureML [79] for NN Training. Best results in bold and larger is
better. n is the number of features.
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In our work, we follow previous works [32, 77, 79] and
consider a Neural Network with two hidden layers, each
having 128 nodes followed by an output layer of 10 nodes.
We use ReLU as the activation function over the nodes.
Moreover, for training we use the MPC-friendly variant
of the softmax function [79] which is defined as f (vi) =
ReLU(vi)/∑

m
j=1ReLU(v j). The division is performed using a

garbled circuit where we use the conversion from Arithmetic
to Yao.

Tab.11 gives our benchmarks for NN Training. Over
SecureML [79], we have improvements in the range
2.7×-3.46× for LAN and 2.4×-2.8× for WAN. Here the
improvement is further boosted with our implementation of
the softmax function that requires 2 online rounds as opposed
to 4 rounds in SecureML.

Parameter Ref.
LAN WAN

n= 100 n= 900 n= 100 n= 900

Runtime
(ms)

[79] 8.68 8.77 1,759.92 1,759.95
ABY2.0 2.66 2.66 744.12 744.12

TP
(queries/min)

[79] 62.02 40.89 0.19 0.12
ABY2.0 30,796.99 30,795.17 92.39 91.57

Table 12: Comparison of the online runtime and throughput of
ABY2.0 and SecureML [79] for NN Inference. Best results in bold.
n is the number of features.

Tab. 12 gives our benchmarks for NN Inference. Here we
improve the online runtime of SecureML [79] by a factor
of 3.3× in LAN and 2.4× in WAN. Regarding the online
throughput, we observe huge improvements in the range
496×–754× for both LAN and WAN. This improvement is
primarily due to our efficient dot product protocol from §5.1
which has a dimension-independent online communication.

Setup Costs for PPML We incur a minimal overhead of just
1.6% over SecureML [79] in terms of communication in the
setup phase for Logistic Regression, while the overhead is
0.7% for the case of Neural Networks. The overhead results
from the expensive communication required by our activation
functions (Sigmoid and ReLU) over the garbled circuit based
solutions of SecureML [79].

7 Conclusion and Future Work

In this work, we presented a new 2PC protocol for securely
evaluating a circuit over the ring Z2` . Our new sharing
semantics allow for new mixed protocol conversions that
outperform ABY [41] in terms of both rounds and online
communication. We then design a set of efficient building
blocks which are by several orders of magnitude better than
previous works. Finally we show four example applications
that leverage the improvements of our constructions.

Potential future works are: i) Improving the efficiency of
our constructions using recent works like eDaBits [45] and

Ferret [100], ii) Extending our work for low-end devices, e.g.
similar to [7] iii) Extending our work to the malicious setting,
and iv) Extending our protocols to more than two parties.
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A Preliminaries

A.1 Oblivious Transfer (OT)

In a 1-out-of-n Oblivious Transfer [57, 80] (OT) over `-
bit messages, the sender S inputs n messages (x1, . . . ,xn)
each of length ` bits, while the receiver R inputs the choice
c ∈ {1, . . . ,n}. R receives xc as output while S receives ⊥ as
output. The privacy guarantee is that S learns nothing about
c, while R learns nothing about the inputs of S other than xc.
We use n-OTm

` to denote m instances of 1-out-of-n OT on `
bit inputs.

OT is a fundamental building block for MPC [66]
and requires expensive public-key cryptography [57]. The
technique of OT Extension [5, 58, 67, 86] allows us to
generate many OTs from a small number (equal to the security
parameter) of base OTs at the expense of symmetric-key
operations alone. This reduces the cost of OT mainly to
highly efficient symmetric-key primitives. Concretely, the OT
Extension implementation of [5] generates around 1 million
2-OT1

` per second with passive security. An orthogonal line
of work considered pre-computation of OT [10], where all
the cryptographic operations can be shifted to a setup phase,
independent of the function to be evaluated. This technique
enables a very efficient online phase for protocols that use
OT. In the semi-honest setting, the state-of-the-art solution for
OT extension [5] has communication κ+2` bits per OT for
2-OT1

` where κ denotes the computational security parameter.
A correlated OT (cOT) [5] is a variant of the traditional OT

where the sender’s input messages are correlated. In a cOT,
the sender inputs a correlation function f () and obtains the
message pair (x0 ∈R {0,1}`,x1 = f (x0)) as the output. The
receiver, on the other hand, inputs her choice c and obtains
xc as output. We use cOTm

` to denote m instances of 1-out-
of-2 correlated OT on ` bit inputs. In the semi-honest setting,
cOT1

` has communication κ+ ` bits [5].

A.2 Secure 2PC

The three main generic approaches for 2PC are based on
homomorphic encryption (HE), garbled circuits (GC), or
secret-sharing (SS) as described next.

Homomorphic Encryption (HE) The homomorphic
property allows us to compute a ciphertext from a set of
ciphertexts such that the plaintext underlying the former
is a function of the underlying plaintexts of the latter.
Towards this, one party called client generates a key-pair
(pk,sk) for the HE scheme and sends pk to the other party
called server. To perform a secure computation operation,
the client encrypts its data using pk and sends this to the
server. Now the server can locally compute the ciphertext
corresponding to the operation and return the encrypted
result to the client. The client can now decrypt the received
ciphertext using her private key sk. An additively HE allows
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us to generate the ciphertext corresponding to the sum
of the underlying plaintexts by doing operations on the
ciphertexts. Prominent examples of additively HE schemes
are Paillier [84], DGK [38] and RLWE-AHE [93]. On the
other hand, fully homomorphic encryption schemes allow
arbitrary computations under encryption but are less efficient.
See [1] for a more detailed description.

Garbled Circuits (GC) In the two-party setting, Yao’s
garbled circuit protocol [76, 101] provides a constant-round
solution. This method is particularly useful in high-latency
networks like the Internet. Here, one party called garbler
generates the garbled circuit (GC) corresponding to the
function to be evaluated. On a high level, garbling the circuit
consists of associating two keys per wire corresponding
to the bit values of {0,1} and preparing garbled tables
corresponding to each gate in the circuit. The garbler then
sends the GC to the other party called evaluator. The
evaluator, upon obliviously obtaining the keys corresponding
to the inputs via OT, evaluates the GC and obtains the output.

Today’s most efficient solution for garbled circuits is the
combination of point-and-permute [11], free-XOR [70], fixed-
key AES [12], and half-gates [102]. With these optimizations,
each AND gate requires communication 2κ bits in the
setup phase, and XOR gates have no communication. GC-
based protocols perform in the online phase symmetric-key
operations for each AND gate and need substantial memory
to store the garbled tables. To avoid storing the garbled tables,
their generation and transfer can be pipelined [52,54], but this
shifts all the setup communication to the online phase.

Secret Sharing (SS) In the SS-based protocols, two parties
compute a function in a secret-shared manner. Here, for
every wire with value v, party Pi for i ∈ {0,1} holds an
additive sharing of the value denoted by [v]i such that v =
[v]0 + [v]1 (mod 2`). All the linear gates can be evaluated
non-interactively. To securely evaluate a multiplication gate,
parties use Beaver’s [9] circuit randomization technique
where the additive sharing of a random arithmetic triple
is generated in the setup phase (cf. §3.1.1). The shares of
the triple are then used in the online phase to compute the
shares of the product. This requires communication of 4
ring elements per multiplication gate in the online phase.
Later, [13] reduced online communication to 2 ring elements
using a function-dependent preprocessing.

In this line of work, the GMW protocol [48] takes a
function represented as Boolean circuit (i.e., `= 1) and the
values are secret-shared using XOR-based secret sharing.
To pre-compute a multiplication triple (c1 ⊕ c2) = (a1 ⊕
a2)∧ (b1⊕b2), the solution of [5] which uses 1-out-of-2 OT,
requires 2κ bits of communication. As shown in [42], this
cost can be improved by factor 1.2× by using the 1-out-of-N
OT extension of [67].

A.3 Comparison with Turbospeedz [13] and
[82]

In this section, we compare our results with Turbospeedz [13]
and [82].
Comparison with Turbospeedz [13]: For the 2-input
multiplication, Turbospeedz [13] presented a protocol
that reduces the online communication of SPDZ-style
protocols from 4 to 2 ring elements using a function-
dependent preprocessing. Turbospeedz first executes a SPDZ-
like preprocessing where random multiplication triples
are generated. These triples are then associated to the
multiplication gates using additional values that they call
“external values" (cf. [13], §3.2). On the contrary, we
obtain the preprocessing data directly and hence save
communication of 4 ring elements as well as storage of 5
ring elements when compared with Turbospeedz. Tab. 13
provides the communication and storage required for the 2-
input multiplication protocol of ABY [41], Turbospeedz [13]
and ABY2.0.

Phase Parameter ABY [41] Turbospeedz [13] ABY2.0

Setup Storage 3` 9` 4`

Communication |Triple| |Triple|+4` |Triple|

Online Storage 5` 5` 3`

Communication 4` 2` 2`

Total Storage 8` 14` 7`

Communication |Triple|+4` |Triple|+6` |Triple|+2`

Table 13: Comparison of ABY2.0 with ABY [41] and
Turbospeedz [13] in terms of storage and communication for a
single multiplication. All values are given in bits. |Triple| denotes
the communication required to generate a multiplication triple. Best
values for the online phase are marked in bold.

For the multi-input multiplication (fan-in of N), the tree-
based method (multiplying N elements by taking two at
a time) requires log2(N) rounds for both ABY [41] and
Turbospeedz [13], while it requires communication of 4(N−
1) ring elements for ABY [41] and 2(N− 1) elements for
Turbospeedz [13] in the online phase.
Comparison with [82]: Recently, [82] proposed round-
efficient solutions for multi-input multiplication using a
preprocessing for which the communication cost grows
exponentially with the fan-in of the multiplication gate.
However, for an N-input multiplication, [82] requires an
online communication of 2N − 2 ring elements. On the
contrary, ABY2.0 requires only an online communication
of 2 ring elements and the preprocessing cost remains same
as that of [82]. Note that since the preprocessing cost grows
exponentially with the number of inputs to the multiplication
gate, [82] considered only up to 5-input multiplication gates
in their work. In our work, we use three and four input
multiplication gates.
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MULT when input parties are the computing parties: For
the case of a two-input multiplication gate, [82] considered
a special case where the input parties are the computing
parties (cf. [82], §3.4). For this case, [82] proposed a protocol
for which the online communication is 2 ring elements.
For the same setting, we observe that our solution results
in a protocol with zero online communication. To see
this, recall the online phase of our multiplication protocol
MULT(〈a〉,〈b〉) (Fig. 2). The modified protocol is as follows:
During the online phase, party Pi for i ∈ {0,1} locally
computes [ab]i = i · ∆ab − ∆a [δb]i − ∆b [δa]i + [δab]i. Now
to generate 〈·〉-shares corresponding to y = ab, the parties
locally set [δy]i = − [ab]i and ∆y = 0. It is easy to see that
y = ∆y− [δy]0− [δc]1 = 0− ([ab]0 +[ab]1) = ab.

B 2PC Arithmetic

B.1 Basic Protocols

Setup:

• Pi samples random [δv]i ∈R Z2` , while Pi,P1−i together sample
random [δv]1−i ∈R Z2` .

Online:

• Pi computes and sends to P1−i: ∆v = v+[δv]0 +[δv]1.

Protocol SHARE(Pi,v)

Figure 3: Sharing Protocol SHARE

Lemma B.1 (Communication of SHARE). Protocol SHARE
(cf. Fig. 3) requires 1 round and communication of ` bits in
the online phase.

Proof. The setup phase is completely non-interactive. During
the online phase, Pi communicates one ring element to P1−i
resulting in 1 round and a communication of ` bits.

Lemma B.2 (Communication of MULT). Protocol MULT
(cf. Fig. 2) requires communication of 2`(`+κ) bits in the
setup phase, while it requires 1 round and communication of
2` bits in the online phase. Here κ denotes the computational
security parameter.

Proof. For the setup phase (setupMULT), we use 2 instances
of correlated OTs (cOT) [5] which incur a communication
of ` + κ bits per cOT on `-bit strings, where κ is the
computational security parameter. During the online phase,
parties mutually exchange one share of ∆y value, resulting in
1 round and a communication of 2` bits.

Lemma B.3 (Communication of REC). Protocol REC
(cf. Fig. 4) requires 1 round and communication of 2` bits in
the online phase.

Proof. During the online phase, parties mutually exchange
one missing share resulting in 1 round and a communication
of 2` bits.

Online:

• Pi for i ∈ {0,1} sends [δv]i to P1−i. Pi then locally computes
v = ∆v− [δv]0− [δv]1.

Protocol REC(P ,〈v〉)

Figure 4: Reconstruction Protocol REC

B.2 Setup Phase for Multiplication
Here we provide the details for instantiating the setup phase
for multiplication using Homomorphic Encryption (HE) and
Oblivious Transfer (OT) Techniques.

B.2.1 setupMULT for MULT

Here we provide concrete details for instantiating the
setupMULT protocol where the goal is to generate [δab] from
[δa] and [δb]. Recall from §3.1.3 that setupMULT can be
instantiated with either HE or OT schemes.

In the HE-based approach [40, 52, 93], P0 is given the
key pair (pk0,sk0) for the public key encryption scheme. P0
encrypts his messages [δa]0 , [δb]0 and sends these ciphertexts
along with pk0 to P1, who then computes the ciphertext
corresponding to δab − r encrypted under the public key
pk0. Here r denotes a random ring element chosen by P1.
P1 then sends back the ciphertext to P0, who then decrypts
using sk0 to obtain δab− r. The shares are now defined as
[δab]0 = δab − r, [δab]1 = r. In [93], the authors observed
that the plaintext space is much larger than the range of
the values being encrypted. Thus they used the technique
of ciphertext packing, where ciphertexts corresponding to
multiple plaintexts are packed into a single ciphertext. This
optimizes the amount of ciphertexts being sent back as well
as the number of decryptions on P0’s side. In [93], the
amortized communication cost for performing one instance
of setupMULT over a 64-bit ring with a security level of 128
bits is 448 bytes, which is a 7× improvement over the best
OT-based solutions [41] available at that time.

In the OT-based approach [41, 63], the technique of OT
extension [5, 67, 86] can be used. As mentioned in §3.1.3,
one instance of setupMULT requires two instances of cOT`

`

where each instance has communication `(κ+ `) bits. Over a
64-bit ring, this corresponds to 3072 bytes.

Recently, [23] came up with a very efficient OT
extension technique named Silent OT Extension which
claims to outperform state-of-the-art solutions for performing
setupMULT. Since our protocol makes black-box calls to
setupMULT, it can directly benefit from the performance
improvements of [23].
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B.2.2 setupMULT3 for MULT3

The setupMULT3 protocol proceeds similar to that of
setupMULT apart from four values being computed instead
of one in setupMULT. Concretely, setupMULT3 computes a
[·]-sharing of δab,δac,δbc and δabc given [a] , [b] and [c].

In the HE-based approach, P0 prepares ciphertexts
corresponding to [δa]0 , [δb]0 , [δc]0 , [δab]0 , [δac]0 , [δbc]0 and
sends these ciphertexts to P1. P1 then homomorphically
computes the ciphertext corresponding to δabc − r similar
to setupMULT and sends it to P0. In the OT-based approach,
parties use steps similar to that of setupMULT to generate
a [·]-sharing of δab,δac,δbc. Once [δab] is generated, both
parties use [δab] and [δc] to compute [δabc]. Note that this
method requires eight instances of cOT`

`.

B.3 Multi-Input Multiplication Gate

This section describes our multi-input multiplication
protocols. We provide formal details for the three and four
input cases, which are used in this work. We also show how
the technique can be generalised for the case of an N-input
multiplication gate.

B.3.1 3-Input Multiplication Gate MULT3

Setup:
• Pi for i ∈ {0,1} samples random [δy]i ∈R Z2` .
• Parties execute setupMULT3([δa] , [δb] , [δc]) to generate
[δab] , [δbc] , [δac] , [δabc].

Online:
• Pi for i ∈ {0,1} locally computes and sends to P1−i the value
[∆y]i = i · ∆abc − ∆ab [δc]i − ∆bc [δa]i − ∆ac [δb]i + ∆a [δbc]i +
∆b [δac]i +∆c [δab]i− [δabc]i +[δy]i.
• Pi for i ∈ {0,1} locally sets ∆y = [∆y]0 +[∆y]1.

Protocol MULT3(〈a〉,〈b〉,〈c〉)

Figure 5: 3-Input Multiplication Protocol MULT3

Lemma B.4 (Communication of MULT3). Protocol MULT3
(cf. Fig. 5) requires communication of 8`(`+κ) bits in the
setup phase, while it requires 1 round and communication of
2` bits in the online phase.

Proof. For the setup phase (setupMULT3), we need to
generate the [·]-shares of four terms, namely δab,δbc,δac and
δabc. Each of these terms requires 2 instances of correlated
OTs (cOT) [5] which incur a communication of `+κ bits
per cOT on `-bit strings, where κ is the computational
security parameter. During the online phase, parties mutually
exchange one share of ∆y value, resulting in 1 round and a
communication of 2` bits.

B.3.2 4-Input Multiplication Gate MULT4

Here we provide the details for securely evaluating a 4-Input
multiplication gate. Given the inputs 〈a〉,〈b〉,〈c〉,〈d〉, the
goal is to compute 〈·〉-sharing of y = abcd. Protocol MULT4
(cf. Fig. 6) proceeds similar to MULT3 (cf. Fig. 5). Note that

∆y = abcd+δy = (∆a−δa)(∆b−δb)(∆c−δc)(∆d−δd)+δy

= ∆abcd−δa∆bcd−δb∆acd−δc∆abd−δd∆abc+δab∆cd+δac∆bd

+δad∆bc+δbc∆ad+δbd∆ac+δcd∆ab−δabc∆d−δacd∆b

−δabd∆c−δbcd∆a+δabcd+δy.

Here the parties need to generate
the [·]-sharing of the following terms:
δab,δac,δad,δbc,δbd,δcd,δabc,δabd,δacd,δbcd,δabcd. This
can be computed similar to that of setupMULT (cf. §B.2.1)
and setupMULT3 (cf. §B.2.2) and we use setupMULT4 to
denote such a computation.

Setup:

• Pi for i ∈ {0,1} samples random [δy]i ∈R Z2` .

• Parties execute setupMULT4 to generate a [·]-sharing of
δab,δac,δad,δbc,δbd,δcd,δabc,δabd,δacd,δbcd and δabcd.

Online:

• Pi for i ∈ {0,1} locally computes and sends to P1−i the
value [∆y]i = i ·∆abcd− [δa]i ∆bcd− [δb]i ∆acd− [δc]i ∆abd−
[δd]i ∆abc + [δab]i ∆cd + [δac]i ∆bd + [δad]i ∆bc + [δbc]i ∆ad +
[δbd]i ∆ac + [δcd]i ∆ab− [δabc]i ∆d− [δacd]i ∆b− [δabd]i ∆c−
[δbcd]i ∆a+[δabcd]i +[δy]i.

• Pi for i ∈ {0,1} locally sets ∆y = [∆y]0 +[∆y]1.

Protocol MULT4(〈a〉,〈b〉,〈c〉,〈d〉)

Figure 6: 4-Input Multiplication Protocol MULT4

Lemma B.5 (Communication of MULT4). Protocol MULT4
(cf. Fig. 6) requires communication of 22`(`+κ) bits in the
setup phase, while it requires 1 round and communication of
2` bits in the online phase.

Proof. For the setup phase (setupMULT4), we need
to generate the [·]-shares of eleven terms, namely
δab,δac,δad,δbc,δbd,δcd,δabc,δabd,δacd,δbcd and δabcd.
Each of these terms requires 2 instances of correlated OTs
(cOT) [5] which incur a communication of `+ κ bits per
cOT on `-bit strings, where κ is the computational security
parameter. During the online phase, both parties mutually
exchange one share of ∆y value, resulting in 1 round and a
communication of 2` bits.

B.3.3 N-Input Multiplication Gate MULTN

Consider an N-Input multiplication gate MULTN with inputs
a1, . . . ,aN and output y. Then, we can write
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∆y = y+δy =
N

∏
j=1

(∆a j −δa j )+δy

=

(
∑

I⊆{1,...,N}
(−1)|I|∏

j∈I
δa j ∏

k/∈I
∆ak

)
+δy.

Here I ⊆ {1, . . . ,N} denotes a subset of indices from 1 to N,
while |I| denotes the cardinality of the set.

We note that for an N-Input multiplication gate, we would
require a total of 2N−N−1 terms to be processed in the setup
phase, while the online phase still requires a communication
of just 2 ring elements. Instantiating the setup phase using
Correlated OTs (cOT) [5] require a communication of (2N −
N−1)2`(κ+ `) bits. Hence, to maintain a balance between
the online communication and the setup phase overhead, we
consider N = 3 and N = 4 in this work.

B.3.4 Comparison with the LUT-based protocol of [42]

We compare our multi-input AND gate protocols with [42]
for two, three and four inputs. [42] proposed two variants – i)
OP-LUT - optimized online communication of 2N bits, and
ii) SP-LUT - optimized total communication of 2κ+2N bits.
The concrete details are given in Tab. 14.

Gate Protocol
Setup Online

Comm [bits] Comm [bits] Rounds

AND
y = ab

OP-LUT [42] 206 4 1
SP-LUT [42] 190 6 1
ABY2.0 134 2 1

AND3
y = abc

OP-LUT [42] 285 6 1
SP-LUT [42] 221 11 1
ABY2.0 250 2 1

AND4
y = abcd

OP-LUT [42] 492 8 1
SP-LUT [42] 236 20 1
ABY2.0 412 2 1

Table 14: Comparison of ABY2.0 and [42]. Best values for the
online phase are marked in bold.

C Mixed Protocol Conversions

C.1 Conversions

Lemma C.1 (Communication of Y2B). Protocol
Y2B (cf. §4.1) requires communication of 1 bit in the
setup phase, while it requires 1 round and communication of
1 bit in the online phase.

Proof. In the setup phase, P0 executes one instance of
SHAREB(P0,LSB(K

0
u)) resulting in a communication of

just 1 bit. Similarly, during the online phase, P1 executes
one instance of SHAREB(P1,LSB(K

u
u)), resulting in one

round and a communication of 1 bit. The cost follows from
Lemma B.1.

Lemma C.2 (Communication of B2Y). Protocol
B2Y (cf. §4.1) requires communication of 2κ bits in the setup
phase, while it requires 1 round and communication of κ

bits in the online phase. Here κ denotes the computational
security parameter.

Proof. In the setup phase, P1 executes one instance of
SHAREY(P1,u1). This requires a communication of 2κ bits
since it requires an invocation of cOT1

κ. During the online
phase, P0 executes one instance of SHAREY(P1,u1) where P0
sends the corresponding keys to P1. This results in one round
and a communication of κ bits.

Lemma C.3 (Communication of A2Y). Protocol
A2Y (cf. §4.1) requires communication of 4`κ bits in
the setup phase, while it requires 1 round and communication
of `κ bits in the online phase. Here κ denotes the
computational security parameter.

Proof. In the setup phase, P1 executes ` instances of
SHAREY(P1,u1). This requires a communication of 2`κ
bits since it requires an invocation of cOT1

κ. Moreover,
P0 communicates a garbled Adder circuit consisting of
` AND gates resulting in a communication of 2`κ bits
(using the half gates technique). During the online phase,
P0 executes ` instances of SHAREY(P0,u0) where P0 sends
the corresponding keys to P1. This results in one round and a
communication of `κ bits.

Lemma C.4 (Communication of Y2A). Protocol
Y2A (cf. §4.1) requires communication of 3`κ + 2`
bits in the setup phase, while it requires 1 round and
communication of ` bits in the online phase. Here κ denotes
the computational security parameter.

Proof. In the setup phase, P0 executes one instance of
SHAREA(P0,r) and SHAREY(P0,r) each, where r is a `-
bit ring element. This requires a communication of `κ+ `
bits. Moreover, P0 communicates a garbled Adder circuit
consisting of ` AND gates resulting in a communication
of 2`κ bits (using the half gates technique). Since we use
the point-and-permute technique, the decoding information
given to P1 can be simply the LSB bits of the zero keys
corresponding to the output wires. Thus the decoding
information requires a communication of ` bits in this
conversion. During the online phase, P1 executes one
instance of SHAREA(P1,v+ r) resulting in 1 round and a
communication of ` bits (Lemma B.1).

Lemma C.5 (Communication of A2B). Protocol
A2B (cf. §4.1) requires communication of 4`κ + ` bits
in the setup phase, while it requires 2 rounds and
communication of `κ+ ` bits in the online phase. Here κ

denotes the computational security parameter.

Proof. The conversion requires one instance of A2Y and `
instances of Y2B conversions. The cost then follows from
A2Y (Lemma C.3) and Y2B (Lemma C.1).
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Lemma C.6 (Communication of Bit2A). Protocol
Bit2A (cf. §4.1) requires communication of κ+ ` bits in the
setup phase, while it requires 1 round and communication of
` bits in the online phase. Here κ denotes the computational
security parameter.

Proof. During the setup phase, parties engage in one instance
of cOT1

` resulting in a communication of κ+` bits. During the
online phase, both parties execute one instance of SHAREA,
resulting in one round and a communication of 2` bits.

Lemma C.7 (Communication of B2A). Protocol
B2A (cf. §4.1) requires communication of `κ+ `2 bits in the
setup phase, while it requires 1 round and communication of
2` bits in the online phase. Here κ denotes the computational
security parameter.

Proof. The setup phase involves ` instances of the Bit2A
protocol resulting in a communication of `κ + `2 bits
(Lemma C.6). During the online phase, instead of executing
SHAREA corresponding to each instance, parties can locally
sum up their shares according to the semantics and perform
SHAREA on the result, resulting in one round and a
communication of just 2` bits.

C.2 Special Conversions
Here we provide details for the special conversions mentioned
in §4.2. Their complexities in comparison to [82] are
summarized in Tab. 15. All the three conversions described
below proceed similar to that of the Bit2A protocol.

Conv. Ref.
Setup Online

Comm [bits] Rounds Comm [bits]

Bit2A
(cf. §4.1)

[82] 2`(κ+ `) 1 4`
ABY2.0 κκκ+++ `̀̀ 1 2`

PQ
[82] 50`(κ+ `) 1 28`

ABY2.0 555κκκ+++333`̀̀+++222 1 2`

PV
[82] 10`(κ+ `) 1 10`

ABY2.0 555(((κκκ+++ `̀̀))) 1 2`

PQV
[82] 128`(κ+ `) 1 38`

ABY2.0 111444κκκ+++111222`̀̀+++222 1 2`

Table 15: Comparison of ABY2.0 and [82] for special conversions.
Best values are marked in bold.

PQ(〈p〉B,〈q〉B) : 〈p〉B〈q〉B→〈pq〉A Given the 〈·〉B-sharing
of bits p,q, the goal of the PQ protocol is to generate an
arithmetic sharing of the bit pq. Note that

(pq)a = (∆a
p+(1−2∆

a
p) ·δap)(∆a

q+(1−2∆
a
q) ·δaq)

= ∆
a
pq+∆

a
p(1−2∆

a
q) ·δaq

+∆
a
q(1−2∆

a
p) ·δap+(1−2∆

a
p)(1−2∆

a
q) ·δapq.

During the setup phase, parties proceed similar to the Bit2A
protocol and generate

[
δap

]
and

[
δaq

]
from 〈p〉B and 〈q〉B,

respectively. In parallel, the parties can use two instances

of cOT1
1 on the [·]-shares of bits p and q to generate [u] where

bit u = pq. This is followed by both parties generating [δau]
from 〈u〉B using the idea described in the Bit2A conversion.
Given a [·]-sharing of δap,δ

a
q and δapq, the parties can locally

compute [pqa] followed by executing the SHAREA protocol
to generate its corresponding arithmetic shares. The parties
then locally add the arithmetic shares generated to obtain the
desired result.

Lemma C.8 (Communication of PQ). Protocol PQ as
described above requires communication of 5κ + 3`+ 2
bits in the setup phase, while it requires 1 round and
communication of 2` bits in the online phase. Here κ denotes
the computational security parameter.

Proof. The setup phase involves three instances of cOT1
` for

generating
[
δap

]
,
[
δaq

]
and [δau], resulting in a communication

of 3(κ + `) bits. In addition, two instances of cOT1
1

are executed to compute [u] for u = pq, resulting in a
communication of 2(κ+1) bits. During the online phase, both
P0,P1 execute one instance of SHAREA each, resulting in one
round and a communication of 2` bits (Lemma B.1).

PV(〈p〉B,〈v〉A) : 〈p〉B〈v〉A → 〈pv〉A Given 〈p〉B and 〈v〉A,
the goal of PV protocol is to generate an arithmetic sharing
of the value pv. Note that

pv = (∆a
p+(1−2∆

a
p) ·δap)(∆v−δv)

= ∆pv+∆
a
pδv+∆v(1−2∆

a
p) ·δap+(1−2∆

a
p)∆v ·δpv.

Here we need to compute
[
δap

]
and [δpv].

[
δap

]
can be

computed using just one instance of cOT1
` similar to the

Bit2A protocol and incurs a communication of κ + ` bits.
For [δpv], multiplying

[
δap

]
and [δv] requires cOT`

`. The cost
can be optimized further by carefully analysing the value of
δpv. Note that

δpv = (
[
δ
a
p

]
0 +
[
δ
a
p

]
1−2

[
δ
a
p

]
0

[
δ
a
p

]
1)([δv]0 +[δv]1)

=
[
δ
a
p

]
0 [δv]0 +

[
δ
a
p

]
0 [δv]1 +

[
δ
a
p

]
1 [δv]0 +

[
δ
a
p

]
1 [δv]1

−2
[
δ
a
p

]
0

[
δ
a
p

]
1 [δv]0−2

[
δ
a
p

]
0

[
δ
a
p

]
1 [δv]1 .

Here P0 can locally compute
[
δap

]
0 [δv]0 while P1 can locally

compute
[
δap

]
1 [δv]1. For the four remaining terms, both

parties can proceed similar to the Bit2A protocol and require
a total of four instances of cOT1

` resulting in a communication
of 4(κ+ `) bits.

Lemma C.9 (Communication of PV). Protocol PV as
described above requires communication of 5κ+5` bits in the
setup phase, while it requires 1 round and communication of
2` bits in the online phase. Here κ denotes the computational
security parameter.

Proof. The setup phase involves five instances of cOT1
` ,

resulting in a communication of 5(κ+ `) bits. During the
online phase, both P0,P1 execute one instance of SHAREA

each, resulting in one round and a communication of 2` bits
(Lemma B.1).
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PQV : 〈p〉B〈q〉B〈v〉A→ 〈pqv〉A Given 〈p〉B,〈q〉B and 〈v〉A,
the goal of the PQV protocol is to generate an arithmetic
sharing of the value pqv. Note that

pqv = (∆a
p+(1−2∆

a
p) ·δap)(∆a

q+(1−2∆
a
q) ·δaq)(∆v−δv)

= ∆pqv+∆pv(1−2∆
a
q) ·δaq+∆qv(1−2∆

a
p) ·δap

+(1−2∆
a
p)(1−2∆

a
q)∆v ·δapq−∆

a
pqδv−∆

a
p(1−2∆

a
q) ·δaqv

−∆
a
q(1−2∆

a
p) ·δpv− (1−2∆

a
p)(1−2∆

a
q) ·δpqv.

Here parties need to compute [·]-sharings of δap, δaq, δapq, δpv,
δqv and δpqv. All except [δpqv] are generated similar to that
of the PQ and PV protocols. For [δpqv], parties first multiply
δp and δq to obtain δpq. This is followed by executing steps
similar to the PV conversion.

Lemma C.10 (Communication of PQV). Protocol PQV
as described above requires communication of 14κ+12`+
2 bits in the setup phase, while it requires 1 round and
communication of 2` bits in the online phase. Here κ denotes
the computational security parameter.

Proof. The setup phase involves twelve instances of cOT1
` ,

resulting in a communication of 12(κ+ `) bits. In addition,
two instances of cOT1

1 are needed, resulting in additional
communication of 2(κ+1) bits. During the online phase, both
P0,P1 execute one instance of SHAREA each, resulting in one
round and a communication of 2` bits (Lemma B.1).

D Building Blocks

Here we provide the formal details and the communication
cost analysis for the building blocks described in §5.

D.1 Scalar Product

Setup:
• Pi for i ∈ {0,1} samples random [δy]i ∈R Z2` .

• For j = 1, . . . ,n, parties execute setupMULT(
[
δa j

]
,
[
δb j

]
) to

generate
[
δa jb j

]
.

Online:
• Pi for i ∈ {0,1} locally computes and sends to P1−i the value

[∆y]i = ∑
n
j=1
[
∆y j

]
i = ∑

n
j=1(i ·∆a jb j −∆a j

[
δb j

]
i
−∆b j

[
δa j

]
i +[

δa jb j

]
i
)+ [δy]i.

• Pi for i ∈ {0,1} locally sets ∆y = [∆y]0 +[∆y]1.

Protocol DOTP(〈~a〉,〈~b〉)

Figure 7: Scalar Dot Product Protocol DOTP

Lemma D.1 (Communication of DOTP). Protocol DOTP
(cf. Fig. 7) requires communication of 2n`(`+κ) bits in the

setup phase, while it requires 1 round and communication of
2` bits in the online phase. Here κ denotes the computational
security parameter and n denotes the size of the underlying
vectors.

Proof. The setup phase involves n invocation of setupMULT
resulting in a communication of 2n`(`+κ) bits (Lemma B.2).
During the online phase, instead of exchanging [·]-shares
corresponding to each instance, parties can locally sum up
their [·]-shares and then perform the exchange, resulting in
one round and a communication of 2` bits.

D.2 Matrix Multiplication

Protocol MATMULT (Fig. 8) begins with both parties holding
〈·〉-shares of two matrices Ap×q,Bq×r and the goal is to
compute 〈C〉 where Cp×r = A◦B.

Setup:
– Pi for i ∈ {0,1} locally samples random [δC]i ∈R Zp×r

2` .

– Parties execute setupMULT(
[
δai, j

]
,
[
δb j,k

]
), for i ∈ [p], j ∈

[r],k ∈ [q], to generate
[
δai, jb j,k

]
. This results in generation of

[γAB]-shares among P0,P1, where γAB = δA ◦δB.

Online:
– Pi for i ∈ {0,1} locally computes and sends to P1−i the value
[∆C]i = (i−1)∆A ◦∆B−∆A ◦ [δB]i− [δA]i ◦∆B+[γAB]i+[δC]i.

– Pi for i ∈ {0,1} locally sets ∆C = [∆C]0 +[∆C]1.

Protocol MATMULT(〈A〉p×q,〈B〉)q×r

Figure 8: Matrix Multiplication Protocol MATMULT

Lemma D.2 (Communication of MATMULT). Protocol
MATMULT (cf. Fig. 8) requires communication of 2pqr`(`+
κ) bits in the setup phase, while it requires 1 round and
communication of 2pr` bits in the online phase. Here κ

denotes the computational security parameter and (p ×
q),(q× r) denote the dimension of the underlying matrices A,
B respectively.

Proof. The setup phase involves pqr invocations of
setupMULT resulting in a communication of 2pqr`(`+ κ)
bits (Lemma B.2). During the online phase, parties can locally
compute [·]-shares of ∆C which is of dimension (p× r),
resulting in one round and a communication of 2pr` bits.

D.3 Comparison

Lemma D.3 (Communication of LT). Protocol LT (cf. §5.4)
requires communication of x1(κ+ 1) + ` bits in the setup
phase with x1 = 2n2 + 8n3 + 22n4, while it requires 1 +
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log4(`)
2 rounds and communication of 2x2 + ` bits in the

online phase with x2 = n2 + n3 + n4. Here κ denotes the
computational security parameter while n2,n3,n4 denote the
number of AND gates in the Bit Extraction (BitExt) circuit
of §E.2 with 2,3,4 inputs respectively.

Proof. P0,P1 execute ` instances of SHAREB resulting in
a communication of ` bits each. In addition, both parties
evaluate a Bit Extraction (BitExt, cf. §5.3, §E.2) circuit
consisting of n2 two-input, n3 three-input and n4 four-input
AND gates. The cost then follows from Lemma B.1 and
Lemma B.2.

D.4 Truncation

Setup: This phase is same as that of MULT(〈a〉,〈b〉) (Fig. 2).
Online: Pi for i ∈ {0,1} proceeds as follows:

• Locally computes [y]i = i ·∆ab−∆a [δb]i−∆b [δa]i+[δab]i and
truncates to obtain [yt ]i.

• Executes SHAREA(Pi, [y
t ]i) to generate 〈[yt ]i〉A.

• Locally computes 〈yt〉A = 〈[yt ]0〉A + 〈[yt ]1〉A.

Protocol MULTTR(〈a〉,〈b〉)

Figure 9: Multiplication Protocol with Truncation MULTTR

Lemma D.4 (Communication of MULTTR). Protocol
MULTTR (cf. Fig. 9) requires communication of 2`(`+
κ) bits in the setup phase, while it requires 1 round and
communication of 2` bits in the online phase. Here κ denotes
the computational security parameter.

Proof. The cost follows directly from Lemma B.2.

D.5 MAX2 / MIN2

Lemma D.5 (Communication of MAX2/MIN2). Protocol
MAX2/MIN2 (cf. §5.6) requires communication of (x1 +
5)κ+ x1 + 5` bits in the setup phase with x1 = 2n2 + 8n3 +
22n4, while it requires 2+ log4(`) rounds and communication
of 2x2 + 3` bits in the online phase with x2 = n2 + n3 +
n4. Here κ denotes the computational security parameter
while n2,n3,n4 denote the number of AND gates in the
Bit Extraction (BitExt) circuit of §E.2 with 2,3,4 inputs
respectively.

Proof. The protocol involves one instance of the LT protocol
followed by an instance of the PV protocol. The cost then
follows from Lemma D.3 and Lemma C.9.

2The log4(`) factor is the result of having up to 4-input AND gates in our
construction for BitExt. We observed that the bound holds for ` up to 128 in
our construction.

D.6 MAX3 / MIN3

Setup:
• Parties execute the setup phase corresponding to
〈u1〉B = LT(〈a〉A,〈b〉A),〈u2〉B = LT(〈a〉A,〈c〉A) and
〈u3〉B = LT(〈b〉A,〈c〉A)
• Parties execute the setup phase corresponding to
PQV(〈u1〉B,〈u2〉B,〈a〉A), PQV(〈u1〉B,〈u3〉B,〈b〉A) and
PQV(〈u2〉B,〈u3〉B,〈c〉A).
Online:
• Parties execute the online phase corresponding to
〈u1〉B = LT(〈a〉A,〈b〉A),〈u2〉B = LT(〈a〉A,〈c〉A) and
〈u3〉B = LT(〈b〉A,〈c〉A).
• For each j ∈ {1,2,3}, parties locally compute 〈u j〉B by
applying the NOT operation on 〈u j〉B.
• Pi for i ∈ {0,1} locally computes the [·]-share corresponding
to y1 = u1 ·u2 · a, y2 = u1 ·u3 ·b and y3 = u2 ·u3 · c (as part of
the PQV protocol) and sets [y]i = [y1]i +[y2]i +[y3]i.

• Pi for i ∈ {0,1} executes SHAREA(Pi, [y]i) to generate 〈[y]i〉A.
This is followed by both parties locally setting 〈y〉A = 〈[y]0〉A +
〈[y]1〉A.

Protocol MAX3(〈a〉A,〈b〉A,〈c〉A)

Figure 10: Maximum among three values MAX3

Lemma D.6 (Communication of MAX3/MIN3). Protocol
MAX3/MIN3 (cf. Fig. 10) requires communication of (3x1 +
42)κ + 3x1 + 39`+ 6 bits in the setup phase with x1 =
2n2 + 8n3 + 22n4, while it requires 2+ log4(`) rounds and
communication of 6x2 + 5` bits in the online phase with
x2 = n2 +n3 +n4. Here κ denotes the computational security
parameter while n2,n3,n4 denote the number of AND gates
in the Bit Extraction (BitExt) circuit of §E.2 with 2,3,4 inputs
respectively.

Proof. The protocol involves three instances of the LT
protocol followed by three instances of the PQV protocol.
Moreover the online communication cost corresponding to
three instances of PQV can be brought down to 2` bits
by locally adding up the shares and performing SHAREA

on the result. The cost then follows from Lemma D.3 and
Lemma C.10.

D.7 ArgMax/ArgMin

ArgMax (resp. ArgMin) computes the index of the maximum
(resp. minimum) element among a set of elements. Here we
provide the details for finding the index of the maximum
among three elements a,b,c given their arithmetic sharing.
Towards this, note that the index of the maximum element
can be written as y = u1 · u2 + u1 · u3 + u2 · u3 where u1,u2
and u3 are the result of a< b,a< c and b< c respectively.

The protocol is almost similar to that of the MAX3 protocol
apart from the PQ protocol being used instead of the PQV
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protocol. The formal details of the ArgMax protocol are given
in Fig. 11.

Setup:
• Parties execute the setup phase corresponding to
〈u1〉B = LT(〈a〉A,〈b〉A),〈u2〉B = LT(〈a〉A,〈c〉A) and
〈u3〉B = LT(〈b〉A,〈c〉A).
• ArgMax: Parties execute the setup phase corresponding to
PQ(〈u1〉B,〈u2〉B),PQ(〈u1〉B,〈u3〉B),PQ(〈u2〉B,〈u3〉B).
Online:
• Parties execute the online phase corresponding to
〈u1〉B = LT(〈a〉A,〈b〉A),〈u2〉B = LT(〈a〉A,〈c〉A) and
〈u3〉B = LT(〈b〉A,〈c〉A).
• Parties locally compute 〈u j〉B for each j ∈ {1,2,3},
• Parties, as a part of the PQ protocol, locally compute the [·]-
share corresponding to y1 = u1 · u2, y2 = 2 · u1 · u3 and y3 =
3 ·u2 ·u3.
• Parties set [y]i = [y1]i +[y2]i +[y3]i.

Protocol ArgMax(〈a〉A,〈b〉A,〈c〉A)

Figure 11: ArgMax Protocol

The protocol for ArgMin can be obtained by tweaking the
above protocol similar to the MIN3 protocol (cf. §5.7) .

Lemma D.7 (Communication of ArgMax/ArgMin).
Protocol ArgMax/ArgMin (cf. Fig. 11) requires
communication of (3x1 + 45)κ + 3x1 + 12` + 6 bits in
the setup phase with x1 = 2n2 +8n3 +22n4, while it requires
2+ log4(`) rounds and communication of 6x2 + 5` bits in
the online phase with x2 = n2 +n3 +n4. Here κ denotes the
computational security parameter while n2,n3,n4 denote the
number of AND gates in the Bit Extraction (BitExt) circuit
of §E.2 with 2,3,4 inputs respectively.

Proof. The protocol is similar to MAX3/MIN3 except that
PQV is replaced with the PQ protocol. Moreover the online
communication cost for three instances of PQ can be brought
to 2` bits using the same trick. The cost then follows from
Lemma D.3 and Lemma C.8.

D.8 Non-Linear Activation Functions

Lemma D.8 (Communication of ReLU). Protocol
ReLU (cf. §5.8) requires communication of (x1+5)κ+x1+5`
bits in the setup phase with x1 = 2n2 +8n3 +22n4, while it
requires 2+ log4(`) rounds and communication of 2x2 +3`
bits in the online phase with x2 = n2 + n3 + n4. Here κ

denotes the computational security parameter while n2,n3,n4
denote the number of AND gates in the Bit Extraction
(BitExt) circuit of §E.2 with 2,3,4 inputs respectively.

Proof. The protocol involves one instance of the LT protocol
followed by an instance of the PV protocol. The cost then
follows from Lemma D.3 and Lemma C.9.

Lemma D.9 (Communication of Sig). Protocol Sig (cf. §5.8)
requires communication of (2x1+15)κ+2x1+14`+2 bits in
the setup phase with x1 = 2n2 +8n3 +22n4, while it requires
2+ log4(`) rounds and communication of 4x2 + 4` bits in
the online phase with x2 = n2 +n3 +n4. Here κ denotes the
computational security parameter while n2,n3,n4 denote the
number of AND gates in the Bit Extraction (BitExt) circuit
of §E.2 with 2,3,4 inputs respectively.

Proof. The protocol involves two instances of the LT protocol
followed by one instance each of PQV and Bit2A. Moreover
the online communication cost corresponding to PQV and
Bit2A can be brought down to 2` bits by locally adding
up the shares corresponding to these two instances and
performing SHAREA on the result. The cost then follows
from Lemma D.3, Lemma C.10 and Lemma C.6.

D.9 Equality Testing

The formal details for EQ are given in Fig. 12.

Setup:
• P1 locally sets v1 = [δa]1 − [δb]1 and generates 〈v1〉B by
executing SHAREB(P1,v1).
• Parties execute setupMULT4 (over the Boolean ring)
corresponding to all instances of the MULT4 protocol.

Online:
• P0 locally sets v0 = (∆a− [δa]1)− (∆b− [δb]1) and generates
〈v0〉B by executing SHAREB(P0,v0).
• Parties locally compute 〈v〉B = NOT(〈v0〉B⊕〈v1〉B)
• Parties compute 〈u1[ j]〉B = MULT4(〈v[4 j]〉B,〈v[4 j +
1]〉B,〈v[4 j+2]〉B,〈v[4 j+3]〉B) for j ∈ {0, ..16}.
• Parties compute 〈u2[ j]〉B = MULT4(〈u1[4 j]〉B,〈u1[4 j +
1]〉B,〈u1[4 j+2]〉B,〈u1[4 j+3]〉B) for j ∈ {0, ..4}.
• Parties compute 〈u〉B = MULT4(〈u2[0]〉B,〈u2[1]〉B,
〈u2[2]〉B,〈u2[3]〉B).

Protocol EQ(〈a〉A,〈b〉A)

Figure 12: Equality Testing Protocol EQ for `= 64 bit ring

E Depth-Optimized Circuits

In this section, we provide concrete details for our depth-
optimized Adder circuit constructions. We use ideas from
[8, 50] and incorporate three and four input AND gates
in addition to the two-input AND gates. We focused on
optimizing the multiplicative depth without increasing the
total number of gates considerably. We construct a Parallel
Prefix Adder (PPA) circuit as well as a Bit Extraction circuit
which computes the Most Significant Bit (MSB) of the sum.
Here we provide a high level description of the construction
and refer the reader [8, 50] for more concrete details.
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E.1 Depth-Optimized Adder
Given two `-bit values a and b, the goal is to compute the sum
of the inputs. For this, the circuit makes use of intermediate
generate (g) and propagate (p) prefix signals [8,50]. Consider
the i-th bit of the inputs, ai and bi. Then the corresponding
generate (gi) and propagate (pi) signals are obtained as:

gi = ai ·bi, pi = ai⊕bi. (1)

Operators ♦ and �, that takes a pair of (g,p) signals as
input, are defined as:

(g1,p1)♦(g2,p2) = g1⊕ (p1 ·g2),

(g1,p1)�(g2,p2) = ((g1⊕ (p1 ·g2)),p1p2). (2)

For ease of representation, let ♦i(g,p) denote the
operation (g1,p1)♦(g2,p2) . . .♦(gi,pi). Similarly, �i(g,p)
denotes (g1,p1)�(g2,p2) . . .�(gi,pi). Then for sequential
operations, we apply the operation recursively and obtain

♦3(g,p) = g1⊕p1(g2⊕ (p2 ·g3))

= g1⊕p1g2⊕p1p2g3,

♦4(g,p) = g1⊕p1(g2⊕ (p2(g3⊕p3g4)))

= g1⊕p1g2⊕p1p2g3⊕p1p2p3g4,

�3(g,p) = ((g1⊕p1(g2⊕ (p2 ·g3))),p1p2p3)

= ((g1⊕p1g2⊕p1p2g3),p1p2p3),

�4(g,p) = ((g1⊕p1(g2⊕ (p2(g3⊕p3g4)))),p1p2p3p4)

= ((g1⊕p1g2⊕p1p2g3⊕p1p2p3g4),p1p2p3p4).
(3)

Note that all of �i(g,p) and �i(g,p) in Equation 3 require
only 1 online round. This is possible because of the two, three,
and four input AND gates, each of which requires 1 online
round of communication.

Given the aforementioned details, the circuit evaluation (in
a high level) can be summarized in three steps as follows:

Step 1 For each i ∈ [`], compute generate (gi) and propagate
(pi) signals according to Equation 1.

Step 2 Recursively compute the Carry bits using the signals
generated in Step 1 according to Equations 2 and 3.

Step 3 Compute the Sum bits (si for i ∈ [`]) using an
additional level of XOR gates at the output.

01234567

G0G1G2G3G4G5G6G7

Figure 13: PPA Adder for 8-bit input

Fig. 13 shows our PPA construction for the 8-bit inputs and
Fig. 14 for 64-bit inputs. A detailed description for the 8-bit
case with inputs a,b ∈ Z28 is as follows:

G0 = a0b0

G1 = (g1,p1)♦(g0,p0) = g1⊕p1a0b0

G2 = (g2,p2)♦(g1,p1)♦(g0,p0)

= g2⊕p1a1b1⊕p2p1a0b0

G3 = (g3,p3)♦(g2,p2)♦(g1,p1)♦(g0,p0) = g3⊕p3G2

G4 = (g4,p4)♦G3 = g4⊕p4g3⊕p4g3G2

G5 = (g5,p5)�(g4,p4)♦G3 = (g5⊕p5g4,p5p4)♦G3

= g5⊕p5g4⊕p5p4g3⊕p5p4p3G2

G6 = (g6,p6)�(g5,p5)�(g4,p4)♦G3

= g6⊕p6g5⊕p6p5g4⊕p6p5p4G3

= g6⊕p6g5⊕p6p5g4⊕p6p5p4g3⊕ (p6p5p4p3)G2

s0 = p0, si = Gi−1⊕pi

Note that many of these equations use bit multiplications
of 4 values (i.e., p2p1a0b0) for which we can use our efficient
AND4 gates.

063

G0G63

Figure 14: PPA Adder for 64-bit inputs

E.2 Bit Extraction Circuit
As shown in [77], our proposed PPA adders from §E.1 can
be optimized to compute the most significant bit (MSB)
and we call this circuit Bit Extraction (BitExt) circuit. This
is achieved by removing the unnecessary gates from the
respective PPA circuit. Fig. 15 shows the structure for the
BitExt circuit with 8-bit inputs and Fig. 16 for 64-bits inputs.

01234567

MSB

Figure 15: BitExt circuit for 8-bit inputs

Figure 17 provides a more detailed version of the BitExt
circuit with 64-bit inputs. Given two inputs a,b ∈ Z264 , the
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MSB

Figure 16: BitExt circuit for 64-bit inputs

MSB is computed as s63. Our construction has 41 two-
input, 27 three-input, and 47 four-input AND gates. Also,
the multiplicative depth was reduced from 6 to 3.

Figure 17: BitExt circuit description for 64-bit input

E.3 AES S-box

In this section, we elaborate on how to reduce the AND-depth
of the AES S-box from 4 to 3. Towards this, we use the 3-input
multiplication gate MULT3 (cf. §3.1.4).

To design an optimized S-box, [20,22] divides the overall S-
box circuit into three layers: i) top linear layer ( [20, Fig. 10]),
ii) middle non-linear layer ( [20, Fig. 11]), and ii) bottom
linear layer ( [20, Fig. 12]). In this work, we focus on the
middle non-linear layer.

Figure 18: Non-linear circuit for the middle layer of the Sbox
based on [20]

.

In the middle layer, given the input (x0,x1,x2,x3), an
inversion over GF(24) is applied resulting in the output
(y0,y1,y2,y4) where

• y1 = x2x3x4⊕ x1x3⊕ x2x3⊕ x3⊕ x4,

• y2 = x1x3x4⊕ x1x3⊕ x2x3⊕ x2x4⊕ x4,

• y3 = x1x2x4⊕ x1x3⊕ x1x4⊕ x1⊕ x2,

• y1 = x1x2x3⊕ x1x3⊕ x1x4⊕ x2x4⊕ x2.

We modify the above inversion to the following and use a
3-input AND gate:

• y1 = x2x3x4⊕ (x1⊕ x2)x3⊕ x3⊕ x4,

• y2 = x1x3x4⊕ (x1⊕ x2)x3⊕ x2x4⊕ x4,

• y3 = x1x2x4⊕ (x3⊕ x4)x1⊕ x1⊕ x2,

• y1 = x1x2x3⊕ (x3⊕ x4)x1⊕ x2x4⊕ x2.

For the top and bottom layer, we follow the same structure
of [20, 22]. Fig. 18 depicts the non-linear part of the AES-
Sbox. This layer maps 22 inputs x7,y1, ...,y21 to 18 outputs
z0, ...,z17. This circuit is based on the size-optimized Sbox
proposed by [20] and we use the same notation. The modified
circuit has thirty 2-input AND gates and four 3-input AND
gates. The overall round complexity was reduced from 4 to 3.
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F Security Proof

In this section, we provide a security proof for our 2PC
protocol denoted by Π2PC. We use the standard real world/
ideal world paradigm. We provide the simulation for the
case of a corrupt P0. Since the protocol is symmetric, the
simulation for the case of corrupt P1 follows similarly.
Our proof works in the FsetupMULT-hybrid model where
FsetupMULT represents the ideal functionality corresponding
to protocol setupMULT.

F2pc interacts with the parties in {P0,P1} and the adversary S and
is parametrized by a 2-ary function f , represented by a publicly
known arithmetic circuit over Z2` .

Input: F2pc receives the input x1, . . . ,xI from the respective
parties in {P0,P1}, where I denotes the number of inputs to the
circuit.

Computation: F2pc computes (y1, . . . ,yO) = f (x1, . . . ,xI),
where O denotes the number of outputs of the circuit.

Output: Send (y1, . . . ,yO) to all the parties in {P0,P1}.

Figure 19: Functionality F2pc

We present the ideal functionality F2pc for the 2PC protocol
in Fig. 19.

Theorem 1. In the {FsetupMULT}-hybrid model, Π2PC

securely realizes the functionality F2pc against a semi-honest
adversary A , who corrupts P0.

Proof. Let A denote the semi-honest adversary that corrupts
P0 during the protocol Π2PC. We now present the steps of the
ideal-world adversary (simulator) S2PC for A for this case. At
a high level, S2PC executes the setup phase honestly on the
behalf of P1 and will simulate the entire circuit-evaluation,

assuming the circuit-inputs of P1 to be 0. In the output-
reconstruction stage, it “adjusts" the shares of circuit-output
values on behalf of P1 so that A sees the same function output
as in the real-world protocol.

– Shared-key Setup: S2PC samples a random key K1 ∈ {0,1}κ

on behalf of P1 and sends it to A . S2PC then receives K0 from
A on behalf of P1 and computes the key K = K0 +K1.

– Sharing Protocol: For the instances where P0 is the owner
of the values, S2PC has to do nothing since A is not receiving
any messages. S2PC receives ∆v from A on behalf of P1. For
the instances where P1 is the owner, S2PC sets v = 0 and
performs the protocol steps honestly.

– Reconstruction Protocol: To reconstruct a value v, the S2PC

is given the output v, which is the output of A . Using v and
shares corresponding to P1 (i.e., [δv]1 ,∆v), S2PC computes
[δv]0 = ∆v − v− [δv]1 and sends this to A on behalf of P1.
S2PC receives [δv]0 from A on behalf of P1.

– Addition gates: There is nothing to simulate as the protocol
is non-interactive.
– Multiplication gates: For the setup phase, we consider
setupMULT as an ideal functionality FsetupMULT which
generates the required correlated randomness. Since we make
only black-box access to setupMULT, the simulation for the
same follows from the security of the underlying primitive
used to instantiate FsetupMULT, which is either OT or HE in our
case. During the online phase, S2PC follows the step honestly
using the data obtained from the corresponding setup phase.

This concludes the proof.
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