
vault1317/signal-dakez: An authenticated key exchange protocol
with a public key concealing and a participation deniability de-
signed for secure messaging
Richard B. Riddick

Vault Labs, Butcher Bay

root@hardenedvault.net

Abstract
A deniable authenticated key exchange can establish a secure communication channel while leaving no
cryptographic evidence of communication. Some well-designed protocol today, even in the case of betrayal
by some participants and disclosure of long-term key materials, cannot leave any cryptographic evidence.
However, this is no longer enough: If “Big data” technology is used to analyse data fetched from pivotal nodes,
it’s not difficult to register your identity through your long-term public keys. (although it can’t be a solid
evidence due to deniability) In this article, we have analysed the advantages and disadvantages of existing
solutions which are claimed to be deniable to some degree, and proposed an authenticated key exchange
protocol that is able to conceal the public keys from the outside of the secure channel, and deniable to some
degree, and a reference implementation is provided.

Keywords: key exchange, deniability, key concealing, secure messaging, OTR, Signal

Introduction of backgrounds
Over the past decade, electronic communication has become increasingly popular. The Internet has become a
platform for the transmission of most critical discourse. At the same time, the revelation of wide-ranging
surveillance and interference of the Internet in the field of security technologies has increased the public
interest in communication security and privacy. Many people want to maintain control over their information
online, but few are sure they can do it.

In response to this development, new secure messaging protocols, components, and applications have
mushroomed. The purpose of these end-to-end encryption protocol is to establish encrypted session between
endpoints of communications (and often to provide perfect forward secrecy on the basis of such session) so
that messages inside such session are difficult to easily break from the outside. They also provide a mechanism
for checking the integrity of the message and confirm that the message is not tampered with outside it.
However, integrity mechanisms (e.g. signature) often provide undeniable evidence that someone do send a
particular message. As a result, some of the teams who took the OTR developers as an example began to
work to achieve the unification of integrity and deniability while communicating normally, which means that,
at least provided that participants of the communication is able to confirm that the message is not tampered
with, while leaving no cryptographic evidence of a participant’s sending a certain message.

In order to enable both participant to authenticate each other’s identities, these protocols usually use some
form of digital signature. If the public key used to verify signature is sent to the other party in plain
text, it causes the problems of identity exposure, i.e. This allows an adversary controlling the low-level
protocol components on which end-to-end encryption protocols rely on communication (for example, the
server relaying messages) to know who is talking to whom, even if they do not understand the content of
the communication. In the background of large-scale censorship, the Big Brothers’ target is not only the
content, but also a broad interest in the metadata in order to draw a social graph. If the server getting
compromised or the system administrator being evil are added into the threat model, the attacker can get a
social graph of who is talking to whom without compromising the encrypted channel, and use it even more.
In post-PRISM era, Big Brothers’ “We kill target based on metadata.” meant to be any one of us, or our
potential malicous Turing machine.

1

OTR (v3 and v4) and Axolotl (signal protocol) are the most important end-to-end encryption protocols that
ensure a certain deniability. Let’s focus on these two protocols below.

OTRv3
The OTR development team is always committed to developing secure messaging protocol with deniability.
They provide libraries implementing the protocol and tools for message forging to minimize the impact when
intercepted ciphertexts being used as evidence. As far as the authors know, only the OTR series protocols
have been able to claim that they have deniability, while specifically embracing a symmetric cipher mode
of operation that is easy to forge and providing dedicated tools, but their protocols are carefully crafted to
ensure the integrity of communication.

Currently, it is the third generation protocol which is mature and widely used. It has an important feature
that is not noticeable, but important to implement its own deniability, and should be widely appreciated: the
feature to conceal the public key.

OTRv3 must create its own session through the handshaking (authenticated key exchanging) process: the
parties who communicate first establish an unauthenticated DHE key exchange (in which some technique
is used to ensure that none of the two is able to decide their own pre key according to the public
part of pre key sent by their peer). When the DHE is complete, with the shared secret available, the
long-term public key (pub) , the initial value of the pre key counter (keyid), and a signature tied to both
parties’ pre key, pub and keyid, shall be encrypted with a key derived from the shared secret and then sent
to the other party for verification to authenticate the newly completed DHE. With hiding the public key
and the signature required for authentication the encrypted channel created through the shared secret, only
the public part of the pre key exchanged during the handshaking is revealed to the surveillant controlling
the lower-level protocol element, and the surveillant does not grasp the long-term public key of either party
in communication. Furthermore, it is not possible to obtain signatures to prove that the communication
partners have completed the handshaking process. When a man-in-the-middle attack is carried out to obtain
these sensitive data in the handshaking process, it is almost impossible for the middle man to randomly
generate the same pre keys as well as obtaining the long-term private key of either end. As a result, the
man-in-the-middle attack of the handshaking process will almost certainly destroy the subsequent signature
verification and make the handshaking process a failure, and both ends will be noticed.

Because the signature algorithm used by OTRv3 has no participant deniability (in more detail later), if
the OTRv3 simply transmit the public key and the signature as plain text as in TLS, its deniability will in
principle disappear.

During the communication phase after handshaking, OTRv3 avoid using self-authenticated AEAD algorithms
(or modes of operation), but use independent message authentication code (MAC) to protect the integrity of
a ciphertext message, and the MAC key indirectly results from a constantly revolving shared secret. In order
to achieve deniability at this stage, any MAC key that has been used to verify a ciphertext, and whose source
shared secret has been erased is sent out by attaching to a new message in plain form. The expected goal is
not the opposite end, but the all-possible existence of the surveillants. Anyone who has received a MAC key
can forge a message that passes verification, and libOTR, the main implementation of OTRv3 even provides
dedicated tools for this purpose. In this way, the surveillant cannot prove that a certain message was sent
by someone surveiled but was not forged by themself, thereby achieving deniability. Before the MAC key
is published through a new message, only the sender and receiver of the message can calculate it from the
shared secret, so that the recipient of the message can be sure that the message is indeed sent by their peer,
thereby ensuring integrity.

The main problem with OTRv3 is the lack of participant deniability in the signature algorithm: during
the handshaking phase, the signature is visible to both interacting parties. If one of the participants helps
obtain identity information, including this signature (originally hidden in the encrypted channel during the
handshaking), it becomes an evidence hard to deny.

In addition, proponents of the Axolotl protocol also think that OTRv3 are difficult to use, do not support
“decrypting the same message many times”, the handshaking process is too complicated and the result is

2

https://OTR.cypherpunks.ca/
https://OTR.cypherpunks.ca/Protocol-v3-4.1.1.html

too expensive, and offline messaging is not supported. However, in fact, “decrypting the same message
several times” is actually a huge security problem, and although the OTRv3 does not formally support offline
messaging, until the program is closed, the message sent by the other party (encrypted after performing a
DHE with the public part of pre key inside the last sent message) can be decrypted as usual in the event of a
temporary drop-off.

Axolotl a.k.a “Signal Protocol”
Axolotl is a comprehensive end-to-end-encryption protocol, invented by Open Whisper Systems, first applied
for Signal, then adjusted to the XMPP in the form of omemo and absorbed by the Matrix Protocol (modified
as OLM), including the digital signature algorithm XEdDSA, the handshake protocol X3DH , message
encryption protocol Double Ratchet, session management protocol Sesame, and other sub-protocols. The
protocol was later renamed “Signal Protocol”, but because “Signal Protocol” is not “Signal’s Protocol (all
communication protocols that make up the Signal)”, we are going to use Axolotl in this article to refer to
this protocol.

From the point of view of application, the main of features which Axolotl has more than OTR is offline
messaging - that includes two aspects: on the one hand, completing a handshake does not require both
parties to be online at the same time, and on the other hand, the communication process that follows the
handshake does not require both communication parties are online at the same time. Proponents of the
Axolotl Protocol argue that this significantly increases the usability of the protocol, but we still believe that
the way the Axolotl Protocol implements offline messages heavily undermines confidentiality and deniability.

The OTRv3 described above requires a 4-way handshake to conceal the public key, so both parties must be
online to complete the handshake in a sufficiently short time, otherwise it is better that the handshake starts
from the beginning instead of waiting for a handshake message. To implement offline messaging, Axolotl
does not only compress the handshake into 2-way, but also publishes the first handshake in the form of “Pre
key bundle” on the server and connects the second handshake to the first message. Sent but not received
messages are cached on the server and delivered when the receiving end goes online. There is a pre key signed
with the public key and several unsigned pre key in the bundle, each pre key has its own number (“id”) and
each unsigned pre key can only be used once, but the entire pre key bundle allows several participants to
handshake independently with the same publisher of the bundle.

X3DH is unable to apply any protection to public keys
But just because of this, X3DH is unable to apply any protection to public keys: The party issuing pre key
bundle does not know how the other party will generate pre key and thus cannot encrypt their own public
key for the other party; the sender of the first message cannot encrypt the public key, for they should allow
the peer directly use their own public key and pre key to perform DHE. In this way, the server operator can
easily collect correspondences between public key and user identity, and the signed pre keys are indisputable
proof that the two parties are communicating (The Appendix A of dakez-popets18.pdf also sets out the
method to attack Axolotl Protocol that also lacks participant deniability). Since the pre key bundle must
be published to the server, protocols in which the server does not offer the functionality (e.g. IRC) can not
adapt to Axolotl, although this problem may be solved through turning the offline handshake to an online
one, that is, sending a simple bundle containing only one signed and one unsigned pre key as a handshaking
message directly to the other party, but this adaption of the Axolotl, which can only be done online, has no
advantage over OTRv3’s public-key-concealing online handshake.

Double Ratchet session contexts stored in secondary storage are prone to stealing
and forensic
Compared to OTRv3, which requires a DHE every time a message is sent, Axolotl only generate a new DH pre
key and trigger a new round DHE once the other party sends the previous message. If one party continuously
sends messages, only the key-derivation function (KDF) is used to update the session key. Indeed, this

3

https://signal.org/docs/
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/sesame/
https://www.cypherpunks.ca/%7Eiang/pubs/dakez-popets18.pdf

approach can reduce the amount of calculation and improve the synchronization of session context at both
ends. However, to satisfy the requirement for offline messages, Axolotl saves the context to the secondary
storage (e.g. disk) every time it changes. The original intention was that even if the client goes offline or even
crashes unexpectedly when the client goes back online, encrypted text messages cached on the server can still
be decrypted. However, it also means that if context stored in the secondary storage is stolen, the attacker
can decrypt messages to be received by the client instance continuously until it is interrupted by DH pre
key generation triggered by message sending, and offline session context can also be a kind of proof that is
difficult to deny.

OTRv3, on the other hand, does not store any session context components into the secondary storage. Until
the session is finished and the client goes offline, the session context will be naturally destroyed; temporary
network-induced disconnect can be automatically restored.

This problem can be solved by further refining the session lifecycle and strictly limiting archived data. The
principle is to save data you have to save, such as the IDs and the secret part of bundled pre keys - because
you cannot establish sessions without saving these data - and once you have successfully established a session,
you will keep the session context only in RAM until the client goes offline, terminating the session. Later, if
you need to “continuously” send offline message, you can complete it by creating a new session. (This policy
means that converting an online session to an offline one is prohibited, while converting an offline session
to an online one is allowed). An even stricter strategy could be used: strictly distinguish between online
sessions and offline ones. The session created when the other party is online is an online session and it lasts
until either party goes offline. As long as the client continues to run, the network-induced outage can be
automatically restored. If the other party is not online when you create the session, the session is an offline
one that lasts as long as one’s own party goes offline or the other party goes online. For the offline side, they
only need to receive (as described above, handshaking is completed when the first message is received and an
offline session is created) the cached messages after you go online and then the session could be finalized. If
communication need to be continued, a new online session could then be created (This strategy is equivalent
to disabling the mutual conversion of online and offline sessions). This strategy can minimise sensitive data
leakage via secondary storage while maintaining the ability of offline messaging.

The immutable client id intensifies identity exposure
To distinguish between different instances of the same account, Axolotl randomly creates a specific number
for each instance (called “device id” in libsignal-protocol-c). Clients use this id to distinguish ciphertext
message sent from different instance of the same account and send them to the appropriate session context
for decryption. Therefore, the instance id itself must appear as plaintext so that the recipient can determine
from which instance the ciphertext originates before decryption. In addition, Axolotl provides that account
instances who do not change their id but only change their public key cannot be trusted, which means that
the combination of instance id and public key can almost completely mark the instance of the account. Since
public keys cannot be concealed in the two-way handshaking of X3DH, this combination must also appear as
plaintext in the pre key bundle and the first message, which further facilitates the collection and account
instance identification of the adversary controlling of low-level protocol components.

By contrast, the OTRv3 uses randomly generated “Instance tags” during the handshaking to mark different
instances. Obviously, the instance tag can only be used to distinguish between different instances temporarily,
but it cannot permanently mark an instance.

From an application point of view, instance id is useful to permanently identify a client instance, but it
should be hidden in an encrypted channel and a method similar to that of an instance tag of OTRv3 is used
to distinguish between different instances and participants before decrypting a message. To avoid breaking
deniability, the compliance of instance tag and instance id should be maintained locally by the client.

The draft of OTRv4
Shortly after the publication of the above dakez-popets18.pdf, the OTR project team began developing a
fourth generation protocol with the aim of further strengthening the deniability of the protocol, especially

4

https://github.com/OTRv4/OTRv4/blob/68406cca347cfdedc901f95c003543df710fc592/OTRv4.md

in order to address the problem of the lack of participant deniability of OTRv3. The key to the online
deniability of OTRv4 is the application of the Ring Signature Algorithm (in more detail later): In short,
the ring signature algorithm uses a set of public keys and one of the corresponding private key to sign a
payload, and the same set of public keys is used to verify. The result is that the private key that signed the
payload can prove to be the private key corresponding to one of these public keys, but it is not possible to
determine the exact key which made the signature. By carefully choosing public keys to be used in signing,
both communication parties are able to determine each other’s identity (because private keys corresponding
to public keys other than the other party’s identity key are held by theirself, but they are not used to generate
signature, the signature can only be generated by the other party), but a participant cannot prove to others
that the other party participates the conversation (because their own public keys are participant of the
signature too, which renders the participant unable to prove that the signature is not signed with their own
private key).

OTRv4 supports both online (3-way) and offline (2-way, similar to Axolotl) handshaking. Among them,
the online handshaking is deniable for both communication parties, while the offline handshaking is not
deniable for the party sending the first message to complete the handshaking. Ring signature is used in both
handshaking modes.

During the communication phase, OTRv4 uses Double Ratchet to iterate its session context, but never saves
the context to the secondary storage. OTRv4 also supports offline session initiated with pre key bundles, but
only saves data necessary to completing handshaking with the first message to the secondary storage (This
equals to forbidding to convert online sessions to offine ones, but OTRv4 allows to convert offine sessions to
online ones).

The main problem with OTRv4: Maybe because the ring signature algorithm has participant deniability,
OTRv4 does not implement public key concealing. This does reduce the number of handshaking ways, but
also exposes public keys out of the encrypted channel, easing the adversary controlling the low-level protocol
components collecting data and recognizing account instances. Although it does not affect deniability so
much, it still cannot help prevent the adversary controlling the low-level protocol components from collecting
metadata including public keys in order to draw social graphs.

A survey for various e2e encryption protocols

Protocol Major
Implementor

PFS Algorithm on which DHE is
based

Algorithm for User
Authentication

OpenPGP GnuPG No No various signature (rsa, dsa,
ecdsa, eddsa)

OTRv3 libotr Yes DHE on an 1536-bit MODP
group in RFC 3526

DSA

axolotl/signal
protocol

libsignal-
protocol-c

Yes X3DH based on x25519 XEdDSA based on Ed25519

olm libolm Yes Customed X3DH EdDSA with independent keys
omemo libomemo Yes axolotl X3DH axolotl XEd25519
Proteus Wire Yes Curve25519 axolotl XEd25519
OTRv4 libotr-ng Yes DHE on Ed448 as well as the

1536-bit MODP group in
OTRv3

EdDSA and ring signature on
Ed448

vault1317 WIP Yes dakez based on Curve25519 XEdDSA and ring signature on
Ed25519

5

https://www.openpgp.org/
https://gnupg.org/
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://otr.cypherpunks.ca/
https://www.signal.org/docs/
https://www.signal.org/docs/
https://github.com/signalapp/libsignal-protocol-c
https://github.com/signalapp/libsignal-protocol-c
https://www.signal.org/docs/specifications/x3dh/
https://www.signal.org/docs/specifications/xeddsa/
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/olm.md#initial-setup
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/signing.md
https://xmpp.org/extensions/xep-0384.html
https://github.com/gkdr/libomemo
https://github.com/wireapp/proteus#proteus
https://wire.com/en/security/#audits
https://github.com/OTRv4/OTRv4
https://github.com/OTRv4/libotr-ng
https://github.com/hardenedvault/vault1317
https://www.cypherpunks.ca/%7Eiang/pubs/dakez-popets18.pdf

Protocol Symmetric
Ratchets

Support
offline

messaging

Anonymity perserving
(identity keys will not leak
outside the participants)

symmetric algorithm

OpenPGP N/A Yes No CFB mode with various Block
cipher

OTRv3 N/A No Yes AES-CTR with detachable
hmac-sha256

axolotl/signal
protocol

axolotl Based on
HKDF

Yes No AES-CBC

olm olm and magolm Yes No AES-CBC
omemo axolotl for

session key
Yes No AEC-CBC for axolotl,

AES-GCM for message body
Proteus Similar to

axolotl
Yes No chacha20

OTRv4 Based on HKDF Yes No chacha20
vault1317 same as axolotl Yes Yes same as axolotl

Protocol Deniability Allow si-
multanous
multiple
recipients

Have Interactive
(synchronous) AKE

Have pre key-based offline
(asynchronous) AKE

OpenPGP Weak Yes No No
OTRv3 Online Very

Strong
(non-aead

cipher, MAC
revealing and
tools provided)

No Yes No

axolotl/signal
protocol

Weak (CBC
cipher, no MAC
revealing, no

tool)

Yes No Yes

olm Similar to
axolotl’s

magolm No Yes

omemo Weak (aead
cipher)

multiple
encrypted
session keys
in one xml
stanza

No Yes

Proteus non-aead cipher
but no tool

encrypt the
plain text
message for

every
recipient

No Yes

6

https://www.openpgp.org/
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://www.signal.org/docs/
https://www.signal.org/docs/
https://www.signal.org/docs/specifications/doubleratchet/
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/megolm.md
https://xmpp.org/extensions/xep-0384.html
https://github.com/wireapp/proteus#proteus
https://github.com/OTRv4/OTRv4
https://github.com/hardenedvault/vault1317
https://www.openpgp.org/
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://www.signal.org/docs/
https://www.signal.org/docs/
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/olm.md
https://xmpp.org/extensions/xep-0384.html
https://github.com/wireapp/proteus#proteus

Protocol Deniability Allow si-
multanous
multiple
recipients

Have Interactive
(synchronous) AKE

Have pre key-based offline
(asynchronous) AKE

OTRv4 Very Strong
(non-aead

cipher, MAC
revealing and
tools provided)

WIP Yes Yes

vault1317 WIP omemo Yes Yes

vault1317/signal-dakez
We believe that the public key concealing nature of OTRv3 is essential to protect communicator’s privacy, so
we decide to implement a protocol which is capable to conceal public keys, authenticate identities with ring
signature, thus has participant deniability to some degree, has online and offline handshaking in the same
time, and maintains session context with the way of Double Ratchet.

Improvement
In view of the complexity of the Double Ratchet, we are currently using the existing Double Ratchet
implementation of the Axolotl and use existing components of the Axolotl protocol as far as possible for the
implementation of the online and offline handshaking protocol with the characteristics necessary for us. In
general, in addition to the original X3DH, we will write an online and an offline handshaking protocol based
on one implementation (libsignal-protocol-c) of the Axolotl protocol, and use the key materials enchanged
via these handshaking protocols to initialize the Double Ratchet subprotocol.

Here we will introduce the used protocol components and some of their implementation detail.

Digital Signature Algorithm xed25519
xed25519 is an algorithm modified from DJB’s ed25519, using public and private keys for x25519 to produce
digital signature, initiallly invented as a part of Axolotl, to be used in our protocol.

Implementing ring signature algorithm (in more detail later) also needs components of this algorithm -
addition and subtraction of points on the elliptic curve Edwards25519.

Terminology

CurveM (e.g. Curve25519, Curve448) is a Montgomery curve defined on F[pˆ2], where M is a description of
some characteristics of prime number p, for example, the p of Curve25519 is 2ˆ255 - 19; xM is the ECDH
scheme implemented on CurveM, based on “absolute value of the product of a point and a scalar”; edM
is the EdDSA algorithm implemented on the corresponding (twisted) Edwards curve (discretized on F[p]
in homogeneous coordinates form, with rational points as its group elements); EdwardsM is the (twisted)
Edwards curve itself used to implement edM; Scalar : The points on elliptic curves defined on discrete fields
with their addition operation form a cyclic group. Assuming its order is prime number q (nearly all DH-related
cryptographic scheme requires using cyclic groups with such property), a non-negative integer less than q
is defined as a scalar. Via the operation to multiply a scalar with the base point (a generator of the cyclic
group) G, scalar a and point A on the elliptic curves form an one-to-one correspondence: A = a * G.

7

https://github.com/OTRv4/OTRv4
https://github.com/hardenedvault/vault1317
https://github.com/hardenedvault/vault1317
https://github.com/signalapp/libsignal-protocol-c

curve25519 and X25519

curve25519 and edwards25519 is two different forms of elliptic curve with mathematical link, among which,
curve25519 is a Montgomery curve (all Montgomery curve can be transformed into (twisted) Edwards
curve, and elliptic curves in “Montgomery form” can all be transformed into standard Weierstrass form, so
“Montgomery” should be seen as a property rather than a representation) vˆ2 = (uˆ3 + 486662uˆ2 + u) mod p,
p = (2ˆ255 - 19)ˆ2, as a cyclic group, the order is 8q, q = 2ˆ252 + 27742317777372353535851937790883648493,
so it is isomorphic with the multiplication group modulo (8q + 1), and (8q + 1) should also be a prime; its
subgroup with order q is used in cryptography.

The origin of its parameter and other properties could be seen in RFC7748.

The equation of curve25519 shows that the curve is symmetrical to the horizontal axis (u). Combined with
the property of the additive group of the points, if Q=(u,v) is a point on the curve, O is the point at infinity
(the identity element of the additive group of the points on elliptic curve, a.k.a, the zero element), then the
coordinate of -Q = O-Q is (u,-v). Therefore, only the value of the abscissa and the sign of ordinate must be
saved to unambiguously express the point on elliptic curve in Montgomery-Weierstrass form unequivocally,
including curve25519.

What’s more, the abscissa of a point has a characteristic similar to absolute value, so we could define abs(Q)
= abs(-Q) = u .

Curve25519, as an ECDH implementation (X25519), actually implements a fast algorithm with known
“absolute value” of a point abs(A), and scalar m to compute abs(mA); there is no unambiguous expression of
points themselve in the algorithm of X25519, only expression of the “absolute value” namely abscissa:

The X25519 scheme maps a private pre key/scalar, to another “abs” of a point, to another “abs” of a point,
abs(mG), which is the public part of the pre key, through an operation to compute the absolute value of the
multiplication of a point and a scalar, with the true generator G=(9,+) (in reality, only the absolute value
abs(G)=9 is saved). (in reality, -G=(9,-) is also a generator, but because abs(mG)==abs(m(-G), it doesn’t
matter in application.)

Addition and subtraction operation are unable to implement with such representation: Only the knowledge
of abs(A) and abs(B) cannot construct an algorithm to calculate abs(A+B) or abs(A-B). Although X25519
provides an algorithm to compute abs(2A) and abs(A+B) from abs(A), abs(B) and abs(A-B) (This algorithm
is mainly used to compute products in a constant-time manner via Montgomery ladder algorithm), but
abs(A-B) cannot be obtained from only abs(A) and abs(B).

Since the construction of DSA-type algorithm on elliptic curves requires the addition and subtraction of
points, the functional elements of X25519 alone cannot be used to construct such an algorithm. Additionally,
the Small subgroup attacks and invalid curve attacks) has been considered by the modern implementation
of curve25519 but due to the above-mentioned problem of the space reduction of abs(aG), the current best
practice still follows:

• x25519 key pair for DH key agreement, while ed25519 key pair for signature only

If you need to use a single ed25519 key pair for both DH and signature, you can convert them to x25519
form on demand, eg: root key is ed1, y2u() can convert both priv/pubkey to x25519 form, which can be used
for key exchange and encryption to meet e.g: TLS use case . We must consider two factors: 1) the acceptable
degree of performance loss 2) the security of the conversion function implementation, currently you can refer
to the relevant implementation of libsodium, where the scalar s needs to be extracted during the process of
converting the ed25519 private key to the x25519 private key.

Edwards25519

Ed25519 refers to a deterministic DSA-type algorithm implemented by DJB on the twisted Edwards curve
corresponding to curve25519. In this article, Edwards25519 is used to refer to this twisted Edwards curve
itself:

yˆ2 - xˆ2 = 1 - (121665/121666)xˆ2 *yˆ2

8

https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/EdDSA#Ed25519
https://en.wikipedia.org/wiki/Elliptic_curve#Elliptic_curves_over_the_real_numbers
https://tools.ietf.org/html/rfc7748
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://eprint.iacr.org/2017/806.pdf
https://download.libsodium.org/doc/advanced/ed25519-curve25519

Different with Montgomery form, the coordinates of points on (twisted) Edwards curve are no longer integers
but rational numbers, and the discretization in this form can only be done under homogeneous coordinates:
setting x = X/Z, y = Y/Z, xy = T/Z, X, Y, Z, T are integers, then

121666Zˆ2 (Yˆ2 - Xˆ2) = 121666Zˆ4 - 121665Xˆ2 *Yˆ2 mod p is the corresponding discrete form, and
{X:Y:Z:T} is used to represent a point on the curve.

As a cyclic group, the order is the same 8q, and the subgroup with order q is also used to implement
cryptography.

Note: During discretization, the Montgomery form is defined on F[Pˆ2], while the (twisted) Edwards form is
defined on F[p].

The mathematical link between edwards25519 and curve25519 guarantees that most points on curve25519
could be mapped to points on edwards25519, represent as mont2ed(u,v); there is a function u2y(u) = (u -
1)/(u + 1) able to easily convert the abscissa of a point on curve25519 to the ordinate of the mapped point
on edwards2551, and mont2ed(u,v)=(u2y(u)/v,u2y(u)).

Similar to curve25519, the symmetry of edwards25519 makes the representation of a point on the curve only
requires to save its ordinate and the sign of its abscissa. That is to say, if R=(+,y) then -R=(-,y).

Because edwards25519 provides an unambiguous representation of a point on the curve, the addition and
subtraction of points and then digital signature similar to DSA can be implemented. The true multiplication
between a scalar and a point (contrary to “absolute value of product” operation on curve25519) is of course
available, thus also capable to be used for ECDH.

The generator B=(+,4/5) on edwards25519 is exactly the result of the generator G=(9,+) of curve25519
mapping into edwards25519: B = mont2ed(G) = (+,u2y(abs(G)).

ed25519-modified

In DJB’s EdDSA paper, the relationship between the public and private key is not linear: “Standard” EdDSA
uses an arbitrary byte string with certain length as a private key, which is hashed to obtain 64 bytes of
binary data, of which the low 32 bytes are converted to a scalar capable to operate on edwards25519: s =
hash_to_scalar(sk), and the public key A = sB; while the high 32 bytes are used as a seed with the signed
data m to generated the “random” scalar k used in DSA type algorithm.

Signal modifies it into ed25519-modified, in which the scalar s is directly used as the private key, and also
used as a seed to generate k. Its advantage is the linear relationship between the public and private key is
kept, while its drawback is that it increases the correlation between k and scalar s (This problem may be
solved by generating k from s and m using rfc6979. Currently Signal improves it by introducing another
random seed rand externally, making k unambiguously determined by (s, m, rand)).

Convert public and private keys between curve25519 and edwards25519 forms

We define sgn(R) as a function to get the sign of (the abscissa of) a point on curve edwards25519.

u2y() alone is not enough to determine the “plus or minus” of a mapped point, so XEdDSA uses below
scheme to map the public and private part of pre keys on curve25519 to the public and private keys on
ed25519-modified:

conv_mont_pubkey(abs(A)) = (+,u2y(abs(A)));

It is mandatory that the “positive” mapping result of the public part of pre key is selected as the public key
of ed25519-modified.

conv_mont_privkey(a) = { if(sgn(aB)==(+)) return a; else return ((-a) mod q); }

(q is the order of the additive group described above on curve25519 and edwards25519)

9

https://ed25519.cr.yp.to/eddsa-20150704.pdf

If the multiplicative product of a private pre key a of curve25519 and the generator B of edwards25519
is actually “negative”, its additive inverse ((-a) mod q) = q - (a mod q) is chosen as the private key of
ed25519-modified.

This mapping method is self-assured, because it guaranteed B=conv_mont_pubkey(abs(G)) and
conv_mont_privkey(a)B=conv_mont_pubkey(abs(aG)), but this method reduces the capable space of
private and public keys (from the price of X25519 discarding the sign of points).

This mapping rule is hidden in the logic of XEd25519, though not directly used explicitly, but the ring
signature algorithm based on it will directly use this rule.

The consideration of XEd25519

XEd25519 makes use of the unoccupied space to save the sign of point aB, which is the result of mapping
the scalar a into edwards25519 curve:

XEd25519-sign(m, a, (rand)) = (ed25519-modified-sign(m, a, (rand)), sgn(aB)) ,

During verification, if aB’s sign saved in signature is negative, indicating conv_mont_pubkey(abs(A)) ==
-aB, then the additive inverse of conv_mont_pubkey(abs(A)) will be used to verify the signature:

XEd25519-verify(abs(A=aG), (sig, sgn)) = { if(sgn == (+)) return ed25519-modified-verify(conv_mont_pubkey(abs(A)),
sig); else return ed25519-modified-verify(-conv_mont_pubkey(abs(A)), sig); }

Conditional logics should be replaced with constant-time logics during implementation, in order to prevent
side-channel attacks and differential analyses.

rsig-(x)ed25519
For this implementation, the curve25519 and ed25519-modified codes integrated with libsignal-protocol-c are
used. The ring signature algorithm rsig/rvrf discussed in DAKEZ. These types of algorithms use a set of
public keys and the payload signed by one of the corresponding private key, while signature verification
uses the same set of public keys. It is designed to prove that the private key used for the signature is one of
the private keys corresponding to the set of public keys, but it is impossible to determine the private key
with which the signature is signed.

The ring signature algorithm can be implemented on the basis of RSA or DSA (generally, including DSA
on a elliptic curve, such as ECDSA and EdDSA). The DSA-based algorithm has a concise mathematical
structure, and the same parameters is easy to integrate the same type of algorithm with DH and single-key
DSA algorithms.

The common elements of DSA species

The ring signature algorithm being used in this project is highly related to DSA, so it must use many of the
mathematical elements required by the DSA-type algorithm.

Scalar fields Fields composed of non-negative integers less than a prime number q. All four arithmetic
operations are accompanied by an operation to modulo q, and its elements are called scalars (indicated by
lowercase letters below). The private key is a randomly selected non-zero scalar.

Cyclic group In the cyclic group described in the above quotation, its elements form a one-to-one mapping
with the elements in the scalar fields through the generator G and the operation ‘ˆ’. This mapping relationship
is generally expressed in the form of a power, but on an elliptic curve it is implemented as a multiplication of
a point and a scalar, that is, the point and itself are repeatedly added, and the number of repetitions is the
value of the scalar.

10

https://signal.org/docs/specifications/xeddsa/
https://www.cypherpunks.ca/%7Eiang/pubs/dakez-popets18.pdf

Operation fields Elements and operations in a cyclic group are often implemented on a fields that consists
of non-negative integers less than the prime p (p > q) . Note: The operation fields and the scalar fields are
not the same. Operations on the operation field cannot be used to compute elements of the scalar field.

The libsignal-protocol-c’s implementation of mathematical objects in ed25519-modified

In this implementation, the external representation of the scalar field and the operation field (that is, the
representation during storage and transmission, is opposite to the internal representation, which is the
representation during operation. For example, “network byte order” is an external representation; “host byte
order” is an internal representation) are 256-bit integers represented by a 32-element array of 8-bit unsigned
integers (value(a) = i from 0 to 31 sum a[i]*256ˆi).

The internal representation of an element of the scalar field is the same as its external representation, and the
prime modulo of the four arithmetic operations is q = 2ˆ252 + 27742317777372353535851937790883648493.

The internal representation of an element of the operation field is a large integer represented by a 10-element
array of 32-bit signed integers (see fe.h for its definition). The modulo of the four arithmetic operations is p
= 2ˆ255-19, and the edwards25519 curve is defined on the finite field F[p] with modulo p (the corresponding
Montgomery form curve25519 is defined on F[pˆ2]), as a cyclic group its real order is 8q (so it is isomorphic
to the integer multiplicative group modulo 8q+1. As a comparison, the order of the integer multiplicative
group modulo 7=6+1 is 6, which contains subgroups of order 2 and order 3, because 6=2*3). Cryptography
uses the order q subgroup, whose generator is (+, 4/5).

Because the calculation of points on the elliptic curve is generally carried out under projective coordinates, the
elements of the cyclic group, that is, the points on the elliptic curve edwards25519, are generally represented
internally by projective coordinates (such as (X:Y:Z) satisfying x=X/Z, y=Y/Z represents the coordinates
of the point (x, y), where X, Y, and Z are all elements of the operation field using internal representation).
Obviously, the internal representation of the same point on the curve is not unique (The internal representation
of a point has more than one form, see ge.h).

The external representation can represent up to 2ˆ256-1, and only a value greater than 2ˆ255 will make the
highest bit (that is, the highest bit of a[31]) 1, and as described in the xed25519 chapter, it unambiguously
represents the point on edwards25519 only need to save the value of the ordinate and the sign of the abscissa,
because the ordinate is an element of the operation field, and the largest element in the operation field is
p-1 = 2ˆ255-20 <2ˆ255, that is, the highest bit of the external representation of all elements of the scalar
field and operation field is 0, so the highest bit of the external representation can be used to store the sign
of the abscissa. In this way, the three different mathematical objects are unified into the same external
representation.

Ring signature

RSig(ai, {A0, A1, A2}, m), i = 0 or 1 or 2

• Calculate the public key Ai = Gˆai corresponding to the private key and judge the value of i. If i does
not belong to {0, 1, 2}, it will fail;

• Without loss of generality, assuming i = 0, the following values t0, c1, c2, r1, r2 are randomly
selected in the scalar field;

• Calculate T0 = Gˆt0, T1 = Gˆr1 * A1ˆc1, T2 = Gˆr2 * A2ˆc2; (Note: here * operation is the operation
of two elements in the cyclic group, which is realized as the addition of points on the elliptic curve)

• Calculate c = ToScalar(Hash(usageAuth || A0 || A1 || A2 || T0 || T1 || T2 || m)), that is, intercept a
part of the hash value as an integer and take the modulus to obtain an element c in the scalar field;

• Calculate c0 = c-c1-c2 (mod q);

• Calculate r0 = t0-c0 * a0 (mod q);

• sig = ((c0, r0), (c1, r1), (c2, r2)) is the ring signature value;

11

The signature verification function Rvrf({A0, A1, A2}, m, sig = ((c0, r0), (c1, r1), (c2, r2))) is symmetric:

• Calculate Ti = Gˆri * Aiˆci;

• Calculate c = ToScalar(Hash(usageAuth || A0 || A1 || A2 || T0 || T1 || T2 || m));

• Judgment whether c == c0 + c1 + c2 (mod q)

prove: Because r0 = t0-c0 * a0 (mod q) i.e. t0 = r0 + c0 * a0 (mod q) then T0 = Gˆt0 (mod q) = Gˆ(r0 +
c0 * a0) (mod q) = Gˆr0 * Gˆ(c0 * a0) (mod q) = Gˆr0 * (Gˆa0)ˆc0 (mod q) = Gˆr0 * A0ˆc0 (mod q)

This algorithm can easily be extended to the case of i = 1 or 2, see rsig.c for details, where conditional logic
is replaced by constant-time logic.

Interface with libsignal-protocol-c

The implementation in rsig.c is based on edwards25519, but all the asymmetric keys in libsignal-protocol-c
uses the curve25519 form as its external representation, so the mapping methods conv_mont_pubkey() and
conv_mont_privkey() mentioned in the xed25519 chapter are needed to convert the form of curve25519 to
edwards25519 which can be used for calculation.

vault1317/signal-dakez
definition:

Symbols Description

G Generator of the cyclic group
Gˆk The public part of a DH (pre) key corresponding to the

private part of the (pre) key k
Gˆxy Result of DH key exchange starting from private parts

of pre keys x and y
Rng() The output of the random number generator

SymE/SymD(k, m) Use k to encrypt/decrypt data m with no more than
one block (if it is a block cipher) with a symmetric

algorithm Sym
SymSE/SymSD(k, m) Use key to encrypt/decrypt data m of arbitrary length

with a certain working mode of symmetric algorithm
(if it is a block cipher) SymS

a||b Data block concatenation operation
{a,b,...} Parsable data serialization
KDF(p, d) Use the algorithm KDF to derive the key from the

parameter p and the data d
I[Alice] DH (private) key used to mark Alice’s identity
ID[Alice] Alice’s registration ID
E[Alice] The (private part of) DH pre key generated by alice
Dgst(m) digest of data m
Mac(k, m) Message authentication code of data m signed with

authentication key k
FP(Gˆk) The fingerprint of the DH public key of the private key

k, generally implemented by the message digest
algorithm

12

Symbols Description

DSig(k, m) DSA-type algorithm for signing data m with private
key k

DVrf(Gˆk, m, dsig) verification function corresponding to DSig
Rsig(x, Gˆx, Gˆy, Gˆz, m) Ring signature algorithm for signing data m with

private key x and public key Gˆx, Gˆy, Gˆz
RVrf(Gˆx, Gˆy, Gˆz, m, rsig) RSig corresponding verification function

(r[0], c[0]) = SCDK(ss) The initial root key and chain key are generated from
the shared secret

(r[n+1], c[n+1][0]) = RKCC(r[n], s) Iterate the root key and generate a chain key
c[n+1] = CKCN(c[n]) chain key self iteration
m[n] = CKMK(c[n]) Export message key from chain key

The ring signature algorithm must meet: If w, x, y, x are not equal, then

RVrf(Gˆx, Gˆy, Gˆz, m, Rsig(x, Gˆx, Gˆy, Gˆx, m)) == RVrf(Gˆx, Gˆy, Gˆz, m, Rsig(y, Gˆx, Gˆy, Gˆx,
m)) == RVrf(Gˆx, Gˆy, Gˆz, m, Rsig(z, Gˆx, Gˆy, Gˆx, m)) == true

then

RVrf(Gˆx, Gˆy, Gˆx, m, Rsig(w, Gˆx, Gˆy, Gˆz, m)) == false

signal-IDAKE (Online interactive deniable key exchange)

If both communication parties are online, signal-IDAKE can be used to initialize the basic material required
for Double Ratchet through 5-way handshakes. Noted that all data except public parts of pre keys GˆE[a]
and GˆE[b] are hidden in encrypted channels, and a ring signature algorithm is applied to authenticate the
identity.

Before the handshake, Alice and Bob hold their private part of identity keys I[a] and I[b] respectively, as well
as the constants defined in the protocol, such as G, C [0] ~ C [7]. Alice initiates signal-IDAKE with Bob as
follows:

• Alice
1. Generate E[a]=Rng(), calculate GˆE[a] and D[a]=Dgst(GˆE[a]);
2. Send D[a] to Bob;

• Bob
1. Generate E[b]=Rng(), calculate GˆE[b];
2. Send GˆE[b] to Alice;

• Alice
1. Calculate S=GˆE[a]E[b], k[0]=KDF(C[0], S), k[1]=KDF(C[1], S), k[2] =KDF(C[2], S);
2. Send {GˆE[a], CE[0]=SymE(k[0], {GˆI[a], ID[a]})} to Bob;

Neither party can generate its own pre key based on the other party’s pre key as vault1317/signal-dakez
follow the OTRv3 approach.

• Bob
1. Verify Dgst(GˆE[a])==D[a];
2. Calculate S=GˆE[a]E[b], k[0]=KDF(C[0], S), k[1]=KDF(C[1], S), k[2]=KDF(C[2], S);
3. Calculate {GˆI[a], ID[a]}=SymD(k[0], CE[0]);
4. Calculate T=KDF(C[3], GˆI[a] ||GˆI[b]);
5. Calculate P[b]=Rsig(I[b], GˆI[a], GˆI[b], GˆE[a], (C[4]||ID[a]||ID[b]||GˆE[a] ||GˆE[b] ||T));

13

6. Send to Alice CE[1]=SymSE(K[1], {GˆI[b], ID[b], P[b]});
• Alice

1. Calculate {GˆI[b], ID[b], P[b]}=SymSD(K[1], CE[1]);
2. Verify RVrf(GˆI[a], GˆI[b], GˆE[b], (C[4]||ID[a]||ID[b]||GˆE[a] ||GˆE[b] ||T), P[b])==true;
3. Calculate T=KDF(C[3]||GˆI[a] ||GˆI[b]);
4. Calculate P[a]=Rsig(I[a], GˆI[a], GˆI[b], GˆE[b], (C[5]||ID[a]||ID[b]||GˆE[a] ||GˆE[b] ||T));
5. Send to Bob CE[2]=SymSE(k[2], P[a]);

The ring signature here uses three public keys. For Alice, because the private keys I[a] and E[a] are both
in her possession, she can be sure that P[b] is exactly issued by Bob using I[b], but because of this, she
cannot prove to others that P[b] was not signed by herself with I[a] or E[a]. As a result, communication
participants can use this to determine the identity of the other party, but they cannot prove it to a third
party. The authentication information exchanged in the last three handshake is respectively encrypted with
three symmetric keys derived from the shared secret and then transmitted to prevent them from leaking out
of the session.

• Bob
1. Calculate P[a]=SymSD(k[2], CE[2]),
2. Verify RVrf(GˆI[a], GˆI[b], GˆE[b], (C[5]||ID[a]||ID[b]||GˆE[a] ||GˆE[b] ||T), P[a])==true;

So far, Alice and Bob have received the same shared secret S, the peer’s pre key GˆE[b] and GˆE[a] and the
public part of identity key GˆI[b] and GˆI[a]. The shared secret and pre key can then be used in the Double
Ratchet protocol.

signal-ODAKE (Offline interactive deniable key exchange)

When one of the two communicating parties is offline, and the online party holds the other party’s long-lived
authentication public key beforehand, this protocol can be used to initiate an offline session to leave a message
to the other party. The offline message is cached on the server and received after the receiver goes online. In
order to establish an offline session, it is necessary to publish some pre keys on the server, but for the sake of
privacy, the pre key bundle does not include the public part of the long-term identity key of the publisher.

Before the handshake, Alice already holds their own private part of the identity key I[a], and Bob’s public
part of the identity key GˆI[b] (such as the cached result after a signal-IDAKE is completed). Alice will
initialize signal-ODAKE with Bob as follows:

• Bob
1. Generate Q[b,j]=Rng(), and optional one-time pre keys E[b,0]=Rng(),. . . and calculate

D=DSig(I[b], GˆQ[b,j])
2. Publish the pre key bundle {ID[b], j, GˆQ[b,j], D, GˆE[b,0],. . . } to the server

• Alice
1. Generate E[a,0]=Rng(), E[a,1]=Rng(),
2. Because Bob is offline, signal-IDAKE cannot be used, so get the pre key bundle published by Bob

from the server, and select one of the one-time pre keys GˆE[b,i], and its subscripts i, and GˆQ[b,j]
corresponds to the subscript j,

3. Verify that DVrf(GˆI[b], GˆQ[b,j], D)==true,
4. Calculate S=(GˆE[b,i]E[a,0] ||GˆQ[b,j]E[a,0] ||GˆI[b]E[a,0]), k[0]=KDF(C[6], S), k[1]=KDF(C[7],

k[0]) So far, Alice has obtained the shared secret S and a pre key GˆE[b,i]
5. Calculate T=KDF(C[3]||GˆI[a] ||GˆI[b]), M=Mac(k[1], (C[5]||i||ID[a]||ID[b]||GˆE[a,0] ||GˆE[b,i]

||T)), P=Rsig(I[a], GˆI[a], GˆI[b], GˆE[b,i], (C[5]||i||ID[a]||ID[b]||GˆE[a,0] ||GˆE[b,i] ||T)),
CE=SymSE(k[0], {GˆI[a], ID[a], M, P}),

6. Assemble H={GˆE[a,0], i, j, CE}
7. Send {H, payload. . . }, where payload is the intact encrypted message generated by the Double

Ratchet protocol initialized with S and E[a,1], GˆQ[b,j].
• Bob (Getting online)

1. Find E[b,i] and Q[b,j] from the local session storage according to i, j

14

2. Calculate S=(GˆE[a,0]E[b,i] ||GˆE[a,0]Q[b,j] ||GˆE[a,0]I[b]), k[0]=KDF(C[6], S), k[1]=KDF(C[7],
k[0])

3. Calculate {GˆI[a], ID[a], M, P}=SymSD(k[0], CE), T=KDF(C[3] ||GˆI[a] ||GˆI[b]),
4. Verify that M==Mac(k[1], (C[5]||i||ID[a]||ID[b]||GˆE[a,0] ||GˆE[b,i] ||T)), RVrf(GˆI[a], GˆI[b],

GˆE[b,i], (C[5]||i||ID[a]||ID[b]||GˆE[a,0] ||GˆE[b,i] ||T), P)==true,

Now, Bob can use S and GˆE[a,1], Q[b,j] to initialize Double Ratchet, decrypt the payload and subsequent
messages.

Initialize the Double Ratchet with the key material obtained from the handshake

Unlike OTRv3, the core iteration of Double Ratchet is asymmetric. The way to maintaining a normal Double
Ratchet communication shall meet the following requirements:

1. The root key is numbered according to the number of iterations (executing RKCC() operation), and
the numbers of the two sides always differ by plus or minus 1.

2. Each message contains the public part of the pre key in the sender chain.
3. If the root key number of the message sender is larger, the other party will iterate the root key twice

after receiving the message (then the other party’s root key number will be greater than itself), which
are used to reset the receiver chain and sender respectively chain.

4. If the root key number of the message sender is small, the root key of the other party will not be
changed, but the sender chain and receiver chain will continue to be iterated.

Therefore, the Double Ratchet protocol must be initialized in an asymmetric manner after the handshake:
After the handshake, Alice holds: S, E[a][0], GˆE[b][0]; Bob holds: S, E[b][0], GˆE[a][0] .

Alice: E[a][1]=Rng(), (r[0], k[0]) = SCDK(S), (r[1], k[1]) = RKCC(r[0], Gˆ(E[a][1]E[b][0])), sender chain
sc[a][0]{s, c} = (E[a][1], k[1]), receiver chain rc[a][0]{p, c} = (GˆE[b][0], k[0]).

That is, Alice needs to iterate the root key one more time.

Bob: (r[0], k[0]) = SCDK(S), sender chain sc[b][0]{s, c} = (E[b][0], k[0]), the receiver chain is not generated
immediately.

After receiving the message, if it is found that the pre key GˆE in the message is not equal to any pre key
recorded in the receiver chain, the party will

(r[n+1], k[n+1]) = RKCC(r[n], Gˆ(E*sc.s)), generate a new pre key E’=Rng(), (r[n+2], k[n+2]) =
RKCC(r[n+1], Gˆ(EE’)), sc = (E’, k[n+2]), rc = (GˆE, k[n+1]).

If Alice sends the message first, because Bob has not initialized the receiver chain, it will trigger bob to
iterate their root key twice to update the chain key; if Bob sends the message first, because their sender chain
corresponds to the receiver chain of Alice, only the chain key is iterated.

We can find that after Double Ratchet is initialized in this way, any party sending a message first will not
destroy the consistency of the context, so in theory, after IDAKE, either party can choose to iterate the root
key one more time when initializing Double Ratchet. However, for security reason, the chain key should be
updated in time to avoid excessive damage to the backward secrecy. Therefore, in Axolotl, we chose to let
Alice who sent the first message iterate the root key one more time. Our ODAKE inherited this philosophy.
At the same time, we also choose to let the Alice that initiated the IDAKE as the party to iterate the root
key one more time.

UKS issue
A paper pointed out that TextSecure, the predecessor of Signal, allows an “Unknown key share” attack, that
is, Alice helps Eve and Bob establish a conversation, but makes Bob think he is in a conversation with Alice.
But the “attack” in the original text is based on extremely loose management of public key fingerprints. If
the other party already trusts one of our public keys, sending a new public key to the other party through
the session established by the trusted public key shall be regarded as a guarantee action equivalent to issuing

15

https://eprint.iacr.org/2014/904.pdf

a certificate. On this basis, not only is Eve’s public key regarded as Alice’s own public key to be “guaranteed”
to Bob, but also allowed Eve to use alice’s own account, which is equivalent to giving Eve the opportunity
to replace alice’s identity. This approach is more to let Eve attack Alice theirself than an attack to Bob.
Therefore, we only consider whether Alice might carry out such an attack without guaranteeing Eve’s public
key.

In fact, the aforementioned attacks in dakez-18 against OTRv3 and Axolotl’s lack of online deniability can
indeed be regarded as a UKS attack carried out without guaranteeing the public key of others, but it is very
difficult in practice, either requiring Eve hands the intermediate result over to Alice for signature, and Eve
uses the signed result to complete the handshake, or Eve should ask Alice to forward messages to Bob for her.
The former approach places smaller burden on Alice, and Alice does not need to intervene in the conversation
after generating the signature, but it is only suitable for offline handshake scenarios (for simplicity, assume
that Alice and Eve hold and trust each other’s public keys): Eve directly Establish a conversation with Bob
through ODAKE, but with the help of Alice, pretend to be Alice, Eve needs to assemble the ring signature
payload:

Payload = (C[5]||i||ID[a]||ID[b]||G ˆ E[a,0]||G ˆ E[b,i]||KDF(C[3]||G ˆ I[a]||G ˆ I[b]))

and send it to Alice, and Alice sends her own public key GˆI[a], and signature result P=Rsig(I[a], GˆI[a],
GˆI[b], GˆE[b,i], Payload) back to Eve so that she can complete the handshake. However, the result of such
a lot of trouble is only that Eve can send offline messages to Bob in the name of Alice. If Bob decides to
re-handshake with IDAKE or ODAKE, Eve, because of not holding I[a], is either unable to complete IDAKE
thus exposed, or Bob’s reply could not be decrypted because the ODAKE could not be completed. From
this point of view, as long as the policy prohibits the conversion of offline sessions being converted to online
sessions, although UKS cannot avoid it, the harm can be minimized.

Future
Although the vault1317/signal-dakez protocol does everything in its power to achieve deniability and public
key concealing (key exchange without revealing the identity/fingerprint). It doesn’t make sense to use the
machine in our daily life if its privacy can’t not be protected. Cypherpunk believes that this is the only way
to protect the privacy for our machines. The current version still have some unfinished features:

1. The current version has not yet completely concealed the client ID (device ID) in an encrypted session
because Axolotl requires the client to identify the instance of the client from which the ciphertext
originates before the encryption. However, in fact, at this stage, we only need to distinguish instances
from each other so that we can define “external id” and “internal id” with different functions, where
the internal id is actually corresponding to the public key and changed along with the public key, and
“external id” resembles an OTR instance tag that is generated randomly each time the client logs on,
provided that multiple clients online at the same time has different “external id”. The specific design
and connection with ODAKE will be completed in the future.

2. The current version does not have any modifications in the Double Ratchet scheme, that is, it will be
saved in the secondary storage every time the session context changes, e.g: sqlite database update to
comply with internal API of libsignal-protocol-c. In future versions, a mechanism will be introduced
that does not save the context of the session, but only saves the necessary parameters and disables the
shift between offline and online sessions.

3. The long-term version will follow OTR, which is convenient for forging a message and provides tools for
counterfeiting by utilizing symmetric encryption mode.

4. The current version only demonstrated the vault1317/signal-dakez protocol based on UNIX domain
socket. The real-life implementation will support mature and popular communication protocols. As far
as we can tell is the protocol is the one which must support federation.

16

https://www.cypherpunks.ca/%7Eiang/pubs/dakez-popets18.pdf

Gratitude
Thanks for the work of cypherpunk and 0ldsk00l hackers in past 40 years, specially the free software projects
that use cryptography to protect users’s security and privacy. Special thanks to the project and papers this
project relys on which is very very enlightening for all of us.

• OTRv3
• OTRv4
• Axolotl a.k.a “Signal Protocol”
• libsignal-protocol-c
• protobuf-c
• OpenPGP
• olm
• OMEMO
• Proteus
• OTRv4
• axc
• libomemo
• lurch
• libgcrypt
• libevent
• GNU Readline
• Improved Strongly Deniable Authenticated KeyExchanges for Secure Messaging
• How Secure is TextSecure?
• A Formal Security Analysis of the Signal Messaging Protoco
• The X3DH Key Agreement Protocol
• The Double Ratchet Algorithm
• The XEdDSA and VXEdDSA Signature Schemes
• Deniable Authentication and Key Exchange
• Deniable Key Exchanges for Secure Messaging
• One-round Strongly Secure Key Exchange withPerfect Forward Secrecy and Deniability
• Ed25519 to Curve25519
• May the Fourth Be With You: A Microarchitectural Side ChannelAttack on Several Real-World

Applications of Curve25519
• Curve25519:newDie-Hellmanspeedrecords

17

https://OTR.cypherpunks.ca/
https://github.com/OTRv4/OTRv4
https://signal.org/docs/
https://github.com/signalapp/libsignal-protocol-c
https://github.com/protobuf-c/protobuf-c
https://www.openpgp.org/
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/olm.md
https://xmpp.org/extensions/xep-0384.html
https://github.com/wireapp/proteus#proteus
https://github.com/OTRv4/OTRv4
https://github.com/gkdr/axc.git
https://github.com/gkdr/libomemo.git
https://github.com/gkdr/lurch.git
https://www.gnupg.org/related_software/libgcrypt/
https://libevent.org/
https://www.gnu.org/software/readline/
https://www.cypherpunks.ca/%7Eiang/pubs/dakez-popets18.pdf
https://eprint.iacr.org/2014/904.pdf
https://eprint.iacr.org/2016/1013.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/xeddsa/xeddsa.pdf
https://diraimondo.dmi.unict.it/wp-content/uploads/papers/deniability-ake.pdf
https://www.cypherpunks.ca/~iang/pubs/dake-ccs15.pdf
https://eprint.iacr.org/2011/300.pdf
https://doc.libsodium.org/advanced/ed25519-curve25519
https://eprint.iacr.org/2017/806.pdf
https://eprint.iacr.org/2017/806.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf

	vault1317/signal-dakez: An authenticated key exchange protocol with a public key concealing and a participation deniability designed for secure messaging
	Abstract
	Introduction of backgrounds
	OTRv3

	Axolotl a.k.a ``Signal Protocol''
	X3DH is unable to apply any protection to public keys
	Double Ratchet session contexts stored in secondary storage are prone to stealing and forensic
	The immutable client id intensifies identity exposure
	The draft of OTRv4

	A survey for various e2e encryption protocols
	vault1317/signal-dakez
	Improvement
	Digital Signature Algorithm xed25519
	Terminology
	curve25519 and X25519
	Edwards25519
	ed25519-modified
	Convert public and private keys between curve25519 and edwards25519 forms
	The consideration of XEd25519

	rsig-(x)ed25519
	The common elements of DSA species
	The libsignal-protocol-c's implementation of mathematical objects in ed25519-modified
	Ring signature
	Interface with libsignal-protocol-c

	vault1317/signal-dakez
	definition:
	signal-IDAKE (Online interactive deniable key exchange)
	signal-ODAKE (Offline interactive deniable key exchange)
	Initialize the Double Ratchet with the key material obtained from the handshake

	UKS issue
	Future
	Gratitude

