
Journal manuscript No.
(will be inserted by the editor)

Assessing Lightweight Block Cipher Security using
Linear and Nonlinear Machine Learning Models

Ting Rong Lee1, Je Sen Teha,1, Jasy Liew
Suet Yan1, Norziana Jamil2, Jiageng Chen3

1School of Computer Sciences, Universiti Sains Malaysia
2Department of Computing, College of Computing and Informatics, Universiti Tenaga

Nasional
3School of Computer, Central China Normal University

Received: date / Accepted: date

Abstract In this paper, we investigate the use of machine learning classifiers to
assess block cipher security from the perspective of differential cryptanalysis. The
models are trained using the general block cipher features, making them gener-
alizable to an entire class of ciphers. The features include the number of rounds,
permutation pattern, and truncated differences whereas security labels are based
on the number of differentially active substitution boxes. Prediction accuracy is
further optimized by investigating the different ways of representing the cipher
features in the dataset. Machine learning experiments involving six classifiers (lin-
ear and nonlinear) were performed on a small scale generalized Feistel structure
(GFS) cipher as a proof-of-concept, achieving prediction accuracy results of up to
93%. When predicting the security of unseen cipher variants, prediction accuracy
results of up to 71% was obtained. Our findings indicate that nonlinear classi-
fiers are better suited for the prediction task. We then apply the best-performing
models on a full-scale lightweight GFS cipher, TWINE. By training the nonlin-
ear models (k-nearest neighbor and decision tree classifiers) using data from five
other GFS ciphers, we obtained an accuracy of up to 74% when labeling data from
TWINE. In addition, the trained models could generalize to a larger number of
rounds of TWINE despite being trained using data obtained from fewer rounds.

Keywords Block cipher · Classfier · Cryptanalysis · Encryption · Machine
Learning · Security

1 Introduction

Block ciphers are symmetric-key encryption algorithms, using a single secret key
for both encryption and decryption tasks. A plaintext undergoes multiple rounds of
key-dependent transformations to produce the resulting ciphertext. Block ciphers
are designed using a variety of well-studied and security proven structures such
as substitution-permutation networks (SPN), generalized Feistel structure (GFS)
and Addition-Rotation-XOR (ARX). Recently, the design of compact lightweight
block ciphers has become the focus of the cryptographic community due to the

ae-mail: jesen teh@usm.my



2

prevalence of highly constrained Internet of things devices [1, 2]. Block cipher se-
curity is usually evaluated on a trial-by-fire basis, whereby newer ciphers will be
subjected to various attacks by cryptanalysts to ascertain their security levels.
Resistance against differential cryptanalysis has become one of the de facto re-
quirements when it comes to block cipher security. Cryptanalysts use searching
algorithms [3] or mathematical solvers [4] to identify differential trails that occur
with sufficiently high probability. These trails are then used as distinguishers in a
key recovery attack. However, these algorithms or solvers become more computa-
tionally intensive as the number of rounds or block size increases.

As an alternative, researchers have explored the use of machine learning mod-
els for cryptanalytic purposes. Unlike other cybersecurity fields like intrusion [5],
malware detection [6] or security analysis of security protocols [7], applications of
machine learning in symmetric-key cryptanalysis is still relatively limited. Early
applications mainly consist of training machine learning models to emulate the
behaviour of ciphers given the assumption of a fixed secret key. For example in [8],
a neural network was trained to encrypt data as simplified DES (SDES). Then,
the cryptanalyst would be able to extract secret key information given plaintext-
ciphertext pairs. A similar attempt using neural networks was used to perform
known plaintext attacks on DES and Triple-DES in [9], whereby the neural net-
works were capable of decrypting ciphertexts without knowledge of the secret key.
However, this approach has limited practicality as the neural networks were trained
using plaintexts and ciphertexts corresponding to a specific key. If a different key
is used, the model would have to be retrained using a separate dataset.

The same approach was used to cryptanalyze lightweight block ciphers, FeW
and PRESENT [10, 11] with limited success. Neural networks were trained, val-
idated and tested using plaintexts, ciphertexts and intermediate round data all
generated using the same encryption key. The trained networks were unable to
learn the behaviour of the block ciphers, achieving an accuracy of approximately
50%. Generally, the use of machine learning algorithms to cryptanalyze ciphers
in a straightforward manner were only successful in older, classical ciphers. As an
example, [12] trained a neural network to extract the encryption keys of Caesar,
Vignere poly-alphabetic and substitution ciphers. Generative adversarial networks
were also used to crack these classical ciphers in [13].

A more practical approach is the use of machine learning algorithms as cryp-
tographic distinguishers. The classification capabilities of machine learning algo-
rithms have been used to identify cryptographic algorithms from ciphertexts [14].
Classifiers were trained using known ciphertexts generated from a set of five
commonly used cryptographic algorithms. A high identification rate of 90% was
achieved if the same key was used for both training and testing ciphertexts. An-
other approach compared the performance of five different machine learning algo-
rithms when distinguishing encrypted from unencrypted traffic [15]. They found
that the C4.5 decision tree-based classification algorithm performed the best,
achieving a detection rate of up to 97.2%.

In [16], a neural network was used to distinguish between right and wrong
subkey guesses, similar to how a differential or linear distinguisher would be used
for key recovery in traditional cryptanalysis. When the neural network is trained
using plaintext-ciphertext pairs generated from a wrong key guess, it will pro-
duce random outputs that greatly differ from a cipher’s actual outputs, whereas
training using data generated from a correct key guess will lead to outputs with



3

fewer errors. This allows a cryptanalyst to distinguish between right and wrong
key guesses. The approach was tested on a hypothetical Feistel cipher as a proof of
concept. [17] introduced a recurrent neural network-based approach for identifying
differentials for Serpent by modelling the search as a multi-level weighted directed
graph. [18] later introduced an attack on Speck32/64 using deep learning. A neu-
ral network model was trained using input and output differences corresponding
to random keys, then used as a distinguisher. The proposed method outperforms
existing differential attacks in terms of time complexity. However, it is unknown if
the inclusion of other block cipher features could make the attack more efficient.

So far, the machine learning approaches are cipher-specific rather than be-
ing generalizable. A cipher-specific approach is one that would require the entire
training process to be repeated if a different cipher needs to be analyzed. To over-
come this problem, we propose a generalizable approach to assess a block cipher’s
resistance against differential cryptanalysis using machine learning1. Rather than
predicting or extracting key information, we investigate the capability of linear and
nonlinear machine learning classifiers in determining if a block cipher is secure or
insecure based on the number of active S-boxes. These classifiers were trained us-
ing various cipher features that include truncated input and output differences,
permutation pattern, and the number of rounds. Data was generated using a mod-
ified Matsui’s branch-and-bound algorithm [3]. Apart from determining the most
suitable machine learning model and hyperparameters for the security prediction
task, we also look into how data representation can affect prediction accuracy. Pre-
liminary experiments were performed on 4-branch GFS ciphers to showcase the
generalizability of the proposed approach to an entire class of block ciphers, rather
than a specific one. An in-depth comparison of six classifiers (linear and nonlin-
ear) was performed. Our findings show that nonlinear classifiers outperform linear
classifiers due to the nonlinear transforms involved in block ciphers, achieving a
prediction accuracy of up to 93% when predicting seen cipher variants and up to
71% when predicting unseen cipher variants. We then apply the best-performing
classifiers to predict or label data from full-scale (16-branch) lightweight GFS ci-
phers. We train two nonlinear classifiers (k-nearest neighbor and decision tree)
using data from five other GFS ciphers. When labeling data samples from ciphers
that the models have seen before, they were able to achieve an accuracy of up
to 97%. When assessing the lightweight cipher TWINE which was not used for
training, the best performing classifier achieved an accuracy of up to 74%. The
classifiers were also able to accurately label data obtained from the 9th round of
TWINE despite being trained with data from round 1-8 of the five GFS ciphers.

The rest of this paper is structured as follows: Section 2 introduces prelim-
inary information required to understand the proposed work. Sections 3 and 4
then provide the detailed steps, experimental setup and results for the small-scale
(4-branch) and full-scale (16-branch) GFS experiments respectively. Section 5 pro-
vides a discussion of our findings and its significance. The paper is concluded in
Section 6 which includes some future directions of this work.

1Supplementary code for this paper is available at https://github.com/trlee/
ml-block-cipher

https://github.com/trlee/ml-block-cipher
https://github.com/trlee/ml-block-cipher


4

Fig. 1 1 round of a 4-branch GFS with 4-bit S-box

2 Preliminaries

2.1 Differential Cryptanalysis and Active S-boxes

Differential cryptanalysis is observes the propagation of an XOR difference of a
pair of plaintexts (input difference) through a cipher to produce a corresponding
pair of ciphertexts with a specific XOR difference (output difference). We define
an input difference as

∆X = X ′ ⊕X” (1)

∆X = [∆X0,∆X1, ..., ∆Xi−1], (2)

where X ′ and X” are two individual plaintexts. An output difference is similarly
defined where Y ′ and Y ′′ are the corresponding ciphertexts. The pair, {∆X,∆Y }
is known as a differential pair. For an ideal cipher, given any particular input
difference ∆X, the probability of any particular ∆Y occurring will be exactly 1

2b

where b is the block size. A successful differential attack requires a differential,
∆X → ∆Y with a probability far greater than 1

2b .
An S-box is defined to be differentially active if its input is a non-zero difference.

Rather than computing the concrete differential probability for a given differential
pair, resistance against differential cryptanalysis can be estimated by calculating
the number of active S-boxes. The estimated probability that input differences
will be mapped to output differences can then be calculated based on the S-box’s
differential distribution table. The mapping of differences holds with a certain
probability, 2−p. By taking into consideration the best-case (from the attacker’s
perspective) S-box differential probability, a block cipher is considered to be secure
if 2AS×p ≥ 2b, where AS denotes the total number of active S-boxes. Figure 1
depicts an example of S-box activation for a 4-branch GFS cipher, whereby the
left S-box is active.



5

An interesting property of differential cryptanalysis that we leverage upon
in this work is the effect of round keys, rki being negated through the use of
differences. Any random key can be used to generate differential pairs, thus the
resulting dataset for machine learning experiments is not catered to a specific secret
key. In addition, we are also able to generate an exhaustive dataset by taking
advantage of truncated differentials [19]. We can truncate the input differences
based on the size of the S-box. For example, plaintext or ciphertext differences for
a b-bit block cipher with s-bit S-boxes can be truncated to t-bit differences, where
(t = b

s ). Thus, each bit in the truncated difference denotes a non-zero difference
corresponding to each s-bit word in the plaintext (or ciphertext) block. An example
of how a differential pair (∆X,∆Y ) is mapped to a truncated differential pair
(∆X̂,∆Ŷ ) is shown in Figure 1. However, the use of such a truncated difference
would only be applicable to block ciphers that use a word-based permutation
rather than bitwise permutation.

2.2 Matsui’s Branch-and-Bound Differential Search

Matsui’s branch-and-bound is an algorithm used for deriving the best differential
or linear paths for differential and linear cryptanalysis. It is applicable to block
ciphers that have S-box-like tables. The algorithm goes through all possible itera-
tions of the differential paths, then prunes paths that have probabilities less than
Bn. Bn is defined as the best probability the running algorithm has found so far.
An initial value has to be set for Bn and it should be as close to the actual prob-
ability Bn as possible to eliminate more non-promising paths earlier on. The Bn

is constantly updated according to the best probability of the paths found so far
which effectively reduces the potential search space. The process is repeated until
all the possible paths with respect to the branching rules and bounding criteria
have been enumerated.

In the proposed work, we use a variant of Matsui’s algorithm as described
in [3]. We further simplify the algorithm as we only need the number of differ-
entially active S-boxes rather than the concrete differential probability for our
experiments. This greatly increases the speed of the search, which allows us to re-
move all bounding restrictions to generate large datasets for training and testing
purposes.

2.3 Generalized Feistel Structure

GFS is the generalization of the Feistel structure that was first used in the block
cipher Lucifer, the predecessor to DES. It divides an input into d blocks, where
d > 2. As a proof-of-concept, our proposed work is applied to a 4-branch GFS ci-
pher (d = 4), similar to the one in Figure 1. We then extend our work to full-scale
16-branch (d = 16) GFS ciphers. By using a GFS cipher with a word-based per-
mutation, we can use truncated differences in our experiments. A 4-branch GFS
effectively represents ultralightweight block ciphers with 16- or 32-bit blocks de-
pending on whether 4-bit or 8-bit S-boxes are used whereas a 16-branch GFS can
represent a lightweight 64-bit block cipher such as TWINE or a 128-bit block ci-
pher. Regardless of which, security analysis based on the number of active S-boxes



6

is usually performed based on the highest differential probability for a given S-box.
For example, TWINE and AES S-boxes have the best differential probabilities of
2−2 and 2−6 respectively.

2.4 Machine Learning Classifiers

The proposed work investigates the performance of linear and nonlinear classifiers
when predicting the security of block ciphers. Essentially, the goal is to have the
classifiers learn the best hypothesis function (i.e. linear or nonlinear) to segregate
the secure and insecure classes. A machine learning model refers to a trained classi-
fier with specific features, machine learning algorithm and hyperparameters. This
section describes the three linear and nonlinear classifiers used in our experiments.

2.4.1 Linear Classifiers

As its name suggests, linear classifiers solve classification tasks based on a linear
combination of features. The goal of linear classifiers is to segregate, as accurately
as possible, the training data into their respective classes using a linear function
(i.e., a straight line). We utilize three linear classifiers in our experiments: Ten-
sorflow (TF) Linear classifier, and scikit-learn’s logistic regression and single-layer
perceptron.

Linear models predict the probability of a discrete value/label, otherwise known
as class, given a set of inputs. For the context of binary classification, the possible
labels for the problem will only be 0 or 1. The linear model computes the input
features with weights and bias. The weights indicate the direction of the correlation
between the input features and the output label, whereas the bias acts as the offset
in determining the final value of the label, should its conditions be fulfilled.

Logistic regression models the probabilities of an observation belonging to
each class using linear functions and is generally considered more robust than reg-
ular linear classifiers. Unlike a linear function used by a linear classifier, the logistic
regression model uses what is referred to as a sigmoid function, and maps any real
value of a problem into another value between the boundary of 0 and 1. For the
case of machine learning, sigmoid functions are typically used for mapping the pre-
dictions of a model to probabilities. This structure is shared by both TF’s linear
classifier and scikit-learn’s logistic regression models. Both models differ in
terms of how the data is represented and used for training. In TF’s linear classifier,
training samples are pooled from the training dataset randomly in batches, and
steps are defined by the total number of batch sampling that has to be performed
before moving to the next epoch while scikit-learn’s logistic regression model fits
the data directly and trains its model throughout the epochs.

Single-layer perceptron is a linear classifier based on a threshold function

f(x) = w(x) + b, (3)

where f(x) is the output value, x is a real-valued input vector, w is the weight of the
vector and b is the bias. When it comes to a binary classification task, the threshold
function classifies x as either a positive or negative instance, with the weight and
vector being the primary variable in determining the label, and bias is an additional



7

paramter that can possibly adjust the label. All aforementioned linear classifiers
are tuned with respect to the following hyperparameters for optimal performance:

– Stopgap: The total number of iterations that the model needs to undergo with
no improvements before stopping the training process early.

– Epochs: The total number of passes the model has to undergo throughout the
training data batches.

2.4.2 Nonlinear Classifiers

Not all data can be segregated naturally using a linear function. A nonlinear clas-
sifier allows the machine learning model to learn a nonlinear function or decision
boundary to best separate the training data into two classes. The nonlinear clas-
sifiers used in this study are scikit-learn’s k-nearest neighbors, decision tree and
multi-layer perceptron.

k-nearest neighbor (KNN) is a type of instance-based learning that classi-
fies new data based on majority voting of k number of training instances closest
to it. Hyperparameters that can be tuned to optimize performance include:

– NN : The value of k as explained earlier. NN refers to the number of neighbors
to be used for the k-neighbors query.

– Distance: This is measure used to determine the distance between two neigh-
bors. The default Minkowski distance is used for all experiments.

– Algo: Algorithm used to compute the nearest neighbors for the model. Three
options include KDTree, BallTree or brute force.

– LeafS : Leaf size passed to the KDTree or BallTree, which can affect the speed
of the tree construction and query, as well as memory required.

Decision tree classifiers are used to predict a class or value of the target
variable by learning simple decision rules inferred from the training data. The
model operates on the basis of “branching” from one decision node to another one
deeper down until it finally reaches its desired output. Its parameters include:

– Split : The strategy used to choose the split on each node, which can be either
best or random.

– LeafN : Maximum number of leaf nodes.
– Sample Split : Minimum amount of samples required to split an internal node.

Multi-layer perceptron (MLP) is a derivation of the perceptron model as
described in Section 2.4.1, with added functions such as error functions and back-
propagation to further improve performance of the model. The hyperparameters
that are tuned to optimize the model are as follows:

– Stopgap
– Epochs
– Activation: The function that determines the outputs of the nodes. The default

rectified linear function is used for all experiments.
– Hidden layers: The number of hidden layers of the neural network.
– Nodes per hidden layer : The number of nodes per hidden layer. We use a default

value of 100 nodes per hidden layer for all experiments.



8

3 4-branch GFS Experiments

3.1 Experimental Setup

All experiments were performed on computer with an Intel i5 2.4GHz CPU and
16GB RAM using Python 3.6.7, scikit-learn 0.22.2 and TensorFlow 2.2. Assessing
block cipher security based on its features is a supervised learning problem which
we framed as a binary classification task (1 for secure, 0 for insecure). We limit
the scope of this paper to linear and nonlinear classifiers, where Tensorflow’s (TF)
linear classifier model, scikit-learn’s single-layer perceptron and logistic regression
models were selected as linear classifiers, and KNN, decision tree and MLP were
selected as nonlinear classifiers. To optimize performance, we perform hyperparam-
eter tuning for each classifier. We also investigate the effect of data representation
on prediction accuracy, specifically how the permutation patterns are represented.

To investigate the feasibility of the proposed approach, we first perform pre-
liminary experiments on smaller-scale, 4-branch GFS ciphers before proceeding to
their 16-branch counterparts. This allows us to generate a large amount of train-
ing/testing data within a practical amount of time for all possible permutation
patterns. Each sample in the dataset used to train the machine learning classifiers
consist of block cipher-related features. They are labelled as secure or insecure de-
pending on the number of active S-boxes associated with the particular sample. For
the target 4-branch GFS ciphers, features include the truncated input difference
X̂, truncated output difference Ŷ , number of rounds, r and a word-based permu-
tation pattern, P , X̂, Ŷ and r are features shared by any block cipher whereas
P is commonly used in GFS ciphers. Each training sample essentially describes a
truncated differential trail from X̂ to Ŷ for r number of rounds that goes through
a GFS cipher with P permutation pattern. In our experiments, we use all 4! = 24
possible permutation patterns for a 4-branch GFS. This also implies that there are
24 possible variants of the GFS cipher. Each cipher variant can generate a large
set of data samples which consists of its truncated differential paths for different
number of rounds.

We utilize the branch-and-bound algorithm described in Section 2.2 to auto-
matically generate the dataset. The output of the branch-and-bound algorithm is
the number of active S-boxes, AS which will be used alongside a security margin
threshold, α to calculate the data labels (secure - 1, insecure - 0). If AS > rα,
the input sample is considered to be secure (labelled as 1) whereas if AS ≤ rα,
the input sample is considered to be insecure (labelled as 0). In other words, α
dictates the minimum number of active S-boxes per round for a block cipher to
be considered secure. α can be configured based on the desired security margin
that the cryptanalyst or designer requires. We want to ensure that α is selected to
be as strict as possible, while still allowing us to generate a balanced dataset for
training purposes. α = 1 is a loose bound, whereby a 16-bit and 32-bit cipher will
require at least 8 rounds and 16 rounds respectively to be considered secure. On
the other hand if α = 2, a 16-bit and 32-bit cipher will require at least 4 rounds
and 8 rounds respectively to be considered secure. Having α = 2 is too restrictive
as it requires all S-boxes to be active in every round. Thus, to ensure that the
security bound is sufficiently strict while capable of generating a balanced dataset,
we have selected α = 1.5. Some samples from the dataset are shown in Table 1
(note that actual values of AS are not used for training).



9

Table 1 Sample Dataset where α = 1.5

X̂ Ŷ P r AS Label

1010 1010 0123 8 16 Secure
0111 1101 1203 11 17 Secure
1111 0100 3021 12 9 Secure
0010 0010 0123 5 5 Insecure
1111 0101 3021 12 6 Insecure
1101 1100 3120 11 6 Insecure

Fig. 2 Experiment 1 - Phase 1/Phase 2 flow

Our experiments can be divided into three main phases: baseline setup, permu-
tation feature representation, and generalization. In Phase 1, a balanced dataset
(50:50) of 500000 samples are generated from all 24 variants of the GFS cipher.
Note that the all examples are randomly sampled from an exhaustive dataset. A
single integer is used to represent the entire permutation pattern. We denote this
method of representation as rep1. We compare the effect of the permutation rep-
resentation on model performance in Phase 2 where rep1 is compared with rep2
which represents the permutation as separate features (one integer to map each
truncated difference bit). As an example, the permutation pattern shown in Figure
1 can be represented by rep1 = {1230} or by rep2 = {1, 2, 3, 0}. For Phase 2, we
use the same 500000 samples from all 24 variants of the GFS cipher but with the
permutation feature transformed into rep2. Figure 2 depicts the experimental flow
for both Phase 1 and Phase 2.

The third phase depicted in Figure 3 involves generalizing to unseen cipher
variants. This phase reflects upon the capability of the trained machine learning
classifiers to predict the security level of these unseen ciphers. We define an un-
seen cipher variant as a block cipher whose data was not used to train the machine
learning classifiers. Thus, predicting the security of these unseen ciphers is analo-
gous to predicting the security of newly proposed ciphers. In Phase 3, we test the
classifiers’ performance on three different unseen block ciphers denoted as BC1,
BC2 and BC3. For each of these block ciphers, we generate a dataset consisting



10

Fig. 3 Experiment 1 - Phase 3 flow

of 80000 samples each. The difference between these datasets is the ratio of the
number of secure to insecure samples (1:0). The ratios are summarized as:

– BC1 - 1:3 (20000 to 60000)
– BC2 - 1:1 (40000 to 40000)
– BC3 - 3:1 (60000 to 20000)

BC1 represents an insecure block cipher design, BC2 represents a moderately se-
cure block cipher design whereas BC3 represents a secure block cipher design. In
order to generate sufficient samples that fulfil these ratios, four block cipher vari-
ants (or equivalently, four permutation patterns) are used, P = {0321, 1320, 2013, 3012}.
Thus, the training dataset consists of 500000 samples generated from only 20 out
of the 24 variants of the GFS cipher. A summary of the three main phases are as
follows:

– Phase 1 - Baseline Setup - The goal of this phase is to identify classifiers that
are best suited for the prediction task. An 80:20 train-test split is performed
on the dataset. Apart from the six classifiers, we also include a dummy clas-
sifier as a baseline model for performance comparison. Intuitively, the dummy
classifier should have a prediction accuracy of 50% as it is a randomly guessing
model that does not have any advantage in predicting security margins. For all
classifiers, we investigate various hyperparameter combinations to maximize
prediction performance. rep1 is used as the permutation representation.

– Phase 2 - Permutation Feature Representation - In this phase, we in-
vestigate the effect of rep1 and rep2 on prediction accuracy. We select the best
performing linear and nonlinear models (along with the optimal hyperparame-
ter values) from Phase 1 and repeat the train-test procedure using the dataset
generated from rep2.



11

– Phase 3 - Generalizability to Unseen Cipher Variants - This phase
consists of three separate experiments. In each one, we first train the machine
learning classifiers using 500000 samples from the 20 seen cipher variants. Then,
we separately test the performance of the models using the dataset from BC1,
BC2 and BC3. Unlike Phase 1, the training dataset will not contain a single
sample from these unseen cipher variants. Thus, the test results will indicate
if the classifiers are able to generalize to “new” ciphers with varying levels of
security. For this experiment, the type of permutation representation will be
selected based on results obtained in Phase 2.

Let S, TP , TN , FP , and FN represent the total number of samples, true pos-
itives, true negatives, false positives and false negatives respectively. The following
metrics are used to evaluate the performance of each classifier in which secure is
the positive class and insecure is the negative class:

– Accuracy (Acc): The sum of true positives and true negatives divided by the
total number of samples, TP+TN

S . Accuracy refers to the fraction of predictions
that the model has correctly made.

– Precision (Pre): True positives divided by the sum of true and false positives,
TP

TP+FP . Precision refers to the percentage of correctly classified samples out of
the total number of predictions made. We record the precision for both positive
and negative classes as they are both equally important from the cryptographic
perspective.

– Recall (Rec): True positives divided by the sum of true positives and false
negatives, TP

TP+FN . It represents the percentage of correctly classified samples
out of the total number of actual samples that belong to a particular class.
Similar to precision, we record the recall for both positive and negative classes.

– F1 score (F1): The harmonic mean of precision and recall, F1 = 2× Pre×Rec
Pre+Rec .

It is an accuracy measure that takes both precision and recall into considera-
tion.

We analyze the performance of the proposed models based on accuracy and F1
score. Accuracy reflects upon how well the models generally perform in the pre-
diction task whereas the F1 scores for each of the classes provide deeper insights
into prediction bias.

3.2 Experimental Results

3.2.1 Baseline Results

The prediction accuracy of the dummy classifier (50%) is used as a baseline to
determine which models have truly learnt to perform the classification task. In
general, all classifiers outperformed the dummy classifier with nonlinear classifiers
outperforming linear ones. The majority of classifiers performed well, achieving ac-
curacy values ranging from 69% to 93%. TF linear classifier underperformed (56%
accuracy) with a distinct bias towards predicting samples as insecure. Although
TF linear classifier and logistic regression are both based on the same machine
learning algorithm, the difference in their data sampling methods lead to a signif-
icant difference in prediction results. As for nonlinear classifiers, decision tree and



12

KNN have less biased predictions as compared to MLP, which is biased towards
the insecure class.

Overall, the best performing models are logistic regression for linear classifiers,
and KNN and decision tree for nonlinear classifiers. A summary of the results is
shown in Table 2 for which the optimal hyperparameters are listed below:

– TF Linear Classifier:
Stopgap = 350
Epochs = 750

– Other linear classifiers:
Stopgap = 1000
Epochs = 1000

– MLP:
Stopgap = 1000
Epochs = 1000
HiddenLayers = 4
Neurons per hidden layer = 100

– Decision Tree Classifier:
Split = random
LeafN = unlimited
SampleSplit = 2

– KNN:
NN = 4
Algo = BallTree
LeafS = 40

Table 2 Baseline Setup Results

Model F1 (Insecure) F1 (Secure) Accuracy

Dummy Classfier 0.50 0.50 0.50
TF Linear Classifier 0.71 0.15 0.56
Logistic Regression 0.66 0.72 0.69

Single-layer Perceptron 0.71 0.71 0.71
MLP 0.73 0.75 0.74

Decision Tree 0.95 0.85 0.93
KNN 0.95 0.83 0.92

3.2.2 Permutation Feature Representation

To study the impact of feature representation on prediction accuracy, we perform
experiments on the best linear classifier (single-layer perceptron) and all nonlin-
ear classifiers. The same set of optimal hyperparameter values described in Phase
1 were used. Results in Table 3 show that only MLP classifier has visible im-
provements when using rep2 rather than rep1. We conjecture that the use of rep2
improves upon the performance MLP due to its sensitivity to feature scaling. rep2
reduces the scale of the feature to a single integer in the range of [1,4] (although the
number of features is increased), allowing MLP to converge faster and avoid being



13

stuck in a local minimum. KNN and decision tree were able to achieve optimal
performance regardless of how the permutations were presented, while single-layer
perceptron saw a slight improvement. Based on these results, Phase 3 will rely
on rep2 as it has the potential to improve the performance of certain classifiers
without having an adverse effect on the rest.

Table 3 Comparison results for permutation feature representation

Model Perm F1 (Insecure) F1 (Secure) Accuracy

Single-layer
Perceptron

rep1 0.71 0.71 0.71
rep2 0.71 0.74 0.73

MLP
rep1 0.73 0.75 0.74
rep2 0.86 0.84 0.84

Decision Tree
rep1 0.95 0.85 0.93
rep2 0.95 0.85 0.93

KNN
rep1 0.95 0.83 0.92
rep2 0.95 0.83 0.92

3.2.3 Generalizability to Unseen Cipher Variants

The third phase is the most important one as it reflects upon the practicality of the
proposed approach. We expect the classifiers to perform better when predicting
unseen cipher variants that are insecure compared to secure ones. We also expect
the classifiers to generally perform poorer at making security predictions on unseen
cipher variants as compared to the ones that they have. As expected, all classifiers
do not perform as well as in the baseline experiments in Phase 1. Although linear
classifiers seem to be as accurate as nonlinear classifiers, a closer inspection of the
F1 scores indicate that the predictions made by linear classifiers are highly biased.
In fact, all of the linear classifiers predict nearly every sample as insecure, showing
that linear classifiers cannot generalize well to unseen block ciphers.

As for nonlinear classifiers, decision tree and KNN have the most unbiased re-
sults when predicting all unseen cipher variants but their performance is inversely
proportionate to the cipher’s security level. Generally, KNN outperforms decision
tree in all scenarios: 71% vs 69% for BC1, 62% vs 58% for BC2, and 56% vs 51%
for BC3. We can conclude that the best classifier for predicting the security of an
unseen cipher variant is KNN. A summary of the results is shown in Table 4 for
which all models use the same hyperparameter settings as in Phase 1, except for
decision tree classifier (Split = best, LeafN = unlimited, SampleSplit = 2).

4 16-branch GFS Experiments

4.1 Experimental Setup

All experiments were performed on the same computer with an Intel i5 2.4GHz
CPU and 16GB RAM using Python 3.6.7, scikit-learn 0.22.2 and TensorFlow 2.2.
The computational time required to generate sufficient training data for 16-branch



14

Table 4 Generalization Results

Cipher Model F1 (Insecure) F1 (Secure) Accuracy

BC1

TF Linear Classifier 0.86 0 0.76
Logistic Regression 0.86 0 0.76

Single-layer Perceptron 0.77 0.25 0.69
MLP 0.83 0.20 0.71

Decision Tree 0.69 0.64 0.69
KNN 0.82 0.26 0.71

BC2

TF Linear Classifier 0.68 0 0.52
Logistic Regression 0.68 0 0.52

Single-layer Perceptron 0.73 0.18 0.54
MLP 0.69 0.16 0.56

Decision Tree 0.77 0.36 0.58
KNN 0.66 0.52 0.62

BC3

TF Linear Classifier 0.44 0 0.28
Logistic Regression 0.44 0 0.28

Single-layer Perceptron 0.29 0.43 0.36
MLP 0.43 0.54 0.48

Decision Tree 0.46 0.48 0.51
KNN 0.51 0.62 0.56

GFS ciphers is exponentially higher than that of 4-branch ciphers. It is also not
practical to generate data for every possible permutation pattern (16! ≈ 2× 1013

possibilities). Thus, we have selected six 16-branch GFS ciphers for our exper-
iments. Apart from TWINE itself, which is the target cipher for generalization
experiments, five others were selected based on permutation patterns with opti-
mal cryptographic properties (full diffusion in 8 rounds and a minimum of 40 AS
after 20 rounds). The six permutation patterns for the chosen GFS ciphers are
shown in Table 5, with naming conventions for the permutations taken from [20].
The same modified branch-and-bound search is used to generate data samples.
Due to their underlying permutation patterns, these ciphers already achieve full
diffusion in 8 rounds. Thus, we limit the number of rounds to 8 to ensure that
data can be generated in an exhaustive manner within a practical amount of time
(approximately 1-2 days for 8 rounds). Generating the data in an exhaustive man-
ner allows us to perform random sampling without imposing any limits to the
inputs nor bounding criteria for the branch-and-bound search. For each cipher, we
generate 100000 samples, whereby 12500 samples are taken from each round of
the cipher. To determine if the machine learning models are able to generalize to
more rounds than they have been trained with, we generate an additional 100000
samples from the 9th round of TWINE. In total, we have three datasets that can
be summarized as follows:

– GFS(1,8) - 500000 samples from round 1-8 of five GFS ciphers (excluding
TWINE)

– TW(1,8) - 100000 samples from round 1-8 of TWINE
– TW9 - 100000 samples from round 9 of TWINE

The format of each data sample is similar to Table 1 but the input and output
truncated differences as well as the permutation are 16 words rather than 4. In
terms of feature representation, we found that using rep2 for both permutation
pattern and truncated differences led to better results. As the maximum number



15

Name Permutation Pattern, P

No. 5 5,2,9,4,11,6,15,8,3,12,1,10,7,0,13,14
No. 7 1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10
No. 9 1,2,11,4,9,6,15,8,5,12,7,14,3,0,13,10
No. 10 7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12
No. 12 1,2,11,4,15,8,3,6,7,0,9,12,5,14,13,10

TWINE 5,0,1,4,7,12,3,8,13,6,9,2,15,10,11,14

Table 5 16-branch permutation patterns

Fig. 4 Experiment 2 - Phase 1 flow

of AS per round for a 16-branch GFS is 8, the security margin threshold is set to
half, α = 4. For our experiments, we chose the KNN and decision tree classifiers
as they were the two best performing models based on our findings in Section 3.
The experiments are divided into two main phases:

– Phase 1 - Baseline Setup - The goal of this phase (depicted in Figure 4) is
to determine if machine learning classifiers are able to perform security predic-
tions for seen 16-branch block ciphers. The GFS(1,8) dataset is used, to which
an 80:20 train-test split is performed (400000 training samples, 100000 test
samples). Hyperparameter tuning is performed to obtain the best performing
models.

– Phase 2 - Generalizability to TWINE - The goal of this phase (depicted
in Figure 5) is to determine if machine learning models can be used for security
prediction for an actual unseen lightweight cipher, TWINE after being trained
using data from the five other GFS ciphers. The GFS(1,8) dataset is used
for training whereas TW(1,8) dataset is used for testing. We also compare the
performance of the classifiers when performing prediction for more rounds than
they have been trained for. This is performed by training the models using
the GFS(1,8) dataset and using the TW9 dataset for testing. Hyperparameter
tuning is performed again to obtain the best performing models.

We analyze the performance of the proposed models using the same accuracy and
F1 metrics as in Section 3. Additionally, we also compare the models based on the
area under the receiver operating characteristic (AUROC). As the TW9 dataset is
highly imbalanced (more secure samples as compared to insecure samples), AU-
ROC will provide better performance insights.



16

Fig. 5 Experiment 2 - Phase 2 flow

4.2 Experimental Results

4.2.1 Baseline Results

The best performing decision tree and KNN models achieved an accuracy of 97%
and 96% respectively. They were able to perform predictions with minimal biases
for both the secure and insecure classes as shown in Table 6. These results also
indicate that the machine learning models better at security prediction for 16-
branch GFS ciphers as compared to 4-branch ciphers. This can be attributed to
the larger number of features involved during training, 49 features (Input difference
- 16, Output difference - 16, Permutation - 16, Number of Rounds - 1) features as
compared to 7 features (Input difference - 1, Output difference - 1, Permutation - 4,
Number of Rounds - 1). Although decision tree slightly outperforms KNN in terms
of accuracy, KNN is more accurate in predicting the secure class as depicted in
the ROC curve shown in Figure 6. The optimal hyperparameters for both models
are listed below:

– Decision Tree Classifier:
Split = best
LeafN = unlimited
SampleSplit = 2

– KNN:
NN = 2
Algo = KDTree
LeafS = 100



17

Table 6 Baseline Setup Results for 16-branch GFS

Model F1 (Insecure) F1 (Secure) Accuracy

Decision Tree 0.97 0.97 0.97
KNN 0.97 0.96 0.96

Fig. 6 ROC curve for 16-branch baseline experiment (AUROCKNN = 0.989, AUROCDT =
0.969)

4.2.2 Generalizability to TWINE

This phase is an important one as it reflects upon the feasibility of the proposed
approach to be used in actual cryptanalytic settings. Naturally, we expect the
nonlinear classifiers to make more accurate predictions for the five GFS ciphers
that they have already seen as compared to TWINE. The results in Table 7 confirm
this notion as both decision tree and KNN did not perform as well as in the baseline
experiments when labeling data from TWINE. However, both models were still
able to generalize well to TWINE, with KNN and decision tree achieving accuracy
scores of 74% and 67% respectively. The ROC curve in Figure 7 clearly depicts
that KNN discriminates between secure and insecure classes better than decision
tree. The prediction results for TWINE in terms of both accuracy and bias were
also better than the generalization results for the unseen 4-branch ciphers, BC1,
BC2 and BC3.

GFS ciphers with strong permutation patterns such as TWINE will achieve full
diffusion after 8 rounds. Thus, a dataset generated entirely from the 9th round will
consist of mostly secure samples. This is the case for the TW9 dataset, which has
99918 secure samples but only 82 insecure samples. Due to the highly imbalanced
nature of this dataset, a comparison of accuracy scores shown in Table 8 cannot



18

Table 7 Generalization Results (TWINE) for 16-branch GFS (Round 1-8)

Model F1 (Insecure) F1 (Secure) Accuracy

Decision Tree 0.72 0.60 0.67
KNN 0.79 0.68 0.74

Fig. 7 ROC curve for TWINE (Round 1-8) experiment (AUROCKNN = 0.818, AUROCDT =
0.659)

reliably depict performance. However, the AUROC scores still indicate that KNN
greatly outperforms decision tree (0.818 vs 0.659) in terms of correctly predicting
the secure class. The ROC curve for the 9-round TWINE generalization experiment
is shown in Figure 8. We can conclude that the best classifier for predicting the
security of an unseen 16-branch cipher is KNN, even for a larger number of rounds
than it has been trained for. These results were obtained after a second round
of hyperparameter tuning which resulted in the same hyperparameter values for
decision tree but different values for KNN (NN = 8, Algo = KDTree, LeafS =
250).

Table 8 Generalization Results (TWINE) for 16-branch GFS (Round 9)

Model F1 (Insecure) F1 (Secure) Accuracy

Decision Tree 0.01 0.88 0.78
KNN 0.02 0.97 0.94



19

Fig. 8 ROC curve for TWINE (Round 9) experiment (AUROCKNN = 0.934, AUROCDT =
0.781)

5 Discussion, Practical Applications and Future Work

Overall, the experimental results showcased the feasibility of the proposed ap-
proach whereby classifiers were able to learn the relationship between block cipher
features and security (with respect to differential cryptanalysis). More specifically,
results showed that nonlinear classifiers are better suited for assessing the security
of block ciphers as compared to linear classifiers. Linear classifiers such as logistic
regression can still be used if security assessment is performed on seen block cipher
variants but it cannot generalize well to unseen ones. In general, we recommend
the use of nonlinear classifiers, specifically KNN as it was able to achieve a 92%
prediction accuracy for seen cipher variants. KNN was still able to generalize to
unseen cipher variants with an accuracy of 71%, 62% and 56% for BC1, BC2 and
BC3, respectively.

Contrary to intuition, the trained models (specifically decision tree and KNN)
actually performed better when applied to 16-branch GFS ciphers. We conjecture
that this is a result of the increased number of features being used for training
(7x more features as compared to the 4-branch ciphers). Investigating the impact
of specific features and the number of features will be left to future work. Our
findings indicate that the prior recommendation of using KNN for the prediction
task still holds valid. KNN was able to achieve 96% accuracy when performing
predictions for the five seen GFS ciphers, and could generalize well to the unseen
GFS cipher, TWINE with an accuracy of 74%. As compared to decision tree,
KNN can better discriminate between secure and insecure classes based on its
higher AUROC scores. In addition, KNN was able to make accurate predictions
for 9 rounds of TWINE despite being trained with only round 1-8 data from the



20

five GFS ciphers. This depicts the capability of KNN to generalize to more rounds
than it has been trained for.

As the proposed approach can achieve a high accuracy (up to 96%) when pre-
dicting the security of seen cipher variants, it can be used to quickly identify good
differential pairs for cryptanalysis. Although searching algorithms or mathemat-
ical solvers can also be used for this reason, determining the strength of each
differential pair requires reasonable computational effort especially for large block
sizes or number of rounds. In contrast, machine learning algorithms can perform
this prediction near-instantaneously albeit with longer training time. This is an
efficiency trade-off between the online phase of an attack and its pre-processing
phase. Apart from that, high accuracy when predicting seen cipher variants im-
plies that additional cipher features such as permutation pattern can potentially
be used to improve existing machine learning-based distinguishers [18] for key
recovery attacks.

The trained machine learning models can be used to quickly assess the secu-
rity margin of unseen block ciphers. In practice, these unseen block ciphers can
be new designs or any other block cipher that the model was not trained with.
This capability was depicted when the trained nonlinear classifiers were used on
TWINE. The best performing KNN classifier achieved a prediction accuracy of
74%. A closer inspection of the F1 scores indicate that KNN is more likely to
classify a cipher as insecure (F1 = 0.79) rather than secure (F1 = 0.68), and will
do so more accurately. This implies that the predictions made by the classifier are
more conservative (favoring insecure rather than secure), which is desirable in a
practical setting. Its high AUROC scores (0.818-0.934) shows that it is also profi-
cient at classifying secure samples correctly. These results support the reliability
of the proposed model’s predictions. The trained models will be useful for block
cipher designers who wish to quickly discard poor designs without having to run
computationally intensive searching algorithms or mathematical solvers.

The proposed work is not without its limitations. As of now, it remains to
be seen if the same approach can be applicable to other block cipher structures
such as SPN and ARX. For these structures, the use of truncated differentials
may not be feasible as these ciphers may involve bitwise permutations. Thus,
generating an exhaustive dataset for training will be more time consuming. Apart
from that, the use of a single threshold value α is restrictive and may not accurately
reflect the security requirements of different ciphers. With a more dynamic or
flexible threshold, the performance of the models may be improved. The proposed
approach sets a precedence for future work which includes:

– Exploring the use of deep learning to maximize the prediction accuracy for
unseen cipher variants

– Investigating the use (and different representations) of other features such as
S-box probability or diffusion properties of the permutation pattern to further
optimize prediction accuracy

– Prediction of differential probability or the number of active S-boxes using
regression techniques

– Improving the accuracy of existing machine learning-based distinguishers using
additional cipher features

– Training a machine learning algorithm to predict the security of a larger block
cipher using data from smaller block ciphers with the same structure



21

– Predicting the security of other block cipher structures such as SPN or ARX

6 Conclusion

In this paper, we proposed an alternative approach in applying machine learning
for cryptanalysis. Rather than being used to directly cryptanalyze block ciphers
to recover secret keys, we train machine learning classifiers using generic block
cipher features to predict if a block cipher is secure or insecure based on the no-
tion of differentially active S-boxes. Thus, the proposed approach is not specific
to a particular block cipher nor secret key, which is the case for the majority of
existing methods. As a proof-of-concept, we performed experiments on 4-branch
GFS ciphers. By using truncated differentials, we were able to exhaustively gen-
erate the training and testing datasets by using a modified version of Matsui’s
branch-and-bound algorithm. We tested our approach by using three linear and
three nonlinear classifiers. Experimental results concluded that nonlinear classifiers
were better suited for the security prediction task, with decision tree and KNN
depicting optimal performance. When predicting seen cipher variants, the decision
tree classifier was able to achieve a prediction accuracy of up to 93% as compared
to 92% for KNN. KNN outperformed decision tree when generalizing to unseen
cipher variants, achieving an accuracy of up to 71% depending on the security
level of the targeted cipher. We then applied the proposed approach on 16-branch
GFS ciphers, including the lightweight block cipher, TWINE. We found that the
decision tree and KNN classifiers were highly adept at making predictions for seen
ciphers, achieving accuracy results ranging between 96-97%. When generalizing to
an unseen block cipher (TWINE), KNN not only outperformed decision tree (74%
versus 67%), there were also minimal biases as compared to predictions made for
the smaller-scale ciphers. KNN could also make accurate predictions (accuracy
of 94%, AUROC score of 0.934) for 9-round TWINE despite being trained using
data obtained from only round 1-8 of the five GFS ciphers. These results not only
depict the feasibility of the proposed approach but also implies that the trained
models can be used in practice to filter strong differential pairs for cryptanalysis
and also to assess the security of new block cipher designs.

Acknowledgements This work was supported in part by the Ministry of Education Malaysia
under the Fundamental Research Grant Scheme (FRGS) no. FRGS/1/2019/ICT05/USM/02/1
and by the Uniten BOLD research grant under Grant No. 10463494/B/2019117.

References

1. Pei Li, Shihao Zhou, Bingqing Ren, Shuman Tang, Ting Li, Chang Xu, and Jiageng Chen.
Efficient implementation of lightweight block ciphers on volta and pascal architecture. In
Journal of Information Security and Applications, volume 47, pages 235–245. Elsevier
BV, 2019.

2. Prakash Dey, Raghvendra Singh Rohit, and Avishek Adhikari. Single key MITM attack
and biclique cryptanalysis of full round Khudra. In Journal of Information Security and
Applications, volume 41, pages 117–123. Elsevier BV, 2018.

3. Jiageng Chen, Jesen Teh, Zhe Liu, Chunhua Su, Azman Samsudin, and Yang Xiang.
Towards accurate statistical analysis of security margins: New searching strategies for
differential attacks. IEEE Transactions on Computers, 66(10):1763–1777, oct 2017.



22

4. Ralph Ankele and Stefan Kölbl. Mind the gap - a closer look at the security of block
ciphers against differential cryptanalysis. In Selected Areas in Cryptography – SAC 2018,
pages 163–190. Springer International Publishing, 2019.

5. Hariharan Rajadurai and Usha Devi Gandhi. A stacked ensemble learning model for
intrusion detection in wireless network. Neural Computing and Applications, may 2020.

6. Arvind Mahindru and A. L. Sangal. MLDroid—framework for Android malware detection
using machine learning techniques. Neural Computing and Applications, sep 2020.

7. Zhuo Ma, Yang Liu, Zhuzhu Wang, Haoran Ge, and Meng Zhao. A machine learning-based
scheme for the security analysis of authentication and key agreement protocols. Neural
Computing and Applications, 32(22):16819–16831, dec 2018.

8. Khaled Alallayah, Mohamed Amin, Waiel AbdElwahed, and Alaa Alhamamii. Applying
neural networks for simplified data encryption standard (SDES) cipher system cryptanal-
ysis. In The International Arab Journal of Information Technology, pages 163–169. 2012.

9. Mohammed M. Alani. Neuro-cryptanalysis of DES and triple-DES. In Neural Information
Processing, pages 637–646. Springer Berlin Heidelberg, 2012.

10. Aayush Jain and Girish Mishra. Analysis of lightweight block cipher FeW on the basis of
neural network. In Harmony Search and Nature Inspired Optimization Algorithms, pages
1041–1047. Springer Singapore, aug 2018.

11. Girish Mishra, S. V. S. S. N. V. G. Krishna Murthy, and S. K. Pal. Neural network based
analysis of lightweight block cipher PRESENT. In Harmony Search and Nature Inspired
Optimization Algorithms, pages 969–978. Springer Singapore, aug 2018.

12. Riccardo Focardi and Flaminia L. Luccio. Neural cryptanalysis of classical ciphers. In
ICTCS, 2018.

13. Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, and Lukasz
Kaiser. Unsupervised cipher cracking using discrete gans.

14. Cheng Tan and Qingbing Ji. An approach to identifying cryptographic algorithm from
ciphertext. In 2016 8th IEEE International Conference on Communication Software and
Networks (ICCSN). IEEE, jun 2016.

15. Riyad Alshammari and A. Nur Zincir-Heywood. Machine learning based encrypted traffic
classification: Identifying SSH and skype. In 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications. IEEE, jul 2009.

16. A.M.B. Albassal and A.-M.A. Wahdan. Neural network based cryptanalysis of a feistel
type block cipher. In International Conference on Electrical, Electronic and Computer
Engineering, 2004. ICEEC '04. IEEE.

17. Abbas Ghaemi Bafghi, Reza Safabakhsh, and Babak Sadeghiyan. Finding the differential
characteristics of block ciphers with neural networks. Information Sciences, 178(15):3118–
3132, aug 2008.

18. Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning. In Ad-
vances in Cryptology – CRYPTO 2019, pages 150–179. Springer International Publishing,
2019.

19. Lars R. Knudsen. Truncated and higher order differentials. In Fast Software Encryption,
pages 196–211. Springer Berlin Heidelberg, 1995.

20. Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized feistel. In Fast
Software Encryption, pages 19–39. Springer Berlin Heidelberg, 2010.


	Introduction
	Preliminaries
	4-branch GFS Experiments
	16-branch GFS Experiments
	Discussion, Practical Applications and Future Work
	Conclusion

