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ABSTRACT
In this paper, we investigate the use of machine learning classifiers to assess block ci-
pher security from the perspective of differential cryptanalysis. These classifiers were
trained using common block cipher features (number of rounds, permutation pat-
tern, truncated input and output differences), making our approach generalizable to
an entire class of ciphers. Each data sample represents a truncated differential path,
for which the level of security is labelled as secure or insecure by the trained classifier
based on the number of differentially active S-boxes. We trained six machine learn-
ing classifiers (linear and nonlinear) to perform the security prediction task using
a dataset generated from a small-scale generalized Feistel structure (GFS) cipher
as a proof-of-concept. Prediction accuracy was further refined by determining the
best way to represent features in the dataset during training. We then studied how
well these classifiers perform the prediction tasks on ciphers that they were trained
on (seen) and those that they were not (unseen). When applied on seen ciphers,
the classifiers achieved prediction accuracy results of up to 93% whereas for unseen
cipher variants, accuracy results of up to 71% were obtained. Our findings indicate
that nonlinear classifiers are better suited for the prediction task. Next, we applied
the proposed approach to a full-scale lightweight GFS block cipher, TWINE. By
training the best performing nonlinear classifiers (k-nearest neighbour and decision
tree classifiers) using data from five other GFS ciphers, we obtained an accuracy
of up to 74% when labelling data from TWINE. In addition, the trained classifiers
could generalize to a larger number of rounds of TWINE despite being trained using
data obtained from fewer rounds. These findings showcase the feasibility of using
machine learning classifiers, notably nonlinear variants, as a tool to assess block
cipher security.
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1. Introduction

Block ciphers are symmetric-key encryption algorithms, using a single secret key
for both encryption and decryption tasks. A plaintext undergoes multiple rounds
of key-dependent transformations to produce the resulting ciphertext. Block ciphers
are designed using a variety of well-studied and security-proven structures such as
substitution-permutation networks (SPN), generalized Feistel structure (GFS) and
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Addition-Rotation-XOR (ARX). Recently, the design of compact lightweight block
ciphers has become the focus of the cryptographic community due to the prevalence
of highly constrained Internet of things devices (Hatzivasilis, Floros, Papaefstathiou,
& Manifavas, 2016). Block cipher security is usually evaluated on a trial-by-fire ba-
sis, whereby newer ciphers will be subjected to various attacks by cryptanalysts to
ascertain their security levels. Automated tools have been introduced to aid these
cryptanalytic efforts (Chen et al., 2017; Alkazaz, Irvine, & Teahan, 2018; Ankele &
Kölbl, 2019). Resistance against differential cryptanalysis has become one of the de
facto requirements when it comes to block cipher security. Cryptanalysts use search-
ing algorithms (Chen et al., 2017) or mathematical solvers (Ankele & Kölbl, 2019)
to identify differential trails that occur with sufficiently high probability. These trails
are then used as distinguishers in a key recovery attack. However, these algorithms or
solvers become more computationally intensive as the number of rounds or block size
increases.

As an alternative, researchers have explored the use of machine learning models for
cryptanalytic purposes. Early applications mainly consist of training machine learning
models to emulate the behaviour of ciphers given the assumption of a fixed secret key.
For example Alallayah, Amin, AbdElwahed, and Alhamamii (2012) trained a neural
network to encrypt data as simplified DES (SDES). Then, the cryptanalyst would
be able to extract secret key information given plaintext-ciphertext pairs. A similar
attempt was performed by Alani (2012) using neural networks was used to perform
known-plaintext attacks on DES and Triple-DES, whereby the neural networks were
capable of decrypting ciphertexts without knowledge of the secret key. However, this
approach has limited practicality as the neural networks were trained using plaintexts
and ciphertexts corresponding to a specific key. If a different key is used, the model
would have to be retrained using a separate dataset.

The same approach was used to cryptanalyze lightweight block ciphers, FeW and
PRESENT (Jain & Mishra, 2018; Mishra, Murthy, & Pal, 2018) with limited success.
Neural networks were trained, validated and tested using plaintexts, ciphertexts and
intermediate round data all generated using the same encryption key. The trained net-
works were unable to learn the behaviour of the block ciphers, achieving an accuracy of
approximately 50%. Generally, the use of machine learning algorithms to cryptanalyze
ciphers in a straightforward manner were only successful in older, classical ciphers. As
an example, Focardi and Luccio (2018) trained a neural network to extract the en-
cryption keys of Caesar, Vignere poly-alphabetic and substitution ciphers. Generative
adversarial networks were also used by Gomez et al. (2018) to crack these classical
ciphers.

A more practical approach is the use of machine learning algorithms as crypto-
graphic distinguishers. The classification capabilities of machine learning algorithms
have been used to identify cryptographic algorithms from ciphertexts (Tan & Ji, 2016).
Classifiers were trained using known ciphertexts generated from a set of five commonly
used cryptographic algorithms. A high identification rate of 90% was achieved if the
same key was used for both training and testing ciphertexts. Another approach com-
pared the performance of five different machine learning algorithms when distinguish-
ing encrypted from unencrypted traffic (Alshammari & Zincir-Heywood, 2009). They
found that the C4.5 decision tree-based classification algorithm performed the best,
achieving a detection rate of up to 97.2%.

Albassal and Wahdan (n.d.) used a neural network to distinguish between right and
wrong subkey guesses, similar to how a differential or linear distinguisher would be
used for key recovery in traditional cryptanalysis. When the neural network is trained
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using plaintext-ciphertext pairs generated from a wrong key guess, it will produce
random outputs that greatly differ from a cipher’s actual outputs, whereas training
using data generated from a correct key guess will lead to outputs with fewer errors.
This allows a cryptanalyst to distinguish between right and wrong key guesses. The
approach was tested on a hypothetical Feistel cipher as a proof of concept. Bafghi,
Safabakhsh, and Sadeghiyan (2008) introduced a recurrent neural network-based ap-
proach for identifying differentials for Serpent by modelling the search as a multi-level
weighted directed graph. Gohr (2019) later introduced an attack on Speck32/64 using
deep learning. A neural network model was trained using input and output differences
corresponding to random keys, then used as a distinguisher. The proposed method
outperforms existing differential attacks in terms of time complexity. However, it is
unknown if the inclusion of other block cipher features could make the attack more
efficient.

1.1. Contribution

So far, most machine learning approaches have been cipher-specific rather than gen-
eralizable. A cipher-specific approach is one that would require the entire training
process to be repeated if a different cipher needs to be analyzed. To overcome this
problem, we propose a generalizable approach to assess a block cipher’s resistance
against differential cryptanalysis using machine learning1. Rather than predicting or
extracting key information, we investigate the capability of linear and nonlinear ma-
chine learning classifiers in determining if a block cipher is secure or insecure based
on the number of active S-boxes. These classifiers were trained using various cipher
features that include truncated input and output differences, permutation pattern,
and the number of rounds. Data was generated using a modified Matsui’s branch-
and-bound algorithm (Chen et al., 2017). Apart from determining the most suitable
machine learning classifier and hyperparameters for the security prediction task, we
also look into how data representation can affect prediction accuracy. Preliminary ex-
periments were performed on 4-branch GFS ciphers to showcase the generalizability
of the proposed approach to an entire class of block ciphers, rather than a specific one.
An in-depth comparison of six classifiers (linear and nonlinear) was performed.

Our findings show that nonlinear classifiers outperform linear classifiers due to the
nonlinear transforms involved in block ciphers, achieving a prediction accuracy of up
to 93% when predicting seen cipher variants and up to 71% when predicting unseen
cipher variants. We then apply the best-performing classifiers to predict or label data
from full-scale (16-branch) lightweight GFS ciphers. We train two nonlinear classifiers
(k-nearest neighbour and decision tree) using data from five other GFS ciphers. When
labelling data samples from ciphers that the models have seen before, they were able
to achieve an accuracy of up to 97%. When assessing the lightweight cipher, TWINE
which was not seen during training, the best performing classifier achieved an accuracy
of up to 74%. The classifiers were also able to accurately label data obtained from the
9th round of TWINE despite being trained with data from round 1-8 of the five GFS
ciphers. This indicates that the trained classifier was able to generalize to a larger
number of rounds than it has been trained for. Our findings and contributions can be
summarized as follows:

• A generalizable approach to evaluate block cipher security using machine learn-
ing classifiers has been proposed.

1Supplementary code for this paper is available at https://github.com/trlee/ml-block-cipher
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• An in-depth comparison between nonlinear and linear machine learning classifiers
performed on small-scale GFS ciphers showed that nonlinear classifiers are best-
suited for the security prediction task.
• Investigation into the data representation of cipher features showed that breaking

down larger cipher features into smaller ones can lead to improved prediction
performance.
• When applied on full-scale lightweight GFS ciphers, the trained nonlinear clas-

sifiers were not only able to achieve high prediction accuracy (97% for seen and
73% for unseen ciphers) but were also able to generalize to a larger number of
rounds.

1.2. Outline

The rest of this paper is structured as follows: Section 2 introduces preliminary in-
formation required to understand the proposed work. Sections 3 and 4 then provide
the detailed steps, experimental setup and results for the small-scale (4-branch) and
full-scale (16-branch) GFS experiments respectively. Section 5 provides a discussion of
our findings and their significance. The paper is concluded in Section 6 which includes
some future directions of this work.

2. Preliminaries

2.1. Differential Cryptanalysis and Active S-boxes

Differential cryptanalysis observes the propagation of an XOR difference of a pair
of plaintexts (input difference) through a cipher to produce a corresponding pair of
ciphertexts with a specific XOR difference (output difference). We define an input
difference as

∆X = X ′ ⊕X” (1)

∆X = [∆X0,∆X1, ...,∆Xi−1], (2)

where X ′ and X” are two individual plaintexts. An output difference is similarly
defined where Y ′ and Y ′′ are the corresponding ciphertexts. The pair, {∆X,∆Y } is
known as a differential pair. For an ideal cipher, given any particular input difference
∆X, the probability of any particular ∆Y occurring will be exactly 1

2b where b is the
block size. A successful differential attack requires a differential, ∆X → ∆Y with a
probability far greater than 1

2b .
An S-box is defined to be differentially active if its input is a non-zero difference.

Rather than computing the concrete differential probability for a given differential
pair, resistance against differential cryptanalysis can be estimated by calculating the
number of active S-boxes. The estimated probability that input differences will be
mapped to output differences can then be calculated based on the S-box’s differential
distribution table. The mapping of differences holds with a certain probability, 2−p.
By taking into consideration the best-case (from the attacker’s perspective) S-box
differential probability, a block cipher is considered to be secure if 2AS×p ≥ 2b, where
AS denotes the total number of active S-boxes. Figure 1 depicts an example of S-box
activation for a 4-branch GFS cipher, whereby the left S-box is active.

An interesting property of differential cryptanalysis that we leverage upon in this
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Figure 1. 1 round of a 4-branch GFS with 4-bit S-box

work is the effect of round keys, rki being negated through the use of differences.
Any random key can be used to generate differential pairs, thus the resulting dataset
for machine learning experiments is not catered to a specific secret key. In addition,
we are also able to generate an exhaustive dataset by taking advantage of truncated
differentials (Knudsen, 1995). We can truncate the input differences based on the size
of the S-box. For example, plaintext or ciphertext differences for a b-bit block cipher
with s-bit S-boxes can be truncated to t-bit differences, where (t = b

s). Thus, each
bit in the truncated difference denotes a non-zero difference corresponding to each
s-bit word in the plaintext (or ciphertext) block. An example of how a differential pair

(∆X,∆Y ) is mapped to a truncated differential pair (∆X̂,∆Ŷ ) is shown in Figure
1. However, the use of such a truncated difference would only be applicable to block
ciphers that use a word-based permutation rather than bitwise permutation.

2.2. Matsui’s Branch-and-Bound Differential Search

Matsui’s branch-and-bound is an algorithm used for deriving the best differential or
linear paths for differential and linear cryptanalysis. It is applicable to block ciphers
that have S-box-like tables. The algorithm goes through all possible iterations of the
differential paths, then prunes paths that have probabilities less than Bn. Bn is defined
as the best probability the running algorithm has found so far. An initial value has
to be set for Bn and it should be as close to the actual probability Bn as possible to
eliminate more non-promising paths earlier on. TheBn is constantly updated according
to the best probability of the paths found so far which effectively reduces the potential
search space. The process is repeated until all the possible paths with respect to the
branching rules and bounding criteria have been enumerated.

In the proposed work, we use a variant of Matsui’s algorithm first proposed by
Chen et al. (2017). We further simplify the algorithm as we only need the number of
differentially active S-boxes rather than the concrete differential probability for our
experiments. This greatly increases the speed of the search, which allows us to remove
all bounding restrictions to generate large datasets for training and testing purposes.
The dataset generated for the current study can be reproduced using the algorithm
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available at https://github.com/jesenteh/16b-gfs-as-search.

2.3. Generalized Feistel Structure

GFS is the generalization of the Feistel structure that was first used in the block
cipher Lucifer, the predecessor to DES. It divides an input into d blocks, where d > 2.
As a proof-of-concept, our proposed work is applied to a 4-branch GFS cipher (d =
4), similar to the one in Figure 1. We then extend our work to full-scale 16-branch
(d = 16) GFS ciphers. By using a GFS cipher with a word-based permutation, we can
use truncated differences in our experiments. A 4-branch GFS effectively represents
ultralightweight block ciphers with 16- or 32-bit blocks depending on whether 4-bit
or 8-bit S-boxes are used whereas a 16-branch GFS can represent a lightweight 64-bit
block cipher such as TWINE or a 128-bit block cipher. Regardless of which, security
analysis based on the number of active S-boxes is usually performed based on the
highest differential probability for a given S-box. For example, TWINE and AES S-
boxes have the best differential probabilities of 2−2 and 2−6 respectively.

2.4. Machine Learning Classifiers and the Security Prediction Task

The proposed work investigates the performance of linear and nonlinear classifiers
when predicting the security of block ciphers. Essentially, the goal is to have the
classifiers learn the best hypothesis function (i.e. linear or nonlinear) to segregate the
secure and insecure classes. A machine learning model refers to a trained classifier
with specific features, machine learning algorithm and hyperparameters. This section
describes the three linear and nonlinear classifiers used in our experiments.

2.4.1. Linear Classifiers

As its name suggests, linear classifiers solve classification tasks based on a linear com-
bination of features. The goal of linear classifiers is to segregate, as accurately as
possible, the training data into their respective classes using a linear function (i.e., a
straight line). We utilize three linear classifiers in our experiments: Tensorflow (TF)
Linear classifier, and scikit-learn’s logistic regression and single-layer perceptron.

Linear models predict the probability of a discrete value/label, otherwise known as
a class, given a set of inputs. For the context of binary classification, the possible labels
for the problem will only be 0 or 1. The linear model computes the input features with
weights and bias. The weights indicate the direction of the correlation between the
input features and the output label, whereas the bias acts as the offset in determining
the final value of the label, should its conditions be fulfilled.

Logistic regression models the probabilities of an observation belonging to each
class using linear functions and is generally considered more robust than regular linear
classifiers. Unlike a linear function used by a linear classifier, the logistic regression
model uses what is referred to as a sigmoid function, and maps any real value of a
problem into another value between the boundary of 0 and 1. For the case of machine
learning, sigmoid functions are typically used for mapping the predictions of a model
to probabilities. This structure is shared by both TF’s linear classifier and scikit-
learn’s logistic regression models. Both models differ in terms of how the data is
represented and used for training. In TF’s linear classifier, training samples are pooled
from the training dataset randomly in batches, and steps are defined by the total
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number of batch sampling that has to be performed before moving to the next epoch
while scikit-learn’s logistic regression model fits the data directly and trains its model
throughout the epochs.

Single-layer perceptron is a linear classifier based on a threshold function

f(x) = w(x) + b, (3)

where f(x) is the output value, x is a real-valued input vector, w is the weight of the
vector and b is the bias. When it comes to a binary classification task, the threshold
function classifies x as either a positive or negative instance, with the weight and
vector being the primary variable in determining the label, and bias is an additional
paramter that can possibly adjust the label. All aforementioned linear classifiers are
tuned with respect to the following hyperparameters for optimal performance:

• Stopgap: The total number of iterations that the model needs to undergo with
no improvements before stopping the training process early.
• Epochs: The total number of passes the model has to undergo throughout the

training data batches.

2.4.2. Nonlinear Classifiers

Not all data can be segregated naturally using a linear function. A nonlinear classifier
allows the machine learning model to learn a nonlinear function or decision boundary
to best separate the training data into two classes. The nonlinear classifiers used in this
study are scikit-learn’s k-nearest neighbors, decision tree and multi-layer perceptron.

k-nearest neighbor (KNN) is a type of instance-based learning that classifies
new data based on majority voting of k number of training instances closest to it.
Hyperparameters that can be tuned to optimize performance include:

• NN : The value of k as explained earlier. NN refers to the number of neighbors
to be used for the k-neighbors query.
• Distance: This is measure used to determine the distance between two neighbors.

The default Minkowski distance is used for all experiments.
• Algo: Algorithm used to compute the nearest neighbors for the model. Three

options include KDTree, BallTree or brute force.
• LeafS : Leaf size passed to the KDTree or BallTree, which can affect the speed

of the tree construction and query, as well as memory required.

Decision tree classifiers are used to predict a class or value of the target variable
by learning simple decision rules inferred from the training data. The model operates
on the basis of “branching” from one decision node to another one deeper down until
it finally reaches its desired output. Its parameters include:

• Split : The strategy used to choose the split on each node, which can be either
best or random.
• LeafN : Maximum number of leaf nodes.
• Sample Split : Minimum amount of samples required to split an internal node.

Multi-layer perceptron (MLP) is a derivation of the perceptron model as de-
scribed in Section 2.4.1, with added functions such as error functions and backprop-
agation to further improve performance of the model. The hyperparameters that are
tuned to optimize the model are as follows:
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• Stopgap
• Epochs
• Activation: The function that determines the outputs of the nodes. The default

rectified linear function is used for all experiments.
• Hidden layers: The number of hidden layers of the neural network.
• Nodes per hidden layer : The number of nodes per hidden layer. We use a default

value of 100 nodes per hidden layer for all experiments.

3. 4-branch GFS Experiments

3.1. Experimental Setup

All experiments were performed on computer with an Intel i5 2.4GHz CPU and 16GB
RAM using Python 3.6.7, scikit-learn 0.22.2 and TensorFlow 2.2. Assessing block ci-
pher security based on its features is a supervised learning problem which we framed
as a binary classification task (1 for secure, 0 for insecure). We limit the scope of
this paper to linear and nonlinear classifiers, where Tensorflow’s (TF) linear classi-
fier model, scikit-learn’s single-layer perceptron and logistic regression models were
selected as linear classifiers, and KNN, decision tree and MLP were selected as nonlin-
ear classifiers. To optimize performance, we perform hyperparameter tuning for each
classifier. We also investigate the effect of data representation on prediction accuracy,
specifically how the permutation patterns are represented.

To investigate the feasibility of the proposed approach, we first perform preliminary
experiments on smaller-scale, 4-branch GFS ciphers before proceeding to their 16-
branch counterparts. This allows us to generate a large amount of training/testing data
within a practical amount of time for all possible permutation patterns. Each sample
in the dataset used to train the machine learning classifiers consists of block cipher-
related features. They are labelled as secure or insecure depending on the number of
active S-boxes associated with the particular sample. For the target 4-branch GFS
ciphers, features include the truncated input difference X̂, truncated output difference
Ŷ , number of rounds, r and a word-based permutation pattern, P , X̂, Ŷ and r are
features shared by any block cipher whereas P is commonly used in GFS ciphers.
Each training sample essentially describes a truncated differential trail from X̂ to Ŷ
for r number of rounds that goes through a GFS cipher with P permutation pattern.
In our experiments, we use all 4! = 24 possible permutation patterns for a 4-branch
GFS. This also implies that there are 24 possible variants of the GFS cipher. Each
cipher variant can generate a large set of data samples which consists of its truncated
differential paths for a different number of rounds.

We utilize the branch-and-bound algorithm described in Section 2.2 to automatically
generate the dataset. The output of the branch-and-bound algorithm is the number
of active S-boxes, AS which will be used alongside a security margin threshold, α
to calculate the data labels (secure - 1, insecure - 0). If AS > rα, the input sample
is considered to be secure (labelled as 1) whereas if AS ≤ rα, the input sample is
considered to be insecure (labelled as 0). In other words, α dictates the minimum
number of active S-boxes per round for a block cipher to be considered secure. α can
be configured based on the desired security margin that the cryptanalyst or designer
requires. We want to ensure that α is selected to be as strict as possible, while still
allowing us to generate a balanced dataset for training purposes. α = 1 is a loose
bound, whereby a 16-bit and 32-bit cipher will require at least 8 rounds and 16 rounds
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Table 1. Sample Dataset where α = 1.5

X̂ Ŷ P r AS Label
1010 1010 0123 8 16 Secure
0111 1101 1203 11 17 Secure
1111 0100 3021 12 9 Secure
0010 0010 0123 5 5 Insecure
1111 0101 3021 12 6 Insecure
1101 1100 3120 11 6 Insecure

Figure 2. Experiment 1 - Phase 1/Phase 2 flow

respectively to be considered secure. On the other hand, if α = 2, a 16-bit and 32-
bit cipher will require at least 4 rounds and 8 rounds respectively to be considered
secure. Having α = 2 is too restrictive as it requires all S-boxes to be active in every
round. Thus, to ensure that the security bound is sufficiently strict while capable
of generating a balanced dataset, we have selected α = 1.5. Some samples from the
dataset are shown in Table 1 (note that actual values of AS are not used for training).

Our experiments can be divided into three main phases: baseline setup, permutation
feature representation, and generalization. In Phase 1, a balanced dataset (50:50) of
500000 samples are generated from all 24 variants of the GFS cipher. Note that all
examples are randomly sampled from an exhaustive dataset. A single integer is used to
represent the entire permutation pattern. We denote this method of representation as
rep1. We compare the effect of the permutation representation on model performance
in Phase 2 where rep1 is compared with rep2 which represents the permutation as
separate features (one integer to map each truncated difference bit). As an example,
the permutation pattern shown in Figure 1 can be represented by rep1 = {1230} or by
rep2 = {1, 2, 3, 0}. For Phase 2, we use the same 500000 samples from all 24 variants
of the GFS cipher but with the permutation feature transformed into rep2. Figure 2
depicts the experimental flow for both Phase 1 and Phase 2.

The third phase depicted in Figure 3 involves generalizing to unseen cipher variants.
This phase reflects upon the capability of the trained machine learning classifiers to
predict the security level of these unseen ciphers. We define an unseen cipher variant
as a block cipher whose data was not used to train the machine learning classifiers.
Thus, predicting the security of these unseen ciphers is analogous to predicting the
security of newly proposed ciphers. In Phase 3, we test the classifiers’ performance on
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Figure 3. Experiment 1 - Phase 3 flow

three different unseen block ciphers denoted as BC1, BC2 and BC3. For each of these
block ciphers, we generate a dataset consisting of 80000 samples each. The difference
between these datasets is the ratio of the number of secure to insecure samples (1:0).
The ratios are summarized as:

• BC1 - 1:3 (20000 to 60000)
• BC2 - 1:1 (40000 to 40000)
• BC3 - 3:1 (60000 to 20000)

BC1 represents an insecure block cipher design, BC2 represents a moderately secure
block cipher design whereas BC3 represents a secure block cipher design. In order
to generate sufficient samples that fulfil these ratios, four block cipher variants (or
equivalently, four permutation patterns) are used, P = {0321, 1320, 2013, 3012}. Thus,
the training dataset consists of 500000 samples generated from only 20 out of the 24
variants of the GFS cipher. A summary of the three main phases are as follows:

• Phase 1 - Baseline Setup - The goal of this phase is to identify classifiers that
are best suited for the prediction task. An 80:20 train-test split is performed on
the dataset. Apart from the six classifiers, we also include a dummy classifier as
a baseline model for performance comparison. Intuitively, the dummy classifier
should have a prediction accuracy of 50% as it is a randomly guessing model that
does not have any advantage in predicting security margins. For all classifiers, we
investigate various hyperparameter combinations to maximize prediction perfor-
mance. rep1 is used as the permutation representation.
• Phase 2 - Permutation Feature Representation - In this phase, we in-

vestigate the effect of rep1 and rep2 on prediction accuracy. We select the best
performing linear and nonlinear models (along with the optimal hyperparame-
ter values) from Phase 1 and repeat the train-test procedure using the dataset
generated from rep2.
• Phase 3 - Generalizability to Unseen Cipher Variants - This phase con-

sists of three separate experiments. In each one, we first train the machine learn-
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ing classifiers using 500000 samples from the 20 seen cipher variants. Then, we
separately test the performance of the models using the dataset from BC1, BC2

and BC3. Unlike Phase 1, the training dataset will not contain a single sample
from these unseen cipher variants. Thus, the test results will indicate if the clas-
sifiers are able to generalize to “new” ciphers with varying levels of security. For
this experiment, the type of permutation representation will be selected based
on results obtained in Phase 2.

Let S, TP , TN , FP , and FN represent the total number of samples, true positives,
true negatives, false positives and false negatives respectively. The following metrics
are used to evaluate the performance of each classifier in which secure is the positive
class and insecure is the negative class:

• Accuracy (Acc): The sum of true positives and true negatives divided by the
total number of samples,

TP + TN

S
. (4)

Accuracy refers to the fraction of predictions that the model has correctly made.
• Precision (Pre): True positives divided by the sum of true and false positives,

TP

TP + FP
. (5)

Precision refers to the percentage of correctly classified samples out of the to-
tal number of predictions made. We record the precision for both positive and
negative classes as they are both equally important from the cryptographic per-
spective.
• Recall (Rec): True positives divided by the sum of true positives and false

negatives,

TP

TP + FN
. (6)

It represents the percentage of correctly classified samples out of the total number
of actual samples that belong to a particular class. Similar to precision, we record
the recall for both positive and negative classes.
• F1 score (F1): The harmonic mean of precision and recall,

F1 = 2× Pre×Rec
Pre+Rec

. (7)

It is an accuracy measure that takes both precision and recall into consideration.

We analyze the performance of the proposed models based on accuracy and F1 score.
Accuracy reflects upon how well the models generally perform in the prediction task
whereas the F1 scores for each of the classes provide deeper insights into prediction
bias.
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3.2. Experimental Results

3.2.1. Baseline Results

The prediction accuracy of the dummy classifier (50%) is used as a baseline to de-
termine which models have truly learnt to perform the classification task. In general,
all classifiers outperformed the dummy classifier with nonlinear classifiers outperform-
ing linear ones. The majority of classifiers performed well, achieving accuracy values
ranging from 69% to 93%. TF linear classifier underperformed (56% accuracy) with
a distinct bias towards predicting samples as insecure. Although TF linear classifier
and logistic regression are both based on the same machine learning algorithm, the
difference in their data sampling methods leads to a significant difference in prediction
results. As for nonlinear classifiers, decision tree and KNN have less biased predictions
as compared to MLP, which is biased towards the insecure class.

Overall, the best performing models are logistic regression for linear classifiers, and
KNN and decision tree for nonlinear classifiers. A summary of the results is shown in
Table 2 for which the optimal hyperparameters are listed below:

• TF Linear Classifier:
Stopgap = 350
Epochs = 750
• Other linear classifiers:
Stopgap = 1000
Epochs = 1000
• MLP:
Stopgap = 1000
Epochs = 1000
HiddenLayers = 4
Neurons per hidden layer = 100
• Decision Tree Classifier:
Split = random
LeafN = unlimited
SampleSplit = 2
• KNN:
NN = 4
Algo = BallTree
LeafS = 40

Table 2. Baseline Setup Results

Model F1 (Insecure) F1 (Secure) Accuracy
Dummy Classfier 0.50 0.50 0.50

TF Linear Classifier 0.71 0.15 0.56
Logistic Regression 0.66 0.72 0.69

Single-layer Perceptron 0.71 0.71 0.71
MLP 0.73 0.75 0.74

Decision Tree 0.95 0.85 0.93
KNN 0.95 0.83 0.92
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3.2.2. Permutation Feature Representation

To study the impact of feature representation on prediction accuracy, we perform
experiments on the best linear classifier (single-layer perceptron) and all nonlinear
classifiers. The same set of optimal hyperparameter values described in Phase 1 were
used. Results in Table 3 show that only MLP classifier has visible improvements when
using rep2 rather than rep1. We conjecture that the use of rep2 improves upon the
performance MLP due to its sensitivity to feature scaling. rep2 reduces the scale of
the feature to a single integer in the range of [1,4] (although the number of features is
increased), allowing MLP to converge faster and avoid being stuck in a local minimum.
KNN and decision tree were able to achieve optimal performance regardless of how the
permutations were presented, while single-layer perceptron saw a slight improvement.
Based on these results, Phase 3 will rely on rep2 as it has the potential to improve the
performance of certain classifiers without having an adverse effect on the rest.

Table 3. Comparison results for permutation feature representation

Model Perm F1 (Insecure) F1 (Secure) Accuracy
Single-layer
Perceptron

rep1 0.71 0.71 0.71
rep2 0.71 0.74 0.73

MLP
rep1 0.73 0.75 0.74
rep2 0.86 0.84 0.84

Decision Tree
rep1 0.95 0.85 0.93
rep2 0.95 0.85 0.93

KNN
rep1 0.95 0.83 0.92
rep2 0.95 0.83 0.92

3.2.3. Generalizability to Unseen Cipher Variants

The third phase is the most important one as it reflects upon the practicality of the
proposed approach. We expect the classifiers to perform better when predicting unseen
cipher variants that are insecure compared to secure ones. We also expect the classifiers
to generally perform poorer at making security predictions on unseen cipher variants
as compared to the ones that they have. As expected, all classifiers do not perform
as well as in the baseline experiments in Phase 1. Although linear classifiers seem to
be as accurate as nonlinear classifiers, a closer inspection of the F1 scores indicate
that the predictions made by linear classifiers are highly biased. In fact, all of the
linear classifiers predict nearly every sample as insecure, showing that linear classifiers
cannot generalize well to unseen block ciphers.

As for nonlinear classifiers, decision tree and KNN have the most unbiased results
when predicting all unseen cipher variants but their performance is inversely propor-
tionate to the cipher’s security level. Generally, KNN outperforms decision tree in all
scenarios: 71% vs 69% for BC1, 62% vs 58% for BC2, and 56% vs 51% for BC3. We
can conclude that the best classifier for predicting the security of an unseen cipher
variant is KNN. A summary of the results is shown in Table 4 for which all models
use the same hyperparameter settings as in Phase 1, except for decision tree classifier
(Split = best, LeafN = unlimited, SampleSplit = 2).
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Table 4. Generalization Results

Cipher Model F1 (Insecure) F1 (Secure) Accuracy

BC1

TF Linear Classifier 0.86 0 0.76
Logistic Regression 0.86 0 0.76

Single-layer Perceptron 0.77 0.25 0.69
MLP 0.83 0.20 0.71

Decision Tree 0.69 0.64 0.69
KNN 0.82 0.26 0.71

BC2

TF Linear Classifier 0.68 0 0.52
Logistic Regression 0.68 0 0.52

Single-layer Perceptron 0.73 0.18 0.54
MLP 0.69 0.16 0.56

Decision Tree 0.77 0.36 0.58
KNN 0.66 0.52 0.62

BC3

TF Linear Classifier 0.44 0 0.28
Logistic Regression 0.44 0 0.28

Single-layer Perceptron 0.29 0.43 0.36
MLP 0.43 0.54 0.48

Decision Tree 0.46 0.48 0.51
KNN 0.51 0.62 0.56

4. 16-branch GFS Experiments

4.1. Experimental Setup

All experiments were performed on the same computer with an Intel i5 2.4GHz CPU
and 16GB RAM using Python 3.6.7, scikit-learn 0.22.2 and TensorFlow 2.2. The com-
putational time required to generate sufficient training data for 16-branch GFS ciphers
is exponentially higher than that of 4-branch ciphers. It is also not practical to gener-
ate data for every possible permutation pattern (16! ≈ 2×1013 possibilities). Thus, we
have selected six 16-branch GFS ciphers for our experiments. Apart from TWINE it-
self, which is the target cipher for generalization experiments, five others were selected
based on permutation patterns with optimal cryptographic properties (full diffusion in
8 rounds and a minimum of 40 AS after 20 rounds). The six permutation patterns for
the chosen GFS ciphers are shown in Table 5, with naming conventions for the permu-
tations used by Suzaki and Minematsu (2010). The same modified branch-and-bound
search is used to generate data samples. Due to their underlying permutation patterns,
these ciphers already achieve full diffusion in 8 rounds. Thus, we limit the number of
rounds to 8 to ensure that data can be generated in an exhaustive manner within a
practical amount of time (approximately 1-2 days for 8 rounds). Generating the data
in an exhaustive manner allows us to perform random sampling without imposing
any limits to the inputs nor bounding criteria for the branch-and-bound search. For
each cipher, we generate 100000 samples, whereby 12500 samples are taken from each
round of the cipher. To determine if the machine learning models are able to generalize
to more rounds than they have been trained with, we generate an additional 100000
samples from the 9th round of TWINE. In total, we have three datasets that can be
summarized as follows:

• GFS(1,8) - 500000 samples from round 1-8 of five GFS ciphers (excluding
TWINE)
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• TW(1,8) - 100000 samples from round 1-8 of TWINE
• TW9 - 100000 samples from round 9 of TWINE

Name Permutation Pattern, P
No. 5 5,2,9,4,11,6,15,8,3,12,1,10,7,0,13,14
No. 7 1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10
No. 9 1,2,11,4,9,6,15,8,5,12,7,14,3,0,13,10
No. 10 7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12
No. 12 1,2,11,4,15,8,3,6,7,0,9,12,5,14,13,10

TWINE 5,0,1,4,7,12,3,8,13,6,9,2,15,10,11,14
Table 5. 16-branch permutation patterns

The format of each data sample is similar to Table 1 but the input and output
truncated differences as well as the permutation are 16 words rather than 4. In terms
of feature representation, we found that using rep2 for both permutation pattern and
truncated differences led to better results. As the maximum number of AS per round
for a 16-branch GFS is 8, the security margin threshold is set to half, α = 4. For our
experiments, we chose the KNN and decision tree classifiers as they were the two best
performing models based on our findings in Section 3. The experiments are divided
into two main phases:

• Phase 1 - Baseline Setup - The goal of this phase (depicted in Figure 4) is to
determine if machine learning classifiers are able to perform security predictions
for seen 16-branch block ciphers. The GFS(1,8) dataset is used, to which an 80:20
train-test split is performed (400000 training samples, 100000 test samples).
Hyperparameter tuning is performed to obtain the best performing models.
• Phase 2 - Generalizability to TWINE - The goal of this phase (depicted

in Figure 5) is to determine if machine learning models can be used for security
prediction for an actual unseen lightweight cipher, TWINE after being trained
using data from the five other GFS ciphers. The GFS(1,8) dataset is used for
training whereas TW(1,8) dataset is used for testing. We also compare the per-
formance of the classifiers when performing prediction for more rounds than
they have been trained for. This is performed by training the models using the
GFS(1,8) dataset and using the TW9 dataset for testing. Hyperparameter tuning
is performed again to obtain the best performing models.

We analyze the performance of the proposed models using the same accuracy and
F1 metrics as in Section 3. Additionally, we also compare the models based on the
area under the receiver operating characteristic (AUROC). As the TW9 dataset is
highly imbalanced (more secure samples as compared to insecure samples), AUROC
will provide better performance insights.

4.2. Experimental Results

4.2.1. Baseline Results

The best performing decision tree and KNN models achieved an accuracy of 97% and
96% respectively. They were able to perform predictions with minimal biases for both
the secure and insecure classes as shown in Table 6. These results also indicate that the
machine learning models better at security prediction for 16-branch GFS ciphers as
compared to 4-branch ciphers. This can be attributed to the larger number of features
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Figure 4. Experiment 2 - Phase 1 flow

Figure 5. Experiment 2 - Phase 2 flow
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Figure 6. ROC curve for 16-branch baseline experiment (AUROCKNN = 0.989, AUROCDT = 0.969)

involved during training, 49 features (Input difference - 16, Output difference - 16,
Permutation - 16, Number of Rounds - 1) features as compared to 7 features (Input
difference - 1, Output difference - 1, Permutation - 4, Number of Rounds - 1). Although
decision tree slightly outperforms KNN in terms of accuracy, KNN is more accurate
in predicting the secure class as depicted in the ROC curve shown in Figure 6. The
optimal hyperparameters for both models are listed below:

• Decision Tree Classifier:
Split = best
LeafN = unlimited
SampleSplit = 2
• KNN:
NN = 2
Algo = KDTree
LeafS = 100

Table 6. Baseline Setup Results for 16-branch GFS

Model F1 (Insecure) F1 (Secure) Accuracy
Decision Tree 0.97 0.97 0.97

KNN 0.97 0.96 0.96

4.2.2. Generalizability to TWINE

This phase is an important one as it reflects upon the feasibility of the proposed
approach to be used in actual cryptanalytic settings. Naturally, we expect the nonlinear
classifiers to make more accurate predictions for the five GFS ciphers that they have
already seen as compared to TWINE. The results in Table 7 confirm this notion as
both decision tree and KNN did not perform as well as in the baseline experiments
when labelling data from TWINE. However, both models were still able to generalize
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Figure 7. ROC curve for TWINE (Round 1-8) experiment (AUROCKNN = 0.818, AUROCDT = 0.659)

well to TWINE, with KNN and decision tree achieving accuracy scores of 74% and
67% respectively. The ROC curve in Figure 7 clearly depicts that KNN discriminates
between secure and insecure classes better than decision tree. The prediction results
for TWINE in terms of both accuracy and bias were also better than the generalization
results for the unseen 4-branch ciphers, BC1, BC2 and BC3.

Table 7. Generalization Results (TWINE) for 16-branch GFS (Round 1-8)

Model F1 (Insecure) F1 (Secure) Accuracy
Decision Tree 0.72 0.60 0.67

KNN 0.79 0.68 0.74

GFS ciphers with strong permutation patterns such as TWINE will achieve full
diffusion after 8 rounds. Thus, a dataset generated entirely from the 9th round will
consist of mostly secure samples. This is the case for the TW9 dataset, which has 99918
secure samples but only 82 insecure samples. Due to the highly imbalanced nature of
this dataset, a comparison of accuracy scores shown in Table 8 cannot reliably depict
performance. However, the AUROC scores still indicate that KNN greatly outperforms
decision tree (0.818 vs 0.659) in terms of correctly predicting the secure class. The ROC
curve for the 9-round TWINE generalization experiment is shown in Figure 8. We can
conclude that the best classifier for predicting the security of an unseen 16-branch
cipher is KNN, even for a larger number of rounds than it has been trained for. These
results were obtained after a second round of hyperparameter tuning which resulted
in the same hyperparameter values for decision tree but different values for KNN
(NN = 8, Algo = KDTree, LeafS = 250).

Table 8. Generalization Results (TWINE) for 16-branch GFS (Round 9)

Model F1 (Insecure) F1 (Secure) Accuracy
Decision Tree 0.01 0.88 0.78

KNN 0.02 0.97 0.94
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Figure 8. ROC curve for TWINE (Round 9) experiment (AUROCKNN = 0.934, AUROCDT = 0.781)

5. Discussion, Practical Applications and Future Work

Overall, the experimental results showcased the feasibility of the proposed approach
whereby classifiers were able to learn the relationship between block cipher features and
security (with respect to differential cryptanalysis). More specifically, results showed
that nonlinear classifiers are better suited for assessing the security of block ciphers as
compared to linear classifiers. Linear classifiers such as logistic regression can still be
used if security assessment is performed on seen block cipher variants but it cannot
generalize well to unseen ones. In general, we recommend the use of nonlinear clas-
sifiers, specifically KNN as it was able to achieve a 92% prediction accuracy for seen
cipher variants. KNN was still able to generalize to unseen cipher variants with an
accuracy of 71%, 62% and 56% for BC1, BC2 and BC3, respectively.

Contrary to intuition, the trained models (specifically decision tree and KNN) ac-
tually performed better when applied to 16-branch GFS ciphers. We conjecture that
this is a result of the increased number of features being used for training (7x more
features as compared to the 4-branch ciphers). Investigating the impact of specific
features and the number of features will be left to future work. Our findings indicate
that the prior recommendation of using KNN for the prediction task still holds valid.
KNN was able to achieve 96% accuracy when performing predictions for the five seen
GFS ciphers, and could generalize well to the unseen GFS cipher, TWINE with an
accuracy of 74%. As compared to decision tree, KNN can better discriminate between
secure and insecure classes based on its higher AUROC scores. In addition, KNN was
able to make accurate predictions for 9 rounds of TWINE despite being trained with
only round 1-8 data from the five GFS ciphers. This depicts the capability of KNN to
generalize to more rounds than it has been trained for.

As the proposed approach can achieve high accuracy (up to 96%) when predicting
the security of seen cipher variants, it can be used to quickly identify good differ-
ential pairs for cryptanalysis. Although searching algorithms or mathematical solvers
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can also be used for this reason, determining the strength of each differential pair
requires reasonable computational effort especially for large block sizes or number of
rounds. In contrast, machine learning algorithms can perform this prediction near-
instantaneously albeit with a longer training time. This is an efficiency trade-off be-
tween the online phase of an attack and its pre-processing phase. Apart from that,
high accuracy when predicting seen cipher variants implies that additional cipher fea-
tures such as permutation pattern can potentially be used to improve existing machine
learning-based distinguishers (Gohr, 2019) for key recovery attacks.

The trained machine learning models can be used to quickly assess the security
margin of unseen block ciphers. In practice, these unseen block ciphers can be new
designs or any other block cipher that the model was not trained with. This capability
was depicted when the trained nonlinear classifiers were used on TWINE. The best
performing KNN classifier achieved a prediction accuracy of 74%. A closer inspection
of the F1 scores indicates that KNN is more likely to classify a cipher as insecure (F1 =
0.79) rather than secure (F1 = 0.68), and will do so more accurately. This implies that
the predictions made by the classifier are more conservative (favouring insecure rather
than secure), which is desirable in a practical setting. Its high AUROC scores (0.818-
0.934) shows that it is also proficient at classifying secure samples correctly. These
results support the reliability of the proposed model’s predictions. The trained models
will be useful for block cipher designers who wish to quickly discard poor designs
without having to run computationally intensive searching algorithms or mathematical
solvers.

The proposed work is not without its limitations. As of now, it remains to be seen
if the same approach can be applied on other block cipher structures such as SPN
and ARX. For these structures, the use of truncated differentials may not be feasible
as these ciphers may involve bitwise permutations. Thus, generating an exhaustive
dataset for training will be more time-consuming. Apart from that, the use of a single
threshold value α is restrictive and may not accurately reflect the security requirements
of different ciphers. With a more dynamic or flexible threshold, the performance of the
models may be improved. The proposed approach sets a precedence for future work
which includes:

• Exploring the use of deep learning to maximize the prediction accuracy for un-
seen cipher variants
• Investigating the use (and different representations) of other features such as

S-box probability or diffusion properties of the permutation pattern to further
optimize prediction accuracy
• Prediction of differential probability or the number of active S-boxes using re-

gression techniques
• Improving the accuracy of existing machine learning-based distinguishers using

additional cipher features
• Training a machine learning algorithm to predict the security of a larger block

cipher using data from smaller block ciphers with the same structure
• Predicting the security of other block cipher structures such as SPN or ARX

6. Conclusion

In this paper, we proposed an alternative approach in applying machine learning for
cryptanalysis. Rather than being used to directly cryptanalyze block ciphers to recover
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secret keys, we train machine learning classifiers using generic block cipher features to
predict if a block cipher is secure or insecure based on the notion of differentially active
S-boxes. Thus, the proposed approach is not specific to a particular block cipher nor
secret key, which is the case for the majority of existing methods. As a proof-of-concept,
we performed experiments on 4-branch GFS ciphers. By using truncated differentials,
we were able to exhaustively generate the training and testing datasets by using a
modified version of Matsui’s branch-and-bound algorithm. We tested our approach by
using three linear and three nonlinear classifiers. Experimental results concluded that
nonlinear classifiers were better suited for the security prediction task, with decision
tree and KNN depicting optimal performance. When predicting seen cipher variants,
the decision tree classifier was able to achieve a prediction accuracy of up to 93% as
compared to 92% for KNN. KNN outperformed decision tree when generalizing to
unseen cipher variants, achieving an accuracy of up to 71% depending on the security
level of the targeted cipher. We then applied the proposed approach on 16-branch GFS
ciphers, including the lightweight block cipher, TWINE. We found that the decision
tree and KNN classifiers were highly adept at making predictions for seen ciphers,
achieving accuracy results ranging between 96-97%. When generalizing to an unseen
block cipher (TWINE), KNN not only outperformed decision tree (74% versus 67%),
there were also minimal biases as compared to predictions made for the smaller-scale
ciphers. KNN could also make accurate predictions (accuracy of 94%, AUROC score
of 0.934) for 9-round TWINE despite being trained using data obtained from only
round 1-8 of the five GFS ciphers. These results not only depict the feasibility of the
proposed approach but also implies that the trained models can be used in practice to
filter strong differential pairs for cryptanalysis and also to assess the security of new
block cipher designs.
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