Improved (Related-key) Differential Cryptanalysis on GIFT

Fulei $\mathrm{Ji}^{1,2}$, Wentao Zhang ${ }^{1,2}$, Chunning Zhou ${ }^{1,2}$, and Tianyou Ding ${ }^{1,2}$
${ }^{1}$ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
\{jifulei, zhangwentao, zhouchunning, dingtianyou\}@iie.ac.cn
${ }^{2}$ School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract

In this paper, we reevaluate the security of GIFT against differential cryptanalysis under both single-key scenario and related-key scenario. Firstly, we apply Matsui's algorithm to search related-key differential trails of GIFT. We add three constraints to limit the search space and search the optimal related-key differential trails on the limited search space. We obtain related-key differential trails of GIFT-64/128 for up to $15 / 14$ rounds, which are the best results on related-key differential trails of GIFT so far. Secondly, we propose an automatic algorithm to increase the probability of the related-key boomerang distinguisher of GIFT by searching the clustering of the related-key differential trails utilized in the boomerang distinguisher. We find a 20 -round related-key boomerang distinguisher of GIFT-64 with probability $2^{-58.557}$. The 25 -round related-key rectangle attack on GIFT-64 is constructed based on it. This is the longest attack on GIFT-64. We also find a 19-round related-key boomerang distinguisher of GIFT-128 with probability $2^{-109.626}$. We propose a 23 -round related-key rectangle attack on GIFT-128 utilizing the 19-round distinguisher, which is the longest related-key attack on GIFT-128. The 24 -round related-key rectangle attack on GIFT-64 and 22-round related-key boomerang attack on GIFT-128 are also presented. Thirdly, we search the clustering of the single-key differential trails. We increase the probability of a 20 -round single-key differential distinguisher of GIFT-128 from $2^{-121.415}$ to $2^{-120.245}$. The time complexity of the 26 -round differential attack on GIFT-128 is improved from $2^{124.415}$ to $2^{123.245}$.

Keywords: Matsui's algorithm • Related-key differential trail • Single-key differential trail - Clustering effect • Boomerang attack • Rectangle attack • GIFT

1 Introduction

GIFT is a lightweight Substitution-Permutation-Network block cipher proposed by Banik et al. at CHES'17 [7]. GIFT has two versions named GIFT-64 and GIFT-128, whose block sizes are 64 and 128 bits respectively and round numbers are 28 and 40 respectively. The key length of GIFT-64 and GIFT-128 are both 128 bits. As the inheritor of PRESENT [16], GIFT achieves improvements over PRESENT in both security and efficiency. GIFT is the underlying block cipher of the lightweight authenticated encryption schemes GIFT-COFB [1], HYENA [2], SUNDAE-GIFT [3], LOTUSAEAD and LOCUS-AEAD [4], which are all the round 2 candidates of the NIST lightweight crypto standardization process [5].

Differential cryptanalysis [13] is one of the most fundamental methods for cryptanalysis of block ciphers. The most important step of differential cryptanalysis is to find differential trails with high probabilities. Boomerang attack [31] and rectangle attack [11,23] are extensions of differential cryptanalysis. Related-key boomerang attack [24,12] is a combination of boomerang attack and related-key differential cryptanalysis [10].

In recent years, the resistance of GIFT against (related-key) differential cryptanalysis have been extensively studied. In single-key scenario, Zhou et al. [35] succeed in searching the optimal differential trails of GIFT-64 for up to 14 rounds. Ji et al. [22] found the optimal differential trails of GIFT-128 for up to 19 rounds. Li et al. [25] obtained a 20 -round differential trail of GIFT-128 and presented a 26 -round attack on GIFT-128. In related-key scenario, the designers [7] gave lower bounds of the probabilities of the optimal related-key differential trails of GIFT-64 for up to

12 rounds and GIFT-128 for up to 9 rounds. Liu and Sasaki [27] searched related-key differential trails of GIFT-64 for up to 21 rounds. They succeed in attacking 21-round GIFT-128 with a 19 -round related-key boomerang distinguisher and 23 -round GIFT- 64 with a 20 -round relatedkey boomerang distinguisher. In [18], Chen et al. constructed a 20 -round related-key boomerang distinguisher of GIFT-64 with probability $\operatorname{Pr}=2^{-50}$. Based on this 20-round distinguisher, a 23 -round related-key rectangle attack was proposed in [18] and a 24 -round related-key rectangle attack was proposed by Zhao et al. in [34]. According to the analysis in [32], the probability of the 20 -round distinguisher should be corrected to $\operatorname{Pr}=2^{-68}$. The 23 -round and 24 -round attack are invalid since $\operatorname{Pr}<2^{-64}$ [11]. The detailed proof process is demonstrated in App.C.

Matsui's algorithm [28] is a branch-and-bound depth-first automatic search algorithm proposed by Matsui to search optimal single-key differential and linear trails of DES. Some improvements of Matsui's algorithm have been presented and applied to DESL, FEAL, NOEKEON and SPONGENT [29,6,8,22]. In [22], Ji et al. applied three methods to speed up the search process of Matsui's algorithm. The improved Matsui's algorithm given in [22] is easy to implement and performs well in searching the optimal single-key differential trails of GIFT.

In this paper, we focus on the following two issues. Firstly, the lower bounds of the probabilities of the optimal related-key differential trails of GIFT found in [7,27] are loose. We hope to find related-key differential trails of GIFT with higher probabilities. We apply Matsui's algorithm to search related-key differential trails of GIFT. Secondly, both the probability of the single-key differential distinguisher and the related-key boomerang distinguisher can be improved by considering the clustering of the differential trails. The definitions of the clustering of an R-round single-key differential trail and the clustering of the related-key differential trails utilized in an R-round related-key boomerang distinguisher are presented in Definition 4 and Definition 5. We research how to find the clustering of the single-key differential trails and the related-key differential trails utilized in the related-key boomerang distinguisher.

Our Contributions

1 We apply Matsui's algorithm to search related-key differential trails of GIFT. We search related-key differential trails of GIFT according to the following three steps:

- Firstly, apply the speeding-up methods in [22] to speed up the search process.
- Secondly, add three constraints to limit the search space.
- Finally, search the optimal related-key differential trails on the limited search space.

The adjusted Matsui's algorithm devoted to searching related-key differential trails of GIFT is shown in Alg.1.

- We succeed in finding related-key differential trails of GIFT-64/128 for up to 15/14 rounds. The results are summarized in Table 1.
- As we can see from Table 1, compared with the known results in [7,27,18], the relatedkey differential trails of GIFT we find are the best results so far. For GIFT-128, we find related-key differential trails for up to 14 round, while the previous results up to 9 rounds. For both GIFT-64 and GIFT-128, our results provide tighter lower bounds for the probabilities of the optimal related-key trails.
In [27], the authors presented a 9-round related-key differential trail l of GIFT-128 with weight 29.830. Through our verification, we find that l cannot be reproduced. It is because that the round key difference of l cannot be generated from the master key difference.
2 We propose an automatic search algorithm to search the clustering of the relatedkey differential trails utilized in the related-key boomerang distinguisher. The new algorithm is presented as Alg.2. The target cipher E of the related-key boomerang distinguisher is decomposed as $E_{1} \circ E_{m} \circ E_{0}$.
- For GIFT-64, we increase the probability of a 20 -round related-key boomerang distinguisher from $2^{-67.660}$ to $2^{-58.557}$. The clustering of the 10 -round related-key differential trail utilized in E_{0} consists of 5728 trails. The clustering of the 9 -round related-key differential trail utilized in E_{1} consists of 312 trails.

Table 1. The weight ${ }^{1}$ of the n-round related-key differential trails of GIFT

	GIFT-64					GIFT-128	
n	$[7]$	$[18]$	$[27]$	Sect.3		$[7]$	Sect.3
5	1.415			1.415		7.000	6.830
6	5.000			4.000		11.000	10.830
7	6.415			6.000		20.000	15.830
8	10.000			8.000		25.000	22.830
9	16.000	14.000	13.415	13.415		31.000	30.000
10	22.000			20.415		37.000	
11	27.000		28.830	26.000		44.000	
12				31.000		56.000	
13			39.000	37.000		65.830	
14				42.830			77.830
15			50.000	48.000			

${ }^{1}$ The weight is the negative logarithm of the probability with base 2.

The 25 -round and 24 -round related-key rectangle attacks are achieved taking advantage of the 20 -round distinguisher. This is the longest attack on GIFT-64 so far, while the previous longest attack is the 23-round related-key boomerang attack proposed in [27].

- For GIFT-128, we increase the probability of a 19 -round related-key boomerang distinguisher from $2^{-120.00}$ to $2^{-109.626}$. The clustering of the 9-round related-key differential trail utilized in E_{0} contains 3952 trails. The clustering of the 9 -round related-key differential trail utilized in E_{1} contains 2944 trails.
Applying the 19 -round distinguisher, we propose a 23 -round related-key rectangle attack and a 22 -round related-key boomerang attack. This is the longest related-key attack on GIFT-128, while the previous longest related-key attack is the 21-round related-key boomerang attack proposed in [27].

Table 2. Summary of the cryptanalytic results on GIFT
GIFT-64

Rounds	Approach	Setting	Time	Data	Memory	Ref.
20	DC	SK	$2^{112.68}$	2^{62}	2^{112}	$[17]$
21	DC	SK	$2^{107.61}$	2^{64}	2^{96}	$[17]$
23	Boomerang	RK	$2^{126.6}$	$2^{63.3}$	-	$[27]$
24	Rectangle	RK	$2^{106.00}$	$2^{63.78}$	$2^{64.10}$	Sect.5.2
25	Rectangle	RK	$2^{120.92}$	$2^{63.78}$	$2^{64.10}$	Sect.5.1

GIFT-128

Rounds	Approach	Setting	Time	Data	Memory	Ref.
21	Boomerang	RK	$2^{126.6}$	$2^{126.6}$	-	$[27]$
22	Boomerang	RK	$2^{112.63}$	$2^{112.63}$	2^{52}	App.B
23	Rectangle	RK	$2^{126.89}$	$2^{121.31}$	$2^{121.63}$	Sect.6.2
23	DC	SK	2^{120}	2^{120}	2^{86}	$[36]$
26	DC	SK	$2^{124.415}$	$2^{124.415}$	2^{109}	$[25]$
26	DC	SK	$2^{123.245}$	$2^{123.245}$	2^{109}	Sect.6.1

3 We apply Matsui's algorithm to search the clustering of the single-key differential trails.

- We increase the probability of a 20 -round single-key differential distinguisher of GIFT-128 from $2^{-121.415}$ to $2^{-120.245}$. The clustering of the 20 -round single-key differential trail is composed by four trails. We improve the time complexity of the 26 -round differential attack on GIFT-128 constructed in [25] from $2^{124.415}$ to $2^{123.245}$.

The cryptanalytic results are summarized in Table 2.

Organization. The paper is organized as follows. In Sect.2, we give a brief description of GIFT, the speeding-up methods on Matsui's algorithm and the related-key boomerang and rectangle attack. The definitions and notations adopted throughout the paper are also presented in Sect.2. In Sect.3, we introduce how to apply Matsui's algorithm in related-key scenario. Sect. 4 declares how to search the clustering of the single-key/related-key differential trails. Sect. 5 and Sect. 6 provide the details of the $25 / 24$-round attacks on GIFT-64 and the $26 / 23$-round attacks on GIFT-128 respectively. The details of the 22-round attack on GIFT-128 are presented in App.B. Sect. 7 is the conclusion and future work.

2 Preliminaries

2.1 Description of GIFT

Let n be the block size of GIFT. The master key is $i n i K:=k_{7}\left\|k_{6}\right\| \cdots \| k_{0}$, in which \mid ini $K \mid=128$, $\left|k_{i}\right|=16$. Each round of GIFT consists of three steps: SubCells, PermBits, and AddRoundKey.

Table 3. The specifications of the S-box $G S$ in GIFT

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$G S(x)$	1	a	4	c	6	f	3	9	2	d	b	7	5	0	8	e

1 SubCells. The S-box $G S$ is applied to every nibble of the cipher state. The specifications of $G S$ is given in Table 3.
2 PermBits. Update the cipher state by a linear bit permutation $P(\cdot)$ as $b_{P(i)} \leftarrow b_{i}$, $\forall i \in$ $\{0, \cdots, n-1\}$.
3 AddRoundKey. An $n / 2$-bit round key $R K$ is extracted from the key state. It is further partitioned into two s-bit words $R K:=U\left\|V=u_{s-1} \cdots u_{0}\right\| v_{s-1} \cdots v_{0}, s=n / 4$.
For GIFT-64, $R K$ is XORed to the state as $b_{4 i+1} \leftarrow b_{4 i+1} \oplus u_{i}, b_{4 i} \leftarrow b_{4 i} \oplus v_{i}, \forall i \in\{0, \cdots, 15\}$. For GIFT-128, $R K$ is XORed to the state as $b_{4 i+2} \leftarrow b_{4 i+2} \oplus u_{i}, b_{4 i+1} \leftarrow b_{4 i+1} \oplus v_{i}, \forall i \in$ $\{0, \cdots, 31\}$.
For both versions, a single bit " 1 " and a 6 -bit constant C are XORed into the internal state at positions $n-1,23,19,15,11,7$ and 3 respectively.

Key Schedule. For GIFT-64, $R K=U\left\|V=k_{1}\right\| k_{0}$. For GIFT-128, $R K=U\left\|V=k_{5}\right\| k_{4}\left\|k_{1}\right\| k_{0}$. For both versions, the key state is updated as

$$
k_{7}\left\|k_{6}\right\| \cdots\left\|k_{1}\right\| k_{0} \leftarrow k_{1} \ggg 2\left\|k_{0} \ggg 12\right\| \cdots\left\|k_{3}\right\| k_{2},
$$

where $\ggg i$ is an i-bit right rotation within a 16 -bit word.
We refer readers to [7] for more details of GIFT.

2.2 Definitions and Notations

Definition 1 ([20]). The weight of a difference propagation (a^{\prime}, b^{\prime}) is the negative of the binary logarithm of the difference propagation probability over the transformation h, i.e.,

$$
\begin{equation*}
w_{r}\left(a^{\prime}, b^{\prime}\right)=-l o g_{2}^{P r^{h}\left(a^{\prime}, b^{\prime}\right)} \tag{1}
\end{equation*}
$$

a^{\prime} is the input difference and b^{\prime} is the output difference.
Definition 2 ([19]). Let φ be an invertible function from \mathbb{F}_{2}^{m} to \mathbb{F}_{2}^{m}, and $\Delta_{0}, \nabla_{0} \in \mathbb{F}_{2}^{m}$. The boomerang connectivity table (BCT) of φ is defined by a $2^{m} \times 2^{m}$ table, in which the entry for $\left(\Delta_{0}, \nabla_{0}\right)$ is computed by:

$$
\begin{equation*}
\operatorname{BCT}\left(\Delta_{0}, \nabla_{0}\right)=\sharp\left\{x \in\{0,1\}^{n} \mid \varphi^{-1}\left(\varphi(x) \oplus \nabla_{0}\right) \oplus \varphi^{-1}\left(\varphi\left(x \oplus \Delta_{0}\right) \oplus \nabla_{0}\right)=\Delta_{0}\right\} . \tag{2}
\end{equation*}
$$

Definition 3 ([32]). Let φ be an invertible function from \mathbb{F}_{2}^{m} to \mathbb{F}_{2}^{m}, and $\Delta_{0}, \Delta_{1}, \nabla_{0}, \nabla_{1} \in \mathbb{F}_{2}^{m}$. The boomerang difference table (BDT) of φ is a three-dimensional table, in which the entry for $\left(\Delta_{0}, \Delta_{1}, \nabla_{0}\right)$ is computed by:

$$
\begin{array}{r}
\operatorname{BDT}\left(\Delta_{0}, \Delta_{1}, \nabla_{0}\right)=\sharp\left\{x \in\{0,1\}^{n} \mid \varphi^{-1}\left(\varphi(x) \oplus \nabla_{0}\right) \oplus \varphi^{-1}\left(\varphi\left(x \oplus \Delta_{0}\right) \oplus \nabla_{0}\right)=\Delta_{0},\right. \\
\left.\varphi(x) \oplus \varphi\left(x \oplus \Delta_{0}\right)=\Delta_{1}\right\} . \tag{3}
\end{array}
$$

The iBDT, as a variant of BDT, is evaluated by:

$$
\begin{array}{r}
\operatorname{iBDT}\left(\nabla_{0}, \nabla_{1}, \Delta_{0}\right)=\sharp\left\{x \in\{0,1\}^{n} \mid \varphi\left(\varphi^{-1}(x) \oplus \Delta_{0}\right) \oplus \varphi\left(\varphi^{-1}\left(x \oplus \nabla_{0}\right) \oplus \Delta_{0}\right)=\nabla_{0},\right. \\
\left.\varphi^{-1}(x) \oplus \varphi^{-1}\left(x \oplus \nabla_{0}\right)=\nabla_{1}\right\} . \tag{4}
\end{array}
$$

The notations used in this paper are defined as follows:

2.3 Three Methods to Speed Up Matsui's Algorithm

Matsui's algorithm [28] works by induction on the number of rounds and derives the R-round optimal weight B_{R} from the knowledge of all i-round optimal weight $B_{i}(1 \leq i<R)$. The program requires an initial value for B_{R}, which is represented as $B c_{R}$. It works correctly for any $B c_{R}$ as long as $B c_{R} \geq B_{R}$. In [22], Ji et al. applied three methods to improve the efficiency of Matsui's algorithm. The three speeding-up methods are named (1) Reconstructing DDT and LAT According to Weight, (2) Executing Linear Layer Operations in Minimal Cost and (3) Merging Two 4-bit Sboxes into One 8-bit S-box.

Speeding-up method- $\mathbf{1}$ contributes to pruning unsatisfiable candidates quickly. The authors reconstructed the DDT table to sort the input and output differences according to their weights. Speeding-up method-2 and method-3 contribute to reducing the cost of executing linear layer operations. The authors merged 2ns 4 -bit S-boxes into ns 8 -bit new S-boxes. The new linear table is constructed according to the output differences of each S-box. The SSE instructions are applied to reduce the cost of linear layer operations.

The improved Matsui's algorithm for GIFT is demonstrated as Alg. 3 in App.A. We refer readers to [22] for more details of the speeding-up methods.

2.4 Related-key Boomerang Attack and Rectangle Attack

Basic Related-key Boomerang Attack and Rectangle Attack. Related-key boomerang attack is an adaptive chosen-plaintext/ciphertext attack. As is shown in Fig.1, the adversary can split the target cipher E into two sub-ciphers E_{0} and E_{1}, i.e. $E=E_{1} \circ E_{0}$. Assume that there are a differential trail $\alpha \rightarrow \beta$ under the key difference ΔK over E_{0} with probability p and a differential trail $\gamma \rightarrow \delta$ under the key difference ∇K over E_{1} with probability q. Once K_{1} is known, the other three keys are determined: $K_{2}=K_{1} \oplus \Delta K, K_{3}=K_{1} \oplus \nabla K, K_{4}=K_{2} \oplus \nabla K$. Given $P_{1} \oplus P_{2}=\alpha$ and $K_{1} \oplus K_{2}=\Delta K$, the probability that we obtain two plaintexts satisfying $P_{3} \oplus P_{4}=\alpha$ through the boomerang distinguisher is:

$$
\begin{equation*}
p^{2} q^{2}=\operatorname{Pr}\left[E^{-1}\left(E\left(x, K_{1}\right) \oplus \delta, K_{3}\right) \oplus E^{-1}\left(E\left(x \oplus \alpha, K_{2}\right) \oplus \delta, K_{4}\right)=\alpha\right] \tag{5}
\end{equation*}
$$

Fig. 3. A 1-round E_{m}

Fig. 4. A 2-round E_{m}

If ($P_{1}, P_{2}, P_{3}, P_{4}$) can pass the boomerang distinguisher, then it is called a right quartet.
For a random permutation, given $P_{1} \oplus P_{2}=\alpha$ and $K_{1} \oplus K_{2}=\Delta K$, the probability that two random plaintexts satisfying $P_{3} \oplus P_{4}=\alpha$ is 2^{-n}. Therefore, only if $p q>2^{-n / 2}$ can we count more right quartets than random noise through the related-key boomerang distinguisher.

Related-key rectangle attack is a chosen-plaintext attack, which is a further development of the related-key boomerang attack. In Fig.1, given $P_{1} \oplus P_{2}=\alpha$ and $P_{3} \oplus P_{4}=\alpha$ under $K_{1}, K_{2}, K_{3}, K_{4}$, the probability that the corresponding ciphertexts $C_{1}, C_{2}, C_{3}, C_{4}$ meets $C_{1} \oplus C_{3}=\delta$ and $C_{2} \oplus C_{4}=\delta$ (or $C_{1} \oplus C_{4}=\delta$ and $C_{2} \oplus C_{3}=\delta$) is $2^{-n} p^{2} q^{2}$. If ($P_{1}, P_{2}, P_{3}, P_{4}$) can pass the rectangle distinguisher under $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$, then it is called a right quartet. For a random permutation, we get a right quartet with probability $2^{-2 n}$ in the rectangle attack. Thus, only if $p q>2^{-n / 2}$ can we count more right quartets than random noise.

Boomerang Switch. The interaction between the two differential trails over E_{0} and E_{1} is utilized to improve the boomerang and rectangle attack [14,15], which is called the boomerang switch [15]. The idea of the boomerang switch is to minimize the overall complexity of the distinguisher by optimizing the transition between E_{0} and E_{1}. In [21], a new framework named sandwich attack was proposed. As is shown in Fig.2, the sandwich attack decomposes the target cipher E as $E_{1} \circ E_{m} \circ E_{0}$. The propagation of the boomerang switch is captured by the propagation of E_{m}.

For the fixed β and γ, the probability that a quartet can pass E_{m} is :

$$
\begin{equation*}
r:=\operatorname{Pr}\left[E_{m}^{-1}\left(E_{m}\left(x, K_{1}\right) \oplus \gamma, K_{3}\right) \oplus E_{m}^{-1}\left(E_{m}\left(x \oplus \beta, K_{2}\right) \oplus \gamma, K_{4}\right)=\beta\right] \tag{6}
\end{equation*}
$$

Thus, the probability that we obtain a right quartet through the sandwich distinguisher (i.e. the boomerang distinguisher with boomerang switch) is $p^{2} q^{2} r$.

The value of r can be evaluated by the boomerang connectivity table [19] or the boomerang difference table [32] at the S-box level. Let $\beta[2 \mathrm{~ns}]\|\cdots\| \beta[1]:=\beta$ and $\gamma[2 \mathrm{~ns}]\|\cdots\| \gamma[1]:=\gamma$. Let S and L be the non-linear and linear layer operations of $E, \beta^{\prime}=S(\beta), \beta^{\prime \prime}=L\left(\beta^{\prime}\right), \gamma^{\prime}=S^{-1}(\gamma)$ and $\gamma^{\prime \prime}=L^{-1}\left(\gamma^{\prime}\right)$. For a 1-round E_{m}, the propagation of β and γ is illustrated in Fig.3. Then we have

$$
r=2^{-n} \Sigma_{1 \leq i \leq 2 \mathrm{~ns}} \mathrm{BCT}(\beta[i], \gamma[i])
$$

For a 2-round E_{m}, the propagation of β and γ is illustrated in Fig.4. Then we have

$$
r=2^{-2 n} \Sigma_{1 \leq i \leq 2 \mathrm{~ns}}\left(\operatorname{BDT}\left(\beta[i], \beta^{\prime}[i], \gamma^{\prime \prime}[i]\right) \times \operatorname{iBDT}\left(\gamma[i], \gamma^{\prime}[i], \beta^{\prime \prime}[i]\right)\right)
$$

For a related-key boomerang distinguisher, if there are multiple trails $\alpha \xrightarrow{E_{\rho}} \beta_{i}$ and $\gamma_{j} \xrightarrow{E_{1}} \delta$ $\left(\beta_{i} \neq \gamma_{j}\right)$ under fixed $\alpha, \Delta K, \delta$ and ∇K, the probability of obtaining a right quartet can be increased to:

$$
\begin{equation*}
\hat{p}^{2} \hat{q}^{2}:=\Sigma_{i, j} p_{i}^{2} q_{j}^{2} r_{i j} \tag{7}
\end{equation*}
$$

in which $p_{i}=\operatorname{Pr}\left(\alpha \xrightarrow{E_{0}} \beta_{i}\right), q_{j}=\operatorname{Pr}\left(\gamma_{j} \xrightarrow{E_{1}} \delta\right)$ and $r_{i j}=\operatorname{Pr}\left(\beta_{i} \xrightarrow{E_{n}} \gamma_{j}\right)$.
A new key-recovery model for the related-key boomerang and rectangle attack against block ciphers with linear key schedules was constructed by Zhao et al. in [33,34]. This new model is a modification of Liu et al.'s model [26]. In this paper, we utilize the model proposed by Zhao et al. to perform the key-recovery attack against GIFT.

3 Searching Related-key Differential Trails

3.1 Applying Matsui's Algorithm in Related-key Scenario

Our objective is to find related-key differential trails with high probabilities. We apply Matsui's algorithm to search related-key differential trails of GIFT. Firstly, we apply the speeding-up methods introduced in Sect.2.3 to improve the search process. Secondly, we add three constraints to limit the search space. Finally, we search the optimal related-key differential trails on the limited search space. The adjusted Matsui's algorithm aiming at searching optimal related-key differential trails of GIFT on limited search space is demonstrated in Alg.1.

Let R be the round number of E. Let $\Delta i n i K:=\Delta k_{7}\|\cdots\| \Delta k_{0}$ be the master key difference and ΔK_{i} be the round key difference in round i. We utilize the following three constraints to limit the search space:

1 Restricting the input difference of round $f r$ to zero and traverse $f r$ from 1 to R. It has been declared in [29] that the number of candidates in the first two rounds of Matsui's algorithm is the dominant factor of the search complexity. In Alg.3, the number of candidates ΔY_{1} in Procedure Round -1 depends on the value of $B c_{R}-B_{R-1}$. Alg. 1 starts from Procedure Round- $f r$ with only one candidate $\Delta Y_{f r}=0$. Since $\Delta Y_{f r}=0$, we can determine the input difference of round $i+1$ which is ΔK_{i} and the output difference of round $i-1$ which is ΔK_{i-1}. Therefore, the complexity of Matsui's algorithm in related-key scenario is improved benefitting from constraint-1.
2 Restricting the number of the active bits in the master key difference.
The key schedule of GIFT is a linear transformation. The value of ΔK_{i} are determined by $\Delta i n i K$. The input difference of $S(\cdot)$ in round i is $\Delta X_{i}=P\left(\Delta Y_{i-1}\right) \oplus \Delta K_{i-1}$. The related-key differential trails with small weight will not contain too many active S-boxes in $S(\cdot)$. Thus, there should not be too many active bits in $\Delta K_{i}(1 \leq i \leq R)$. The details of constraint- 2 are as follows.

- Restricting the number of the active bits in $\Delta i n i K$ to no more than four when $R<11$.
- Restricting the number of the active bits in $\Delta i n i K$ to no more than three when $R \geq 11$.
- Restricting the four active bit positions to belong to four different $\Delta k_{j}(0 \leq j \leq 7)$ if the number of the active bits is four.
The total number of the candidate $\Delta i n i K$ is $C_{128}^{1}+C_{128}^{2}+C_{128}^{3}+C_{7}^{4} \cdot\left(C_{16}^{1}\right)^{4}=4937152$.
3 Restricting the number of the active S-boxes in round $i(1 \leq i \leq R)$ to no more than five when $R \geq 11$.

```
```

Algorithm 1 The Adjusted Matsui's Algorithm of Searching Optimal Related-key Differential

```
```

Algorithm 1 The Adjusted Matsui's Algorithm of Searching Optimal Related-key Differential
Trails for GIFT on Limited Search Space
Trails for GIFT on Limited Search Space
Require: $R(\geq 3) ; B_{0}=0, B_{1}, B_{2}, \cdots, B_{R-1} ; B c_{R}$; iniKeyDiff [4937 152]; ns :=n/8
Require: $R(\geq 3) ; B_{0}=0, B_{1}, B_{2}, \cdots, B_{R-1} ; B c_{R}$; iniKeyDiff [4937 152]; ns :=n/8
Ensure: $B_{R}=B c_{R}$; the R-round related-key differential trails with minimal weight
Ensure: $B_{R}=B c_{R}$; the R-round related-key differential trails with minimal weight
for each iniKeyDiff $[v]$ do
for each iniKeyDiff $[v]$ do
gen roundkey $\Delta K_{i}, 1 \leq i \leq R$
gen roundkey $\Delta K_{i}, 1 \leq i \leq R$
for $f r=1$ to R do
for $f r=1$ to R do
$\Delta X_{f r} \leftarrow 0, \Delta Y_{f r} \leftarrow 0, w_{f r} \leftarrow 0$
$\Delta X_{f r} \leftarrow 0, \Delta Y_{f r} \leftarrow 0, w_{f r} \leftarrow 0$
if $f r=R$ then
if $f r=R$ then
$\Delta Y_{f r-1} \leftarrow P^{-1}\left(\Delta K_{f r-1}\right)$
$\Delta Y_{f r-1} \leftarrow P^{-1}\left(\Delta K_{f r-1}\right)$
call Round- i-In
call Round- i-In
else
else
$\Delta X_{f r+1} \leftarrow \Delta K_{f r}$
$\Delta X_{f r+1} \leftarrow \Delta K_{f r}$
call Round- i
call Round- i
end if
end if
end for
end for
end for
end for
Procedure Round- $i, 2 \leq i \leq R-1$:
Procedure Round- $i, 2 \leq i \leq R-1$:
for each ΔY_{i} do
for each ΔY_{i} do
$w_{i} \leftarrow W\left(\Delta X_{i}, \Delta Y_{i}\right)$
$w_{i} \leftarrow W\left(\Delta X_{i}, \Delta Y_{i}\right)$
if $B_{R-i}+B_{f r-1}+\Sigma_{j=f r}^{i} w_{j} \geq B c_{R}$ then 42:
if $B_{R-i}+B_{f r-1}+\Sigma_{j=f r}^{i} w_{j} \geq B c_{R}$ then 42:
break
break
else
else
$\Delta X_{i+1} \leftarrow P\left(\Delta Y_{i}\right) \oplus \Delta K_{i}$
$\Delta X_{i+1} \leftarrow P\left(\Delta Y_{i}\right) \oplus \Delta K_{i}$
call Round- $(i+1)$
call Round- $(i+1)$
end if
end if
end for
end for
Procedure Round- R :
Procedure Round- R :
$w_{R} \leftarrow \min _{\Delta Y_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$

```
\(w_{R} \leftarrow \min _{\Delta Y_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)\)
```

```
if \(B_{f r-1}+\sum_{j=f r}^{R} w_{j} \leq B c_{R}\) then
```

if $B_{f r-1}+\sum_{j=f r}^{R} w_{j} \leq B c_{R}$ then

```
if \(B_{f r-1}+\sum_{j=f r}^{R} w_{j} \leq B c_{R}\) then
```

if $B_{f r-1}+\sum_{j=f r}^{R} w_{j} \leq B c_{R}$ then
if $f r=1$ then
if $f r=1$ then
if $f r=1$ then
if $f r=1$ then
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
else
else
else
else
$\Delta Y_{f r-1} \leftarrow P^{-1}\left(\Delta K_{f r-1}\right)$
call Round- i-In
call Round- i-In
call Round- i-In
call Round- i-In
end if
return to the upper procedure
Procedure Round- i-In, $2 \leq i \leq R-1$:
Procedure Round- i-In, $2 \leq i \leq R-1$:
Procedure Round- i-In, $2 \leq i \leq R-1$:
Procedure Round- i-In, $2 \leq i \leq R-1$:
for each ΔX_{i} do
$w_{i} \leftarrow W\left(\Delta X_{i}, \Delta Y_{i}\right)$
if $B_{i-1}+\sum_{j=i}^{R} w_{j} \geq B c_{R}$ then
break
break
break
break
else
else
else
else
$\Delta Y_{i-1} \leftarrow P^{-1}\left(\Delta X_{i} \oplus \Delta K_{i-1}\right)$
call Round-($i-1$)-In
call Round-($i-1$)-In
call Round-($i-1$)-In
call Round-($i-1$)-In
end if
end if
end if
end if
end for
end for
end for
end for
Procedure Round-1-In:
Procedure Round-1-In:
Procedure Round-1-In:
Procedure Round-1-In:
$w_{1} \leftarrow \min _{\Delta X_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$
$w_{1} \leftarrow \min _{\Delta X_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$
$w_{1} \leftarrow \min _{\Delta X_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$
$w_{1} \leftarrow \min _{\Delta X_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$
if $\Sigma_{j=1}^{R} w_{j} \leq B c_{R}$ then
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
end if
end if
end if
end if
return to the upper procedure

```
return to the upper procedure
```

return to the upper procedure

```
return to the upper procedure
```


3.2 Results on Related-key Differential Trails of GIFT

Applying Alg.1, we find related-key differential trails of GIFT-64/128 for up to 15/14 rounds. The results are summarized in Table 1. Table 10 in App.D presents a 15-round relatedkey differential trail of GIFT-64 and a 14-round related-key differential trail of GIFT-128 found by Alg.1.

Compared to the previous results in $[7,27,18]$, the optimal related-key differential trails found by Alg. 1 on the limited search space are the best results known so far. We find related-key differential trails of GIFT-128 for up to 14 rounds, while the previous results up to 9 rounds. We provide tighter lower bounds for the probabilities of the optimal related-key trails of both GIFT-64 and GIFT-128. It indicates that the three constraints we choose perform well in limiting the search space while preserving the related-key differential trails with high probabilities.

4 Increasing the Probability of the Distinguisher Utilizing Clustering Effect

Both the probability of the single-key differential distinguisher and the related-key boomerang distinguisher can be increased by searching the clustering of the differential trails. Next, we give the
definitions of the clustering of an R-round single-key differential trail and the clustering of the related-key differential trails utilized in an \boldsymbol{R}-round boomerang distinguisher and explain how to search the clustering.

4.1 Single-key Scenario

Definition 4. The clustering of an R-round single-key differential trail is defined as:

$$
\begin{align*}
\mathcal{C}\left(R, \eta_{\text {in }}, \eta_{\text {out }}, B c_{R}\right):= & \left\{\text { all } R \text {-round single-key differential trails } l^{i} \mid\right. \\
& \left.W\left(l^{i}\right) \leq B c_{R}, \Delta X_{1}=\eta_{\text {in }}, P\left(\Delta Y_{R}\right)=\eta_{\text {out }}\right\} . \tag{8}
\end{align*}
$$

In fact, for an R-round single-key differential trail \mathcal{L} with fixed input difference $\eta_{\text {in }}$ and output difference $\eta_{\text {out }}$, the clustering of \mathcal{L} is composed by all the differential trails whose input difference is $\eta_{\text {in }}$ and output difference is $\eta_{\text {out }}$, i.e. $\mathcal{C}\left(R, \eta_{\text {in }}, \eta_{\text {out }}, \infty\right)$. It will take immeasurable time to determine all the trails in $\mathcal{C}\left(R, \eta_{\text {in }}, \eta_{\text {out }}, \infty\right)$. Therefore, we only search all the trails with weight no more than $B c_{R}$. The choice of $B c_{R}$ is heuristic.

We call Alg. 3 to search $\mathcal{C}\left(R, \eta_{\text {in }}, \eta_{\text {out }}, B c_{R}\right)$. The greater the value of $B c_{R}$, the more trails can we find, while the longer the search time is required.

4.2 Related-key Scenario

Definition 5. The clustering of the related-key differential trails utilized in an R-round related-key boomerang distinguisher is defined as:

$$
\begin{array}{r}
\mathcal{C}\left(R_{0}, R_{1}, R_{m}, \alpha, \Delta i n i K_{0}, B c_{R_{0}}, \delta, \Delta i n i K_{1}, B c_{R_{1}}\right):=\left\{\text { all combinations of }\left(l_{0}^{i}, l_{1}^{j}\right) \mid\right. \\
\left.l_{0}^{i} \in \mathcal{C}_{I}\left(R_{0}, \alpha, \Delta i n i K_{0}, B c_{R_{0}}\right), l_{1}^{j} \in \mathcal{C}_{O}\left(R_{1}, \delta, \Delta i n i K_{1}, B c_{R_{1}}\right)\right\} \tag{9}
\end{array}
$$

in which

$$
\begin{array}{r}
\mathcal{C}_{I}\left(R_{0}, \alpha, \Delta i n i K_{0}, B c_{R_{0}}\right):=\left\{\text { all } R_{0} \text {-round related-key differential trails } l_{0}^{i} \mid\right. \\
\\
\left.\quad W\left(l_{0}^{i}\right) \leq B c_{R_{0}}, \Delta X_{1}=\alpha, \mathrm{MKD}=\Delta i n i K_{0}\right\}, \tag{11}\\
\mathcal{C}_{O}\left(R_{1}, \delta, \Delta i n i K_{1}, B c_{R_{1}}\right):=\left\{\text { all } R_{1} \text {-round related-key differential trails } l_{1}^{j} \mid\right. \\
\\
\left.W\left(l_{1}^{j}\right) \leq B c_{R_{1}}, K\left(\Delta Z_{R_{1}}\right)=\delta, \mathrm{MKD}=\Delta i n i K_{1}\right\},
\end{array}
$$

and $R=R_{0}+R_{m}+R_{1}$.
In fact, the clustering of an R_{0}-round related-key differential trail \mathcal{L} with fixed input difference α and master key difference $\Delta i n i K_{0}$ contains all the related-key differential trails with arbitrary weight, i.e. $\mathcal{C}_{I}\left(R_{0}, \alpha, \Delta i n i K_{0}, \infty\right)$. It will take immeasurable time to determine all the trails in $\mathcal{C}_{I}\left(R_{0}, \alpha, \Delta i n i K_{0}, \infty\right)$. Therefore, we only search all the trails with weight no more than $B c_{R_{0}}$. The choice of $B c_{R_{0}}$ is heuristic. The modification above also applies to $\mathcal{C}_{O}\left(R_{1}, \delta, \Delta i n i K_{1}, \infty\right)$.

To construct an R-round related-key boomerang distinguisher \mathcal{D} for the target cipher $E=$ $E_{1} \circ E_{m} \circ E_{0}$, we first determine the round number $R_{0} / R_{m} / R_{1}$ for $E_{0} / E_{m} / E_{1}$ satisfying $R=$ $R_{0}+R_{m}+R_{1}$. The general way to determine the probability of the distinguisher \mathcal{D} is:
1 Choose an R_{0}-round trail l_{0} for E_{0}; Get the input difference α, the output difference β and the master key difference $\Delta i n i K_{0}$.
2 Choose an R_{1}-round trail l_{1} for E_{1}; Get the input difference γ, the output difference δ and the master key difference $\Delta i n i K_{1}$.
3 Apply BCT table to calculate $\operatorname{Pr}(\beta \rightarrow \gamma)$ if $R_{m}=1$; Apply BDT table and iBDT table to calculate $\operatorname{Pr}(\beta \rightarrow \gamma)$ if $R_{m}=2$.
For a distinguisher \mathcal{D} with fixed α and δ, there could be mulitiple values of β and γ. To increase the probability of \mathcal{D}, we hope to find as more combinations of (β, γ) as we can. We propose Alg. 2 to search $\mathcal{C}(\mathcal{D})$, i.e. $\mathcal{C}\left(R_{0}, R_{1}, R_{m}, \alpha, \Delta i n i K_{0}, B c_{R_{0}}, \delta, \Delta i n i K_{1}, B c_{R_{1}}\right)$ and calculate the probability of \mathcal{D} by traversing all combinations of $\left(l_{0}^{i}, l_{1}^{j}\right)$ in $\mathcal{C}(\mathcal{D})$. The greater the value of $B c_{R_{0}}$ and $B c_{R_{1}}$, the more trails can we find.

```
Algorithm 2 The Algorithm of Increasing the Probability of the Related-key Boomerang Distin-
guisher for GIFT
Require: \(R_{0}, R_{1}, R_{m} ; b w ;\) ns := \(n / 8\)
Ensure: \(\hat{p}^{2} \hat{q}^{2} \leftarrow \max \left\{\hat{p}_{i}^{2}{\hat{q_{j}}}^{2}\right\} ; \alpha_{i}, \Delta i n i K_{0}^{i} ; \delta_{j}, \Delta i n i K_{1}^{j}\)
    Phase 1: Search all the related-key differential trails with minimal weight
    call Alg. 1 to search all the \(R_{0}\)-round related-key trails with minimal weight on the limited
    search space for \(E_{0}\)
    \(B_{R_{0}} \leftarrow\) the minimal weight of \(R_{0}\)-round trails
    \(l_{0}^{1}, \cdots, l_{0}^{a} \leftarrow\) all the \(R_{0}\)-round trails with weight \(B_{R_{0}}\)
    for each \(l_{0}^{i}, 1 \leq i \leq a\) do
        \(\alpha_{i} \leftarrow \Delta X_{1}, \Delta i n i K_{0}^{i} \leftarrow\) the master key difference
    end for
    call Alg. 1 to search all the \(R_{1}\)-round related-key trails with minimal weight on the limited
    search space for \(E_{1}\)
    \(B_{R_{1}} \leftarrow\) the minimal weight of \(R_{1}\)-round trails
    \(l_{1}^{1}, \cdots, l_{1}^{b} \leftarrow\) all the \(R_{1}\)-round trails with weight \(B_{R_{1}}\)
    for each \(l_{1}^{j}, 1 \leq j \leq b\) do
        \(\delta_{j} \leftarrow K \circ P\left(\Delta Y_{R_{1}}\right), \Delta i n i K_{1}^{j} \leftarrow\) the master key difference
end for
    Phase 2: Search all the clustering
for each \(l_{0}^{i}, 1 \leq i \leq a\) do
    call Alg. 1 to search \(\mathcal{C}_{I}\left(R_{0}, \alpha_{i}, \Delta i n i K_{0}^{i}, B_{R_{0}}+b w\right) / *\) see Eq. 10 for definition */
    \(l_{0}^{i_{1}}, \cdots, l_{0}^{i_{d}} \leftarrow\) all the trails in \(\mathcal{C}_{I}\left(R_{0}, \alpha_{i}, \Delta i n i K_{0}^{i}, B_{R_{0}}+b w\right)\)
    for each \(l_{0}^{i_{u}}, 1 \leq u \leq d\) do
        \(\beta^{i_{u}} \leftarrow K \circ P\left(\Delta Y_{R_{0}}\right), B_{R_{0}}^{i_{u}} \leftarrow W\left(l_{0}^{i_{u}}\right)\)
    end for
end for
for each \(l_{1}^{j}, 1 \leq j \leq b\) do
    call Alg. 1 to search \(\mathcal{C}_{O}\left(R_{1}, \delta_{j}, \Delta i n i K_{1}^{j}, B_{R_{1}}+b w\right) /^{*}\) see Eq. 11 for definition */
    \(l_{1}^{j_{1}}, \cdots, l_{1}^{j_{e}} \leftarrow\) all the trails in \(\mathcal{C}_{O}\left(R_{1}, \delta_{j}, \Delta i n i K_{1}^{j}, B_{R_{1}}+b w\right)\)
    for each \(l_{1}^{j_{v}}, 1 \leq v \leq e\) do
        \(\gamma^{j_{v}} \leftarrow P^{-1} \circ K^{-1}\left(\Delta X_{1}\right), B_{R_{1}}^{j_{v}} \leftarrow W\left(l_{1}^{j_{v}}\right)\)
    end for
end for
Phase 3: Determine the boomerang distinguisher with highest probability
for each \(l_{0}^{i}(1 \leq i \leq a)\) and \(l_{1}^{j}(1 \leq j \leq b)\) do
    \({\hat{p_{i}}}^{2}{\hat{q_{j}}}^{2} \leftarrow \sum_{u, v} 2^{-2 B_{R_{0}}^{i_{u}}} \cdot 2^{-2 B_{R_{1}}^{j v}} \cdot \operatorname{Middle}\left(\beta^{i_{u}}, \gamma^{j_{v}}, R_{m}\right)\)
end for
\(\hat{p}^{2} \hat{q}^{2} \leftarrow \max _{i, j}\left\{{\hat{p_{i}}}^{2}{\hat{q_{j}}}^{2}\right\}\)
Function Middle \(\left(\beta, \gamma, R_{m}\right)\) :
calcutate \(\operatorname{Pr}_{E_{m}}\) by the BCT table, if \(R_{m}=1\)
calcutate \(\operatorname{Pr}_{E_{m}}\) by the BDT table and the iBDT table, if \(R_{m}=2\)
return \(\operatorname{Pr}_{E_{m}}\)
```


Explanations on Alg. 2

1 Different choices of α (or δ) will lead to different amounts and values of β (or γ).
Therefore, in Phase 1 of Alg.2, we first determine all the choices of α and δ.
2 For GIFT, we find the fact that for fixed $S(\alpha)$ of E_{0} and fixed $S^{-1} \circ P^{-1} \circ K^{-1}(\delta)$ of E_{1}, the choices of α and δ will not influence the value of $\hat{p}^{2} \hat{q}^{2}$.
Therefore, in the search process of GIFT, we only care about the value of $S(\alpha)$ (i.e. ΔY_{1} of $\left.E_{0}\right)$ and the value of $S^{-1} \circ P^{-1} \circ K^{-1}(\delta)\left(i . e . \Delta X_{R_{1}}\right.$ of $\left.E_{1}\right)$.
3 For fixed l_{0}^{i} and $l_{1}^{j}(1 \leq i \leq a, 1 \leq j \leq b)$, we get $\mathcal{C}_{I}\left(R_{0}, \alpha_{i}, \Delta i n i K_{0}^{i}, B_{R_{0}}+b w\right)$ and $\mathcal{C}_{O}\left(R_{1}, \delta_{j}, \Delta i n i K_{1}^{j}, B_{R_{1}}+b w\right)$ through Phase 2. In Phase 3, we traverse all combinations of $\left(l_{0}^{i_{u}}, l_{1}^{j_{v}}\right)$, in which

$$
l_{0}^{i_{u}} \in \mathcal{C}_{I}\left(R_{0}, \alpha_{i}, \Delta i n i K_{0}^{i}, B_{R_{0}}+b w\right), l_{1}^{j_{v}} \in \mathcal{C}_{O}\left(R_{1}, \delta_{j}, \Delta i n i K_{1}^{j}, B_{R_{1}}+b w\right)
$$

to calculate

$$
\hat{p}_{i}{ }^{2}{\hat{q_{j}}}^{2} \leftarrow \sum_{u, v} 2^{-2 B_{R_{0}}^{i_{u}}} \cdot 2^{-2 B_{R_{1}}^{j_{v}}} \cdot \operatorname{Middle}\left(\beta^{i_{u}}, \gamma^{j_{v}}, R_{m}\right)
$$

For each $l_{0}^{i_{u}}$ and $l_{1}^{j_{v}}$, the value of $\beta^{i_{u}}$ and $\gamma^{j_{v}}$ are determined.
4 The value of α and δ should be carefully determined to keep the value of r_{b}, m_{b}, \boldsymbol{r}_{f} and $\boldsymbol{m}_{\boldsymbol{f}}$ appropriate. The probability of the distinguisher is the main factor affecting the complexity of the key-recovery attack. Nevertheless the value of r_{b}, m_{b}, r_{f} and m_{f} can also affect the complexity, which is influenced by the value of α and δ.
Therefore, once we get the value of $\max _{i, j}\left\{{\hat{p_{i}}}^{2}{\hat{q_{j}}}^{2}\right\}, \alpha_{i}$ and δ_{j} from Alg.2, we should carefully adjust the value of α_{i} and δ_{j} to reduce the complexity of the attack.

5 Attacks on GIFT-64

5.1 Related-key Rectangle Attack on 25-round GIFT-64

Determining the Related-key Rectangle Distinguisher. We utilize a 20 -round related-key rectangle distinguisher to attack the 25 -round GIFT-64. Choose $R_{0}=10$ for $E_{0}, R_{1}=9$ for E_{1}, $R_{m}=1$ for E_{m}. Set $b w=4$. Apply Alg. 2 to search the probability of the 20-round distinguisher.

In Phase 1 of Alg.2, we find sixteen 10-round trails with weight 20.415 for E_{0}, marked as $l_{0}^{1}, \cdots, l_{0}^{16}$. We find eight 9 -round trails with weight 13.415 for E_{1}, marked as $l_{1}^{1}, \cdots, l_{1}^{8}$. The details of $l_{0}^{1}, \cdots, l_{0}^{16}$ and $l_{1}^{1}, \cdots, l_{1}^{8}$ are listed in Table 12 and Table 13 in App.D.

In Phase 3, we determine the maximum value of ${\hat{p_{i}}}^{2}{\hat{q_{j}}}^{2}$, which is ${\hat{p_{5}}}^{2}{\hat{q_{8}}}^{2}=2^{-58.557}$. We choose the value of α and δ according to $S\left(\alpha_{5}\right)=0 x 0000000000001000$ and $S^{-1} \circ P^{-1} \circ K^{-1}\left(\delta_{8}\right)=$ $0 x 0000200000000000$. Finally, we obtain a 20 -round related-key rectangle distinguisher with probability $\mathbf{2}^{-n} \hat{\boldsymbol{p}}^{2} \hat{\boldsymbol{q}}^{\mathbf{2}}=\mathbf{2}^{-\mathbf{6 4}} \cdot \mathbf{2}^{-\mathbf{5 8 . 5 5 7}}$. The specifications of the 20 -round related-key rectangle distinguisher of GIFT-64 are shown in Table 4. There are 5728 trails in $\mathcal{C}_{I}\left(R_{0}, \alpha, \Delta i n i K_{0}, B c_{R_{0}}\right)$ and 312 trails in $\mathcal{C}_{O}\left(R_{1}, \delta, \Delta i n i K_{1}, B c_{R_{1}}\right)$.

Table 4. The specifications of 20-round related-key rectangle distinguisher of GIFT-64

E	α	$\Delta i n i K_{0}$
E_{0}	$000000000000 \mathrm{a0} 00$	00040000000008000000000000000010
E_{1}	δ	$\triangle i n i K_{1}$
E_{1}	0400000001201000	20000000000000000800000002000800

We construct the 25 -round key-recovery model for GIFT-64, which is shown in Table 5, by appending two rounds at the end of the 20 -round distinguisher and appending three rounds at the beginning of the distinguisher.

Table 5. The 25 -round key-recovery model of the related-key rectangle attack for GIFT-64

input	???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
ΔY_{1}	??0? 1??0 01?? ?0?? 1?0? ?1?0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0 0??? ?0??
ΔZ_{1}	???? ???? ???? ???? $000000000000000011 ? ?$? ? ?? ???? ???? ???? 11?? ???? ????
ΔX_{2}	???? ???? ???? ???? $000000000000000011 ? ?$???? ???? ???? ???? 11?? ???? ????
ΔY_{2}	0?01 00?0 000? ?000 $0000000000000000010000 ? 0$ 000? ? 000 ? $000010000 ? 0000$?
ΔZ_{2}	???? 0000 ?1?? 000000000000000000000001000000000000000000000000 ?1??
ΔX_{3}	???? 0000 ?1?? 00 ?1??
ΔY_{3}	1000000000100010
ΔZ_{3}	00101010000000000000
$\Delta X_{4}(\alpha)$	001010000000000000
$\Delta X_{24}(\delta)$	0000010000000000000000000000000000000001001000000001000000000000
ΔY_{24}	0000 ??? 10000000000000000000000000000 ???? ???? 0000 ???? 000000000000
ΔZ_{24}	00?0 $000000 ? ?$? 0 ?00 00010000 ? $00 ?$? 00?0 ? 0000000 ?? $00000 ? 0 ? 0000000 ? ? 0$? 000
ΔX_{25}	00?0 0000 00?? 0 ?00 00010000 ?00? 00?0 ?010 0000 ?? $00000 ? 0 ? 000000$ 0??0 ?000
ΔY_{25}	???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ????
ΔZ_{25}	??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??
output	??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??

Data Collection. Since there is no whitening key XORed to the plaintext, we collect data in ΔZ_{1}. There are 44 unknown bits in ΔZ_{1} marked as "?", affecting 12 S-boxes in round 1 and three S-boxes in round 2. Thus, $\boldsymbol{r}_{b}=44$ and the number of key bits needed to be guessed in E_{b} is $m_{b}=2 \times(12+3)=30$. Similarly, we have $r_{f}=48$ and $m_{f}=2 \times(12+4)=32$ in E_{f}. We utilize the key-recovery model proposed by Zhao et al. in [33] to perform the rectangle key-recovery attack.

1 Construct $y=\sqrt{s} \cdot 2^{n / 2-r_{b}} / \hat{p} \hat{q}$ structures of $2^{r_{b}}$ plaintexts each. s is the expected number of right quartets. Each structure takes all the possible values of the r_{b} active bits while the other $n-r_{b}$ bits are fixed to some constant.
2 For each structure, query the $2^{r_{b}}$ plaintexts by the encryption oracle under K_{1}, K_{2}, K_{3} and K_{4} where K_{1} is the secret key, $K_{2}=K_{1} \oplus \Delta K, K_{3}=K_{1} \oplus \nabla K$ and $K_{4}=K_{1} \oplus \Delta K \oplus \nabla K$. Obtain four plaintext-ciphertext sets denoted by L_{1}, L_{2}, L_{3} and L_{4}. Insert L_{2} and L_{4} into hash tables H_{1} and H_{2} indexed by the r_{b} bits of the plaintexts.
3 Guess the m_{b} bits subkey involved in E_{b}, then:
(a) Initialize a list of $2^{m_{f}}$ counters, each of which corresponds to a m_{f} bits subkey guess.
(b) For each structure, partially encrypt plaintext $P_{1} \in L_{1}$ to the position of α by the guessed subkeys, and partially decrypt it to the plaintext P_{2} after XORing the known difference α. Then we look up H_{1} to find the plaintext-ciphertext indexed by the r_{b} bits. Do the same operations with P_{3} and P_{4}. We get two sets:

$$
\begin{aligned}
& S_{1}=\left\{\left(P_{1}, C_{1}, P_{2}, C_{2}\right):\left(P_{1}, C_{1}\right) \in L_{1},\left(P_{2}, C_{2}\right) \in L_{2}, E_{b_{K_{1}}}\left(P_{1}\right) \oplus E_{b_{K_{2}}}\left(P_{2}\right)=\alpha\right\}, \\
& S_{2}=\left\{\left(P_{3}, C_{3}, P_{4}, C_{4}\right):\left(P_{3}, C_{3}\right) \in L_{3},\left(P_{4}, C_{4}\right) \in L_{4}, E_{b_{K_{3}}}\left(P_{3}\right) \oplus E_{b_{K_{4}}}\left(P_{4}\right)=\alpha\right\} .
\end{aligned}
$$

(c) The size of S_{1} and S_{2} are both $M=y \cdot 2^{r_{b}}$. Insert S_{1} into a hash table H_{3} indexed by the $n-r_{f}$ bits of C_{1} and the $n-r_{f}$ bits of C_{2} in which the output difference of E_{f} are all "0". For each element of S_{2}, we find the corresponding ($P_{1}, C_{1}, P_{2}, C_{2}$) satisfying $C_{1} \oplus C_{3}=0$ and $C_{2} \oplus C_{4}=0$ in the $n-r_{f}$ bits. In total, we obtain $M^{2} \cdot 2^{-2\left(n-r_{f}\right)}$ quartets.
(d) We use all the quartets obtained in step (c) to recover the subkeys involved in E_{f}. This step is a guess and filter procedure. We denote the time complexity in this step as ε.
(e) Select the top $2^{m_{f}-h}$ hits in the counter to be the candidates which delivers a h bits or higher advantage.
(f) Exhaustively search the remaining $k-m_{b}-m_{f}$ unknown key bits in the master key.

Key Recovery. Choose the expected number of right quartets s to be 2, then we have $y=2^{17.78}$ and $M=y \cdot 2^{r_{b}}=2^{61.78}$. Make use of all the $M^{2} \cdot 2^{-2\left(n-r_{f}\right)}=2^{91.56}$ quartets obtained in step 3(c) to recover the subkeys involved in E_{f}.

The following are the details of the guess and filter procedure in step 3(d), which are similar to the process used in [34]. $\Delta X_{i}[u, \cdots, v]$ represents the $u^{t h}$ bit, \cdots, the $v^{t h}$ bit of ΔX_{i}.
d. $1 \Delta Y_{25}[63,62,61,60]$ can be computed by the cipertext pair $\left(C_{1}, C_{3}\right)$ and $\Delta X_{25}[63,62,61,60]$ is known. We guess the 2^{2} possible values of the involved key bits in this S -box and partially decrypt the cipertexts $\left(C_{1}, C_{3}\right)$ and $\left(C_{2}, C_{4}\right)$. Then check whether $\Delta X_{25}[63,62,60]$ is 0 or not. If yes, we keep the guessed key and the quartet, otherwise discard it. There are about $2^{91.56} \cdot 2^{2} \cdot 2^{-6}=2^{87.56}$ remaining quartets associated with the guessed 2-bit keys, i.e. for each of the 2^{2} candidate values of the 2 -bit involved keys, there are $2^{85.56}$ quartets remain.
d. 2 Carry out a similar process to all the active S-boxes in round 25 . There are about $2^{87.56}$. $2^{(2-4) \times 4} \cdot 2^{(2-6) \times 6} \cdot 2^{(2-8)}=2^{87.56-38}=2^{49.56}$ remaining quartets associated with the guessed keys.
d. 3 Partially decrypt all the remaining quartets with the obtained key bits in steps 1 and 2. $\Delta Y_{24}[59,58,57,56]$ can be calculated from the end of the distinguisher. Guess the 2^{2} possible values of the key bits involved in this S-box. For each guess, only $2^{49.56} \cdot 2^{2-8}=2^{43.56}$ quartets remain. Carry out a similar process to all the active S-boxes in round 24, there are about $2^{43.56} \cdot 2^{(2-8) \times 3}=2^{25.56}$ quartets remain.
d. 4 Utilize the remaining quartets to count the $m_{f}=32$ key bits. The two right quartets will all vote for the right key. The $2^{25.56}$ random quartets will vote for a random key with probability $2^{25.56-m_{f}}=2^{-6.44}$.
d. 5 Choose $h=22$. Select the top $2^{m_{f}-h}$ hits in the counter to be the candidates. Exhaustively search the remaining $128-m_{b}-m_{f}$ unknown key bits in the master key.

Complexity Computation. The data complexity is $4 M=4 y \cdot 2^{r_{b}}=2^{63.78}$ chosen plaintexts. We need $4 M$ encryptions in step 2. $2^{m_{b}} \cdot 3 M=2^{93.36}$ looking-up-table operations are needed in step $3(\mathrm{~b})$ and $3(\mathrm{c})$. We need $2^{m_{b}} \cdot M^{2} \cdot 2^{-2\left(n-r_{f}\right)} \cdot 4 \cdot 2^{2} / 25=2^{120.92}$ encryptions and $2^{k-h}=$ 2^{106} encryptions to recover the master key. So the time complexity is bounded by $2^{120.92}$. The memory complexity is bounded by the size of sets $H_{1}, H_{2}, H_{3}, S_{1}$ and S_{2}, which is $5 M=2^{64.10}$.

Success Probability. According to the success probability calculation method of differential attacks proposed in [30], for both boomerang and rectangle attack, the success probability is

$$
\begin{equation*}
P_{r}=\Phi\left(\frac{\sqrt{s S_{N}}-\Phi^{-1}\left(1-2^{-h}\right)}{\sqrt{S_{N}+1}}\right) \tag{12}
\end{equation*}
$$

in which $S_{N}=\hat{p}^{2} \hat{q}^{2} / 2^{-n}$ is the signal-to-noise ratio.
The success probability of the 25 -round attack on GIFT-64 is 74.00%.

5.2 Related-key Rectangle Attack on 24-round GIFT-64

Determining the Related-key Rectangle Distinguisher. We choose the same 20 -round related-key rectangle distinguisher as in Sect.5.1. We append two rounds at the end of the distinguisher and two rounds at the beginning of the distinguisher. The details of the 24 -round key-recovery model are shown in Table 5. The input difference of the 24 -round model equals to $\Delta Z_{2}=$ "???? $0000 ? 1 ? ? 000000000000000000000001000000000000000000000000 ? 1 ? ? "$.

Data Collection and Key Recovery. To prepare the plaintexts, we collect data in ΔZ_{2} of Table 5. There are ten unknown bits in ΔZ_{2} marked as "?", affecting three S-boxes in round 2 . Thus, $\boldsymbol{r}_{\boldsymbol{b}}=10$ and the number of key bits needed to be guessed in E_{b} is $\boldsymbol{m}_{\boldsymbol{b}}=\mathbf{2} \times \mathbf{3}=\mathbf{6}$. Similarly,
$r_{f}=48$ and $m_{f}=2 \times(12+4)=32$ in E_{f}. The following data collection and key recovery process are similar to the process of the 25 -round attack in Sect.5.1.

Construct $y=\sqrt{s} \cdot 2^{n / 2-r_{b}} / \hat{p} \hat{q}$ structures of $2^{r_{b}}$ plaintexts each. For each structure, query the $2^{r_{b}}$ plaintexts by the encryption oracle under K_{1}, K_{2}, K_{3} and K_{4}. There are about $M^{2} \cdot 2^{-2\left(n-r_{f}\right)}$ quartets left after executing step $3(\mathrm{c})$. Choosing $s=2$, we have $y=2^{51.78}, M=y \cdot 2^{r_{b}}=$ $2^{61.78}$ and $M^{2} \cdot 2^{-2\left(n-r_{f}\right)}=2^{91.56}$. After the key guessing and filtering process, there are about $M^{2} \cdot 2^{-2\left(n-r_{f}\right)} \cdot 2^{-66}=2^{25.56}$ remaining quartets. Choose $h=22$ and select the top $2^{m_{f}-h}$ hits in the counter to be the candidates. Exhaustively search the remaining $128-m_{b}-m_{f}$ unknown key bits in the master key.

Complexity Computation and Success Probability. The data complexity is $4 M=2^{63.78}$ chosen plaintexts. We need $2^{m_{b}} \cdot 3 M=2^{69.36}$ looking-up-table operations in step $3(\mathrm{~b})$ and $3(\mathrm{c})$. We need $2^{m_{b}} \cdot M^{2} \cdot 2^{-2\left(n-r_{f}\right)} \cdot 4 \cdot 2^{2} / 24=2^{96.98}$ encryptions and $2^{k-h}=2^{106}$ encryptions to recover the master key. So the time complexity is bounded by 2^{106}. The memory complexity is bounded by $5 M=2^{64.10}$. The success probability is 74.00% according to Eq. 12 .

6 Attacks on GIFT-128

6.1 Single-key Differential Attack on 26-round GIFT-128

In [25], Li et al. found a 20-round differential trail l^{0} of GIFT-128 with probability $p=2^{-121.415}$. The propagation of l^{0} is shown in Table 11 of App.D. The 26 -round differential attack was obtained by extending four rounds backward and two rounds forward. The data complexity is $2^{3} / p=2^{124.415}$. The time complexity is bounded by the data complexity. The memory complexity is the cost of the key filter counter, which is 2^{109}.

Next, we search the clustering of l^{0}. According to Definition 4, we choose $B c_{20}=124$,

$$
\begin{align*}
\eta_{\text {in }}=\Delta X_{1} & =0 x 000000000000000000000000000000 \mathrm{a} 0 \\
\eta_{\text {out }}=P\left(\Delta Y_{20}\right) & =0 x 00000000400100002000000010040000 \tag{13}
\end{align*}
$$

Then call Alg. 3 to search $\mathcal{C}\left(20, \Delta X_{1}, P\left(\Delta Y_{20}\right), B c_{20}\right)$. We find four trails: l^{0} with weight $121.415, l^{2}$ and l^{3} with weight 122.415 and l^{4} with weight 123.415 . The probability of the 20 -round single-key distinguisher that satisfies Eq. 13 is increased to $\hat{p}=2^{-120.245}$. The details of $l^{i}(0 \leq i<4)$ are demonstrated in Table 11.

Hence, the data complexity of the 26 -round differential attack on GIFT-128 is reduced to $2^{3} / \hat{p}=2^{123.245}$. The time complexity is reduced to $2^{123.245}$ as well. The cost of the key filter counter does not change.

6.2 Related-key Rectangle Attack on 23-round GIFT-128

Determining the Related-key Rectangle Distinguisher. We utilize a 19-round related-key rectangle distinguisher to attack the 23 -round GIFT-128. Set $R_{0}=9$ for $E_{0}, R_{1}=9$ for $E_{1}, R_{m}=1$ for E_{m} and $b w=3$. Apply Alg. 2 to search the probability of the 19 -round distinguisher.

In Phase 1 of Alg.2, we find two 9-round trails with weight 30.000 for E_{0}, marked as l_{0}^{1}, l_{0}^{2}. We find two 9 -round trails with weight 30.000 for E_{1}, marked as l_{1}^{1}, l_{1}^{2}. The details of l_{0}^{1}, l_{0}^{2} and l_{1}^{1}, l_{1}^{2} are listed in Table 14 and Table 15 of App.D.

In Phase 3 of Alg.2, we determine ${\hat{p_{1}}}^{2}{\hat{q_{1}}}^{2}=2^{-110.987},{\hat{p_{2}}}^{2}{\hat{q_{1}}}^{2}=2^{-112.908},{\hat{p_{1}}}^{2}{\hat{q_{2}}}^{2}=2^{-107.626}$ and ${\hat{p_{2}}}^{2}{\hat{q_{2}}}^{2}=2^{-109.913}$. We select l_{0}^{1} and l_{1}^{2} to make up the 19-round distinguisher. Since $S^{-1} \circ$ $P^{-1} \circ K^{-1}\left(\delta_{2}\right)=0 x 00000000000000000050000000200000$, if we choose $P^{-1} \circ K^{-1}\left(\delta_{2}\right)=0 x$ $000000000000000000 \mathrm{f} 0000000 * 00000(*=5$ or 6$)$, then $r_{f}=80$ and the complexity of the key filtering procedure will be too large. As a compromise, we choose $P^{-1} \circ K^{-1}\left(\delta_{2}\right)=0 x 00000000000000000$ 020000000600000 which leads to $\hat{\boldsymbol{p}}^{\mathbf{2}} \hat{\boldsymbol{q}}^{\mathbf{2}}=\mathbf{2}^{\mathbf{- 1 0 7 . 6 2 6 + 2}}=\mathbf{2}^{\mathbf{- 1 0 9 . 6 2 6}}$. In Table 16 of App.D, we show two examples of l_{0}^{1} and l_{1}^{2}.

Table 6. The specifications of the 19-round related-key rectangle distinguisher of GIFT-128

$R_{0}=9, R_{m}=1, R_{1}=9 ; B c_{R_{0}}=33.000, B c_{R_{1}}=33.000 ; \hat{p}^{2} \hat{q}^{2}=2^{-109.626}$			
E_{0}			

Finally, we obtain a 19-round related-key rectangle distinguisher with probability $\mathbf{2}^{-n} \hat{p}^{2} \hat{q}^{2}=$ $\mathbf{2}^{-\mathbf{1 2 8}} \cdot \mathbf{2}^{-\mathbf{1 0 9 . 6 2 6}}$. The specifications of the 19 -round distinguisher are shown in Table 6 . There are 3952 trails in $\mathcal{C}_{I}\left(R_{0}, \alpha, \Delta i n i K_{0}, B c_{R_{0}}\right)$ and 2944 trails in $\mathcal{C}_{O}\left(R_{1}, \delta, \Delta i n i K_{1}, B c_{R_{1}}\right)$.

We construct the 23 -round key-recovery model for GIFT-128, which is shown in Table 7, by appending two rounds at the end of the 19-round distinguisher and two rounds at the beginning of the distinguisher.

Data Collection and Key Recovery. To prepare the plaintexts, we collect data in ΔZ_{1} of Table 7. There are nine unknown bits in ΔZ_{1} marked as "?", affecting three S-boxes in round 1. Thus, $\boldsymbol{r}_{\boldsymbol{b}}=\mathbf{9}$ and the number of key bits needed to be guessed in E_{b} is $\boldsymbol{m}_{\boldsymbol{b}}=\mathbf{2} \times \mathbf{3}=\mathbf{6}$. We have $r_{f}=52$ and $m_{f}=2 \times(13+4)=34$ in E_{f}. The following data collection and key recovery process are similar to the process of the 25 -round attack in Sect.5.1.

Construct $y=\sqrt{s} \cdot 2^{n / 2-r_{b}} / \hat{p} \hat{q}$ structures of $2^{r_{b}}$ plaintexts each. For each structure, query the $2^{r_{b}}$ plaintexts by the encryption oracle under K_{1}, K_{2}, K_{3} and K_{4}. There are about $M^{2} \cdot 2^{-2\left(n-r_{f}\right)}$ quartets left after executing step $3(\mathrm{c})$. Choosing $s=2$, we have $y=2^{110.31}, M=y \cdot 2^{r_{b}}=2^{119.31}$ and $M^{2} \cdot 2^{-2\left(n-r_{f}\right)}=2^{86.62}$. After the key guessing and filtering process, there are about M^{2}. $2^{-2\left(n-r_{f}\right)} \cdot 2^{-(48+24)}=2^{14.62}$ remaining quartets. The two right quartets will all vote for the right key. The $2^{14.62}$ random quartets will vote for a random key with probability $2^{14.62-m_{f}}=2^{-19.38}$. Choose $h=22$ and select the top $2^{m_{f}-h}$ hits in the counter to be the candidates. Exhaustively search the remaining $128-m_{b}-m_{f}$ unknown key bits in the master key.

Complexity Computation and Success Probability. The data complexity is $4 M=2^{121.31}$ chosen plaintexts. We need $2^{m_{b}} \cdot 3 M=2^{126.89}$ looking-up-table operations in step 3(b) and 3(c). We need $2^{m_{b}} \cdot M^{2} \cdot 2^{-2\left(n-r_{f}\right)} \cdot 4 \cdot 2^{2} / 23=2^{92.10}$ encryptions and $2^{k-h}=2^{106}$ encryptions to recover the master key. So the time complexity is bounded by $2^{126.89}$. The memory complexity is bounded by $5 M=2^{121.63}$. The success probability is 92.01% according to Eq.12.

The related-key boomerang attack on 22-round GIFT-128 is demonstrated in App.B.

7 Conclusion and Future Work

In this paper, we carry out a further research on the resistance of GIFT against single-key and related-key differential cryptanalysis. We succeed in finding related-key differential trails of GIFT$64 / 128$ for up to $15 / 14$ rounds. We find the longest related-key differential trails for GIFT-128 and provide tighter lower bounds for the probabilities of the optimal related-key trails for both GIFT-64 and GIFT-128.

We find a 20 -round related-key boomerang distinguisher of GIFT-64 with probability $2^{-58.557}$ and construct a 25 -round related-key rectangle attack, which is the longest attack on GIFT-64. We obtain a 19-round related-key boomerang distinguisher of GIFT-128 with probability $2^{-109.626}$ and propose a 23 -round related-key rectangle attack, which is the longest related-key attack on GIFT-128. The probability of the 20 -round single-key differential distinguisher of GIFT-128 is also increased from $2^{-121.415}$ to $2^{-120.245}$. We improve the time complexity of the 26 -round differential attack on GIFT-128 from $2^{124.415}$ to $2^{123.245}$.

Table 7. The 23-round key-recovery model of the related-key rectangle attack for GIFT-128

input	$000000000000000011 ? ?$???? ???? ???? ???? ???? ???? ???? 0000000000000000
	$0011 ? ? 0000000000000000$
ΔY_{1}	$0000000000000000010000 ? 0000 ? 1000$? $1000 ? ? 000 ? ?$? 00 ? 0000000000000000
	0001000000000000000000
ΔZ_{1}	$000011 ? ?$? 1?? 0001000000
	00 ???? 00000000000000000000
ΔX_{2}	0000 11?? ?1?? 00
	00 ???? 00000000000000000000
ΔY_{2}	00000100001000
	00100000000000000000000000
ΔZ_{2}	0010000000
	0000000000000000000000000000000001100000000000000000000000000000
$\Delta X_{3}(\alpha)$	0010100000
	0000000000000000000000000000000001100000000000000000000000000000
$\Delta X_{22}(\delta)$	00000000001000
	0000000000000000000000000100000000000000000000000010000000100000
ΔY_{22}	00000000 ???? 00
	000000000000000000000000 ???1 00000000000000000000 ???? 0000 ???? 0000
ΔZ_{22}	000? 000000000000000000010000 0?0? ? 0000000000000000000 ?000 0000 ?0?0
	$0 ? 0000000000000000000 ? 000000$ 0?0? 00? $000000000000000000 ? 00000$? 0 ? 0
ΔX_{23}	000? 000000100000000000010000 0?0? ? 0000000000000000000 ?000 0000 ?0?0
	$0 ? 0000000000000000000 ? 000000$ 0?0? $00 ? 0000000000000000000 ? 00000$?0?0
ΔY_{23}	???? 0000 ???? 00000000 ???? 0000 ???? ???? 0000000000000000 ???? 0000 ????
	???? 0000000000000000 ???? 0000 ???? ???? 0000000000000000 ???? 0000 ????
ΔZ_{23}	0?0? ? 0 ? 0 0.00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 0?0? 00 ? 0 0?0? 00?0 0?0? 00?0 0?0?
output	0?0? ? 0 ? 0 ? 00 ? 0 ? 0 ? 00 ? 0 ? 0 ? 00 ?0?0 ? 0 ? 0 0?0? 00?0 0?0? 00?0 0?0? 00?0 0? 0 ?
	0?0? ? 0 ? 000 ? ? 0 ? 000? ? 0 ? 0000 ? ?0?0 ?0?0 0?0? ? 000 0?0? ? 0000 0.0? ?000 0?0?

Among the 32 candidates of the NIST lightweight crypto standardization process, there are four candidates which are based on GIFT: GIFT-COFB, HYENA, SUNDAE-GIFT, LOTUS-AEAD and LOCUS-AEAD. In the next work, we will study the security of these four lightweight authenticated encryption schemes against single-key/related-key differential cryptanalysis. Besides, We will try to apply Alg. 1 and Alg. 2 to other SPN ciphers with linear key schedule, for example, SKINNY [9].

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. This work is supported by the Natural Science Foundation of China (61379138).

References

1. The specification of GIFT-COFB, Last accessed 29 March 2019, https://csrc.nist. gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ gift-cofb-spec-round2.pdf
2. The specification of HYENA, Last accessed 29 March 2019, https://csrc.nist.gov/CSRC/media/ Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/hyena-spec-round2. pdf
3. The specification of SUNDAE-GIFT, Last accessed 29 March 2019, https://csrc.nist. gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ SUNDAE-GIFT-spec-round2.pdf
4. The specification of LOTUS-AEAD and LOCUS-AEAD, Last accessed 27 September 2019, https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/ spec-doc-rnd2/lotus-locus-spec-round2.pdf
5. NIST Homepage: the round 2 candidates of the NIST lightweight crypto standardization process, Last accessed 15 July 2020, https://csrc.nist.gov/projects/lightweight-cryptography/ round-2-candidates
6. Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 41-53. Springer, Heidelberg (1997), https://doi.org/10.1007/ BFb0052333
7. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321-345. Springer, Heidelberg (2017), https://doi.org/10.1007/978-3-319-66787-4_16
8. Bao, Z., Zhang, W., Lin, D.: Speeding up the search algorithm for the best differential and best linear trails. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 259-285. Springer, Heidelberg (2014), https://doi.org/10.1007/978-3-319-16745-9_15
9. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123-153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5, https://doi.org/10.1007/978-3-662-53008-5_5
10. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology 7(4), 229-246 (1994), https://doi.org/10.1007/BF00203965
11. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340-357. Springer, Heidelberg (2001), https: //doi.org/10.1007/3-540-44987-6_21
12. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507-525. Springer, Heidelberg (2005), https: //doi.org/10.1007/11426639_30
13. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2-21. Springer, Heidelberg (1990), https://doi.org/ 10.1007/3-540-38424-3_1
14. Biryukov, A., Cannière, C.D., Dellkrantz, G.: Cryptanalysis of SAFER++. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195-211. Springer, Heidelberg (2003), https://doi.org/10.1007/ 978-3-540-45146-4_12
15. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1-18. Springer, Heidelberg (2009), https: //doi.org/10.1007/978-3-642-10366-7_1
16. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466. Springer, Heidelberg (2007), https://doi.org/10.1007/ 978-3-540-74735-2_31
17. Chen, H., Zong, R., Dong, X.: Improved differential attacks on GIFT-64. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) ICICS 2019. LNCS, vol. 11999, pp. 447-462. Springer, Heidelberg (2019), https: //doi.org/10.1007/978-3-030-41579-2_26
18. Chen, L., Wang, G., Zhang, G.: MILP-based related-key rectangle attack and its application to GIFT, Khudra, MIBS. Comput. J. 62(12), 1805-1821 (2019), https://doi.org/10.1093/comjnl/bxz076
19. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: A new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683-714. Springer, Heidelberg (2018), https://doi.org/10.1007/978-3-319-78375-8_22
20. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer, Heidelberg (2002), https://doi.org/10.1007/ 978-3-662-04722-4
21. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393-410. Springer, Heidelberg (2010), https://doi.org/10.1007/978-3-642-14623-7_21
22. Ji, F., Zhang, W., Ding, T.: Improving matsui's search algorithm for the best differential/linear trails and its applications for DES, DESL and GIFT. IACR Cryptol. ePrint Arch. 2019, 1190 (2019), https://eprint.iacr.org/2019/1190
23. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75-93. Springer, Heidelberg (2000), https://doi.org/10.1007/3-540-44706-7_6
24. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack - application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123-136. Springer, Heidelberg (2004), https://doi.org/10.1007/978-3-540-27800-9_11
25. Li, L., Wu, W., Zheng, Y., Zhang, L.: The relationship between the construction and solution of the MILP models and applications. IACR Cryptology ePrint Archive 2019, 49 (2019), https://eprint. iacr.org/2019/049
26. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37-72 (2017), https://doi.org/10.13154/tosc.v2017. i3.37-72
27. Liu, Y., Sasaki, Y.: Related-key boomerang attacks on GIFT with automated trail search including BCT effect. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 555-572. Springer, Heidelberg (2019), https://doi.org/10.1007/978-3-030-21548-4_30
28. Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: Santis, A.D. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366-375. Springer, Heidelberg (1994), https://doi. org/10.1007/BFb0053451
29. Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear expression. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 157-170. Springer, Heidelberg (1995), https://doi.org/10.1007/3-540-44750-4_13
30. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptology 21(1), 131-147 (2008), https://doi.org/10.1007/s00145-007-9013-7
31. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156170. Springer, Heidelberg (1999), https://doi.org/10.1007/3-540-48519-8_12
32. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. application to AES variants and Deoxys. IACR Trans. Symmetric Cryptol. 2019(1), 142-169 (2019), https://doi.org/10.13154/tosc.v2019. i1.142-169
33. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol. 2019(3), 121-151 (2019), https://doi.org/ 10.13154/tosc.v2019.i3.121-151
34. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Des. Codes Cryptogr. 88(6), 1103-1126 (2020), https://doi.org/10.1007/s10623-020-00730-1
35. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security evaluation algorithm against differential/linear cryptanalysis using a divide-and-conquer approach. IACR Trans. Symmetric Cryptol. 2019(4), 438-469 (2019), https://doi.org/10.13154/tosc.v2019.i4.438-469
36. Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced GIFT. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 372-390. Springer, Heidelberg (2019), https://doi.org/ 10. 1007/978-3-030-12612-4_19

A Improved Matsui's Algorithm for GIFT

The improved Matsui's algorithm for GIFT proposed in [22] is demonstrated in Alg.3. There are ten different weights of the difference propagations for the new 8-bit S-box in GIFT, wich are denoted by the new set:

$$
\text { WeightTable[10] }=\{6.000,5.000,4.415,4.000,3.415,3.000,2.830,2.000,1.415,0.000\} .
$$

To implement speeding-up method-1, one new table is constructed as follows:

- DDTwY[SboxN][WeightN][OutN]

Classify the output differences of each S-box according to the corresponding weights.
DDTwY $[t][j][r]$ represents the $r^{t h}$ output difference of the $t^{t h} \mathrm{~S}$-box with weight WeightTable $[j]$. SboxN represents the index of the S-box. It ranges from 1 to ns. WeightN represents the index of the weights. It ranges from 0 to 9 . OutN represents the index of the output difference. It ranges from 0 to 255 .

```
Algorithm 3 Improved Matsui's Algorithm for GIFT
Require: \(R(\geq 3) ; B_{1}, B_{2}, \cdots, B_{R-1} ; B c_{R}\); WeightTable[10]; ns : \(=n / 8\)
Ensure: \(B_{R}=B c_{R}\); the optimal single-key differential trails of \(R\)-round
Generate Tables :
DDTwY[SboxN][WeightN][OutN]
Function \(\operatorname{Sbox}-1\left(t, w_{1}\right)\) :
for \(j=9\) to 0 do
    \(\alpha \leftarrow w_{1}+\) WeightTable \([j]\)
    if \(\left[\alpha, B_{R-1}\right] \geq B c_{R}\) then
        break
    else
        for each DDTwY[t][j][r] do
            \(\Delta Y_{1}^{t} \leftarrow \operatorname{DDTwY}[t][j][r]\)
            /* \(\Delta Y_{1}^{t}\) is the \(t^{t h}\) byte of \(\Delta Y_{1}^{*} /\)
            if \(t<\mathrm{ns}\) then
                call Sbox- \(1(t+1, \alpha)\)
            else
                \(w_{1} \leftarrow \alpha\)
                call Round-2
            end if
        end for
    end if
end for
```

```
```

Procedure Round-1:

```
```

Procedure Round-1:
$w_{1} \leftarrow 0, \Delta Y_{1} \leftarrow 0, t \leftarrow 1$
$w_{1} \leftarrow 0, \Delta Y_{1} \leftarrow 0, t \leftarrow 1$
call Sbox- $1\left(t, w_{1}\right)$
call Sbox- $1\left(t, w_{1}\right)$
Procedure Round- $i, 2 \leq i \leq R-1$:
Procedure Round- $i, 2 \leq i \leq R-1$:
$\Delta X_{i} \leftarrow P\left(\Delta Y_{i-1}\right)$
$\Delta X_{i} \leftarrow P\left(\Delta Y_{i-1}\right)$
for each ΔY_{i} do
for each ΔY_{i} do
$w_{i} \leftarrow W\left(\Delta X_{i}, \Delta Y_{i}\right)$
$w_{i} \leftarrow W\left(\Delta X_{i}, \Delta Y_{i}\right)$
if $B_{R-i}+\sum_{j=1}^{i} w_{j} \geq B c_{R}$ then
if $B_{R-i}+\sum_{j=1}^{i} w_{j} \geq B c_{R}$ then
break
break
else
else
call Round- $(i+1)$
call Round- $(i+1)$
end if
end if
end for
end for
Procedure Round- R :
Procedure Round- R :
$\Delta X_{R} \leftarrow P\left(\Delta Y_{R-1}\right)$
$\Delta X_{R} \leftarrow P\left(\Delta Y_{R-1}\right)$
$w_{R} \leftarrow \min _{\Delta Y_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$
$w_{R} \leftarrow \min _{\Delta Y_{R}} W\left(\Delta X_{R}, \Delta Y_{R}\right)$
if $\Sigma_{j=1}^{R} w_{j} \leq B c_{R}$ then
if $\Sigma_{j=1}^{R} w_{j} \leq B c_{R}$ then
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
$B c_{R}=\Sigma_{j=1}^{R} w_{j}$
end if
end if
return to the upper procedure

```
```

return to the upper procedure

```
```


B Related-key Boomerang Attack on 22-round GIFT-128

B. 1 Determining the Related-key Boomerang Distinguisher.

We choose the same 19-round related-key rectangle distinguisher as in Sect.6.2. We append two rounds at the end of the distinguisher and one round at the beginning of the distinguisher. The details of the 22-round key-recovery model are shown in Table 7. The input difference of the 22 -round model equals to $\Delta Z_{2}=0 x 00000000000000800000000060000000$.

B. 2 Data Collection.

We collect data of the value of output in Table 7. There are 52 unknown bits in output marked as "?", affecting 13 S-boxes in round 23 and four S-boxes in round 22 . Thus, $\boldsymbol{r}_{\boldsymbol{f}}=\mathbf{5 2}$ and the number of key bits needed to be guessed in E_{f} is $\boldsymbol{m}_{\boldsymbol{f}}=\mathbf{3 4}$. We utilize the key-recovery model proposed by Zhao et al. in [33] to perform the boomerang key-recovery attack:

1 Choose $y=s /\left(2^{r_{f}} \cdot \hat{p}^{2} \hat{q}^{2}\right)$ structures of $2^{r_{f}}$ ciphertexts each. s is the expected number of right quartets. Each structure takes all the possible values for the r_{f} active bits while the other $n-r_{f}$ bits are fixed to some constant.
2 For each structure, we obtain the plaintext P_{1} for each ciphertext C_{1} by calling the decryption oracle under K_{1}. Compute P_{2} by $P_{2}=P_{1} \oplus \alpha$ and obtain the ciphertext C_{2} by $E_{K_{2}}\left(P_{2}\right)$. Here we gain a set:

$$
L_{1}=\left\{\left(P_{1}, C_{1}, P_{2}, C_{2}\right): P_{1}=E_{K_{1}}^{-1}\left(C_{1}\right), P_{2}=P_{1} \oplus \alpha, C_{2}=E_{K_{2}}\left(P_{2}\right)\right\}
$$

Construct the set L_{2} under K_{3} and K_{4} in a similar way:

$$
L_{2}=\left\{\left(P_{3}, C_{3}, P_{4}, C_{4}\right): P_{3}=E_{K_{3}}^{-1}\left(C_{3}\right), P_{4}=P_{3} \oplus \alpha, C_{4}=E_{K_{4}}\left(P_{4}\right)\right\} .
$$

3 Insert L_{1} into a hash table H_{1} indexed by the $n-r_{f}$ bits of C_{2}. For each element of L_{2}, find the corresponding ($P_{1}, C_{1}, P_{2}, C_{2}$) colliding in the $n-r_{f}$ bits. We gain a total of $y \cdot 2^{2 r_{f}-\left(n-r_{f}\right)}=$ $y \cdot 2^{3 r_{f}-n}$ quartets.
4 The process that recovers the subkeys involved in E_{f} is the same as the one in the related-key rectangle attack in Sect.5.1, The complexity of this step is denoted as ε.
5 Select the top $2^{m_{f}-h}$ hits in the counter to be the candidates which delivers a h bits or higher advantage. Exhaustively search the remaining $k-m_{f}$ unknown key bits in the master key.

B. 3 Key Recovery.

Choose the expected number of right quartets s to be 2 , then we have $y=s /\left(2^{r_{f}} \cdot \hat{p}^{2} \hat{q}^{2}\right)=2^{58.63}$ and $y \cdot 2^{r_{f}}=2^{110.63}$. Make use of all the $y \cdot 2^{3 r_{f}-n}=2^{86.63}$ quartets obtained in step 3 to recover the subkeys involved in E_{f}. The key recovery process are similar to the process of the 25 -round attack in Sect.5.1. There are about $2^{86.63} \cdot 2^{-(48+24)}=2^{14.63}$ quartets remain after the key guessing and filtering procedure. Choose $h=22$ and select the top $2^{m_{f}-h}$ hits in the counter to be the candidates. Exhaustively search the remaining $128-m_{f}$ unknown key bits in the key.

B. 4 Complexity Computation.

The data complexity is $4 y \cdot 2^{r_{f}}=2^{112.63}$ adapted chosen ciphertexts and plaintexts. We need $4 y \cdot 2^{r_{f}}$ chosen ciphertexts and plaintexts and $y \cdot 2^{r_{f}}$ looking-up-table operations to construct quartets. $y \cdot 2^{3 r_{f}-n} \cdot \varepsilon=2^{86.63} \cdot 4 \cdot 2^{2} / 22$ encryptions are needed in the key recovery process. Thus, the time complexity is bounded by $4 y \cdot 2^{r_{f}}=2^{112.63}$. The memory complexity is the size of each structure and the size of the key counter, which is bounded by $2^{r_{f}}=2^{52}$. The success probability is 92.01% according to Eq. 12 .

C Analyzing the Probability of the 19-round Distinguisher proposed in [18]

The propagation of the 2-round boomerang switch E_{m} is illustrated in Fig.4. The details of E_{m} in the 19-round related-key rectangle distinguisher for GIFT-64 proposed in [18] is shown in Table 8. The authors calculated the value of r as 1 according to the BCT table. The probability of the rectangle distinguisher is $2^{-n} \cdot \hat{p}^{2} \hat{q}^{2} r=2^{-64} \cdot 2^{-50}$. It should be noted that at the time the authors write the paper [18], the BDT technology has not been proposed yet.

Table 8. The propagation of E_{m} of the 19-round related-key rectangle distinguisher for GIFT-64 in [18]

rounds	E_{0}		E_{1}	
10	β	0100000001020200		
10	β^{\prime}	08000000060 a 0600	$\gamma^{\prime \prime}$	0000090600000085
11	$\beta^{\prime \prime}$	00 a 2000080200044	γ^{\prime}	000005 0c 0a 000000
			γ	0000080201000000

$$
{ }^{1} \beta^{\prime}=S(\beta), \beta^{\prime \prime}=K \circ P\left(\beta^{\prime}\right), \gamma^{\prime}=S^{-1}(\gamma), \gamma^{\prime \prime}=P^{-1} \circ K^{-1}\left(\gamma^{\prime}\right) .
$$

It has been proved in [32] that when $R_{m}=2$, the probability of E_{m} should be evaluated by the BDT table and iBDT table, which is

$$
r=2^{-2 n} \Sigma_{1 \leq i \leq 2 \mathrm{~ns}}\left(\operatorname{BDT}\left(\beta[i], \beta^{\prime}[i], \gamma^{\prime \prime}[i]\right) \times \operatorname{iBDT}\left(\gamma[i], \gamma^{\prime}[i], \beta^{\prime \prime}[i]\right)\right)
$$

Meanwhile,

$$
\begin{aligned}
& \operatorname{BDT}\left(\beta[i], \beta^{\prime}[i], \gamma^{\prime \prime}[i]\right)=\operatorname{DDT}\left(\beta[i], \beta^{\prime}[i]\right), \text { if } \gamma^{\prime \prime}[i]=0 \\
& \operatorname{iBDT}\left(\gamma[i], \gamma^{\prime}[i], \beta^{\prime \prime}[i]\right)=\operatorname{DDT}\left(\gamma[i], \gamma^{\prime}[i]\right), \text { if } \beta^{\prime \prime}[i]=0 .
\end{aligned}
$$

$\beta[2 \mathrm{~ns}]\|\cdots\| \beta[1]:=\beta, \gamma[2 \mathrm{~ns}]\|\cdots\| \gamma[1]:=\gamma$. We correct the value of r according to the data in Table 8:

$$
\begin{aligned}
r & =2^{-2 n} \Sigma_{1 \leq i \leq 16}\left(\operatorname{BDT}\left(\beta[i], \beta^{\prime}[i], \gamma^{\prime \prime}[i]\right) \times \operatorname{iBDT}\left(\gamma[i], \gamma^{\prime}[i], \beta^{\prime \prime}[i]\right)\right) \\
& =2^{-2 n} \Sigma_{1 \leq i \leq 16}\left(\operatorname{DDT}\left(\beta[i], \beta^{\prime}[i]\right) \times \operatorname{DDT}\left(\gamma[i], \gamma^{\prime}[i]\right)\right) \\
& =2^{-18} .
\end{aligned}
$$

The value of the DDT table is shown in Table 9. As a result, the probability of the rectangle distinguisher in [18] is $2^{-n} \cdot \hat{p}^{2} \hat{q}^{2} r=2^{-64} \cdot 2^{-68}$.

We have introduced in Sect.2.4 that only if $p q>2^{-n / 2}$ can we count more right quartets than random noise through the related-key rectangle distinguisher. For GIFT-64, the distinguisher should satisfy $p q>2^{-32}$. Therefore, the 23-round related-key rectangle attack proposed in [18] and the 24 -round related-key rectangle attack proposed in [34] are invalid.

Table 9. Differential Distribution Table (DDT) of GIFT S-box

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	16															
1						2	2		2	2	2	2	2			2
2						4	4			2	2			2	2	
3						2	2		2			2	2	2	2	2
4				2		4		6		2				2		
5			2			2			2				2	2	2	4
6			4	6				2			2				2	
7			2			2			2	2	2	4	2			
8				4				4				4				4
9		2		2			2	2	2		2		2	2		
a		4					4			2	2			2	2	
b		2		2			2	2	2	2			2		2	
c			4		4				2		2		2		2	
d		2	2		4						2	2		2		2
e		4			4				2	2			2	2		
f		2	2		4					2		2			2	2

D (Related-key) Differential Trails

Table 10. Two related-key differential trails of GIFT-64 and GIFT-128
For $l_{0}, \mathrm{MKD}=00000000000000000000000080020000$, weight $=48.000$
For $l_{1}, \mathrm{MKD}=00000000000200000002000000000000$, weight $=77.830$

	$l_{0}:$ a 15-round trail of GIFT-64		$l_{1}:$ a 14-round trail of GIFT-128	
r	ΔX_{r}	w_{r}	ΔX_{r}	w_{r}
1	0600000000600000	4.000	0000 c 0011200000000000000000 c 0000	12.000
2	0000000000000000	0.000	0 c 600000000000000000000000 c 00000	7.000
3	0000000000000000	0.000	0000000000000 a 00000000060000000	4.000
4	0000000000000000	0.000	00010000000000000000000000000000	3.000
5	0000000000000000	0.000	c 0000000000000000000000000000000	2.000
6	2020000000000000	4.000	00000000000000000000000000000000	0.000
7	5000000050000000	6.000	200000000000000000000000000000000	2.000
8	0000202000000000	5.000	60000000200000000000000000000000	4.000
9	0000000005000 a 00	5.000	00000000202000000000000000000000	6.000
10	0000200100000000	5.000	0000000000 a 000000000000000 a 00000	4.000
11	0 c 00060000000000	4.000	00300010000000000000000000000000	6.000
12	2200000000000000	5.000	11200000000000004400000000000000	12.415
13	6000000090000000	5.000	0000000000003000 d 0009000 e 00000000	10.000
14	0000000000100000	3.000	00000040000000000000000000080800	5.415
15	0000008000000000	2.000	01002002000000010400002002000010	
16	0100000000000200			

Table 11. Four 20-round single-key differential trails with weight $w_{\text {sum }}$ of GIFT-128

r	ΔX_{r}	w_{r}
1	000000000000000000000000000000 a 0	2.000
2	00000001000000000000000000000000	3.000
3	08000000000000000000000000000000	2.000
4	20000000100000000000000000000000	5.000
5	40400000202000000000000000000000	8.000
6	50500000000000005050000000000000	11.000
7	000000000000000000000000 a 000 a 000	4.000
8	00000000000000000000001100000000	6.000
9	$00000 u 00000008000000000000000000$	w_{9}
10	02020000010100000000000000000000	10.000
11	00000000505000000000000050500000	12.000
12	00000000000000000000000000 a 00 a 0	4.000
13	00000011000000000000000000000000	6.000
14	Ov 000000080000000000000000000000	w_{14}
15	20200000101000000000000000000000	10.000
16	50500000000000005050000000000000	12.000
17	00000000 a 000 a 0000000000000000000	4.000
18	00000000000000000011000000000000	6.000
19	000000000000 c 0000000600000000000	4.000
20	00040000000002000000000000000000	3.415
21	00000000400100002000000010040000	

Table 12. Sixteen 10-round related-key differential trails of E_{0} with weight 20.415 of GIFT-64

i	ΔY_{1} of l_{0}^{i}	MKD of l_{0}^{i}
1	0000000000000001	00080000000080000000000000000001
2	0000000000010000	00800000000040000000000000000002
3	0000000100000000	08000000000020000000000000000004
4	0001000000000000	80000000000010000000000000000008
5	0000000000001000	00040000000008000000000000000010
6	0000000010000000	00400000000004000000000000000020
7	0000100000000000	04000000000002000000000000000040
8	1000000000000000	40000000000001000000000000000080
9	0000000000000802	00400004000000000000000000000000
10	0000000000008020	00800008000000000000000000000000
11	0000000008020000	04000040000000000000000000000000
12	0000000080200000	08000080000000000000000000000000
13	0000080200000000	40000400000000000000000000000000
14	0000802000000000	80000800000000000000000000000000
15	0802000000000000	00044000000000000000000000000000
16	8020000000000000	00088000000000000000000000000000

Table 13. Eight 9-round related-key differential trails of E_{1} with weight 13.415 of GIFT-64

j	ΔX_{9} of l_{1}^{j}	MKD of l_{1}^{j}
1	0000000000000002	00040000000000000040000000040010
2	0000000000020000	00400000000000000004000000080020
3	0000000200000000	04000000000000004000000000100040
4	0002000000000000	40000000000000000400000000200080
5	2000000000000000	00020000000000000080000000400100
6	0000000000002000	00200000000000000008000000800200
7	0000000020000000	02000000000000008000000001000400
8	0000200000000000	20000000000000000800000002000800

Table 14. Two 9-round related-key differential trails of E_{0} with weight 30.000 of GIFT-128

i	ΔY_{1} of l_{0}^{i}	MKD of l_{0}^{i}
1	00000000000000100000000020000000	80000000000000000000000000020000
2	04200000000000000000000000800000	00000000000000000002000000020000

Table 15. Two 9-round related-key differential trails of E_{1} with weight 30.000 of GIFT-128

j	ΔX_{9} of l_{1}^{j}	MKD of l_{1}^{j}
1	00300000800000000000000000000000	80000000000000000000000000020000
2	00000000000000000050000000200000	00000000000000000002000000020000

Table 16. Two 9-round related-key differential trails of GIFT-128
For l_{0}^{1}, MKD $=80000000000000000000000000020000$.
For l_{1}^{2}, MKD $=00000000000000000002000000020000$.

	$l_{0}^{1}:$ a 9-round trail with weight 30.000	$l_{1}^{2}:$ a 9-round trail with weight 31.000		
r	ΔX_{r}	w_{r}	ΔX_{r}	w_{r}
1	$00000000000000 a 00000000060000000$	4.0	$0 c 600000000000000000000000100000$	7.0
2	00010000000000000000000000000000	3.0	$00000000000000 a 00000000060000000$	4.0
3	c 0000000000000000000000000000000	2.0	00010000000000000000000000000000	3.0
4	00000000000000000000000000000000	0.0	c 0000000000000000000000000000000	2.0
5	20000000000000000000000000000000	2.0	00000000000000000000000000000000	0.0
6	60000000200000000000000000000000	4.0	20000000000000000000000000000000	2.0
7	00000000202000000000000000000000	5.0	60000000200000000000000000000000	4.0
8	$0010000000 a 000000000000000000000$	5.0	00000000202000000000000000000000	4.0
9	00300000800000000000000000000000	5.0	00000000000000000050000000200000	5.0
10	00200000802000000010000000000000		00200000000000000000004000002020	

