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Abstract. In this paper, we reevaluate the security of GIFT against differential crypt-
analysis under both single-key scenario and related-key scenario. Firstly, we apply Matsui’s
algorithm to search related-key differential trails of GIFT. We add three constraints to limit
the search space and search the optimal related-key differential trails on the limited search
space. We obtain related-key differential trails of GIFT-64/128 for up to 15/14 rounds, which
are the best results on related-key differential trails of GIFT so far. Secondly, we propose
an automatic algorithm to increase the probability of the related-key boomerang distin-
guisher of GIFT by searching the clustering of the related-key differential trails utilized in
the boomerang distinguisher. We find a 20-round related-key boomerang distinguisher of
GIFT-64 with probability 2−58.557. The 25-round related-key rectangle attack on GIFT-64
is constructed based on it. This is the longest attack on GIFT-64. We also find a 19-round
related-key boomerang distinguisher of GIFT-128 with probability 2−109.626. We propose
a 23-round related-key rectangle attack on GIFT-128 utilizing the 19-round distinguisher,
which is the longest related-key attack on GIFT-128. The 24-round related-key rectangle
attack on GIFT-64 and 22-round related-key boomerang attack on GIFT-128 are also pre-
sented. Thirdly, we search the clustering of the single-key differential trails. We increase the
probability of a 20-round single-key differential distinguisher of GIFT-128 from 2−121.415 to
2−120.245. The time complexity of the 26-round differential attack on GIFT-128 is improved
from 2124.415 to 2123.245.

Keywords: Matsui’s algorithm · Related-key differential trail · Single-key differential trail
· Clustering effect · Boomerang attack · Rectangle attack · GIFT

1 Introduction

GIFT is a lightweight Substitution-Permutation-Network block cipher proposed by Banik et al. at
CHES’17 [7]. GIFT has two versions named GIFT-64 and GIFT-128, whose block sizes are 64 and
128 bits respectively and round numbers are 28 and 40 respectively. The key length of GIFT-64 and
GIFT-128 are both 128 bits. As the inheritor of PRESENT [16], GIFT achieves improvements over
PRESENT in both security and efficiency. GIFT is the underlying block cipher of the lightweight
authenticated encryption schemes GIFT-COFB [1], HYENA [2], SUNDAE-GIFT [3], LOTUS-
AEAD and LOCUS-AEAD [4], which are all the round 2 candidates of the NIST lightweight
crypto standardization process [5].

Differential cryptanalysis [13] is one of the most fundamental methods for cryptanalysis of
block ciphers. The most important step of differential cryptanalysis is to find differential trails with
high probabilities. Boomerang attack [31] and rectangle attack [11,23] are extensions of differential
cryptanalysis. Related-key boomerang attack [24,12] is a combination of boomerang attack and
related-key differential cryptanalysis [10].

In recent years, the resistance of GIFT against (related-key) differential cryptanalysis have been
extensively studied. In single-key scenario, Zhou et al. [35] succeed in searching the optimal
differential trails of GIFT-64 for up to 14 rounds. Ji et al. [22] found the optimal differential trails
of GIFT-128 for up to 19 rounds. Li et al. [25] obtained a 20-round differential trail of GIFT-128
and presented a 26-round attack on GIFT-128. In related-key scenario, the designers [7] gave
lower bounds of the probabilities of the optimal related-key differential trails of GIFT-64 for up to



2 Fulei Ji, Wentao Zhang, Chunning Zhou, and Tianyou Ding

12 rounds and GIFT-128 for up to 9 rounds. Liu and Sasaki [27] searched related-key differential
trails of GIFT-64 for up to 21 rounds. They succeed in attacking 21-round GIFT-128 with a
19-round related-key boomerang distinguisher and 23-round GIFT-64 with a 20-round related-
key boomerang distinguisher. In [18], Chen et al. constructed a 20-round related-key boomerang
distinguisher of GIFT-64 with probability Pr = 2−50. Based on this 20-round distinguisher, a
23-round related-key rectangle attack was proposed in [18] and a 24-round related-key rectangle
attack was proposed by Zhao et al. in [34]. According to the analysis in [32], the probability of the
20-round distinguisher should be corrected to Pr = 2−68. The 23-round and 24-round attack are
invalid since Pr < 2−64 [11]. The detailed proof process is demonstrated in App.C.

Matsui’s algorithm [28] is a branch-and-bound depth-first automatic search algorithm proposed
by Matsui to search optimal single-key differential and linear trails of DES. Some improvements
of Matsui’s algorithm have been presented and applied to DESL, FEAL, NOEKEON and SPON-
GENT [29,6,8,22]. In [22], Ji et al. applied three methods to speed up the search process of Matsui’s
algorithm. The improved Matsui’s algorithm given in [22] is easy to implement and performs well
in searching the optimal single-key differential trails of GIFT.

In this paper, we focus on the following two issues. Firstly, the lower bounds of the proba-
bilities of the optimal related-key differential trails of GIFT found in [7,27] are loose. We hope to
find related-key differential trails of GIFT with higher probabilities. We apply Matsui’s algorithm
to search related-key differential trails of GIFT. Secondly, both the probability of the single-key
differential distinguisher and the related-key boomerang distinguisher can be improved by con-
sidering the clustering of the differential trails. The definitions of the clustering of an R-round
single-key differential trail and the clustering of the related-key differential trails utilized in an
R-round related-key boomerang distinguisher are presented in Definition 4 and Definition 5. We re-
search how to find the clustering of the single-key differential trails and the related-key differential
trails utilized in the related-key boomerang distinguisher.

Our Contributions

1 We apply Matsui’s algorithm to search related-key differential trails of GIFT. We
search related-key differential trails of GIFT according to the following three steps:

• Firstly, apply the speeding-up methods in [22] to speed up the search process.
• Secondly, add three constraints to limit the search space.
• Finally, search the optimal related-key differential trails on the limited search space.

The adjusted Matsui’s algorithm devoted to searching related-key differential trails of GIFT is
shown in Alg.1.

- We succeed in finding related-key differential trails of GIFT-64/128 for up to 15/14 rounds.
The results are summarized in Table 1.

- As we can see from Table 1, compared with the known results in [7,27,18], the related-
key differential trails of GIFT we find are the best results so far. For GIFT-128,
we find related-key differential trails for up to 14 round, while the previous results up to 9
rounds. For both GIFT-64 and GIFT-128, our results provide tighter lower bounds for the
probabilities of the optimal related-key trails.

In [27], the authors presented a 9-round related-key differential trail l of GIFT-128 with weight
29.830. Through our verification, we find that l cannot be reproduced. It is because that the
round key difference of l cannot be generated from the master key difference.

2 We propose an automatic search algorithm to search the clustering of the related-
key differential trails utilized in the related-key boomerang distinguisher. The new
algorithm is presented as Alg.2. The target cipher E of the related-key boomerang distinguisher
is decomposed as E1 ◦ Em ◦ E0.

- For GIFT-64, we increase the probability of a 20-round related-key boomerang distin-
guisher from 2−67.660 to 2−58.557. The clustering of the 10-round related-key differential trail
utilized in E0 consists of 5728 trails. The clustering of the 9-round related-key differential
trail utilized in E1 consists of 312 trails.
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Table 1. The weight1 of the n-round related-key differential trails of GIFT

GIFT-64 GIFT-128
n [7] [18] [27] Sect.3 [7] Sect.3
5 1.415 1.415 7.000 6.830
6 5.000 4.000 11.000 10.830
7 6.415 6.000 20.000 15.830
8 10.000 8.000 25.000 22.830
9 16.000 14.000 13.415 13.415 31.000 30.000
10 22.000 20.415 37.000
11 27.000 28.830 26.000 44.000
12 31.000 56.000
13 39.000 37.000 65.830
14 42.830 77.830
15 50.000 48.000

1 The weight is the negative logarithm of the probability with base 2.

The 25-round and 24-round related-key rectangle attacks are achieved taking advantage of
the 20-round distinguisher. This is the longest attack on GIFT-64 so far, while the
previous longest attack is the 23-round related-key boomerang attack proposed in [27].

- For GIFT-128, we increase the probability of a 19-round related-key boomerang distin-
guisher from 2−120.00 to 2−109.626. The clustering of the 9-round related-key differential trail
utilized in E0 contains 3952 trails. The clustering of the 9-round related-key differential
trail utilized in E1 contains 2944 trails.

Applying the 19-round distinguisher, we propose a 23-round related-key rectangle attack
and a 22-round related-key boomerang attack. This is the longest related-key attack
on GIFT-128, while the previous longest related-key attack is the 21-round related-key
boomerang attack proposed in [27].

Table 2. Summary of the cryptanalytic results on GIFT

GIFT-64

Rounds Approach Setting Time Data Memory Ref.

20 DC SK 2112.68 262 2112 [17]

21 DC SK 2107.61 264 296 [17]

23 Boomerang RK 2126.6 263.3 - [27]

24 Rectangle RK 2106.00 263.78 264.10 Sect.5.2

25 Rectangle RK 2120.92 263.78 264.10 Sect.5.1

GIFT-128

Rounds Approach Setting Time Data Memory Ref.

21 Boomerang RK 2126.6 2126.6 - [27]

22 Boomerang RK 2112.63 2112.63 252 App.B

23 Rectangle RK 2126.89 2121.31 2121.63 Sect.6.2

23 DC SK 2120 2120 286 [36]

26 DC SK 2124.415 2124.415 2109 [25]

26 DC SK 2123.245 2123.245 2109 Sect.6.1
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3 We apply Matsui’s algorithm to search the clustering of the single-key differential
trails.

- We increase the probability of a 20-round single-key differential distinguisher of GIFT-128
from 2−121.415 to 2−120.245. The clustering of the 20-round single-key differential trail is
composed by four trails. We improve the time complexity of the 26-round differential attack
on GIFT-128 constructed in [25] from 2124.415 to 2123.245.

The cryptanalytic results are summarized in Table 2.

Organization. The paper is organized as follows. In Sect.2, we give a brief description of GIFT,
the speeding-up methods on Matsui’s algorithm and the related-key boomerang and rectangle
attack. The definitions and notations adopted throughout the paper are also presented in Sect.2.
In Sect.3, we introduce how to apply Matsui’s algorithm in related-key scenario. Sect.4 declares how
to search the clustering of the single-key/related-key differential trails. Sect.5 and Sect.6 provide
the details of the 25/24-round attacks on GIFT-64 and the 26/23-round attacks on GIFT-128
respectively. The details of the 22-round attack on GIFT-128 are presented in App.B. Sect.7 is the
conclusion and future work.

2 Preliminaries

2.1 Description of GIFT

Let n be the block size of GIFT. The master key is iniK := k7||k6|| · · · ||k0, in which |iniK| = 128,
|ki| = 16. Each round of GIFT consists of three steps: SubCells, PermBits, and AddRoundKey.

Table 3. The specifications of the S-box GS in GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

1 SubCells. The S-box GS is applied to every nibble of the cipher state. The specifications of
GS is given in Table 3.

2 PermBits. Update the cipher state by a linear bit permutation P (·) as bP (i) ← bi, ∀i ∈
{0, · · · , n− 1}.

3 AddRoundKey. An n/2-bit round keyRK is extracted from the key state. It is further partitioned
into two s-bit words RK := U ||V = us−1 · · ·u0||vs−1 · · · v0, s = n/4.

For GIFT-64, RK is XORed to the state as b4i+1 ← b4i+1⊕ui, b4i ← b4i⊕vi, ∀i ∈ {0, · · · , 15}.
For GIFT-128, RK is XORed to the state as b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈
{0, · · · , 31}.
For both versions, a single bit “1” and a 6-bit constant C are XORed into the internal state
at positions n− 1, 23, 19, 15, 11, 7 and 3 respectively.

Key Schedule. For GIFT-64,RK = U ||V = k1||k0. For GIFT-128,RK = U ||V = k5||k4||k1||k0.
For both versions, the key state is updated as

k7||k6|| · · · ||k1||k0 ← k1 ≫ 2||k0 ≫ 12|| · · · ||k3||k2,

where ≫ i is an i-bit right rotation within a 16-bit word.

We refer readers to [7] for more details of GIFT.
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2.2 Definitions and Notations

Definition 1 ([20]). The weight of a difference propagation (a′, b′) is the negative of the
binary logarithm of the difference propagation probability over the transformation h, i.e.,

wr(a
′, b′) = −logPrh(a′,b′)

2 . (1)

a′ is the input difference and b′ is the output difference.

Definition 2 ([19]). Let φ be an invertible function from Fm
2 to Fm

2 , and ∆0,∇0 ∈ Fm
2 . The

boomerang connectivity table (BCT) of φ is defined by a 2m× 2m table, in which the entry for
(∆0,∇0) is computed by:

BCT(∆0,∇0) = ♯{x ∈ {0, 1}n|φ−1(φ(x)⊕∇0)⊕ φ−1(φ(x⊕∆0)⊕∇0) = ∆0}. (2)

Definition 3 ([32]). Let φ be an invertible function from Fm
2 to Fm

2 , and ∆0,∆1,∇0,∇1 ∈ Fm
2 .

The boomerang difference table (BDT) of φ is a three-dimensional table, in which the entry
for (∆0, ∆1,∇0) is computed by:

BDT(∆0,∆1,∇0) = ♯{x ∈ {0, 1}n|φ−1(φ(x)⊕∇0)⊕ φ−1(φ(x⊕∆0)⊕∇0) = ∆0,

φ(x)⊕ φ(x⊕∆0) = ∆1}.
(3)

The iBDT, as a variant of BDT, is evaluated by:

iBDT(∇0,∇1,∆0) = ♯{x ∈ {0, 1}n|φ(φ−1(x)⊕∆0)⊕ φ(φ−1(x⊕∇0)⊕∆0) = ∇0,

φ−1(x)⊕ φ−1(x⊕∇0) = ∇1}.
(4)

The notations used in this paper are defined as follows:

S(·), P (·),K(·) : SubCells operation, PermBits operation, AddRoundKey operation

n : the block size of cipher E

k : the master key size of cipher E

2ns : the number of the S-boxes in S(·); 2ns = n/4 for GIFT

MKD : the master key difference

Xi, Yi : the input and the output of S(·) in round i

Zi : the output of P (·) in round i

Ki : the round key of round i

∆Xi, ∆Yi, ∆Zi, ∆Ki : the differential value of Xi, Yi, Zi and Ki

W (l) : the weight of the differential trail l

W (∆Xi,∆Yi) : the weight of ∆Xi
S(·)−→ ∆Yi in round i

BR := min[ΣR
i=1W (∆Xi,∆Yi)] : the weight of the R-round optimal differential trail

BcR : the upper bound of BR

bw : the value of BcR minus BR; BcR = BR + bw

DDT : the difference distribution table of the S-box

LAT : the linear approximation table of the S-box

E := E1 ◦ Em ◦ E0 : the target cipher of the boomerang or rectangle distinguisher

E′ := Ef ◦ E ◦ Eb : the target cipher of the boomerang or rectangle attack

Eb : the extension cipher added at the start of E

Ef : the extension cipher added at the end of E

rb, rf : the number of active bits in the input difference of Eb and the output difference of Ef

mb, mf : the number of key bits needed to be guessed in Eb and Ef
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Fig. 1. The Boomerang Distinguisher
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Fig. 2. The Sandwich Distinguisher

2.3 Three Methods to Speed Up Matsui’s Algorithm

Matsui’s algorithm [28] works by induction on the number of rounds and derives the R-round
optimal weight BR from the knowledge of all i-round optimal weight Bi (1 ≤ i < R). The program
requires an initial value for BR, which is represented as BcR. It works correctly for any BcR as
long as BcR ≥ BR. In [22], Ji et al. applied three methods to improve the efficiency of Matsui’s
algorithm. The three speeding-up methods are named (1) Reconstructing DDT and LAT According
to Weight, (2) Executing Linear Layer Operations in Minimal Cost and (3) Merging Two 4-bit S-
boxes into One 8-bit S-box.

Speeding-up method-1 contributes to pruning unsatisfiable candidates quickly. The authors
reconstructed the DDT table to sort the input and output differences according to their weights.
Speeding-up method-2 and method-3 contribute to reducing the cost of executing linear layer
operations. The authors merged 2ns 4-bit S-boxes into ns 8-bit new S-boxes. The new linear table
is constructed according to the output differences of each S-box. The SSE instructions are applied
to reduce the cost of linear layer operations.

The improved Matsui’s algorithm for GIFT is demonstrated as Alg.3 in App.A. We refer readers
to [22] for more details of the speeding-up methods.

2.4 Related-key Boomerang Attack and Rectangle Attack

Basic Related-key Boomerang Attack and Rectangle Attack. Related-key boomerang
attack is an adaptive chosen-plaintext/ciphertext attack. As is shown in Fig.1, the adversary can
split the target cipher E into two sub-ciphers E0 and E1, i.e. E = E1 ◦E0. Assume that there are
a differential trail α→ β under the key difference ∆K over E0 with probability p and a differential
trail γ → δ under the key difference ∇K over E1 with probability q. Once K1 is known, the other
three keys are determined: K2 = K1 ⊕∆K, K3 = K1 ⊕∇K, K4 = K2 ⊕∇K. Given P1 ⊕ P2 = α
and K1⊕K2 = ∆K, the probability that we obtain two plaintexts satisfying P3⊕P4 = α through
the boomerang distinguisher is:

p2q2 = Pr[E−1(E(x,K1)⊕ δ,K3)⊕ E−1(E(x⊕ α,K2)⊕ δ,K4) = α] (5)
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If (P1, P2, P3, P4) can pass the boomerang distinguisher, then it is called a right quartet .
For a random permutation, given P1 ⊕ P2 = α and K1 ⊕K2 = ∆K, the probability that two

random plaintexts satisfying P3⊕P4 = α is 2−n. Therefore, only if pq > 2−n/2 can we count more
right quartets than random noise through the related-key boomerang distinguisher.

Related-key rectangle attack is a chosen-plaintext attack, which is a further developmen-
t of the related-key boomerang attack. In Fig.1, given P1 ⊕ P2 = α and P3 ⊕ P4 = α under
K1,K2,K3,K4, the probability that the corresponding ciphertexts C1, C2, C3, C4 meets C1⊕C3 = δ
and C2 ⊕ C4 = δ (or C1 ⊕ C4 = δ and C2 ⊕ C3 = δ) is 2−np2q2. If (P1, P2, P3, P4) can pass the
rectangle distinguisher under (K1,K2,K3,K4), then it is called a right quartet . For a random
permutation, we get a right quartet with probability 2−2n in the rectangle attack. Thus, only if
pq > 2−n/2 can we count more right quartets than random noise.

Boomerang Switch. The interaction between the two differential trails over E0 and E1 is utilized
to improve the boomerang and rectangle attack [14,15], which is called the boomerang switch
[15]. The idea of the boomerang switch is to minimize the overall complexity of the distinguisher
by optimizing the transition between E0 and E1. In [21], a new framework named sandwich
attack was proposed. As is shown in Fig.2, the sandwich attack decomposes the target cipher E
as E1 ◦Em ◦E0. The propagation of the boomerang switch is captured by the propagation of Em.

For the fixed β and γ, the probability that a quartet can pass Em is :

r := Pr[E−1
m (Em(x,K1)⊕ γ,K3)⊕ E−1

m (Em(x⊕ β,K2)⊕ γ,K4) = β] (6)

Thus, the probability that we obtain a right quartet through the sandwich distinguisher (i.e. the
boomerang distinguisher with boomerang switch) is p2q2r.

The value of r can be evaluated by the boomerang connectivity table [19] or the boomerang
difference table [32] at the S-box level. Let β[2ns]|| · · · ||β[1] := β and γ[2ns]|| · · · ||γ[1] := γ. Let S
and L be the non-linear and linear layer operations of E, β′ = S(β), β′′ = L(β′), γ′ = S−1(γ) and
γ′′ = L−1(γ′). For a 1-round Em, the propagation of β and γ is illustrated in Fig.3. Then we have

r = 2−nΣ1≤i≤2nsBCT(β[i], γ[i]).
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For a 2-round Em, the propagation of β and γ is illustrated in Fig.4. Then we have

r = 2−2nΣ1≤i≤2ns(BDT(β[i], β′[i], γ′′[i])× iBDT(γ[i], γ′[i], β′′[i])).

For a related-key boomerang distinguisher, if there are multiple trails α
E0→ βi and γj

E1→ δ
(βi ̸= γj) under fixed α, ∆K, δ and ∇K, the probability of obtaining a right quartet can be
increased to:

p̂2q̂2 := Σi,jp
2
i q

2
j rij , (7)

in which pi = Pr(α
E0→ βi), qj = Pr(γj

E1→ δ) and rij = Pr(βi
Em→ γj).

A new key-recovery model for the related-key boomerang and rectangle attack against block
ciphers with linear key schedules was constructed by Zhao et al. in [33,34]. This new model is a
modification of Liu et al.’s model [26]. In this paper, we utilize the model proposed by Zhao et al.
to perform the key-recovery attack against GIFT.

3 Searching Related-key Differential Trails

3.1 Applying Matsui’s Algorithm in Related-key Scenario

Our objective is to find related-key differential trails with high probabilities. We apply Matsui’s
algorithm to search related-key differential trails of GIFT. Firstly, we apply the speeding-up meth-
ods introduced in Sect.2.3 to improve the search process. Secondly, we add three constraints to
limit the search space. Finally, we search the optimal related-key differential trails on the limited
search space. The adjusted Matsui’s algorithm aiming at searching optimal related-key
differential trails of GIFT on limited search space is demonstrated in Alg.1.

Let R be the round number of E. Let ∆iniK := ∆k7|| · · · ||∆k0 be the master key difference
and ∆Ki be the round key difference in round i. We utilize the following three constraints
to limit the search space:

1 Restricting the input difference of round fr to zero and traverse fr from 1 to R.

It has been declared in [29] that the number of candidates in the first two rounds of Matsui’s
algorithm is the dominant factor of the search complexity. In Alg.3, the number of candidates
∆Y1 in Procedure Round-1 depends on the value of BcR −BR−1. Alg.1 starts from Procedure
Round-fr with only one candidate ∆Yfr = 0. Since ∆Yfr = 0, we can determine the input
difference of round i+1 which is ∆Ki and the output difference of round i−1 which is ∆Ki−1.

Therefore, the complexity of Matsui’s algorithm in related-key scenario is improved benefitting
from constraint-1.

2 Restricting the number of the active bits in the master key difference.

The key schedule of GIFT is a linear transformation. The value of ∆Ki are determined by
∆iniK. The input difference of S(·) in round i is ∆Xi = P (∆Yi−1)⊕∆Ki−1. The related-key
differential trails with small weight will not contain too many active S-boxes in S(·). Thus,
there should not be too many active bits in ∆Ki (1 ≤ i ≤ R). The details of constraint-2 are
as follows.

• Restricting the number of the active bits in ∆iniK to no more than four when R < 11.

• Restricting the number of the active bits in ∆iniK to no more than three when R ≥ 11.

• Restricting the four active bit positions to belong to four different ∆kj (0 ≤ j ≤ 7) if the
number of the active bits is four.

The total number of the candidate ∆iniK is C1
128 + C2

128 + C3
128 + C4

7 · (C1
16)

4 = 4937 152.

3 Restricting the number of the active S-boxes in round i (1 ≤ i ≤ R) to no more
than five when R ≥ 11.
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Algorithm 1 The Adjusted Matsui’s Algorithm of Searching Optimal Related-key Differential
Trails for GIFT on Limited Search Space

Require: R (≥ 3); B0 = 0, B1, B2, · · · , BR−1; BcR; iniKeyDiff [4 937 152]; ns := n/8
Ensure: BR = BcR; the R-round related-key differential trails with minimal weight

1: for each iniKeyDiff [v] do
2: gen roundkey ∆Ki, 1 ≤ i ≤ R
3: for fr = 1 to R do
4: ∆Xfr ← 0, ∆Yfr ← 0, wfr ← 0
5: if fr = R then
6: ∆Yfr−1 ← P−1(∆Kfr−1)
7: call Round-i-In
8: else
9: ∆Xfr+1 ← ∆Kfr

10: call Round-i
11: end if
12: end for
13: end for

14: Procedure Round-i, 2 ≤ i ≤ R− 1:
15: for each ∆Yi do
16: wi ←W (∆Xi,∆Yi)
17: if BR−i +Bfr−1 +Σi

j=frwj ≥ BcR then
18: break
19: else
20: ∆Xi+1 ← P (∆Yi)⊕∆Ki

21: call Round-(i+1)
22: end if
23: end for

24: Procedure Round-R:
25: wR ← min∆YRW (∆XR, ∆YR)

26: if Bfr−1 +ΣR
j=frwj ≤ BcR then

27: if fr = 1 then
28: BcR = ΣR

j=1wj

29: else
30: ∆Yfr−1 ← P−1(∆Kfr−1)
31: call Round-i-In
32: end if
33: end if
34: return to the upper procedure

35: Procedure Round-i-In, 2 ≤ i ≤ R− 1:
36: for each ∆Xi do
37: wi ←W (∆Xi,∆Yi)
38: if Bi−1 +ΣR

j=iwj ≥ BcR then
39: break
40: else
41: ∆Yi−1 ← P−1(∆Xi ⊕∆Ki−1)
42: call Round-(i-1)-In
43: end if
44: end for

45: Procedure Round-1-In:
46: w1 ← min∆XRW (∆XR,∆YR)
47: if ΣR

j=1wj ≤ BcR then

48: BcR = ΣR
j=1wj

49: end if
50: return to the upper procedure

3.2 Results on Related-key Differential Trails of GIFT

Applying Alg.1, we find related-key differential trails of GIFT-64/128 for up to 15/14
rounds. The results are summarized in Table 1. Table 10 in App.D presents a 15-round related-
key differential trail of GIFT-64 and a 14-round related-key differential trail of GIFT-128 found
by Alg.1.

Compared to the previous results in [7,27,18], the optimal related-key differential trails found by
Alg.1 on the limited search space are the best results known so far. We find related-key differential
trails of GIFT-128 for up to 14 rounds, while the previous results up to 9 rounds. We provide
tighter lower bounds for the probabilities of the optimal related-key trails of both GIFT-64 and
GIFT-128. It indicates that the three constraints we choose perform well in limiting the search
space while preserving the related-key differential trails with high probabilities.

4 Increasing the Probability of the Distinguisher Utilizing Clustering
Effect

Both the probability of the single-key differential distinguisher and the related-key boomerang
distinguisher can be increased by searching the clustering of the differential trails. Next, we give the
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definitions of the clustering of an R-round single-key differential trail and the clustering
of the related-key differential trails utilized in an R-round boomerang distinguisher
and explain how to search the clustering.

4.1 Single-key Scenario

Definition 4. The clustering of an R-round single-key differential trail is defined as:

C(R, ηin, ηout, BcR) := {all R-round single-key differential trails li |
W (li) ≤ BcR,∆X1 = ηin, P (∆YR) = ηout}.

(8)

In fact, for an R-round single-key differential trail L with fixed input difference ηin and output
difference ηout, the clustering of L is composed by all the differential trails whose input difference is
ηin and output difference is ηout, i.e. C(R, ηin, ηout,∞). It will take immeasurable time to determine
all the trails in C(R, ηin, ηout,∞). Therefore, we only search all the trails with weight no more than
BcR. The choice of BcR is heuristic.

We call Alg.3 to search C(R, ηin, ηout, BcR). The greater the value of BcR, the more trails can
we find, while the longer the search time is required.

4.2 Related-key Scenario

Definition 5. The clustering of the related-key differential trails utilized in an R-round
related-key boomerang distinguisher is defined as:

C(R0, R1, Rm, α,∆iniK0, BcR0 , δ,∆iniK1, BcR1) := {all combinations of (li0, l
j
1) |

li0 ∈ CI(R0, α,∆iniK0, BcR0), l
j
1 ∈ CO(R1, δ,∆iniK1, BcR1)},

(9)

in which

CI(R0, α,∆iniK0, BcR0) := {all R0-round related-key differential trails li0 |
W (li0) ≤ BcR0 ,∆X1 = α,MKD = ∆iniK0},

(10)

CO(R1, δ,∆iniK1, BcR1) := {all R1-round related-key differential trails lj1 |
W (lj1) ≤ BcR1 ,K(∆ZR1) = δ,MKD = ∆iniK1},

(11)

and R = R0 +Rm +R1.
In fact, the clustering of an R0-round related-key differential trail L with fixed input difference

α and master key difference ∆iniK0 contains all the related-key differential trails with arbitrary
weight, i.e. CI(R0, α,∆iniK0,∞). It will take immeasurable time to determine all the trails in
CI(R0, α,∆iniK0,∞). Therefore, we only search all the trails with weight no more than BcR0 . The
choice of BcR0 is heuristic. The modification above also applies to CO(R1, δ,∆iniK1,∞).

To construct an R-round related-key boomerang distinguisher D for the target cipher E =
E1 ◦ Em ◦ E0, we first determine the round number R0/Rm/R1 for E0/Em/E1 satisfying R =
R0 +Rm +R1. The general way to determine the probability of the distinguisher D is:

1 Choose an R0-round trail l0 for E0; Get the input difference α, the output difference β and
the master key difference ∆iniK0.

2 Choose an R1-round trail l1 for E1; Get the input difference γ, the output difference δ and the
master key difference ∆iniK1.

3 Apply BCT table to calculate Pr(β → γ) if Rm = 1; Apply BDT table and iBDT table to
calculate Pr(β → γ) if Rm = 2.

For a distinguisher D with fixed α and δ, there could be mulitiple values of β and γ. To increase
the probability of D, we hope to find as more combinations of (β, γ) as we can. We propose Alg.2
to search C(D), i.e. C(R0, R1, Rm, α,∆iniK0, BcR0 , δ,∆iniK1, BcR1) and calculate the probability
of D by traversing all combinations of (li0, l

j
1) in C(D). The greater the value of BcR0 and BcR1 ,

the more trails can we find.
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Algorithm 2 The Algorithm of Increasing the Probability of the Related-key Boomerang Distin-
guisher for GIFT

Require: R0, R1, Rm; bw ; ns := n/8
Ensure: p̂2q̂2 ← max{p̂i2q̂j2}; αi, ∆iniKi

0; δj , ∆iniKj
1

1: Phase 1 : Search all the related-key differential trails with minimal weight
2: call Alg.1 to search all the R0-round related-key trails with minimal weight on the limited

search space for E0

3: BR0 ← the minimal weight of R0-round trails
4: l10, · · · , la0 ← all the R0-round trails with weight BR0

5: for each li0, 1 ≤ i ≤ a do
6: αi ← ∆X1, ∆iniKi

0 ← the master key difference
7: end for
8: call Alg.1 to search all the R1-round related-key trails with minimal weight on the limited

search space for E1

9: BR1 ← the minimal weight of R1-round trails
10: l11, · · · , lb1 ← all the R1-round trails with weight BR1

11: for each lj1, 1 ≤ j ≤ b do

12: δj ← K ◦ P (∆YR1), ∆iniKj
1 ← the master key difference

13: end for

14: Phase 2 : Search all the clustering
15: for each li0, 1 ≤ i ≤ a do
16: call Alg.1 to search CI(R0, αi,∆iniKi

0, BR0
+ bw) /* see Eq.10 for definition */

17: li10 , · · · , lid0 ← all the trails in CI(R0, αi, ∆iniKi
0, BR0 + bw)

18: for each liu0 , 1 ≤ u ≤ d do
19: βiu ← K ◦ P (∆YR0), B

iu
R0
←W (liu0 )

20: end for
21: end for
22: for each lj1, 1 ≤ j ≤ b do

23: call Alg.1 to search CO(R1, δj ,∆iniKj
1 , BR1 + bw) /* see Eq.11 for definition */

24: lj11 , · · · , lje1 ← all the trails in CO(R1, δj ,∆iniKj
1 , BR1 + bw)

25: for each ljv1 , 1 ≤ v ≤ e do

26: γjv ← P−1 ◦K−1(∆X1), B
jv
R1
←W (ljv1 )

27: end for
28: end for

29: Phase 3 : Determine the boomerang distinguisher with highest probability
30: for each li0 (1 ≤ i ≤ a) and lj1 (1 ≤ j ≤ b) do

31: p̂i
2q̂j

2 ←
∑

u,v 2
−2Biu

R0 · 2−2Bjv
R1 ·Middle(βiu , γjv , Rm)

32: end for
33: p̂2q̂2 ← maxi,j{p̂i2q̂j2}

34: Function Middle(β, γ,Rm):
35: calcutate PrEm by the BCT table, if Rm = 1
36: calcutate PrEm

by the BDT table and the iBDT table, if Rm = 2
37: return PrEm
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Explanations on Alg.2

1 Different choices of α (or δ) will lead to different amounts and values of β (or γ).
Therefore, in Phase 1 of Alg.2, we first determine all the choices of α and δ.

2 For GIFT, we find the fact that for fixed S(α) of E0 and fixed S−1 ◦ P−1 ◦K−1(δ) of E1, the
choices of α and δ will not influence the value of p̂2q̂2.
Therefore, in the search process of GIFT, we only care about the value of S(α) (i.e. ∆Y1 of
E0) and the value of S−1 ◦ P−1 ◦K−1(δ) (i.e. ∆XR1 of E1).

3 For fixed li0 and lj1 (1 ≤ i ≤ a, 1 ≤ j ≤ b), we get CI(R0, αi,∆iniKi
0, BR0 + bw) and

CO(R1, δj ,∆iniKj
1 , BR1 + bw) through Phase 2. In Phase 3, we traverse all combinations of

(liu0 , ljv1 ), in which

liu0 ∈ CI(R0, αi, ∆iniKi
0, BR0 + bw), ljv1 ∈ CO(R1, δj ,∆iniKj

1 , BR1 + bw),

to calculate
p̂i

2q̂j
2 ←

∑
u,v

2−2Biu
R0 · 2−2Bjv

R1 ·Middle(βiu , γjv , Rm).

For each liu0 and ljv1 , the value of βiu and γjv are determined.
4 The value of α and δ should be carefully determined to keep the value of rb, mb,

rf and mf appropriate. The probability of the distinguisher is the main factor affecting the
complexity of the key-recovery attack. Nevertheless the value of rb, mb, rf and mf can also
affect the complexity, which is influenced by the value of α and δ.
Therefore, once we get the value of maxi,j{p̂i2q̂j2}, αi and δj from Alg.2, we should carefully
adjust the value of αi and δj to reduce the complexity of the attack.

5 Attacks on GIFT-64

5.1 Related-key Rectangle Attack on 25-round GIFT-64

Determining the Related-key Rectangle Distinguisher. We utilize a 20-round related-key
rectangle distinguisher to attack the 25-round GIFT-64. Choose R0 = 10 for E0, R1 = 9 for E1,
Rm = 1 for Em. Set bw = 4. Apply Alg.2 to search the probability of the 20-round distinguisher.

In Phase 1 of Alg.2, we find sixteen 10-round trails with weight 20.415 for E0, marked as
l10, · · · , l160 . We find eight 9-round trails with weight 13.415 for E1, marked as l11, · · · , l81. The details
of l10, · · · , l160 and l11, · · · , l81 are listed in Table 12 and Table 13 in App.D.

In Phase 3, we determine the maximum value of p̂i
2q̂j

2, which is p̂5
2q̂8

2 = 2−58.557. We choose
the value of α and δ according to S(α5) = 0x0000000000001000 and S−1 ◦ P−1 ◦ K−1(δ8) =
0x0000200000000000. Finally, we obtain a 20-round related-key rectangle distinguisher with prob-
ability 2−np̂2q̂2 = 2−64 · 2−58.557. The specifications of the 20-round related-key rectangle dis-
tinguisher of GIFT-64 are shown in Table 4. There are 5728 trails in CI(R0, α,∆iniK0, BcR0) and
312 trails in CO(R1, δ,∆iniK1, BcR1).

Table 4. The specifications of 20-round related-key rectangle distinguisher of GIFT-64

R0 = 10, Rm = 1, R1 = 9; BcR0 = 24.415, BcR1 = 17.415; p̂2q̂2 = 2−58.557

E0
α ∆iniK0

00 00 00 00 00 00 a0 00 0004 0000 0000 0800 0000 0000 0000 0010

E1
δ ∆iniK1

04 00 00 00 01 20 10 00 2000 0000 0000 0000 0800 0000 0200 0800

We construct the 25-round key-recovery model for GIFT-64, which is shown in Table 5, by
appending two rounds at the end of the 20-round distinguisher and appending three rounds at the
beginning of the distinguisher.
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Table 5. The 25-round key-recovery model of the related-key rectangle attack for GIFT-64

input ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
∆Y1 ??0? 1??0 01?? ?0?? 1?0? ?1?0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0 0??? ?0??
∆Z1 ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ????
∆X2 ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ????
∆Y2 0?01 00?0 000? ?000 0000 0000 0000 0000 0100 00?0 000? ?000 ?000 0100 00?0 000?
∆Z2 ???? 0000 ?1?? 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 ?1??
∆X3 ???? 0000 ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ?1??
∆Y3 1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010
∆Z3 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0000 0000 0000

∆X4 (α) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000
: · · · · · · · · ·

∆X24 (δ) 0000 0100 0000 0000 0000 0000 0000 0000 0000 0001 0010 0000 0001 0000 0000 0000
∆Y24 0000 ???1 0000 0000 0000 0000 0000 0000 0000 ???? ???? 0000 ???? 0000 0000 0000
∆Z24 00?0 0000 00?? 0?00 0001 0000 ?00? 00?0 ?000 0000 ??00 000? 0?00 0000 0??0 ?000
∆X25 00?0 0000 00?? 0?00 0001 0000 ?00? 00?0 ?010 0000 ??00 000? 0?00 0000 0??0 ?000
∆Y25 ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ????
∆Z25 ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??
output ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??

Data Collection. Since there is no whitening key XORed to the plaintext, we collect data in
∆Z1. There are 44 unknown bits in ∆Z1 marked as “?”, affecting 12 S-boxes in round 1 and three
S-boxes in round 2. Thus, rb = 44 and the number of key bits needed to be guessed in Eb is
mb = 2× (12 + 3) = 30. Similarly, we have rf = 48 and mf = 2× (12 + 4) = 32 in Ef . We
utilize the key-recovery model proposed by Zhao et al. in [33] to perform the rectangle key-recovery
attack.

1 Construct y =
√
s · 2n/2−rb/p̂q̂ structures of 2rb plaintexts each. s is the expected number of

right quartets. Each structure takes all the possible values of the rb active bits while the other
n− rb bits are fixed to some constant.

2 For each structure, query the 2rb plaintexts by the encryption oracle under K1,K2,K3 and K4

where K1 is the secret key, K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K. Obtain
four plaintext-ciphertext sets denoted by L1, L2, L3 and L4. Insert L2 and L4 into hash tables
H1 and H2 indexed by the rb bits of the plaintexts.

3 Guess the mb bits subkey involved in Eb, then:
(a) Initialize a list of 2mf counters, each of which corresponds to a mf bits subkey guess.
(b) For each structure, partially encrypt plaintext P1 ∈ L1 to the position of α by the guessed

subkeys, and partially decrypt it to the plaintext P2 after XORing the known difference α.
Then we look up H1 to find the plaintext-ciphertext indexed by the rb bits. Do the same
operations with P3 and P4. We get two sets:

S1 = {(P1, C1, P2, C2) : (P1, C1) ∈ L1, (P2, C2) ∈ L2, EbK1
(P1)⊕ EbK2

(P2) = α},
S2 = {(P3, C3, P4, C4) : (P3, C3) ∈ L3, (P4, C4) ∈ L4, EbK3

(P3)⊕ EbK4
(P4) = α}.

(c) The size of S1 and S2 are both M = y · 2rb . Insert S1 into a hash table H3 indexed by the
n− rf bits of C1 and the n− rf bits of C2 in which the output difference of Ef are all “0”.
For each element of S2, we find the corresponding (P1, C1, P2, C2) satisfying C1 ⊕ C3 = 0
and C2 ⊕ C4 = 0 in the n− rf bits. In total, we obtain M2 · 2−2(n−rf ) quartets.

(d) We use all the quartets obtained in step (c) to recover the subkeys involved in Ef . This
step is a guess and filter procedure. We denote the time complexity in this step as ε.

(e) Select the top 2mf−h hits in the counter to be the candidates which delivers a h bits or
higher advantage.

(f) Exhaustively search the remaining k −mb −mf unknown key bits in the master key.
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Key Recovery. Choose the expected number of right quartets s to be 2, then we have y = 217.78

and M = y · 2rb = 261.78. Make use of all the M2 · 2−2(n−rf ) = 291.56 quartets obtained in step 3(c)
to recover the subkeys involved in Ef .

The following are the details of the guess and filter procedure in step 3(d), which are similar
to the process used in [34]. ∆Xi[u, · · · , v] represents the uth bit, · · · , the vth bit of ∆Xi.

d.1 ∆Y25[63, 62, 61, 60] can be computed by the cipertext pair (C1, C3) and ∆X25[63, 62, 61, 60] is
known. We guess the 22 possible values of the involved key bits in this S-box and partially
decrypt the cipertexts (C1, C3) and (C2, C4). Then check whether ∆X25[63, 62, 60] is 0 or
not. If yes, we keep the guessed key and the quartet, otherwise discard it. There are about
291.56 · 22 · 2−6 = 287.56 remaining quartets associated with the guessed 2-bit keys, i.e. for each
of the 22 candidate values of the 2-bit involved keys, there are 285.56 quartets remain.

d.2 Carry out a similar process to all the active S-boxes in round 25. There are about 287.56 ·
2(2−4)×4 · 2(2−6)×6 · 2(2−8) = 287.56−38 = 249.56 remaining quartets associated with the guessed
keys.

d.3 Partially decrypt all the remaining quartets with the obtained key bits in steps 1 and 2.
∆Y24[59, 58, 57, 56] can be calculated from the end of the distinguisher. Guess the 22 possible
values of the key bits involved in this S-box. For each guess, only 249.56 · 22−8 = 243.56 quartets
remain. Carry out a similar process to all the active S-boxes in round 24, there are about
243.56 · 2(2−8)×3 = 225.56 quartets remain.

d.4 Utilize the remaining quartets to count the mf = 32 key bits. The two right quartets will all
vote for the right key. The 225.56 random quartets will vote for a random key with probability
225.56−mf = 2−6.44.

d.5 Choose h = 22. Select the top 2mf−h hits in the counter to be the candidates. Exhaustively
search the remaining 128−mb −mf unknown key bits in the master key.

Complexity Computation. The data complexity is 4M = 4y · 2rb = 263.78 chosen plaintexts.
We need 4M encryptions in step 2. 2mb · 3M = 293.36 looking-up-table operations are needed in
step 3(b) and 3(c). We need 2mb · M2 · 2−2(n−rf ) · 4 · 22/25 = 2120.92 encryptions and 2k−h =
2106 encryptions to recover the master key. So the time complexity is bounded by 2120.92. The
memory complexity is bounded by the size of sets H1,H2,H3, S1 and S2, which is 5M = 264.10.

Success Probability. According to the success probability calculation method of differential
attacks proposed in [30], for both boomerang and rectangle attack, the success probability is

Pr = Φ(

√
sSN − Φ−1(1− 2−h)√

SN + 1
), (12)

in which SN = p̂2q̂2/2−n is the signal-to-noise ratio.
The success probability of the 25-round attack on GIFT-64 is 74.00%.

5.2 Related-key Rectangle Attack on 24-round GIFT-64

Determining the Related-key Rectangle Distinguisher. We choose the same 20-round
related-key rectangle distinguisher as in Sect.5.1. We append two rounds at the end of the dis-
tinguisher and two rounds at the beginning of the distinguisher. The details of the 24-round
key-recovery model are shown in Table 5. The input difference of the 24-round model equals
to ∆Z2 = “????0000?1??000000000000000000000001000000000000000000000000?1??”.

Data Collection and Key Recovery. To prepare the plaintexts, we collect data in ∆Z2 of Table
5. There are ten unknown bits in ∆Z2 marked as “?”, affecting three S-boxes in round 2. Thus,
rb = 10 and the number of key bits needed to be guessed in Eb is mb = 2 × 3 = 6. Similarly,
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rf = 48 and mf = 2 × (12 + 4) = 32 in Ef . The following data collection and key recovery
process are similar to the process of the 25-round attack in Sect.5.1.

Construct y =
√
s · 2n/2−rb/p̂q̂ structures of 2rb plaintexts each. For each structure, query the

2rb plaintexts by the encryption oracle under K1,K2,K3 and K4. There are about M2 · 2−2(n−rf )

quartets left after executing step 3(c). Choosing s = 2, we have y = 251.78, M = y · 2rb =
261.78 and M2 · 2−2(n−rf ) = 291.56. After the key guessing and filtering process, there are about
M2 · 2−2(n−rf ) · 2−66 = 225.56 remaining quartets. Choose h = 22 and select the top 2mf−h hits in
the counter to be the candidates. Exhaustively search the remaining 128−mb −mf unknown key
bits in the master key.

Complexity Computation and Success Probability. The data complexity is 4M = 263.78

chosen plaintexts. We need 2mb ·3M = 269.36 looking-up-table operations in step 3(b) and 3(c). We
need 2mb ·M2 ·2−2(n−rf ) ·4 ·22/24 = 296.98 encryptions and 2k−h = 2106 encryptions to recover the
master key. So the time complexity is bounded by 2106. The memory complexity is bounded
by 5M = 264.10. The success probability is 74.00% according to Eq.12.

6 Attacks on GIFT-128

6.1 Single-key Differential Attack on 26-round GIFT-128

In [25], Li et al. found a 20-round differential trail l0 of GIFT-128 with probability p = 2−121.415.
The propagation of l0 is shown in Table 11 of App.D. The 26-round differential attack was obtained
by extending four rounds backward and two rounds forward. The data complexity is 23/p = 2124.415.
The time complexity is bounded by the data complexity. The memory complexity is the cost of
the key filter counter, which is 2109.

Next, we search the clustering of l0. According to Definition 4, we choose Bc20 = 124,

ηin = ∆X1 = 0x000000000000000000000000000000a0,

ηout = P (∆Y20) = 0x00000000400100002000000010040000.
(13)

Then call Alg.3 to search C(20,∆X1, P (∆Y20), Bc20). We find four trails: l0 with weight 121.415, l2

and l3 with weight 122.415 and l4 with weight 123.415. The probability of the 20-round single-key
distinguisher that satisfies Eq.13 is increased to p̂ = 2−120.245. The details of li(0 ≤ i < 4) are
demonstrated in Table 11.

Hence, the data complexity of the 26-round differential attack on GIFT-128 is reduced to
23/p̂ = 2123.245. The time complexity is reduced to 2123.245 as well. The cost of the key filter
counter does not change.

6.2 Related-key Rectangle Attack on 23-round GIFT-128

Determining the Related-key Rectangle Distinguisher. We utilize a 19-round related-key
rectangle distinguisher to attack the 23-round GIFT-128. Set R0 = 9 for E0, R1 = 9 for E1, Rm = 1
for Em and bw = 3. Apply Alg.2 to search the probability of the 19-round distinguisher.

In Phase 1 of Alg.2, we find two 9-round trails with weight 30.000 for E0, marked as l10, l
2
0. We

find two 9-round trails with weight 30.000 for E1, marked as l11, l
2
1. The details of l10, l

2
0 and l11, l

2
1

are listed in Table 14 and Table 15 of App.D.
In Phase 3 of Alg.2, we determine p̂1

2q̂1
2 = 2−110.987, p̂2

2q̂1
2 = 2−112.908, p̂1

2q̂2
2 = 2−107.626

and p̂2
2q̂2

2 = 2−109.913. We select l10 and l21 to make up the 19-round distinguisher. Since S−1 ◦
P−1 ◦ K−1(δ2) = 0x00000000000000000050000000200000, if we choose P−1 ◦ K−1(δ2) = 0x
000000000000000000f0000000∗00000 (∗= 5 or 6), then rf = 80 and the complexity of the key filter-
ing procedure will be too large. As a compromise, we choose P−1◦K−1(δ2) = 0x00000000000000000
020000000600000 which leads to p̂2q̂2 = 2−107.626+2 = 2−109.626. In Table 16 of App.D, we show
two examples of l10 and l21.
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Table 6. The specifications of the 19-round related-key rectangle distinguisher of GIFT-128

R0 = 9, Rm = 1, R1 = 9; BcR0 = 33.000, BcR1 = 33.000; p̂2q̂2 = 2−109.626

E0
α ∆iniK0

00000000000000a00000000060000000 8000 0000 0000 0000 0000 0000 0002 0000

E1
δ ∆iniK1

00200000000000000000004000002020 0000 0000 0000 0000 0002 0000 0002 0000

Finally, we obtain a 19-round related-key rectangle distinguisher with probability 2−np̂2q̂2 =
2−128 · 2−109.626. The specifications of the 19-round distinguisher are shown in Table 6. There
are 3952 trails in CI(R0, α,∆iniK0, BcR0) and 2944 trails in CO(R1, δ,∆iniK1, BcR1).

We construct the 23-round key-recovery model for GIFT-128, which is shown in Table 7, by
appending two rounds at the end of the 19-round distinguisher and two rounds at the beginning
of the distinguisher.

Data Collection and Key Recovery. To prepare the plaintexts, we collect data in ∆Z1 of
Table 7. There are nine unknown bits in ∆Z1 marked as “?”, affecting three S-boxes in round 1.
Thus, rb = 9 and the number of key bits needed to be guessed in Eb is mb = 2×3 = 6. We have
rf = 52 and mf = 2 × (13 + 4) = 34 in Ef . The following data collection and key recovery
process are similar to the process of the 25-round attack in Sect.5.1.

Construct y =
√
s · 2n/2−rb/p̂q̂ structures of 2rb plaintexts each. For each structure, query the

2rb plaintexts by the encryption oracle under K1,K2,K3 and K4. There are about M2 · 2−2(n−rf )

quartets left after executing step 3(c). Choosing s = 2, we have y = 2110.31, M = y · 2rb = 2119.31

and M2 · 2−2(n−rf ) = 286.62. After the key guessing and filtering process, there are about M2 ·
2−2(n−rf ) · 2−(48+24) = 214.62 remaining quartets. The two right quartets will all vote for the right
key. The 214.62 random quartets will vote for a random key with probability 214.62−mf = 2−19.38.
Choose h = 22 and select the top 2mf−h hits in the counter to be the candidates. Exhaustively
search the remaining 128−mb −mf unknown key bits in the master key.

Complexity Computation and Success Probability. The data complexity is 4M = 2121.31

chosen plaintexts. We need 2mb · 3M = 2126.89 looking-up-table operations in step 3(b) and 3(c).
We need 2mb ·M2 ·2−2(n−rf ) ·4 ·22/23 = 292.10 encryptions and 2k−h = 2106 encryptions to recover
the master key. So the time complexity is bounded by 2126.89. The memory complexity is
bounded by 5M = 2121.63. The success probability is 92.01% according to Eq.12.

The related-key boomerang attack on 22-round GIFT-128 is demonstrated in App.B.

7 Conclusion and Future Work

In this paper, we carry out a further research on the resistance of GIFT against single-key and
related-key differential cryptanalysis. We succeed in finding related-key differential trails of GIFT-
64/128 for up to 15/14 rounds. We find the longest related-key differential trails for GIFT-128
and provide tighter lower bounds for the probabilities of the optimal related-key trails for both
GIFT-64 and GIFT-128.

We find a 20-round related-key boomerang distinguisher of GIFT-64 with probability 2−58.557

and construct a 25-round related-key rectangle attack, which is the longest attack on GIFT-64.
We obtain a 19-round related-key boomerang distinguisher of GIFT-128 with probability 2−109.626

and propose a 23-round related-key rectangle attack, which is the longest related-key attack on
GIFT-128. The probability of the 20-round single-key differential distinguisher of GIFT-128 is also
increased from 2−121.415 to 2−120.245. We improve the time complexity of the 26-round differential
attack on GIFT-128 from 2124.415 to 2123.245.
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Table 7. The 23-round key-recovery model of the related-key rectangle attack for GIFT-128

input
0000 0000 0000 0000 11?? ???? ???? ???? ???? ???? ???? ???? 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 11?? 0000 0000 0000 0000

∆Y1
0000 0000 0000 0000 0100 00?0 000? 1000 ?100 0??0 00?? ?00? 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000

∆Z1
0000 11?? ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000

∆X2
0000 11?? ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000

∆Y2
0000 0100 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

∆Z2
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000

∆X3 (α)
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000
0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000

: · · · · · · · · ·

∆X22 (δ)
0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0000 0010 0000 0010 0000

∆Y22
0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 ???1 0000 0000 0000 0000 0000 ???? 0000 ???? 0000

∆Z22
000? 0000 0000 0000 0000 0001 0000 0?0? ?000 0000 0000 0000 0000 ?000 0000 ?0?0
0?00 0000 0000 0000 0000 0?00 0000 0?0? 00?0 0000 0000 0000 0000 00?0 0000 ?0?0

∆X23
000? 0000 0010 0000 0000 0001 0000 0?0? ?000 0000 0000 0000 0000 ?000 0000 ?0?0
0?00 0000 0000 0000 0000 0?00 0000 0?0? 00?0 0000 0000 0000 0000 00?0 0000 ?0?0

∆Y23
???? 0000 ???? 0000 0000 ???? 0000 ???? ???? 0000 0000 0000 0000 ???? 0000 ????
???? 0000 0000 0000 0000 ???? 0000 ???? ???? 0000 0000 0000 0000 ???? 0000 ????

∆Z23
0?0? ?0?0 0?00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 0?0? 00?0 0?0? 00?0 0?0? 00?0 0?0?
0?0? ?0?0 000? ?0?0 000? ?0?0 000? ?0?0 ?0?0 0?0? ?000 0?0? ?000 0?0? ?000 0?0?

output
0?0? ?0?0 0?00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 0?0? 00?0 0?0? 00?0 0?0? 00?0 0?0?
0?0? ?0?0 000? ?0?0 000? ?0?0 000? ?0?0 ?0?0 0?0? ?000 0?0? ?000 0?0? ?000 0?0?

Among the 32 candidates of the NIST lightweight crypto standardization process, there are four
candidates which are based on GIFT: GIFT-COFB, HYENA, SUNDAE-GIFT, LOTUS-AEAD and
LOCUS-AEAD. In the next work, we will study the security of these four lightweight authenticated
encryption schemes against single-key/related-key differential cryptanalysis. Besides, We will try
to apply Alg.1 and Alg.2 to other SPN ciphers with linear key schedule, for example, SKINNY [9].
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The improved Matsui’s algorithm for GIFT proposed in [22] is demonstrated in Alg.3. There
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denoted by the new set:

WeightTable[10] = {6.000, 5.000, 4.415, 4.000, 3.415, 3.000, 2.830, 2.000, 1.415, 0.000}.

To implement speeding-up method-1, one new table is constructed as follows:

• DDTwY[SboxN][WeightN][OutN]
Classify the output differences of each S-box according to the corresponding weights.
DDTwY[t][j][r] represents the rth output difference of the tth S-box with weight WeightTable[j].
SboxN represents the index of the S-box. It ranges from 1 to ns. WeightN represents the index
of the weights. It ranges from 0 to 9. OutN represents the index of the output difference. It
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Algorithm 3 Improved Matsui’s Algorithm for GIFT

Require: R (≥ 3); B1, B2, · · · , BR−1; BcR; WeightTable[10]; ns := n/8
Ensure: BR = BcR; the optimal single-key differential trails of R-round

1: Generate Tables :
2: DDTwY[SboxN][WeightN][OutN]

3: Function Sbox-1(t, w1):
4: for j = 9 to 0 do
5: α← w1 +WeightTable[j]
6: if [α,BR−1] ≥ BcR then
7: break
8: else
9: for each DDTwY[t][j][r] do

10: ∆Y t
1 ← DDTwY[t][j][r]

11: /* ∆Y t
1 is the tth byte of ∆Y1 */

12: if t < ns then
13: call Sbox-1(t+ 1, α)
14: else
15: w1 ← α
16: call Round-2
17: end if
18: end for
19: end if
20: end for

21: Procedure Round-1:
22: w1 ← 0,∆Y1 ← 0, t← 1
23: call Sbox-1(t, w1)

24: Procedure Round-i, 2 ≤ i ≤ R− 1:
25: ∆Xi ← P (∆Yi−1)
26: for each ∆Yi do
27: wi ←W (∆Xi,∆Yi)
28: if BR−i +Σi

j=1wj ≥ BcR then
29: break
30: else
31: call Round-(i+ 1)
32: end if
33: end for

34: Procedure Round-R:
35: ∆XR ← P (∆YR−1)
36: wR ← min∆YRW (∆XR, ∆YR)
37: if ΣR

j=1wj ≤ BcR then

38: BcR = ΣR
j=1wj

39: end if
40: return to the upper procedure

B Related-key Boomerang Attack on 22-round GIFT-128

B.1 Determining the Related-key Boomerang Distinguisher.

We choose the same 19-round related-key rectangle distinguisher as in Sect.6.2. We append two
rounds at the end of the distinguisher and one round at the beginning of the distinguisher. The
details of the 22-round key-recovery model are shown in Table 7. The input difference of the
22-round model equals to ∆Z2 = 0x00000000000000800000000060000000.

B.2 Data Collection.

We collect data of the value of output in Table 7. There are 52 unknown bits in output marked
as “?”, affecting 13 S-boxes in round 23 and four S-boxes in round 22. Thus, rf = 52 and the
number of key bits needed to be guessed in Ef is mf = 34. We utilize the key-recovery model
proposed by Zhao et al. in [33] to perform the boomerang key-recovery attack:

1 Choose y = s/(2rf · p̂2q̂2) structures of 2rf ciphertexts each. s is the expected number of right
quartets. Each structure takes all the possible values for the rf active bits while the other
n− rf bits are fixed to some constant.

2 For each structure, we obtain the plaintext P1 for each ciphertext C1 by calling the decryption
oracle under K1. Compute P2 by P2 = P1 ⊕α and obtain the ciphertext C2 by EK2(P2). Here
we gain a set:

L1 = {(P1, C1, P2, C2) : P1 = E−1
K1

(C1), P2 = P1 ⊕ α,C2 = EK2(P2)}.

Construct the set L2 under K3 and K4 in a similar way:

L2 = {(P3, C3, P4, C4) : P3 = E−1
K3

(C3), P4 = P3 ⊕ α,C4 = EK4(P4)}.
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3 Insert L1 into a hash table H1 indexed by the n−rf bits of C2. For each element of L2, find the
corresponding (P1, C1, P2, C2) colliding in the n− rf bits. We gain a total of y · 22rf−(n−rf ) =
y · 23rf−n quartets.

4 The process that recovers the subkeys involved in Ef is the same as the one in the related-key
rectangle attack in Sect.5.1, The complexity of this step is denoted as ε.

5 Select the top 2mf−h hits in the counter to be the candidates which delivers a h bits or higher
advantage. Exhaustively search the remaining k −mf unknown key bits in the master key.

B.3 Key Recovery.

Choose the expected number of right quartets s to be 2, then we have y = s/(2rf · p̂2q̂2) = 258.63

and y ·2rf = 2110.63. Make use of all the y ·23rf−n = 286.63 quartets obtained in step 3 to recover the
subkeys involved in Ef . The key recovery process are similar to the process of the 25-round attack
in Sect.5.1. There are about 286.63 · 2−(48+24) = 214.63 quartets remain after the key guessing
and filtering procedure. Choose h = 22 and select the top 2mf−h hits in the counter to be the
candidates. Exhaustively search the remaining 128−mf unknown key bits in the key.

B.4 Complexity Computation.

The data complexity is 4y · 2rf = 2112.63 adapted chosen ciphertexts and plaintexts. We need
4y · 2rf chosen ciphertexts and plaintexts and y · 2rf looking-up-table operations to construct
quartets. y · 23rf−n · ε = 286.63 · 4 · 22/22 encryptions are needed in the key recovery process. Thus,
the time complexity is bounded by 4y · 2rf = 2112.63. The memory complexity is the size
of each structure and the size of the key counter, which is bounded by 2rf = 252. The success
probability is 92.01% according to Eq.12.

C Analyzing the Probability of the 19-round Distinguisher proposed
in [18]

The propagation of the 2-round boomerang switch Em is illustrated in Fig.4. The details of Em

in the 19-round related-key rectangle distinguisher for GIFT-64 proposed in [18] is shown in Table
8. The authors calculated the value of r as 1 according to the BCT table. The probability of the
rectangle distinguisher is 2−n · p̂2q̂2r = 2−64 · 2−50. It should be noted that at the time the authors
write the paper [18], the BDT technology has not been proposed yet.

Table 8. The propagation of Em of the 19-round related-key rectangle dis-
tinguisher for GIFT-64 in [18]

rounds E0 E1

10
β 01 00 00 00 01 02 02 00
β′ 08 00 00 00 06 0a 06 00 γ′′ 00 00 09 06 00 00 00 85

11
β′′ 00 a2 00 00 80 20 00 44 γ′ 00 00 05 0c 0a 00 00 00

γ 00 00 08 02 01 00 00 00
1 β′ = S(β), β′′ = K ◦ P (β′), γ′ = S−1(γ), γ′′ = P−1 ◦K−1(γ′).

It has been proved in [32] that when Rm = 2, the probability of Em should be evaluated by
the BDT table and iBDT table, which is

r = 2−2nΣ1≤i≤2ns(BDT(β[i], β′[i], γ′′[i])× iBDT(γ[i], γ′[i], β′′[i])).
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Meanwhile,

BDT(β[i], β′[i], γ′′[i]) = DDT(β[i], β′[i]), if γ′′[i] = 0;

iBDT(γ[i], γ′[i], β′′[i]) = DDT(γ[i], γ′[i]), if β′′[i] = 0.

β[2ns]|| · · · ||β[1] := β, γ[2ns]|| · · · ||γ[1] := γ. We correct the value of r according to the data in
Table 8:

r = 2−2nΣ1≤i≤16(BDT(β[i], β′[i], γ′′[i])× iBDT(γ[i], γ′[i], β′′[i]))

= 2−2nΣ1≤i≤16(DDT(β[i], β′[i])×DDT(γ[i], γ′[i]))

= 2−18.

The value of the DDT table is shown in Table 9. As a result, the probability of the rectangle
distinguisher in [18] is 2−n · p̂2q̂2r = 2−64 · 2−68.

We have introduced in Sect.2.4 that only if pq > 2−n/2 can we count more right quartets
than random noise through the related-key rectangle distinguisher. For GIFT-64, the distinguisher
should satisfy pq > 2−32. Therefore, the 23-round related-key rectangle attack proposed in [18] and
the 24-round related-key rectangle attack proposed in [34] are invalid.

Table 9. Differential Distribution Table (DDT) of GIFT S-box

∆o

0 1 2 3 4 5 6 7 8 9 a b c d e f

∆i

0 16
1 2 2 2 2 2 2 2 2
2 4 4 2 2 2 2
3 2 2 2 2 2 2 2 2
4 2 4 6 2 2
5 2 2 2 2 2 2 4
6 4 6 2 2 2
7 2 2 2 2 2 4 2
8 4 4 4 4
9 2 2 2 2 2 2 2 2
a 4 4 2 2 2 2
b 2 2 2 2 2 2 2 2
c 4 4 2 2 2 2
d 2 2 4 2 2 2 2
e 4 4 2 2 2 2
f 2 2 4 2 2 2 2

D (Related-key) Differential Trails
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Table 10. Two related-key differential trails of GIFT-64 and GIFT-128

For l0, MKD = 0000 0000 0000 0000 0000 0000 8002 0000, weight = 48.000
For l1, MKD = 0000 0000 0002 0000 0002 0000 0000 0000, weight = 77.830
l0: a 15-round trail of GIFT-64 l1: a 14-round trail of GIFT-128

r ∆Xr wr ∆Xr wr

1 0600000000600000 4.000 0000c0011200000000000000000c0000 12.000
2 0000000000000000 0.000 0c600000000000000000000000c00000 7.000
3 0000000000000000 0.000 00000000000000a00000000060000000 4.000
4 0000000000000000 0.000 00010000000000000000000000000000 3.000
5 0000000000000000 0.000 c0000000000000000000000000000000 2.000
6 2020000000000000 4.000 00000000000000000000000000000000 0.000
7 5000000050000000 6.000 20000000000000000000000000000000 2.000
8 0000202000000000 5.000 60000000200000000000000000000000 4.000
9 0000000005000a00 5.000 00000000202000000000000000000000 6.000
10 0000200100000000 5.000 0000000000a000000000000000a00000 4.000
11 0c00060000000000 4.000 00300010000000000000000000000000 6.000
12 2200000000000000 5.000 11200000000000004400000000000000 12.415
13 6000000090000000 5.000 0000000000003000d0009000e0000000 10.000
14 0000000000100000 3.000 00000040000000000000000000080800 5.415
15 0000008000000000 2.000 01002002000000010400002002000010
16 0100000000000200

Table 11. Four 20-round single-key differential trails with weight wsum of GIFT-128

l0 : u = 8, v = 8, w9 = 4.0, w14 = 4.0, wsum = 121.415.
l1 : u = 9, v = 8, w9 = 5.0, w14 = 4.0, wsum = 122.415.
l2 : u = 8, v = 9, w9 = 4.0, w14 = 5.0, wsum = 122.415.
l3 : u = 9, v = 9, w9 = 5.0, w14 = 5.0, wsum = 123.415.

r ∆Xr wr

1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0 2.000
2 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 3.000
3 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2.000
4 20 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00 5.000
5 40 40 00 00 20 20 00 00 00 00 00 00 00 00 00 00 8.000
6 50 50 00 00 00 00 00 00 50 50 00 00 00 00 00 00 11.000
7 00 00 00 00 00 00 00 00 00 00 00 00 a0 00 a0 00 4.000
8 00 00 00 00 00 00 00 00 00 00 00 11 00 00 00 00 6.000
9 00 00 0u 00 00 00 08 00 00 00 00 00 00 00 00 00 w9

10 02 02 00 00 01 01 00 00 00 00 00 00 00 00 00 00 10.000
11 00 00 00 00 50 50 00 00 00 00 00 00 50 50 00 00 12.000
12 00 00 00 00 00 00 00 00 00 00 00 00 00 a0 00 a0 4.000
13 00 00 00 11 00 00 00 00 00 00 00 00 00 00 00 00 6.000
14 0v 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00 w14

15 20 20 00 00 10 10 00 00 00 00 00 00 00 00 00 00 10.000
16 50 50 00 00 00 00 00 00 50 50 00 00 00 00 00 00 12.000
17 00 00 00 00 a0 00 a0 00 00 00 00 00 00 00 00 00 4.000
18 00 00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 6.000
19 00 00 00 00 00 00 c0 00 00 00 60 00 00 00 00 00 4.000
20 00 04 00 00 00 00 02 00 00 00 00 00 00 00 00 00 3.415
21 00 00 00 00 40 01 00 00 20 00 00 00 10 04 00 00
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Table 12. Sixteen 10-round related-key differential trails of E0 with weight 20.415 of GIFT-64

i ∆Y1 of li0 MKD of li0
1 00 00 00 00 00 00 00 01 0008 0000 0000 8000 0000 0000 0000 0001
2 00 00 00 00 00 01 00 00 0080 0000 0000 4000 0000 0000 0000 0002
3 00 00 00 01 00 00 00 00 0800 0000 0000 2000 0000 0000 0000 0004
4 00 01 00 00 00 00 00 00 8000 0000 0000 1000 0000 0000 0000 0008
5 00 00 00 00 00 00 10 00 0004 0000 0000 0800 0000 0000 0000 0010
6 00 00 00 00 10 00 00 00 0040 0000 0000 0400 0000 0000 0000 0020
7 00 00 10 00 00 00 00 00 0400 0000 0000 0200 0000 0000 0000 0040
8 10 00 00 00 00 00 00 00 4000 0000 0000 0100 0000 0000 0000 0080
9 00 00 00 00 00 00 08 02 0040 0004 0000 0000 0000 0000 0000 0000
10 00 00 00 00 00 00 80 20 0080 0008 0000 0000 0000 0000 0000 0000
11 00 00 00 00 08 02 00 00 0400 0040 0000 0000 0000 0000 0000 0000
12 00 00 00 00 80 20 00 00 0800 0080 0000 0000 0000 0000 0000 0000
13 00 00 08 02 00 00 00 00 4000 0400 0000 0000 0000 0000 0000 0000
14 00 00 80 20 00 00 00 00 8000 0800 0000 0000 0000 0000 0000 0000
15 08 02 00 00 00 00 00 00 0004 4000 0000 0000 0000 0000 0000 0000
16 80 20 00 00 00 00 00 00 0008 8000 0000 0000 0000 0000 0000 0000

Table 13. Eight 9-round related-key differential trails of E1 with weight 13.415 of GIFT-64

j ∆X9 of lj1 MKD of lj1
1 00 00 00 00 00 00 00 02 0004 0000 0000 0000 0040 0000 0004 0010
2 00 00 00 00 00 02 00 00 0040 0000 0000 0000 0004 0000 0008 0020
3 00 00 00 02 00 00 00 00 0400 0000 0000 0000 4000 0000 0010 0040
4 00 02 00 00 00 00 00 00 4000 0000 0000 0000 0400 0000 0020 0080
5 20 00 00 00 00 00 00 00 0002 0000 0000 0000 0080 0000 0040 0100
6 00 00 00 00 00 00 20 00 0020 0000 0000 0000 0008 0000 0080 0200
7 00 00 00 00 20 00 00 00 0200 0000 0000 0000 8000 0000 0100 0400
8 00 00 20 00 00 00 00 00 2000 0000 0000 0000 0800 0000 0200 0800

Table 14. Two 9-round related-key differential trails of E0 with weight 30.000 of GIFT-128

i ∆Y1 of li0 MKD of li0
1 00000000000000100000000020000000 80000000000000000000000000020000
2 04200000000000000000000000800000 00000000000000000002000000020000

Table 15. Two 9-round related-key differential trails of E1 with weight 30.000 of GIFT-128

j ∆X9 of lj1 MKD of lj1
1 00300000800000000000000000000000 80000000000000000000000000020000
2 00000000000000000050000000200000 00000000000000000002000000020000
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Table 16. Two 9-round related-key differential trails of GIFT-128

For l10, MKD = 8000 0000 0000 0000 0000 0000 0002 0000.
For l21, MKD = 0000 0000 0000 0000 0002 0000 0002 0000.

l10 : a 9-round trail with weight 30.000 l21 : a 9-round trail with weight 31.000
r ∆Xr wr ∆Xr wr

1 00000000000000a00000000060000000 4.0 0c600000000000000000000000100000 7.0
2 00010000000000000000000000000000 3.0 00000000000000a00000000060000000 4.0
3 c0000000000000000000000000000000 2.0 00010000000000000000000000000000 3.0
4 00000000000000000000000000000000 0.0 c0000000000000000000000000000000 2.0
5 20000000000000000000000000000000 2.0 00000000000000000000000000000000 0.0
6 60000000200000000000000000000000 4.0 20000000000000000000000000000000 2.0
7 00000000202000000000000000000000 5.0 60000000200000000000000000000000 4.0
8 0010000000a000000000000000000000 5.0 00000000202000000000000000000000 4.0
9 00300000800000000000000000000000 5.0 00000000000000000050000000200000 5.0
10 00200000802000000010000000000000 00200000000000000000004000002020
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