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Abstract. The unbalanced oil and vinegar signature scheme (UOV) is
a multivariate signature scheme that has essentially not been broken for
over 20 years. However, it requires the use of a large public key, so various
methods have been proposed to reduce its size. In this paper, we propose
a new variant of UOV with the public key represented by block matrices
whose components are represented as an element of a quotient ring. We
discuss how the irreducibility of the polynomial used to generate the
quotient ring affects the security of our proposed scheme. Furthermore,
we propose parameters for our proposed scheme and discuss their security
against currently known and possible attacks. We show that our proposed
scheme can reduce the public key size without significantly increasing
the signature size compared with other UOV variants. For example, the
public key size of our proposed scheme is 66.7 KB for NIST’s Post-
Quantum Cryptography Project (security level 3), while that of cyclic
Rainbow is 252.3 KB, where Rainbow is a variant of UOV and one of
the third round finalists of NIST PQC project.
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1 Introduction

Currently used public key cryptosystems, e.g., RSA and ECC, can be broken
in polynomial time using a quantum computer executing Shor’s algorithm [30].
There has thus been growing interest in post-quantum cryptography (PQC),
which is secure against quantum computing attacks. Research on PQC has thus
been accelerating, and the U.S. National Institute for Standards and Technology
(NIST) has initiated a PQC standardization project [22].

Multivariate public key cryptography (MPKC), which is based on the diffi-
culty of solving a system of multivariate quadratic polynomial equations over a
finite field (the multivariate quadratic (MQ) problem), is regarded as a strong
candidate for PQC. The MQ problem is NP-complete [17] and is thus likely to
be secure in the post-quantum era.

The unbalanced oil and vinegar signature scheme (UOV) [19], a multivariate
signature scheme proposed by Kipnis et al. at EUROCRYPT 1999, has withstood



various types of attacks for about 20 years. UOV is a well-established signature
scheme due to its short signature and short execution time. Rainbow [11], a
multi-layer UOV variant, was selected as a third-round finalist in the NIST
PQC project [25]. However, both UOV and Rainbow have public keys that are
much larger than those of other PQC candidates, e.g., lattice-based signature
schemes. Indeed, Rainbow has the largest public key among the third-round-
finalist signature schemes, and NIST’s report [25] states that Rainbow is not
suitable as a general-purpose signature scheme due to this problem.

On the other hand, the CRYSTALS-DILITHIUM [21] lattice-based signature
scheme is also a third-round finalist in the NIST PQC project. It is based on
the hardness of the module learning with errors (MLWE) problem [7]. As is well
known, LWE [28] is a confidential hard problem in cryptography, and the MLWE
problem is a generalization of it using a module consisting of vectors over a ring.
This illustrates that a natural way to develop an efficient multivariate scheme
with a small public key is to improve confidential schemes such as UOV and
Rainbow in MPKC by investigating further algebraic theory.

There are three main research approaches to developing a UOV variant with a
small public key. One is to use the compression technique developed by Petzoldt
et al. [26]. This technique can be applied to various UOV variants and is based
on the fact that part of a public key can be chosen arbitrarily before determining
the secret key. This means that part of a public key can be generated using a
seed of a pseudo random number generator. This reduces the size of the public
key substantially. The version of Rainbow using this technique is called “cyclic
Rainbow.” The second approach is to use the lifted unbalanced oil and vinegar
(LUOV) [5], which uses polynomials over a small field as a public key, whereas
the signature and message space are defined over an extension field. This results
in a small public key. LUOV was thus selected as one of the candidates in the
second round of the NIST PQC project [24]. However, several of its parameters
were broken using a new attack proposed by Ding et al. [13]. The third approach
is to use the block-anti-circulant UOV (BAC-UOV) developed by Szepieniec et
al. and presented at SAC 2019 [31]. Its public key is represented by block-anti-
circulant matrices in which every block is an anti-circulant matrix. Since such
a matrix can be constructed by its first-row vector, BAC-UOV has a smaller
public key. However, the public key has a special structure; that is, the block-
anti-circulant-matrices can be transformed into the diagonal concatenation of
two smaller matrices. This enabled Furue et al. [16] to devise a structural attack
on BAC-UOV that has less complexity than the asserted one. The attack is
based on the fact that the anti-circulant matrices with size ℓ used in BAC-UOV
can be represented using an element of the quotient ring Fq[x]/(x

ℓ − 1), where
Fq is a finite field, and xℓ − 1 is reducible.

Our Contribution In this paper, we present a new UOV variant using an
arbitrary quotient ring that is called QR-UOV. In the QR-UOV, a public key
is represented by block matrices in which every component corresponds to an
element of a quotient ring Fq[x]/(f). More precisely, we use an injective ring
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homomorphism from the quotient ring Fq[x]/(f) to the matrix ring Fℓ×ℓ
q , where

f ∈ Fq[x] is a polynomial with deg f = ℓ. In this paper, the image Φf
g of the

homomorphism for g ∈ Fq[x]/(f) is called the polynomial matrix of g. From this
homomorphism, we can compress the ℓ2 components in Φf

g to ℓ elements in Fq

since the polynomial matrix Φf
g is determined by the ℓ coefficients of g. Note

that this can be considered as a generalization of BAC-UOV [31], which is the
case of f = xℓ − 1. Utilizing elements of a quotient ring in block matrices is
similar to the MLWE problem [7] since the MLWE problem uses elements of
a ring in vectors. Namely, we can consider that the research undertaken to get
from UOV to QR-UOV (including BAC-UOV) corresponds to that to get from
LWE to MLWE. Therefore, as with the MLWE problem, this kind of research
deserves more than passing notice.

To construct the QR-UOV, we need to consider the symmetry of polyno-
mial matrices Φf

g . In UOV, the public key P = (p1, . . . , pm), which consists
of quadratic polynomials pi, is obtained by composing a central map F =
(f1, . . . , fm) and a linear map S; that is, P = F ◦ S. Then the correspond-
ing matrices P1, . . . , Pm of the public key P are given by Pi = S⊤FiS, where
F1, . . . , Fm and S are matrices corresponding to F and S, respectively. If we
choose F1, . . . , Fm and S as block matrices in which the components are polyno-
mial matrices Φf

g , the polynomial matrices must be stable under the transpose

operation; namely (Φf
g )

⊤ = Φf
g′ for some g′. Otherwise P1, . . . , Pm are not block

matrices of Φf
g , and we cannot reduce the public key size using them. Note that

polynomial matrices Φf
g are not stable under the transpose operation in general,

so we cannot directly use polynomial matrices Φf
g to construct an efficient UOV

variant. To solve this problem, we introduce the concept of an ℓ × ℓ invertible
matrix W such that WΦf

g is symmetric for any g ∈ Fq[x]/(f); that is, WΦf
g is

stable under the transpose operation. In Proposition 1, we prove that there exist
such W for various quotient rings Fq[x]/(f). Therefore, from equations

(WΦf
g1)

⊤(Φf
g2W

−1)WΦf
g3 = (WΦf

g1)(Φ
f
g2W

−1)WΦf
g3 = WΦf

g1g2g3 ,

we can construct a UOV variant using the quotient ring Fq[x]/(f) by choosing
F1, . . . , Fm as block matrices using Φf

gW
−1 and S as a block matrix using WΦf

g .
Moreover, we need to consider how the choice of f affects the security of

QR-UOV. Furue et al. [16] broke BAC-UOV by transforming its anti-circulant
matrices into diagonal concatenations of two smaller matrices. This transfor-
mation is obtained from the decomposition xℓ − 1 = (x − 1)(xℓ−1 + · · · + 1).
Therefore, we investigate the relationship between the irreducibility of the poly-
nomial f used to generate the quotient ring Fq[x]/(f) and the existence of such a
transformation for symmetric matrices WΦf

g . In Theorem 1, we show that, if f is

irreducible, there does not exist such a transformation for matrices WΦf
g , which

means that such an f has resistance against Furue et al.’s structural attack [16].
On the basis of these considerations about the symmetry of WΦf

g and the
choice of f , we derive our quotient-ring UOV (QR-UOV). It uses Fq[x]/(f) gen-
erated by an irreducible polynomial f , which is resistant to Furue et al.’s struc-
tural attack [16]. We investigate its performance against both currently known
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and possible attacks. The currently known attacks include the direct attack, the
UOV attack [20], and the reconciliation attack [12]. The possible attacks include
pull-back attacks and lifting attacks. In the pull-back attacks, the UOV attack
and the reconciliation attack are executed over the quotient ring Fq[x]/(f) by
pulling WΦf

g back to g. In the lifting attacks, we use an extension field Fqℓ .
We prove that the QR-UOV public key can be transformed into the diagonal
concatenation of some smaller matrices over the extension field Fqℓ as is done
in the structural attack on BAC-UOV. After applying the above transformation
over Fqℓ , we can execute the three currently known attacks.

Finally, by considering these currently known and possible attacks, we can
select appropriate parameters for QR-UOV. In accordance with the I, III, and
V security levels of the NIST PQC project [23], we propose three parameters
for QR-UOV. Using these parameters reduces the size of the QR-UOV public
key size about 50–70% compared to that of cyclic Rainbow with updated pa-
rameters [27]. For example, the public key size is 66.7 KB for security level III,
whereas that of cyclic Rainbow is 252.3 KB. The signature sizes with the pro-
posed parameters are almost the same as those of Rainbow except for security
level I.

Organization Our paper is organized as follows. In Section 2, we explain the
construction of multivariate signature schemes, plain UOV, BAC-UOV, and an
attack on BAC-UOV. In Section 3, we introduce polynomial matrices of a quo-
tient ring as a generalization of circulant matrices. In Section 4, we describe
our proposed signature scheme, QR-UOV. In Section 5, we analyze the security
of our proposed scheme. We present our proposed parameters and compare the
performance of our scheme with that of Rainbow in Section 6. We conclude the
paper in Section 7 by summarizing the key points and suggesting possible future
work.

2 Preliminaries

In this section, we first explain the MQ problem and general signature schemes
that are based on this problem. Next, we review the construction of the UOV [19].
We then describe the construction of the BAC-UOV [31] and finally explain
Furue et al.’s structural attack [16] on BAC-UOV.

2.1 Multivariate Signature Schemes

Let Fq be a finite field with q elements and n and m be two positive integers.
For a system of quadratic polynomials P = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn))
in n variables over Fq and y ∈ Fm

q , the problem of finding a solution x ∈ Fn
q to

P(x) = y is called the MQ problem. Garey and Johnson [17] proved that this
problem is NP-complete if n ≈ m, so it is considered to have the potential to
resist quantum computer attacks.
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Next, we briefly explain the construction of general multivariate signature
schemes. First, an easily invertible quadratic map F = (f1, . . . , fm) : Fn

q → Fm
q ,

called a central map is generated. Next, two invertible linear maps S : Fn
q → Fn

q

and T : Fm
q → Fm

q are randomly chosen in order to hide the structure of F . The
public key P is then given as a polynomial map:

P = T ◦ F ◦ S : Fn
q → Fm

q . (1)

The secret key consists of T , F , and S. The signature is generated as follows:
Given a message m ∈ Fm

q to be signed, compute m1 = T −1(m) and find a
solution m2 to the equation F(x) = m1. This gives a signature s = S−1(m2) ∈
Fn
q for the message. Verification is done by confirming whether P(s) = m or not.

2.2 Unbalanced Oil and Vinegar Signature Scheme

Let v be a positive integer and n = v+m. For variables x = (x1, . . . , xn) over Fq,
we call x1, . . . , xv vinegar variables and xv+1, . . . , xn oil variables. In the UOV
scheme, a central map F = (f1, . . . , fm) : Fn

q → Fm
q is designed such that each

fk (k = 1, . . . ,m) is a quadratic polynomial of the form

fk(x1, . . . , xn) =

n∑
i=1

v∑
j=1

α
(k)
i,j xixj , (2)

where α
(k)
i,j ∈ Fq. A linear map S : Fn

q → Fn
q is then randomly chosen. Next, the

public key map P : Fn
q → Fm

q is computed using P = F ◦ S. The linear map T
in equation (1) is not needed since it does not help to hide the structure of F .
The secret key thus consists of F and S.

Next, we explain the inverting of the central map F . Given y ∈ Fm
q , we first

choose random values a1, . . . , av in Fq to be the vinegar variables. Then, we can
efficiently obtain a solution (av+1, . . . , an) for the equation F(a1, . . . , av, xv+1, . . . ,
xn) = y since this is a linear system of m equations in m oil variables. If there is
no solution to this equation, we choose new random values a′1, . . . , a

′
v and repeat

the procedure. Eventually, we obtain a solution x = (a1, . . . , av, av+1, . . . , an) to
F(x) = y. In this manner, we execute the signing process explained in Subsec-
tion 2.1.

We assume that the characteristic of Fq is odd in the following. For each
1 ≤ i ≤ m, there exists an n×n symmetric matrix Fi such that fi(x) = x·Fi ·x⊤.
From equation (2), this Fi has the form(

∗v×v ∗v×m

∗m×v 0m×m

)
. (3)

Let Pi (i = 1, . . . ,m) be n×n symmetric matrices Pi such that pi(x) = x·Pi ·x⊤.
Then, taking the n× n matrix S such that S(x) = S · x⊤, we have

Pi = S⊤FiS, (i = 1, . . . ,m) (4)

from P = F ◦ S. We call Fi and Pi the representation matrices of fi and pi,
respectively.
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2.3 Block-Anti-Circulant UOV

As mentioned above, the block-anti-circulant (BAC) UOV [31] is a variant of
UOV. The public key is shortened by representing it with block-anti-circulant
matrices. In this subsection, we describe the construction of BAC-UOV.

A circulant matrix is a matrix in which each row vector is rotated one element
to the right relative to the preceding row vector. An anti-circulant matrix is a
matrix in which each row vector is rotated one element to the left relative to
the preceding row vector. A circulant matrix X and an anti-circulant matrix Y
with size ℓ take the following forms:

X =


a0 a1 . . . aℓ−2 aℓ−1

aℓ−1 a0 . . . aℓ−3 aℓ−2

...
...
. . .

...
...

a2 a3 . . . a0 a1
a1 a2 . . . aℓ−1 a0

 , Y =


a0 a1 . . . aℓ−2 aℓ−1

a1 a2 . . . aℓ−1 a0
...

...
. . .

...
...

aℓ−2 aℓ−1 . . . aℓ−4 aℓ−3

aℓ−1 a0 . . . aℓ−3 aℓ−2

 .

In addition, a matrix is called a block-circulant matrix A or a block-anti-circulant
matrix B with block size ℓ if every ℓ× ℓ block in A or B is a circulant matrix or
an anti-circulant matrix, as follows (N ∈ N):

A =

 X11 . . . X1N

...
. . .

...
XN1 . . . XNN

 , B =

 Y11 . . . Y1N

...
. . .

...
YN1 . . . YNN

 ,

where Xij is an ℓ× ℓ circulant matrix, and Yij is an ℓ× ℓ anti-circulant matrix.
For these block matrices, it holds that the products AB and BA are block-anti-
circulant matrices.

In BAC-UOV, the number of vinegar variables v and the number of equations
m are set to be divisible by block size ℓ. The representation matrices F1, . . . , Fm

for the central map F are chosen as block-anti-circulant matrices with block size
ℓ, and the matrix S for the linear map S is chosen as a block-circulant matrix
with block size ℓ. The representation matrices P1, . . . , Pm for the public key
P = F ◦ S are computed using Pi = S⊤FiS (i = 1, . . . ,m) and are block-anti-
circulant matrices.

Due to the structure of block-anti-circulant matrices, the n × n matrices
P1, . . . , Pm can be represented by using only the first row of each block. There-
fore, they can be represented by using only mn2/ℓ elements in the finite field
Fq, which is one ℓ-th the size of the public key of plain UOV. That is, the public
key is smaller than that of plain UOV.

2.4 Structural Attack on BAC-UOV

In 2020, Furue et al. proposed an attack on BAC-UOV that breaks the security
of the proposed parameter sets [16]. The attack utilizes the property of the anti-
circulant matrix that the sum of the elements of one row (column) is the same
as those of the other rows (columns).
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We define an ℓ × ℓ matrix Lℓ such that (Lℓ)1i = (Lℓ)i1 = 1 (1 ≤ i ≤ ℓ),
(Lℓ)ii = −1 (2 ≤ i ≤ ℓ) and the other elements are equal to 0, where for a
matrix A, (A)ij denotes the ij-element of A, namely:

ℓ︷ ︸︸ ︷
Lℓ := ℓ




1 1 . . . 1
1 −1
...

. . .

1 −1

 .

Then, for an ℓ× ℓ anti-circulant matrix Y , we have

L⊤
ℓ Y Lℓ =

(
∗1×1 01×(ℓ−1)

0(ℓ−1)×1 ∗(ℓ−1)×(ℓ−1)

)
. (5)

Let L
(N)
ℓ be an n × n block diagonal matrix constructed by concatenating Lℓ

diagonally N times:
N︷ ︸︸ ︷

L
(N)
ℓ := N


Lℓ

. . .

Lℓ

 ,

where N := n/ℓ. Then, for an n × n block-anti-circulant matrix B with block

size ℓ, the matrix (L
(N)
ℓ )⊤BL

(N)
ℓ is a block matrix in which every block is in the

form of equation (5). Furthermore, there exists a permutation matrix L′ such
that

(L
(N)
ℓ L′)⊤B(L

(N)
ℓ L′) =

 ∗N×N 0N×(ℓ−1)N

0(ℓ−1)N×N ∗(ℓ−1)N×(ℓ−1)N

. (6)

Therefore, the representation matrices P1, . . . , Pm for the public key P of

BAC-UOV can all be transformed into the form of (6) by using L
(N)
ℓ L′. The

UOV attack [20] can then be executed on only the upper-left N×N submatrices
of the obtained matrices, a manipulation with very little complexity. By using
the transformed public key, we can reduce the number of variables that appear
in the public equations P(x) = m for a message m. This reduces the complexity
of the attack by about 20% compared with the best existing attack on UOV.
Note that this attack can be executed only if there exists a transformation on
the public key like that given by equation (6).

3 Polynomial Matrices of Quotient Ring

In this section, we introduce polynomial matrices as a generalization of the cir-
culant and anti-circulant matrices used in BAC-UOV [31] and describe a method
for converting polynomial matrices into symmetric ones that can be applied to
the UOV scheme. Furthermore, we discuss whether such generalized matrices
can be transformed as shown in equation (5).
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3.1 Polynomial Matrices and Their Symmetrization

Let ℓ be a positive integer and f ∈ Fq[x] with deg f = ℓ. For any element g of
the quotient ring Fq[x]/(f), we can uniquely define an ℓ × ℓ matrix Φf

g over Fq

such that (
1 x · · · xℓ−1

)
Φf
g =

(
g xg · · · xℓ−1g

)
. (7)

We call such a matrix Φf
g a polynomial matrix of g. The following lemma can be

easily derived from the definition.

Lemma 1. For any g1, g2 ∈ Fq[x]/(f), we have

Φf
g1 + Φf

g2 = Φf
g1+g2 , Φf

g1Φ
f
g2 = Φf

g1g2 .

Namely, the map g 7→ Φf
g is an injective ring homomorphism from Fq[x]/(f) to

matrix ring Fℓ×ℓ
q .

Note that an ℓ×ℓ polynomial matrix Φf
g can be represented by only ℓ elements

in Fq since Φf
g is determined by the ℓ coefficients of g ∈ Fq[x]/(f). We let the

algebra of such matrices Af :=
{
Φf
g ∈ Fℓ×ℓ

q

∣∣ g ∈ Fq[x]/(f)
}
. This is a subalgebra

in the matrix algebra Fℓ×ℓ
q from Lemma 1. Similarly, for a matrix W ∈ Fℓ×ℓ

q ,

any matrix in WAf := {WΦf
g ∈ Fℓ×ℓ

q | g ∈ Fq[x]/(f)} can also be represented
by only ℓ elements in Fq.

As seen in equation (4) in Subsection 2.2, the transpose appears in the com-
putation of the public matrices Pi. Thus, to use polynomial matrices Φf

g in the
UOV scheme, we need WAf to be stable under the transpose operation for
some W . That means that, to construct our proposed scheme, we need an ex-
plicit family of f and W such that WAf is stable under the transpose operation.
As stated in Subsection 3.2 below, from the perspective of security, f needs to
be irreducible in our scheme. Furthermore, from the perspective of efficiency, f
should have only a few non-zero terms. Since there are no irreducible binomials
f with deg f = ℓ for many ℓ, trinomials f are thought to be suitable for our
scheme. The following proposition shows that there are an infinite number of
trinomials f and W .

Proposition 1. Let f = xℓ − axi − 1 (a ∈ Fq, 1 ≤ i ≤ ℓ − 1) and W be in the
form

W =

(
Ji

Jℓ−i

)
,

where Ji :=

(
1

.
.
.

1

)
stands for an anti-identity matrix with size i. Then, for

any X ∈ Af , WX is a symmetric matrix.

If we set a = 0 and W = Jℓ, then f = xℓ − 1 holds, and WΦf
g is an anti-

circulant matrix. Thus, this case corresponds exactly to BAC-UOV [31], and
Proposition 1 can be regarded as describing a generalization of anti-circulant
matrices.
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Table 1. Degree ℓ such that there exist no irreducible trinomials of the form xℓ−axi−1
among 2 ≤ ℓ ≤ 30 for Fq = F7 and F31.

Fq F7 F31

ℓ 6, 15, 30 6, 25, 30

As stated in Subsection 3.2 below, from the perspective of security, f needs
to be irreducible in our scheme. Since f with the form xℓ − axi − 1 is not
always irreducible, we conducted several experiments. We treated finite fields
Fq = F7 and F31, which are used for our proposed scheme as described below,
and checked whether there exists an irreducible polynomial f ∈ Fq[x] with the
form xℓ−axi−1 for 2 ≤ ℓ ≤ 30. We found an irreducible polynomial xℓ−axi−1
for sufficiently many 2 ≤ ℓ ≤ 30. Table 1 shows the degree ℓ such that there exists
no irreducible polynomials of the above form.

3.2 Effect of Irreducibility of f

In this subsection, we discuss the relationship between the irreducibility of the
polynomial f used to generate quotient ring Fq[x]/(f) and the existence of
transformation on symmetric matrices WΦf

g into the diagonal concatenation
of smaller matrices. This is because, as stated in Subsection 2.4, the proposed
parameters of BAC-UOV were broken by using the transformation of equation
(5) on anti-circulant matrices, and this transformation is obtained from the de-
composition xℓ − 1 = (x− 1)(xℓ−1 + · · ·+ 1).

In the following theorem, we show that, if f is irreducible, there does not
exist a transformation such as equation (5) on symmetric matrices WΦf

g .

Theorem 1. Let f ∈ Fq[x] be an irreducible polynomial with deg f = ℓ and W
be an invertible matrix such that every element of WAf is a symmetric matrix.
Then, there do not exist an invertible matrix L ∈ Fℓ×ℓ

q and i, j ∈ {1, . . . , ℓ} such
that, for any X ∈ WAf ,

(L⊤XL)ij = 0.

Proof. We assume that there exist a matrix L ∈ Fℓ×ℓ
q and i, j ∈ {1, . . . , ℓ}

satisfying the above condition. Let Li be the i-th column vector of W⊤L, and Lj

be the j-th column vector of L. Then, for any h ∈ Fq[x]/(f), we have L
⊤
i Φ

f
hLj =

0.
Now, we define a linear isomorphism V1 : Fq[x]/(f) → Fℓ

q such that

V1(a0 + a1x+ · · ·+ aℓ−1x
ℓ−1) = (a0, a1, . . . , aℓ−1)

⊤,

and V1(g) is equal to the first column vector of Φf
g . Furthermore, we define a

linear map V2 : Fq[x]/(f) → Fℓ
q such that V2(g) is equal to the first column vector

of (Φf
g )

⊤. If V2(g) = 0, then Φf
g is not invertible by the definition of V2. Since

Af is a field, Φf
g is the zero-matrix, namely g = 0. As a result, V2 is isomorphic.
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Let gi := V −1
2 (Li) and gj := V −1

1 (Lj). It is clear that (Φf
giΦ

f
hΦ

f
gj )11 =

L⊤
i Φ

f
hLj = 0 for any h ∈ Fq[x]/(f). If we take h = (gigj)

−1, then

0 = (Φf
giΦ

f
(gigj)−1Φ

f
gj )11 = I11 = 1.

This is a contradiction. Therefore, Theorem 1 holds. ut

From this theorem, we choose an irreducible polynomial as the f of Af used
in our proposed variant, which is described in Section 4.

Remark 1. In this remark, we discuss the transformation on elements of WAf

with reducible f by using Theorems 3 and 4 in Appendix A. Theorem 3 shows
that, if f is decomposed into distinct irreducible polynomials, the WAf are
transformed into a concatenation of two smaller submatrices. In fact, the trans-
formation, like equation (5) in the structural attack on BAC-UOV, corresponds
to the transformation described in Theorem 3. If f is divisible by a squared poly-
nomial, Theorem 4 shows that the representation matrices can be transformed
by executing a change of variables into a special form in which the lower-right
(n/ℓ)× (n/ℓ) block is a zero block, similar to the representation matrices of the
central map (equation (3)).

4 Our Proposal: Quotient-Ring UOV (QR-UOV)

In this section, we present our proposed UOV variant, QR-UOV, which is con-
structed by applying the polynomial matrices described in Subsection 3.1 to
UOV.

4.1 Description

Let ℓ be a positive integer and v,m be multiples of ℓ such that v > m. Set
n := v +m and N := n/ℓ.

Let f ∈ Fq[x] be an irreducible polynomial with deg f = ℓ and W be an
invertible matrix such that every element of WAf is symmetric. Note that there
exist f and W satisfying the above condition for many ℓ, as shown by Proposi-

tion 1 and the discussion in Subsection 3.1. We define a subspace A
(N)
f in Fn×n

q

containing n× n matrices as  X11 . . . X1N

...
. . .

...
XN1 . . . XNN

 ,

where every Xij ∈ Fℓ×ℓ
q (i, j ∈ {1, . . . , N}) is an element of Af . Furthermore, we

define an n × n block diagonal matrix W (N) constructed by concatenating W
diagonally N times:

W (N) :=

W
. . .

W

 .

10



For these matrices, we obtain the following proposition:

Proposition 2. For X ∈ W (N)A
(N)
f and Y ∈ A

(N)
f (W (N))−1, we have

X⊤Y X ∈ W (N)A
(N)
f .

Proof. We prove this proposition for N = 1. Let X := WΦf
g1 and Y := Φf

g2W
−1.

Due to the symmetry of WAf ,

X⊤Y X = (WΦf
g1)

⊤(Φf
g2W

−1)(WΦf
g1)

= (WΦf
g1)(Φ

f
g2W

−1)(WΦf
g1)

= WΦf
g1Φ

f
g2Φ

f
g1

= WΦf
g1·g2·g1 .

For N ≥ 2, the statement is proven similarly. ut

By using this proposition, we can construct a quotient-ring UOV (QR-UOV),
which is a variant of UOV using polynomial matrices.

Key Generation

– Choose an irreducible polynomial f ∈ Fq[x] with deg f = ℓ and W ∈ Fℓ×ℓ
q

such that every element in WAf is symmetric.

– Choose Fi (i = 1, . . . ,m) from A
(N)
f (W (N))−1 such that the lower-right

m×m submatrices are zero matrices.
– Choose an invertible matrix S from W (N)A

(N)
f randomly.

– Compute Pi = S⊤FiS (i = 1, . . . ,m).

We then obtain that Pi (i = 1, . . . ,m) are elements ofW (N)A
(N)
f from Propo-

sition 2. The signing and verification processes are the same as those of plain
UOV. Note that, in QR-UOV, the cardinality of the finite field q is set to be odd
since, if q is even, the coefficients corresponding to the non-diagonal elements of
every diagonal block are zero due to the symmetry of every block WΦf

g .

Remark 2. We can apply the polynomial matrices of a quotient ring to not only
UOV but also Rainbow.

4.2 Improved QR-UOV

In this subsection, we explain two improved methods used in the NIST second-
round proposal of Rainbow [10]. The first one limits the secret key S to a specific
compact form. The second one replaces a large part of the public key with a small
seed for pseudo random number generation (PRNG).

In plain UOV, matrix S of linear map S can be restricted to a special form:

S =

(
Iv×v S′

0m×v Im×m

)
,

11



where S′ is a v ×m matrix since it does not affect security. In QR-UOV, the
upper-left and lower-right identity matrices are replaced with block diagonal ma-

trices in which every diagonal block is WΦf
1 = W since S is chosen in W (N)A

(N)
f :

S =

(
W (v/ℓ) S′

0m×v W (m/ℓ)

)
,

where S′ is a block matrix in which every component is an element of WAf .
This limits the secret key to a specific compact form.

The second method is based on Petzoldt et al.’s compression technique [26],
which is used to convert Rainbow into cyclic Rainbow. The representation ma-
trices Pi (i = 1, . . . ,m) of the public key map are written in the form

Pi =

(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)
,

where Pi,1, Pi,2, and Pi,3 are v × v, v × m, and m × m matrices, respectively,
and Pi,1 and Pi,3 are symmetric matrices. Similarly, the representation matrices
Fi (i = 1, . . . ,m) of the central map in equation (3) are written in the form

Fi =

(
Fi,1 Fi,2

F⊤
i,2 0m×m

)
,

where Fi,1 and Fi,2 are v × v and v × m matrices, respectively, and Fi,1 is a
symmetric matrix. Then, since S−1 is

S−1 =

(
(W−1)(v/ℓ) S′′

0m×v (W−1)(m/ℓ)

)
,

where S′′ := −(W−1)(v/ℓ)S′(W−1)(m/ℓ), the representation matrices Fi, Pi (i =
1, . . . ,m) and S hold the following equation:(

Fi,1 Fi,2

F⊤
i,2 0m×m

)
=

(
(W−1)(v/ℓ) 0v×m

S′′⊤ (W−1)(m/ℓ)

)(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)(
(W−1)(v/ℓ) S′′

0m×v (W−1)(m/ℓ)

)
.

By computing the right-hand side, we obtain

Fi,1 = (W−1)(v/ℓ)Pi,1(W
−1)(v/ℓ),

Fi,2 = (W−1)(v/ℓ)Pi,1S
′′ + (W−1)(v/ℓ)Pi,2(W

−1)(m/ℓ),

0m×m = S′′⊤Pi,1S
′′ + (W−1)(m/ℓ)P⊤

i,2S
′′ + S′′⊤Pi,2(W

−1)(m/ℓ)

+(W−1)(m/ℓ)Pi,3(W
−1)(m/ℓ). (8)

In the improved key generation step, Pi,1, Pi,2 (i = 1, . . . ,m), and S′ are first
generated from seeds spk and ssk, respectively, using PRNG. Next, Pi,3 (i =
1, . . . ,m) are computed using

Pi,3 = −W (m/ℓ)S′′⊤Pi,1S
′′W (m/ℓ) − P⊤

i,2S
′′W (m/ℓ) −W (m/ℓ)S′′⊤Pi,2

12



from equation (8). As a result, the public key is composed of m × m matrices
Pi,3 (i = 1, . . . ,m) and the seed for Pi,1, Pi,2 (i = 1, . . . ,m). This compression
technique significantly reduces the public key size of QR-UOV.

Finally, we compare the public key size of plain QR-UOV with that of the
improved QR-UOV. The public key of plain QR-UOV is represented using Pi,1,
Pi,2, and Pi,3 (i = 1, . . . ,m) and that of the improved QR-UOV uses a seed
and Pi,3 (i = 1, . . . ,m). Thus, the number of elements in Fq needed to mainly
represent the public key of plain QR-UOV is

mn(n+ ℓ)/2ℓ,

whereas that of the improved QR-UOV is

m2(m+ ℓ)/2ℓ.

5 Security Analysis

In this section, we first analyze the security of QR-UOV against three currently
known attacks on plain UOV. We then discuss possible attacks on the quotient
ring obtained by pulling submatricesWΦf

g back to g in the quotient ring. Finally,
we consider the execution of possible attacks obtained by lifting the base field
Fq to an extension field Fqℓ and transforming the public key system over the
extension field.

5.1 Currently Known Attacks on Plain UOV

In this subsection, we regard QR-UOV as the plain UOV described in Subsec-
tion 2.2, and describe the execution of three currently known attacks on UOV,
the direct attack, the UOV attack [20], and the reconciliation attack [12].

Direct Attack Given a quadratic polynomial system P = (p1, . . . , pm) in n
variables over Fq and m ∈ Fm

q , the direct attack algebraically solves the system
P(x) = m. For UOV, the number of variables n is larger than the number of
equations m; therefore, n − m variables can be specified with random values
without disturbing the existence of a solution.

One of the best-known approaches for algebraically solving the quadratic sys-
tem is the hybrid approach [4], which randomly guesses k (k = 0, . . . , n) variables
before computing a Gröbner basis [8]. The guessing is repeated until a solution is
obtained. Well-known algorithms for computing Gröbner bases include F4 [14],
F5 [15], and XL [9]. The complexity of this approach for a classical adversary is
estimated to be

min
k

(
qk · 3 ·

(
m− k

2

)
·
(
dreg +m− k

dreg

)2
)
, (9)
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Table 2. Theoretical and experimental degree of regularity of public key system of
QR-UOV obtained using Magma algebra system [6].

(q, v,m, ℓ) theoretical dreg experimental dreg

(7, 28, 14, 2) 15 15

(7, 32, 16, 2) 17 17

(7, 24, 12, 3) 13 13

(7, 30, 15, 3) 16 16

(31, 28, 14, 2) 15 15

(31, 32, 16, 2) 17 17

where dreg is the so called degree of regularity of the system. The degree of
regularity dreg for a certain class of polynomial systems called semi-regular sys-
tems [1–3] is known to be estimated to be the degree of the first non-positive
term in the following series [3]: (

1− z2
)m

(1− z)
m−k

. (10)

Empirically, the public key system of UOV is considered to be a semi-regular
system, so this formula can be used to estimate its degree of regularity.

On the other hand, the complexity of a quantum direct attack is estimated
to be

min
k

(
qk/2 · 3 ·

(
m− k

2

)
·
(
dreg +m− k

dreg

)2
)
, (11)

by using Grover’s algorithm [18].
Furthermore, Thomae and Wolf [32] proposed a technique for reducing the

number of variables and equations when n > m. For the n × n representation
matrices Pi of the public key, the technique chooses a new matrix S′ such that
every upper-left m × m submatrix of S′⊤PiS

′ (i = 1, . . . , α) is diagonal, where
α = b n

mc−1. We can then reduce the (n−m+α) variables and α equations and
thereby obtain a quadratic system withm−α variables and equations. Note that,
this technique can be fully applied only for quadratic systems that are over finite
fields of even characteristics. However, Thomae and Wolf show that a part of the
technique can be applied to odd characteristic case and empirically makes the
direct attack faster on quadratic systems over finite fields of odd characteristic.
Therefore, from a security perspective, it is not extreme that we consider this
technique can be applied to odd characteristic case.

In Table 2, for a QR-UOV public key system, we compare the degree of
regularity (theoretical dreg) obtained by equation (10) assuming that the system
is semi-regular and the degree (experimental dreg) obtained by executing the
direct attack on the system as calculated using the Magma algebra system [6].
In our experiment, m was set to enough large values so that our computation
for one parameter is done within one day, and v was set to be equal to 2m, while
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q and ℓ were set to the values given in Subsection 6.1. For the public key of
QR-UOV with (v + m) variables, m equations, we fix the last v variables and
execute the hybrid approach with k = 0 in Subsection 5.1. These results show
that the degrees of regularity obtained experimentally were the same as those
obtained theoretically.

UOV Attack The UOV attack [20] finds a linear map S ′ : Fn
q → Fn

q such
that every component of F ′ := P ◦ S ′ has the form of equation (2). Such an S ′

is called an equivalent key. The UOV attack finds the subspace S−1(O) of Fn
q ,

where O is the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αm)⊤

∣∣ αi ∈ Fq

}
.

This subspace S−1(O) can induce an equivalent key. To obtain S−1(O), the UOV
attack chooses two invertible matricesWi,Wj from the set of linear combinations
of P1, . . . , Pm. Then, it probabilistically recovers a part of the subspace S−1(O)
by computing the invariant subspace of W−1

i Wj . The complexity of the UOV
attack is estimated to be

qv−m−1 ·m4.

Grover’s algorithm can be used to reduce the complexity for a quantum adversary
to

q
v−m−1

2 ·m4.

Reconciliation Attack The reconciliation attack [12] also finds, similarly to
the UOV attack, an equivalent key S ′. The reconciliation attack treats every ele-
ment of the matrix S′ as a variable and solves the quadratic system of equations
obtained by using (S′⊤PiS

′)[v + 1 : n, v + 1 : n] = 0m×m (i = 1, . . . ,m), where
X[a : b, c : d] denotes a (b− a)× (d− c) submatrix of X in which the upper-left
element has index (a, b). This attack can be decomposed into a series of steps,
and in the first step, a system of m quadratic equations in v variables is solved.
In the case of the plain UOV where v > m, the complexity is considered to be
greater than that of solving a quadratic system of v equations in v variables.
Therefore, we estimate the complexity of the reconciliation attack as that of the
direct attack on the quadratic system with v variables, v equations, which is
obtained by (9) and (11) as n = v. Note that if v ≤ m, then the complexity of
the reconciliation attack is the same as that of solving a quadratic system of m
equations in v variables. As a result, we estimate the complexity of the reconcil-
iation attack as the direct attack on the quadratic system with v variables and
max{m, v} equations.

5.2 Pull-back Attacks over Quotient Ring

In this subsection, we explain a method for executing three currently known
attacks on QR-UOV by utilizing the block structure from the quotient ring. For
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every block submatrix WΦf
g of the representation matrices of the public key, we

can execute the UOV attack and the reconciliation attack in the quotient ring
Fq[x]/(f) by replacing WΦf

g to g.

To do so, we define a map G1 : W (N)A
(N)
f → (Fq[x]/(f))

N×N such that

given X ∈ W (N)A
(N)
f , (G1(X))ij is equal to g ∈ Fq[x]/(f) if the ij-block of X is

WΦf
g . Furthermore, we define G2 : A

(N)
f (W (N))−1 → (Fq[x]/(f))

N×N similarly.
In the following, we consider the execution of the three currently known attacks
described in Subsection 5.1 on G1(P1), . . . , G1(Pm).

First, we consider the complexity of the pull-back UOV attack which is the
UOV attack on the transformed representation matrices G1(P1), . . . , G1(Pm).
If we find an equivalent key S′ for the transformed matrices by executing the
UOV attack over Fq[x]/(f), G

−1
2 (S′) ∈ Fn×n

q is an equivalent key over Fq. The
complexities of the pull-back UOV attack for a classical and quantum attacker
are

qv−m−ℓ · (m/ℓ)4, q
v−m−ℓ

2 · (m/ℓ)4,

which are basically the same values as for the plain UOV attack.
The pull-back reconciliation attack can be seen as the reconciliation attack

on the UOV with v/ℓ vinegar variables and m equations. As we stated in the last
paragraph of Subsection 5.1, the complexity is estimated to be that of the direct
attack on a quadratic system with v/ℓ variables and max{m, v/ℓ} equations over
Fq[x]/(f).

For the direct attack, since vectors x and m of P(x) = m cannot be repre-
sented over the quotient ring Fq[x]/(f), the direct attack cannot be executed on
G1(P1), . . . , G1(Pm).

5.3 Lifting Attacks over Extension Field

As stated in Theorem 1, there does not exist a transformation on the representa-
tion matrices P1, . . . , Pm of QR-UOV into the diagonal concatenation of smaller
matrices like the form of equation (6) used in the structural attack on BAC-UOV
by executing a change of variables over Fq. However, as we prove below, there
exists such a transformation on the public key of QR-UOV over the extension
field Fqℓ . In this subsection, we explain a method for transforming the public
key over Fqℓ and how this affects the three currently known attacks on UOV.

Theorem 2. With the same notation as in Theorem 1,

1. there exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such that, for any g ∈ Fq[x]/(f),

L−1Φf
gL is diagonal,

2. for any X ∈ WAf , L
⊤XL is diagonal,

3. if, for any X ∈ WAf , there exists y ∈ Fℓ
qℓ such that y⊤Xy = 0, then y = 0.

(The proof is in the appendix.)
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First, Theorem 2 shows that the polynomial matrix can be diagonalized over
Fqℓ . Subsequently, it indicates that P1, . . . , Pm of QR-UOV can be transformed
into block diagonal matrices for which the block size is N × N by executing
a change of variables over Fqℓ . Let L(N) be an n × n (n = ℓ · N) block diag-
onal matrix with block size ℓ, for which the N diagonal blocks are L. Then,
(L(N))⊤PiL

(N) (i = 1, . . . ,m) become block matrices in which every compo-
nent is of the diagonal form. Furthermore, there exists a permutation matrix L′

such that (L(N)L′)⊤Pi(L
(N)L′) is a block diagonal matrix with block size N ; let

L̄ := L(N)L′. This theorem finally states that there does not exist a change of
variables over Fqℓ such that it recovers the structure of the central map of UOV
directly.

We next consider the complexities of the lifting UOV and reconciliation at-
tacks which are the UOV and reconciliation attacks on L̄⊤PiL̄ (i = 1, . . . ,m).
The transformed matrices L̄⊤PiL̄ can be represented by (L̄⊤SL̄)⊤(L̄−1FiL̄

−⊤)
(L̄⊤SL̄). Then, L̄⊤SL̄ explicitly has the same form as L̄⊤PiL̄. Furthermore,
L̄−1FiL̄

−⊤ is also a diagonal block matrix since

L−1(Φf
gW

−1)L−⊤ = (L−1Φf
gL)(L

⊤WL)−1,

where L−1Φf
gL and L⊤WL are diagonal. Then, due to the structure of Fi, every

diagonal block of L̄−1FiL̄
−⊤ has an m/ℓ ×m/ℓ zero block, similar to Fi. Con-

sequently, the complexity of the lifting UOV attack on each block over Fqℓ is
O(qv−m−ℓ · (m/ℓ)4). Moreover, the complexity of the lifting reconciliation attack
on each block is estimated to be that of the direct attack on a quadratic sys-
tem with v/ℓ variables and max{m, v/ℓ} equations over Fqℓ . These complexities
are the same as those of the pull-back UOV attack and reconciliation attack
described in Subsection 5.2.

Next, we consider the direct attack on L̄⊤PiL̄ (i = 1, . . . ,m). Although in
Subsection 5.1 we use the technique proposed by Thomae and Wolf [32] in the
plain direct attack, we cannot use this technique in the lifting direct attack.
If we use this technique before the linear transformation using L̄ over Fqℓ , we
cannot diagonalize the representation matrices since the linear transformation
executed in this technique breaks the block structure of QR-UOV. We thus use
the technique after block-diagonalizing over Fqℓ . If n > m, the cardinality of the
solution is generally Fv

q . However, since we are solving the system over Fqℓ , the
cardinality of the obtained solution changes to Fv

qℓ . Therefore, the probability
that the obtained solution is in Fn

q is very low, so this technique is not efficient.
In conclusion, there does not exist an effective way of executing the direct attack
on L̄⊤PiL̄ using Thomae and Wolf’s technique.

Therefore we consider the lifting direct attack without using Thomae and
Wolf’s technique, in which we fix the v values before block-diagonalizing over Fqℓ .
We then obtain a solution in Fn

q since the solution is thought to be uniquely deter-
mined. This means that we can execute the direct attack on a block-diagonalized
system without reducing the probability of finding a solution in Fn

q . Table 3 sum-
marizes the results of an experiment investigating the degree of regularity of the
block-diagonalized public key system of QR-UOV using the Magma algebra sys-
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Table 3. Theoretical and experimental degree of regularity obtained by executing the
lifting direct attack using the Magma algebra system [6].

(q, v,m, ℓ) theoretical dreg experimental dreg

(7, 24, 12, 2) 13 13

(7, 28, 14, 2) 15 14

(7, 24, 12, 3) 13 13

(7, 30, 15, 3) 16 15

(31, 24, 12, 2) 13 13

(31, 28, 14, 2) 15 14

tem [6]. In our experiment, v is set to be equal to 2m. For representation matrices
P1, . . . , Pm of the public key of QR-UOV with (v +m) variables, m equations,
after transforming the system like L̄⊤PiL̄, we fix the last v variables and exe-
cute the hybrid approach with k = 0 in Subsection 5.1. As a result, it shows
that the degree of regularity was smaller than the theoretical value obtained by
equation (10) assuming the system is semi-regular by at most one. Therefore,
we estimate the complexity of the lifting direct attack by replacing q and dreg
in equations (9) and (11) to qℓ and dreg − 1, respectively. In this estimation, the
degree of regularity becomes one degree smaller, but the base field Fq is lifted
to the extension field Fqℓ .

6 Proposed Parameters and Comparison

In this section, we propose specific parameters for three security levels of the
NIST PQC project [23] and compare the performance of the improved QR-UOV
with that reported for cyclic Rainbow [27].

6.1 Proposed Parameters

In this subsection, we describe the parameters selected for the improved QR-
UOV described in Subsection 4.2. Our proposed parameters are set to satisfy
security levels I, III, and V of the NIST PQC project [23] to enable comparison
with the performance of cyclic Rainbow [27]. The parameters for the improved
QR-UOV are the number of finite fields q, the number of vinegar variables v,
the number of oil variables, the number of equations m, the block size of the
representation matrices ℓ, and the polynomial used to generate the quotient
ring f . We set q to be odd from the perspective of security. The v is mainly
determined by the complexity of the pull-back and lifting reconciliation attacks
described in Subsections 5.2 and 5.3, and m is determined by that of the plain
direct attack. We use ℓ = 2 or 3 since a large ℓ makes the signature and execution
time larger. From Theorem 1, we choose irreducible polynomials f with the form
of xℓ−axi−1 described in Proposition 1. In summary, we propose the following
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Table 4. Complexity of the plain attacks in Subsection 5.1, the pull-back attacks in
Subsection 5.2, and the lifting attacks in Subsection 5.3 on the proposed parameters
of QR-UOV in Subsection 6.1. Here, “direct”, “UOV” and “Rec” stand for the direct
attack, UOV attack, and reconciliation attack, respectively. The bold fonts indicate
the lowest complexity among all attacks in the same security level.

parameter
(q, v,m, ℓ)

attack
model

log2(#gates)
plain pull-back lifting

direct UOV Rec UOV Rec direct UOV Rec

QR-UOV I
(7,122,68,2)

classical 149.2 177.4 250.8 172.4 150.3 184.9 172.4 150.3
quantum 102.2 103.0 170.9 99.4 133.8 148.4 99.4 133.8

QR-UOV III
(7,276,102,3)

classical 210.4 516.6 528.2 507.6 217.6 287.2 507.6 217.6
quantum 143.8 273.7 353.7 267.6 209.0 246.7 267.6 209.0

QR-UOV V
(31,210,108,2)

classical 274.3 533.1 504.9 526.1 283.8 310.1 526.1 283.8
quantum 212.5 283.0 388.5 278.4 262.5 273.0 278.4 262.5

parameters for the improved QR-UOV:

QR-UOV I : (q, v,m, ℓ, f) = (7, 122, 68, 2, x2 − x− 1),

QR-UOV III : (q, v,m, ℓ, f) = (7, 276, 102, 3, x3 − 3x− 1),

QR-UOV V : (q, v,m, ℓ, f) = (31, 210, 108, 2, x2 − 3x− 1).

Next, we show that these parameters of QR-UOV I, III, and V satisfy the
security levels I, III, and V of NIST PQC project, respectively. Here, security
levels I, III, and V mean that a classical attacker needs more than 2143, 2207,
and 2272 classical gates to break the parameters while a quantum attacker needs
more than 274, 2137, and 2202 quantum gates, respectively [23]. The number of
gates required for an attack against the NIST second round proposal version of
Rainbow [10] can be computed using

#gates = #fieldmultiplication · (2 · (log2q)2 + log2q).

We next consider the complexity of each currently known attack described in
Section 5 on our proposed parameters. Table 4 shows the complexity of the plain
direct, UOV, and reconciliation attacks described in Subsection 5.1, the pull-
back UOV and reconciliation attacks described in Subsection 5.2, and the lifting
direct, UOV, and reconciliation attacks described in Subsection 5.3. (See each
subsection for the concrete way of estimating the complexity of each attack.) This
table does not include the complexity of “the pull-back direct attack”, since we
cannot execute the direct attack on the pulled back public key system as we sated
in Subsection 5.2. For each parameter set, the upper entry shows the number
of classical gates while the lower entry shows the number of quantum gates.
For example, the complexity of the direct attack for level I is 149.2 classical
gates and 102.2 quantum gates, respectively. Furthermore, the values in bold
show the complexity of the best attack against each parameter set. The lowest
complexity of among all attacks is the direct attack except the quantum direct
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Table 5. Comparison of public key and signature size of cyclic Rainbow with those of
QR-UOV. We use parameters for cyclic Rainbow updated in [27], and parameters for
the improved QR-UOV in Subsection 4.2. The unit of the public key size is kilobyte
(KB), but that of the signature size is byte (B).

security
level

scheme parameters
public key
size (KB)

signature
size (B)

I
Cyclic Rainbow I

(q, v1, o1, o2) =
(16, 36, 32, 32)

57.4 66.0

QR-UOV I
(q, v,m, ℓ) =
(7, 122, 68, 2)

29.7 87.3

III
Cyclic Rainbow III

(q, v1, o1, o2) =
(256, 68, 32, 48)

252.3 164.0

QR-UOV III
(q, v,m, ℓ) =
(7, 276, 102, 3)

66.7 157.8

V
Cyclic Rainbow V

(q, v1, o1, o2) =
(256, 96, 36, 64)

511.2 212.0

QR-UOV V
(q, v,m, ℓ) =

(31, 210, 108, 2)
195.8 214.8

attack of 102.2 gates on QR-UOV I, while the quantum pull-back and lifting
UOV attacks on QR-UOV I have a little lower complexity of 99.4 gates. As a
result, this table shows that our proposed parameters satisfy the requirement
for each security level.

Remark 3. As with the proposed parameters for Rainbow [27], our proposed
parameters for security levels I, III, and V also respectively satisfy security levels
II, IV, and VI of the NIST PQC project [23].

6.2 Comparison with Rainbow

In Table 5, we compare the public key and signature size for our proposed im-
proved QR-UOV parameters with those for cyclic Rainbow [27] for security levels
I, III, and V. As for cyclic Rainbow in the second round proposal [10], the public
key includes a 256 bit seed spk, and the signature includes a 128 bit salt, which
is a random binary vector for EUF-CMA security [29]. The secret key can be
generated from two 256 bit seeds ssk and spk. For example, the public key size
of the improved QR-UOV for level I is 29.7 KB, which is about half that of
cyclic Rainbow. As a result, the public key size of the improved QR-UOV can
be reduced about 50–70% compared with that of cyclic Rainbow at the cost of
a small increase in signature size.

Although the public key size could be further reduced by setting block size
ℓ larger, enlarging the block size would likely increase the signature size and
lengthen the execution time.
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7 Conclusion

We have proposed a new variant of the unbalanced oil and vinegar (UOV),
which is a well-established multivariate signature scheme that has essentially
not been broken for over 20 years. Our proposed QR-UOV scheme uses a quo-
tient ring (Fq[x]/(f)) to reduce the public key size. Although multivariate sig-
nature schemes are promising candidates for post-quantum cryptography, and a
UOV variant called Rainbow was selected as a third-round finalist in the NIST
Post-Quantum Cryptography (PQC) project, a disadvantage of UOV variants
including Rainbow in general is that they have a large public key. Research on
reducing UOV public key size is important for post-quantum cryptography. In
this paper, we have presented a new approach to achieving such a reduction.

Our proposed QR-UOV scheme features a small public key and a reasonable
signature size. In particular, with our proposed parameters, the public key size
of the improved QR-UOV can be reduced about 50–70% compared with that
of cyclic Rainbow, a third-round finalist in the NIST PQC project, without
significantly increasing the signature size. To construct QR-UOV, we defined
polynomial matrix Φf

g (g ∈ Fq[x]/(f)) and introduced the concept of a matrix

W such that WΦf
g is symmetric. QR-UOV utilizes polynomial matrices Φf

g in
block matrices. Moreover, we proved that, if the polynomial f used to generate
the quotient ring is irreducible, QR-UOV is resistant to attacks that are able
to break block-anti-circulant UOV. We also analyzed the security of QR-UOV
against three currently known attacks on plain UOV and possible attacks on the
quotient ring. We stress that utilizing the elements of a quotient ring in block
matrices is similar to the MLWE problem which is a generalization of LWE using
a module consisting of vectors over a ring.

An important open problem is improving the efficiency of QR-UOV. The
Rainbow UOV variant has a multi-layer structure and is efficient and secure.
Extending QR-UOV to a comparable efficient and secure multi-layer version
of QR-Rainbow will be a challenging task. We need to carefully analyze the
security of QR-Rainbow against various attacks by considering its multi-layer
structure. Another possible way to improve efficiency is to exploit a better choice
of polynomial f . In this paper, we simply used a simple trinomial for the first
construction of QR-UOV; we expect to find another family of polynomials that
can produce more efficient operations.
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Appendix A: Transformation on Polynomial Matrix from
a Reducible Polynomial

First, we discuss the case in which f is reducible and decomposed into distinct
irreducible polynomials.

Theorem 3. Let f ∈ Fq[x] be a reducible polynomial with deg f = ℓ and W
be an invertible matrix such that every element of WAf is a symmetric matrix.
If f = f1 · · · fk (k ∈ N), where f1, . . . , fk are distinct, irreducible, and deg f1 ≤
· · · ≤ deg fk, then there exist an invertible matrix L ∈ Fℓ×ℓ

q and i ∈ {1, . . . , ℓ−1}
such that, for any X ∈ WAf ,

L⊤XL =

(
∗i×i 0i×(ℓ−i)

0(ℓ−i)×i ∗(ℓ−i)×(ℓ−i)

)
. (12)
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Proof. We first prove that every element of AfW
−1 is symmetric. For any g ∈

Fq[x]/(f),

(Φf
gW

−1)⊤ = W−⊤(Φf
g )

⊤

= W−⊤(Φf
g )

⊤WW−1

= W−⊤(WΦf
g )

⊤W−1 (∵ W is symmetric.)

= W−⊤WΦf
gW

−1

= Φf
gW

−1.

Therefore, every element of AfW
−1 is symmetric.

Since f is reducible, there exist a, b ∈ Fq[x]/(f) such that a · b = 0. Then, for
any g ∈ Fq[x]/(f),

(Φf
aW

−1)⊤(WΦf
g )(Φ

f
bW

−1) = Φf
a·g·bW

−1

= Φf
0W

−1 = 0ℓ×ℓ.

We suppose that L ∈ Fℓ×ℓ
q is designed such that the first i column vectors of

L are chosen from the column vector space of Φf
aW

−1 and the other (ℓ − i)

column vectors of L are chosen from the column vector space of Φf
bW

−1. Then,
equation (12) explicitly holds from the above equation.

We next show that there exists an invertible such a L. We suppose that
a := f1 and b := f2 · · · fk and prove that rankΦf

a = deg b (rankΦf
b = deg a). We

use the bijective map V1 used in the proof of Theorem 1. From equation (7), for
any c ∈ Fq[x]/(f),

a · c = 0 ⇔ Φf
a · V1(c) = 0.

Since there does not exist c ∈ Fq[x]/(f) such that a · c = 0 and deg c < deg b,
the first deg b column vectors are linearly independent. Furthermore, since Φf

a ·
V1(b) = 0, Φf

a · V1(xb) = 0, . . . , Φf
a · V1(x

deg a−1b) = 0, we have rankΦf
a = deg b.

It is similarly proved that rankΦf
b = deg a.

Next, we design L ∈ Fℓ×ℓ
q such that the first deg b column vectors of L are

bases of the column vector space of Φf
aW

−1 and the other (ℓ− deg b) (= deg a)

column vectors of L are bases of the column vector space of Φf
bW

−1.

Finally, we prove that the column vector spaces of Φf
aW

−1 and Φf
bW

−1 have

no intersection; that is, the column vector spaces of Φf
a and Φf

b have no inter-
section. If this statement holds, L constructed using this approach is invertible.
We assume that the column vector spaces of Φf

a and Φf
b have an intersection.

Then, there exist two vectors x,y ∈ Fℓ
q such that the last (ℓ−deg b) elements of

x and the last (ℓ− deg a) elements of y are zero, and Φf
ax = Φf

by since the first

deg b (deg a) vectors of Φf
a (Φf

b ) are linearly independent. From the definition
of Φf

g , aV
−1
1 (x) = bV −1

1 (y), deg (V −1
1 (x)) < deg b, and deg (V −1

1 (y)) < deg a.
However, this contradicts that f1, . . . , fk are distinct and irreducible. Therefore,
the column vector spaces of Φf

a and Φf
b have no intersection. ut

Next, we discuss another case where f is reducible.
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Theorem 4. With the same notation as in Theorem 3, if there exists f ′ ∈ Fq[x]

such that f ′2 | f , there exists an invertible matrix L ∈ Fℓ×ℓ
q such that, for any

X ∈ WAf ,

(L⊤XL)ℓℓ = 0.

Proof. From the assumption, there exists a ∈ Fq[x]/(f) such that a2 = 0. There-
fore, for any g ∈ Fq[x]/(f),

(Φf
aW

−1)⊤(WΦf
g )(Φ

f
aW

−1) = Φf
a·g·aW

−1

= 0ℓ×ℓ,

and Φf
aW

−1 is symmetric. We suppose that L ∈ Fℓ×ℓ
q is an invertible matrix in

which the ℓ-th column vector is chosen from the column vectors of Φf
aW

−1. Then,
from the above equation, for any g ∈ Fq[x]/(f), the (ℓ, ℓ) element of L⊤(WΦf

g )L
is zero. ut

Appendix B: Proof of Theorem 2 in Subsection 5.3

Theorem 2. With the same notation as in Theorem 1,

1. there exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such that, for any g ∈ Fq[x]/(f),

L−1Φf
gL is diagonal,

2. for any X ∈ WAf , L
⊤XL is diagonal,

3. if, for any X ∈ WAf , there exists y ∈ Fℓ
qℓ such that y⊤Xy = 0, y = 0.

Proof. First, we prove statement 1. For x ∈ Fq[x]/(f), the characteristic poly-
nomial of Φf

x is equal to f . Since f is irreducible over Fq[x], f is separable, and
its roots are distinct in Fqℓ [x]. Therefore, the eigenvalues of Φf

x are distinct in

Fqℓ , and there exists L ∈ Fℓ×ℓ
qℓ

such that L−1Φf
xL is diagonal. Furthermore, Φf

1

is the identity matrix, and Φf
xi (i = 2, . . . , ℓ− 1) can be diagonalized by using L:

L−1Φf
xiL = L−1(Φf

x · · ·Φf
x)L

= (L−1Φf
xL) · · · (L−1Φf

xL).

Then, for any g ∈ Fq[x]/(f), L
−1Φf

gL becomes diagonal since Af is spanned by

{Φf
1 , Φ

f
x, . . . , Φ

f
xℓ−1} over Fq.

Next, we prove statement 2 by using the following lemma.

Lemma 2. With the same notation as in Theorem 1, for L ∈ Fℓ×ℓ
qℓ

described in

Theorem 2, L⊤WL is diagonal.

Proof. Since WΦf
g is symmetric,

WΦf
g = (WΦf

g )
⊤ = (Φf

g )
⊤W⊤.
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Furthermore, since Φf
1 is the identity matrix, W is symmetric. As a result, we

have

(Φf
g )

⊤ = WΦf
gW

−1. (13)

As L−1Φf
gL is symmetric,

L−1Φf
gL = L⊤(Φf

g )
⊤L−⊤

= L⊤WΦf
gW

−1L−⊤ (∵ (13))

= (L⊤WL)(L−1Φf
gL)(L

⊤WL)−1.

Then, L⊤WL and L−1Φf
gL are commutative. As L−1Φf

gL is diagonal and diag-

onal elements are distinct, L⊤WL is diagonal. ut
For any g ∈ Fq[x]/(f), we can transform L⊤WΦf

gL:

L⊤WΦf
gL = (L⊤WL)(L−1Φf

gL).

From statement 1 and Lemma 2, L⊤WΦf
gL is diagonal.

Finally, we prove statement 3. Let y := L−1x; then

x⊤WΦf
gx = (Ly)⊤WΦf

g (Ly)

= y⊤(L⊤WL)(L−1Φf
gL)y.

If we define the diagonal elements of L−1Φf
xL as θ1, . . . , θℓ (the roots of f in

Fqℓ), the diagonal elements of L−1Φf
gL are equal to g(θ1), . . . , g(θℓ). If y′ :=(

y21 . . . y2ℓ
)⊤

,

y⊤(L⊤WL)(L−1Φf
gL)y = 0

⇔
(
g(θ1) · · · g(θℓ)

)
(L⊤WL)y′ = 0 (14)

since L⊤WL is diagonal.
Let g1, . . . , gℓ be a basis of Fq[x]/(f) over Fq; then satisfying equation (14)

for any g ∈ Fq[x]/(f) is equivalent tog1(θ1) . . . g1(θℓ)
...

. . .
...

gℓ(θ1) . . . gℓ(θℓ)

 (L⊤WL)y′ = 0. (15)

In addition, g1, . . . , gℓ are also a basis of Fqℓ [x]/(f) over Fqℓ , and

Fqℓ [x]/(f) ∼= Fqℓ [x]/(x− θ1)⊕ Fqℓ [x]/(x− θ2)⊕ · · · ⊕ Fqℓ [x]/(x− θℓ)

∼= Fℓ
qℓ .

Therefore, (gi(θ1) · · · gi(θℓ)) (i = 1, . . . , ℓ) are linearly independent, and

(15) ⇔ y′ = 0

⇔ y = 0

⇔ x = 0.

ut
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Table 6. Performance of QR-UOV in Subsection 4.2 in Magma algebra system [6].

parameter (q, v,m, ℓ)
key

generation
signature
generation

verification

QR-UOV I (7, 122, 68, 2) 0.05 s 0.03 s 0.01 s

QR-UOV III (7, 276, 102, 3) 0.54 s 0.23 s 0.04 s

QR-UOV V (31, 210, 108, 2) 0.79 s 0.28 s 0.04 s

Appendix C: Performance in Magma

Here we present the execution times for key generation, signature generation,
and verification of QR-UOV in Subsection 4.2. All experiments were performed
on a MacBook Pro with a 2.4-GHz quad-core, Intel Core i5 CPU and running
the Magma algebra system (V2.24-82) [6]. Table 6 shows the average times for
100 runs using QR-UOV scheme described in Subsection 4.2 and our proposed
parameters for levels I, III, and V of the NIST PQC project. All timings are in
second. These are not optimized implementations.

In the key generation step, we first generate two 32-bit seeds (ssk and spk) by
using the Magma Random command. We then use the Magma SetSeed command
as a pseudo random number generator to generate part of the public and secret
keys. (In Subsection 6.2 we stated that the size of the two seeds is 256 bits,
but here we use two 32-bit seeds since the size of the input for SetSeed is at
most 32 bits.) Next, we generate a secret key by using the method described in
Subsection 4.2. In the signature generation step, we recover the public and secret
keys from the two seeds and perform the procedure explained in Subsection 2.2.
Note that the signature is generated in the same manner that a signature is
generated in compressed Rainbow [10]. In the verification step, we generate the
public key from the spk seed and follow the procedure explained in Subsection 2.1.
Note that, in the signature generation and verification steps, we need to compute
the product of a vector and matrices WΦf

g or Φf
gW

−1, and this computation is

efficient only if the coefficients of g without the matrix structure of Φf
g are used.

For example, in Table 6, the execution times of the key generation, signature
generation, and verification steps of QR-UOV for level I are 0.05 s, 0.03 s, and
0.01 s, respectively.
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