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Abstract. We construct a two-round Schnorr-based signature scheme
(DWMS) by delinearizing two pre-commitments supplied by each signer.
DWMS is a secure signature scheme in the algebraic group model (AGM)
and the random oracle model (ROM) under the assumption of the hard-
ness of the one-more discrete logarithm problem and the 2-entwined sum
problem that we introduce in this paper. Our new m-entwined sum prob-
lem tweaks the k-sum problem in a scalar field using the associated group.
We prove the hardness of our new problem in the AGM assuming the
hardness of the discrete logarithm problem in the associated group. We
believe that our new problem simplifies the security proofs of multi-
signature schemes that use the delinearization of commitments.

1 Introduction

A multi-signature scheme is a signature scheme that allows multiple parties
collaboratively to sign a message so that the final signature can be verified with
the public keys of the signers by a user. The trivial solution for this is that
each entity signs the data individually and provides it to the user. However,
this is not a space and time-efficient solution since the user needs to verify each
signature separately and keep a larger amount of signatures. Hence, we require
more elegant multi-signature schemes which save time and space on the user and
the signer side.

To this end, multi-signature schemes [3, 6, 9, 15, 17–19,22] have been studied
for a long time. Increased operational security demands have driven a growth
spurt in multi-signer implementations in recent years especially for Schnorr-
based multi-signature schemes [2,9–11,17,24]. At their core, any multi-signature
scheme should protect each honest signer who participates against forgeries by
an adversary who controls all the other signers and interacts extensively with our
one honest signer. Yet in [11], Drijvers, et al. broke all previously known Schnorr-
based two-round multi-signature protocols [3, 18, 19, 26], using the traumatic
ROS [8] or k-SUM attack [27] that break blind Schnorr signatures [23, 25]. In
short, these attacks are executed by the adversary who engages in enough parallel
signing sessions to reply with appropriate witnesses against honest witnesses in
the first round of each session. Then, the linear combination of signatures in
each session constitutes a forgery.

In this paper, we propose a simple and lightweight two-round Schnorr-
based multi-signature protocol that we call delinearized witness multi-signatures
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(DWMS) and prove its security. We call the linear combination of the witnesses
with random oracle outputs delinearization. The reason of this naming is that
the coefficients of the linear combinations are random and cannot be known by
the adversary before the adversary selects its own witnesses. The security of
DWMS is based on the hardness assumptions of entwined sum problem that we
define and one more discrete logarithm (OMDL) problem [5, 7]. In more detail,
our contributions in this paper are as follows:

– We define a new computationally hard problem that we called m-entwined
sum problem. We show that this problem is hard as long as m > 1 and the
discrete logarithm is hard in the algebraic group model (AGM) [12] and the
random oracle model (ROM). Thanks to this problem, we prove the security
of our signature scheme without any complicated linear algebra analysis.
Thus, we avoid possible mistakes in the proof. We believe that our new
problem improves and simplifies the security proof of multi-signature [20] and
threshold signature schemes [16] based delinearization of witnesses as ours.
Beyond the simplified proof, we wonder if it is possible to improve Clause
Schnorr-based blind signature [13] invoking the m-entwined sum problem
instead of the modified-ROS problem [13] which does not have any extensive
cryptanalysis yet.

– We construct our new protocol DWMS which consists of two-rounds: first,
all signers generate two witnesses and propose two pre-commitment of them
in the prime-order group, and second, after obtaining all pre-commitments,
all signers compute the Schnorr commitment by delinearizing these pre-
commitment with a random oracle and produce their signature share using
their portion of the combined witnesses. As we mentioned above, most of the
two-round Schnorr-based multi-signature schemes can be broken by solving
the k-sum problem with respect to the session witnesses. Similarly, our new
protocol DWMS can be broken by solving more complex k-sum problem that
we call the m-entwined sum problem. Since we show that the m-entwined
sum problem is hard when m > 1, DWMS is not vulnerable to this attack
as long as the number of witnesses is at least two. After making sure that
the 2-entwined sum problem is hard, we prove the security of DWMS in the
plain public-key model [3], in the AGM and the ROM under the assumption
that the OMDL problem and the 2-entwined sum problem is hard.

We note that DWMS is implemented in the cryptographic library ‘schnor-
rkel/sr25519’ [1] and it is used by substrate based blockchains since January
2020 as an option for multi-signatures.

1.1 Related Work

Insecure Multi-Signatures: Drijvers et al. [11] invalidated the security of some
Schnorr-based two-round multi-signature schemes [3, 18, 19, 26] by showing an
attack based on the k-sum problem [27]. The key observation that Drijvers et
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al. [11] made was that a multi-signature participant choosing her signature ran-
domness (nonce) after other participants could launch a parallel attack by initi-
ating multiple concurrent signature sessions (say k of them) and let the honest
participants commit to their randomness across all those sessions before choos-
ing its own randomness for these sessions. It could then choose her randomness
so that the hash on the sum of session randomness across the k sessions equals
the sum of hashes on each individual session randomness, thereby helping it to
derive a multi-signature session on a message of its own choice. They also noted a
subtle flaw in the security proofs of these schemes, where the reduction to DL (or
ODML depending on the scheme) on rewinding the multi-signature forger was
inadvertently giving two signatures of the honest signer on the same randomness
and two different challenges to the forger, thereby letting the latter potentially
derive the honest signer’s secret key. Note, all the earlier multi-signature schemes
used different techniques: BCJ1, BCJ2 [2, 3] used a multiplicatively homomor-
phic equivocal commitment scheme to prove security under the DL assumption,
MWLD [18] used Okamoto signatures [22] and the double-hashing technique to
prove security under the DL assumption and MuSig [19] used regular Schnorr
signatures and proved security under the OMDL assumption, but all of them cru-
cially relied on the rewinding of the multi-signature forger to derive its security.
Thus, mBCJ [11] ruled out the possibility of the existence of secure two-round
multi-signatures based on Schnorr signatures via an impossibility result that
formalized the above inconsistency in the proof to construct a meta-reduction
(which now simulated the multi-signature forger for the DL/OMDL reduction)
to solve the OMDL problem itself.

A recent work of Bellare et al. [4] introduced a new problem called the
Multi-Base Discrete Log (MBDL) problem that enables the security of several
schemes including Schnorr signatures, Okamoto signatures, Bellare-Neven multi-
signatures, and other Schnorr based ring and threshold signatures to be proved
using a non-rewinding reduction.

Random inhomogeneities in a Overdetermined Solvable system of linear equa-
tions (ROS): Earlier blind signatures constructed from Schnorr signatures [25]
were shown to be insecure via a k-SUM attack [27]. The security of these blind
signatures had been proven under the ROS assumption which was shown to be
false as Wagner’s (sub-exponential) algorithm on the k-SUM problem was used
to break the ROS problem. Fuchsbauer et. al [14] was able to overcome this at-
tack and constructed a two-round blind signature scheme that is proved secure
under a (new) modified-ROS assumption that does not seem to fall prey to a
k-SUM attack. Recently, Benhamouda et al. [8] find an algorithm that solves the
ROS problem in polynomial time for large enough dimensions.

Secure 2-round Schnorr-based Multi-Signatures: We compare the existing 2-
round Schnorr-based Multi-Signatures in Table 1. We note that we do not
give the key aggregation operations in Table 1 to obtain the aggregated pub-
lic key PK because this is necessary step for all multi-signature protocols.
Some of them [11] first verifies the proof of knowledge of each public key with
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Table 1. Review of the efficiency and security of existing Schnorr-based multi-signature
schemes with n-signers. Optim. is the optimized DWMS where signers are organised
in a tree structure: i.e., each multi-signature round takes 2-sub-rounds: parent-children
communication only [11]. G is the prime p order group that the schemes work. kexp
shows k-exponentiation in G. NIZK is non-interactive zero knowledge and NIZK proof
and NIZK verify corresponds to the number of exp in order to execute the prove and
verify algorithm. pk is the individual public key and PK is the aggregated public key.

Protocol Sign Verify
Domain

Security
pk signature PK

mBCJ [11] 5exp 6exp G× Z2
p G2 × Z3

p G DL, ROM

MuSig-
DN [21]

NIZK proof + n NIZK
verification

2exp G G × Zp or
Zp × Zp

G
DL,
DDH, ZK,
PRF,ROM

Musig2 v = 4
[20]

7exp 2exp G G × Zp or
Zp × Zp

G 4qs-OMDL,
ROM

Musig2 v = 2
[20]

3exp 2exp G G × Zp or
Zp × Zp

G
2qs-OMDL,
AGM,
ROM

Ours
(DWMS
m = 2)

(Worst Case) (2n+2)exp

(Optim.)

(2n+2)exp
by the
root, 2exp
by others

2exp G G × Zp or
Zp × Zp

G

qs-OMDL,
2-entwined
sum, AGM,
ROM

two-exponentiation and then obtains the aggregated public key and some of
them [20, 21] including DWMS delinearize each public key by one exponentia-
tion and then obtain the aggregated public key.

mBCJ [11] is one of the few existing two-round Schnorr-based signature
schemes. mBCJ is more efficient in terms of signing operations than DWMS,
but DWMS is more efficient in terms of verification operations and has also
shorter signature size (See Table 1). mBCJ’s first round messages can be spread
by aggregating. Thus, the signers use the network bandwidth more efficiently.
One advantage of mBCJ over DWMS is that it is secure in the random oracle
model while DWMS is secure in AGM and the random oracle model.

Aside from mBCJ, MuSig-DN [21] is another Schnorr multi-signature proto-
col which provides deterministic witnesses, a nice property previously unavailable
in a Schnorr multi-signature. It achieves determinism using several novel bullet-
proof optimizations which require a suitable group for an efficient instantiation.
In MuSig-DN, the first round messages require only 1124 bytes per signer, but
their participant-only benchmarks show 0.9 second proving times.

In DWMS, all signers incur a per signer cost of only 64 bytes and only two
scalar multiplications in a prime order-elliptic curve group. Besides, DWMS asks
no special features of the underlying group as MuSig-DN.

FROST [16] is a recent Schnorr-based threshold signature scheme that uses
the delinearization of witnesses in the first round similar to DWMS. However,
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the security proof of FROST applies an ad-hoc heuristic that resembles a Fiat-
Shamir transform which adds an additional round the FROST. Therefore, the
proven FROST and the original FROST protocol are different. We hope that
the hardness of our new problem ‘the m-entwined sum problem’ or its extensions
improve the security proof of FROST.

There exists also simultaneous and independent protocol MuSig2 [20] which
applies a similar idea as our DWMS protocol. DWMS’s pre-commitments that
signers send in the first round are delinearized first and then aggregated while
Musig2’s pre-commitments can be aggregated before delinearizing the pre-
commitments. Therefore, the first round messages in Musig2 can be spread by
aggregating. Thus, signers use the network bandwidth more efficiently. Besides,
the signers in DWMS exponentiate each pre-commitment by a random oracle
output for the delinearization while signers in Musig2 exponentiate only the
summation of pre-commitments by a random oracle output. As a result of this,
Musig2 is more efficient in terms of signing operations than DWMS (See Table
1). MuSig2 is secure in AGM with two pre-commitments as DWMS. They also
show that its security with four pre-commitments without AGM. They deal with
the case, where we need the hardness of the 2-entwined sum problem in our se-
curity proof in AGM, inside their signature proof with complex linear algebra
analysis. It makes the proof much longer and hard to follow and verify. This also
shows the ease that the m-entwined sum problem provides.

2 Preliminaries

2.1 Notations

We denote by G a prime p-order group. For the sake of representation, we con-
sider additive operation in G in this paper. The notations with capital letters
represent the elements of G and with small letters represent the elements in the
scalar field Zp. The addition and multiplication operation between elements of
Zp is always in mod p even though we do not specifically write it.

We use superscript (i) on any notation where i ∈ N to distinguish values
generated in a session i e.g, X(i).

We use bold style for the vectors. If elements of the vector are from G then
we represent the vector with the capital bold letter e.g. VVV . If they are from Zp
then we represent the vector with the small bold letter e.g. vvv.

2.2 Security Definitions

Multi-Signature Schemes: We describe the multi-signature scheme and the se-
curity model that we consider for DWMS.

Definition 1 (Multi-Signature Scheme). Multi-signature scheme with the
security parameter λ consists of the following algorithms.

– ParamGen(λ) → par : It generates the parameters of the signature scheme
par with respect to the security parameter λ.
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– KeyGen(par) → (sk, pk): It generates a secret/public key pair (sk, pk) with
the input par.

– Sign(par, sk,msg) → σ: It is an interactive algorithm which is run between
other signers to sign a message msg ∈M where M is the message space.

– KeyAg(par, {pki}ni=1) → PK: It receives public key pki of each signer and
generates the aggregated public key PK.

– Verify(par, PK, σ,msg) → 1/0: It verifies whether the signature σ is signed
by the parties with public key pki for the message msg.

We consider the plain public-key model [3] for the security of our multi-signature
scheme as described below. In this model, KeyVerify(par, pki) outputs always 1.

Definition 2 (Multi-Signature Security in the Plain Public-key Model
[3]). The challenger generates the parameters par with ParamGen(λ) and gen-
erates a secret/public key pair (sk, pk) and gives par, pk to the adversary A. A
has access to the signing oracle Σ which returns Sign(par, sk,msg) given input
msg by A.

In the end, A outputs a signature σ∗, message msg∗ ∈ M and PK =
{pk1, pk2, . . . , pkn}. A wins if

– the public key given by the challenger is in PK i.e., pk ∈ PK,
– A never queries with the input msg∗ to the signing oracle Σ before,
– the signature is valid i.e., Verify(par, PK, σ,msg) → 1 where

KeyAg(par,PK)→ PK.

We say that a multi-signature scheme is secure in the plain public-key model
if for all probabilistic polynomial time (PPT) adversary A with qs-signing oracle
queries, the probability of winning the above game is ε which is negligible in terms
of λ.

There is also a weaker security definition called the knowledge of secret key
(KOSK) model where the adversary outputs its secret keys in the end of the
game.

Algebraic Group Model (AGM) The AGM is a model between the standard
model and the generic group model, i.e., the security in the standard model
implies security in the AGM and the security in the AGM implies the security
in the GGM [12]. In short, the AGM is a computational model that considers
only algebraic algorithms (corresponds to the adversaries in the security proofs)
as described below. As in the standard model, it is possible to have security
proofs with reductions [12].

Definition 3 (Algebraic Adversary). Let G be a group with order p and
P be the element of G. Informally, we call an algorithm A is algebraic if it
fulfills the following requirement: whenever A outputs Z ∈ G, “representation”
zzz = (z1, . . . , zt) ∈ Ztp such that Z = zzz · LLL =

∑t
i=1 ziLi where LLL = (L1, . . . , Lt)

is the vector in Gt and each element of LLL is a group element that A has seen
during its execution so far.
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Now, we give the OMDL problem [5,7] since DWMS’s security relies on the
hardness of the OMDL problem.

Definition 4 (n-OMDL Problem [5, 7]). Given a prime p-order group G
generated by P , and random Y1, Y2, . . . , Yn+1 ∈ G and a discrete logarithm oracle
DLOracle which returns discrete logarithm of any given input in G, if a PPT
adversary A outputs the discrete logarithms of Y1, Y2, . . . , Yn+1 with the access
of at most n-times to the DLOracle, then A solves the n-OMDL problem. We say
that n-OMDL problem is hard in G, if for all PPT adversaries, the probability of
solving the n-OMDL problem is εomdl which is negligible in terms of the security
parameter.

2.3 Multi-signature Schemes vs. the k-sum Problem

In this section, we show an example attack to one of the broken schemes in [11]
to explain why a solution of the k-sum problem helps an adversary to break
some multi-signature schemes. This section will make more clear the necessity
of defining a new k-sum-like problem for our new scheme DWMS and proving
its hardness.

Definition 5 (k-sum Problem). Given k-lists L1, L2, . . . , Lk of size sL where
each elements of Li is from Zp, the problem requires to find x1, x2, . . . , xk where
xi ∈ Li such that x1 + x2 + . . .+ xk ≡ 0 mod p.

Wagner [27] described an algorithm which solves the k-sum problem within
O(k2n/(1+logn)) when sL = 2n/(1+logn) where n is the bit length of the elements
in lists. Benhamouda et al. [8] recently showed that with the list of dimensions
sL = k > log p, the ROS-problem can be solved in polynomial time. Recall that
the ROS problem is a generalization of the k-sum problem. Solving the ROS
problem is sufficient to break security of the schemes [3, 18,19,26].

Drijvers et al. [11] showed an attack on many two-round Schnorr-based multi-
signatures [3, 18, 19, 26] based on a solution of the k-sum problem. We next
show the attack on CoSi [26] described in [11] to illustrate the relation between
the k-sum problem and multi-signature schemes. The other attacks on other
schemes [3, 18,19] can be found in [11].

CoSi Protocol [26]: CoSi works in a prime p-order group G with the hash function
H : {0, 1}∗ → Zp. Public parameters are the group structure (G, P, p) where P is
a generator of G. Normally, each public key of the signers are associated with the
proof-of-knowledge of the secret key to prevent the rogue key attacks. We omit
this part in the description of the protocol because the attack is still applicable
even if the public keys are generated as described in the protocol.
Key Generation: Each signer generates a random private key x and computes
the public key X = xP .
Signing: Each signer i does the following to sign a message msg with public
keys PK = {X1, X2, . . . , Xn}:
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– [Round 1:] Each signer i picks ri ∈ Zp and computes Ti = riP . Then, each
publishes the witness Ti.

– [Round 2:] After receiving all witnesses, each signer i aggregates all
witnesses and obtains T =

∑n
j=1 Tj and computes the partial signature

si = ri + cxi where c = H(T,msg). In the end, each publishes si.

The signature of the message msg is σ = (c, s) where s =
∑n
j=1 si.

Key Aggregation: Given list of public keys PK = {X1, X2, . . . , Xn}, the ag-
gregated public key is X =

∑n
j=1Xj .

Verification: The verification algorithm outputs 1 if c = H(sP − cX,msg).
Otherwise, it outputs 0.

Now, we explain the k-sum attack on the CoSi protocol described in [11].

The k-sum Attack on CoSi [11]: For simplicity, we describe the attack with one
honest party having the public key X1 and one adversary having the public
key X2 and we let PK = {X1, X2}. In a nutshell, the adversary aims in this
attack to find an appropriate adversarial witnesses for each parallel session that
is started with an honest party such that the linear combination of the honest
partial signatures lets the adversary obtain a forgery. It consists of the following
steps:

1. The adversary starts qs concurrent session for an arbitrary message(s) msg(i)

with an honest signer and obtains qs-witnesses T
(1)
1 , T

(2)
1 , . . . , T

(qs)
1 of the

honest signer for each session i ∈ [1, qs]. Now, the adversary needs to select
corresponding witnesses for each session. For this selection, it continues with
the next step.

2. The adversary creates qs + 1 lists of size sL. It creates the first qs list Li
as follows: picks a random element r

(i)
2 ∈ Zp and lets T

(i)
2 = r

(i)
2 P as a

possible adversarial witness against the honest witness T
(i)
1 , computes c(i) =

H(
∑
T

(i)
1 + T

(i)
2 ,msg(i)) and adds c(i) to the list Li. The adversary repeats

this process sL times until the size of Li is sL. It creates the last list Lqs+1

differently. For each element of Lqs+1, it picks a message msg∗ and adds

−H(
∑qs
i T

(i)
1 ,msg∗) to Lqs+1. The adversary repeats this process sL times

until the size of Lqs+1 is sL.
3. Adversary finds elements c(i) in each list Li such that c(1) + c(2) + . . . c(qs) +
c(qs+1) = 0 as in the k-sum problem (Definition 5) i.e.,

c(1) + c(2) + . . .+ c(qs) = H(

qs∑
i=1

T
(i)
1 ,msg∗) (1)

Then the adversary gets the corresponding adversarial witness T
(i)
2 that

was selected in step 2 for each found element c(i) for i ∈ [1, qs]. In the

end, it responds with T
(1)
2 , T

(2)
2 , . . . , T

(qs)
2 respectively to each qs session that

was initiated in the beginning and receives partial signatures for all sessions
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s
(1)
1 , . . . , s

(qs)
qs where s

(i)
1 = r

(i)
1 + x1c

(i) and c(i) = H(T
(i)
1 + T

(i)
2 ,msg(i)).

Thus, all sessions end.
This step of the attack is equivalent to solving the k-sum problem [27] with
the lists L1, L2, . . . , Lqs+1 where k = qs + 1.

4. Now, the adversary outputs (c∗, s∗), as a forgery of the message msg∗ signed
by PK where

s∗ =

qs∑
i=1

s
(i)
1 + x2c

∗

and c∗ = H(
∑qs
i=1 T

(i)
1 ,msg∗). This is a valid forgery because

s∗P − c∗X = (

qs∑
i=1

s
(i)
1 )P + c∗x2P − c∗(X1 +X2)

= (

qs∑
i=1

T
(i)
1 + c(i)X1)− c∗X1 (2)

=

qs∑
i=1

T
(i)
1 (3)

We obtain Equation (3) by using Equation (1) that the adversary obtained
in the third step.

The main reason for the above attack comes from the fact that the adversary
selects its witnesses after seeing the honest witnesses. Therefore, three-round
Schnorr-based multi-signatures are not vulnerable to this type of attack because
the adversary has to commit its witness in the first round before seeing the honest
witness. Existing two-round multi-signature protocols overcome this issue in dif-
ferent ways. Witnesses in mBCJ [11] are generated with different group elements
for each message. This makes the adversary’s job hard to generate compatible
list Lqs+1. In Musig-DN [21], the witnesses are generated deterministically so
that the adversary cannot choose an appropriate witness as in the above attack.
We consider a different solution. We observe that the independence of the last
list Lqs+1 from the selection of the adversarial witnesses is causing to apply this
attack. Therefore, we decide to solve the issue by preventing this independence
in our scheme. Accordingly, we solve this problem in our scheme by delinearizing
each witness by a corresponding random value generated with the adversarial
and honest witnesses. We will explain this in the next sections in more detail.

3 Delinearized Witness Multi-Signature (DWMS)

We give our two-round delinearized witness multi-signature (DWMS) protocol
that replaces the witness sharing and combination steps in multi-signer Schnorr
protocol with a delinearization phase inspired by the delinearization defense [6]
against rogue key attacks. The DWMS protocol works in prime p-order group G



10 Handan Kılınç Alper and Jeffrey Burdges

with the functions H : {0, 1}∗ ×G×G→ Zp, H1 : {0, 1}∗ ×Gmn ×N×N→ Zp
and H2 : Gn × G → Zp where n ≥ 1 is the number of signers and m is a
parameter.
Public Parameter Generation (ParamGen(λ)) Given λ, ParamGen generates
a prime p order group G and a generator P ∈ G. In the end, it outputs par =
(G, P, p).
Key generation (KeyGen(par) → (sk, pk)) Each signer generates a random
private key x ∈ Zq and computes the public key X = xP .
Signing (Sign(par, xi,msg) → σ). It consists of two rounds where in the first
round signers exchange their pre-commitments and in the second round signers
generate their signature by delinearizing their pre-commitments.

– [Round 1]: Each signer i with the secret key xi ∈ {x1, x2, . . . , xn} generates
random witnesses ri1, ri2, . . . , rim ∈ Zp and computes the pre-commitments
Ti1 = ri1P, Ti2 = ri2P, . . . , Tim = rimP and broadcasts (Ti1, Ti2, . . . , Tim)
together with their public key Xi

1. This round ends when each signer i
receives all pre-commitments. Let PK = {X1, . . . , Xn} be the multi-set of
all public keys involved in the session.

– [Round 2]: On receiving (Tj1, Tj2, . . . , Tjm) from the co-signers, each signer
i sets the list of public keys PK = {X1, X2, . . . , Xn}, it computes the delin-
earization parameter of each key Xj ∈ PK: aj = H2(PK, Xj) and finds the
aggregated public key X =

∑n
j=1 ajXj . This step is necessary to prevent

rogue-key attacks. It lets the session identifier be

SID = (PK,msg, {T1j}mj=1, . . . , {Tnj}mj=1).

Then, it computes delinearization scalars for each pre-commitments Tuj
where u ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} which are

αij = H1(SID, i, j)

and computes the individual delinearized commitment of each signer u:

Tu =

m∑
j=1

αujTuj , for u ∈ [1, n]

Signer i further computes T =
∑n
u=1 Tu and c = H(msg,X, T ) and the

signature

si = (

m∑
j=1

αijrij) + caixi

and broadcasts si as its signature.
On receiving other signatures sj ’s from the co-signers, signer can compute
s =

∑n
j=1 si. The multi-signature on message msg under the aggregated

public key X is σ = (c, s). We remark that the signature is the same as the
Schnorr signature.

1 There can be a specified structure (e.g., tree structure [11]) between parties for more
efficient communication.
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Key Aggregation (KeyAg(par,PK)). It outputs the aggregated public key
X =

∑n
i=1 aiXi where ai = H2(PK, Xi)

Verification (Verify(par,X, σ,msg)). It accepts the signature if c equals to
H(msg,X, sP − cX) as in the standard Schnorr signature scheme.

Network and Computation Optimization: In the worst case, each signer sends
the first round messages (m-exponentiations) to all other signers, each signer
computes T (mn-exponentiation) and sends the partial signature to all other
signers. So, the communication complexity is O(n2) and computation complexity
is O(n) i.e., the number of exponentiations made by each signer is mn+m. We
can optimize this with the tree based network topology suggested in [11]. The
leaf nodes start the protocol by sending their pre-commitments to their parents.
When a party Pi receives pre-commitments from its children, it relays them and
its own pre-commitments Ti1, . . . , Tim to its parent. In the end, the root node
receives all of them. Then, the root node computes T =

∑n
u=1 Tu and sends T

to its children so that the leaf nodes receives them. Finally, each leaf node gives
its partial signature to its parent to be added parent’s partial signature and the
root node obtains the multi-signature. The communication complexity is O(n)
and the computation complexity is O(n) (mn+m-exponentiations) for the root
node and O(1) (m-exponentiations) for the other parties. The computation can
be distributed among other nodes where each node computes m-exponentiation
by additional 2-sub-rounds. In this case, the root node should send the pre-
commitments to the children so that the computation of T can be done from
leaves to root by aggregation.

We prove in Section 5 the security of DWMS when m = 2. However, we show
below that it is not secure when m = 1 by solving a k-sum problem. Then, we
discuss whether such an attack is possible when m > 1 to illustrate a relation
between our new problem ‘the m-entwined sum problem’ and these attacks in
DWMS.

Forgery Attack When m = 1: For simplicity, we describe the attack with one
honest party with the public key X1 and one adversary with the public key
X2 and we let PK = {X1, X2}, a1 = H2(PK, X1) and a2 = H2(PK, X2), the
aggregated key X = a1X1 + a2X2. As in the CoSi attack in Section 2.3, the
adversary wants to find adversarial witnesses for each parallel session to obtain
a forgery with the linear combinations of honest partial signatures. It consists
of the following steps:

1. The adversary starts qs-concurrent session for an arbitrary message(s) msg(i)

with an honest signer and obtain qs-pre-commitments T
(1)
11 , T

(2)
11 , . . . , T

(qs)
11

of the honest signer for each session i ∈ [1, qs]. Now, the adversary needs
to select the corresponding witnesses for each session. For this selection, it
continues with the next step.

2. The adversary creates qs + 1 lists of size sL. It creates the first qs list Li
as follows: picks a random element r

(i)
21 ∈ Zp and lets T

(i)
21 = r

(i)
21P as a

possible adversarial pre-commitments against the honest pre-commitment
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T
(i)
11 , computes the corresponding α

(i)
21 and c(i) as in the second round of

DWMS and adds c(i)

α
(i)
11

to the list Li. The adversary repeats this process

sL times until the size of Li is sL. It creates the last list Lqs+1 differently.
For each element of Lqs+1, it picks randomly an element β′ ∈ Zp and a

forgery message msg∗ and adds −H(msg∗,X,β′
∑qs
i=1 T

(i)
11 )

β′ to Lqs+1. We note

that selecting β′ is necessary to populate Lqs+1 with random elements if the
forgery msg∗ is fixed. The adversary repeats this process sL times until the
size of Lqs+1 is sL.

3. The adversary finds elements v(i) in each list Li such that v(1) + v(2) +
. . . v(qs) + v(qs+1) = 0 i.e.,

c(1)

α
(1)
11

+
c(2)

α
(2)
11

+ . . .+
c(qs)

α
(qs)
11

=
H(msg∗, X, β′

∑qs
i=1 T

(i)
11 )

β′
(4)

Then the adversary gets the corresponding adversarial pre-commitment T
(i)
21

that was selected in step 2 for each found element v(i) for i ∈ [1, qs]. In

the end, it responds with T
(1)
21 , T

(2)
21 , . . . , T

(qs)
21 respectively to each qs session

that is initiated in the beginning and receives partial signatures s
(1)
1 , . . . , s

(qs)
1

where s
(i)
1 = α

(i)
11 r

(i)
11 + x1a1c

(i) and c(i) = H(msg(i), X, α
(i)
11T

(i)
11 + α

(i)
21T

(i)
21 ).

Thus, all sessions end.

This step of the attack is equivalent to solving the k-sum problem [27] with
the lists L1, L2, . . . , Lqs+1 where k = qs + 1.

4. Now, the adversary outputs (c∗, s∗), as a forgery of the message msg∗ signed
by PK where

s∗ = β′(
s

(1)
1

α
(1)
11

+
s

(2)
1

α
(2)
11

+ . . .+
s

(qs)
1

α
(qs)
11

) + c∗a2x2

and c∗ = H(msg∗, X, T ∗) where T ∗ = β′
∑qs
i=1 T

(i)
11 .. This is a valid forgery

because c∗ = H(msg∗, X, T ∗) and

s∗P − c∗X = (β′(
s

(1)
1

α
(1)
11

+
s

(2)
1

α
(2)
11

+ . . .+
s

(qs)
1

α
(qs)
11

) + c∗a2x2)P − (c∗a1X1 − c∗a2X2)

= β′(T
(1)
11 + T

(2)
11 + . . .+ T

(qs)
11 ) + (β′

qs∑
i=1

x1a1c
(i)

α
(i)
11

)P − c∗a1X1

(5)

= T ∗ (6)

We obtain Equation (6) from Equation (5) by using Equation (4) that the
adversary obtained in the third step.
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The adversary’s attack described above is equivalent to finding a mes-

sage msg∗, a vector βββ = (β(1), . . . , β(qs)) and T
(1)
21 , T

(2)
21 , . . . , T

(qs)
21 such that

c∗ =
∑
β(i)c(i) = H(msg∗, X,

∑qs
i=1 β

(i)α
(i)
11T

(i)
11 ). In this case, the forgery

σ∗ = (c∗, s∗) of msg∗ is a valid signature signed by X1 and X2 where

s∗ =
∑qs
i=1 β

(i)s
(i)
1 + c∗a2x2. So, in the attack that we describe, βββ =

( β′

α
(1)
11

, β′

α
(2)
11

, . . . , β′

α
(qs)
11

).

Is a similar attack possible when m > 1?: Now, we informally discuss whether
an adversary can do the similar attack when m > 1. We believe that these
discussions give a motivation for our new problem ‘the m-entwined sum problem’
which we introduce in the next section.

The question we should examine is after initiating qs parallel sessions with an

honest signer and receiving honest pre-commitments T
(i)
hT
(i)
hT
(i)
h = (T

(i)
11 , T

(i)
12 , . . . , T

(i)
1m)

for each session i ∈ [1, qs] whether the adversary can find a message msg∗, a

vector βββ = (β(1), . . . , β(qs)) and (T
(1)
21 , . . . , T

(1)
2m), . . . , (T

(qs)
21 , . . . , T

(qs)
2m ) such that

c∗ =
∑

β(i)c(i) = H(msg∗, X,

qs∑
i=1

β(i)(

m∑
j=1

α
(i)
1j T

(i)
1j )). (7)

In this case, the forgery σ∗ = (c∗, s∗) of msg∗ is a valid signature signed by X1

and X2 where s∗ =
∑qs
i=1 β

(i)s
(i)
1 + c∗a2x2 and s

(i)
1 = (

∑m
i=1 α

(i)
1j r

(i)
1j ) + c(i)a1x1.

In Definition 8, we formalize this attack as a new problem and prove its hard-
ness when m > 1 in the AGM. We show that an algebraic adversary (Definition

3) cannot find βββ ∈ Zqs+1
p and T

(i)
AT
(i)
AT
(i)
A for i ∈ [1, qs] satisfying Equation (7) except

with the negligible probability as long as the discrete logarithm problem is hard
and m > 1.

In the next section, we have a break on DWMS and introduce the simple
m-entwined sum and the m-entwined sum problem and show their hardness. We
later prove the security of DWMS when m > 1 under the assumption that the
qs-OMDL and the m-entwined sum problems are hard.

4 Entwined Sum Problem

In this section, we introduce our new k-sum [27] like problem ‘the entwined
sum problem’ and show its hardness in AGM. Before giving the problem, we
introduce a version of the discrete logarithm problem (the DLR problem) that
we use in the hardness proof of our entwined sum problem. DLR is equivalent
to the discrete logarithm problem. We employ DLR because it is a more flexible
variant of the discrete logarithm problem in which an adversary finding any new
relationship among group elements interests us.

Definition 6 (Discrete Logarithm Relation (DLR) problem). Given
prime p-order group G generated by P and random Xi ∈ G for i ∈ {1, 2, . . . , k}
with k ≥ 1 then find y0, y1, . . . , yk ∈ Zp such that y0P +

∑k
i=1 yiXi = 0 where

not all yi’s are 0.
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Proposition 1. The discrete logarithm (DLOG) problem in the group structure
(G, P, p) is equivalent to the DLR problem in the same group structure.

Proof. It is clear that if DLOG problem is easy then DLR is easy. Now, we
show that if DLR is easy then DLOG is easy. Let X denote our DLOG chal-
lenge over prime p order group G generated by P . We compute the Pedersen
commitment Xi = aiX + biP for random ai, bi ∈ Zp for i ∈ {1, 2, . . . , k} and
give X1, X2, . . . , Xk, (G, P, p) to the DLR solver. In the end, the DLR solver

outputs a DLR solution y0, y1, y2, . . . , yk ∈ Zp such that y0P +
∑k
i=1 yiXi =

y0P +
∑k
i=1 yi(aiX + biP ) = 0. It follows that X =

−(y0+
∑
i yibi)∑

i yiai
P , as desired.

We remark that
∑
i yiai 6= 0 except with probability 1

p because these Pedersen
commitments Xi’s are perfectly hiding.

We first introduce a simple version of our problem that we call ‘the simple
m-entwined sum problem’. Then, we extend the simple version and give the m-
entwined sum problem. The simple m-entwined sum problem has fewer variables.
When we introduce the m-entwined sum problem, we show its hardness based
on the results in the proof of the simple m-entwined sum problem so that we
avoid dealing with more variables that may complicate the proof.

The classical k-sum problem [27] works in the field Zp (See Definition 5).
Differently, an attacker in our problem works not only in the field Zp but also in
its associated group G. This difference makes our problem hard as long as the
DLR problem is hard in the AGM.

Definition 7 (Simple m-entwined sum Problem). The challenger gener-
ates a prime p order group G with the security parameter λ and selects a gener-
ator P ∈ G. As an input, the challenger supplies the group description (p,G, P )

and vectors T
(1)
hT
(1)
hT
(1)
h ,T

(2)
hT
(2)
hT
(2)
h , . . . ,T

(qs)
hT
(qs)
hT
(qs)
h ∈ Gm to the the adversary A where T

(i)
hT
(i)
hT
(i)
h =

(T
(i)
11 , T

(i)
12 , . . . , T

(i)
1m). A has access to the random oracles H,H ′ : Ω × G → Zp

and H1 : Ω ×Gm × N→ Zp where Ω is an arbitrary set.
In the end, the adversary outputs the following vectors βββ =

(β(0), β(1), . . . , β(qs)) ∈ Zqs+1
p , Tout = (µ(1), µ(2), . . . , µ(qs)) ∈ Ωqs and ω∗ ∈ Ω. If

the following holds, then the adversary wins the simple entwined sum game:

qs∑
u=1

β(u)H ′(µ(u), T
(u)
h ) = H(ω∗, β(0)P +

qs∑
u=1

β(u)T
(u)
h ) (8)

where

T
(u)
h =

m∑
j=1

α
(u)
1j T

(u)
1j and α

(u)
1j = H1(µ(u),T

(u)
hT
(u)
hT
(u)
h , j) (9)

We call that the simple m-entwined sum problem is hard in G, if for all PPT
adversaries who access the random oracles H, H ′ and H1 at most qh,qh′ ,qh1

-
times respectively, the probability of solving the above problem is εeSum which is
negligible in terms of λ.
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We named our problem entwined because the adversary should satisfy the
same linear relationship in Zp (see the left hand side of Equation 8) and in G
(see the right hand side of Equation 8). Both linear relationships in Zp and in G
are constructed with respect to the challenges and adversarial outputs. We note
that if the simple m-entwined sum was not a hard problem then an adversary
could obtain adversarial witnesses that satisfy the Equation 7 and construct a
forgery in DWMS.

We prove that the simple m-entwined sum problem when m > 1 is hard
under the assumption that DLR problem is hard. Our hardness proof is based
on the lemma (Lemma 1) that for any choice of W ∈ G as an input to the right
hand side random oracle input of Equation 8, the adversary can obtain only one
possible solution (βββ, Tout) and vice versa. This fact makes the adversary’s job
hard to solve the problem.

Theorem 1. Assume that there exits a PPT, algebraic adversary A that solves
the simple m-entwined sum problem for m > 1 with probability εeSum in the group
structure (G, P, p) with qh≥ qh′ and qh1

random oracle queries. Then, there exists
a PPT adversary B that solves the DLR problem in the group structure (G, P, p)
with probability εdlr ≥ εeSum − qh

p −
qh1√
ppm−2 .

Proof. We construct an adversary B which simulates the simple m-
entwined sum problem against an algebraic adversary A. We denote by
Pr[eSum→ 1] = εeSum the probability that A solves the simple m-entwined
sum problem. The DLR challenger gives the group (G, P, p), the challenges

T
(1)
11 , . . . , T

(1)
1m , T

(2)
11 , . . . , T

(2)
1m , . . . , T

(qs)
11 , . . . , T

(qs)
1m ∈ G to B. B forwards them to

A as m-entwined sum challenges. B simulates the random oracles H,H ′ and H1

against A as a usual random oracle. We let

Tinp = (P, T
(1)
11 , . . . , T

(1)
1m , . . . , T

(qs)
11 , . . . , T

(qs)
1m )

which is the vector including the group elements given toA during the simulation

and we also let T
(i)
hT
(i)
hT
(i)
h = (T

(i)
11 , T

(i)
12 , . . . , T

(i)
1m).

Whenever A queries the oracle H,H ′ or H1 with an input includ-
ing a group element Y ∈ G, it gives the representation of it zzz =

(z0, z
(1)
11 , z

(1)
12 , . . . , z

(1)
1m, . . . , z

(qs)
11 , z

(qs)
12 , . . . , z

(qs)
1m ) ∈ Zmqs+1

p such that zzz · Tinp = Y
because A is algebraic (Definition 3) and Tinp are the group elements that A
has seen. If A gives two different representation of an element Y ∈ G which are
zzz ∈ Zmqs+1

p and ẑ̂ẑz ∈ Zmqs+1
p such that zzz 6= ẑ̂ẑz, B gives the vector vvv = zzz− ẑ̂ẑz to the

DLR challenger as a solution and ends the simulation against A. We remark that
vvv ·Tinp = 0 so it is a valid solution to the DLR problem. Otherwise, in the end, A
outputs βββ = (β(0), β(1), β(2), . . . , β(qs)), ω∗ and Tout = (µ(1), µ(2), . . . , µ(qs)) as a
solution of the simple entwined sum problem which satisfies the below equation
and the simulation against A ends.

qs∑
u=1

β(u)H ′(µ(u), T
(u)
h ) = H(ω∗, β(0)P +

(qs)∑
u=1

β(u)T
(u)
h ) (10)
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Then, B computes W = β(0)P +
∑(qs)
u=1 β

(u)T
(u)
h . By using the fact that

T
(u)
h =

∑m
j=1 α

(u)
1j T

(u)
1j (See Equation 9), B reorganizes W and obtains

W = β(0)P +
∑qs
u=1

∑m
j=1 β

(u)α
(u)
1j T

(u)
1j . Thus, B obtains a representation

bbb = (β(0), b
(1)
11 , . . . , b

(1)
1m, . . . , b

(qs)
11 , . . . , b

(qs)
1m ) of W in terms of Tinp where b

(u)
1j =

β(u)α
(u)
1j i.e. W = bbb · Tinp. Then, B checks the oracle queries of H with (.,W ).

We remark that there should be such query, otherwise A cannot check the cor-
rectness of its solution. When A queries (.,W ) to H, it gives a representation

aaa = (a, a
(1)
11 , . . . , a

(1)
1m, . . . , a

(qs)
11 , . . . , a

(qs)
1m ) of W such that W = aaa · Tinp. If bbb 6= aaa,

then B finds a solution of the DLR problem which is bbb−aaa and wins. Otherwise,
B aborts.

So, the success probability of B is

εdlr = Pr[A wins]− Pr[A wins|aaa = bbb]

Next, we find Pr[A wins|aaa = bbb]. We distinguish the session indexes i where
β(i) 6= 0. For this, we define an index set I = {i : β(i) 6= 0, i ∈ [1, qs]} which
includes the session indexes of non-zero elements of the vector βββ. We note that
µ(j) ∈ Tout where j /∈ I does not play any role in the correctness of the m-
entwined sum solution because β(j) = 0. Therefore, we consider Tout = {µ(j)}i∈I
in the rest of the proof.

We call that µ̂ ∈ Ω is an ith potential session where i ∈ I, for all 1 ≤ j ≤ m
if (µ̂,T

(i)
hT
(i)
hT
(i)
h , j) is queried to the random oracle H1. In other words, µ̂ ∈ Ω is the

ith potential session, if A obtained all α̂
(i)
1j = H1(µ̂,T

(i)
hT
(i)
hT
(i)
h , j) values to be able

to compute T̂
(i)
h =

∑m
j=1 α̂

(i)
1j T

(i)
1j . We denote by O(i)

H1
the set of ith potential

sessions.

We define a function φ : Zqs+1
p × (×i∈IO(i)

H1
) → Zqs+1

p . Given input β̂̂β̂β =

(β̂(0), β̂(1), . . . , β̂(qs)) ∈ Zqs+1
p and ˆTout = {µ̂(i)}i∈I ∈ (×i∈IO(i)

H1
), we define the

function φ as φ(β̂̂β̂β, ˆTout) = yyy where yyy = (y(0), y
(1)
11 , . . . , y

(1)
1m, . . . , y

(qs)
11 , . . . , y

(qs)
1m )

φ(β̂̂β̂β, ˆTout) = yyy =


y(0) = β(0)

y
(i)
1j = β̂(i)α̂

(i)
1j if i ∈ I

y
(i)
1j = 0 otherwise

(11)

We remark that (βββ, Tout) provided by A as a solution to the simple m-entwined
sum problem satisfies φ(βββ, Tout) = bbb.

Lemma 1. φ is an injective function for m > 1 except with the probability less
than

qh1√
ppm−2 .

Proof. Let’s assume that φ is not injective. Then, there exists (β̃̃β̃β, ˜Tout) 6= (β̂̂β̂β, ˆTout)
such that φ(β̃̃β̃β, ˜Tout) = φ(β̂̂β̂β, ˆTout) = yyy ∈ Zqs+1

p . In this case, β̃(i)α̃
(i)
1j = y

(i)
1j and
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β̂(i)α̂
(i)
1j = y

(i)
1j for all i ∈ I and 1 ≤ j ≤ m which implies that

α̃
(i)
11

α̂
(i)
11

= . . . =
α̃

(i)
1m

α̂
(i)
1m

(12)

So, if φ is not injective, there should exist two different potential sessions µ̂(i)

and µ̃(i) in a potential session set O(i)
H1

satisfies Equation (12). The probability

that it happens is for m > 1, given that |O(i)
H1
| ≤ qh1

Pr

[
α

(i)
11

α̂
(1)
11

= . . . =
α

(i)
1m

α̂
(1)
1m

]
≤ qh1√

ppm−2

ut

As a result of the lemma, for each representation ccc ∈ Zmqs+1
p of W such

that W = ccc · Tinp, A can have only one possible (β̃ββ, ˜Tout) except with the prob-

ability
qh1√
ppm−2 that satisfies W = β̃(0)P +

∑(qs)
u=1 β̃

(u)
∑m
j=1 α̃

(u)
1j T

(u)
1j because

φ(β̃ββ, ˜Tout) = ccc is injective. So, when A queries (.,W ) to the oracle H and gives
its representation aaa, it can have only one appropriate (βββ, Tout). Therefore, if A
finds a solution with respect to the representation aaa, in other words, if aaa = bbb,
the probability that A satisfies Equation (10) with only one possible βββ, Tout for
W ∈ G is qh

p . The reason of this is that the left hand side of the Equation
8 is fixed when A gives the representation aaa because φ is injective. Since the
probability that the fixed left hand side equals to H(ω̄,W ) for ω̄ ∈ Ω is 1

p , the

adversary’s success probability to win when aaa = bbb is qh
p .

As a result of this, εdlr ≥ εeSum − qh
p −

qh1√
ppm−2 which implies that εeSum is

negligible in terms of λ.
ut

We next give the m-entwined sum problem which is a version of the simple
m-entwined sum problem with one more variable.

Definition 8 (m-entwined sum problem). It is the same as the simple
m-entwined sum problem in Definition 7 except that the challenger gives addi-
tionally Y ∈ Gn to the adversary and the adversary additionally outputs v ∈ Zp.
Adversary wins the m-entwined sum game if

qs∑
u=1

β(u)H ′(µ(u), T (u)) = H(ω∗, vY + β(0)P +

(qs)∑
u=1

β(u)T
(i)
h ) (13)

We call that the m-entwined sum problem is hard in G, if for all PPT adver-
saries who access the random oracles H,H ′ and H1 at most qh, qh1′qh1

-times
respectively, the probability of solving above problem is εeSum which is negligible
in terms of λ.
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Theorem 2. If the simple m-entwined sum problem is hard then the m-entwined
sum problem is hard.

Proof. We construct an adversary B that breaks the simple m-entwined sum
problem given that there is another adversary A that breaks the m-entwined
sum problem. The simulation against A is trivial. B receives the simple m-

entwined sum challenges (p,G, P ) and vectors T
(1)
hT
(1)
hT
(1)
h ,T

(2)
hT
(2)
hT
(2)
h , . . . ,T

(qs)
hT
(qs)
hT
(qs)
h ∈ Gm. Then,

B picks randomly y ∈ Zp and sends the simple m-entwined sum challenges and
additionally Y = yP to A. Whenever A queries any random oracle with an input,
B queries the same to the corresponding simple m-entwined sum oracle and
forwards the answer to A. In the end, A outputs a solution βββ, Tout and ω∗, v. B
lets β = β(0) +vy and sends β̄ββ = (β, β(1), . . . , β(qs)) and the same Tout, ω∗ that A
outputted as a solution of the m-entwined sum problem. The simulation against
A is perfect. Therefore, the probability that B wins the simple m-entwined sum
problem is the same as the probability that A wins the m-entwined sum problem.
Since we know that B’s success probability is negligible, the success probability
of A is negligible in the m-entwined sum problem. ut

5 Security Proof of DWMS

In the next theorem, we prove that DWMS is a secure multi-signature scheme
in the ROM and the AGM.

Theorem 3. Suppose there exists a PPT algebraic adversary A in the AGM
against DWMS with parameters (G, P, p) and m > 1 who accesses random ora-
cles H,H1, H2 at most qh, qh1 , qh2 times respectively and breaks the security of
DWMS in the plain public-key model (Definition 2) with probability ε. Then, un-
der the 2-entwined sum assumption, there exists a PPT reduction R that solves

the qs-OMDL problem with probability εomdl ≥ ε − 2qs−2qh1−qh2+qsqh1
p − qh2√

p −
qs
p2 − εeSum where εeSum ≤ εdlr + qh

p +
qh1√
p .

Before giving the proof, we give the main ideas about how to construct a
reduction that solves the OMDL problem given that an adversary outputs a
forgery in DWMS. The qs-OMDL challenger gives qs + 1 challenges. The re-
duction selects the last challenge as its public key. In each signing query, the
reduction sends a random linear combination of the first qs OMDL challenges
as pre-commitments. Since the reduction does not know its secret key and the
discrete logarithm of pre-commitments, it obtains the partial signature while
simulating round 2 of DWMS from the DLOracle. Thus, the reduction obtains
a linear equation with qs + 1 unknowns (discrete logarithm of the OMDL chal-
lenges) in each signing session simulation. After at most qs signing oracle calls,
A outputs a forgery. Since we are in the AGM, A gives the representation of each
group element during the simulation. From these representations, the reduction
obtains qs + 1th linear equation with the qs + 1 unknowns which are the discrete
logarithm of the OMDL challenges. If the last linear equation obtained from the
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forgery is not linearly dependent on other equations obtained from DLOracle,
then the reduction solves the linear system of equations and obtains the discrete
logarithm of the OMDL challenges. If it is linearly dependent, it means that
the adversary obtained the forgery with a linear combination of the partial sig-
natures generated in each signing session so the forgery does not give any new
information and OMDL challenges cannot be found. During the proof, we see
that if it is the case, the adversary actually solves the 2-entwined sum problem
which can happen with negligible probability. Therefore, the reduction obtains
the OMDL solution by solving qs + 1 linear equations as long as the 2-entwined
sum problem is hard.

Proof. We will show that given a forgerA on the multi-signature scheme DWMS,
there exists a reduction R that can solve the qs-OMDL problem under the en-
twined sum assumption. We will use the following three notations for the adver-
sary in the proof: A is an abbreviated notation that we will use often in the text
description. A more formal and expanded notation is AH,H1,H2,Σ1,Σ2(X1, par; ρ),
which accesses various oracles (all explained later) H,H1, H2, Σ1 and Σ2 that
are simulated by the reduction R and receives the two inputs, namely X1 - the
honest signer’s public key, par- the parameters of the multi-signature scheme
and ρ - any random coins, provided by the reduction.

The formal security definition for multi-signatures is defined in Definition 2
and we denote it as Game 0. The challenger (simulated by the reduction R)
publishes the public parameters using the ParamGen algorithm and shares the
honest signer’s public key generated using the key generation algorithm KeyGen
with the adversary. The reduction also provides any random coins ρ used by the
adversary. Thereafter, the reduction simulates the random oracles H,H1, H2 for
the adversary. The reduction also simulates the honest signer for the adversary
using two oracles Σ1 and Σ2 that execute the two rounds of the Sign algorithm.
The adversary can make up to qs queries to Oracles Σ1 and Σ2. The adversary’s
challenge is to output a tuple (PK∗,msg∗, σ∗), such that the honest signer’s
public key X1 is part of the multiset PK∗, and the message msg∗ was never
queried to Oracle Σ1 and the signature σ∗ verifies for (PK∗,msg∗) while making
fewer than qh, qh1

, qh2
queries to the random oracles H,H1, H2, respectively and

qs queries to oracles Σ1 and Σ2.
The oracles that A can access are in more detail as follows in Game 0:
Oracle H,H1, H2: The reduction simulates a perfect random oracle by re-

sponding with a random group element from Zp for each previously unseen query.
Oracle Σ1: The reduction maintains a counter ` to track each query made

by the adversary. We use the notation superscript (`) to distinguish the values
specific to `th signature query. The reduction simulates a perfect response to
a signature initiation query msg from the adversary by generating randomly

chosen witnesses r
(`)
11 , r

(`)
12 . It stores all responses in a list LΣ1

. In more detail, Σ1

in Game 0 is as follows:
Oracle Σ2: The reduction simulates a perfect response to the `th signature

query from the adversary by retrieving witnesses r
(`)
11 and r

(`)
12 from List LΣ1

and
using the pre-commitments of other session participants to derive a signature
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Σ1(msg(`)) in Game 0

1: ` := `+ 1
2: r

(`)
11 , r

(`)
12 ←R Zp, T (`)

11 = r
(`)
11 P, T

(`)
12 = r

(`)
12 P

3: LΣ1 := LΣ1 ∪ {msg, T
(`)
11 , T

(`)
12 , r

(`)
11 , r

(`)
12 }

4: return (msg(`), T
(`)
11 , T

(`)
12 )

contribution. It stores all necessary elements related to the session in List LΣ2
.

In more detail, Σ2 in Game 0 is as described below:

Σ2(PK(`),msg(`), (T
(`)
i1 ,T

(`)
i2 )i∈[1,n]) in Game 0

if (msg, T
(`)
11 , T

(`)
12 , ., .) /∈ LΣ1 or |PK(`)| 6= n− 1 then return 0

retrieve (r
(`)
11 , r

(`)
12 ) from LΣ1

SID = (PK(`),msg(`), {T (`)
11 , T

(`)
12 }, . . . , {T

(`)
n1 , T

(`)
n2 })

α
(`)
i1 ← H1(SID, i, 1), α

(`)
i2 ← H1(SID, i, 2), ∀i ∈ [1, n]

T
(`)
h = α

(`)
11 T

(`)
11 + α

(`)
12 T

(`)
12

T
(`)
i = (α

(`)
i1 T

(`)
i1 + α

(`)
i2 T

(`)
i2 ), ∀i ∈ [2, n]

T (`) = T
(`)
h +

∑n
i=2 T

(`)
i

PK(`) := PK(`) ∪ {X1}
X(`) ← KeyAgg(par,PK)

a
(`)
1 = H2(PK(`), X1)
c(`) ← H(msg(`), X(`), T (`))

s
(`)
1 = α

(`)
11 r

(`)
11 + α

(`)
12 r

(`)
12 + c(`)a

(`)
1 x1

LΣ2 := LΣ2 ∪ {`,SID, (T (`), s
(`)
1 , c(`)), r

(`)
11 , r

(`)
12 , α

(`)
11 , α

(`)
12 }

return s
(`)
1

Remember that A is an algebraic adversary (See Definition 3). Therefore,
whenever it queries to oracles with a group element Z ∈ G, it also gives the

representation of them zzz ∈ Z|VVV |p such that Z = zzz.VVV in terms of the group
elements that it has seen so far which we denote in vector VVV . For the sake of the
presentation, we do not specify the representation vector of each group element
in the oracle descriptions.

In the end, we define the Game 0 which is equivalent to the game in Defi-
nition 2 as follows:

Game 0
par = (G, P, p)← ParamGen(λ)
(x1, X1)← KeyGen(par)
` := 0
(PK∗,msg∗, σ∗ = (s∗, c∗))← AH,H1,H2,Σ1,Σ2 (X1, par; ρ)
return (X1 ∈ PK∗ ∧msg∗ /∈ LΣ2

∧ Verify(par,PK∗,msg∗, σ∗))

The adversary is said to succeed in Game 0 if Game 0 returns 1 and thus
the success probability of the adversary, ε = Pr[Game 0→ 1].
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In the following, we will show how the reduction R solves the qs-OMDL
problem given a multi-signature adversary A against the DWMS scheme. To
simplify the presentation of the proof, we define a sequence of security games:
Game 1, . . . , Game 9, each game differing slightly from the previous one. We
relate the probability of the output being 1 in any two consecutive games, and
finally show that probability of solving the qs-OMDL problem is close to the
probability of the output being 1 in Game 9.

In Game 1, the reduction R uses its OMDL challenge {Y1, . . . , Yqs+1} to derive
the honest signer’s public key as well as the pre-commitments in the simulation
of Oracle Σ1. R sets its public key X1 as Yqs+1. The details of Game 1 is given
below. The gray color lines are the same as Game 0.

Game 1
(Y1, Y2, . . . , Yqs , Yqs+1)← OMDL-Game
X1 := Yqs+1

` := 0
(PK∗,msg∗, σ∗ = (s∗, c∗))← AH,H1,H2,Σ1,Σ2 (X1, par; ρ)
return(pk ∈ PK∗ ∧msg∗ /∈ LΣ2

∧ Verify(PK∗,msg∗, σ∗))

We also change the way of generating pre-commitments in Σ1 Game 1.
Instead of generating fresh witnesses r11, r12 to generate the honest signer’s pre-
commitments in Oracle Σ1, R uses the first qs OMDL challenges as follows:
T11 =

∑qs
j=1 η1jYj , T12 =

∑qs
j=1 η2jYj for randomly chosen {η1j , η2j}j∈[1,qs] from

Zp. In more detail, the oracle Σ1 in Game 1 is modified as below:

Σ1(msg(`)) in Game 1

1: ` := `+ 1
2: η

(`)
ij ←R Zp, ∀i ∈ [1, 2], ∀j ∈ [1, qs]

3: T
(`)
11 =

∑qs
j=1 η

(`)
1j Yj , T

(`)
12 =

∑qs
j=1 η

(`)
2j Yj

4: LΣ1 := LΣ1 ∪ {msg(`), T
(`)
11 , T

(`)
12 , {η

(`)
1j }j∈[1,qs], {η

(`)
2j }j∈[1,qs]}

5: return (msg(`), T
(`)
11 , T

(`)
12 )

R also modifies the oracle Σ2 in Game 1 because the discrete logarithms
of the OMDL challenges are not known to the reduction R. So, it uses the
available DL oracle from the OMDL problem, to which it can make up to qs
queries, to simulate Oracle Σ2. The reduction queries to the DL oracle on T

(`)
h +

c(`)a
(`)
1 Yqs+1 = α

(`)
11 (

∑qs
j=1 η

(`)
1j Yj) +α

(`)
12 (

∑qs
j=1 η

(`)
2j Yj) + c(`)a

(`)
1 Yqs+1 to generate

the honest signer’s signature towards the multi-signature. The details of Σ2 is
below. The different lines from the Σ2 of the previous game are in color black.

Since all ηij ’s are uniformly distributed in Zp and Yi’s are randomly chosen
elements in G (received as part of the OMDL challenge), both T11 =

∑qs
j=1 β1jYj

and T12 =
∑qs
j=1 β2jYj} are uniformly distributed over G as in Game 1. So,

Game 0 and Game 1 are identical. Therefore Pr[Game 0] = Pr[Game 1].
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Σ2(PK,msg, (T
(`)
i1 ,T

(`)
i2 )i∈[1,n]) in Game 1

if (msg, T
(`)
11 , T

(`)
12 ) /∈ LΣ1 or |PK(`)| 6= n− 1 then return 0

retrieve ({η(`)1j }j∈[1,qs], {η
(`)
2j }j∈[1,qs]) from LΣ1

SID(`) = (PK(`),msg(`), {T (`)
11 , T

(`)
12 }, . . . , {T

(`)
n1 , T

(`)
n2 })

α
(`)
i1 ← H1(SID, i, 1), α

(`)
i2 ← H1(SID, i, 2), ∀i ∈ [1, n]

T
(`)
h = α

(`)
11 T

(`)
11 + α

(`)
12 T

(`)
12

T
(`)
i = (α

(`)
i1 T

(`)
i1 + α

(`)
i2 T

(`)
i2 ), ∀i ∈ [2, n]

T (`) = T
(`)
h +

∑n
i=2 T

(`)
i

PK(`) := PK(`) ∪ {X1}
X(`) ← KeyGen(par,PK(`))

a
(`)
1 = H2(PK(`), X1)
c(`) ← H(msg(`), X(`), T (`))

s
(`)
1 ← DLOracle(T

(`)
h + c(`)a

(`)
1 Yqs+1)

LΣ2 := LΣ2 ∪ {`,SID(`), (T (`), s
(`)
1 , c(`)), {η(`)1j }j∈[1,qs], {η

(`)
2j }j∈[1,qs], α

(`)
11 , α

(`)
12 }

return s
(`)
1

Remember that, given the signing counter equals to `, when A out-
puts a group element B ∈ G with its representation vector bbb =

(b0, b
(1)
11 , b

(1)
12 , . . . , b

(`)
12 , b

(`)
12 , bqs+1) ∈ Z2`+2

p in terms of the group elements VVV =

(P, T
(1)
11 , T

(1)
12 , . . . , T

(`)
11 , T

(`)
12 , Yqs+1) that it has seen so far. In the rest of the

proof, we consider another representation of Z ∈ G in terms of vector YYY =
(P, Y1, Y2, . . . , Yqs+1) whenever A gives a representation of Z. Since all group el-
ements that A sees are the the linear combinations of Y1, Y2, . . . , Yqs , the another
representation of Z in terms YYY is as follows:

B = b0P + b
(1)
11 T

(1)
11 + b

(1)
12 T

(1)
12 + . . .+ b

(`)
11 T

(`)
11 + b

(`)
12 T

(`)
12 + bqs+1Yqs+1

= b0P + b
(1)
11

qs∑
j=1

η
(1)
1j Yj + b

(1)
12

qs∑
j=1

η
(1)
2j Yj + . . .+ b

(`)
11

qs∑
j=1

η
(`)
1j Yj + b

(`)
12

qs∑
j=1

η
(`)
2j Yj + bqs+1Yqs+1

= b0P +

qs∑
j=1

(
∑̀
i=1

b
(i)
11 η

(i)
1j + b

(i)
12 η

(i)
2j )︸ ︷︷ ︸

bj

Yj + bqs+1Yqs+1 = b0P +

qs+1∑
i=1

bjYj (14)

In Game 2, R works as in the previous game except that it outputs abort
if H1 ever outputs 0. Since H1 is a random oracle, the probability of aborting
in Game 2 is

qh1
p . From the difference lemma, Pr[Output(Game 2) = 1] ≥

Pr[Output(Game 1) = 1]− qh1
p .

In Game 3, R works as in the previous game except that it outputs

abort if α
(i)
11T

(i)
11 + α

(i)
11T

(i)
11 = 0 for a session i. Remark that α

(i)
11T

(i)
11 +

α
(i)
12T

(i)
12 = (α

(i)
11 (

∑qs
j=1 η

(i)
1j yj) + α

(i)
12 (

∑qs
j=1 η

(i)
2j yj))P = τ (i)P . Therefore, if
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α
(i)
11T

(i)
11 + α

(i)
12T

(i)
12 = 0 for a session i, it means that either T

(i)
11 = T

(i)
12 = 0 or

α
(i)
11 (

∑qs
j=1 η

(i)
1j yj) = −α(i)

12 (
∑qs
j=1 η

(i)
2j yj) given that T

(i)
11 6= 0, T

(i)
12 6= 0. Therefore,

the probability of this event for a session i is (1− (1− 1
p2 )qs)+(1− (1− qh1

p )qs) ≤
(1 − (1 − qs

p2 )) + (1 − (1 − qh1qs
p )) = qs

p2 +
qh1qs
p

2. From the difference lemma,

Pr[Output(Game 3) = 1] ≥ Pr[Output(Game 2) = 1]− qsqh1
p − qs

p2 .

In Game 4, R works as in the previous game except that it also generates a ma-
trix M of size ` ≤ qs after receiving the forgery and it aborts the game if the rank of

M is not `. In more details,R obtains {η(i)
1j }j∈[1,qs], {η

(i)
2j }j∈[1,qs], α

(i)
11 , α

(i)
12 , a

(i)
1 , c(i)

from LΣ2
[i] for all i ∈ [1, `]. Then, R constructs a matrix M of size (`× qs + 1) as

below:

M =


α
(1)
11 η

(1)
11 + α

(1)
12 η

(1)
21 . . . α

(1)
11 η

(1)
1qs

+ α
(1)
12 η

(1)
2qs

a
(1)
1 c(1)

α
(2)
11 η

(2)
11 + α

(2)
12 η

(2)
21 . . . α

(2)
11 η

(2)
1qs

+ α
(2)
12 η

(2)
2qs

a
(2)
1 c(2)

: . . . : :

α
(`)
11 η

(`)
11 + α

(`)
12 η

(`)
21 . . . α

(qs)
11 η

(`)
1qs

+ α
(`)
12 η

(`)
2qs

a
(`)
1 c(`)


After the construction of M, if the rank of M is not `, R aborts. Clearly, the

only difference of Game 4 from Game 3 is aborting when the rank of M is not
`. Therefore, we analyse the probability of abort in Game 4.

We assume next that the qs-OMDL challenger never selects yi = 0. If there
was yi = 0, R wins the qs-OMDL game without the forgery by A i.e., R knows
the discrete logarithm of Yi = 0 and receives discrete logarithm of rest of the
challenges from the DL- oracle.

We first consider the case where ` < qs. We remark that given that y1 6= 0,

T
(i)
11 and T

(i)
12 are uniformly random even if we fix η

(i)
1j , η

(i)
2j for j > 1 (i.e., fix all

η
(i)
1j , η

(i)
2j ’s except η

(i)
11 , η

(i)
21 ) and all y1, y2, . . . , y`. values. Therefore, conditioned on

T
(i)
11 , T

(i)
12 and y1 6= 0, all η

(i)
1j , η

(i)
2j -values for j > 1 are independent and uniformly

distributed i.e.,

Pr
[
η

(i)
1j , η

(i)
2j ,∀j > 1|T (i)

11 , T
(i)
12

]
=

Pr
[
T

(i)
11 , T

(i)
12 |η

(i)
1j , η

(i)
2j ,∀j > 1

]
Pr

[
η

(i)
1j , η

(i)
2j ,∀j > 1

]
Pr

[
T

(i)
11 , T

(i)
12

]
=

1
p2

1
p2qs−2

1
p2

=
1

p2qs−2

We remark that we can say only η
(i)
1j , η

(i)
2j values for j > 1 are independent and

uniformly distributed because Pr
[
η

(i)
1j , η

(i)
2j ,∀j ≥ 1|T (i)

11 , T
(i)
12

]
=

1
pqs
1
p

= 1
p2qs−2 6=

1
p2qs . Therefore, all column vectors from 2nd column vector to the qths column

2 Remark that α
(i)
11 = H1(SID(i), 1, 1), α

(i)
12 = H1(SID(i), 1, 2). So, the probability of

having α
(i)
11 (

∑qs
j=1 η

(i)
1j yj) = −α(i)

12 (
∑qs
j=1 η

(i)
2j yj) given that T

(i)
11 6= 0, T

(i)
11 6= 0 is not a

collision probability.
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vector are uniformly random and independent random variables given that α-
values are not 0 (See Game 2). In other words, we have a random submatrix
M̄ of size (` × qs − 1) which is M without the first and the last column. It is
a known fact that random M̄’s rank is ` except with the probability `

p where

` ≤ qs − 1 (See Appendix A). Therefore, the rank of M is ` ≤ qs − 1 except
with the probability `

p because the rank of a matrix is defined as the maximum

number of linearly independent columns (or rows) and the columns of M̄ are
also M’s columns. Remember that the rank of M is at most `. In other words,
Pr[Rank(M) < `|` < qs ] ≤ `

p ≤
qs−1
p .

Now, we assume that ` = qs. In this case, M̄ without the first and last column
of M consists of independent and random column vectors because of the same
reasoning as above. Let’s define a vector τττ = (τ (1), τ (2), . . . , τ (qs)) ∈ Zqsp where

τ (i)P = α
(i)
11T

(i)
11 +α

(i)
11T

(i)
11 = (α

(i)
11 (

∑qs
j=1 η

(i)
1j yj)+α

(i)
12 (

∑qs
j=1 η

(i)
2j yj))P . Remember

that τττ is a non-zero vector i.e., τττ 6= 000 because of Game 3.
We can write the first column of M as a linear combination of τττ and the

column vectors of M̄ i.e.,

α
(i)
11 η

(i)
11 + α

(i)
12 η

(i)
21 =

−1

y1
τ (i) −

qs∑
j=2

yj
y1

(α
(i)
11 η

(i)
1j + α

(i)
12 η

(i)
2j ) (15)

since 1
y1
6= 0 and y1 6= 0. Next, we prove a lemma that implies that if τττ and the

column vectors of M̄ are linearly independent, then the first column vector and
the column vectors of M̄ (i.e, the first qs columns of M) are linearly independent.

Lemma 2. Assume that there exist vectors v1v1v1, v2v2v2, v3v3v3, . . . , vqsvqsvqs in Zqsp and an-
other vector v′1v

′
1v
′
1 ∈ Zqsp such that v′1v

′
1v
′
1 =

∑qs
j=1 λjvjvjvj where λj ∈ Zp \ {0}. If

v1v1v1, v2v2v2, v3v3v3, . . . , vqsvqsvqs are linearly independent, then v′1v
′
1v
′
1, v2v2v2, v3v3v3, . . . , vqsvqsvqs are linearly in-

dependent,

Proof. Assume that it is not the case to prove by contradiction i.e.,
v′1v
′
1v
′
1, v2v2v2, v3v3v3, . . . , vqsvqsvqs are not linearly independent while v1v1v1, v2v2v2, v3v3v3, . . . , vqsvqsvqs are linearly

independent. In this case, there exists a non-zero vector θθθ = (θ2, θ3, . . . , θqs) ∈
Zqs−1
p such that v′1v

′
1v
′
1 =

∑qs
i=2 θivjvjvj . We also know that v′1v

′
1v
′
1 =

∑qs
j=1 λjvjvjvj . These two

imply that v1v1v1 =
∑qs
j=2

θj−λj
λ1

vjvjvj which is a contradiction with the linear indepen-

dence of v1v1v1, v2v2v2, v3v3v3, . . . , vqsvqsvqs . Remark that not all
θj−λj
λ1

= 0 because v1v1v1 6= 000 due to
the fact that v1v1v1, v2v2v2, v3v3v3, . . . , vqsvqsvqs are linearly independent. ut

Lemma 2 shows that if we show τττ and the column vectors of M̄ are linearly
independent, then the first column vector and the column vectors of M̄ are linearly
independent because of Equation (15). Next, we show another lemma to relate
the linear independence of τττ and the column vectors of M̄.

Lemma 3. Given a fixed vector τττ ∈ Zqsp where τττ 6= 000 and uniformly and inde-
pendently chosen vectors vvv2, vvv3, . . . , vvvqs in Zqsp , τττ and vvv2, vvv3, . . . , vvvqs are linearly
independent except with the probability qs

p .
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Proof. τττ and vvv2, vvv3, . . . , vvvqs are linearly dependent if either

1. vvv2, vvv3, . . . , vvvqs are linearly dependent or
2. τττ and vvv2, vvv3, . . . , vvvqs are linearly dependent given that vvv2, vvv3, . . . , vvvqs are

linearly independent.

The probability of condition 1 is 1− qs−1
p since vvv2, vvv3, . . . , vvvqs are randomly

and independently selected (See Appendix A). Therefore, they span a random
vector space V with the size pqs−1 except with the probability qs−1

p .
If condition 2 does not hold, it means that τττ is not in the vector space V.

Since V is a random vector space of size pqs−1, the probability that a fixed τττ is

not in it is pqs−pqs−1

pqs = 1− 1
p . So, condition 2 holds with the probability 1

p .

Hence, the probability that they are linearly dependent is qs−1
p + 1

p = qs
p . ut

When A gives a forgery, we set the first qs columns of M and we fix τττ . Thanks
to Lemma 3, fixed τττ and independent and random column vectors of M̄ are lin-
early independent except with the probability qs

p . By applying Lemma 2 thanks

to the Equation (15), we conclude that the first qs columns of M (equivalently
the first column of M and the column vectors of M̄) are linearly independent. It
means that the rank of M is qs except with the probability qs

p . In other words,

Pr[Rank(M) < `|` = qs ] ≤ qs
p .

As a result, the rank of M is ` except with the probability

Pr[Rank(M) < `] = Pr[Rank(M) < `|` < qs ] + Pr[Rank(M) < `|` = qs ]

≤ qs − 1

p
+
qs
p

By the difference lemma, Pr[Output(Game 4) = 1] ≥ Pr[Output(Game 3) =
1]− 2qs−1

p .

In Game 5, the reduction simulates all the oracles as in the previous game
except H2. R defines a map mapkey from Zp → Z∗p. When (PK, Xi) ∈ Zn′p × Zp
is queried to H2 and Xi ∈ PK, R finds the aggregated public key which is X ←
KeyAgg(par,PK) i.e, X =

∑
Xi∈PKH2(PK, Xi)Xi. Then, it checks whether X

is mapped to a set in mapkey. If it is not mapped, it lets mapkey(X) = PK.
Otherwise, it checks whether mapkey(X) = PK. If mapkey(X) 6= PK, R aborts.
When A first time queries with a list of PK to H2, it actually commits PK to
X without knowing it. Therefore, the probability that an aggregated public key
maps to two list of public key sets PK,PK′ is b

p ≤
qh2
p where b is the number of

elements that is mapped. By the difference lemma, Pr[Output(Game 5) = 1] ≥
Pr[Output(Game 4) = 1]− qh2

p .

In Game 6, the reduction simulates all the oracles as in the previous game
except H1. R defines a map mapcommit from Zp → {0, 1}∗. In this game, we call
(SID, i, j) is a legit input for H1 if SID = (PK,msg, {T11, T12}, . . . , {Tn1, Tn2}) ∈
Gn × {0, 1}∗ × G2n, (msg, T11, T12) ∈ listΣ1

, 1 ≤ i ≤ n and 1 ≤ j ≤ 2. In
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short, (SID, i, j) is legit if SID is a valid session id for the second round of the
signing the message msg by Σ2. When legit (SID, i, j) is queried to H1, R finds
the commitment T =

∑n
i=1 αi1Ti1 + αi2Ti2 where αij = H1(SID, i, j). Then, it

checks whether T is mapped to a value in mapcommit. If it is not mapped, it
lets mapcommit(T ) = SID. Otherwise, it checks whether mapcommit(T ) = SID. If
mapcommit(T ) 6= SID, R aborts. Similarly to Game 5, when A first time queries
with legit SID to H1, it actually commits SID to the value T without knowing it.
Therefore, the probability that T maps to two session ids SID,SID′ is b

p ≤
qh1
p

where b is the number of elements that is mapped. By the difference lemma,
Pr[Output(Game 6) = 1] ≥ Pr[Output(Game 5) = 1]− qh1

p

In Game 7, the reduction simulates all the oracles as in the previous game
except H2. When the adversary queries with PK = {X1, X2, . . . , Xn} and Xj ∈
G with the representation vectors of each group element in PK, R obtains the

representation xixixi ∈ Z|YYY |p of the each group element Xi ∈ PK in terms of YYY . If
Yqs+1, Xj ∈ PK (the valid key aggregation input), the reduction simulates H2 as
follows: We assume that X1 = Yqs+1 without loss of generality and there exists
a key database DBkey which stores the aggregated key and its representation. R
computes X ← KeyAgg(par,PK) and if DBkey[X] is empty, it does the following:

R first obtains the representation of adversarial aggregated key X̃ =
∑n
i=2 aiXi

which is z̃ =
∑n
i=2 aixixixi in terms of YYY . Then, it lets zzz = z̃zz+(0, 0, . . . , 0, a1) be the

representation of the aggregated public key of PK (i.e., X = KeyAgg(par,PK) =
X̃ + a1Yqs+1) in terms of YYY where (0, 0, . . . , 0, a1) is a representation a1Yqs+1.
If z̃qs+1 = −a1, R aborts and the simulation ends. If it is not the case, R
stores zzz to the valid key database DBkey[X] = zzz. We remark that z̃qs+1 =∑n
i=2 aixixixi[qs + 1] is random because R does this check when A queries first

time with the valid key aggregation input PK, Xj and its representations to
H2. In other words, R does this check when A does not know a1, a2, . . . , an.
The later queries of the same input with different representation of keys are
not considered in this check. Since a1 is the random oracle output and z̃qs+1

is random, the probability that a1 = −z̃qs+1 less than or equal to 1√
p . By the

difference lemma, Pr[Output(Game 7) = 1] ≥ Pr[Output(Game 6) = 1]− qh2√
p .

In Game 8, the reduction simulates all the oracles as in the previous game.
Differently, after receiving the forgery, it constructs a new matrix M′ by adding a
new row vvv = (t1 +c∗z1, t2 +c∗z2, . . . , tqs+1 +c∗zqs+1) to M and it aborts the game
if the rank of the new matrix M′ is less than ` + 1. Here, ttt = (t0, t1, . . . , tqs+1)
is the representation of T ∗ = s∗P − c∗X∗ where X∗ = KeyAgg(par,PK∗) is
the aggregated public key of the forgery. The vector zzz = (z0, z1, z2, . . . , zqs+1) is
DBkey[X∗] which is a representation of X∗ as defined in Game 7.
R can obtain the representation ttt by checking the H-oracle queries with the

input (msg∗, X∗, s∗P − c∗P ) where ttt must be given. We remark that A has
to query with the input (msg∗, X∗, s∗P − c∗P ) to output c∗ as a part of the
forgery. DBkey[X∗] cannot be null because A needs the aggregated public key
for the forgery. We remark that s∗P − c∗X∗ = ttt · YYY and c∗X∗ = c∗(zzz · YYY )
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M
′ =


α
(1)
11 η

(1)
11 + α

(1)
12 η

(1)
21 . . . α

(1)
11 η

(1)
1qs

+ α
(1)
12 η

(1)
2qs

a
(1)
1 c(1)

: . . . : :

α
(`)
11 η

(`)
11 + α

(`)
12 η

(`)
21 . . . α

(`)
11 η

(`)
1qs

+ α
(`)
12 η

(`)
2qs

a
(`)
1 c(`)

t1 + c∗z1 . . . tqs + c∗zqs tqs+1 + c∗zqs+1


Let’s assume that the rank of M′ is less than `+ 1 to analyse the probability

that it happens. We show next that if it happens, A solves the 2-entwined sum

problem (Definition 8) with the challenges (p,G, P ), T
(i)
hT
(i)
hT
(i)
h = (T

(i)
11 , T

(i)
12 ) for i ∈

[1, `] and Y = Yqs+1, the random oracles H̄ : ({0, 1}∗ × G) × G → Zp, H̄ ′ :
(Gn×{0, 1}∗×G2n)×G→ Zp and H̄1 : (Gn×{0, 1}∗×G2n)×G2×N→ Zp for
n ≥ 1. The random oracles H̄, H̄ ′, H̄1 are defined as follows where each stores
their responses in the database DBH̄ ,DBH̄′ and DBH̄1

, respectively:

H̄(ω, T ):
input: ω = (msg,X) ∈ {0, 1}∗ × G and ttt = (t0, t1, t2, . . . , tqs+1) which is
the representation of T
if (ω,W ) /∈ DBH̄ :

if DBkey[X] 6= null :
zzz ← DBkey[X]
ρ1 ← zqs+1

ρ2 ← tqs+1

DBH̄ [(ω, T )]← ρ1H(ω, T ) + ρ2

else:
DBH̄ [(ω, T )]←$Zp

return DBH̄ [(ω, T )]

H̄ is a random oracle because H is a random oracle and ρ1 is not 0 in this
game (See Game 7).

H̄ ′(µ, Th):

input: µ = (PK,msg, {T11, T12}, . . . , {Tn1, Tn2}) ∈ Gn × {0, 1}∗ ×G2n

if (µ, Th) /∈ DBH̄′ :
α11 ← H1(µ, 1, 1), α12 ← H1(µ, 1, 2)

if Th =
∑2
j=1 α1jT1j :

α
(`)
i1 ← H1(µ, i, 1), α

(`)
i2 ← H1(µ, i, 2),∀i ∈ [2, n]

T = Th +
∑n
i=2(α

(`)
i1 Ti1 + α

(`)
i2 Ti2)

X ← KeyAgg(par,PK)
a1 ← H2(PK, X1)
c = H(msg,X, T )
DBH̄′ [(µ, Th)]← a1c

else: DBH̄′ [(µ, Th)]←$Zp
return DBH̄′ [(µ, Th)]
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H̄ ′ is a random oracle because H1, H2 and H are random oracles and also
there exists no PK 6= PK′ that aggregates to same X (See Game 5) and there
exists no µ 6= µ′ that maps to same T (See Game 6).

H̄1(µ, T, j):

input: µ = (PK,msg, {T11, T12}, . . . , {Tn1, Tn2}) ∈ Gn × {0, 1}∗ ×G2n

if (µ, T, j) /∈ DBH̄1

if T = {T11, T12}
DBH̄1

[(µ, T, j)]← H1(µ, 1, j)
else: DBH̄1

[(µ, T, j)]← Zp
else: DBH̄1

[(µ, T, j)]← Zp
return DBH̄1

[(µ, T, j)]

H̄1 is a random oracle because H1 is a random oracle.

Now, we show why Rank(M′) < ` implies that A finds a 2-entwined sum
solution: We remark that the rank of M′ must be ` if it is less than `+1 thanks to
Game 4. Therefore, if the last row of M′ is linearly dependent, then there exists a

unique vector βββ = (β(1), β(2), . . . , β(`)) such that tj+c∗zj =
∑`
i=1 β

(i)(α
(i)
11 η

(i)
1j +

α
(i)
12 η

(i)
2j ) for j ∈ [1, qs] and tqs+1 + c∗zqs+1 =

∑`
i=1 β

(i)a
(i)
1 c(i). We remark that

in this case s∗ = t∗ + c∗(
∑n
i=2 a

∗
i xi + a∗1yqs+1) = t0 + (

∑qs+1
i=1 tiyi) + c∗z0 +

c∗(
∑qs+1
i=1 ziyi) = t0 + c∗z0 +

∑qs
i=1 β

(i)s(i) as in the m-entwined sum attack that
we show in Section 3. Accordingly, if we reorganize T ∗ = s∗P − c∗X, we obtain
the following:

T ∗ = (t0 +

qs+1∑
j=1

yjtj)P

= t0P + (

qs∑
j=1

yj(
∑̀
i=1

β(i)(α
(i)
11 η

(i)
1j + α

(i)
12 η2j)− c∗zj))P + tqs+1Yqs+1

= t0P +
∑̀
i=1

β(i)(α
(i)
11T

(i)
11 + α

(i)
12T

(i)
12 )−

qs∑
j=1

c∗zjYj + tqs+1Yqs+1 (16)

= (t0 − c∗(
n∑
i=2

aixi − z0))P +
∑̀
i=1

β(i)T
(i)
h + (tqs+1 − c∗(a∗1 − zqs+1))Yqs+1

(17)

= β(0)P +
∑̀
i=1

β(i)T
(i)
h + vYqs+1 (18)

We obtain from Equation (16) to Equation (17) by using the fact that∑qs
j=1 c

∗zjYj = c∗(X∗ − zqs+1Yqs+1 − z0P ) = c∗((
∑n
i=2 a

∗
i xi)P + a∗1Yqs+1 −



Two-Round Trip Schnorr Multi-Signatures via Delinearized Witnesses 29

zqs+1Yqs+1− z0P ). Since the forgery is a valid signature, c∗ = H(msg∗, X∗, T ∗).
c∗ satisfies the following because Rank(M′) = ` that

zqs+1c
∗ + tqs+1 =

∑̀
i=1

β(i)a
(i)
1 c(i).

These imply that

H̄(msg∗, X∗, T ∗) =
∑̀
i=1

β(i)H̄ ′(SID(i), T
(i)
h )

Therefore, if the rank of M′ is `, it means that A generates the forgery by
solving 2-entwined sum problem with the solution βββ = (β(0), β(1), . . . , β(`)),
Tout = (SID(1), SID(2), . . . , SID(`)), ω = (msg∗, X∗) and v. We remark that
the adversary knows the solution βββ because β(0) = t0−c∗(

∑n
i=2 aixi−z0) and for

i ∈ [1, `], β(i) =
t
(i)
11 +z

(i)
11

α
(i)
11

=
t
(i)
12 +z

(i)
12

α
(i)
12

(See Equation (14)), v = tqs+1−c∗(a∗1−zqs+1)

which are generated by the parameters selected by the adversary.
Since the probability of having 2-entwined sum problem solution is εeSum,

the probability that the rank of M′ is ` is εeSum. Therefore, Pr[Game 8 = 1] ≥
Pr[Game 7 = 1]− εeSum.

In Game 9, R obtains the OMDL solution by solving a linear system of
equations. If ` < qs, R can make qs − ` more DL-query. So, it queries
Y`+1, Y`+2, . . . , Yqs to the DL-oracle and obtain y`+1, y`+2, . . . , yqs . Now, it needs
to learn the DL of Y1, Y2, . . . , Y`, Yqs+1.

Given that s∗ = t∗ + c∗(a1yqs+1 +
∑n
i=2 aixi) = t0 +

∑qs+1
j=1 tjyj + c∗(z0 +∑qs+1

j=1 zjyj) = t0 + c∗z0 +
∑qs+1
j=1 (tj + c∗zj)yj , R obtains a linear equation with

`+ 1 unknowns y1, y2, . . . , y`, yqs+1 i.e, s̄ = s∗ − t0 − c∗z0 −
∑qs
j=`+1,if `<qs

(tj +

zj)yj =
∑`
j=1(tj + c∗zj)yj + (tqs+1 + c∗zqs+1)yqs+1 Similarly, given that for u ∈

[1, `], s
(u)
1 =

∑qs
i=1 yi(α

(u)
11 η

(u)
1i + α

(u)
12 η

(u)
2i ) + c(u)a

(u)
1 yqs+1 R also obtains `-more

linear equations such that s̄
(u)
1 = s

(u)
1 −

∑qs
j=`+1,if `<qs

(α
(u)
11 η

(u)
1j + α

(u)
12 η

(u)
2j )yj =∑`

j=1(α
(u)
11 η

(u)
1j + α

(u)
12 η

(u)
2j )yj + c(u)a

(u)
1 yqs+1.

In the end, R obtains a unique solution y1, y2, . . . , y`, yqs+1 by solving the
following linear equation system M′yyy = s̄̄s̄s where yyy = (y1, y2, . . . , y`, yqs+1) and

s̄̄s̄s = (s̄
(1)
1 , s̄

(2)
1 , . . . , s̄

(`)
1 , s̄)

We remark that matrix of the linear system of equations is M′ without columns
`+ 1, `+ 2, . . . , qs. Therefore, its rank is `+ 1 which is the reason of the unique
solution. Hence, Pr[Game 9 = 1] = Pr[Game 8 = 1] = εomdl.

ut

6 Conclusion

In this paper, we introduce our new Schnorr-based two-round multi-signature
scheme DWMS. Our protocol is one of the few provably secure protocols among
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the existing secure Schnorr-based two-round multi-signature schemes [11,20,21].
Drawing upon the lessons learned from the k-sum attack [11], we proved the
security of our scheme with special care. We introduced the m-entwined sum
problem that simplifies the security proof of DWMS. We showed that the m-
entwined sum problem is hard in the AGM as long as the DLOG problem is
hard. We believe that the m-entwined sum problem shows a way to improve
and simplify the security proofs which require excluding a specific relationship
between the group and the field in the ROM. As future work, it would be in-
teresting to show the hardness of the m-entwined sum problem in the standard
model.
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A Rank of a Random Matrix

Assume that we have a random matrix M of size (`× `′). Given that ` ≤ `′, the
rank of M can be at most `.

Let’s define another event Ei where the first i row vectors of M are linearly
independent. In this case, Pr[E1 ] = 1− 1

p`
which is the probability that a random

vector equals to 000 (vector consisting of 0). In this case,

Pr[E` ] = Pr[E`|E`−1 ] Pr[E`−1 ] + Pr[E`|¬E`−1 ] Pr[¬E`−1 ]︸ ︷︷ ︸
0

= Pr[E1 ]
∏̀
k=2

Pr[Ek|Ek−1 ]︸ ︷︷ ︸
(1− pk−1

p`
)

=
∏̀
k=1

(1− pk−1

p`
) ≤

∏̀
k=1

(1− pk−1

p`
) ≤ (1− 1

p
)` ≤ 1− `

p

So, the probability of M’s rank is less than ` is at most `
p .
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