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Abstract

We show that the most common flavors of noisy leakage can be simulated in the information-
theoretic setting using a single query of bounded leakage, up to a small statistical simulation
error and a slight loss in the leakage parameter. The latter holds true in particular for one of
the most used noisy-leakage models, where the noisiness is measured using the conditional
average min-entropy (Naor and Segev, CRYPTO’09 and SICOMP’12).

Our reductions between noisy and bounded leakage are achieved in two steps. First,
we put forward a new leakage model (dubbed the dense leakage model) and prove that
dense leakage can be simulated in the information-theoretic setting using a single query of
bounded leakage, up to small statistical distance. Second, we show that the most common
noisy-leakage models fall within the class of dense leakage, with good parameters. Third,
we prove lower bounds on the amount of bounded leakage required for simulation with sub-
constant error, showing that our reductions are nearly optimal. In particular, our results
imply that useful general simulation of noisy leakage based on statistical distance and mutual
information is impossible. We also provide a complete picture of the relationships between
different noisy-leakage models.

Our result finds applications to leakage-resilient cryptography, where we are often able to
lift security in the presence of bounded leakage to security in the presence of noisy leakage,
both in the information-theoretic and in the computational setting. Additionally, we show
how to use lower bounds in communication complexity to prove that bounded-collusion
protocols (Kumar, Meka, and Sahai, FOCS’19) for certain functions do not only require
long transcripts, but also necessarily need to reveal enough information about the inputs.
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1 Introduction

1.1 Background

The security analysis of cryptographic primitives typically relies on the assumption that the
underlying secrets (including, e.g., secret keys and internal randomness) are uniformly random
to the eyes of the attacker. In reality, however, this assumption may simply be false due to the
presence of so-called side-channel attacks [Koc96, KJJ99, AARR03], where an adversary can
obtain partial information (also known as leakage) on the secret state of an implementation of
a cryptographic scheme, by exploiting physical phenomena.

Leakage-resilient cryptography [ISW03, MR04, DP08] aims at bridging this gap by allowing
the adversary to launch leakage attacks in theoretical models too. The last decade has seen an
impressive amount of work in this area, thanks to which we now dispose of a large number of
leakage-resilient cryptographic primitives in different leakage models. We refer the reader to
the recent survey by Kalai and Reyzin [KR19] for an overview of these results.

Bounded leakage. From an abstract viewpoint, we can think of the leakage on a random
variable X (corresponding, say, to the secret key of an encryption scheme) as a correlated
random variable Z = f(X) for some leakage function f that can be chosen by the adversary.
Depending on the restriction1 we put on f , we obtain different leakage models. The first such
restriction, introduced for the first time by Dziembowski and Pietrzak [DP08], is to simply
assume that the length ` ∈ N of the leakage Z is small enough. This yields the so-called
Bounded Leakage Model. Thanks to its simplicity and versatility, this model has been used to
construct many cryptographic primitives that remain secure in the presence of bounded leakage.

Noisy leakage. A considerable limitation of the Bounded Leakage Model is the fact that,
in real-world side-channel attacks, the leakage obtained by the attacker is rarely bounded in
length. For instance, the power trace on a physical implementation of AES typically consists of
several Megabytes of information, which is much larger than the length of the secret key.

This motivates a more general notion of noisy leakage, where there is no upper bound on
the length of Z but instead we assume the leakage is somewhat noisy, in the sense that it
does not reveal too much information about X. It turns out that the level of noisiness of the
leakage can be measured in several ways, each yielding a different leakage model. The first such
model, proposed for the first time by Naor and Segev [NS09, NS12] in the setting of leakage-
resilient public-key encryption, assumes that the uncertainty of X given Z drops at most by
some parameter ` ∈ R>0. The latter can be formalized by means of conditional2 average min-
entropy [DORS08], i.e. by requiring that H̃∞(X|Z) ≥ H∞(X)− `. In this work, we will refer to
this model as the Min-Entropy-Noisy (ME-Noisy) Leakage Model. Dodis, Haralambiev, López-
Alt, and Wichs [DHLW10] considered a similar model, which we refer to as the Uniform-Noisy
(U-Noisy) Leakage Model, where the condition about the min-entropy drop is defined w.r.t. the
uniform distribution U (rather than on X which may not3 be uniform).

Another variant of noisy leakage was pioneered by Prouff and Rivain [PR13] (building
on previous work by Chari, Jutla, Rao, and Rohatgi [CJRR99]), who suggested to measure
the noisiness of the leakage by bounding the Euclidean norm between the joint distribution
PXZ and the product distribution PX ⊗ PZ with some parameter η ∈ (0, 1). Follow-up

1Clearly, there must be some restriction as otherwise f(X) = X and there is no hope for security.
2Intuitively, the conditional average min-entropy of a random variable X given Z measures how hard it is to

predict X given Z on average (by an unbounded predictor).
3For instance, in the setting of public-key encryption [NS09], the random variable X corresponds to the

distribution of the secret key SK given the public key PK , which may not be uniform.
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works by Duc, Dziembowski, and Faust [DDF14, DDF19] and by Prest, Goudarzi, Martinelli,
and Passelègue [PGMP19] replaced the Euclidean norm, respectively, with the statistical dis-
tance and the mutual information, yielding what we refer to as the SD-Noisy Leakage and
the MI-Noisy Leakage Models. More precisely,4 Duc, Dziembowski, and Faust considered a
strict subset of SD-noisy leakage—hereafter dubbed DDF-noisy leakage—for the special case
where X = (X1, . . . , Xn), for some fixed parameter n ∈ N, and the function f has a type
f = (f1, . . . , fn) such that ∆(PXi ⊗ PZi , PXiZi) ≤ η for each Xi and Zi = fi(Xi). All of these
works studied noisy leakage in the setting of leakage-resilient circuit compilers (see §1.4).

The different flavors of noisy leakage discussed above capture either a more general class of
leakage functions than bounded leakage (as in the case of ME-noisy and U-noisy leakage), or
an orthogonal class of leakage functions (as in the case of SD-noisy and MI-noisy leakage). On
the other hand, it is usually easiest (and most common) to prove security of a cryptographic
primitive against bounded leakage, whereas extending the analysis to other types of noisy leak-
age requires non-trivial specialized proofs for each primitive. Motivated by this situation, we
consider the following question:

Can we reduce noisy-leakage resilience
to bounded-leakage resilience in a general way?

1.2 Our Results

In this work, we answer the above question to the positive in the information-theoretic setting.
In a nutshell, we achieve this by proving that a novel and very general leakage model, which
we refer to as the Dense Leakage Model and that encompasses all the aforementioned noisy-
leakage models, can be simulated almost for free (albeit possibly inefficiently) using a single
query of bounded leakage. Our result allows us to show in a streamlined way that many
cryptographic primitives which have only been proved to be resilient against bounded leakage
are also secure against noisy leakage, with only a small loss in parameters. Importantly, the
latter does not only hold for cryptographic schemes with information-theoretic security, but also
for ones with computational security only. We elaborate on our contributions in more details
in the paragraphs below, and refer the reader to §1.3 for a more technical overview.

Simulating dense leakage with bounded leakage. As the starting point for our work, in
§4, we introduce a meaningful simulation paradigm between leakage models. Informally, given
some random variable X and two families of leakage functions F and G on X, we say F is
ε-simulatable from G if for every f ∈ F we can simulate (X, f(X)) to within statistical distance
ε using a single query of the form g(X) for some g ∈ G.

Taking into account the above simulation paradigm, the question we tackle is whether we
can have simulation theorems stating that different noisy-leakage families F are ε-simulatable
from the the family G of `-bounded leakage (for some small ε). We prove such a simulation
theorem for a new leakage model that we call dense leakage.

In order to define the Dense Leakage Model, we begin with the concept of δ-density : Given

two distributions P and P ′ over a discrete set X , we say P is δ-dense in P ′ if P (x) ≤ P ′(x)
δ

for all x ∈ X . In particular, δ-density implies that P (x) = 0 whenever P ′(x) = 0, and thus
this concept is connected to the notion of absolute continuity of one measure with respect to
another. Given this notion, it is simple to describe the Dense Leakage Model. If Z = f(X)
denotes some leakage from X, then Z is (p, γ, δ)-dense leakage from X if, with probability 1− p

4The work by Prest, Goudarzi, Martinelli, and Passelègue considered a similar restriction for MI-noisy leakage.
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over the choice of X = x, we have

PZ|X=x(z) ≤ PZ(z)

δ
(1)

with probability 1 − γ over the choice of Z = z. Intuitively, Z being a dense leakage of X
essentially corresponds to the distributions PZ|X=x being “approximately” dense in the marginal
distribution PZ for most choices of x ∈ X .

Our first result is a simulation theorem for dense leakage with respect to bounded leakage,
which we state in simplified form below.

Theorem 1 (Informal). For any random variable X, and every parameter ε ∈ (0, 1), the family
of (p, γ, δ)-dense leakage functions on X is (ε + ε1/4δ + γ + p)-simulatable from the family of
`-bounded leakage functions on X, so long as

` ≥ log(1/δ) + log log(1/ε) + 2 log

(
1

1− γ

)
+ 2.

On the power of dense leakage. Second, we show that dense leakage captures all of the
noisy-leakage models considered above. In particular, we obtain the following informal result.

Theorem 2 (Informal). The families of ME-noisy, U-noisy, and DDF-noisy leakages fall within
the family of dense leakage with good5 parameters.

By combining Theorem 1 and Theorem 2, we obtain non-trivial simulation theorems for
the families of ME-noisy, U-noisy, and DDF-noisy leakage from bounded leakage, with small
simulation error and small bounded leakage parameter. It is worth mentioning that, for the
specific case of ME-noisy leakage, Theorem 2 only holds for distributions X that are almost
flat. As we shall prove, this restriction is nearly optimal in the sense that there exist “non-flat”
distributions X for which we cannot simulate ME-noisy leakage on X from bounded leakage on
X with good parameters, even when the drop in min-entropy is minimal.

Fundamental limitations of SD-noisy and MI-noisy leakages. Turning to the families
of SD-noisy and MI-noisy leakage, one can show that they fall within the family of dense leakage
too. However, the parameters we obtain in this case are not good enough to be combined with
Theorem 1 in order to yield interesting applications. In fact, we prove that the families of η-
SD-noisy and η-MI-noisy leakage are trivially simulatable with statistical error roughly η even
from the degenerate family of 0-bounded leakage. Unfortunately, this is inherent for the general
form of SD-noisy and MI-noisy leakage we consider: we prove that no simulator can achieve
simulation error significantly smaller than η even when leaking almost all of the input.

In contrast, Duc, Dziembowski, and Faust [DDF14, DDF19] gave a non-trivial6 simulation
theorem for the family of DDF-noisy leakage (which is a strict subset of SD-noisy leakage) from
a special type of bounded leakage called threshold probing leakage. Consistently, Theorem 2
establishes that DDF-noisy leakage is dense leakage with good parameters which in combination
with Theorem 1 gives an alternative (non-trivial) simulation theorem for DDF-noisy leakage
from bounded leakage. While this result is not new, we believe it showcases the generality of
our techniques.

5In particular, small enough in order to be combined with Theorem 1 yielding interesting applications.
6In particular, with negligible simulation error and small bounded leakage parameter even for constant η.
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Min-Entropy-Noisy Leakage

Uniform-Noisy Leakage

Bounded Leakage

MI-Noisy Leakage

SD-Noisy Leakage

Figure 1: Containment of the different leakage models considered in this paper. Our main result
is that a single query of bounded leakage is enough to simulate dense leakage to within small
statistical distance.

A complete picture, and near-optimality of our simulation theorems. We also pro-
vide a complete picture of inclusions and separations between the different leakage models, as
depicted in Figure 1. Some of these relationships were already known (e.g., the fact that the
family of U-noisy leakage is a strict subset of the family of ME-noisy leakage), and some are
new (e.g., the separations between the family of SD-noisy leakage and the families of ME-noisy
and MI-noisy leakage).

Moreover, we prove a series of results showing that the amount of bounded leakage we use
in our simulation theorems is nearly optimal with respect to the desired simulation error.

Applications in brief. Next, we explore applications of our results to leakage-resilient cryp-
tography. Intuitively, the reason why the simulation paradigm is useful is that it may allow us
to reduce leakage resilience of a cryptographic scheme against F to leakage resilience against G.
In particular, when G is taken to be the family of bounded-leakage functions, we obtain that
many primitives which were already known to be secure against bounded leakage are also se-
cure against dense (and thus noisy) leakage. Examples include forward-secure storage [Dzi06a],
leakage-resilient one-way functions and public-key encryption [ADVW13], cylinder-intersection
extractors [KMS19], symmetric non-interactive key exchange [LMQW20], leakage-resilient secret
sharing [BDIR18, SV19, ADN+19, KMS19, LCG+20] and two-party computation [GIM+16].
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1.3 Technical Overview

Simulation via rejection sampling. We begin by giving an overview of the approach we
use to simulate dense leakage from bounded leakage. As discussed before, our goal is to show
that, for a random variable X and some associated dense leakage function f (where f may be
randomized), there is a (possibly inefficient) simulator that makes at most one black-box query
g(X) for some `-bounded leakage function g : X → {0, 1}` and outputs Z̃ such that

(X, f(X)) ≈ε (X, Z̃), (2)

where ≈ε denotes statistical distance at most ε. For simplicity, we focus here on the setting
where f is “exactly” δ-dense leakage from X, meaning that, if Z = f(X), we have

PZ|X=x(z) ≤ PZ(z)

δ
(3)

for all x and z. This setting is already appropriate to showcase our main ideas.
The key observation that enables the design of our simulator, as we formalize in §3, is that

if a distribution P is δ-dense in P ′, then it is possible to sample P̃ satisfying P̃ ≈ε P with
access only to s = log(1/ε)

δ independent and identically distributed (i.i.d.) samples from P ′, say
z1, z2, . . . , zs, and knowledge of the distribution P , via rejection sampling : For i = 1, 2, . . . , s,
either output zi with probability δP (zi)/P

′(zi) ≤ 1, or move to i + 1 otherwise (if i = s + 1,
abort).

This suggests the following simulator for f exploiting Eq. (3): The simulator generates s
i.i.d. samples z = (z1, z2, . . . , zs) from PZ . Then, it queries the bounded-leakage oracle with
the randomized function gz which, with full knowledge of x, performs rejection sampling of
PZ|X=x from PZ using z. If rejection sampling outputs zi, then gz(x) = i, and if rejection
sampling aborts we may set gz(x) = ⊥. In particular, gz has 1 + s possible outputs, and so it
is `-bounded-leakage from X with ` = log(1 + s) ≤ log(1/δ) + log log(1/ε) + 1. The behavior of
the simulator is now clear: Since it knows z, it can simply output Z̃ = zi (or Z̃ = ⊥ if rejection
sampling aborted). The discussion above guarantees that the output of the simulator is ε-close
in statistical distance to f(x), which yields Eq. (2).

As previously discussed, in the actual proof (which appears in §5.1) we must deal with an
approximate variant of Eq. (3). However, we show that the above approach still works in the
setting of approximate density at the price of some additional small terms in the simulation
error and in the bounded leakage length.

Noisy leakage is dense leakage. As an example of how we manage to frame many types of
noisy leakage as dense leakage with good parameters, we discuss how this can be accomplished
for ME-noisy leakage assuming X satisfies a property we call α-semi-flatness. The full proof
appears in §5.2. The property states that X satisfies PX(x) ≤ 2α ·PX(x′) for all x, x′ ∈ supp(X),
and, as we shall see, it is usually satisfied in applications with small α (or even α = 0, which
corresponds to a flat distribution). We stress that for the case of U-noisy, DDF-noisy, SD-noisy,
and MI-noisy leakages, no assumption is required on X to place these types of leakage inside
the set of dense leakages. More details can be found in §5.3 and §5.4.

Consider some α-semi-flat X and leakage function f such that Z = f(X) satisfies

H∞(X|Z = z) ≥ H∞(X)− ` (4)

for some ` > 0 and all z. Note that this is a special case of ME-noisy leakage, but it suffices to
present the main ideas of our approach. Our goal is to show that f is (0, 0, δ)-dense leakage of
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X for an appropriate parameter δ, meaning that we wish to prove that PZ|X=x(z) ≤ PZ(z)
δ for

all x and z (recall Eq. (1)). Observe that, by Eq. (4), we have

PX|Z=z(x) ≤ 2` max
x′

PX(x′) ≤ 2`+αPX(x)

for all x and z, where the rightmost inequality makes use of the fact that X is α-semi-flat.
Rewriting the inequality above with the help of Bayes’ theorem yields

PZ|X=x(z) ≤ 2`+αPZ(z),

meaning that f is (p = 0, γ = 0, δ = 2−`−α)-dense leakage of X. By Theorem 1, we then
have that f(X) can be simulated with statistical error 2ε using `′ = ` + α + log log(1/ε) + 2
bits of bounded leakage from X. This statement allows for significant flexibility in the choice
of parameters. For example, setting ε = 2−λ for some security parameter λ yields negligible
simulation error from `+ α+ log(λ) + 2 bits of bounded leakage. Since α is usually very small
in applications (often we have α = 0), in practice we can achieve negligible simulation error
using ` + log(λ) + O(1) bits of bounded leakage, i.e., by paying only an extra log(λ) + O(1)
bits of leakage. Extending the argument above to general ME-noisy leakage from X requires
the addition of small error terms p and γ, but setting parameters similarly to the above still
allows us to simulate general `-ME-noisy leakage from X using only, say, `+O(log2(λ)) bits of
bounded leakage from X.

Trivial simulation of SD-noisy and MI-noisy leakages. Consider the trivial simulator
that given the function f simply samples X̃ according to the distribution of X and then outputs
Z̃ = f(X̃). Assuming f belongs to the family of η-SD-noisy leakage, the above gives a simulation
theorem for SD-noisy leakage with simulation error η (and without requiring any leakage from
X). By Pinsker inequality, the above also implies a simulation theorem for η-MI-noisy leakage
with simulation error

√
2η (again without leaking anything from X).

Unfortunately, it turns out that one cannot do much better than the trivial simulator (even
when using large bounded leakage) for our general definition of SD-noisy leakage. More specifi-
cally, we show there exists some X such that any simulator for a function f that is η-SD-noisy
leakage for X must incur a simulation error of at least η/2 even when leaking all but one bit
from X. In the case of MI-noisy leakage, we prove a similar result: There exists an X such that
any simulator must have simulation error at least η

2n when simulating η-MI-noisy leakage from
X, even when leaking all but one bit of X. Notably, this means that negligible simulation error
is impossible to achieve when η is non-negligible, and thus one cannot do significantly better
than the trivial simulator for MI-noisy leakage either.

It is instructive to compare the above trivial simulation theorem for SD-noisy leakage with
the result by Duc, Dziembowski, and Faust [DDF14, DDF19], who gave a non-trivial simulation
theorem for DDF-noisy leakage from a special case of bounded leakage known as threshold
probing leakage. Notice that by the triangle inequality, the trivial simulation theorem for η-SD-
noisy leakage implies a trivial simulation theorem for η-DDF-noisy leakage with large simulation
error n · η, which in particular becomes uninteresting as soon as η is non-negligible.

Nevertheless, in §5.5, we show that the family of η-DDF-noisy leakage falls within the family
of U-noisy (and thus dense) leakage with good parameters, which in turn gives a non-trivial
simulation theorem for η-DDF-noisy leakage from `-bounded leakage with negligible simulation
error and for small bounded leakage parameter `, even when η ∈ (0, 1) is constant.

Separations between leakage families, and tradeoffs between simulation error and
bounded leakage parameter. We complement our positive results in several ways. First,
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we present missing separations between the different types of leakages we consider, leading to a
complete picture of their relationships (as depicted in Figure 1). Second, we study the minimum
amount of bounded leakage required to simulate different types of noisy leakage with a given
simulation error, and show that our simulation theorems are close to optimal. For example,
in the case of ME-noisy leakage, for a large range of ` and α we show that ` + α − O(1) bits
of bounded leakage are required to simulate `-ME-noisy leakage from some α semi-flat X. In
contrast, as discussed above, our simulation theorem states that approximately ` + α bits of
bounded leakage are sufficient to achieve negligible simulation error.

To showcase our approach towards obtaining tradeoffs between simulation error and the
bounded leakage parameter, we discuss here one particularly insightful implication of a more
general theorem we obtain, which states that enforcing α-semi-flatness of X is necessary to
obtain a non-trivial simulation theorem for ME-noisy leakage with sub-constant simulation
error. More precisely, there exists X with support in {0, 1}n with an associated 0-noisy leakage
function f (meaning that H̃∞(X|f(X)) = H∞(X)) with the property that simulating Z = f(X)
with simulation error less than 1/4 requires one `′-bounded-leakage query for `′ ≥ n − 2. In
other words, to achieve small simulation error without semi-flatness, we must leak almost all of
the input X. The statement above is proved as follows. Consider X ∈ {0, 1}n satisfying

PX(x) =

{
1/2, if x = 0n,

1
2(2n−1) , otherwise.

Moreover, set Z = f(X) for a leakage function f such that f(0n) is uniformly distributed over
{0, 1}n \ {0n} and f(x) = x with probability 1 for x 6= 0n. Routine calculations show that
H∞(X) = 1 and H∞(X|Z = z) = 1 for all z, meaning that H̃∞(X|Z = z) = 1 = H∞(X),
as desired. Finally, every simulator for (X,Z) above with access to one query of `′-bounded-
leakage for `′ ≤ n − 2 must have simulation error 1/4 because, conditioned on X 6= 0n (which
holds with probability 1/2), we have f(X) = X and X uniform over {0, 1}n \ {0n}. Therefore,
under this conditioning, we can only correctly guess f(X) with probability at most 1/2 from
any one (n− 2)-bounded-leakage query of X.

Sample Application: leakage-resilient secret sharing. We now explain how to use our
result in order to lift bounded-leakage resilience to noisy-leakage resilience (almost) for free in
cryptographic applications. In fact, in the information-theoretic setting, the latter is an almost
immediate consequence of our result.

For the purpose of this overview, let us focus on the concrete setting of secret sharing schemes
with local leakage resilience [BDIR18]. Briefly, a t-out-of-n secret sharing scheme allows to share
a message y into n shares (x1, . . . , xn) in such a way that y can be efficiently recovered using any
subset of t shares. Local leakage resilience intuitively says that no unbounded attacker obtaining
in full all of the shares xU within an unauthorized subset U ⊂ [n] of size u < t, and further
leaking at most ` bits of information zi from each of the shares xi independently, should be able
to tell apart a secret sharing of message y0 from a secret sharing of message y1. Benhamouda,
Degwekar, Ishai and Rabin [BDIR18] recently proved that both Shamir secret sharing and
additive secret sharing satisfy local leakage resilience for certain ranges of parameters.

Thanks to Theorem 1, in §6.1, we show that any secret sharing scheme meeting the above
property continues to be secure even if the attacker obtains dense (rather than bounded) leakage
on each of the shares xi independently. The proof of this fact is simple. We move to a mental ex-
periment in which leakages (z1, . . . , zn) corresponding to dense-leakage functions (f1, . . . , fn) are
replaced by (z̃1, . . . , z̃n) obtained as follows: For each i ∈ [n], first run the simulator guaranteed
by Theorem 1 in order to obtain an `′-bounded leakage function f ′i and compute z′i = f ′i(xi);
then, run the simulator upon input z′i in order to obtain a simulated leakage z̃i.
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By a hybrid argument, the above experiment is statistically close to the original experiment.
Furthermore, we can reduce a successful attacker in the mental experiment to an attacker
breaking local bounded-leakage resilience. The proofs follows. Finally, thanks to Theorem 2,
we can use the abstraction of dense leakage in order to obtain security also in the presence of
ME-noisy and U-noisy leakage as well. Note that in the case of ME-noisy leakage, for the second
step to work, we need that the distribution Xi of each share outside U given the shares xU is
almost flat, which is the case for Shamir and additive secret sharing.

Applications in the computational setting. The above proof technique can be essentially
applied to any cryptographic primitive with bounded leakage resilience in the information-
theoretic setting. Further examples include, e.g., forward-secure storage [Dzi06a], leakage-
resilient storage [DDV10], leakage-resilient non-malleable codes [ADKO15], non-malleable secret
sharing [KMS19, BFO+20] and algebraic manipulation detection codes [AS14, LSW16, AKO18].
(We work out the details for some of these primitives in §A of the appendix.) However, we can-
not apply the same trick in the computational setting or when in the proof of security we need
to define an efficient simulator (e.g., for leakage-resilient non-interactive zero knowledge [AJS17]
and leakage-resilient multi party computation [BDIR18, GIM+16]), as the simulation of dense
leakage with bounded leakage guaranteed by Theorem 1 may not be efficient.

Nevertheless, we show that our results are still useful for lifting bounded-leakage to noisy-
leakage resilience in the computational setting too. In particular, in §6.2, we exemplify how to
do that for the concrete construction of leakage-resilient one-way functions in the floppy model
proposed by Agrawal, Dodis, Vaikuntananthan and Wichs [ADVW13], and in the setting of
multi-party computation (MPC).

Let us start with an overview of the former application, and refer to §A.4 for the latter. Let G
be a cyclic group with generator g and prime order q, and define gi = gτi for each i ∈ [n]. Upon
input a vector x = (x1, . . . , xn), the one-way function outputs y =

∏n
i=1 g

xi
i ; moreover, there is

a refreshing procedure that given y and τ = (τ1, . . . , τn) can generate a fresh pre-image x′ of y
by simply letting x′ = x+σ for randomly chosen σ orthogonal to τ . Here, one should think of
τ as a sort of master secret key to be stored in some secure hardware (i.e., the floppy). Agrawal,
Dodis, Vaikuntananthan, and Wichs proved that, under the discrete logarithm assumption in G,
no efficient attacker can successfully invert y even when given `-bounded leakage on x, so long
as ` ≈ (n− 3) log(q) and assuming that after each leakage query the value x is refreshed using
the floppy. The proof of this fact follows in two steps. First, we move to a mental experiment
where each of the leakage queries is answered using a random (n − 2)-dimensional subspace
S ⊆ ker(τ ). By the subspace hiding lemma [BKKV10], this experiment is statistically close to
the original experiment. Thus, we can use Theorem 1 and Theorem 2 to show that the above
still holds in the case of ME-noisy and U-noisy leakage.7 Second, one finally reduces a successful
attacker in the mental experiment to an efficient breaker for the discrete logarithm problem; in
this last step, however, the reduction can trivially answer leakage queries by using S, and thus
it does not matter whether the leakage is bounded or noisy. We believe the above blueprint can
be applied to analyze other cryptographic primitives whose leakage resilience is derived through
the subspace hiding lemma; we mention a few natural candidates at the end of §6.2.

Turning to simulation-based security, additional work is required before we can apply our
main theorem. To keep the exposition simple, let us focus here on the concrete setting of
zero-knowledge (ZK) proofs (although in §A.4 we deal with MPC for arbitrary functionalities).
The idea is to downgrade the notion of security from statistical ZK in the presence of bounded
leakage to the weaker notion of statistical witness indistinguishability (WI) in the presence of

7The former requires the distribution of x given y and (G, g, g1, . . . , gn, q) to be almost flat which is easily
seen to be the case.
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bounded leakage. In the latter setting, we can use our main theorem to show that any protocol
that is statistically WI in the presence of bounded leakage is also statistically WI in the presence
of dense leakage. Hence, we can achieve computational ZK in the presence of dense leakage by
applying the standard transformation from WI to ZK in the common reference string model
(see, e.g., [GOS06]). Finally, we give a concrete instantiation based on the DDH assumption
by invoking a result from Goyal, Ishai, Maji, Sahai and Sherstov [GIM+16] for passively secure
two-party computation in the presence of bounded leakage.

Bounded-collusion protocols. Finally, motivated by additional applications to leakage-
resilient cryptography and by exploring new lower bounds in communication complexity [Yao79],
in §6.3, we investigate the setting of bounded-collusion protocols (BCPs) as proposed by Kumar,
Meka, and Sahai [KMS19]. Here, a set of n parties each holding an input xi wishes to evaluate
a Boolean function φ of their inputs by means of an interactive protocol π. At the j-th round,
a subset of k parties (where k < n is called the collusion bound) is selected, and appends to
the protocol transcript τ an arbitrary (possibly unbounded) function fj of their joint inputs.
The goal is to minimize the size ` of the transcript, which leads to what we call an `-bounded
communication k-bounded collusion protocol (BC-BCP). BC-BCPs interpolate nicely between
the well-studied number-in-hand (NIH) [PVZ12] (which corresponds to k = 1) and number-on-
forehead (NOF) [CFL83] (which corresponds to k = n− 1) models.

We put forward two natural generalizations of BC-BCPs, dubbed dense (resp. noisy) com-
munication k-bounded collusion protocols (DC-BCPs, resp. NC-BCP), in which there is no
restriction on the length of the final transcript τ but the round functions are either dense or
U-noisy leakage functions. It is easy to see that any BC-BCP is also a NC-BCP as well as a
DC-BCP. By Theorem 1 and Theorem 2, we are able to show that the converse is also true:
namely, we can simulate8 the transcript τ of any DC-BCP or NC-BCP π using the transcript
τ ′ of a related BC-BCP π′ up to a small statistical distance. Protocol π′ roughly runs π and
uses the simulation paradigm in order to translate the functions used within π into functions
to be used within π′. The proof requires a hybrid argument, and thus the final simulation error
grows linearly with the number of rounds of the underlying BC-BCP.

The above fact has two consequences. The first consequence is that we can translate commu-
nication complexity lower bounds for BC-BCPs into lower bounds on the noisiness of NC-BCPs.
A communication complexity lower bound for a Boolean function φ says that any BC-BCP com-
puting φ with good probability must have long transcripts (i.e., large `). Concrete examples of
such functions φ include those based on the generalized inner product and on quadratic residues
in the NOF model with logarithmic (in the input length) number of parties [Chu90, BNS92],
and more recently a new function (based on the Bourgain extractor [Bou05]) for more general
values of k and even for super-logarithmic number of parties [KMZ20]. Note that the above
lower bounds do not necessarily say how much information a transcript must reveal about the
inputs. Thanks to our results, we can show that any NC-BCP (i.e., where there is no upper
bound on the transcript length) computing the above functions with good probability must also
in some sense reveal enough information about the inputs. However, for technical reasons, the
latter holds true only so long as the number of rounds is not too large. We refer the reader to
§6.3.1 for further details.

The second consequence is that we can lift the security of cryptographic primitives whose
leakage resilience is modeled as a BC-BCP (which intuitively corresponds to security against
adaptive bounded joint leakage) to the more general setting where leakage resilience is modeled

8The reason for not considering NC-BCPs where the round functions are ME-noisy (instead of U-noisy)
leakage functions is that simulating ME-noisy leakage with bounded leakage inherently requires semi-flatness,
but we cannot ensure this condition is maintained throughout the entire execution of a leakage protocol.
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as a NC-BCP or DC-BCP (which intuitively corresponds to security against adaptive noisy joint
leakage). Examples includes secret sharing with security against adaptive joint leakage [KMS19,
CGGL20, KMZ20] (see §6.3.2), extractors for cylinder-intersection sources [KMS19, LMQW20,
CGGL20, KMZ20] (see §A.2) and leakage-resilient non-interactive key exchange [LMQW20]
(see §A.3). Interestingly, the security of these applications in the bounded-leakage setting has
been derived exploiting communication complexity lower bounds for BC-BCPs. We can instead
directly lift security to the dense and U-noisy leakage setting in a fully black-box way, and thus
without re-doing the analysis.

1.4 Related Work

Naor and Segev [NS09, NS12] conjectured that ME-noisy leakage may be compressed to small
leakage in the information-theoretic setting. In this light, our results prove this conjecture to
be false for arbitrary distributions and establish the exact conditions under which the above
statement holds true not only in the case of ME-noisy leakage, but also for U-noisy leakage.

Most relevant to our work is the line of research on leakage-resilient circuit compilers (see,
e.g., [ISW03, FRR+10, FRR+14]), where the equivalence of different leakage models has also
been explored. For instance, the beautiful work by Duc, Dziembowski, and Faust [DDF14,
DDF19] shows that DDF-noisy leakage on masking schemes used to protect the internal values
within a cryptographic circuit can be simulated by probing a limited number of wires (which can
be thought of as bounded leakage in the circuit setting). The notion of DDF-noisy leakage was
studied further, both experimentally and theoretically, by Duc, Faust, and Standaert [DFS15a,
DFS19]. Follow-up work by Dziembowski, Faust, and Skórski [DFS15b] and by Prest, Goudarzi,
Martinelli, and Passelègue [PGMP19] further improved the parameters of such a reduction and
extended it to other noisy-leakage models as well. The difference between the above results
and our work is that we prove simulation theorems between very abstract and general leakage
models, which ultimately allows us to obtain a broad range of applications which goes beyond
the setting of leakage-resilient circuits. In a complementary direction, Fuller and Hamlin [FH15]
studied the relationship between different types of computational leakage.

Harsha, Ishai, Kilian, Nissim, and Venkatesh [HIK+04] investigate tradeoffs between commu-
nication complexity and time complexity in non-cryptographic settings, including deterministic
two-party protocols, query complexity and property testing. Our simulation theorems can be
thought of as similar tradeoffs in the cryptographic setting.

2 Preliminaries

2.1 Notation

We denote by [n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗, we denote its length by |x|; if X is
a set, |X | represents the number of elements in X . When x is chosen randomly in X , we write
x←$ X . When A is a randomized algorithm, we write y←$ A(x) to denote a run of A on input
x (and implicit random coins r) and output y; the value y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic polynomial-
time (PPT for short) if A is randomized and for any input x, r ∈ {0, 1}∗, the computation of
A(x; r) terminates in a polynomial number of steps (in the size of the input).

Negligible functions. We denote with λ ∈ N the security parameter. A function p is
polynomial (in the security parameter), denoted p ∈ poly(λ), if p(λ) ∈ O(λc) for some constant
c > 0. A function ν : N→ [0, 1] is negligible (in the security parameter) if it vanishes faster than
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the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We
sometimes write negl(λ) to denote an unspecified negligible function. Unless stated otherwise,
throughout the paper, we implicitly assume that the security parameter is given as input (in
unary) to all algorithms.

2.2 Random Variables

For a random variable X, we write P[X = x] for the probability that X takes on a particular
value x ∈ X , with X being the set where X is defined. The probability mass function of X is
denoted PX , i.e., PX(x) = P[X = x] for all x ∈ X ; we sometimes omit X and just write P
when X is clear from the context. For a set (or event) S ⊆ X , we write P (S) for the probability
of event S, i.e. P (S) =

∑
x∈S P (x).

The statistical distance between two random variables X and Y over X is defined as

∆(X;Y ) :=
1

2

∑
x∈X
|P[X = x]− P[Y = x]|.

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that they
are identically distributed, X ≈ Y to denote that they are statistically close, i.e. ∆(Xλ;Yλ) ≤
negl(λ), and X

c
≈ Y to denote that they are computationally indistinguishable, i.e. for all PPT

distinguishers D:
|P[D(Xλ) = 1]− P[D(Yλ) = 1]| ≤ negl(λ).

Sometimes we explicitly denote byX ≈ε Y the fact that ∆(Xλ;Yλ) ≤ ε for a parameter ε = ε(λ).

Average min-entropy. The min-entropy of a random variable X with domain X is defined
as H∞(X) := − log maxx∈X P[X = x], which intuitively measures the best chance to predict X
(by a computationally unbounded algorithm). For conditional distributions, unpredictability is
measured by the conditional average min-entropy [DRS04, DORS08], defined as

H̃∞(X|Y ) := − logEy∼Y
[
2−H∞(X|Y=y)

]
.

The lemmas below are sometimes known as the “chain rule” for conditional average min-entropy.

Lemma 1 ([DORS08]). For arbitrary random variables X, Y , and Z such that |supp(Z)| ≤ 2`

it holds that
H̃∞(X|Y, Z) ≥ H̃∞(X,Z|Y )− ` ≥ H̃∞(X|Y )− `.

Lemma 2 ([MW97]). For arbitrary random variables X, Y , and Z, and for every δ ≥ 0, it
holds that

Pz∼Z
[
H̃∞(X|Y,Z = z) ≥ H̃∞(X|Y, Z)− log(1/δ)

]
≥ 1− δ.

2.3 Hardness Assumptions

Let GroupGen(1λ) be a randomized algorithm outputting the description of a cyclic group G
with generator g and prime order q = q(λ).

Definition 1 (Discrete logarithm assumption). We say that the discrete logarithm (DL for
short) assumption holds for GroupGen, if for all PPT attackers A there is a negligible function
ν : N→ [0, 1] such that

P
[
x′ = x : (G, g, q)←$ GroupGen(1λ);x←$Zq;x

′←$ A(G, g, q, gx)
]
≤ ν(λ).
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3 Rejection Sampling for Approximate Density

The problem that we consider in this section is the following: How can we sample from a
distribution P with statistical error at most ε, given only black-box access to i.i.d. samples from
another distribution P ′?

It turns out that the problem above can be solved via rejection sampling, assuming that P
is approximately dense in P ′ as defined below.

Definition 2 (δ-density). Given two distributions P and P ′ over some set Z and some δ ∈
(0, 1], we say P is δ-dense in P ′ if for every z ∈ Z it holds that

P (z) ≤ P ′(z)

δ
.

Remark 1 (On the parameter δ). Note that the definition of δ-density only makes sense when
δ ≤ 1. In fact, if δ > 1 above, then P cannot be a probability distribution.

Definition 3 ((γ, δ)-density). Given two distributions P and P ′ over some set Z and some
γ ∈ [0, 1], δ ∈ (0, 1], we say P is γ-approximate δ-dense in P ′, or simply (γ, δ)-dense in P ′, if
there exists a set S ⊆ Z such that P (S), P ′(S) ≥ 1− γ, and for all z ∈ S it holds that

P (z) ≤ P ′(z)

δ
.

3.1 The Case of Exact Density

First, we consider the special case where P is δ-dense in P ′.

Lemma 3. Suppose P is δ-dense in P ′. Then, for any ε ∈ (0, 1], it is possible to sample P̃
such that P̃ ≈ε P given access to

s =
log(1/ε)

δ

i.i.d. samples from P ′.

Proof. Consider the following rejection sampling algorithm:

1. Sample z1, . . . , zs i.i.d. according to the distribution P ′, and set y := ⊥;

2. For i = 1, . . . , s do the following: Set Bi := 1 with probability pi = δP (zi)
P ′(zi)

and Bi := 0
otherwise. If Bi := 1, set y := zi and stop the cycle;

3. Output y.

Observe that δP (zi)
P ′(zi)

≤ 1 for all zi (hence the algorithm above is valid), and that the probability
that the algorithm outputs some z in the i-th round is

P[Bi = 1] =
∑
z

P ′(z) · δP (z)

P ′(z)
= δ. (5)

Let P̃ denote the distribution of the output of the algorithm above and let Y be the correspond-
ing output. Observe that (Y |Y 6= ⊥) is distributed exactly like P . This holds because, in view
of Eq. (5), the probability that the algorithm outputs z in the i-th round given that it stops in
the i-th round is

P[Y = z|Bi = 1, ∀j < i : Bj = 0] =
(1− δ)i−1 · P ′(z) · δP (z)

P ′(z)

(1− δ)i−1 · δ
= P (z).
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Moreover, we have
P[Y = ⊥] = (1− δ)s ≤ exp(−δ · s) = ε.

From these observations, we conclude that ∆(P̃ ;P ) ≤ Pr[Y = ⊥] ≤ ε.

3.2 The Case of Approximate Density

We are now ready to prove an analogous result for approximate density.

Lemma 4. Suppose P is (γ, δ)-dense in P ′. Then, for any ε ∈ (0, 1], it is possible to sample P̃
such that P̃ ≈

ε+ε
1
4δ +γ

P given access to

2 log(1/ε)

δ(1− γ)2

i.i.d. samples from P ′.

Proof. Let S denote the set such that P (S), P ′(S) ≥ 1 − γ, and P (z) ≤ P ′(z)
δ for all z ∈ S.

Then, if PS and P ′S denote distributions over S satisfying

PS(z) =
P (z)

P (S)
and P ′S(z) =

P ′(z)

P ′(S)

for z ∈ S, we conclude that

PS(z) =
P (z)

P (S)
≤ P ′(z)

δP (S)
≤

P ′S(z)

δ(1− γ)

for all z ∈ S, where we have used the facts that P (S) ≥ 1− γ. Therefore, it follows that PS is

(δ(1− γ))-dense in P ′S . By Lemma 3, we can sample P̃S such that P̃S ≈ε PS from s = log(1/ε)
δ(1−γ)

i.i.d. samples from P ′S . Since PS ≈γ P , by the triangle inequality we have that P̃S ≈ε+γ P .
To complete the proof, it suffices to observe that, if we have access to 2s

1−γ i.i.d. samples from

P ′ and W denotes the number of such samples that are in S, a straightforward application of
the Chernoff bound9 shows that

P[W < s] ≤ P
[
W <

E[W ]

2

]
≤ exp(−s/4)

≤ ε
1
4δ .

Therefore, we can add ε
1
4δ to the statistical error and assume that we have access to at least s

i.i.d. samples from P ′S .

4 Leakage Models

In this section, we review several leakage models from the literature, and introduce the simula-
tion paradigm which will later allow us to draw connections between different leakage models.

Our take is very general, in that we think as the leakage as a randomized function f on a
random variable X, over a set X , which yields a correlated random variable Z = f(X). Different
leakage models are then obtained by putting restrictions on the joint distribution (X,Z). We
refer the reader to §6 for concrete examples of what the distribution X is in applications.

9The version of the Chernoff bound that we use here states that P[W < (1− c)E[W ]] ≤ exp
(
−c2E[W ]/2

)
for

0 ≤ c ≤ 1, provided W is a sum of independent random variables in {0, 1}.
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4.1 Bounded Leakage

A first natural restriction is to simply assume an upper bound ` ∈ N on the total length of the
leakage. This yields the so-called Bounded Leakage Model, which was formalized for the first
time by Dziembowski and Pietrzak [DP08].

Definition 4 (Bounded leakage). Given a random variable X over X , we say a randomized
function f : X → Z is an `-bounded leakage function for X if Z ⊆ {0, 1}`. For fixed X, we
denote the set of all its `-bounded leakage functions by Bounded`(X).

4.2 Noisy Leakage

A considerable drawback of the Bounded Leakage Model is that physical leakage is rarely of
bounded length. The Noisy Leakage Model overcomes this limitation by assuming that the
length of the leakage is unbounded but somewhat noisy.

There are different ways from the literature how to measure the noisiness of the leakage. A
first way, considered for the first time by Naor and Segev [NS09, NS12], is to assume that the
leakage drops the min-entropy of X by at most ` ∈ R>0 bits. We will refer to this model as the
ME-Noisy Leakage Model.

Definition 5 (ME-noisy leakage). Given a random variable X over X , we say a randomized
function f : X → Z is an `-ME-noisy leakage function for X if, denoting Z = f(X), we have

H̃∞(X|Z) ≥ H∞(X)− `.

For fixed X, we denote the set of all its `-ME-noisy leakage functions by Noisy∞,`(X).

Dodis et al. [DHLW10] considered a slight variant of the above definition where the min-
entropy drop is measured w.r.t. the uniform distribution U over X (rather than X itself). We
will refer to this model as the U-Noisy Leakage Model.

Definition 6 (U-noisy leakage). Given a random variable X over X , we say a randomized
function f : X → Z is an `-U-noisy leakage function for X if it holds that

H̃∞(U |f(U)) ≥ H∞(U)− `,

where U denotes the uniform distribution over X . For fixed X, we denote the set of all its
`-U-noisy leakage functions by UNoisy∞,`(X).

A second way to measure noisiness is to assume that the leakage only implies a bounded
bias in the distribution X, which is formally defined as distributions PXZ and PX ⊗ PZ being
close according to some distance when seen as real-valued vectors. Prouff and Rivain [PR13]
were the first to consider this restriction using the Euclidean norm (i.e., the `2-norm), whereas
Duc, Dziembowski and Faust [DDF14, DDF19] used the statistical distance (i.e., the `1-norm).
We recall the latter definition below, which we will refer to as the SD-Noisy Leakage Model.

Definition 7 (SD-noisy leakage). Given a random variable X over X , we say a randomized
function f : X → Z is an η-SD-noisy leakage function for X if, denoting Z = f(X), it holds
that

∆(PXZ ;PX ⊗ PZ) ≤ η,

where PX ⊗ PZ denotes the product distribution of X and Z. For fixed X, we denote the set of
all its η-SD-noisy leakage functions by Noisy∆,η(X).
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Duc, Dziembowski, and Faust [DDF14, DDF19] considered only a restricted subset of SD-
noisy leakage, which we call DDF-noisy leakage. We define this notion below.

Definition 8 (DDF-noisy leakage). Given a random variable X = (X1, X2, . . . , Xn) over X n,
we say a randomized function f : X n → Zn is an η-DDF-noisy leakage function for X if
f = (f1, f2, . . . , fn) for functions fi : X → Z such that fi ∈ Noisy∆,η(Xi) for i = 1, 2, . . . , n.
For a given X, we define the set of all its η-DDF-noisy leakage functions by DDFNoisy∆,η(X).

By the triangle inequality, it is easy to see that

DDFNoisy∆,η(X) ⊆ Noisy∆,η·n(X)

for every η and X ∈ X n. However, as we shall see, DDF-noisy leakage behaves quite differently
than SD-noisy leakage in general. In fact, we show in §5.4 that essentially no non-trivial
simulation theorem exists for SD-noisy leakage. In contrast, as it was shown in [DDF14, DDF19],
it is possible to simulate DDF-noisy leakage with very low error given access to one query of a
special type of bounded leakage called threshold probing leakage. Another reason for why this
holds, which we will discuss in §5.5 in more detail, is that DDF-noisy leakage is a subset of
U-noisy leakage (the same is not true of SD-noisy leakage). Since, as we shall show, U-noisy
leakage can be simulated with very good parameters from bounded leakage via our general
framework, the same automatically holds for DDF-noisy leakage.

Alternatively, as suggested by Prest et al. [PGMP19], we can measure the noisiness of
the leakage by looking at the mutual information between X and Z. We can define the mu-
tual information between X and Z as I(X;Z) = DKL(PXZ‖PX ⊗ PZ), where DKL(P‖P ′) =∑

x∈X P (x) log
(
P (x)
P ′(x)

)
is the Kullback-Leibler divergence between P and P ′.

Definition 9 (MI-noisy leakage). Given a random variable X over X , we say a randomized
function f : X → Z is an η-MI-noisy leakage function for X if, denoting Z = f(X), it holds
that

I(X;Z) ≤ η.

For fixed X, we denote the set of all its η-MI-noisy leakage functions by MINoisyη(X).

The well-known Pinsker inequality allows us to relate MI-noisy leakage to SD-noisy leakage.

Lemma 5 (Pinsker inequality). For arbitrary distributions P and P ′ over a set X it holds that

∆(P ;P ′) ≤
√

2 ·DKL(P‖P ′).

As an immediate corollary of Lemma 5, we obtain the following result (which was observed
also in [PGMP19]).

Corollary 1. For any η > 0 and X we have

MINoisyη(X) ⊆ Noisy∆,
√

2η(X).

Proof. Fix Z = f(X) for f ∈ MINoisyη(X). The desired statement follows by noting that
I(X;Z) = DKL(PXZ‖PX ⊗ PZ). Therefore, the Pinsker inequality implies that

∆(PXZ ;PX ⊗ PZ) ≤
√

2 · I(X;Z) ≤
√

2η.
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4.3 Dense Leakage

Next, we introduce a new leakage model which we dub the Dense Leakage Model. This model
intuitively says that the distribution of Z|X = x is approximately dense in the distribution of
Z for a large fraction of x’s. Looking ahead, dense leakage will serve as a powerful abstraction
to relate different leakage models.

Definition 10 (Dense leakage). Given a random variable X over X , we say a randomized
function f : X → Z is a (p, γ, δ)-dense leakage function for X if, denoting Z = f(X), there
exists a set T ⊆ X with PX(T ) ≥ 1 − p such that PZ|X=x is (γ, δ)-dense in PZ for all x ∈ T .
For fixed X, we denote the set of all its (p, γ, δ)-dense leakage functions by Densep,γ,δ(X).

We give a simple example of a dense leakage function to help the reader get comfortable
with the notion. Let f be the function that upon input a source X ∈ {0, 1}n outputs the first
` bits of X, and assume X is uniform. Then, the function f is (1, 1, 2−`)-dense leakage for X.
Indeed, let Z be the random variable corresponding to the output of f , and, for any x ∈ {0, 1}n,
parse x = z‖y where |z| = `. Then, for any z′, the probability PZ|X=x(z′) is equal to 1 when

z = z′ and 0 otherwise. On the other hand, PZ(z′) equals 2−` which implies that δ = 2−`.

4.4 The Simulation Paradigm

Finally, we define the simulation paradigm which allows to draw connections between different
leakage models. Intuitively, for any random variable X, we will say that a leakage family F(X)
is simulatable from another leakage family G(X) if for all functions f ∈ F(X) there exists a
simulator Simf which can generate Z̃ such that (X,Z) and (X, Z̃) are statistically close, using
a single sample g(X) for some function g ∈ G(X).

Definition 11 (Leakage simulation). Given a random variable X and two leakage families
F(X) and G(X), we say F(X) is ε-simulatable from G(X) if for all f ∈ F(X) there is a
(possibly inefficient) randomized algorithm Simf such that the following holds

(X,Z) ≈ε (X,Sim
Leak(X,·)
f ),

where Z = f(X) and the oracle Leak(X, ·) accepts a single query g ∈ G(X) and outputs g(X).

Remark 2 (On the simulator). Note that since the simulator Simf knows the distribution PX
of X and the leakage function f , it also knows the joint distribution PX,Z where Z = f(X).
We will use this fact to design our leakage simulators. We will also sometimes think of the
simulator Simf as two machines with a shared random tape, where the first machine outputs
the description of a leakage function g ∈ G(X), while the second machine outputs the simulated
leakage Z̃ given the value g(X).

5 Relating Different Leakage Models

In this section, we show both implications and separations between the leakage models defined
in §4. In a nutshell, our implications show that all the noisy-leakage models from §4 can
be simulated by bounded leakage with good parameters. We achieve this in two main steps:
First, we prove that dense leakage can be simulated by bounded leakage with good parameters.
Second, we show that dense leakage contains the other leakage models we have previously
defined. Combining the two steps above, we conclude that many different leakage models can
be simulated by bounded leakage with good parameters. To complement these results, our
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separations show that the containment of the different leakage models in dense leakage are
essentially the best we can hope for in general.

The simulation theorem for the case of ME-noisy leakage only holds for certain distributions
X, which are nevertheless the most relevant in applications. In particular, we will require to
assume that the random variable X is semi-flat, as formally defined below.

Definition 12 (Semi-flat distribution). We say that X is α-semi-flat if for all x, x′ ∈ supp(X)
we have

PX(x) ≤ 2α · PX(x′).

5.1 Simulating Dense Leakage with Bounded Leakage

The following theorem states that one dense leakage query can be simulated with one bounded
leakage query to within small statistical error. The efficiency of the simulator and the bounded
leakage function is essentially governed by the density parameter δ.

Theorem 3. For arbitrary X, and for any ε ∈ (0, 1], the set of dense leakages Densep,γ,δ(X) is
(ε+ ε1/4δ + γ + p)-simulatable from Bounded`(X) with

` = 1 + log

(
2 log(1/ε)

(1− γ)2δ

)
= log(1/δ) + log log(1/ε) + 2 log

(
1

1− γ

)
+ 2.

Proof. Fix any f ∈ Densep,γ,δ(X). By hypothesis, there is a set T ⊆ X such that PX(T ) ≥ 1−p
and PZ|X=x is (γ, δ)-dense in PZ for all x ∈ T . Thus, we may assume that X ∈ T by adding p
to the simulation error.

We consider the simulator Simf which, given the distribution PXZ , samples s∗ = 2 log(1/ε)
(1−γ)δ

i.i.d. samples z = (z1, z2, . . . , zs∗) from PZ . Then, Simf makes a query to Z ′ = gz(X) ∈
Bounded`(X), where ` = 1 + log s∗ and gz : X → {0, 1}` on input x ∈ T runs the rejection
sampling algorithm from the proof of Lemma 4 to sample from PZ|X=x to within statistical

error ε+ ε1/4δ +γ using the s∗ i.i.d. samples (z1, . . . , zs∗) from PZ , and outputs the index i ≤ s∗
such that zi is output by the rejection sampling algorithm, or s∗ + 1 if this algorithm outputs
⊥. Finally, if I = gz(X) ≤ s∗, then Simf outputs zI , and otherwise it outputs ⊥. Let Z̃
the random variable corresponding to the output of the simulator. Summing up the different
simulation errors, Lemma 4 guarantees that

(X,Z) ≈ε+ε1/4δ+γ+p (X, Z̃),

which completes the proof.

Remark 3 (On useful parameters). The statement of Theorem 3 is most useful when ε, γ,
and p are negligible in the security parameter, so as to obtain negligible simulation error. The
parameter δ essentially dictates the number of bits of bounded leakage required to simulate a

given class of dense leakages. Indeed, it is usually the case that log log(1/ε) + 2 log
(

1
1−γ

)
is

much smaller than log(1/δ).

Remark 4 (On efficiency of the simulation). The complexity of the simulator from Theorem 3
is dominated by the complexity of computing the distributions PZ (possible with knowledge
of PX and f) and PZ|X=x (possible with knowledge of X and f), and of sampling both the
zi according to PZ and the decision in each step of rejection sampling. If these steps can be
implemented in polynomial time with respect to some parameter of interest, then the simulator
is efficient.
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5.2 Min-Entropy-Noisy Leakage is Dense Leakage

The following theorem states that all ME-noisy leakage is also dense leakage for semi-flat dis-
tributions. Looking ahead, we will later establish that the semi-flatness condition is necessary.

Theorem 4. Suppose X is α-semi-flat. Then, for every β > 0 and ` > 0, and for p = 2−β/2,
γ = 2−β/2 and δ = 2−(`+β+α), we have

Noisy∞,`(X) ⊆ Densep,γ,δ(X).

Proof. Fix PXZ such that H̃∞(X|Z) ≥ H∞(X) − `. Then, by Lemma 2, with probability at
least 1− 2−β over the fixing Z = z it holds that

H∞(X|Z = z) ≥ H∞(X)− `− β. (6)

Let S denote the set of such fixings z. By a simple averaging argument, there exists a set
T ⊆ X with PX(T ) ≥ 1 − 2−β/2 such that PZ|X=x(S) ≥ 1 − 2−β/2 for all x ∈ T . To see this,
it suffices to note that since PZ(S) ≥ 1 − ε, with probability at least 1 −

√
ε over x we must

have PZ|X=x(S) ≥ 1 −
√
ε. Suppose not. Then, with probability at least

√
ε over x we have

PZ|X=x(S) < 1−
√
ε, and thus PZ(S) < (1−

√
ε) · 1 +

√
ε · (1−

√
ε) = 1− ε, a contradiction.

We now show that for x ∈ T it is the case that PZ|X=x is (γ = 2−β/2, δ = 2`+β+α)-dense in
PZ by considering S. Coupled with the properties of T , this yields the desired result. For all
z ∈ S and x we have

PX|Z=z(x) ≤ 2−(H∞(X)−`−β)

= 2`+β ·max
x′

PX(x′)

≤ 2`+β+α · PX(x), (7)

where, in the last inequality, we use the hypothesis that X is α-semi-flat. By noting that
PX|Z=z(x)

PX(x) =
PZ|X=x(z)

PZ(z) , we can rewrite Eq. (7) as

PZ|X=x(z) ≤ 2`+β+α · PZ(z).

If x ∈ T , this implies that PZ|X=x is (γ, δ)-dense in PZ for δ = 2−(`+β+α), as desired.

Combining Theorem 3 and Theorem 4, we immediately obtain the following corollary.

Corollary 2. If X is α-semi-flat, then, for any β > 0 and ε > 0, the set of leakages Noisy∞,`(X)

is (ε+ ε2`+β+α−2
+ 2−β/2+1)-simulatable from Bounded`′(X) with

`′ = `+ β + α+ log log(1/ε) + 2 log

(
1

1− 2−β/2

)
+ 2.

The remark below says that there is a natural tradeoff between the simulation error in the
above corollary and the leakage bound.

Remark 5 (Trading simulation error with ME-noisy leakage). By choosing ε = 2−λ and β =
2 + log2(λ) in Corollary 2, we can obtain negligible simulation error ε′ = λ−ω(1) with leakage10

`′ = `+ O(log2(λ) + α). By choosing β = λ, we can instead obtain a much smaller simulation
error of ε′ = 2−Ω(λ) with larger leakage `′ = `+O(λ+ α).

10In fact, we can push the leakage bound down to `′ = ` + O(log log(λ) log(λ) + α) or even `′ = ` +
O(log∗(λ) log(λ) + α), while still obtaining negligible simulation error.
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Near-optimality of simulation theorem for ME-noisy leakage. We now show that our
simulation result for ME-noisy leakage (Corollary 2) is essentially optimal. More precisely, we
obtain the following result.

Theorem 5. For every n and α, ` > 0 such that `+α < n− 2 there exists an (α+ 1)-semi-flat
random variable X and f ∈ Noisy∞,`+2(X) such that simulating f(X) with error less than 1/4
requires one `′-bounded leakage query for `′ ≥ `+ α− 1.

Essentially, Theorem 5 states that ` + α − O(1) bits of bounded leakage are required to
simulate `-ME-noisy leakage from an α-semi-flat random variable X with useful simulation
error. Our simulation theorem from Corollary 2 complements this negative result, showing that
`′ ≈ `+ α bits of bounded leakage are enough even with negligible simulation error.

Proof. Fix α, ` > 0 such that `+ α < n− 2. Consider X with distribution PX satisfying

PX(x) =

{
2α−n, if x = 0n,
1−2α−n

2n−1 , otherwise.

Observe that X is (α+ 1)-semi-flat for n large enough, since

2α+1 · 1− 2α−n

2n − 1
≥ 2(2α−n − 22(α−n)) ≥ 2α−n

by the constraint on α. Then, we define Z = f(X) for the leakage function f : {0, 1}n →
{0, 1}`+α specified as follows: f(0n) is uniformly distributed over {0, 1}`+α, and f(x) = (x1, x2,
· · · , x`+α) otherwise.

Our first goal is to show that f ∈ Noisy∞,`+2(X). To begin, it is clear that H∞(X) = n−α.
Therefore, the result follows if we show that

H∞(X|Z = z) ≥ n− α− `− 2 (8)

for all z. On the one hand, for all z we have

PZ(z) ≥ 2α−n

2`+α
+

1− 2α−n

2n − 1
· (2n−(α+`) − 1)

≥ 2−(n+`) +
1− 2α−n

2n
· (2n−(α+`) − 1)

≥ 2−(`+α+2).

On the other hand, for all x and z we have

PXZ(x, z) =


2−(n+`), if x = 0n,
1−2α−n

2n−1 , if x 6= 0n and z = (x1, x2, . . . , x`+α),

0, otherwise.

As a result, we conclude that

PX|Z=z(x) =
PXZ(x, z)

PZ(z)
≤ 1− 2α−n

2n − 1
· 2`+α+2 ≤ 2`+α+2−n,

for all x and z, which leads to Eq. (8), as desired.
It remains to see that simulating f(X) with error less than 1/4 requires one query of `′-

bounded leakage from X for `′ = ` + α − 2. This holds because, conditioning on X 6= 0n, we
have that X is uniform over {0, 1}n \ {0n} and f(X) = (X1, X2, . . . , X`+α). Therefore, under
the conditioning above, an arbitrary simulator can only guess f(X) with probability at most
1/2 from any `′-bounded leakage query g(X) with `′ ≤ `+α− 1. Since the event X 6= 0n holds
with probability 1−2α−n ≥ 3/4, the simulation error is at least 1/2−1/4 = 1/4, as desired.
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Necessity of the semi-flatness assumption in Corollary 2. Theorem 5 implies that
assuming α-semi-flatness of X is necessary to obtain a non-trivial simulation theorem for ME-
noisy leakage, even when we are attempting to simulate only 0-ME-noisy leakage functions.
Indeed, setting ` = 0 and α = n − 3 in Theorem 5, we conclude that there exists a random
variable X along with an associated 0-ME-noisy-leakage function f ∈ Noisy∞,0(X) that requires
n−O(1) bits of bounded leakage from X in order to be simulated with error less than 1/4.

Note also that the proof of Theorem 5 shows the impossibility of non-trivial simulation
theorems for ME-noisy leakage even for a restricted subset of semi-flat distributions X for
which there exists x∗ such that PX(x∗) may be large but (X|X 6= x∗) is flat.

5.3 Uniform-Noisy Leakage is Also Dense Leakage

There is a known connection between U-noisy and ME-noisy leakage, i.e., every U-noisy leakage
function is also a ME-noisy leakage function by itself.

Lemma 6 ([DHLW10]). Given any randomized function f : X → Z, if it holds that

H̃∞(U |f(U)) ≥ H∞(U)− `,

then for any X over X it is the case that

H̃∞(X|f(X)) ≥ H∞(X)− `.

In particular, this implies that UNoisy∞,`(X) ⊆ Noisy∞,`(X).

We remark that there also exist some X and a leakage function f such that f ∈ Noisy∞,`(X)
but f 6∈ UNoisy∞,`(X) (such an example is provided in [DHLW10]). This shows that the
containment of U-noisy leakage in ME-noisy leakage may be strict for some X.

Although Lemma 6 immediately yields an analogue of Corollary 2 for U-noisy leakage, we
can obtain a better result by arguing directly that every U-noisy leakage function is also a dense
leakage function for arbitrary X, i.e., without requiring that X be semi-flat. Our result is stated
formally in the next theorem.

Theorem 6. For every β > 0 and arbitrary X, we have

UNoisy∞,`(X) ⊆ Densep,γ,δ(X).

where p = 2−β/2, γ = 2−β/2 and δ = 2−(`+β).

Proof. Fix Z = f(X) for randomized f : X → Z such that f ∈ UNoisy∞,`(X). Our goal is to
show that there exists a set T ⊆ X with PX(T ) ≥ 1− p such that for every x ∈ T there exists
a set S ⊆ Z satisfying PZ|X=x(S), PZ(S) ≥ 1− γ, and

PZ|X=x(z) ≤ PZ(z)

δ
(9)

for all z ∈ S, with p, γ, and δ as in the theorem statement.
Let U denote a uniform random variable over X . Then, by hypothesis we have

H̃∞(U |f(U)) ≥ H∞(U)− `,

or, equivalently,

2` ≥ Ey←f(U)

[
max
x∈X

PU |f(U)=z(x)

PU (x)

]
. (10)
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Then, we have

Ey←f(U)

[
max
x∈X

PU |f(U)=z(x)

PU (x)

]
=
∑
z∈Z

Pf(U)(z) ·
(

max
x∈X

PU |f(U)=z(x)

PU (x)

)
=
∑
z∈Z

max
x∈X

Pf(U)|U=x(z)

≥
∑
z∈Z

max
x∈supp(X)

Pf(U)|U=x(z)

=
∑
z∈Z

max
x∈supp(X)

PZ|X=x(z)

= Ez←Z
[

max
x∈supp(X)

PZ|X=x(z)

PZ(z)

]
. (11)

Combining Eq. (10) and Eq. (11), we conclude that

2` ≥ Ez←Z
[

max
x∈supp(X)

PZ|X=x(z)

PZ(z)

]
. (12)

Via a simple averaging argument, the upper bound in Eq. (12) implies that for every β > 0
there exists a set S such that PZ(S) ≥ 1− 2−β and

PZ|X=x(z)

PZ(z)
≤ 2`+β

for all z ∈ S and x ∈ supp(X). In turn, another averaging argument implies that there exists
a set T ⊆ X such that PX(T ) ≥ 1 − 2−β/2 and for every x ∈ T we have PZ|X=x(S), PZ(S) ≥
1− 2−β/2. This implies the desired result with p = γ = 2−β/2 and δ = 2−(`+β).

Combining Theorem 3 and Theorem 6 immediately yields the following result.

Corollary 3. For every X and every β > 0 and ε > 0, the set of leakages UNoisy∞,`(X) is

(ε+ ε2`+β−2
+ 2−β/2+1)-simulatable from Bounded`′(X) with

`′ = `+ β + log log(1/ε) + 2 log

(
1

1− 2−β/2

)
+ 2.

The remark below says that there is a natural tradeoff between the simulation error in the
above corollary and the leakage bound.

Remark 6 (Trading simulation error with U-noisy leakage). By choosing ε = 2−λ and β =
2 + log2(λ) in Corollary 3, we can obtain negligible simulation error ε′ = λ−ω(1) with leakage
`′ = `+O(log2(λ)). By choosing β = λ, we can instead obtain a much smaller simulation error
of ε′ = 2−Ω(λ) with larger leakage `′ = `+O(λ).

Near-optimality of simulation theorem for U-noisy leakage. We now show that in
order to simulate arbitrary `-U-noisy leakage from X uniformly distributed over {0, 1}n with
simulation error less than 1/2, we need access to one query of `′-bounded leakage from X for
`′ ≥ `− 1. As we shall see, this result implies that our simulation theorem from Corollary 3 is
nearly optimal.

Consider the following example: Let X be uniformly distributed over {0, 1}n and consider
the deterministic function f : {0, 1}n → {0, 1}` defined as f(x) = (x1, x2, . . . , x`). Then,
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it is clear that f ∈ UNoisy∞,`(X), and that f(X) is uniformly distributed over {0, 1}`. If

g ∈ Bounded`−1(X), it then follows by Lemma 1 that H̃∞(f(X)|g(X)) ≥ 1, and hence we
cannot guess f(X) correctly from g(X) with probability more than 1/2. Finally, it is also clear
that f ∈ Densep=0,γ=0,δ=2−` . Indeed, if Z = f(X), then we have PZ(z) = 2−` for all z ∈ {0, 1}`,
and hence trivially it holds that

PZ|X=x(z) ≤ PZ(z)

δ
= 1

for all x and z, when δ = 2−`. Summarizing the discussion above leads to the following result.

Theorem 7. For X uniform over {0, 1}n and every ` ≥ 1 there exists f ∈ UNoisy∞,`(X) ⊆
Noisy∞,`(X) such that f(X) cannot be simulated with error less than 1/2 by one (`−1)-bounded
leakage query to X. Moreover, it also holds that f ∈ Densep=0,γ=0,δ=2−`(X).

Comparing Theorem 7 with Corollary 3, we see that our simulation theorem for U-noisy
leakage is nearly optimal with respect to the bounded leakage parameter, since we only require
approximately ` bits of bounded leakage to simulate U-noisy leakage for uniform X. Further-
more, we can achieve this result with negligible simulation error.

5.4 SD-Noisy and MI-Noisy Leakage are also Dense Leakage

We now proceed to relate SD-noisy leakage and dense leakage.

Theorem 8. For any γ > 0 and arbitrary X, we have

Noisy∆,η(X) ⊆ Densep,γ,δ(X)

with p = 2η/γ and δ = 1/2.

Proof. Fix Z = f(X) for f ∈ Noisy∆,η(X). Then, we have

E(x,z)∼PX⊗PZ

[
|PXZ(x, z)− PX(x)PZ(z)|

PX(x)PZ(z)

]
=

∑
x∈X ,z∈Z

|PXZ(x, z)− PX(x)PZ(z)| ≤ 2η.

By Markov’s inequality, we conclude that there exists a set W ⊆ X ×Z such that PX⊗Z(W ) ≥
1− 2η we have

|PXZ(x, z)− PX(x)PZ(z)|
PX(x)PZ(z)

≤ 1

for all (x, z) ∈ W. Then, this implies that

PXZ(x, z) ≤ 2PX(x)PZ(z),

and hence
PZ|X=x(z) ≤ 2PZ(z)

for all (x, z) ∈ W. Letting Wx = {z ∈ Z : (x, z) ∈ W}, an averaging argument implies that,
for arbitrary γ > 0, there exists a set T ⊆ X with PX(T ) ≥ 1 − 2η/γ = 1 − p such that
PZ(Wx) ≥ 1− γ for all x ∈ T . Indeed, if this is not the case, then

PX⊗Z(W ) =
∑
x∈X

PZ(Wx) < 2η/γ · (1− γ) + 1− 2η/γ = 1− 2η,

a contradiction.
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By combining Corollary 1 and Theorem 8, we immediately obtain an analogous result for
MI-noisy leakage.

Theorem 9. For any γ > 0 and arbitrary X, we have

MINoisyη(X) ⊆ Densep,γ,δ(X)

with p =
√

8η/γ and δ = 1/2.

Near-optimality of trivial simulator for SD-noisy leakage. While in principle one can
combine Theorem 8 and Theorem 9 with Theorem 3 in order to obtain simulation theorems
for SD-noisy and MI-noisy leakage from bounded leakage, it turns out that these simulation
theorems would be trivial in the sense that the same statements can be obtained without even
considering reductions to bounded leakage.

In particular, consider the following trivial simulator Simf for SD-noisy leakage: Given

some PX and a function f ∈ Noisy∆,η(X), the simulator Simf samples X̃ according to PX

and outputs Z̃ = f(X̃) without querying any bounded leakage function. By the definition of
statistical distance and the fact that f ∈ Noisy∆,η(X), we have

(X,Z) ≈η (X, Z̃),

meaning that every η-SD-noisy leakage function f can be trivially simulated with statistical
error η even from the trivial family of 0-bounded leakage functions. By Pinsker’s inequality,
the above trivial simulation strategy also shows that for arbitrary X every leakage function
f ∈ MINoisyη(X) can be trivially simulated from 0-bounded leakage with error at most

√
2η.

Below, we prove that the trivial simulator for SD-Noisy leakage is essentially optimal, in the
sense that any simulator for SD-noisy leakage with access to one query of `-bounded leakage
for any ` < n must have error η/2. We have the following theorem.

Theorem 10. For every η ∈ (0, 1), there exist X ∈ {0, 1}n and f ∈ Noisy∆,η(X) such that
every simulator for f with respect to `-bounded leakage has error at least η/2 for any ` < n.

Proof. Consider X ∈ {0, 1}n and a function f inducing uniform correlated leakage Z = f(X) ∈
{0, 1}n satisfying

PX|Z=z(x) =

{
η, if x = z,
1−η

2n−1 , otherwise,
(13)

where η ∈ (0, 1). Given Eq. (13), it follows easily that X is also uniformly distributed over
{0, 1}n, and that

∆(PXZ ;PX ⊗ PZ) ≤ η.

Therefore, we have that f ∈ Noisy∆,η(X).
Consider now an arbitrary simulator Simf with access to one query of `-bounded leakage

for some ` < n. We argue that Simf must have error at least η/2. Indeed, note that X is still
uniformly distributed over {0, 1}n when conditioned on the event X = Z. Therefore, under
this conditioning, the simulator Simf can only guess Z with probability at most 1/2 if it only
has access to one query of `-bounded leakage from X for ` < n. Since P[X = Z] = η, the
observation above implies that the error of Simf is at least η/2, as desired.

Combining the trivial simulator for η-SD-noisy leakage and Theorem 10, we conclude that it
is impossible to obtain a general simulation theorem for SD-noisy leakage from bounded leakage
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that performs somewhat better than the trivial simulator. Indeed, it is even impossible to
improve upon the error of the trivial simulator by more than a 1/2 multiplicative factor.

We remark that Theorem 10 does not contradict the simulation theorems of Duc, Dziem-
bowski, and Faust [DDF14, DDF19]. The reason for this, as we discussed in §4.2, is that the
set of leakage functions considered in [DDF14, DDF19], which we termed DDF-noisy leakage,
is a very restricted subset of the set of SD-noisy leakage functions of a random variable X. In
fact, we show in §5.5 that DDF-noisy leakage is a subset of U-noisy leakage. This means that,
via our general simulation theorem for dense leakage, and in contrast with general SD-noisy
leakage, DDF-noisy leakage can be simulated in a non-trivial way with small simulation error
and good parameters from bounded leakage.

Impossibility of low-error simulation of MI-noisy leakage. Via Pinsker’s inequality, we
know that the trivial simulator achieves simulation error

√
2η for η-MI-noisy leakage. Therefore,

it is natural to wonder whether it is possible to do significantly better than this. In particular,
in line with min-entropy-noisy and uniform-noisy leakages, is it possible to design a simulator
with negligible simulation error when η is non-negligible?

We show that the answer to the question above is negative even when the simulator has
access to one `-bounded leakage query for any ` < n. As a corollary, and similarly to the case
of SD-noisy leakage, we also conclude that one cannot do significantly better than the trivial
simulator. More precisely, we have the following result.

Theorem 11. There exists X uniform over {0, 1}n and a function f ∈ MINoisyη(X) such that
every simulator which makes one `-bounded leakage query for any ` < n has simulation error
at least η

2n . In particular, if η is non-negligible in n, then so is the simulation error.

Proof. Consider X uniform over {0, 1}n and the randomized leakage function f satisfying
f(x) = x with probability η/n < 1, and f(x) = ⊥ otherwise. We begin by showing that
f ∈ MINoisyη(X). Letting Z = f(X), we have

I(X;Z) = H(X)−H(X|Z) = n−H(X|Z) = n− PZ(⊥) · n = n− η,

as desired. Consider an arbitrary simulator for X and Z with access to one query of `-bounded
leakage with ` < n. Since the simulator can only guess X with probability at most 1/2 and
Z = X holds with probability η/n, we conclude that the simulation error is at least η

2n .

5.5 DDF-Noisy Leakage is Uniform-Noisy Leakage

We begin by showing that DDF-noisy leakage is a subset of U-noisy leakage with good param-
eters, and hence of dense leakage as well. Then, we discuss the consequences of this fact.

Theorem 12. For every X ∈ X n and η ≤ 1/|X |, it holds that

NoisyDDF,η(X) ⊆ UNoisy∞,`(X)

for ` = n log(1+η(|X |−1)|X |). In particular, when X = {0, 1} we have ` = n log(1+2η) ≤ 2η·n.

Proof. Fix some X distributed over X n and some f ∈ NoisyDDF,η(X). It was shown in [DDF14,
Lemma 3] that there exists a possibly randomized function g such that (X, f(X)) is distributed
exactly like (X, g(X̂)), where X̂ is obtained from X by independently setting each X̂i = Xi

with probability δ = η · |X |, and X̂i = ⊥ otherwise.11

11This random variable X̂ is also called random-probing leakage from X in the literature.
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Given the above, it suffices to show that X̂ is `-U-noisy leakage from X with ` = n log(1 +
η(|X | − 1)|X |). Let U be uniformly distributed over X n, Û be the corresponding corrupted
version of U obtained by independently setting each Ûi = Ui with probability δ and Ûi = ⊥
otherwise, and w(û) denote the number of entries of û not equal to ⊥. Note that w(Û) follows
a binomial distribution with n trials and success probability δ = η · |X |. Then, we have

H̃∞(U |Û) = − log
(
Eû←Û

[
2−H∞(U |Û=û)

])
= − log

(
Eû←Û

[
2−(n−w(û)) log |X |

])
= −n log

(
δ + (1− δ) · 1

|X |

)
= H∞(U)− n log(1 + η(|X | − 1)|X |),

where the third equality follows by noting that Z = n − w(Û) is distributed according to a
binomial distribution with n trials and success probability 1− δ. Then, the moment-generating
function of Z is given by

E[etZ ] = (δ + (1− δ)et)n

for all t ∈ R. Setting t = − ln 2 · log |X | yields the desired result. Finally, the fourth equality
holds by noting that H∞(U) = n log |X | and δ = η|X |.

Recalling Corollary 3, which gives a nearly optimal simulation theorem for U-noisy leakage
from bounded leakage, via Theorem 12 we conclude that we can simulate all η-DDF-noisy
leakage with roughly ` bits of bounded leakage, for ` as in Theorem 12, with negligible simulation
error independent of η, which may even be constant. More precisely, we have the following result
when X = {0, 1}.

Corollary 4. For every X ∈ {0, 1}n, η ≤ 1/2, β > 0, and ε > 0, the set of leakages

DDFNoisy∆,η(X) is (ε+ ε2`+β−2
+ 2−β/2+1)-simulatable from Bounded`′(X) with

`′ = `+ β + log log(1/ε) + 2 log

(
1

1− 2−β/2

)
+ 2

and ` = n log(1 + 2η).

It is interesting to contrast this result with Theorem 10, which states that we cannot simulate
general η-SD-noisy leakage with error less than η/2. We remark that the simulation result we
obtain for DDF-noisy leakage here is not new. Such a simulation result for DDF-noisy leakage
was derived in [DDF14, DDF19] via a reduction to a restricted subset of bounded leakage called
threshold probing leakage. We chose to nevertheless include the results of this section to showcase
the generality of our approach and emphasize the differences between general SD-noisy leakage
and DDF-noisy leakage.

5.6 Missing Separations between Types of Leakage

With the final goal of having a clear picture of the inclusions and separations between different
leakage models (as depicted in Figure 1), we showcase here the missing separations between
the different sets of leakages considered above. These correspond to the relationship between
SD-noisy leakage and other leakage models.
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Separation between SD-noisy and ME-noisy leakages. We begin by showing that there
are SD-noisy leakages with very good parameters which are only ME-noisy leakages with poor
parameters. As we shall see, the leakage that we consider to obtain this separation can also be
used to obtain a lower bound on the error required to simulated SD-noisy leakage with bounded
leakage and to separate SD-noisy and MI-noisy leakages. Consider X and Z = f(X) uniformly
distributed over {0, 1}n as defined in Eq. (13) for η ∈ (0, 1). As discussed in Section 5.4, from
Eq. (13) it follows easily that X is also uniformly distributed over {0, 1}n, and that

∆(PXZ ;PX ⊗ PZ) ≤ η.

Therefore, we have f ∈ Noisy∆,η(X). However, on the other hand we have H∞(X|Z = z) =
log(1/η) for every z ∈ {0, 1}n, and thus

H̃∞(X|Z) = log(1/η).

This means that f 6∈ Noisy∞,`(X) for any ` < n − log(1/η). We summarize the above in the
following result.

Theorem 13. For every η ∈ (0, 1) and n, there exists a function f such that for X uniform
over {0, 1}n we have f ∈ Noisy∆,η(X) but f 6∈ Noisy∞,`(X) for any ` < n− log(1/η).

Separation between SD-noisy and MI-noisy leakages, and a counter-example to a
reverse Pinsker inequality for approximate density. The same joint distribution PXZ
defined in Eq. (13) can be used to give a separation between SD-noisy and MI-noisy leakages
whenever η is not a small function of n (e.g., if η is an arbitrary constant independent of n).
Namely, we have

I(X;Z) = H(X)−H(X|Z)

= n−H(X|Z = 0n)

= n+ η log η + (1− η)(log(1− η)− log(2n − 1)),

where in the second equality we used the fact that X is uniform. If η ≥ 1/nα for some α < 1,
then we conclude that I(X;Z) ≥ (1− o(1))ηn ≥ (1− o(1))n1−α as n→∞. On the other hand,
as discussed above, we have ∆(PXZ ;PX ⊗ PZ) ≤ η. We summarize the discussion above in the
following theorem.

Theorem 14. If η ≥ 1/nα for any constant α > 0, then for n large enough there exists
a function f such that for X uniform over {0, 1}n it holds that f ∈ Noisy∆,η(X) but f 6∈
MINoisyη′(X) for any η′ < η·n

2 .

Interestingly, the example above also shows that a certain reverse Pinsker inequality cannot
be extended to more general pairs of distributions. We proceed to explain this in more detail.
Given that the Pinsker inequality (Lemma 5) holds for all distributions P = PXZ and P ′ =
PX ⊗ PZ , it is natural to wonder under which conditions on P and P ′ we can have a reverse
Pinsker inequality of the form

I(X;Z) = DKL(PXZ‖PX ⊗ PZ) ≤ C ·∆(PXZ ;PX ⊗ PZ)

for some absolute leading constant C > 0. A more detailed treatment of such inequalities can
be found in [Sas15]. Verdú [Ver14, Theorem 7] showed that such a reverse Pinsker inequality
holds in particular whenever PXZ is δ-dense in PX ⊗ PZ ,12 in which case one obtains

I(X;Z) ≤ Cδ ·∆(PXZ ;PX ⊗ PZ) (14)

12Note that this condition is equivalent to assuming that PZ|X=x is δ-dense in PZ for every x.
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for Cδ = log(1/δ)
2(1−δ) . Observe that the distribution PXZ with Z = f(X) defined in Eq. (13) is such

that
f ∈ Densep=√η,γ=

√
η,δ=1/2(X)

by Theorem 8, where η can be made arbitrarily small. Therefore, this property and Theorem 14
show that Eq. (14) cannot possibly hold with any leading constant C if we replace the hypothesis
that PXZ is δ-dense in PX ⊗ PZ by the slightly weaker hypothesis that f ∈ Densep,γ,δ(X), i.e.,
that PXZ is approximately δ-dense in PX ⊗ PZ for even very small errors p and γ.

6 Applications

In this section we show that our results have interesting implications for so-called leakage-
resilient cryptography. In particular, we will show that many cryptographic primitives that
have been shown to be resilient to bounded leakage are also resilient to different forms of noisy
leakage, with only a small loss in parameters.

6.1 Secret Sharing with Local Leakage Resilience

A secret sharing scheme consists of n players, or parties, and two polynomial-time algorithms
Σ = (Share,Rec) specified as follows:

• The randomized sharing algorithm Share(y) takes as input a message y ∈ {0, 1}m, and
outputs n shares x1, . . . , xn, with xi ∈ {0, 1}s for each i ∈ [n].

• The deterministic reconstruction algorithm Rec((xi)i∈I) takes as input a certain subset I
of shares (xi)i∈I and outputs a value in {0, 1}m.

Intuitively, in a threshold secret sharing scheme, we want that, once fixed a threshold t ≤ n,
only the subsets of [n] of at least t players are allowed to reconstruct the message, while any
subset of at most t − 1 players cannot obtain any information about the message from their
shares. Usually, we refer to this kind of secret sharing scheme as t-out-of-n secret sharing.

Definition 13 (Threshold secret sharing). Let t, n ∈ N and ε ∈ [0, 1] be parameters. We say
that Σ = (Share,Rec) is a t-out-of-n ε-statistical secret sharing scheme if the following two
properties hold.

• Correctness: for all y ∈ {0, 1}m and all I ⊆ [n] such that |I| ≥ t, it holds that
Rec(Share(y)I) = y with probability 1 over the randomness of Share.

• Privacy: for all y0, y1 ∈ {0, 1}m and all U ⊆ [n] such that |U| < t, it holds that
∆(Share(y0), Share(y1)) ≤ ε.

In the special case of ε = 0 (i.e., Share(y0) and Share(y1) are identically distributed), we
speak of t-out-of-n perfect secret sharing.

Local leakage resilience. Next, we consider the following kind of leakage attack: after seeing
an unauthorized subset of shares, the adversary performs one query of leakage from all the shares
independently.

Definition 14 (Local leakage-resilient secret sharing). Let t, n, u ∈ N be parameters such that
u < t ≤ n, and let Σ = (Share,Rec) be a t-out-of-n secret sharing scheme. We say that Σ is
a (p, γ, δ)-dense u-local ε-leakage-resilient secret sharing scheme (or (u, p, γ, δ, ε)-DLLR-SS for
short) if for all messages y0, y1 ∈ {0, 1}m, all unauthorized subsets U ⊆ [n] such that |U| ≤ u,

28



and every tuple of leakage functions (f1, . . . , fn) such that fi : {0, 1}(|U|+1)s → {0, 1}∗ is (p, γ, δ)-
dense for all i ∈ [n], we have

∆
((
X0
U , (fi(X

0
U , X

0
i ))i∈[n]

)
,
(
X1
U , (fi(X

1
U , X

1
i ))i∈[n]

))
≤ ε,

where (Xb
1, . . . , X

b
n) = Share(yb) for all b ∈ {0, 1}.

Moreover, in case the functions fi in the above definition are:

• `-bounded leakage functions, we say that Σ is `-bounded u-local ε-leakage-resilient (or
(u, `, ε)-BLLR-SS);

• `-ME-noisy leakage functions, we say that Σ is `-min-entropy-noisy u-local ε-leakage-
resilient (or (u, `, ε)-ME-NLLR-SS);

• `-U-noisy leakage functions, we say that Σ is `-uniform-noisy u-local ε-leakage-resilient
(or (u, `, ε)-U-NLLR-SS);

The theorem below says that any bounded leakage-resilient secret sharing scheme is also
secure in the presence of dense leakage.

Theorem 15. Any (u, `, ε)-BLLR-SS is also a (u, p, γ, δ, ε′)-DLLR-SS so long as

` = log(1/δ) + log log(1/ε) + 2 log
(

1
1−γ

)
+ 2

ε′ = (2n+ 1)ε+ 2nε1/4δ + 2nγ + 2np.

Proof. Fix any unauthorized set U such that |U| ≤ u, n arbitrary (p, γ, δ)-dense leakage functions
f1, . . . , fn and any y0, y1 ∈ {0, 1}m. For simplicity and ease of notation, let ε̂ = ε+ ε1/4δ + γ+ p
and wlog. assume that fi output nothing for all i ∈ U . By Theorem 3, there exist n randomized
simulators Simfi such that for all b ∈ {0, 1} we have

(Xb
U , f1(Xb

U , X
b
1), f2(Xb

U , X
b
2), . . . , fn(Xb

U , X
b
n))

≈ε̂ (Xb
U ,Sim

Leak((Xb
U ,X

b
1),·)

f1
, f2(Xb

U , X
b
2), . . . , fn(Xb

U , X
b
n))

≈ε̂ . . .

≈ε̂ (Xb
U ,Sim

Leak((Xb
U ,X

b
1),·)

f1
, Sim

Leak((Xb
U ,X

b
2),·)

f2
, . . . ,Sim

Leak((Xb
U ,X

b
n),·)

fn
),

where, for all i ∈ [n], Xb
i is the random variable associated to the i-th share of a secret sharing of

yb and Simfi asks to its oracle a single query consisting of a function f ′i : {0, 1}(|U|+1)s → {0, 1}`,
with ` = log(1/δ)+log log(1/ε)+2 log

(
1

1−γ

)
+2. Therefore, the triangle inequality implies that

(Xb
U , f1(Xb

U , X
b
1), f2(Xb

U , X
b
2), . . . , fn(Xb

U , X
b
n))

≈nε̂ (Xb
U ,Sim

Leak((Xb
U ,X

b
1),·)

f1
, Sim

Leak((Xb
U ,X

b
2),·)

f2
, . . . ,Sim

Leak((Xb
U ,X

b
n),·)

fn
). (15)

Next, we claim that for every sequence of (p, γ, δ)-dense leakage functions fi : {0, 1}(|U|+1)s →
{0, 1}∗ and for all messages y0, y1 ∈ {0, 1}m,

(X0
U ,Sim

Leak((X0
U ,X

0
1 ),·)

f1
, . . . ,Sim

Leak((X0
U ,X

0
n),·)

fn
)

≈ε (X1
U ,Sim

Leak((X1
U ,X

1
1 ),·)

f1
, . . . ,Sim

Leak((X1
U ,X

1
n),·)

fn
). (16)
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By contradiction, assume that there exists a sequence of (p, γ, δ)-dense leakage functions
f1, . . . , fn, a pair of messages y0, y1 ∈ {0, 1}m, and an unbounded distinguisher D such that

P
[
D(X0

U ,Sim
Leak((X0

U ,X
0
1 ),·)

f1
, . . . ,Sim

Leak((X0
U ,X

0
n),·)

fn
) = 1

]
− P

[
D(X1

U , Sim
Leak((X1

U ,X
1
1 ),·)

f1
, . . . ,Sim

Leak((X1
U ,X

1
n),·)

fn
) = 1

]
> ε.

For all i ∈ [n], let f ′ : {0, 1}(|U|+1)s → {0, 1}`′ be the leakage function output by Simfi and

denote by Z̃i the output of the respective simulator. Consider the distinguisher D′ that upon
receiving (Xb

U , (f
′
i(X

b
U , X

b
i ))i∈[n]) returns the same as D upon input (Xb

U , (Z̃1, . . . , Z̃n)). Then,

P
[
D′(X0

U , f
′
1(X0

U , X
0
1 ), . . . , f ′n(X0

U , X
0
n)) = 1

]
− P

[
D′(X1

U , f
′
1(X1

U , X
1
1 ), . . . , f ′n(X1

U , X
1
n)) = 1

]
> ε.

The above contradicts the fact that Σ is a (U , `, ε)-BLLR-SS scheme. The theorem now follows
by combining Eq. (15) and Eq. (16) with the triangle inequality.

Next, using the connection between ME-noisy and U-noisy leakage with dense leakage es-
tablished in §5, we obtain the following corollary.

Corollary 5. Any (u, `′, ε′)-BLLR-SS is also an:

(i) (u, `, ε)-ME-NLLR-SS so long as ` = `′−2 log(1/ε′)−α−log log(1/ε′)−1 and ε = (6n+1)ε′,
and assuming that (X1, . . . , Xn) = Share(y) is such that for every U ⊆ [n] with |U| ≤ u,
and every i ∈ [n], the joint distribution (XU , Xi) is α-semi-flat.

(ii) (u, `, ε)-U-NLLR-SS so long as ` = `′ − 2 log(1/ε′)− log log(1/ε′)− 1 and ε = (6n+ 1)ε′.

Proof. The statement follows by choosing β = 2 + 2 log(1/ε′) and ε = ε′ in Corollary 2 and
Corollary 3.

As a concrete instantiation, we use the results of Benhamouda et al. [BDIR18], who proved
that both additive and Shamir’s secret sharing achieve bounded leakage resilience for certain
ranges of parameters. For concreteness, we focus on additive secret sharing but similar results
can be derived for Shamir’s secret sharing.

In order to apply the results of Corollary 5, we need to ensure13 that the parameters obtained
by [BDIR18] satisfy ` ≥ 0, i.e. we require that, simplifying the expression, `′ ≥ −4 log(ε′).
Considering [BDIR18, Corollary 4.11], for large enough q and for η > 0 such that `′ = blog(q)−
ηc, they achieve ε′ ≤ 2`

′−c(n−u−2)/2q2 for c = π2(22η − 1)/(6 ln(2)), that is:

log(ε′) ≤ `′ − c(n− u− 2)/2q2.

By asking that c(n− u− 2)/2q2 ≥ −5 log(ε′), we obtain that `′ ≥ −4 log(ε′) and we are able to
apply Corollary 5.

Fix `∗ and let η = log(q)− `∗. Then, we are asking that

−5 log(ε′) ≤ π2(22η − 1)

6 ln(2)

n− u− 2

2q2

=
π2(q2 · 2`∗ − 1)

6 ln(2)

n− u− 2

2q2

13The semi-flatness condition in item (i) of Corollary 5 is easily seen to be met for α = 0.
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=
π2

12 ln(2)
(n− u− 2)

(
2`
∗ − 1

q2

)
Finally, by letting ε = (6n+ 1)ε′, our goal becomes

−5 log(ε) ≤ π2

12 ln(2)
(n− u− 2)

(
2`
∗ − 1

q2

)
− 5 log(6n+ 1)

and, recalling that `′ ≈ `∗ (since `′ = b`∗c), we obtain `′ ≥ 4 log(6n + 1) − 4 log(ε) whenever
n4(n− u) = Ω(log(1/ε)/ε).

By applying Corollary 5 to the above results, we obtain the following.

Corollary 6. For all u, n ∈ N, with u < n, the n-out-of-n additive secret sharing scheme over
Fq, where q is a large prime, is an (u, `, ε)-ME-NLLR-SS (and thus an (u, `, ε)-U-NLLR-SS) so
long as ` = O(log(n)− log(ε)) and n4(n− u) = O(log(1/ε)/ε)

In particular, the above corollary includes the following cases:

• we obtain ε-security for an arbitrarily small constant ε against constant leakage whenever
an appropriate (constant) number of (honest) parties is involved;

• we obtain 1
λ -security against O(log(λ)) bits of leakage whenever n4(n−u) = Ω(λ · log(λ)).

We stress that while the above parameters are somewhat limited (as, e.g., a super-polynomial
number of honest parties is required in order to achieve negligible security), this limitation is
inherited from the analysis of additive secret sharing done in [BDIR18].

6.2 Leakage Resilience in the Floppy Model

Next, we show our results have applications to constructing so-called continuously leakage-
resilient primitives in the floppy model (also called the model of invisible key updates [ADW09]).
For concreteness, we focus on the case of leakage-resilient one-way functions and discuss appli-
cations to other primitives at the end of this section.

A one-way function with domain X and range Y in the floppy model consists of a tuple of
polynomial-time algorithms Π = (KGen, Sample,Eval,Update) specified as follows:

• The randomized key generation algorithm KGen(1λ) takes as input the security parameter
λ ∈ N and outputs public parameters ρ and update key τ .

• The randomized sampling algorithm Sample(ρ) takes as input the public parameters ρ
and outputs a value x ∈ X .

• The deterministic evaluation algorithm Eval(ρ, x) takes as input the public parameters ρ
and a value x, and outputs a value y ∈ Y.

• The randomized update algorithm Update(ρ, τ, x) takes as input the update key τ and a
value x, and outputs a value x′ ∈ X .

Correctness requires that for all λ ∈ N, for all (ρ, τ) ∈ KGen(1λ), and for all x ∈ X , it holds
that Eval(ρ,Update(ρ, τ, x)) = Eval(ρ, x) with probability one over the randomness of Update.
As for security, we intuitively require that no computationally bounded attacker can find a valid
pre-image x∗ of a target value y obtained by evaluating the one-way function on a randomly
chosen pre-image x, even if the attacker can obtain some leakage on x. After each leakage query,
the update key is used to obtain a fresh new x which is used to answer the next leakage query.
Agrawal et al. [ADVW13] formalized this notion in the setting of bounded leakage. Below, we
extend their definition to the noisy-leakage setting.
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Definition 15 (Continuously leakage-resilient one-way function). We say that Π = (KGen,
Sample,Update,Eval) is a continuously `-min-entropy-noisy leakage-resilient one-way function
in the floppy model (`-ME-NLR-OWF, for short) with domain X and range Y, if for all PPT
adversaries A there exists a negligible function ν : N→ [0, 1] such that

P
[
Eval(ρ, x∗) = y :

(ρ, τ)←$ KGen(1λ);x←$ Sample(ρ)

y = Eval(ρ, x);x∗←$ ANLeakρ,τ (x,·)(ρ, y)

]
≤ ν(λ),

where oracle NLeakρ,τ (x, ·) upon input (the description of) function f : X → {0, 1}∗ returns
f(x) and updates x to Update(ρ, τ, x), and where A only queries its oracles with functions f that
are `-ME-noisy for the distribution X|Y,R such that X is uniform over X and Y = Eval(R,X)
for R being the distribution of the public parameters output by KGen.

Moreover, in case the attacker in the above definition is restricted to only output functions
f that are `-U-noisy leakage functions, we say that Π is a continuously `-uniform-noisy leakage-
resilient one-way function (or `-U-NLR-OWF).

Let GroupGen(1λ) be a randomized algorithm outputting the description of a cyclic group
G with generator g and prime order q = q(λ). Consider the following construction.

KGen(1λ): Run (G, g, q)←$ GroupGen(1λ), pick a random vector τ = (τ1, . . . , τn)←$Znq and
output public parameters ρ = (G, g, g1 = gτ1 , . . . , gn = gτn , q) and update key τ .

Sample(ρ): Output x←$Znq .

Eval(ρ,x): Parse x = (x1, . . . , xn) and output y =
∏n
i=1 g

xi
i .

Update(ρ, τ ,x): Pick σ←$ ker(τ ) and output x+ σ.

Agrawal et al. [ADVW13] proved that the above construction is secure under the discrete
log assumption (cf. §2.3) in the setting of bounded leakage (i.e., in case the attacker of Defi-
nition 15 only outputs `-bounded leakage functions). The theorem below states that the same
construction is secure in the noisy-leakage setting as well.

Theorem 16. Assuming the DL assumption holds for GroupGen, the above cryptosystem Π is
an `-ME-NLR-OWF (and thus an `-U-NLR-OWF) with domain Znq and range G, so long as

` = (n− 3) log(q)− ω(log2(λ)).

The proof of Theorem 16 relies on a noisy variant of the subspace hiding lemma [BKKV10,
LLW11, ADVW13], which was used by several previous works to construct leakage-resilient
primitives. The lemma intuitively says that it is hard to distinguish (noisy) leakage on a
random (affine) subspace of the space generated by a random matrix A from (noisy) leakage
on a uniformly random matrix U, even if A becomes public after the leakage occurs.

Lemma 7 (Dual affine subspace hiding with ME-noisy leakage). Let n ≥ m ≥ d ≥ u be integers.
Let W ⊆ Znq be a fixed subspace of dimension m, let B ∈ Zn×uq be an arbitrary matrix, and let

f : {0, 1}∗ → {0, 1}∗ be any `-ME-noisy function. For randomly sampled A←$Wd (interpreted
as an n× d matrix), V←$Zd×uq , U←$Wu (interpreted as an n× u matrix), we have

(f(AV + B),A) ≈ (f(U),A)

so long as (d− u) log(q)− ` = ω(log2(λ)), n = poly(λ), and q = λω(1).

Proof. The proof is by reduction to the lemma below, which is the equivalent of Lemma 7 for
the case where the leakage function outputs at most ` bits.

32



Lemma 8 (Dual affine subspace hiding with bounded leakage [ADVW13]). Let n ≥ m ≥ d ≥ u
be integers. Let W ⊆ Znq be a fixed subspace of dimension m, let B ∈ Zn×uq be an arbitrary

matrix, and let f : {0, 1}∗ → {0, 1}` be any function with `-bit output. For randomly sampled
A←$Wd (interpreted as an n × d matrix), V←$Zd×uq , U←$Wu (interpreted as an n × u
matrix), we have

(f(AV + B),A) ≈ (f(U),A)

so long as (d− u) log(q)− ` = ω(log(λ)), n = poly(λ), and q = λω(1).

By setting α = 0 (as AV + B is uniform over an affine subspace of Znq ), β = 2 + log2(λ),

and ε = 2−λ in Corollary 2, for every `-ME-noisy leakage function f : {0, 1}∗ → {0, 1}∗ there
exists a simulator Simf such that for randomly sampled A←$Wd, V←$Zd×uq and U←$Wu

we have

(f(AV + B),A) ≈ (Sim
Leak(AV+B,·)
f ,A)

(f(U),A) ≈ (Sim
Leak(U,·)
f ,A),

where Simf asks to its oracle a single query consisting of a function f ′ : {0, 1}∗ → {0, 1}`′ with
`′ = `+O(log2(λ)) bits of output, and where the symbol ≈ hides a negligible statistical distance.

Next, we claim that for every `-ME-noisy leakage function f : {0, 1}∗ → {0, 1}∗, and for
randomly sampled A←$Wd, V←$Zd×uq and U←$Wu we have

(Sim
Leak(AV+B,·)
f ,A) ≈ (Sim

Leak(U,·)
f ,A).

By contradiction, assume that there exists an `-ME-noisy leakage function f : {0, 1}∗ → {0, 1}∗
and an unbounded distinguisher D such that for randomly sampled A←$Wd, V←$Zd×uq and
U←$Wu we have

P
[
D(Sim

Leak(AV+B,·)
f ,A) = 1

]
− P

[
D(Sim

Leak(U,·)
f ,A)) = 1

]
≥ 1/poly(λ).

Let f ′ : {0, 1}∗ → {0, 1}`′ be the leakage function output by Simf , and denote by Z̃ the output
of the simulator. Consider the distinguisher D′ that upon receiving (f ′(T),A), where T either
equals AV + B or U, returns the same as D upon input (Z̃,A). Then, we have

P
[
D′(f ′(AV + B),A) = 1

]
− P

[
D′(f ′(U),A)) = 1

]
≥ 1/poly(λ).

Since (d−u) log(q)−`′ = (d−u) log(q)−`−O(log2(λ)) = ω(log2(λ)), n = poly(λ) and q = λω(1),
the above contradicts Lemma 8 and thus finishes the proof.

Proof of Theorem 16. Let p(λ) ∈ poly(λ) be the number of leakage queries asked by attacker A
in an execution of the experiment defining security of Π. We consider a sequence of games, as
described below.

Game G0(λ): This the original experiment defining security of Π. Here, the challenger samples
ρ = (G, g, g1, . . . , gn, q) and τ ←$Znq , picks x1←$Znq , computes y = Eval(ρ,x1) and sends
y to A. Hence, upon input the i-th leakage query fi from A, the challenger returns fi(xi)
and lets xi+1 = xi + σi for random σi←$ ker(τ ).

Game G1,j(λ): The challenger picks a random subspace S ⊆ ker(τ ) of dimension n− 2 at the
beginning of the experiment, and lets x = x1. Hence, the i-th leakage query is answered
as follows:
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• In case 1 ≤ i ≤ p− j, compute xi+1 = x+ σi for σi←$ ker(τ ).

• In case p− j + 1 ≤ i ≤ p, compute xi+1 = x+ σi for σi←$ S.

Game G2(λ): For each leakage query i ∈ [p], the challenger defines xi+1 = xi+σi for σi←$ S.

Notice that G1,p(λ) is identically distributed to G2(λ). Furthermore, G1,0(λ) is identically
distributed to G0(λ) as in both games the vectors xi are uniformly random in the affine subspace
{xi : g〈xi,τ 〉 = y}. Let Ej be the event that A wins in Game G1,j(λ) and additionally returns a
vector x∗ such that x∗ − x 6∈ S.

Lemma 9. For every 1 ≤ j ≤ p, and all even unbounded attackers A, there exists a negligible
function ν1,j : N→ [0, 1] such that |P[Ej−1]− P[Ej ]| ≤ ν1,j(λ).

Proof. Fix any j ∈ [p]. By contradiction, assume that there is a possibly unbounded attacker
A such that |P[Ej−1] − P[Ej ]| ≥ 1/poly(λ). Consider the following unbounded distinguisher
D breaking the affine version of the dual subspace hiding lemma with ME-noisy leakage (cf.
Lemma 7 with W = ker(τ ), B = x, A = S and parameters d = n− 2 and u = 1):

• The distinguisher picks (ρ, τ )←$ KGen(1λ), x←$Znq , and runs A(ρ, y) where y =
∏n
i=1 g

xi
i .

• Upon input a leakage query fi from A, answers as follows:

– In case 1 ≤ i ≤ p− j − 1, return fi(xi) to A and define xi+1 = x+ σi for randomly
chosen σi←$ ker(τ ).

– In case i = p− j+ 1, forward the leakage function fp−j+1 to the challenger obtaining
(a description of) the subspace S and a string z ∈ {0, 1}∗, an return z to A.

– In case p− j + 2 ≤ i ≤ p, return fi(xi) to A and define xi+1 = x+ σi for randomly
chosen σi←$ S.

• Upon receiving x∗ from A, output 1 if and only if event Ej happens.

We note that the simulation is perfect, in the sense that if the leakage is applied to u = x+σ̂
for σ̂←$ ker(τ ) the view of A is identical to that in a run of game G1,j(λ), whereas if the leakage
is applied to x + σ̂ for σ̂←$ S the view of A is identical to that in a run of game G1,j−1(λ).
Since A outputs an `-ME-noisy leakage function for ` as in the statement of the theorem, we
get that (n− 3) log(q)− ` = ω(log2(λ)) which contradicts Lemma 7. The lemma follows.

Lemma 10. Under the DL assumption, for all PPT attackers A there is a negligible function
ν2 : N→ [0, 1] such that P[Ep] ≤ ν2(λ).

Proof. The proof of the lemma is identical to [ADVW13, Claim 12] and therefore omitted. The
only difference is that the attacker in our case queries the leakage oracle with `-ME-noisy leakage
functions (instead of leaking at most ` bits in each leakage round).

However, this is not a problem as the reduction can sample x and moreover all the leakage
queries are answered using a random (n− 2)-dimensional subspace S ⊆ ker(τ ).

By combining the above lemmas, for all PPT attackers A there is a negligible function
ν : N→ [0, 1] such that

P[G0(λ) = 1] ≤ P[E0] + 1/q ≤ P[Ep] +

p∑
j=1

|P[Ej−1]− P[Ej ]|+ 1/q ≤ ν(λ),

where the first inequality follows because A has no information about S in game G0(λ). This
finishes the proof.
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Other primitives. The subspace hiding lemma can be used to construct other bounded
leakage-resilient primitives including: public-key encryption [BKKV10, LLW11, DLWW11,
ADVW13, DFMV13, DFMV17], leakage-resilient storage [DLWW11], identity-based encryp-
tion [BKKV10], digital signatures [BKKV10, LLW11], traitor tracing [ADVW13], and non-
malleable codes with split-state refresh [FNSV18]. We believe our techniques can be used to
prove these constructions are in fact resilient to ME-noisy leakage.

Some of the above results rely on a dual version of the lemma which intuitively says it is
hard to distinguish random vectors from the column span of a random matrix A from uniformly
random and independent vectors. Thanks to our result, we can directly translate this lemma
in the noisy leakage setting as stated below.

Lemma 11 (Subspace hiding with ME-noisy leakage). Let n ≥ d ≥ u, s be integers, S ∈ Zd×sq

be an arbitrary (fixed and public) matrix and f : {0, 1}∗ → {0, 1}∗ be an arbitrary `-ME-noisy
leakage function. For randomly sampled A← Zn×dq , V← Zd×uq , U← Zn×uq , we have

(f(A),AS,V,AV) ≈ (f(A),AS,V,U)

so long as (d− s− u) log(q)− ` = ω(log2(λ)) and n = poly(λ).

6.3 Bounded-Collusion Protocols

In this section, we deal with applications related to so-called bounded-collusion protocols
(BCPs). These are interactive protocols between n parties where at each round a subset of
k < n parties are selected, and the output of a leakage function applied to the input of such
parties is appended to the protocol’s transcript.

Definition 16 (Bounded-communication BCPs). An interactive (possibly randomized) pro-
tocol π is called an n-party r-round `-bounded communication k-bounded-collusion protocol
((n, r, `, k)-BC-BCP, for short) if:

(i) the n parties start the protocol with input x1, . . . , xn ∈ X , and the transcript τ is empty
at the beginning of the protocol;

(ii) there is a function Next : {0, 1}∗ →
([n]
k

)
taking as input a (partial) transcript τ and

outputting a set S ⊂ [n] with |S| = k along with a function f : X k → {0, 1}∗;

(iii) at each round j ∈ [r] with current transcript τ , the protocol runs Next(τ) obtaining (Sj , fj)
and appends the message fj(XSj ) to the current transcript τ ;

(iv) the final transcript τ consists of at most ` ∈ N bits.

The above notion, which was introduced by Kumar, Meka, and Sahai [KMS19], interpolates
nicely between the well-known number-in-hand (NIH) and number-on-forehead (NOF) models,
which correspond respectively to the extreme cases k = 1 and k = n− 1. Note that the number
of rounds in a BC-BCP is at most r ≤ `.

Below, we generalize the definition of BCPs to settings where the round functions correspond
to noisy-leakage (in particular, dense and uniform-noisy leakage) functions on the parties’ inputs,
and thus there is no restriction on the size of the final transcript.

Definition 17 (Dense-communication BCPs). An interactive (possibly randomized) protocol π
is called an n-party r-round (p, γ, δ)-dense communication k-bounded-collusion protocol ((n, r, p,
γ, δ, k)-DC-BCP, for short) if it satisfies the same properties as in Definition 16, except that
property (iv) is replaced by
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(iv’) for each j ∈ [r], the function fj : X k → {0, 1}∗ is (p, γ, δj)-dense leakage for XSj |τj−1,
where τj denotes the transcript up to the j-th round and 0 < δj ≤ 1, and where additionally∏r
j=1 δj ≥ δ.

Definition 18 (Noisy-communication BCPs). An interactive (possibly randomized) protocol π
is called an n-party r-round `-noisy communication k-bounded-collusion protocol ((n, r, `, k)-
NC-BCP, for short) if it satisfies the same properties as in Definition 16, except that property
(iv) is replaced by

(iv”) for each j ∈ [r], the function fj : X k → {0, 1}∗ is `j-U-noisy leakage for XSj , where `j ≥ 0

and additionally
⌈∑r

j=1 `j

⌉
≤ `.

Observe that the number of rounds in a DC-BCP or NC-BCP is unbounded. Also, note that
property (iv”) in Definition 18 implicitly implies that the overall leakage drops the min-entropy
of the uniform distribution over any subset of k inputs by at most `. More formally, the final
transcript τ is such that14 for all subsets S ∈

([n]
k

)
we have

H̃∞(US |π(U1, . . . , Un)) ≥ H∞(US)− `, (17)

where U = (U1, . . . , Un) is uniform over X n and π(U1, . . . , Un) denotes the distribution of the
transcript τ at the end of the protocol.

Clearly, any BC-BCP is also a NC-BCP with the same leakage parameter. Below, we show
that the converse is also true, in the sense that the transcript of any NC-BCP π can be simulated
using the transcript of a related BC-BCP π′, up to a small statistical distance. In fact, the latter
statement holds true for the more general case of DC-BCPs.

Theorem 17. Let π be an (n, r, p, γ, δ, k)-DC-BCP. There exists an (n, r, `′, k)-BC-BCP π′ such
that, for any ε > 0, a transcript of π can be simulated within statistical distance r·(ε+ε1/4+γ+p)
given a transcript of π′ with length `′ = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2).

Proof. We start by describing protocol π′ acting on a random variable X = (X1, . . . , Xn).
Consider the simulator Simf guaranteed by Theorem 3.

• Let τ ′ be initially empty, and sample r independent random tapes ρ1, . . . , ρr for Sim.

• At each round j ∈ [r], the function Next′ takes as input the current transcript τ ′ =
z′1|| . . . ||z′j−1 and runs Next(τ̃), where τ̃ = Simf1(z′1; ρ1)|| . . . ||Simfj−1

(z′j−1; ρj−1).

• Let (fj ,Sj) be the j-th output of Next. Then, Next′ runs Simfj on XSj |τ̃ (with fixed

random tape ρj), obtaining a leakage function f ′j : X k → {0, 1}`
′
j , and outputs (f ′j ,Sj).

Next, we claim that protocol π′ has `′-bounded communication for `′ as in the statement
of the theorem. Recall that, for each j ∈ [r], the function fj output by Next is (p, γ, δj)-dense
leakage for XSj |τ̃ , with 0 < δj ≤ 1. Then, by applying Theorem 3, for any ε > 0 we get that
`′j = log(1/δj) + log log(1/ε) + 2 log(1/(1 − γ)) + 2. Hence, the final transcript τ ′ has size at
most `′ =

∑r
j=1 `

′
j = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2), which is the bound in

the statement of the theorem.
It remains to prove that we can simulate a transcript of π given a transcript of π′. Consider

the simulator that, after running π′ with random tapes ρ1, . . . , ρr, obtains the transcript τ ′ =

14This is because, by [DHLW10, Lemma L.3], any sequence of (adaptively chosen) functions f1, . . . , fr on a
random variable X, such that each function fj is `j-ME-noisy leakage for some `j ≥ 0 and where

∑r
j=1 `j ≤ `,

satisfies H̃∞(X|f1(X), . . . , fr(X)) ≥ H∞(X) − `. Furthermore, for the case of NC-BCPs, in the worst case all
the leakage happens on the same subset S of inputs.
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z′1|| . . . ||z′r and simply outputs the simulated transcript τ̃ = Simf1(z′1; ρ1)|| . . . ||Simfr(z
′
r; ρr). By

a hybrid argument, Theorem 3 implies that the transcript τ̃ is within statistical distance at
most r · (ε+ γ + p) +

∑r
j=1 ε

1/4δj ≤ r · (ε + ε1/4 + γ + δ) from the transcript τ obtained by
running π. This finishes the proof.

Theorem 18. Let π be an (n, r, `, k)-NC-BCP. There exists an (n, r, `′, k)-BC-BCP π′ such
that, for any 0 < δ < 1, a transcript of π can be simulated within statistical distance r · 3δ given
a transcript of π′ with length `′ ≤ `+ r · (6 + 2 log(1/δ) + log log(1/δ)).

Proof. We use the same protocol π′ as in the proof of Theorem 17, with the only difference that
at each round j ∈ [r] we now run the simulator Simfj guaranteed by Corollary 3 on XSj |τ̃ .

Then, we claim that protocol π′ has `′-bounded communication for `′ as in the statement of
the theorem. Recall that, for each j ∈ [r], the function fj output by Next is `j-U-noisy for XSj ,

with `j ≥ 0 and ` ≥
⌈∑r

j=1 `j

⌉
. By Theorem 6, we conclude that fj is `j-U-noisy for XSj |τ̃

as well. Then, by setting β = 2 + 2 log(1/δ) in Corollary 3, for any 0 < δ < 1, we get that
`′j = `j + 4 + 2 log(2/(2− δ)) + 2 log(1/δ) + log log(1/δ). Hence, the final transcript τ ′ has size
at most `′ =

∑r
j=1 `

′
j ≤ ` + r · (4 + 2 log(2/(2 − δ)) + 2 log(1/δ) + log log(1/δ)), which implies

the bound in the statement of the theorem.
Finally, by applying the same hybrid argument as in the proof of Theorem 17, we obtain

that the transcript τ̃ is within statistical distance at most r · 3δ from the transcript τ obtained
by running π. This finishes the proof.

Next, we show that Theorem 17 and Theorem 18 have applications to communication com-
plexity lower bounds, and to constructing cryptographic primitives with adaptive noisy-leakage
resilience (i.e., where leakage resilience is modeled either as a NC-BCP or as a DC-BCP).

6.3.1 Communication complexity lower bounds

We say that an (n, r, `, k)-BCP π (with either bounded or noisy communication) ε-computes
a (deterministic) Boolean function φ : X n → {0, 1}, if there exists an unbounded predictor P
that, after running a BCP protocol π on the parties’ inputs yielding a final transcript τ , outputs
φ(X1, . . . , Xn) with probability at least 1/2 + ε (over the randomness of (Xi)i∈[n], π and P).
The theorem below says that for any NC-BCP π that computes a Boolean function φ there is
a BC-BCP π′ that computes the same function with roughly the same probability, where the
size `′ of a transcript of π′ is related to the leakage parameter ` of π.

Corollary 7. Let π be any (n, r, `, k)-NC-BCP that ε-computes a Boolean function φ. Then,
there exists an (n, r, `′, k)-BC-BCP π′ that ε′-computes φ so long as

`′ ≤ `+ r · (6 + 2 log(6r/ε) + log log(6r/ε)) and ε′ = ε/2.

Proof. Consider the predictor P′ that simply runs P upon input the transcript τ̃ obtained using
the protocol π′ from Theorem 18. By setting δ = ε/(6r), it follows that the transcript of π′ has
size at most `′ ≤ `+r ·(6+2 log(6r/ε)+log log(6r/ε)) and furthermore the simulated transcript
τ̃ of P is up to statistical distance at most r · ε/(2r) = ε/2 from the transcript τ obtained by
running π. Thus, P′ computes φ with probability at least 1/2 + ε− ε/2 = 1/2 + ε/2.

The above corollary can be used to translate known lower bounds in communication com-
plexity for BC-BCPs to the more general setting of NC-BCPs.15 Note that a lower bound on

15In fact, using Theorem 17, we could also derive lower bounds on DC-BCPs. However, we stick to the setting
of NC-BCPs for simplicity.
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the communication complexity of BC-BCPs does not necessarily imply a lower bound on the
noisiness of NC-BCPs, as the fact that the transcript must consist of at least ` bits does not
say anything about how each round function reveals on the players’ inputs.

Remark 7 (On lower bounds on the leakage parameters of NC-BCPs). It may seem that a
lower bound on the parameter ` of NC-BCPs does not necessarily mean that any protocol must
reveal a lot of information on the parties’ inputs, as the actual min-entropy drop in Eq. (17)
could be much smaller16 than `. Nevertheless, we observe that the definition of NC-BCP implies
that there must exist an index j∗ ∈ [r] such that, say, `j∗ ≥ `−1

r . This is because, if `j <
`−1
r for

all j ∈ [r], then d
∑r

j=1 `je ≤ `− 1. In this light, the corollaries below still say that, for certain
Boolean functions, a transcript must necessarily reveal enough information about the inputs so
long as the number of rounds is not too large.

Corollary 8. Let φgip : ({0, 1}m)n → {0, 1} be the generalized inner product function such that
φgip(x1, . . . , xn) = 1 if and only if the number of positions where all the xi’s have 1 is odd. Then,
every (n, r, `, n−1)-NC-BCP that ε-computes φgip must satisfy `+r log(r) = Ω(m/(2n·log(2/ε))).

Proof. Chung [Chu90] proved that every (n, r, `′, n − 1)-BC-BCP that ε′-computes φgip must
satisfy `′ = Ω(m/2n + log(ε′)). However, by Corollary 7, every (n, r, `, n − 1)-NC-BCP that
ε-computes φgip can be transformed into an (n, r, `′, n− 1)-BC-BCP that ε′-computes φgip with
`′ ≤ ` + r · (6 + 3 log(6r/ε)) ≤ 17 · (` + r log(r)) · log(2/ε) and ε′ = ε/2. Thus, we get that
(`+ r log(r)) · log(2/ε) = Ω(m/2n + log(ε/2)). The statement follows.

Corollary 9. Let φqr : ({0, 1}m)n → {0, 1} be the function such that φqr(x1, . . . , xn) = 1 if and
only if

∑n
i=1 xi is a quadratic residue mod q, where q is an m-bit prime number. Then, every

(n, r, `, n− 1)-NC-BCP that ε-computes φqr must satisfy `+ r log(r) = Ω(m/(2n · log(2/ε))).

Proof. Babai, Nisant and Szegedy [BNS92] proved that every (n, r, `′, n − 1)-BC-BCP that ε′-
computes φqr must satisfy `′ = Ω(m/2n+log(ε′)). However, by Corollary 7, every (n, r, `, n−1)-
NC-BCP that ε-computes φqr can be transformed into an (n, r, `′, n − 1)-BC-BCP that ε′-
computes φqr with `′ ≤ `+ r · (6 + 3 log(6r/ε)) ≤ 17 · (`+ r log(r)) · log(2/ε) and ε′ = ε/2. Thus,
we get that (`+ r log(r)) · log(2/ε) = Ω(m/2n + log(ε/2)). The statement follows.

Corollary 10. There exists an explicit function φ : ({0, 1}m)n → {0, 1} such that every
(n, r, `, k)-NC-BCP that ε-computes φ must satisfy

`+ r log(r) = Ω

(
1

log(2/ε)
· (m+ log(ε/2))

log(n/k)
1/ log(n/k)+1

)
.

Proof. Kumar, Meka, and Zuckerman [KMZ20], as well as Chattopadhyay, Goodman, Goyal
and Li [CGGL20], independently proved that there exists a Boolean function φ (based on
the Bourgain extractor [Bou05]) such that every (n, r, `′, k)-BC-BCP that ε′-computes φ must

satisfy `′ = Ω((m + log(ε′))
log(n/k)

log(n/k)+1 ). However, by Corollary 7, every (n, r, `, k)-NC-BCP that
ε-computes φ can be transformed into an (n, r, `′, k)-BC-BCP that ε′-computes φ with `′ ≤
` + r · (6 + 3 log(6r/ε)) ≤ 17 · (` + r log(r)) · log(2/ε) and ε′ = ε/2. Thus, we get that (` +

r log(r)) · log(2/ε) = Ω((m+ log(ε/2))
log(n/k)

log(n/k)+1 ). The statement follows.

To get an idea of the parameters, the above corollaries imply that whenever n = O(log λ),
ε = 2·2−λ and r = O(`), any BCP with r rounds that computes either φgip or φqr with probability

16For instance, take k = 1 and consider the functions f1, . . . , fn that always reveal the first bit of X1. Then,
` =

∑n
j=1 `j = n, but H̃∞(U1|π(U1, . . . , Un)) = H∞(U1)− 1.
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better than 2 · 2−λ must reduce the (average) min-entropy of the (uniform) distribution on the
parties’ inputs by at least Ω(

√
m/(λ log(λ))) bits. Similarly, whenever k ≤ c·n for some constant

c < 1, there exists an explicit function φ such that any BCP with r rounds that computes φ
with probability better than 2 · 2−λ must reduce the (average) min-entropy of the (uniform)
distribution on the parties’ inputs by at least (m/λ)Ω(1).

6.3.2 BCP Leakage Resilience

Finally, we show how to lift bounded-leakage resilience to dense-leakage and uniform-noisy-
leakage resilience in applications where the leakage itself is modelled as a BCP protocol. For
concreteness, we focus again on secret sharing schemes and refer the reader to §A.2 and §A.3
of the appendix for additional examples (in particular, extractors for cylinder-intersection
sources [KMS19] and symmetric non-interactive key exchange [LMQW20]).

Let Σ = (Share,Rec) be a secret sharing scheme as defined in §6.1. The definition below
captures security of Σ in the presence of an adversary leaking information jointly from subsets
of the shares of size k < n, where both the leakage functions and the subsets of shares are
chosen adaptively. For simplicity, we focus on threshold secret sharing but our treatment can
be generalized to arbitrary access structures.

Definition 19 (Secret sharing with BCP leakage resilience). Let t, n, ` ∈ N, ε ∈ [0, 1] be pa-
rameters. A t-out-of-n secret sharing scheme (Share,Rec) is a k-joint r-adaptive (p, γ, δ)-dense
ε-leakage-resilient secret sharing scheme, (k, r, p, γ, δ, ε)-JA-DLR-SS for short, if for all mes-
sages y0, y1 ∈ {0, 1}m and all (n, r, p, γ, δ, k)-DC-BCP π we have

π(X
(0)
1 , . . . , X(0)

n ) ≈ε π(X
(1)
1 , . . . , X(1)

n ),

where (X
(b)
1 , . . . , X

(b)
n ) = Share(yb) is the distribution of the shares of message yb ∈ {0, 1}m for

all b ∈ {0, 1}.

Moreover, in case the protocol π in the above definition is an:

• (n, r, `, k)-NC-BCP, we say that Σ is k-joint r-adaptive `-noisy ε-leakage-resilient (or
(k, r, `, ε)-JA-NLR-SS);

• (n, r, `, k)-BC-BCP, we say that Σ is k-joint r-adaptive `-bounded ε-leakage-resilient (or
(k, r, `, ε)-JA-BLR-SS).

Corollary 11. Every (k, r, `, ε)-JA-BLR-SS scheme Σ is also a (k, r, p, γ, δ, ε′)-JA-DLR-SS so
long as ` = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2) and ε′ = ε+ 2r · (ε+ ε1/4 + γ+ p).

Proof. For all b ∈ {0, 1}, by applying Theorem 17, we can replace the transcript π(X
(b)
1 , . . . ,

X
(b)
n ) of any (n, r, p, γ, δ, k)-DC-BCP with a simulated transcript π̃(x

(b)
1 , . . . , X

(b)
n ) obtained using

the transcript π′(x
(b)
1 , . . . , X

(b)
n ) of a (n, r, `, k)-BC-BCP with ` = log(1/δ) + r · (log log(1/ε) +

2 log(1/(1− γ)) + 2). Hence, we have

π(X
(0)
1 , . . . , X(0)

n ) ≈ε̃ π̃(X
(0)
1 , . . . , X(0)

n )

≈ε π̃(X
(1)
1 , . . . , X(1)

n )

≈ε̃ π(X
(1)
1 , . . . , X(1)

n ),

where ε̃ = ε+ε1/4 +γ+p and the second equation follows by the fact that Σ is a (k, r, p, γ, δ, ε)-
JA-DLR-SS scheme. The statement now follows by the triangle inequality.
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Corollary 12. Every (k, r, `′, ε′)-JA-BLR-SS scheme Σ is also a (k, r, `, ε)-JA-NLR-SS scheme
so long as `′ = `+ r ·O(log(r/ε)) and ε = 3ε′.

Proof. For all b ∈ {0, 1}, by setting δ = ε′/(3r) in Theorem 18, we can replace the transcript

π(X
(b)
1 , . . . , X

(b)
n ) of any (n, r, `, k)-NC-BCP with a simulated transcript π̃(X

(b)
1 , . . . , X

(b)
n ) ob-

tained using the transcript π′(X
(b)
1 , . . . , X

(b)
n ) of a (n, r, `′, k)-BC-BCP with `′ ≤ ` + r · (6 +

2 log(3r/ε′) + log log(3r/ε′)) = `+ r · (O(log(r/ε))). Hence, we have

π(X
(0)
1 , . . . , X(0)

n ) ≈ε′ π̃(X
(0)
1 , . . . , X(0)

n )

≈ε′ π̃(X
(1)
1 , . . . , X(1)

n )

≈ε′ π(X
(1)
1 , . . . , X(1)

n ),

where the second equation follows by the fact that Σ is a (k, r, `′, ε′)-JA-BLR-SS scheme. The
statement now follows by the triangle inequality.

Explicit constructions of secret sharing schemes with BCP leakage resilience in the bounded
leakage setting can be built for any leakage bound ` and any ε > 0 from n-party functions
with large NOF complexity with collusion bound k = O(log(n)) [KMS19] (for arbitrary access
structures) and k = O(t/ log(t)) [KMZ20] (for threshold access structures). By the above
corollaries, these schemes are also directly secure in the settings of dense and U-noisy leakage.

7 Conclusions and Open Problems

We have shown that a single query of noisy leakage can be simulated in the information-theoretic
setting using a single query of bounded leakage, up to a small statistical distance and at the
price of a slight loss in the leakage parameter. The latter holds true for a fairly general class of
noisy leakage (which we introduce) dubbed dense leakage. Importantly, dense leakage captures
many already existing noisy-leakage models including those where the noisiness of the leakage
is measured using the conditional average min-entropy [NS09, DHLW10, NS12], the statistical
distance [DDF14, DDF19], or the mutual information [PGMP19]. For some of these models,
our simulation theorems require additional assumptions on the input distribution or only hold
for certain range of parameters, but in each case we show this is the best one can hope for.

The above result has applications to leakage-resilient cryptography, where we can reduce
noisy-leakage resilience to bounded-leakage resilience in a black-box way. Interestingly, for
some applications, the latter holds true even in the computational setting. Additionally, we have
shown that our simulation theorems yield new lower bounds in communication complexity.

Several interesting open questions remain. We list some of them below:

• Can we prove that other families of noisy leakage (e.g., hard-to-invert leakage [DKL09])
fall within the class of dense leakage (or directly admit simulation theorems with good
parameters from bounded leakage)?

• Can we make the simulator efficient for certain families of noisy leakage? The latter would
allow to lift bounded-leakage resilience to noisy-leakage resilience for all computationally-
secure applications, and for statistically-secure applications with simulation-based security
in which the running time of the simulator needs to be polynomial in the running time of
the adversary (such as leakage-tolerant MPC [BCH12]).

• Can we generalize Theorem 18 to a more general setting where the leakage parameter `
of NC-BCPs measures the worst-case average min-entropy drop w.r.t. the final transcript
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of the protocol (instead of being the summation over the worst-case min-entropy drops of
each round function in isolation)? The latter would allow to strengthen the lower bounds
in §6.3.1, as well as the security of the applications in §6.3.2, §A.2 and §A.3.
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the presence of leakage. In Carles Padró, editor, ICITS 13, volume 8317 of LNCS,
pages 238–258. Springer, Heidelberg, 2014.

41



[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive proto-
cols. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 266–284.
Springer, Heidelberg, March 2012.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 531–561.
Springer, Heidelberg, August 2018.

[BFO+20] Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, and Daniele
Venturi. Non-malleable secret sharing against bounded joint-tampering attacks
in the plain model. Cryptology ePrint Archive, Report 2020/725, 2020. https:

//eprint.iacr.org/2020/725.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. In 51st FOCS, pages 501–510. IEEE Computer Society Press,
October 2010.
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A Further Applications

A.1 Forward-Secure Storage

A forward-secure storage scheme (FSS) [Dzi06b] consists of two polynomial-time algorithms
Φ = (Enc,Dec) specified as follows:

• The randomized encryption algorithm Enc(κ, y) takes as input a key κ ∈ {0, 1}k and a
message y ∈ {0, 1}m, and outputs a ciphertext x ∈ {0, 1}n.

• The deterministic decryption algorithm Dec(κ, x) takes as input a key κ ∈ {0, 1}k and a
ciphertext x ∈ {0, 1}n, and outputs a value in {0, 1}m.

We require correctness, namely for every key κ ∈ {0, 1}k and every message y ∈ {0, 1}m, it
holds that Dec(κ,Enc(κ, y)) = y with probability one over the randomness of Enc.

Intuitively, FSS is a special type of secret-key encryption satisfying the following property:
If the adversary has only partial information about the ciphertext x = Enc(κ, y), represented
as a leakage function z = f(x), it does not learn anything about the plaintext y even when
the key κ becomes public after the leakage occurs. The original definition of FSS was in the
bounded-leakage setting, where the leakage function f outputs at most ` bits. The definition
below generalizes this notion to the setting of dense leakage.
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Definition 20 (Forward-secure storage). We say that an FSS scheme Φ = (Enc,Dec) is
(p, γ, δ)-dense ε-leakage-resilient (p, γ, δ, ε)-DLR-FSS for short) if for all y0, y1 ∈ {0, 1}m, and
for all (p, γ, δ)-dense leakage functions f : {0, 1}n → {0, 1}∗, we have

(K, f(X0)) ≈ε (K, f(X1)),

where K is uniform over {0, 1}k and Xb←$ Enc(K, yb) for all b ∈ {0, 1}.

Moreover, in case the function f in the above definition is:

• an `-bounded leakage function, we say Φ is `-bounded ε-leakage-resilient (or (`, ε)-BLR-
FSS);

• an `-ME-noisy leakage function, we say Φ is `-min-entropy-noisy ε-leakage-resilient (or
(`, ε)-ME-NLR-FSS);

• an `-U-noisy leakage function, we say Φ is `-uniform-noisy ε-leakage-resilient (or (`, ε)-U-
NLR-FSS);

The theorem below says that any bounded leakage-resilient FSS is also secure in the presence
of dense leakage.

Theorem 19. Any (`, ε)-BLR-FSS is also a (p, γ, δ, ε′)-DLR-FSS so long as

` = log(1/δ) + log log(1/ε) + 2 log

(
1

1− γ

)
+ 2

ε′ = 3ε+ 2ε1/4δ + 2γ + 2p.

Proof. Fix an arbitrary (p, γ, δ)-dense leakage function f : {0, 1}n → {0, 1}∗, and any y0, y1 ∈
{0, 1}m. By Theorem 3, there exists a randomized simulator Simf such that for all b ∈ {0, 1}
we have

(K, f(Xb)) ≈ε+ε1/4δ+γ+p (K,Sim
Leak(Xb,·)
f ), (18)

for K uniform over {0, 1}k and Xb←$ Enc(K, yb), where Simf asks to its oracle a single query

consisting of a function g : {0, 1}n → {0, 1}` with ` = log(1/δ) + log log(1/ε) + 2 log
(

1
1−γ

)
+ 2.

Next, we claim that for every (p, γ, δ)-dense leakage function f : {0, 1}n → {0, 1}∗, and for
all messages y0, y1 ∈ {0, 1}m we have

(K,Sim
Leak(X0,·)
f ) ≈ε (K,Sim

Leak(X1,·)
f ). (19)

By contradiction, assume that there exists a (p, γ, δ)-dense leakage function f : {0, 1}n →
{0, 1}∗, a pair of messages y0, y1 ∈ {0, 1}∗, and an unbounded distinguisher D such that

P
[
D(K,Sim

Leak(X0,·)
f ) = 1

]
− P

[
D(K,Sim

Leak(X1,·)
f )) = 1

]
> ε.

Let g : {0, 1}n → {0, 1}` be the leakage function output by Simf , and denote by Z̃ the output
of the simulator. Consider the distinguisher D′ that upon receiving (K, g(Xb)) returns the same
as D upon input (K, Z̃). Then, we have

P
[
D′(K, g(X0)) = 1

]
− P

[
D′(K, g(X1))) = 1

]
> ε.

The above contradicts the fact that Φ is an (`, ε)-BLR-FSS. The theorem now follows by com-
bining Eq. (18) and Eq. (19) with the triangle inequality.
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Next, using the connections between ME-noisy and U-noisy leakage with dense leakage
established in §5, we obtain the following corollary.

Corollary 13. Any (`′, ε′)-BLR-FSS is also an:

(i) (`, ε)-ME-NLR-FSS so long as ` = `′ − O(log(1/ε′) + α) and ε = 7ε′, and assuming that
Enc(K, y) is α-semi-flat for all y ∈ {0, 1}m and with K uniform over {0, 1}k.

(ii) (`, ε)-U-NLR-FSS so long as ` = `′ −O(log(1/ε′)) and ε = 7ε′.

Proof. The statement follows by choosing β = 2 + 2 log(1/ε′) and ε = ε′ in Corollary 2 and
Corollary 3.

Dziembowski [Dzi10] suggests the following construction of FSS. The encryption of y ∈
{0, 1}m is a pair of strings x = (x0, x1) = (ρ,Ext(κ0, ρ) ⊕ κ1 ⊕ y) ∈ {0, 1}r+m, where Ext :
{0, 1}k × {0, 1}r → {0, 1}m is a seeded extractor and κ = (κ0, κ1) ∈ {0, 1}k+m is the secret key.
Note that the distribution of x is flat. Assuming that Ext is a seeded extractor with error ε for
sources of min-entropy H∞(R) ≥ r− `−λ, then the above construction is an (`, 2ε+2−λ)-BLR-
FSS. By the above corollary, the same scheme is also secure17 in the setting of ME-noisy (and
thus U-noisy) leakage.

A.2 Extractors for Cylinder-intersection Sources

A multi-source extractor Ext is a deterministic efficient algorithm taking as input n independent
m-bit sources with min-entropy at least t ≤ m (a.k.a. (m, t)-sources), and outputting a d-bit
string which is statistically close to uniform. BCP extractors (sometimes known as extractors
for cylinder-intersection sources [KMS19]) further strengthen this property by requiring the
above to hold even if the distinguisher can obtain adaptive joint leakage from subsets of the
sources with size at most k < n (modelled as a BC-BCP). Such extractors are called strong if
the latter property even holds when the extractor is further given any subset S of at most k
sources along with the output of the extractor.

Below, we generalize the definition of BCP strong extractors to the case of NC-BCPs and
DC-BCPs.

Definition 21 (BCP strong extractor). Let X1, . . . , Xn be n independent (m, t)-sources. A
deterministic function Ext : ({0, 1}m)n → {0, 1}d is an (m, t, n, r, p, γ, δ, k)-DC-BCP strong
extractor with error ε if for all (n, r, p, γ, δ, k)-DC-BCP π and for all subsets S of size |S| = k
we have

(Ext(X1, . . . , Xn), π(X1, . . . , Xn), (Xi)i∈S) ≈ε (Ud, π(X1, . . . , Xn), (Xi)i∈S).

Moreover, in case the protocol π in the above definition is an:

• (n, r, `, k)-NC-BCP, we say that Ext is an (m, t, n, r, `, k)-NC-BCP strong extractor;

• (n, r, `, k)-BC-BCP, we say that Ext is an (m, t, n, r, `, k)-BC-BCP strong extractor.

Corollary 14. Every (m, t, n, r, `, k)-BC-BCP strong extractor Ext with error ε is also an
(m, t, n, r, p, γ, δ, k)-DC-BCP strong extractor with error ε′ so long as ` = log(1/δ)+r·(log log(1/ε)
+ 2 log(1/(1− γ)) + 2) and ε′ = ε+ 2r · (ε+ ε1/4 + γ + p).

17A similar result was also proven explicitly in [CFV19] for the case of ME-noisy leakage.
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Proof. By applying Theorem 17, we can replace the transcript π(X1, . . . , Xn) of any (n, r, p, γ, δ,
k)-DC-BCP with a simulated transcript π̃(X1, . . . , Xn) obtained using the transcript π′(X1, . . . ,
Xn) of an (n, r, `, k)-BC-BCP with ` = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1−γ)) + 2). Hence,
we have

(Ext(X1, . . . , Xn), π(X1, . . . , Xn), (Xi)i∈S) ≈ε̃ (Ext(X1, . . . , Xn), π̃(X1, . . . , Xn), (Xi)i∈S)

(Ud, π(X1, . . . , Xn), (Xi)i∈S) ≈ε̃ (Ud, π̃(X1, . . . , Xn), (Xi)i∈S),

where ε̃ = ε+ ε1/4 + γ + p.
Finally, by the fact that Ext is an (m, t, n, `, k)-BC-BCP strong extractor with error ε, it

holds that

(Ext(X1, . . . , Xn), π̃(X1, . . . , Xn), (Xi)i∈S) ≈ε (Ud, π̃(X1, . . . , Xn), (Xi)i∈S).

The statement now follows by combining the above equations.

Corollary 15. Every (m, t, n, r, `′, k)-BC-BCP strong extractor Ext with error ε′ is also an
(m, t, n, r, `, k)-NC-BCP strong extractor with error ε so long as `′ = ` + r · (O(log(r/ε))) and
ε = 3ε′.

Proof. By setting δ = ε′/(3r) in Theorem 18, we can replace the transcript π(X1, . . . , Xn) of
any (n, r, `, k)-NC-BCP with a simulated transcript π̃(X1, . . . , Xn) obtained using the transcript
π′(X1, . . . , Xn) of an (n, r, `′, k)-BC-BCP with `′ ≤ ` + r · (6 + 2 log(3r/ε′) + log log(3r/ε′)) =
`+ r · (O(log(r/ε))). Hence, we have

(Ext(X1, . . . , Xn), π(X1, . . . , Xn), (Xi)i∈S) ≈ε′ (Ext(X1, . . . , Xn), π̃(X1, . . . , Xn), (Xi)i∈S)

(Ud, π(X1, . . . , Xn), (Xi)i∈S) ≈ε′ (Ud, π̃(X1, . . . , Xn), (Xi)i∈S).

Finally, by the fact that Ext is an (m, t, n, `′, k)-BC-BCP strong extractor with error ε′, it
holds that

(Ext(X1, . . . , Xn), π̃(X1, . . . , Xn), (Xi)i∈S) ≈ε′ (Ud, π̃(X1, . . . , Xn), (Xi)i∈S).

The statement now follows by combining the above equations.

Explicit constructions of cylinder-intersection extractors are known for sources with a con-
stant fraction of min-entropy (say t = 0.3 · m) and collusion bound k = n − 1 so long
as n = O(logm) [BNS92, LMQW20], and very recently even for k = ω(log n) so long as
n � k [CGGL20, KMZ20]. By the above corollaries, these extractors are also secure in the
settings of dense and U-noisy leakage.

A.3 Symmetric NIKE

A symmetric-key NIKE protocol with secret key space SK, private state spaceR, public message
space M and output key space K consists of two algorithms Π = (Publish,SharedKey) specified
as follows:

• The deterministic algorithm Publish(sk, ρ) takes as input a secret key sk ∈ SK, a private
state ρ ∈ R and outputs a public message µ ∈M.

• The deterministic algorithm SharedKey(sk, ρ, µ) takes as input a secret key sk ∈ SK, a
private state ρ ∈ R, and a public message µ ∈M, and outputs a key κ ∈ K.
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We require correctness, namely when Alice and Bob run a NIKE protocol they end up sharing
the same key. More formally, for all secret keys sk ∈ SK and all private states ρ1, ρ2 ∈ R it
holds that SharedKey(sk, ρ1, µ2) = SharedKey(sk, ρ2, µ1) where µ1 = Publish(sk, ρ1) and µ2 =
Publish(sk, ρ2).

Intuitively, a NIKE protocol is said to be leakage resilient if the shared key is statistically
close to random to the eyes of a distinguisher that can independently leak information from
the private state (sk, ρ1) of Alice and from the private state (sk, ρ2) of Bob. Depending on the
leakage being bounded, noisy or dense, we obtain the following definition.

Definition 22 (Symmetric-key NIKE with BCP leakage resilience). We say that a symmetric-
key NIKE protocol Π = (Publish,SharedKey) is (t, r, p, γ, δ, ε)-secure against interactive dense
leakage ((t, r, p, γ, δ, ε)-DLR-NIKE, for short) if for any distribution SK such that H∞(SK ) ≥ t
and all (2, r, p, γ, δ, 1)-DC-BCP π we have

(M1,M2, π((SK , R1), (sk,R2)),K1) ≈ε (M1,M2, π((SK , R1), (sk,R2)),K2),

where R1, R2 are uniform over R, and where M1 = Publish(SK , R1), M2 = Publish(SK , R2)
and K1 = SharedKey(SK ,M2, R1), SharedKey(SK ,M1, R2).

Moreover, in case the protocol π in the above definition is a:

• (2, r, `, k)-NC-BCP, we say that Π is (t, r, `, ε)-secure against interactive noisy leakage
((t, r, `, ε)-NLR-NIKE for short);

• (2, r, `, k)-BC-BCP, we say that Π is (t, r, `, ε)-secure against interactive bounded leakage
((t, r, `, ε)-BLR-NIKE for short);

Corollary 16. Every (t, r, `, ε)-BLR-NIKE Π is also a (t, r, p, γ, δ, ε)-DLR-NIKE so long as
` = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2) and ε′ = ε+ 2r · (ε+ ε1/4 + γ + p).

Proof. By applying Theorem 17, we can replace the transcript π(X1, . . . , Xn) of any (2, r, p, γ, δ, 1)-
BC-BCP with a simulated transcript π̃(X1, . . . , Xn) obtained using the transcript π′(X1, . . . , Xn)
of a (2, r, `, 1)-BC-BCP with ` = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1− γ)) + 2). Hence, we
have

(M1,M2, π((SK , R1), (sk,R2)),K1) ≈ε̃ (M1,M2, π̃((SK , R1), (sk,R2)),K1)

(M1,M2, π((SK , R1), (sk,R2)),K2) ≈ε̃ (M1,M2, π̃((SK , R1), (sk,R2)),K2),

where ε̃ = ε + ε1/4 + γ + p and R1, R2 are uniform over R, and where M1 = Publish(SK , R1),
M2 = Publish(SK , R2) and K1 = SharedKey(SK ,M2, R1), K2 = SharedKey(SK ,M1, R2).

Finally, by the fact that Π is a (t, r, `, ε)-BLR-NIKE, it holds that

(M1,M2, π̃((SK , R1), (sk,R2)),K1) ≈ε (M1,M2, π̃((SK , R1), (sk,R2)),K2).

The statement now follows by combining the above equations.

Corollary 17. Every (t, r, `′, ε′)-BLR-NIKE Π is also a (t, r, `, ε)-NLR-NIKE so long as `′ =
`+ r · (O(log(r/ε))) and ε = 3ε′.

Proof. By setting δ = ε′/(3r) in Theorem 18, we can replace the transcript π(X1, . . . , Xn) of
any (2, r, `, 1)-NC-BCP with a simulated transcript π̃(X1, . . . , Xn) obtained using the transcript
π′(X1, . . . , Xn) of a (2, r, `′, 1)-BC-BCP with `′ ≤ ` + r · (6 + 2 log(3r/ε′) + log log(3r/ε′)) =
`+ r · (O(log(r/ε))). Hence, we have

(M1,M2, π((SK , R1), (sk,R2)),K1) ≈ε′ (M1,M2, π̃((SK , R1), (sk,R2)),K1)
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(M1,M2, π((SK , R1), (sk,R2)),K2) ≈ε′ (M1,M2, π̃((SK , R1), (sk,R2)),K2),

where R1, R2 are uniform over R, and where M1 = Publish(SK , R1), M2 = Publish(SK , R2) and
K1 = SharedKey(SK ,M2, R1), SharedKey(SK ,M1, R2).

Finally, by the fact that Π is a (t, r, `′, ε′)-BLR-NIKE, it holds that

(M1,M2, π̃((SK , R1), (sk,R2)),K1) ≈ε′ (M1,M2, π̃((SK , R1), (sk,R2)),K2).

The statement now follows by combining the above equations.

Li, Ma, Quach, and Wichs [LMQW20] showed how to construct BLR-NIKE protocols for
` = Ω(m) and ε = 2−Ω(m). By the above corollaries, these protocols are also secure in the
setting of dense and U-noisy leakage.

A.4 Multi-Party Computation

We start with the notion of multi-party computation (MPC) with passive security. As usual
we assume secure point-to-point channels between the parties. Moreover, we assume that the
environment sends the inputs to the parties non-adaptively; namely, the inputs are not chosen
as a function of the protocol execution, and the inputs are sent as first step of the execution of
the environment. We call such environments semi-honest.

Additionally, we assume that the environment can receive leakage from the private states
of all parties. More precisely, at the end of the protocol execution, the environment receives,
together with the outputs of all parties, the value gi(st i) for each i ∈ [n], where st i is the secret
state of the party Pi. Notice that, although we import terminologies and notations from the
UC framework of Canetti [Can00], we will not aim at modelling universal composability. For
instance, the latter means we see the parties of the protocol as monolithic machines (i.e., they
cannot span any other sub-machine).

The private state of party Pi is defined as the tuple st i := (ρi, y1, . . . , yr), where ρi is the
random tape of the party, and yj is the message received by the party at round j ∈ [r]. Notice
that the latter includes also all messages received by all the ideal resources that the protocol
needs. Also, observe that we do not include the secret input of the parties in the private states,
the reason being that otherwise it would be impossible for the simulator to accomplish its task
(see [BCH12]).

Real and ideal experiments. We denote by RealZ,G,π,g(z) the random variable describing
the output of the environment Z with input z ∈ {0, 1}λ, running with the protocol π and with
ideal resource G, and obtaining the values gi(st i)i∈[n]). We denote by IdealZ,S,F,g(z) the random

variable describing the output of the environment Z with input z ∈ {0, 1}λ and running with
the simulator S and with the ideal resource F.

Definition 23 (Passively-secure leakage-resilient MPC). A protocol π computes F using the
ideal resource G with statistical passive ε-security (resp. with computational passive ε-security)
in the presence of G-leakage if for every semi-honest environment (resp. PPT semi-honest en-
vironment) Z and for every g ∈ G, there exists a PPT simulator S such that:

{RealZ,G,π,g(z)}z∈{0,1}λ,λ∈N ≈ε {IdealZ,S,F,g(z)}z∈{0,1}λ,λ∈N.

Consider the ideal resource GCRS that models security in the common reference string (CRS)
model. Specifically, GCRS upon input 1λ from a party Pi first checks if it is the first time that
the ideal resource is called with input 1λ. If this is the case, GCRS samples a string crs ∈ {0, 1}λ

51



uniformly at random, returns crs to the calling party, and stores crs for future uses. Otherwise,
GCRS retrieves the string crs associated to 1λ and returns it. Additionally, consider the ideal
functionality FφSFE of secure function evaluation with parameter a function φ represented as a
circuit. The functionality takes inputs x1, . . . , xn ∈ {0, 1}∗, computes y = φ(x1, . . . , xn), and
outputs y to the parties. We are ready to state the main theorem of this section.

Theorem 20. Let p, γ, δ ∈ R, and ` ∈ N be parameters, and G be an ideal resource. Assume
there exists a family of protocols {πφ}φ∈{0,1}∗ such that for any circuit φ ∈ {0, 1}∗ the protocol

πφ computes FφSFE using the ideal resource G with statistical passive ε-security in the presence of
`-bounded leakage. If one-way functions exist, then there exists a family of protocols {π′φ}φ∈{0,1}∗
such that for any circuit φ ∈ {0, 1}∗ the protocol π′φ computes FφSFE using the ideal resources
(G,GCRS) with:

(i) computational passive ε′-security in the presence of (p, γ, δ)-dense leakage, where ε′ =

2n(ε+ ε1/4δ + γ + p) + ε given that ` = log(1/δ) + log log(1/ε) + 2 log
(

1
1−γ

)
+ 2.

(ii) computational passive ε′-security in the presence of `′-U-noisy leakage, where ε′ = 2n(ε+

ε2`+β−2 + 2−β/2+1) + ε given that ` = `′ + β + log log(1/ε) + 2 log( 1
1−2−β/2

) + 2 for any
β > 0.

The proof of the theorem is divided into two steps. First, we define a weaker notion of
security for leakage-resilient MPC, which is reminiscent of the notion of witness indistinguisha-
bility for proof systems. In more detail, our notion stipulates that real-world views of protocol
executions that lead to the same output are indistinguishable, even in the presence of leakage.
For this relaxed security notion, we will use our main Theorem 3 to reduce bounded-leakage
resilience to dense-leakage resilience (similarly to the proof of Theorem 15). The second step
of the proof of Theorem 20 shows that protocols that satisfy our relaxed notion can be used
to construct protocols that are secure according to Definition 23 in the CRS model. Our ap-
proach here is similar to the classical transformation from witness indistinguishability to zero
knowledge in the context of proof systems.

Definition 24 (View indistinguishability in the presence of leakage). Let OutZ,G,π(z) be the
random variable that indicates the outputs of the parties at the end of the execution of protocol
π upon input z ∈ {0, 1}λ for the environment. We say that a protocol π computes F using the
ideal resource G with ε-indistinguishability of views in the presence of G-leakage if for any Z,
any g ∈ G, and any sequences of values {zλ}λ∈N,zλ∈{0,1}λ , {z

′
λ}λ∈N,z′λ∈{0,1}λ , {yλ}λ∈N,yλ∈{0,1}∗

we have

{RealZ,G,π,g(zλ) | OutZ,G,π(zλ) = yλ}λ∈N ≈ε
{
RealZ,G,π,g(z

′
λ) | OutZ,G,π(z′λ) = yλ

}
λ∈N .

As mentioned before, we divide the proof of Theorem 20 into two lemmas.

Lemma 12. For any ideal resources F and G, if π computes F using the ideal resource G with
statistical ε-indistinguishability of views in the presence of `-bounded leakage, then π computes
F using the ideal resource G with statistical ε′-indistinguishability of views in the presence of
(p, γ, δ)-dense leakage, where ` and ε′ are defined as in Theorem 20.

Proof. For the sake of simplicity fix some λ ∈ N. By assumption, we have that for any two
inputs z ∈ {0, 1}λ and z′ ∈ {0, 1}λ with OutZ,G,π(z) = OutZ,G,π(z′) and any vector (g1, . . . , gn)
of `-bounded leakage functions, it holds that

(g1(ST 1), . . . , gn(STn)) ≈ε (g1(ST ′1), . . . , gn(ST ′n)),
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where ST i is the random variable describing the private state st i of party i ∈ [n] in an execution
of protocol π with uniformly random tapes and input z, and ST ′i is the corresponding random
variable for an executions on input z′.

Fix an arbitrary vector (h1, . . . , hn) of (p, γ, δ)-dense leakage functions. Theorem 3 tells us

that there exists a vector of simulators
(
Sim

Leak(ST1,·)
g1 , . . . ,Sim

Leak(STn,·)
gn

)
, which have access

to an `-bounded leakage oracle Leak, where each simulator can submit a single query. For
ε̂ = ε+ ε1/4δ + γ + p, and by applying the triangle inequality n times, we get

(g1(ST 1), . . . , gn(STn)) ≈nε̂
(
SimLeak(ST1,·)

g1 , . . . ,SimLeak(STn,·)
gn

)
and since (

SimLeak(ST1,·)
g1 , . . . ,SimLeak(STn,·)

gn

)
≈ε
(
SimLeak(ST ′,·)

g1 , . . . ,SimLeak(ST ′n,·)
gn

)
the theorem statement follows in a way similar to the proof of Theorem 15.

The following corollary is obtained by combining Corollary 3 and Lemma 12.

Corollary 18. If π computes F using the ideal resource G with statistical ε-indistinguishability
of views in the presence of `-bounded leakage, then for any β > 0 we have that π computes F
using the ideal resource G with statistical ε′-indistinguishability in presence of `′-U-noisy leakage
where ε′ = 2n(ε+ε2`+β−2 +2−β/2+1)+ε given that ` = `′+β+log log(1/ε)+2 log( 1

1−2−β/2
)+2.

We continue with the proof of the main theorem of this section. Let f be a one-way function
with domain and co-domain in {0, 1}∗ that is injective from {0, 1}λ to {0, 1}λ for any λ ∈ N.
Given a circuit φ, consider the circuit φcrs with parameter a string crs ∈ {0, 1}λ that executes
the following steps:

Circuit φcrs(x1, . . . , xn):

• If there exists index i ∈ [n] such that xi can be parsed as (tp, y) and f(tp) = crs
then output y.

• Otherwise output φ(x1, . . . , xn).

Let π′φ, for φ ∈ {0, 1}∗, be the protocol with ideal resources GCRS and G where the party Pi
does the following:

• Call the ideal resource GCRS with input 1λ and obtain crs.

• Run the protocol πφcrs with the other parties.

Lemma 13. For any leakage family G, if the protocol πφcrs computes FφcrsSFE using the ideal
resource G with ε-indistinguishability of views in the presence of G-leakage, then the protocol π′φ
computes FφSFE using the ideal resources (G,GCRS) with computational passive ε-security in the
presence of G-leakage.

Proof. Let Z be a PPT environment and g ∈ G. Our goal is to devise an appropriate simulator
S. The first step of Z is to corrupt the parties and submit all inputs. With this in mind, let
I denote the set of the corrupted parties, and let x1, . . . , xn denote the inputs. The simulator
S receives the inputs of the corrupted parties (xi)i∈I and the output y. Then, S simulates the
common reference string by setting crs = f(tp) for uniformly chosen tp ∈ {0, 1}λ. To simulate
the views, S runs the protocol πφcrs simulating all parties. In particular, it sets the inputs of the
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honest parties to the values (tp, y), and then it sends the value g((st i)i∈[n]) to Z. Since Z is semi-
honest, we can assume without loss of generality that Z parses the input z as I, x1, . . . , xn, aux ,
corrupts the parties in I and uses x1, . . . , xn as the inputs for the protocol execution. Let CRS
be the random variable describing the common reference string output by the ideal resource
GCRS. For any crs ∈ {0, 1}λ, and for any z = (I, x1, . . . , xn, aux ) let z′ = (I, x′1, . . . , x′n, aux )
where x′i = xi if i ∈ I, and otherwise x′i = (f−1(crs), y) with y = φ(x1, . . . , xn). Then, we have

(Ideal
Z,S,FφSFE,g

(z)|CRS = crs) ≡ RealZ,G,πφcrs ,g(z
′).

Moreover, by the indistinguishability of views of πφcrs , and since executions with z and z′ lead
to the same output, we have

RealZ,G,πφcrs ,g(z
′) ≈ε RealZ,G,πφcrs ,g(z)

for any crs. The proof now follows by taking the average over all the assignments crs of the
random variable CRS .

As a concrete instantiation, we use the results of Goyal, Ishai, Maji, Sahai and Sher-
stov [GIM+16], who constructed a family of 2PC protocols that are passively secure in the
presence of bounded leakage. In particular, they show (see [GIM+16, Corollary 5]) that, for any

φ and any λ, there exists a 2PC protocol πλ,φ that computes FφSFE using the ideal resource GOT

of oblivious transfer with statistical passive 2−λ-security in the presence of λ-bounded leakage.
The following corollary is obtained by applying Theorem 20 to the protocols of [GIM+16],

and by setting β = O(log2 λ) and ε = 2−λ, thus obtaining computational passive negl(λ)-security
in presence of Ω(λ)-U-noisy leakage.

Corollary 19. If one-way functions exist, then there is a family of protocols {π′φ}φ∈{0,1}∗ where

for any circuit φ ∈ {0, 1}∗ protocol π′φ computes FφSFE using the ideal resources (GOT,GCRS) with
computational passive negl(λ)-security in the presence of Ω(λ)-U-noisy leakage.

Following [GIM+16], we finally show that if we implement GOT using a joint simulation

secure OT protocol, then we obtain a 2PC for FφSFE in the common reference string model that
is passively secure in the presence of noisy leakage.

Definition 25. Let F : X1×X2 → Y1×Y2 be a deterministic function. We say that a protocol π
computes F with ε-joint simulation security if it correctly computes F and there exist polynomial-
time simulators S1,S2 and a randomness distribution T shared between S1 and S2 such that for
all inputs x1, x2 we have

(S1(x1, y1, T ),S2(x2, y2, T )) ≈ε Viewπ(x1, x2),

where (y1, y2) = f(x1, x2) and Viewπ(x1, x2) is the random variable corresponding to the full
view of parties P1 and P2 running protocol π upon inputs x1 and x2.

Lemma 14. Assume that π computes F using the ideal resources G,G′ with computational
passive ε-security in the presence of `-U-noisy leakage, and that π′ computes G with perfect
joint simulation security. Then, the protocol π∗ where each invocation to G is replaced by an
independent execution of π′ computes F using the ideal resource G′ with computational passive
poly(ε)-security in the presence of `-U-noisy leakage.

Proof. Let q the number of invocations of π′ in π∗, and consider the hybrid experiment Hybridi
that for j ≤ i executes π′ on the j-th execution with prescribed inputs x

(j)
1 , x

(j)
2 , obtains outputs
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y
(j)
1 , y

(j)
2 , and then runs the simulators S1(x1, y1, Tj), S2(x2, y2, Tj) and performs the leakage over

the view created by the simulators.
Clearly, we have Hybridi ≈ε Hybridi+1. Notice that Hybridq is equivalent to RealZ,G,π,ĝ

where the leakage function ĝ is defined as ĝ = (ĝ1, ĝ2), where ĝi has hard-coded randomness

T1, . . . , Tq and, upon input the view from Pi, runs Si(x
(j)
i , y

(j)
i ) for every pair (x

(j)
i , y

(j)
i ) and then

applies the leakage function gi. Notice that if g is `-U-noisy leakage, then so is ĝ. Indeed, let X
be uniformly distributed over {0, 1}v, where v denotes the size of a transcript of π∗, and let X̂ be
uniformly distributed over {0, 1}v̂, where v̂ denotes the size of a transcript of π. It is clear that
H̃∞(X|g(X)) = H̃∞(X̂|ĝ(X̂))−(v−v̂), because the outputs of ĝ and g are identically distributed.
Thus, if ĝ is not `-U-noisy leakage we have H̃∞(X|g(X)) < H∞(X̂)− `+ v − v̂ = H∞(X)− `,
contradicting the fact that g is `-U-noisy leakage.

Finally, we can define the simulator for π∗ to be equal to the simulator for π with leakage
function ĝ.

By [GIM+16, Theorem 9], we have a protocol for GOT in the common reference string
model that has negl(λ)-joint-simulation security based on the DDH assumption. Combining
this observation with the above discussion leads to the following corollary.

Corollary 20. If the DDH assumption holds, then there exists a family of protocols {π′φ}φ∈{0,1}∗
where for any circuit φ ∈ {0, 1}∗ the protocol π′φ computes FφSFE using the ideal resource GCRS

with computational passive negl(λ)-security in the presence of Ω(λ)-U-noisy leakage.

55


	Introduction
	Background
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	Notation
	Random Variables
	Hardness Assumptions

	Rejection Sampling for Approximate Density
	The Case of Exact Density
	The Case of Approximate Density

	Leakage Models
	Bounded Leakage
	Noisy Leakage
	Dense Leakage
	The Simulation Paradigm

	Relating Different Leakage Models
	Simulating Dense Leakage with Bounded Leakage
	Min-Entropy-Noisy Leakage is Dense Leakage
	Uniform-Noisy Leakage is Also Dense Leakage
	SD-Noisy and MI-Noisy Leakage are also Dense Leakage
	DDF-Noisy Leakage is Uniform-Noisy Leakage
	Missing Separations between Types of Leakage

	Applications
	Secret Sharing with Local Leakage Resilience
	Leakage Resilience in the Floppy Model
	Bounded-Collusion Protocols
	Communication complexity lower bounds
	BCP Leakage Resilience


	Conclusions and Open Problems
	Further Applications
	Forward-Secure Storage
	Extractors for Cylinder-intersection Sources
	Symmetric NIKE
	Multi-Party Computation


