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Abstract

We propose a new doubly efficient interactive proof protocol for general arithmetic circuits.
The protocol generalizes the doubly efficient interactive proof for layered circuits proposed by
Goldwasser, Kalai and Rothblum to arbitrary circuits, while preserving the optimal prover
complexity that is strictly linear to the size of the circuits. The proof size remains succinct for
low depth circuits and the verifier time is sublinear for structured circuits. We then construct a
new zero knowledge argument scheme for general arithmetic circuits using our new interactive
proof protocol together with polynomial commitments.

Not only does our new protocol achieve optimal prover complexity asymptotically, but it
is also efficient in practice. Our experiments show that it only takes 1 second to generate the
proof for a circuit with 600,000 gates, which is 7 times faster than the original interactive proof
protocol on the corresponding layered circuit. The proof size is 229 kilobytes and the verifier
time is 0.56 second. Our implementation can take general arithmetic circuits generated by
existing tools directly, without transforming them to layered circuits with high overhead on the
size of the circuits.

1 Introduction

Interactive proofs allow a powerful yet untrusted prover to convince a verifier through a sequence
of interactions that the result of a computation is correctly computed. Since it was introduced
by Goldwasser, Micali, and Rackoff [10] in the 1980s, interactive proofs have expanded people’s
understanding on traditional static mathematical proofs and led to many important theoretical
results in complexity theory, such as IP=PSPACE [11, 15] and MIP=NEXP [3].

In recent years, there is a great progress on turning interactive proofs from purely theoretical
constructions to practical schemes with efficient implementations. In the seminal work of [9],
Goldwasser, Kalai and Rothblum proposed doubly efficient interactive proofs where the prover can
convince the verifier the correctness of the evaluation of a layered arithmetic circuit with addition
gates and multiplication gates of fan-in two. The time for the prover to generate all the messages
during the protocol (prover time) is polynomial on the size of the circuit, and the time to validate
the result (verifier time) is close to linear to the size of the input for log-space uniform circuits, thus
the name “doubly efficient”. The total communication between the prover and the verifier is only
poly-logarithmic to the size of the circuit and linear to the depth of the circuit, which is succinct

∗University of California, Berkeley. Email: {jiaheng_zhang,yinuo}@berkeley.edu.
†Shanghai Jiao Tong University. Email: wangnick@sjtu.edu.cn.
‡Texas A&M University. Email: zhangyp@tamu.edu.

1



for bounded-depth circuits. We refer the protocol in [9] as the GKR protocol in this paper. Later,
researchers spent great effort improving the concrete efficiency of the GKR protocol. The prover
time was improved to quasi-linear (O(|C| log |C|)) in [8], and then to close to linear for various
circuits with different structures [16, 17, 24]. Finally, in [20], Xie et al. proposed an algorithm to
improve the prover time to strictly linear (O(|C|)) for arbitrary layered arithmetic circuits without
assuming any structures, which is optimal asymptotically and very efficient in practice.

Another important advance of interactive proofs recently is using them to construct efficient
zero knowledge argument schemes. In [22], Zhang et al. first proposed to combine the GKR
protocol with polynomial commitments to build argument systems, where the prover can further
prove to the verifier the computations on the prover’s witness, without sending the witness directly
to the verifier. Following the framework, there are many subsequent zero knowledge argument
constructions based on interactive proofs, including [14, 18, 20, 21, 23]. These schemes demonstrate
great prover efficiency and can achieve sublinear verifier time for structured circuits, thanks to the
advantages of the interactive proofs and the GKR protocol.

Despite the progress of the GKR protocol, a major drawback is that the protocol only works for
layered arithmetic circuits. Each gate can only connect to the layer above, due to the layer-by-layer
reduction of the GKR protocol. In practice, it introduces a high overhead to pad general circuits to
layered circuits using relay gates. Asymptotically, the circuit size increases from O(|C|) to O(d|C|)
where |C| is the size of the general circuit and d is the depth of the circuit. This is easily 1-2 orders
of magnitude larger in practice as we show in our experiments, and introduces a big overhead on the
prover time. Moreover, it is also inconvenient to implement circuits in a strictly layered way, and
most existing tools such as rank-1-constraint-system (R1CS) cannot be used directly. Therefore,
in this paper we ask the following question:

Is it possible to remove the restriction of the GKR protocol on supporting only layered circuits,
without introducing any overhead on the prover time?

1.1 Our Contributions

We answer the above question affirmatively by proposing a generalized doubly efficient interactive
proofs for arbitrary arithmetic circuits, where each gate can take the output of any gate as input.
The prover time is still strictly linear to the size of the circuit, and is very efficient in practice. In
particular, our contributions are:

• We generalize the GKR protocol to work on arbitrary arithmetic circuits for the first time with
no asymptotic overhead. For a general circuit of size |C| and depth d, the prover time is O(|C|)
and the proof size is O(d log2 |C|+ d2). For structured circuits, the verifier time is O(d2 log |C|+
d log2 |C|). In the second variant of the protocol, we can reduce the proof size to O(d log |C|+d2),
while the verifier is O(|C|) regardless of the structure of the circuit. See Section 3.

• Together with zero knowledge polynomial commitments, we construct zero knowledge arguments
for general arithmetic circuits. The zero knowledge version of our interactive proof protocols
only incurs a small overhead of O(d2 log d) on the prover time, and preserves the same proof size
and the verifier time. See Section 4.

• We fully implement a system, virgo++, for our new interactive proof protocols and zero knowl-
edge arguments. We show that on circuits with d = 50 and d = 75, our new protocols are 2-8×
faster than the state-of-the-art GKR protocol on the corresponding layered circuits. The prover
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time per gate (the constant in the linear complexity) is only 2.5–5× more than the original GKR
protocol on layered circuits. Therefore, as long as padding the general circuit to layered circuit
makes it more than 2.5–5× larger, our new protocol will have faster prover time. See Section 5.

1.2 Technical Overview

The key idea of the GKR protocol is to write the values in the i-th layer of the circuit as an
equation of the values in the previous layer i + 1. Then starting from the output layer (layer
0), P and V reduce the correctness of the values in layer i to the correctness of the values in
layer i + 1 recursively, and eventually to the correctness of the input. V can then validates the
correctness of the input on her own, which completes the reduction and guarantees that the output
is correctly computed. To do so, we use the multilinear extension Ṽi() of the i-th layer, which is a
multilinear polynomial that agrees with all the values in the i-th layer on the Boolean hypercube,
i.e., Ṽi(0, 0, . . . , 0) = Vi[0], Ṽi(0, 0, . . . , 1) = Vi[1], . . . where Vi is the array representing the values
in the i-th layer of the circuit. Assuming for simplicity that all layers have S gates and Ṽ takes
s = logS variables, we can write Ṽi() as a equation of Ṽi+1():

Ṽi(z) =
∑

x,y∈{0,1}s
( ˜addi+1(z, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(z, x, y)(Ṽi+1(x)Ṽi+1(y)))

for all z ∈ {0, 1}s, where ˜addi+1(z, x, y) and ˜multi+1(z, x, y) are polynomials describing the addi-
tion/multiplication gates and their connections in the circuit between layer i and layer i+ 1. With
this equation, the GKR protocol invokes the sumcheck protocol (See Section 2.2), which reduces
the correctness of Ṽi(g) at a random point g ∈ Fs to the correctness of Ṽi+1(u) and Ṽi+1(v) at two
random points u, v ∈ Fs. Then Ṽi+1(u) and Ṽi+1(v) can be combined back to a single evaluation of
Ṽi+1(w) for w ∈ Fs. At this point, Ṽi+1(w) can be further reduced to an evaluation of Ṽi+2 using
the same equation and protocol for layer i + 1. Therefore, starting from the output layer, P and
V perform the reduction layer by layer to the input layer, which can be validated by V directly.
The prover time is O(S) in each layer [20] and the proof size is only O(logS). Therefore, the total
prover time is O(dS) = O(|C|) and the proof size is O(d logS) = O(d log |C|).
Extending GKR to general circuits naively. The nice equation above relies on the fact that
gates in layer i can only take input from gates in layer i + 1. In a general circuit, a gate in layer
i can take input from any gate in layer j for j > i. As circuits cannot contain cycles (otherwise
we cannot evaluate the circuit), we can still assign a layer number to each gate in the topological
order. Thus a gate can take input from any gate in layers above, but not below. More interestingly,
the gate in layer i has to have at least one input from layer i + 1, otherwise it cannot belong to
layer i in the topological order. Because of this generalization, we can write Ṽi() as:

Ṽi(z) =
∑

x,y∈{0,1}s
( ˜addi+1,i+1(z, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1,i+1(z, x, y)(Ṽi+1(x)Ṽi+1(y))

+ ˜addi+1,i+2(z, x, y)(Ṽi+1(x) + Ṽi+2(y)) + ˜multi+1,i+2(z, x, y)(Ṽi+1(x)Ṽi+2(y))

+ . . .+ ˜addi+1,d(z, x, y)(Ṽi+1(x) + Ṽd(y)) + ˜multi+1,d(z, x, y)(Ṽi+1(x)Ṽd(y))).

Namely, we have multiple parts in the summation, one for each layer j = i + 1, i + 2, . . . , d. P
and V run the sumcheck protocol on this equation, which reduces the correctness of Ṽi(g) at a
random point g ∈ Fs to the correctness of Ṽi+1(u) and Ṽi+1(v), Ṽi+2(v), . . . , Ṽd(v) at random points
u, v ∈ Fs. Moreover, when reaching layer i + 1, now V has many evaluations about Ṽi+1 instead
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of just two. In the sumcheck protocols of all layers below, V has received one evaluation of Ṽ i+ 1
from the sumcheck of layer k = 0, . . . , i− 1, and two evaluations from layer i. Nevertheless, V can
combine all these evaluations into one evaluation Ṽi+1(w) using the original protocol multiple times
with P. P and V can then run the protocol recursively layer by layer just as the original GKR
protocol to reduce the correctness of the output layer to the input layer.

It is not hard to show that the generalized protocol is secure. However, it introduces a big
overhead on the prover time. The size of all the polynomials in the generalized equation becomes
O((d− i)S), and the total prover time for the sumcheck protocol of all layers becomes O(dS+ (d−
1)S + . . . + S) = O(d2S) = O(d|C|). This is as bad as padding the general circuit to a layered
circuit and running the original GKR protocol. Even worse, the second step of combining multiple
evaluations into one also introduces a prover time of O(d|C|), simply because there are now i + 1
evaluations to combine instead of two.

Extending GKR to general circuits with optimal prover time. In order to preserve the
linear prover time, we introduce two new techniques. First, we observe that the key reason why
the prover time of the sumcheck protocol on the generalized equation becomes O((d− i)S) is that
the multilinear extension Ṽj of the entire layer j for j > i is used. As layer j has S gates and its
multilinear extension is uniquely defined by these gates, merely writing out all the polynomials Ṽj
for j > i takes O((d−i)S) time. There is no hope to reduce the prover time if we define the equation
in this way. Meanwhile, it is also not necessary to use all the gates in layers above, because gates
in layer i can at most take input from 2S gates in total. Therefore, we propose a new equation
to write Ṽi as a function of multilinear extensions define by only those values used by layer i from
layer j > i. In particular, we have

Ṽi(z) =
∑

x,y∈{0,1}s′
( ˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y)) + ˜multi+1,i+1(z, x, y)(Ṽi,i+1(x)Ṽi,i+1(y))

+ ˜addi+1,i+2(z, x, y)(Ṽi,i+1(x) + Ṽi,i+2(y)) + ˜multi+1,i+2(z, x, y)(Ṽi,i+1(x)Ṽi,i+2(y))

+ . . .+ ˜addi+1,d(z, x, y)(Ṽi,i+1(x) + Ṽi,d(y)) + ˜multi+1,d(z, x, y)(Ṽi,i+1(x)Ṽi,d(y))),

where Ṽi,j is the multilinear extension of values used by layer i from layer j for j > i arranged in a
pre-defined order,i.e., a subset of the values in the entire layer j. Now the total size of the all these
polynomials is bounded by 2S. We also change the range of the summation from {0, 1}s to {0, 1}s′
to informally denote that now the number of variables is smaller. We will show how to deal with
different sizes from different layers in our formal protocols. We then design a new algorithm for the
prover to run the sumcheck protocol on the equation above with time complexity O(S) by utilizing
the sparsity of the polynomials ˜add and ˜mult. The formal algorithms are presented in Section 3.2.

Combining evaluations of different multilinear extensions. At the end of the sumcheck
protocol on the equation above, P and V reduce the correctness of Ṽi(g) at a random point g ∈ Fs
to the correctness of Ṽi,i+1(u) and Ṽi,i+1(v), Ṽi,i+2(v), . . . , Ṽi,d(v) at random points u, v ∈ Fs′ . When
reaching layer i+ 1, V has many evaluations of multilinear extensions of subsets of Vi+1. Now we
cannot even use the original protocol to combine these points into one, as they are evaluations of
different multilinear extensions, not mentioning that we want to reduce the complexity of the prover
time in this step. Our second technique is to compute them using a layered arithmetic circuit and
reduce these evaluations to a single evaluation of Ṽi through the original GKR protocol. At this
point, the random points in these evaluations are already fixed by the verifier. We construct a circuit
whose input is the values Vi+1 of the entire layer i+1, and all the random points in the evaluations,
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denoted as v(0), v(1), . . . , v(i) and u(i). The output of the circuit is exactly the evaluations of the
multilinear extensions of the subsets, received from the sumcheck protocols for all layers below, i.e.,
Ṽ0,i+1(v

(0)), Ṽ1,i+1(v
(1)), . . . , Ṽi,i+1(v

(i)) and Ṽi,i+1(u
(i)). To compute the output, the circuit selects

all the subsets from input Vi and arrange them in the predefined order, which can be determined
by the structure of the general circuit. The circuit then evaluates the multilinear extensions defined
by these subsets at points from input v(0), v(1), . . . , v(i) and u(i). By executing the original GKR
protocol on this circuit, P and V reduce the correctness of Ṽ0,i+1(v

(0)), Ṽ1,i+1(v
(1)), . . . , Ṽi,i+1(v

(i))
and Ṽi,i+1(u

(i)) to a single evaluation of the input. As part of the input v(0), v(1), . . . , v(i) and u(i)

is known to the verifier, it is easy to subtract it from the evaluation and obtain Ṽi(w), a single
evaluation of the multilinear extension Ṽi at a random point w ∈ Fs. With this single evaluation,
P and V can continue the sumcheck for layer i+ 1 recursively and proceed all the way to the input
layer. With proper design, we are able to bound the total size of this circuit in all rounds by O(|C|).
Therefore, the prover complexity in this step is also O(|C|). See Figure 1 and Section 3.3 for the
design of the circuit and the details of the protocol.

Putting the two steps together, we are able to construct a generalized GKR protocol for arbitrary
arithmetic circuits while maintaining the optimal prover time of O(|C|).
Building zero knowledge arguments. Following the framework of [20, 21], we build zero
knowledge arguments for general arithmetic circuits using our new protocol. The prover first
commits to the witness using a zero knowledge polynomial commitment scheme. Then after the
verifier receives the output, P and V run the zero knowledge sumcheck protocol instead of the
plain sumcheck on the equation above. We use the zero knowledge sumcheck in [20] as is, and
there is no leakage of the values in the circuit during the sumcheck. At the end of the sumcheck,
to eliminate the leakage of the evaluations of the multilinear extensions, we instead use the low
degree extensions such that revealing one evaluation leaks no information about the underlying
function, and thus the values in the circuit. We then combine these low degree extensions using a
modified circuit and run the zero knowledge version of the orginal GKR proposed in [20] to reduce
them to the low degree extension of the values in layer i + 1. To preserve the complexity of our
plain protocol without zero knowledge, we introduce several optimizations to simplify the masking
polynomials in the low degree extensions, relying on the fact that only one evaluation of each low
degree extensions is revealed to the verifier, and the low degree extensions of the subsets are not
used in the sumcheck of the next layer.

1.3 Related Work

Interactive proofs were formally defined by Goldwasser, Micali, and Rackoff in [10]. In the seminal
work of [9], Goldwasser et al. proposed the doubly efficient interactive proof for layered arithmetic
circuits. Later, Cormode et al. improved the prover time of the GKR protocol from O(|C|3) to
O(|C| log |C|) using multilinear extensions instead of low degree extensions in [8]. Several follow-
up papers further reduce the prover time for circuits with special structures. Justin Thaler [16]
introduced a protocol with O(|C|) prover time for regular circuits where the wiring pattern can be
described in constant space and time. In the same work, a protocol with prove time O(|C| log |C ′|)
was proposed for data parallel circuits with many copies of small circuits of size |C ′|. The complexity
was further improved to O(|C|+ |C ′| log |C ′|) by Wahby et al. in [17]. For circuits with many non-
connected but different copies, Zhang et al. [24] showed a protocol with O(|C| log |C ′|) prover time.
Eventually, Xie et al. [20] proposed a variant of the GKR protocol with O(|C|) prover time for
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arbitrary layered arithmetic circuit. All these existing works follow the layered structure of the
GKR protocol and doubly efficient interactive proofs for general arithmetic circuits have not been
considered before.

In [22], Zhang et al. extended the GKR protocol to an argument system using polynomial
commitments. Subsequent works [14, 18, 20, 21, 23] followed the framework and constructed efficient
zero knowledge argument schemes based on interactive proofs. We follow the approach of [7, 20, 21]
and constructs zero knowledge arguments for general circuits instead of layered circuits. Notably,
there is a recent work [14] on constructing interactive proof-based zero knowledge argument for
R1CS. The protocol reduces the R1CS to a polynomial commitment on the entire extended witness
of all the values in the circuit using one sumcheck. On the contrary, the GKR protocols reduce
the evaluation of the circuit to only the input of the circuit, which can be used for delegation of
computations and constructing zero knowledge arguments with polynomial commitments only on
the witness. Therefore, though the protocol in [14] also uses the sumcheck protocol and polynomial
commitments, the challenges and the techniques are very different from our protocols.

There is a rich literature of zero knowledge arguments other than schemes based on interactive
proofs. Categorized by their underlying techniques, there are schemes based on quadratic arithmetic
programs (QAP) [12], interactive oracle proofs (IOP) [5], discrete-log [6], MPC-in-the-head [2] and
lattice [4]. We refer the readers to surveys [19] and recent papers [21] on zero knowledge proofs
and arguments for a more comprehensive list of schemes.

2 Preliminaries

We use negl(·) : N→ N to denote the negligible function, where for each positive polynomial f(·),
negl(k) < 1

f(k) for sufficiently large integer k. Let λ denote the security parameter. “PPT” stands

for probabilistic polynomial time. We use f(), g() for polynomials, x, y, z for vectors of variables
and g, u, v for vectors of values. xi denotes the i-th variable in x. We use bold letters such as A to
represent arrays. For a multivariate polynomial f , its ”variable-degree” is the maximum degree of
f in any of its variables.

2.1 Interactive Proofs

Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of
some statement. The interactive proof runs in several rounds, allowing V to ask questions in each
round based on P’s answers of previous rounds. We phrase this in terms of P trying to convince V
that C(x) = y. We formalize interactive proofs in the following:

Definition 1. Let C be a function. A pair of interactive machines 〈P,V〉 is an interactive proof
for f with soundness ε if the following holds:

• Completeness. For every x such that C(x) = y it holds that Pr[〈P,V〉(x) = accept] = 1.

• ε-Soundness. For any x with C(x) 6= y and any P∗ it holds that Pr[〈P∗,V〉 = accept] ≤ ε

We say an interactive proof scheme has succinct proof size (verifier time) if the total communi-
cation (verifier time) is O(polylog(|C|, |x|)).
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Protocol 1 (Sumcheck). The protocol proceeds in ` rounds.

• In the first round, P sends a univariate polynomial

f1(x1)
def
=

∑
b2,...,b`∈{0,1}

f(x1, b2, . . . , b`) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P.

• In the i-th round, where 2 ≤ i ≤ `− 1, P sends a univariate polynomial

fi(xi)
def
=

∑
bi+1,...,b`∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , b`) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P.

• In the `-th round, P sends a univariate polynomial

f`(x`)
def
= f(r1, r2, . . . , rl−1, x`) ,

V checks f`−1(r`−1) = f`(0) + f`(1). The verifier generates a random challenge r` ∈ F. Given oracle
access to an evaluation f(r1, r2, . . . , r`) of f , V will accept if and only if f`(r`) = f(r1, r2, . . . , r`). The
instantiation of the oracle access depends on the application of the sumcheck protocol.

2.2 Doubly Efficient Interactive Proofs for Layered Arithmetic Circuits

In [9], Goldwasser et al. proposed an efficient interactive proof protocol for layered arithmetic
circuits. We present the details of the protocol here.

2.2.1 Sumcheck Protocol

The GKR protocol uses the sumcheck protocol as a major building block. The problem is to sum
a multivariate polynomial f : F` → F on the Boolean hypercube∑

b1,b2,...,b`∈{0,1}
f(b1, b2, ..., b`).

Directly computing the sum requires exponential time in `, as there are 2` combinations of b1, . . . , b`.
Lund et al. [11] proposed a sumcheck protocol that allows a verifier V to delegate the computation
to a computationally unbounded prover P, who can convince V that H is the correct sum. We
provide a description of the sumcheck protocol in Protocol 1. The proof size of the sumcheck
protocol is O(τ`), where τ is the variable-degree of f , as in each round, P sends a univariate
polynomial of one variable in f , which can be uniquely defined by τ + 1 points. The verifier time
of the protocol is O(τ`). The prover time depends on the degree and the sparsity of f , and we
will give the complexity later in our scheme. The sumcheck protocol is complete and sound with
ε = τ`

|F| .

Definition 2 (Multi-linear Extension). Let V : {0, 1}` → F be a function. The multilinear
extension of V is the unique polynomial Ṽ : F` → F such that Ṽ (x1, x2, ..., x`) = V (x1, x2, ..., x`)
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for all x1, x2, . . . , x` ∈ {0, 1}`. Ṽ can be expressed as:

Ṽ (x1, x2, ..., x`) =
∑

b∈{0,1}`

∏`

i=1
((1− xi)(1− bi) + xibi)) · V (b)

where bi is i-th bit of b.

Multilinear extensions of arrays. Inspired by the closed-form equation of the multilinear
extension given above, we can view an array A = (a0, a1, . . . , an−1) as a function A : {0, 1}logn → F
such that ∀i ∈ [0, n − 1], A(i1, . . . , ilogn) = ai. Therefore, in this paper, we abuse the use of
multilinear extension on an array as the multilinear extension Ã of A.

2.2.2 GKR Protocol

Using the sumcheck protocol as a building block, Goldwasser et al. [9] showed an interactive proof
protocol for layered arithmetic circuits. Let C be a layered arithmetic circuit with depth d over a
finite field F. Each gate in the i-th layer takes inputs from two gates in the (i + 1)-th layer; layer
0 is the output layer and layer d is the input layer. The protocol proceeds layer by layer. Upon
receiving the claimed output from P, in the first round, V and P run the sumcheck protocol to
reduce the claim about the output to a claim about the values in the layer above. In the i-th round,
both parties reduce a claim about layer i−1 to a claim about layer i through the sumcheck protocol.
Finally, the protocol terminates with a claim about the input layer d, which can be checked directly
by V, or is given as an oracle access. If the check passes, V accepts the claimed output.

Notation. We follow the convention in prior works of GKR protocols [8, 16, 20–22]. We denote
the number of gates in the i-th layer as Si and let si = dlogSie. (For simplicity, we assume
Si is a power of 2, and we can pad the layer with dummy gates otherwise.) We then define a
function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the output of gate
b in layer i, where b is called the gate label. With this definition, V0 corresponds to the output
of the circuit, and Vd corresponds to the input layer. Finally, we define two additional functions
addi,multi : {0, 1}si−1+2si → {0, 1}, referred as wiring predicates in the literature. addi (multi)
takes one gate label z ∈ {0, 1}si−1 in layer i − 1 and two gate labels x, y ∈ {0, 1}si in layer i, and
outputs 1 if and only if gate z is an addition (multiplication) gate that takes the output of gate
x, y as input. With these definitions, Vi can be written as follows:

Vi(z) =
∑

x,y∈{0,1}si+1

(addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)(Vi+1(x)Vi+1(y)))

(1)

for any z ∈ {0, 1}si .
In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to

check that it is computed correctly. As the sumcheck protocol operates on polynomials defined on
F, we rewrite the equation with their multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1
fi(g, x, y)

=
∑

x,y∈{0,1}si+1
( ˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))) , (2)
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where g ∈ Fsi is a random vector.

Protocol. With Equation 2, the GKR protocol proceeds as following. The prover P first sends the
claimed output of the circuit to V. From the claimed output, V defines polynomial Ṽ0 and computes
Ṽ0(g) for a random g ∈ Fs0 . V and P then invoke a sumcheck protocol on Equation 2 with i = 0.
As described in Section 2.2.1, at the end of the sumcheck, V needs an oracle access to fi(g, u, v),
where u, v are randomly selected in Fsi+1 . To compute fi(g, u, v), V computes ˜addi+1(g, u, v) and

˜multi+1(g, u, v) locally (they only depend on the wiring pattern of the circuit, but not on the values),
asks P to send Ṽ1(u) and Ṽ1(v) and computes fi(g, u, v) to complete the sumcheck protocol. In
this way, V and P reduce a claim about the output to two claims about values in layer 1. V and
P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers above, but the
number of claims and the sumcheck protocols would increase exponentially in d.

Combining two claims using a random linear combination. One way to combine two claims
Ṽi(u) and Ṽi(v) is using random linear combinations, as proposed in [7]. Upon receiving the two
claims Ṽi(u) and Ṽi(v), V selects αi,1, αi,2 ∈ F randomly and computes αi,1Ṽi(u) +αi,2Ṽi(v). Based
on Equation 2, this random linear combination can be written as

αi,1Ṽi(u) + αi,2Ṽi(v)

=αi,1
∑

x,y∈{0,1}si+1

( ˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)(Ṽi+1(x)Ṽi+1(y)))

+αi,2
∑

x,y∈{0,1}si+1

( ˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)(Ṽi+1(x)Ṽi+1(y)))

=
∑

x,y∈{0,1}si+1

((αi,1 ˜addi+1(u, x, y) + αi,2 ˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi,1 ˜multi+1(u, x, y) + αi,2 ˜multi+1(v, x, y))(Ṽi+1(x)Ṽi+1(y))) (3)

V and P then execute the sumcheck protocol on Equation 3 instead of Equation 2. At the end
of the sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear
combination and proceeds to an layer above recursively until the input layer.

The formal GKR protocol is presented in Protocol 2. With the optimal algorithms generating
the proof in linear time to the number of gates in the circuit proposed in [20], we have the following
theorem:

Theorem 1. [20]. Let C : Fn → Fk be a depth-d layered arithmetic circuit. Protocol 2 is an in-
teractive proof for the function computed by C with soundness O(d log |C|/|F|). It uses O(d log |C|)
rounds of interaction and running time of the prover P is O(|C|). Let T be the time to evaluate all

˜addi and ˜multi at the corresponding random points, the running time of V is O(n+k+d log |C|+T ).
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Protocol 2. Let F be a prime field. Let C: Fn → Fk be a d-depth layered arithmetic circuit. P wants to
convince that out = C(in) where in is the input from V, and out is the output. Without loss of generality,
assume n and k are both powers of 2 and we can pad them if not.

1. Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to P.
Both parties compute Ṽ0(g).

2. P and V run a sumcheck protocol on

Ṽ0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(Ṽ1(x)Ṽ1(y)) + ˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜mult1(g(0), u(1), v(1))Ṽ1(u(1))Ṽ1(v(1)) +

˜add1(g(0), u(1), v(1))(Ṽ1(u(1)) + Ṽ1(v(1))) equals to the last message of the sumcheck.

3. For i = 1, ..., d− 1:

• V randomly selects αi,1, αi,2 ∈ F and sends them to P.

• P and V run the sumcheck on the equation

αi,1V̇i(u
(i)) + αi,2V̇i(v

(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))(Ṽi+1(x)Ṽi+1(y))

+(αi,1 ˜addi+1(u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

• At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).

• V computes the following and checks if it equals to the last message of the sumcheck. For simplicity,
let Multi+1(x) = ˜multi+1(x, u(i+1), v(i+1)) and Addi+1(x) = ˜addi+1(x, u(i+1), v(i+1)).

(αi,1Multi+1(u(i)) + αi,2Multi+1(v(i))(Ṽi+1(u(i+1))Ṽi+1(v(i+1)))+

(αi,1Addi+1(u(i)) + αi,2Addi+1(v(i))(Ṽi+1(u(i+1)) + Ṽi+1(v(i+1)))

If all checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the (i+ 1)-th
layer. Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has two claims Ṽd(u
(d)) and Ṽd(v

(d)). V evaluates Ṽd at u(d) and v(d) using
the input and checks that they are the same as the two claims. If yes, output 1; otherwise, output 0.

3 Generalizing GKR to Arbitrary Arithmetic Circuits

Though the GKR protocol has great prover efficiency as demonstrated in [20, 21] and is used as a major
building block to construct fast zero knowledge proof schemes, one major drawback is that the protocol only
works for layered arithmetic circuits, i.e., each gate can only take input from the layer above. On one hand,
it introduces extra overhead to transform a general circuit to a layered circuit. In the worst case, by relaying
the values layer by layer, the size of the circuit blows up quadratically (from O(|C|) to O(d|C|) for a circuit
of size |C| and depth d). On the other hand, it is also inconvenient to implement circuits in a strictly layered
way, and existing tools such as rank-1-constraint-system (R1CS) cannot be used directly. Therefore, in this
section, we show how to generalize the GKR protocol to arbitrary circuits with no overhead on the prover
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time.
We consider a general arithmetic circuit C with fan-in 2, which can be viewed as a directed acyclic graph

(DAG), GC . Each gate in C is a vertex in GC and each wire is a directed edge in GC . The in-degree of
each vertex is at most 2. The depth of the circuit d is defined as the length of the longest path in the DAG.
Without loss of generality, we assume that all input gates are at layer d, and all output gates are at layer
0.1 Following the order to evaluate the circuit, we can actually assign a layer number to each gate based on
the topological order. In particular, if gate g is not an input, suppose gate u and gate v are the input gates
of g, then layer(g) = min(layer(u), layer(v)) − 1, where the function layer(x) represents the layer of the gate
x. Because of this definition, an interesting observation is that a gate at layer i must take at least one input
from layer i+ 1, otherwise it cannot be labeled as in layer i. Also obviously a gate can only take input from
gates with larger layer numbers.

Same as the original GKR protocol, we use Si as the number of gates in the i-th layer and si = dlogSie.
For simplicity, we assume Si is a power of 2, and we can pad the layer with dummy gates otherwise. The
function Vi takes a binary string b and outputs the b-th gate value in layer i of C. As now every gate can take
input from any layer above, we generalize the notations natually and define addi,j ,multi,j : {0, 1}si−1,si,sj →
{0, 1} as the wiring-predicate functions for the general circuit C. addi,j takes one gate label z ∈ {0, 1}si−1

in layer i − 1, one gate label x ∈ {0, 1}si in layer i and one gate label y ∈ {0, 1}sj in layer j for j ≥ i,
and outputs 1 if and only if gate z is an addition gate that takes the output of gate x, y as input. multi,j
is defined similarly for multiplication gates. We still use f̃ to represent the multilinear extensions of the
function f .

3.1 A Naive Generalization of the GKR Protocol

With these definitions, we first describe a naive generalization of the GKR protocol to general arithmetic
circuits. We follow the core idea of the GKR protocol to reduce the claim about Vi layer by layer via the
sumcheck protocol. In a general circuit, a gate in layer i can take the output of any gate in layer i+ 1 to d,
thus we simply extend Equation 2 to have one add and one mult for each layer above. For each gate in layer
i, we assume the left input gate is from layer i+ 1, and rewrite the sumcheck equation in Equation 2 as:

Ṽi(g) =
∑

x∈{0,1}si+1

(
∑

y∈{0,1}si+1

˜addi+1,i+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+
∑

y∈{0,1}si+2

˜addi+1,i+2(g, x, y)(Ṽi+1(x) + Ṽi+2(y)) + . . .+
∑

y∈{0,1}sd

˜addi+1,d(g, x, y)(Ṽi+1(x) + Ṽd(y))

+
∑

y∈{0,1}si+1

˜multi+1,i+1(g, x, y)(Ṽi+1(x)Ṽi+1(y)) +
∑

y∈{0,1}si+2

˜multi+1,i+2(g, x, y)(Ṽi+1(x)Ṽi+2(y))

+ . . .+
∑

y∈{0,1}sd

˜multi+1,d(g, x, y)(Ṽi+1(x)Ṽd(y)))

(4)
for any g ∈ Fsi . With this equation, starting from the output, in round i, the first step is that P and V
engage the sumcheck protocol on Equation 4 to reduce one claim about layer i to claims about previous
layers. At the end of sumcheck protocol, P sends V evaluations of Ṽi+1(u), Ṽi+1(v), Ṽi+2(v), . . . , Ṽd(v) on the
randomness of u and v, and V evaluates all add and mult on her own and completes the last round of the
sumcheck protocol.

In the second step, when going to a new layer, P and V need to combine multiple claims about this
layer. Here in the naive approach, we use the same method of random linear combinations. When reaching
layer i, V has received the claims about Ṽi from layer 0, 1, . . . , i− 1(twice). Denote the randomness of these
claims as g(0), g(1), . . . , g(i). V picks a random number αi,j for each claim, and we can rewrite Equation 4

1Note that as we support non-layered circuits, it takes at most one relay gate per input/output to transform an
arbitrary circuit to a circuit with such property. Thus the overhead is small and we assume so for simplicity.
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as:

αi,0Ṽi(g
(0)) + αi,1Ṽi(g

(1)) + . . .+ αi,iṼi(g
(i))

=

i∑
j=0

αi,j(
∑

x∈{0,1}si+1

(
∑

y∈{0,1}si+1

˜addi+1,i+1(g(j), x, y)(Ṽi+1(x) + Ṽi+1(y))

+
∑

y∈{0,1}si+2

˜addi+1,i+2(g(j), x, y)(Ṽi+1(x) + Ṽi+2(y)) + . . .+
∑

y∈{0,1}sd

˜addi+1,d(g
(j), x, y)(Ṽi+1(x) + Ṽd(y))

+
∑

y∈{0,1}si+1

˜multi+1,i+1(g(j), x, y)(Ṽi+1(x)Ṽi+1(y)) +
∑

y∈{0,1}si+2

˜multi+1,i+2(g(j), x, y)(Ṽi+1(x)Ṽi+2(y))

+ . . .+
∑

y∈{0,1}sd

˜multi+1,d(g
(j), x, y)(Ṽi+1(x)Ṽd(y))))

(5)
V and P then execute the sumcheck protocol on Equation 5 instead of Equation 4. At the end of the
sumcheck protocol, V still receives claims about Ṽi+1, Ṽi+2, . . . , Ṽd. For layer i+ 1, V computes their random
linear combination and proceeds to the sumcheck protocol for layer i+ 1 recursively until the input layer.

This protocol is a direct generalization of the GKR protocol in Protocol 2, and it is not hard to see that
the protocol is sound. Unfortunately, it introduces a big overhead on the prover time. In particular, (1) in
the first step of the sumcheck protocol on Equation 4, the equation is defined over the multilinear extensions
Ṽi+1, Ṽi+2, . . . , Ṽd. Hence, the prover time in this step is at least O(Si+1 + Si+2 + . . .+ Sd). In fact, merely
listing these polynomials and evaluating them at random points already takes O(Si+1+Si+2+ . . .+Sd) time,
not mentioning the prover time of the sumcheck protocol. Therefore, the total prover time is O(dSd + (d−
1)Sd−1 + . . .+S1) = O(d|C|) for all layers. There is a multiplicative overhead of d on the prover time, which
is in fact as bad as transforming the general circuit to a layered circuit. (2) In the second step of random
linear combinations, as shown in Equation 5, for layer i, V combines i+ 1 claims and on the right side of the
equation each ˜add and ˜mult has to be evaluated on i+ 1 different random points g(j). This again introduces
a prover time of O(d|C|) for the second step. Therefore, overall the prover time of this naive generalized
GKR protocol is O(d|C|), as slow as naively transforming the general circuit to a layered circuit.

In the next two subsections, we will show how to remove the overhead of each of the two steps.

3.2 Sumcheck with Linear Prover Time

As explained above, the main overhead of the sumcheck on Equation 4 in the first step comes from the fact
that each layer can connect to all layers above in a general circuit, and defining Ṽi+1, Ṽi+2, . . . , Ṽd already
blows up the complexity. Therefore, instead of using the multilinear extension of the entire layer, we instead
use the multilinear extension of only those gates used in layer i from a previous layer. As each gate only has
two input gates, there are at most 2Si gates connecting to gates in layer i in total. In this way, the total size
of these multilinear extensions is bounded by O(Si).

Formally speaking, we also generalize the definitions of S and s such that Si,j denotes the number of
gates connecting from layer j (j > i) to layer i, and si,j = dlogSi,je. We then introduce a new function
Vi,j : {0, 1}si,j → F, which is defined by the subset of gates from layer j connecting to layer i in a pre-defined
order. The function takes a binary string b ∈ {0, 1}si,j and returns the b-th value in this subset. We also
re-define addi,j ,multi,j : {0, 1}si−1+si−1,i+si−1,j → {0, 1} to take labels from the subsets of used gates instead
of the labels of the the entire layers. In particular, addi,j(z, x, y) = 1 (multii,j(z, x, y) = 1) if and only if
gate z in layer i− 1 is the addition (multiplication) of value Vi−1,i(x) and Vi−1,j(y). With these definitions,
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by taking their multilinear extensions, we can rewrite Equation 4 as

Ṽi(g) =
∑

x∈{0,1}si,i+1

(
∑

y∈{0,1}si,i+1

˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y))

+
∑

y∈{0,1}si,i+2

˜addi+1,i+2(g, x, y)(Ṽi,i+1(x) + Ṽi,i+2(y)) + . . .+
∑

y∈{0,1}si,d

˜addi+1,d(g, x, y)(Ṽi,i+1(x) + Ṽi,d(y))

+
∑

y∈{0,1}si,i+1

˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y)) +
∑

y∈{0,1}si,i+2

˜multi+1,i+2(g, x, y)(Ṽi,i+1(x)Ṽi,i+2(y))

+ . . .+
∑

y∈{0,1}si,d

˜multi+1,d(g, x, y)(Ṽi,i+1(x)Ṽi,d(y)))

(6)
In Equation 6, the size of Ṽi,i+1, . . . , Ṽi,d are bounded by O(Si). Moreover, the ˜add and ˜mult polynomials

are still sparse. In fact, the total number of nonzeros in all ˜add and ˜mult together is O(Si). Therefore, using
similar ideas proposed in [20], we are able to develop an algorithm for the prover to run the sumcheck in
linear time O(Si), instead of O(Si + Si+1 + . . .+ Sd).

Before presenting the linear-time algorithm, we make one more refinement on the equation. Note that
Equation 6 consists of multiple sums, because the number of gates connecting from layer j > i to layer i is
different for each j. We cannot pad them to the same length, as it would introduce asymptotic overhead.
We combine them into a single sum in the following way. Without loss of generality, we suppose si,i+1 is the
largest. We can then rewrite Equation 6 as:

Ṽi(g) =
∑

x,y∈{0,1}si,i+1

( ˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y1, . . . , ysi,i+1
))

+ ysi,i+2+1 · . . . · ysi,i+1
˜addi+1,i+2(g, x, y1, y2, . . . , ysi,i+2)(Ṽi,i+1(x) + Ṽi,i+2(y1, y2, . . . , ysi,i+2)) + . . .

+ ysi,d+1 · . . . · ysi,i+1
˜addi+1,d(g, x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x) + Ṽi,d(y1, y2, . . . , ysi,d))

+ ˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y1, . . . , ysi,i+1
))

+ ysi,i+2+1 · . . . · ysi,i+1
˜multi+1,i+2(g, x, y1, y2, . . . , ysi,i+2)(Ṽi,i+1(x) · Ṽi,i+2(y1, y2, . . . , ysi,i+2)) + . . .

+ ysi,d+1 · . . . · ysi,i+1
˜multi+1,d(g, x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x)Ṽi,d(y1, y2, . . . , ysi,d))

(7)
Note that the only difference between Equation 6 and 7 is that in Equation 7 all the sums are over

y ∈ {0, 1}si,i+1 , the longest binary string. For j = i + 2, . . . , d, as ˜addi+1,j , ˜multi+1,j and Ṽi,j only takes
y1, . . . , ysi,j , we multiply each term with ysi,j+1 · ysi,j+2 · . . . · ysi,i+1

. This guarantees that the term only
appears once in the sum, when ysi,j+1 = ysi,j+2 = . . . = ysi,i+1 = 1. Therefore, Equation 7 holds. In

fact, ysi,j+1 · ysi,j+2 · . . . · ysi,i+1 is exactly the identity polynomial β(~1, (ysi,j+1, ysi,j+2, . . . , ysi,i+1)) where
β(x, y) = 1 iff x = y, which is commonly used in the literature to combine multiple sums [7]. In this way, we
do not have to pad all the polynomials to the same size. We only pad the size of each subset to the nearest
power of 2, which incurs at most an overhead of 2.

Next, we present an algorithm for P to run the sumcheck protocol on Equation 7 in linear time. We
start with an algorithm to run sumcheck for the product of two multilinear polynomials in the literature,
which we will use as a major building block.

3.2.1 Linear-time sumcheck for products of multilinear functions [16]

In [16], Thaler proposed a linear-time algorithm for the prover of the sumcheck protocol on the product
of two multilinear polynomials f and g with ` variables (the algorithm runs in O(2`) time). We present
the algorithm in Algorithm 2. Algorithm 2 invokes Algorithm 1 FunctionEvaluations() as a subroutine. The
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Algorithm 1 F ← FunctionEvaluations(f,A, r1, . . . , r`)

Input: Multilinear f on ` variables, initial bookkeeping table A, random r1, . . . , r`;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , b`);

1: for i = 1, . . . , ` do
2: for b ∈ {0, 1}`−i do // b is both a number and its binary representation.

3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1− t) + A[b+ 2`−i] · t
5: A[b] = A[b] · (1− ri) + A[b+ 2`−i] · ri
6: Let F contain all function evaluations f(.) computed at Step 4
7: return F

Algorithm 2 {a1, . . . , a`} ← SumCheckProduct(f,Af , g,Ag, r1, . . . , r`)

Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , r`;
Output: ` sumcheck messages for

∑
x∈{0,1}` f(x)g(x). Each message ai consists of 3 elements

(ai0, ai1, ai2);

1: F ← FunctionEvaluations(f,Af , r1, . . . , r`)
2: G ← FunctionEvaluations(g,Ag, r1, . . . , r`)
3: for i = 1, . . . , ` do
4: for t ∈ {0, 1, 2} do
5: ait =

∑
b∈{0,1}`−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) // All evaluations needed are in

F and G.

6: return {a1, . . . , a`};

algorithms are exactly the same as Algorithm 1 and 3 in [20]. Both Algorithm 1 and Algorithm 2 run in
time O(2`) and the formal proof can be found in [16, 20]. We have a lemma as follows:

Lemma 1. Given multilinear functions f and g on ` variables and a bookkeeping table Af for f and a book-
keeping table Ag for g, the prover in Protocol 1 for f ·g runs in O(2`) time. Af = (f(0, . . . , 0), . . . , f(1, . . . , 1))
and Ag = (g(0, . . . , 0), . . . , g(1, . . . , 1)) are initialized with evaluations of f and g on the boolean hypercube,
respectively.

3.2.2 Linear-time sumcheck for Equation 7

The idea of the prover algorithm is similar to that proposed in [20]. The algorithm proceeds in two phases,
one summing x and the other summing y. For the ease of presentation, let us consider the sumcheck on a
particular class of equations:∑

x,y∈{0,1}`
yk1+1 . . . y`f1(g, x, y1, . . . , yk1)s1(y1, . . . , yk1)t(x)+

yk2+1 . . . y`f2(g, x, y1, . . . , yk2)s2(y1, . . . , yk2)t(x) + . . .+

ykm+1 . . . y`fm(g, x, y1, . . . , ykm)sm(y1, . . . , ykm)t(x)

(8)

for a fixed point g ∈ F`, where t(x) : F` → F and si(x) : Fki → F are multilinear extensions of arrays At

and Asi , and all functions of fi(x) : F2`+ki → F are multilinear extensions of sparse arrays with total O(2`)
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Algorithm 3 Ahg ← Initialize PhaseOne(f1, . . . , fm, s1, . . . , sm,As1 , . . . ,Asm , g)

Input: Multilinear f1, . . . , fm and s1, . . . , sm, initial bookkeeping tables As1 , . . . ,Asm , random
g = g1, . . . , g`; We have |As1 |+ . . .+ |Asm | = 2`.
Output: Bookkeeping table Ahg ;

1: procedure G← Precompute(g) // G is an array of size 2`.

2: Set G[0] = 1
3: for i = 0, . . . , `− 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1− gi+1)
6: G[b, 1] = G[b] · gi+1

7: ∀x ∈ {0, 1}`, set Ahg [x] = 0
8: for every (z, x, y) such that f ′i(z, x, y) is non-zero do
9: Ahg [x] = Ahg [x] + G[z] · f ′i(z, x, y) ·Asi [y1, . . . , yki ]

10: return Ahg ;

nonzero elements. Besides, we require that 2k1 + 2k2 + . . .+ 2km = 2`. It is not hard to see that Equation 7
satisfies these properties, as there are at most Si left input gates and Si right input gates connected to layer
i in the circuit C. If we set ` = si = dlogSie, we have 2k1 + 2k2 + . . .+ 2km = O(Si) in Equation 7.

We use the same intuition in [20] of dividing the sumcheck process into two phases, one is for x and the
other is for y. We rewrite Equation 8 as follows:∑

x∈{0,1}`
t(x)hg(x), (9)

Where
hg(x) =

∑
y∈{0,1}`

yk1+1 . . . y`f1(g, x, y1, . . . , yk1)s1(y1, . . . , yk1)+

yk2+1 . . . y`f2(g, x, y1, . . . , yk2)s2(y1, . . . , yk2) + . . .+

ykm+1 . . . y`fm(g, x, y1, . . . , ykm)sm(y1, . . . , ykm))

(10)

Phase one. With the formula above, in the first ` rounds, the prover and the verifier are running exactly
a sumcheck on a product of two multilinear functions t · hg, since functions t and hg can be viewed as
functions only in x, and y can be considered constant (it is always summed on the hypercube). To compute
the sumcheck messages for the first ` rounds, given their bookkeeping tables, this will take O(2`) time in
accordance with Lemma 1. We now show how to initialize the bookkeeping tables in linear time.
Initializing the bookkeeping tables:

Initializing the bookkeeping table for t in O(2`) time is trivial, since t is a multilinear extension of an array
and therefore the evaluations on the hypercube are known. Initializing the bookkeeping table for hg in O(2`)
time is more challenging but we can leverage the sparsity of fi. And we have the lemma as follows:

Lemma 2. Let Nx be the set of (z, y) ∈ {0, 1}2` such that f ′i(z, x, y) = yki+1 . . . y`fi(z, x, y1, . . . , yki) is

non-zero for some 1 ≤ i ≤ m. Then for all x ∈ {0, 1}`, it is hg(x) =
∑

(z,y)∈Nx
I(g, z) · (∑`

i=1 f
′
i(z, x, y) ·

si(y1, . . . , yki)), where I(g, z) =
∏`
i=1((1− gi)(1− zi) + gizi)).

The proof for Lemma 2 can be found in [20].
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Lemma 3. The bookkeeping table Ahg
can be initialized in time O(2`).

Proof. As fi is sparse,
∑
x∈{0,1}` |Nx| = O(2`). From Lemma 2, given the evaluations of I(g, z) for all

z ∈ {0, 1}`, the prover can iterate all (z, y) ∈ Nx for all x to compute Ahg
. The full algorithm is presented

in Algorithm 3. Since each si is a multilinear extension of an array and therefore the evaluations on the
hypercube are known. So we use As1 , . . . ,Asm as the input in Algorithm 3. |As1 | + . . . + |Asm | = 2` as
2k1 + 2k2 + . . .+ 2km = 2`.

Procedure Precompute(g) is to evaluate G[z] = I(g, z) =
∏`
i=1((1−gi)(1−zi)+gizi)) for z ∈ {0, 1}`. By

the closed-form of I(g, z), the procedure iterates each bit of z, and multiples 1− gi for zi = 0 and multiples
gi for zi = 1. In this way, the size of G doubles in each iteration, and the total complexity is O(2`).

Step 8-9 computes hg(x) using Lemma 2. When f ′i is represented as a map of (z, x, y), f ′i(z, x, y) for
non-zero values, the complexity of these steps is O(2`) since

∑
x∈{0,1}` |Nx| = O(2`).

In Protocol 4, this is exactly the representation of a gate in the circuit, where z, x, y are labels of the
gate, its left input and its right input, and f ′i(z, x, y) = 1.

With the bookkeeping tables, the prover runs SumCheckProduct(hg(x),Ahg , t(x),At, u1, . . . , u`) in Al-
gorithm 2 and the total complexity for phase one is O(2`).

Phase two. At this point, all variables in x have been bounded to random numbers u. In the second phase,
the equation to sum on becomes

t(u)
∑

y∈{0,1}`
(

m∑
i=1

yki+1 . . . y`fi(g, u, y1, . . . , yki)si(y1, . . . , yki))

Note here that t(u) is merely a constant which we already computed in phase one. For the part behind
the summation symbol on y, it has l products of two multilinear functions to sum. If we naively apply
Algorithm 2 to each product, the prover runs in O(m · 2`) time instead of only O(2`). Fortunately, we
observe that we can merge some products dynamically during the sumcheck process, which reduces the
number of products and removes the m factor in the complexity. To achieve the linear prover time, we
generalize Lemma 1 to Lemma 4 for the summation of multiple products of multilinear functions.

Lemma 4. Suppose we have 2m multilinear functions f1, f2, . . . , fm and g1, g2, . . . , gm. Both gi and fi have
ki variables. Without loss of generality, suppose ` ≥ km ≥ km−1 ≥ k1. If 2k1 +2k2 + . . .+2km = 2`, given the
bookkeeping tables Af1 , . . . ,Afm for f1, . . . , fm and Ag1 , ·,Agm for g1, . . . , gm, the prover in Protocol 1 for∑m
i=1

∑
y∈{0,1}ki fi(y) · gi(y) =

∑
y∈{0,1}`

∑m
i=1 yki+1 . . . y`fi(y1, . . . , yki) · gi(y1, . . . , yki) runs in O(2`) time.

Proof. We present Algorithm 4 for the prover in the sumcheck. P runs in O(2`) for step 1-3 as |Af1 |+ . . .+
|Afm | = |Ag1 | + . . . + |Agm | = 2`. P runs in O(2`) for step 5-12 as the total number of the operations is
O(2k1 + 2k2 + . . .+ 2km) = O(2`). So P runs in O(2`) time for Algorithm 4.

The sumcheck polynomial for phase two has the same form in Lemma 4. To compute the sumcheck
messages for the last ` rounds, given their bookkeeping tables, this will take O(2`) time by Lemma 4. We
now show how to initialize the bookkeeping tables in linear time.
Initializing the bookkeeping tables:

Initializing the bookkeeping table for each si in O(2ki) time is trivial, since each si is a multilinear extension
of an array and therefore the evaluations on the hypercube are known. We also know 2k1 + 2k2 + . . .+ 2km =
O(2`). It remains to initialize bookkeeping tables for all fi in O(2`) time. Similar to phase one, we can
leverage the sparsity of fi and we have the lemma as follows:

Lemma 5. Let Ny be the set of (z, x) ∈ {0, 1}2` such that f ′i(z, x, y) = yki+1 . . . y` fi(z, x, y1, . . . , yki) is
non-zero for some 1 ≤ i ≤ m. Then for all y ∈ {0, 1}`, it is f ′i(g, u, y) =

∑
(z,x)∈Ny

I(g, z)I(u, x)f ′(z, x, y),

where I(g, z) =
∏`
i=1((1− gi)(1− zi) + gizi)) and I(u, x) =

∏`
i=1((1− ui)(1− xi) + uixi)).
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Algorithm 4 {a1, . . . , a`} ← SumCheckProduct(f1,Af1 , g1,Ag1 , . . . , fm,Afm , gm,Agm , r1, . . . , r`)

Input: Multilinear fi and gi, initial bookkeeping tables Afi and Agi for i = 1 to m, random
r1, . . . , r`; We have |Af1 |+ . . .+ |Afm | = |Ag1 |+ . . .+ |Agm | = 2`.
Output: ` sumcheck messages for

∑
y∈{0,1}`

∑m
i=1 yki+1 . . . y`fi(y1, . . . , yki) · gi(y1, . . . , yki). Each

message ai consists of 3 elements (ai0, ai1, ai2);

1: for i = 1, . . . ,m do
2: Fi ← FunctionEvaluations(fi,Afi , r1, . . . , rki)
3: Gi ← FunctionEvaluations(gi,Agi , r1, . . . , rki)

4: temp = 0
5: for i = 0, . . . ,m do
6: if i > 0 then
7: temp = temp+ fi(r1, . . . , rki) · gi(r1, . . . , rki)
8: for j = ki + 1, . . . , ki+1 do // Suppose k0 = 0 < k1 ≤ . . . ≤ km ≤ km+1 = `

9: if j ≤ ` then
10: for q ∈ {0, 1, 2} do
11: ajq =

∑m
t=i+1

∑
b∈{0,1}kt−j ft(r1, . . . , rj−1, q, b) · gt(r1, . . . , rj−1, q, b) + q · temp

// All evaluations needed are in Fi and Gi.
12: temp = temp · rj
13: return {a1, . . . , a`};

Lemma 5 is a generalization of Lemma 2 and we omit the proof.

Lemma 6. The bookkeeping table Af1 , . . . ,Afm can be initialized in time O(2`).

Proof. As fi is sparse,
∑
y∈{0,1}` |Ny| = O(2`). From Lemma 2, given the evaluations of I(g, z) and I(u, x)

for all z, x ∈ {0, 1}`, the prover can iterate all (z, x) ∈ Nx for all y to compute Af1 , . . . ,Afm . The full
algorithm is presented in Algorithm 5.
P runs procedure Precompute(g) and Precompute(u) in O(2`) time as we have shown in the proof of

Lemma 3. Step 4-5 computes fi(y1, . . . , yki) using Lemma 5. It takes O(2`) time as
∑
y∈{0,1}` |Ny| = O(2`).

Therefore, P runs in O(2`) time for Algorithm 5.

With the bookkeeping tables, the prover runs SumCheckProduct(f1,Af1 , g1,Ag1 , . . . , fm,Afm , gm,Agm , r1, . . . , r`)
in Algorithm 4 and the total complexity for phase two is O(2`).

Combining phase one and phase two, we know that P runs in O(|C|) time for the sumcheck protocol on
Equation 8.

Step one with linear prover time.. Finally, the sumcheck protocol for Equation 7 can be decomposed
into several instances that have the form of Equation 8. The term∑

x,y∈{0,1}si,i+1

( ˜multi+1,i+1(z, x, y)(Ṽi,i+1(x)Ṽi,i+1(y)) + . . .

+ysi,d+1 . . . ysi,i+1
˜multi+1,d(z, x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x)Ṽi,d(y1, y2, . . . , ysi,d))

(11)
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Algorithm 5 Af1 , . . . ,Afm ← Initialize PhaseTwo(f1, . . . , fm, g, u)

Input: Multilinear f1, . . . , fm, random g = g1, . . . , gm and u = u1, . . . , u`;
Output: Bookkeeping tables Af1 , . . . ,Afm ;

1: G← Precompute(g)
2: U← Precompute(u)
3: ∀y ∈ {0, 1}`, set Afi [y1, . . . , yki ] = 0 for all i
4: for every (z, x, y) such that fi(z, x, y1, . . . , yki) is non-zero do
5: Afi [y1, . . . , yki ] = Afi [y1, . . . , yki ] + G[z] ·U[x] · fi(z, x, y1, . . . , yki)
6: return Af1 ,Af2 , . . . ,Afm ;

is exactly the same as Equation 8. For the term of∑
x,y∈{0,1}si,i+1

( ˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y)) + . . .

+ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x) + Ṽi,d(y1, y2, . . . , ysi,d)),

(12)

it can be rewritten as ∑
x,y∈{0,1}si,i+1

( ˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + . . .+ Ṽi,d(x))

+
∑

x,y∈{0,1}si,i+1

( ˜addi+1,i+1(z, x, y)(Ṽi,i+1(y) + . . .+ Ṽi,d(y1, y2, . . . , ysi,d))
(13)

The first sum can be computed using the same protocol without si(x), and the second sum can be computed
without t(x). The complexity for both cases remains linear. Due to linearity of the sumcheck protocol, the
prover can execute these 3 instances simultaneously in every round, and sum up the individual messages and
send them to the veriifer.

Verifier time and proof size for all sumcheck protocols on Equation 4. The verifier time for all
sumcheck protocols on Equation 7 is the same as Protocol 2. V still runs in O(d log |C|) time to verify all
sumcheck statements based on Equation 7. The proof size becomes O(d log |C| + d2) as the proof contains
extra d− i values for each layer.

3.3 Combining Multiple Claims in Linear Time

By executing the sumcheck protocol on Equation 7, P and V reduce an evaluation of the multiliear extension
of a layer to multiple evaluations of multilinear extensions defined by values in the layers above. As we
explained in Section 3.1, when reaching layer i, V has received multiple evaluations about this layer and
combining these evaluations using a random linear combination would introduce an overhead on the prover.
Even worse, with the refined sumcheck on Equation 7 in Section 3.2, now the verifier have received multiple
evaluations of different multilinear extensions defined by subsets of gates in layer i used by different layers
below. Now even combining these evaluations becomes challenging, let alone reducing the overhead of the
prover.

In this section, we propose an approach that not only combines these evaluations on the subsets to a
single evaluation of the multilinear extension of the entire layer i, but also incurs only a prover time linear to
the size of the circuit. The key idea is that instead of trying to come up with a complicated protocol to do
so, we simply model the computation as an arithmetic circuit! The circuit takes the values Vi of the entire
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Figure 1: The struture of the circuit Ci with input Vi and r(0,i), . . . , r(i−1,i), r(i−1,i)
′

to compute
Ṽ0,i(r

(0,i)), Ṽi−1,i(r
(i−1,i)), Ṽi−1,i(r

(i−1,i)′)

layer i as the input. In addition, it also takes the randomness to compute these evaluations of subsets from
the verifier. At this point, these randomness are already chosen by the verifier and can merely be viewed as
constants known both to V and P. The circuit then selects multiple subsets from Vi according to the wiring
of the circuit (i.e., gates used by layer j < i from layer i), arrange them in the pre-defined order. The circuit
then computes the multilinear extensions of these subsets, and evaluates them on the corresponding points
from the input. The structure of the circuit Ci is given in Figure 1.

The output of the circuit is exactly the multiple evaluations of the multilinear extensions, which is
known to the verifier. The verifier then executes the original GKR protocol for layered arithmetic circuits
(Protocol 2) on this circuit, which reduces the output to a single evaluation of the multilinear extension of
the input. This can further be expressed as the evaluation of the multilinear extension of Vi, together with
the multilinear extension of all the randomness used to compute the output. As the latter is known to V, V
can compute it locally. In this way, using the circuit, P and V reduce multiple claims about subsets of layer
i to one claim about Ṽi.

Another tricky part is that the size of the circuit is not optimal if implemented naively. Note that
for Vi, the circuit only selects multiple subsets out of it, which can be done in one layer (left side of
Figure 1). However, for the randomness, the circuit has to expand them to the bookkeeping tables in exactly
the same way as described in Algorithm 1, which takes logarithmic layers. The circuit then computes the
inner product between a subset and its corresponding bookkeeping table, which gives the evaluation of its
multilinear extension. If we simply relay the subsets of Vi by logarithmic layers in the circuit, the size of
the circuit is no longer linear. It becomes O(Si logSi) and introduces an logarithmic overhead to the whole
protocol. Fortunately, we can use the method proposed in [22] to feed input to different layers. We input
Vi at one layer before the inner product instead of from the top, as shown in Figure 1. Now the size of the
circuit is linear to the total size of all the subsets. We give the formal protocol in Protocol 3.
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Protocol 3. Let F be a prime field. Let Ci be an arithmetic circuit with the input in consisting
of two parts, i.e., Vi = (Vi(0), . . . , Vi(Si − 1)) and R = (r(0,i), . . . , r(i−1,i), r(i−1,i)

′
), and the output

out = (Ṽ0,i(r
(0,i)), . . . , Ṽi−1,i(r

(i−1,i)), Ṽi−1,i(r
(i−1,i)′)). We use V = (V0,i, . . . ,Vi−1,i,Vi−1,i) to repre-

sent subsets of Vi used in layer j (j < i), and TR = (Tr(0,i) , . . . , Tr(i−1,i) , Tr(i−1,i)′ ) to represent bookkeeping

tables after expanding r(0,i), . . . , r(i−1,i), r(i−1,i)
′
. We know |V| = |R| and we put V and R in the same

layer and do inner product on pairs to output out. Without loss of generality, assume |V| and |R| are the
power of 2 and we can pad them if not. The construction of Ci is shown in Figure 1.

• P and V invoke Protocol 2 on inner products to reduce the claim about out to the claim about the layer
of V and TR: q = r1 ·V(r) + (1− r1) ·TR(r)

• V requires P to provide values of V(r) and TR(r) to check q = r1 ·V(r) + (1− r1) ·TR(r).

• P and V invoke Protocol 2 on the left part and the right part of Ci as shown in Figure 1, separately. For
the left part, it reduces the claim about V(r) to the claim about Vi(r

(i)) by one layer. For the right part,
it reduces the claim about TR(r) to the claim about R(r(i)).

• V asks P to send Vi(r
(i)) and checks the reduction for the left part. V computes R(r(i)) itself and checks

the reduction for the right part. If both checks pass, output 1; otherwise, output 0.

Efficiency. In order to analze the prover time for Subprotocol 3, we consider the specific structure of Ci,
as shown in Figure 1. For layer k < i, there are Sk,i gates from layer i connected to layer k. The number

of gates in Ci is at most 8|V|, which is 8
∑i−1
k=0 Sk,i. By Theorem 1, the prover time for the circuit Ci is

O(
∑i−1
k=0 Sk,i). So the total prover time for circuits C1, . . . , Cd is 8

∑d
i=1

∑i−1
k=0 Sk,i = O(|C|) as there are at

most total 2|C| outwires in the circuit.
The size of Ci is O(S0,i + . . .+Si−1,i) = O(|C|), the depth of Ci is O(logSi) = O(log |C|) and the size of

input Ri is at most s0,i+s1,i+ . . .+si−1,i+si−1,i ≤ d log |C|. Let Ti be the time to evaluate all ˜add and ˜mult
at the corresponding random points in Ci. Therefore, the verifier time for Ci is O(log2 |C|+ d log |C|+ Ti)
and the proof size is O(log2 |C|) by Theorem 1. In total for all layers, V runs in O(d log2 |C|+d2 log |C|+T )
time and the proof size is O(d log2 |C|), where T = T1 + T2 + . . .+ Td.

3.4 The Full Protocol for General Arithmetic Circuits

Combining the two steps together, we give the full protocol of the generalized GKR for arbitrary arithmetic
circuits in Protocol 4.
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Protocol 4. Let F be a prime field. Let C: Fn → Fk be a d-depth unlayered arithmetic circuit. P wants to
convince that C(in) = out where in is the input from V, and out is the output. Without loss of generality,
assume n is the power of 2 and we can pad them if not.

1. Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to P.
Both parties compute Ṽ0(g).

2. P and V run a sumcheck protocol on

Ṽ0(g) =
∑

x,y∈{0,1}s0,1
( ˜add1,1(g, x, y)(Ṽ0,1(x) + Ṽ0,1(y)) + . . .

+ ys0,d+1 . . . ys0,1
˜add1,d(g, x, y1, y2, . . . , ys0,d)(Ṽ0,1(x) + Ṽ0,d(y1, y2, . . . , ys0,d)))

+
∑

x,y∈{0,1}s0,1
( ˜mult1,1(g, x, y)(Ṽ0,1(x)Ṽ0,1(y)) + . . .

+ ys0,d+1 . . . ys0,1
˜mult1,d(g, x, y1, y2, . . . , ys0,d)(Ṽ0,1(x)Ṽi,d(y1, y2, . . . , ys0,d)))

At the end of the protocol, V receives Ṽ0,1(r(0,1)
′
), Ṽ0,1(r(0,1)), Ṽ0,2(r(0,2)), . . . , Ṽ0,d(r

(0,d)). V computes

left side of the above equation by removing the summation symbol and replacing x, y with r(0,1)
′
, r(0,1).

If it does not equal to the last message of the sumcheck, V outputs 0 and aborts.

3. For i = 1, ..., d− 1, d:

(a) Given Ṽ0,i(r
(0,i)), . . . , Ṽi−1,i(r

(i−1,i)′), Vi−1,i(r
(i−1,i)) and r(0,i), r(1,i), . . . , r(i−1,i)

′
, r(i−1,i), P

and V invoke Protocol 3 to build a layered arithmetic circuit Ci with input of Vi =
Vi(0), . . . , Vi(Si − 1) and R = (r(0,i), r(1,i), . . . , r(i−1,i)

′
, r(i−1,i)). After running Protocol 3, if V

in Protocol 3 does not abort, V receives Ṽi(r
(i)) for some randomness r(i) ∈ Fsi .

(b) If i < d, P and V run the sumcheck on the equation

Ṽi(r
(i)) =

∑
x,y∈{0,1}si,i+1

( ˜addi+1,i+1(r(i), x, y)(Ṽi,i+1(x) + Ṽi,i+1(y)) + . . .

+ ysi,d+1 . . . ysi,i+1
˜addi+1,d(r

(i), x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x) + Ṽi,d(y1, y2, . . . , ysi,d)))

+
∑

x,y∈{0,1}si,i+1

( ˜multi+1,i+1(r(i), x, y)(Ṽi,i+1(x)Ṽi,i+1(y)) + . . .

+ ysi,d+1 . . . ysi,i+1
˜multi+1,d(r

(i), x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x)Ṽi,d(y1, y2, . . . , ysi,d)))

At the end of the sumcheck protocol, P sends V Ṽi,i+1(r(i,i+1)′), Ṽi,i+1(r(i,i+1)), . . . , Ṽi,d(r
(i,d)).

V computes the left side of the above equation by removing the summation symbol and replacing
x, y with r(i,i+1)′ , r(i,i+1) checks it equals to the last message of the sumcheck. If all checks in
the sumcheck pass, V uses Ṽi,i+1(r(i,i+1)′) and Ṽi,i+1(r(i,i+1)) to proceed to the (i+ 1)-th layer.
Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has one claim of Ṽd(r
(d)). V queries the oracle of evaluations of Ṽd at r(d)

and checks that it is the same as the claim. If yes, output 1; otherwise, output 0.
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Theorem 2. Let C : Fn → Fk be a depth-d general arithmetic circuit. Protocol 4 is an interactive proof for
the function computed by C with soundness O(d2 log2 |C|/|F|). The running time of the prover P is O(|C|).
The proof size is O(d log2 |C|+ d2). Let the time to evaluate all ˜addi,j and ˜multi,j at random points be T ′,

the time to evaluate all ˜add and ˜mult in Ci at random points be Ti, and T = T1 +T2 + . . .+Td, the running
time of V is O(n+ d2 log |C|+ d log2 |C|+ T + T ′).

Proof. Completeness. The completeness is straightforward by the completeness of the sumcheck protocol
and the completeness of Protocol 2 in Theorem 1.

Soundness. For the soundness, for any PPT adversary A, we use Ṽ ′ to represent the correct messages
corresponding to Ṽ in Protocol 4 with input in and the correct execution for circuit C. Suppose C(in) 6= out,
there must exist a layer i such that Ṽj(r

(j)) = Ṽ ′j (r(j)) for j > i but Ṽi(r
(i)) 6= Ṽ ′i (r(i)), which event is

defined as Ei. When running the sumcheck protocol for Ṽi(r
(i)), at the end of the sumcheck, V receives

the messages of Ṽi,i+1(r(i,i+1)′), Ṽi,i+1(r(i,i+1)), . . . , Ṽi,d(r
(i,d)) and check the last statement of the sumcheck

protocol. There are two cases:

• Case 1: all these values are consistent with the correct values for circuit C with input in.

• Case 2: there exists some value Ṽi,l(r
(i,l)) or Ṽi,i+1(r(i,i+1)′) such that Ṽi,l(r

(i,l)) 6= Ṽ ′(i,l)(r
(i,l)) or Ṽi,i+1(r(i,i+1)′)

6= Ṽ ′i,i+1(r(i,i+1)′). We define the event that Ṽi,l(r
(i,l)) 6= Ṽ ′(i,l)(r

(i,l)) as Ei,l. (Ei,i+1 represents Ṽi,i+1(r(i,i+1)) 6=
Ṽ ′(i,i+1)(r

(i,i+1)) or Ṽi,i+1(r(i,i+1)′) 6= Ṽ ′i,i+1(r(i,i+1)′))

The probability of case 1 is at most 2dlogSie
|F| by the soundness of the sumcheck protocol. For case 2, that

means there exists l > i such that Ci(inCi) 6= outCi or inCi is not consistent with V ′l(0), . . . ,V ′l(Sl − 1).

If it is the latter, then Ṽl(r
(i+1)) = Ṽ ′l (r(i+1)) with probability at most dlogSie

|F| by Schwartz-Zippel

Lemma [13, 25].

If it is the former, from Section 3.3, we know the number of gates in Cl is at most 8
∑Sl−1
k=0 Sk,l ≤ 8|C|.

The depth of Ci is at most 2dlogSle while the input size of the randomness is at most d log |C|. Therefore,
according to the soundness of Protocol 2, Ci(inCi) 6= outCi but V in the subprotocol outputs 1 with

probability at most O( logSi·log |C|
|F| ) ≤ O( log2 |C|

|F| ).

Eventually, by the union bound, we have the following statement:

Pr[C(in) 6= out ∧ V outputs 1] ≤ Pr[∃i, Ei]
≤ Pr[E0] + Pr[E1] + . . .+ Pr[Ed−1]

≤ 2dlogS0e
|F| + Pr[∃l > 0, E0,l] +

2dlogS1e
|F| + Pr[∃l > 1, E1,l]

+ . . .+
2dlogSd−1e
|F| + Pr[∃l > d− 1, Ed−1,l]

≤ O(
d log |C|
|F| ) +

d log2 |C|
|F| +

(d− 1) log2 |C|
|F| + . . .+

log2 |C|
|F|

≤ O(
d2 log2 |C|
|F| )

Efficiency. Combining the efficiency analysis of Section 3.2 and Section 3.3, the prover runs in O(|C|) time
to generate the proof for Protocol 4. The total verifier time is O(d2 log |C| + d log2 |C| + T + T ′) and the
total proof size is O(d log |C|+ d log2 |C|+ d+ d− 1 + . . .+ 1) = O(d log2 |C|+ d2). 2

2Note here that the term d2 in the proof size and verifier time is also bounded by O(|C|) based on the same analysis
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Removing the overhead on the proof size. As stated in Theorem 2, our new GKR protocol has a linear
prover time for arbitrary arithmetic circuits. However, it does introduces an overhead of O(log |C|) on the
proof size compared to the original GKR protocol. We can actually remove this overhead, with a compromise
on the verifier time. Note that the term O(d log2 |C|) on the proof size comes from Protocol 3 to combine
multiple claims into one using the circuit in Figure 1. As the depth of the circuit is O(log |C|), the proof
size is O(log2 |C|) for one layer and O(d log2 |C|) in total. However, we can actually reduce the depth of the
circuit simply by asking the verifier to compute the expansions of the randomness on her own. In this way,
the circuit directly takes them as input, computes their inner products with the subsets of Vi, which can
be done in constant depth (the summations in the inner products can be computed using a single sumcheck
protocol in one layer [16]). In this way, the proof size can be reduced to O(log |C|), while the verifier time
becomes linear to the total size of all the subsets, which is again bounded by the size of the circuit. In this
way, we have a variant of the generalized GKR protocol with proof size O(d log |C| + d2) (O(d2) from the
sumcheck in the first step) and verifier time O(|C|).

This improvement is not always a trade-off between the proof size and the verifier time. For a random
circuit without any structure, the verifier time was already O(|C|) in the worst case to evaluate all ˜add and

˜mult at random points. This approach reduces the proof size to O(d log |C|+ d2), which gives a generalized
GKR protocol for arbitrary circuits with almost no overhead at all on the prover time, proof size and verifier
time. The experimental results showed in Table 1 validate the conclusion (see Section 5). When the circuit
is structured, it is possible to achieve sublinear verifier time (see below). In this case, the approach reduces
the proof size by increasing the verifier back to linear.

Achieving sublinear verifier time. In the worst case for a random circuit, the verifier time is linear to the
size of the circuit in both the original GKR protocol and our new protocol (T and T ′ in Theorem 1 and 2).
Intuitively, this is the best to hope for schemes without setup, as the verifier has to know the function to
verify and reading a random circuit already takes linear time. However, an important contribution of the
GKR protocol is that the verifier time is sublinear for circuit with structures that can be described succinctly.
Thus the protocol can be used to delegate computations to untrusted servers, as the verifier time is faster
than computing the result locally.

Our new protocol inherits the feature of sublinear verifier time for classes of circuits appeared in the
literature. For specific computations such as matrix multiplications, second frequency moment, image down-
scaling etc. [16, 18], they can already be expressed as layered circuits efficiently, and our generalized GKR
protocol on these computations looks almost the same as the original GKR protocol, which achieves logarith-
mic verifier time. For data parallel circuits [16, 17], it is not hard to see that all the multilinear extensions
˜add, ˜mult in both step 1 and for the circuit in Figure 1 in step 2 only depends on a single copy. Thus the

verifier time is only linear to the size of a single copy, and is independent of the number of copies in the
data parallel circuits. Finally, for log-space uniform circuits considered in the original GKR paper [9], there
is a reduction to uniform log-space Turing machines in order to achieve poly-logarithmic verifier time. The
reduction introduces a polynomial overhead on the prover time, and all the variants of the GKR protocol
including ours can achieve poly-logarithmic verifier time using the reduction. Defining a large class of circuits
that achieves both linear prover time and sublinear verifier is left as an interesting future work. We state a
general theorem similar to prior work [18, 20, 21]:

Theorem 3. If in addition d = polylog(|C|) and T and T ′ are both in polylog(|C|) time in Theorem 2,
Protocol 4 is an interactive proof with succinct proof size and verifier time.

4 Zero Knowledge Arguments Based on Generalized GKR

In this section, we build a new zero-knowledge argument protocol for general arithmetic circuits based on
Protocol 4. The construction follows similar ideas proposed in [7, 20], but we introduce some optimizations

in Section 3.3 (i.e., d2 comes from the input of circuit Ci, which cannot be larger than the size of Ci). Therefore,
both the proof size and the verifier time are O(|C|) in the worst case, which is the same as the original GKR protocol.
This is also why there is no d2 in the complexity of the prover time.
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particularly for the second step of combining multiple points in order to preserve the efficiency of the prover.
We introduce some definitions before presenting the formal protocol.

4.1 Definitions

Zero knowledge arguments. An argument system for an NP relationship R is a protocol between a
computationally-bounded prover P and a verifier V. At the end of the protocol, V is convinced by P that
there exists a witness w such that (x;w) ∈ R for some input x. We focus on arguments of knowledge which
have the stronger property that if the prover convinces the verifier of the statement validity, then the prover
must know w. We use G to represent the generation phase of the public parameters pp. Formally, consider
the definition below, where we assume R is known to P and V.

Definition 3. Let R be an NP relation. A tuple of algorithm (G,P,V) is a zero-knowledge argument of
knowledge for R if the following holds.

• Correctness. For every pp output by G(1λ) and (x,w) ∈ R,

〈P(pp, w),V(pp)〉(x) = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a PPT extractor E such that given the
access to the entire executing process and the randomness of P∗, E can extract a witness w such that
pp← G(1λ), π∗ ← P∗(x, pp) and w ← EP∗(pp, x, π∗), the following probability is negl(λ):

Pr[(x;w) /∈ R ∧ V(x, π∗, pp) = 1]

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, auxiliary input
z ∈ {0, 1}∗, (x;w) ∈ R, pp output by G(1λ), it holds that

View(〈P(pp, w),V∗(z, pp)〉(x)) ≈ SV∗(x, z)

We say that (G,P,V) is a succinct argument system if the total communication between P and V (proof
size) are poly(λ, |x|, log |w|).

In the definition of zero knowledge, SV∗ denotes that the simulator S is given the randomness of V∗
sampled from polynomial-size space. This definition is commonly used in existing transparent zero knowledge
proof schemes [2, 5, 6, 18, 20, 21].

Zero Knowledge Polynomial Commitment. Let F be a finite field, F be a family of `-variate polynomial
over F, and d be a variable-degree parameter. We use W`,d to denote the collection of all monomials in F
and N = |W`,d| = (d + 1)`. A zero-knowledge verifiable polynomial commitment (zkPC) for f ∈ F and
t ∈ F` consists of the following algorithms:

• pp← zkPC.KeyGen(1λ),

• com← zkPC.Commit(f, rf , pp),

• ((y, π); {0, 1})← 〈zkPC.Open(f, rf ), zkPC.Verify(com)〉(t, pp)

Definition 4. A zkPC scheme satisfies the following properties:

• Completeness. For any polynomial f ∈ F and value t ∈ F`, pp← zkPC.KeyGen(1λ), com← zkPC.Commit(f, rf , pp),
it holds that

Pr [〈zkPC.Open(f, rf ), zkPC.Verify(com)〉(t, pp) = 1] = 1

24



• Knowledge Soundness. For any PPT adversary A, pp ← zkPC.KeyGen(1λ), there exists a PPT ex-
tractor E. Given any tuple (pp, com∗) and the executing process of A, E can extract a function f∗ ∈ F
and the randomness rf∗ such that (f∗, rf∗) ← EA(pp, com∗) and com∗ ← zkPC.Commit(f∗, rf∗ , pp). The
following probability is negligible of λ:

Pr
[
((y∗, π∗); 1)← 〈A(), zkPC.Verify(com∗)〉(t, pp) ∧ (f∗, rf∗)← EA(pp, com∗) ∧ f∗(t) 6= y∗

]
• Zero Knowledge. For security parameter λ, polynomial f ∈ F , pp← zkPC.KeyGen(1λ), PPT algorithm
A, and simulator S = (S1,S2), consider the following two experiments:

RealA,f (pp):

1. com← zkPC.Commit(f, rf , pp)

2. t← A(com, pp)

3. (y, π)← 〈zkPC.Open(f, rf ),A〉(t, pp)

4. b← A(com, y, π, pp)

5. Output b

IdealA,SA(pp):

1. com← S1(1λ, pp)

2. t← A(com, pp)

3. (y, π)← 〈S2,A〉(ti, pp), given oracle access to y = f(t).

4. b← A(com, y, π, pp)

5. Output b

For any PPT algorithm A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (pp) = 1]− Pr[IdealA,SA(pp) = 1]| ≤ negl(λ).

Zero knowledg GKR protocol. Following the idea of [7], Xie et al. [20] lifts the GKR protocol to be zero
knowledge efficiently. First, the sumcheck protocol is replaced by a zero knowledge sumcheck protocol, which
eliminates the leakage during the sumcheck protocol (See Section 4.2). Second, the multilinear extensions
are replaced by low degree extensions such that evaluations on several points reveal no information about
the underlying function. In particular, the prover selects a random polynomial Ri(x1, . . . , xsi , z) and defines

V̇i(x1, . . . , xsi)
def
= Ṽi(x1, . . . , xsi) + Zi(x1, . . . , xsi)

∑
z∈{0,1}

Ri(x1, . . . , xsi , z), (14)

where Zi(x) =
∏si
i=1 xi(1 − xi) is the vanishing polynomial, i.e., Zi(x) = 0 for all x ∈ {0, 1}si . V̇i is the

low degree extension of Vi as V̇i(x) = Ṽi(x) = Vi(x) for all x ∈ {0, 1}si . As Ri is randomly selected by P,
revealing evaluations of V̇i does not leak information about Vi and thus the values in the circuit. Meanwhile,
the sumcheck equations in the GKR protocol still hold as the low degree extension also agrees with the
function on the Boolean hypercube. The zero knowledge polynomial commitment scheme is also used to
commit to these masking polynomials and later open them at random points. With these changes, we have
the following lemma:

Lemma 7. There exists a zero knowledge interactive proof protocol for layered arithmetic circuits C(in) =
out by replacing Ṽi with V̇i and the sumcheck with ZK sumcheck in Protocol 2. The protocol satisfies the
completeness and the soundness in Definition 1. In addition, for every verifier V∗ and every layered circuit
C, there exists a simulator S such that given the oracle access to the output of V̇d(u

(d)) and V̇d(v
(d)) in step

4 of Protocol 2, S is able to simulate the view of V∗ in step 1-3 of Protocol 2.

By combining the zero knowledge GKR protocol with the zkPC scheme, Xie et al. [20] and Zhang et
al. [21] construct zero knowledge arguments for layered arithmetic circuits.

4.2 Zero Knowledge Sumcheck

To build a zero knowledge argument for arbitrary arithmetic circuit using Protocol 4, we follow the same
blueprint of [20] using zkPC, zero knowledge sumcheck and low degree extensions. In the following, we
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present the zero knowledge version of step 3(b) and step 3(a) in Protocol 4, followed by the whole zero
knowledge argument.

In step 3(b) of the full protocol, P and V execute a sumcheck protocol on Equation 7, during which
P sends V evaluations of the polynomial at several random points chosen by V. These evaluations leak
information about the values in the circuit, as they can be viewed as weighted sums of these values.

To prevent the leakage, we take the zero knowledge sumcheck proposed by Xie et al. in [20]. To prove

H =
∑

x1,x2,...,x`∈{0,1}
f(x1, x2, . . . , x`),

the prover generates a random polynomial g such that g(x1, . . . , x`) = a0 + g1(x1) + g2(x2) + . . . + g`(x`),
where gi(xi) = ai,1xi + ai,2x

2
i + . . .+ ai,τx

τ
i is a random univariate polynomial of degree τ (τ is the variable

degree of f). Note here that the size of g is only O(τ`), while the size of f is exponential in `. P commits
to the polynomial g using zkPC.Commit, and sends the verifier a claim G =

∑
x1,x2,...,x`∈{0,1}

g(x1, x2, . . . , x`).

The verifier picks a random number ρ, and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,x`∈{0,1}
(f(x1, x2, . . . , x`) + ρg(x1, x2, . . . , x`)).

At the last round of this sumcheck, the prover opens the commitment of g at g(r1, . . . , r`) using zkPC.Open,
and the verifier computes f(r1, . . . , r`) by subtracting ρg(r1, . . . , r`) from the last message, and compares it
with the oracle access of f . It is shown that as long as the polynomial commitment is zero knowledge, the
protocol is zero knowledge. Intuitively, this is because the information of f transmitted in the sumcheck
protocol is exactly masked by the randomness of g. We present the protocol in Protocol 5 and we have the
following theorem:

Theorem 4 ( [20]). Protocol 5 is complete and sound for the relationship of H =
∑

x1,x2,...,x`∈{0,1}
f(x1, x2, . . . , x`).

In addition, for every verifier V∗ and every `-variate polynomial f : F` → F with variable degree d, there

Protocol 5. We assume the existence of a zkPC protocol defined in Section 4.1. For simplicity,
we omit the randomness rf and public parameters pp, vp without any ambiguity. To prove the claim
H =

∑
x1,x2,...,x`∈{0,1}

f(x1, x2, . . . , x`):

1. P selects a polynomial g(x1, . . . , x`) = a0 + g1(x1) + g2(x2) + . . . + g`(x`), where gi(xi) = ai,1xi +
ai,2x

2
i +. . .+ai,τx

τ
i and all ai,js are uniformly random. P sends H =

∑
x1,x2,...,x`∈{0,1}

f(x1, x2, . . . , x`),

G =
∑

x1,x2,...,x`∈{0,1}
g(x1, x2, . . . , x`) and comg = zkPC.Commit(g, rg, pp) to V.

2. V uniformly selects ρ ∈ F∗, computes H + ρG and sends ρ to P.

3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,x`∈{0,1}

(f(x1, x2, . . . , x`) + ρg(x1, x2, . . . , x`))

4. At the last round of the sumcheck protocol, V obtains a claim h`(r`) = f(r1, r2, . . . , r`) +
ρg(r1, r2, . . . , r`). P opens the commitment of g at r = (r1, . . . , r`) and V verifies by using zkPC.Open
and zkPC.Verify. If the verification fails, V aborts.

5. V computes h`(r`)− ρg(r1, . . . , r`) and compares it with the oracle access of f(r1, . . . , r`).
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exists a simulator S such that given access to H =
∑
x1,x2,...,x`∈{0,1} f(x1, x2, . . . , x`), S is able to simulate

the partial view of V∗ in Protocol 5. The efficiency of prover time, verifier time and proof size in Protocol 5
retain the same as in Protocol 1.

We apply the zero knowledge sumcheck directly on the sumcheck equation (Equation 7) of our new GKR
protocol. It eliminates all the leakage during the sumcheck protocol.

4.3 Combining Multiple Claims to One with Zero Knowledge

Even with the zero knowledge sumcheck, the protocol still leaks information about values in the circuit. In
particular, at the end of the zero knowledge sumcheck, V still needs an oracle access to f(r1, . . . , r`). When
executed on Equation 7, the verifier evaluates all ˜add and ˜mult at the random point, and queries the prover
for the evaluations of Ṽ0,i, · · · , Ṽi−1,i. These evaluations reveal information about values in the circuit.

To prevent this leakage, we use the same idea in [20] to replace them with their low-degree extensions
V̇0,i, · · · , V̇i−1,i. As explained above, Equation 7 still holds for low degree extensions, and P and V can execute
the zero knowledge sumcheck on the new equation, which leaks no information about V0,i, · · · , Vi−1,i.

When going into the second step of combining multiple evaluations, now these low degree extensions
have to be evaluated explicitly in a circuit similar to Figure 1. In order to do so, we let P input the masking
polynomials used to define the low degree extensions, and let V input the vanishing polynomial as public
inputs. P commits to the masking polynomials using the zkPC, and P and V execute the zero knowledge
GKR to reduce the evaluations of the low degree extensions of the subsets to a single evaluation of the low
degree extension of Vi.

To maintain the optimal prover time, we observe that the masking polynomials used in the low degree
extensions can be simplified significantly. For V̇0,i, · · · , V̇i−1,i, only a single evaluation of each polynomial is

sent to the verifier. Hence it suffices to mask each Ṽj,i with a single random number:

V̇j,i(z)
def
= Ṽj,i(z) + Zj,i(z) · pj,i, (15)

where Zj,i(z) =
∏sj,i
k=1 zk(1 − zk) and pj,i ∈ F is randomly generated by P. To be precise, V receives two

evaluations V̇i−1,i(r
(i−1,i)) and V̇i−1,i(r

(i−1,i)′) for V̇i−1,i. Thus for j = i−1, P generates two random numbers

of pi−1,i and p′i−1,i to define V̇i−1,i and V̇ ′i−1,i twice separately. Note that the sum on variable z in Equation 14

is not necessary, as these low degree extensions will not be used in the next round of the sumcheck. For V̇i,
after combining the evaluations of the subsets, again the prover only sends a single evaluation of V̇i to the
verifier. Thus we define V̇i(x1, . . . , xsi) = Ṽi(x1, . . . , xsi) + Zi(x1, . . . , xsi)

∑
z∈{0,1}

Ri(x1, z), i.e., the masking

polynomial in Equation 14 is set to be Ri(x1, z), a random multilinear polynomial with only two variables.
With these low degree extensions, Equation 7 becomes

V̇i(g) =
∑

x,y∈{0,1}si,i+1 ,w∈{0,1}

[I(w, 0)( ˜addi+1,i+1(g, x, y)(V̇ ′i,i+1(x) + V̇i,i+1(y1, . . . , ysi,i+1
))

+ ysi,i+2+1 · . . . · ysi,i+1
˜addi+1,i+2(g, x, y1, y2, . . . , ysi,i+2)(V̇ ′i,i+1(x) + V̇i,i+2(y1, y2, . . . , ysi,i+2)) + . . .

+ ysi,d+1 · . . . · ysi,i+1
˜addi+1,d(g, x, y1, y2, . . . , ysi,d)(V̇ ′i,i+1(x) + V̇i,d(y1, y2, . . . , ysi,d))

+ ˜multi+1,i+1(g, x, y)(V̇ ′i,i+1(x)V̇i,i+1(y1, . . . , ysi,i+1
))

+ ysi,i+2+1 · . . . · ysi,i+1
˜multi+1,i+2(g, x, y1, y2, . . . , ysi,i+2)(V̇ ′i,i+1(x)V̇i,i+2(y1, y2, . . . , ysi,i+2)) + . . .

+ ysi,d+1 · . . . · ysi,i+1
˜multi+1,d(g, x, y1, y2, . . . , ysi,d)(V̇ ′i,i+1(x)V̇i,d(y1, y2, . . . , ysi,d))

+ I((x, y),~0)Zi(g)Ri(g1, w)]
(16)

where I(~a,~b) is the identity polynomial I(~a,~b) = 0 iff ~a = ~b. The equation holds because V̇j,i agrees with

Ṽj,i on the Boolean hypercube {0, 1}si,j , as Zj,i(z) = 0 for binary inputs.
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Figure 2: The struture of the circuit C ′i with input Vi, r(0,i), . . . , r(i−1,i), r(i−1,i)
′

and
p0,i, . . . , pi−1,i, p

′
i−1,i to compute V̇0,i(r

(0,i)), V̇i−1,i(r
(i−1,i)), V̇ ′i−1,i(r

(i−1,i)′)

Now P and V instead execute the zero-knowledge sumcheck protocol on Equation 16. At the end of the
protocol, V receives V̇ ′i,i+1(r(i,i+1)′), V̇i,i+1(r(i,i+1)), . . . , V̇i,d(r

(i,d)) for random points r(i,i+1)′ , r(i,i+1), . . . , r(i,d)

chosen by V. They no longer leak information about Vi,i+1, . . . , Vi,d. V then evaluates ˜multi,j and ˜addi,j
on the randomness as before, computes Zi(g), I(c, 0), I((r(i,i+1)′ , r(i,i+1)),~0) where c ∈ F is a random point
chosen by V for the variable w. V also opens Ri(g1, w) at point c with P using zkPC, and checks that
together with the points received from P, they are consistent with the last message of the sumcheck, i.e., the
oracle access to the evaluation of the polynomial in the zero knowledge sumcheck. V then uses these values
to proceed to the second step of combining multiple evaluations, i.e., step 3(a) in Protocol 4.

New circuit to combine multiple evaluations in zero knowledge. To make step 3(a) of Protocol 4
work, we need to modify the circuit Ci in Figure 1 to reduce claims about V̇0,i(r

(0,i)), . . . , V̇i−1,i(r
(i−1,i)), V̇ ′i−1,i(r

(i−1,i)′)

to V̇i(r
(i)) for some randomness r(i) chose by the verifier. The new circuit C ′i is shown in Figure 2. As ex-

plained above, to compute V̇0,i(r
(0,i)′),. . .,V̇i−1,i(r

(i−1,i)), V̇ ′i−1,i(r
(i−1,i)′), the circuit further takes as input

Z0,i(r
(0,i)), . . . , Zi−1,i(r

(i−1,i)), Zi−1,i(r
(i−1,i)′) from the verifier and p0,i, . . . , pi−1,i, p

′
i−1,i from the prover.

They are multiplied pairwisely and added to Ṽj,i(r
(j,i)), which gives exactly V̇j,i(r

(j,i)) by definition.
To execute the second step, the prover commits to the low degree extension of p0,i, . . . , pi−1,i, p

′
i−1,i

using zkPC. P and V then run the zero knowledge GKR protocol on the circuit C ′i. By lemma 7, at the
end of the protocol the verifier receives the evaluation of the low degree extension of the input at a random
point r(i). The verifier then opens the low degree extension of p0,i, . . . , pi−1,i, p

′
i−1,i at the random point

using the zkPC, shaves it off to obtain the evaluation of V̇i(r
(i)). The entire protocol is precisely the zero

knowledge argument scheme in [20], where p0,i, . . . , pi−1,i, p
′
i−1,i are the witness from the prover, and Vi and

Z0,i(r
(0,i)), . . . , Zi−1,i(r

(i−1,i)), Zi−1,i(r
(i−1,i)′) are the public inputs from the verifier. Similar to the version

without zero knowledge in Section 3.3, the input can also come in different layers as shown in Figure 2 to
achieve better efficiency. The new subprotocol with zero knowledge is presented in Protocol 6.
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Protocol 6. Let F be a prime field. Let C ′i be an arithmetic circuit with the input in con-

sisting of four parts, i.e., Vi = (Vi(0), . . . , Vi(Si − 1)), R = (r(0,i), . . . , r(i−1,i), r(i−1,i)
′
), Z =

(Z0,i(r
(0,i)), . . . , Zi−1,i(r

(i−1,i)), Zi−1,i(r
(i−1,i)′), P = (p0,i, . . . , pi−1,i, p

′
i−1,i), and the output out =

(V̇0,i(r
(0,i)), . . . , V̇i−1,i(r

(i−1,i)), V̇ ′i−1,i(r
(i−1,i)′)). We use V = (V0,i, . . . ,Vi−1,i,Vi−1,i) to represent sub-

sets of Vi used in layer j (j < i), and TR = (Tr(0,i) , . . . , Tr(i−1,i) , Tr(i−1,i)′ ) to represent bookkeeping tables

after expanding r(0,i), . . . , r(i−1,i), r(i−1,i)
′
. Let Ṽi = (Ṽ0,i(r

(0,i)), . . . , Ṽi−1,i(r
(i−1,i)), Ṽi−1,i(r

(i−1,i)′)) and

ZP = (Z0,i(r
(0,i))p0,i, . . . , Zi−1,i(r

(i−1,i))pi−1,i, Zi−1,i(r
(i−1,i)′)p′i−1,i). We use RZP, RṼi

, RV, RT, RZ,

RP, RR to mask multilinear extensions of ZP, Ṽi, V, TR, Z, P, R, respectively. We know |V| = |R| and
we put V and R in the same layer and do inner product on pairs to compute Ṽi. We also put Z and P in
the same layer, Ṽi and ZP in the same layer. Without loss of generality, assume |V|, |R|, |Ṽi| and |P|are
the power of 2 and we can pad them if not. The construction of C ′i is shown in Figure 2.

• G(1λ): set pp as pp← zkPC.KeyGen(1λ).

• P commits P(v) +
∑
w∈{0,1}RP(v1, w), RZP, RṼi

, RV, RT, RZ, RR to V by zkPC.Commit.

• P and V invoke the zero knowledge GKR on the output layer to reduce the claim about out to the claim
about Ṽi and the claim about ZP: Ṽi(t) +

∑
w∈{0,1}RṼi

(t1, w) and ZP(t) +
∑
w∈{0,1}RZP(t1, w).

• P and V invoke the zero knowledge GKR on inner products to reduce the claim about Ṽi(t) +∑
w∈{0,1}RṼi

(t1, w) to the claim about the layer of V and TR: V(u) +
∑
w∈{0,1}RV(u1, w) and

TR(u) +
∑
w∈{0,1}RT(u1, w).

• P and V invoke the zero knowledge GKR on the first part 1©, the second part 2© and the third
part 3© of C ′i separately, as shown in Figure 2. For the first part, it reduces the claim about
V(u) +

∑
w∈{0,1}RV(u1, w) to the claim about V̇i(r

(i)) by one layer. For the second part, it reduces

the claim about TR(u) +
∑
w∈{0,1}RT(u1, w) to the claim about R(r(i)) +

∑
w∈{0,1}RR(r

(i)
1 , w). For the

third part, it reduces the claim about ZP(t) +
∑
w∈{0,1}RZP(t1, w) to the claim about the layer of Z and

P: Z(u) +
∑
w∈{0,1}RZ(v1, w) and P(v) +

∑
w∈{0,1}RP(v1, w).

• V asks P to send V̇i(r
(i)) and checks the reduction for the first part. V computes R(r(i)) itself and uses

zkPC.Verify to verify
∑
w∈{0,1}RR(r

(i)
1 , w) and checks the reduction for the second part. V computes Z(u)

itself and uses zkPC.Verify to verify
∑
w∈{0,1}RZ(u1, w) and checks the reduction for the third part. V

also checks the claim about P(v) +
∑
w∈{0,1}RP(v1, w) by using zkPC.Verify for the third part. If all

checks pass, output 1; otherwise, output 0.

Theorem 5. Protocol 6 is a zero-knowledge version of Protocol 3. For every verifier V∗, there exists a
simulator S such that given oracle access to V̇i(r

(i)) and V̇0,i(r
(0,i)), . . . , V̇i−1,i(r

(i−1,i)), V̇ ′i−1,i(r
(i−1,i)′), S is

able to simulate the partial view of V∗ in Protocol 6.

Proof sketch. The completeness and the soundness inherits from the zero knowledge GKR and zkPC. For
zero-knowledgeness, we combine the simulator S1 in zkPC and the simulator S2 in the zero knowledge GKR
to construct the simulator S. Therefore, V only learns V̇i(r

(i)) at the end of the protocol, which leaks no
information about Ṽi according to the zero knowledge GKR.

Efficiency. Compared to Protocol 3, we add at most extra O(d) private input of P in C ′i. When invoking the
zero knowledge GKR, the verifier time and the proof size retain the same complexity as in Protocol 3. The
prover time for C ′i becomes O(

∑i−1
k=0 Sk,i + d log d) using the zkPC scheme in [21], where zkPC.Commit and

zkPC.Open cost prover time of O(d log d). Therefore, the total prover time for C1, · · · , Cd becomes O(|C|+
d2 log d).Similar to the efficiency analysis of Theorem 2, the factor of d2 is bounded by O(|C|). Consequently,
the total prover time for C1, · · · , Cd is bounded by |C| log d. For circuits with d = O(polylog|C|), the prover
time remains O(|C|).
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4.4 Putting Everything Together

Combining the zero knowledge variants of step 3(a) and 3(b) in Protocol 4 with the zkPC scheme, we get a
zero knowledge argument protocol for general arithmetic circuits. We have the following theorem:

Theorem 6. For an input size n and a finite field F, let CF represent the set of general arithmetic circuits
of depth d on F, then there exists a zero knowledge argument for the relation

R = {(C, x;w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x;w) = 1},

as defined in Definition 3. Moreover, for every (C, x;w) ∈ R, the running time of P is O(|C| + d2 log d +
n log n). The running time of V is O(|x|+ d · log2 |C|+ d2 + T ′′), where T ′′ is the total time to compute all
functions of ˜add and ˜mult. The total proof size is O(d log2 |C|). In case d is polylog(|C|) and T ′′ is also
polylog(|C|), the protocol is a succinct argument.

Proof Sketch. The correctness and the soundness follow from those of the three building blocks, by
Theorem 4, 5 and Definition 4.

To prove zero knowledge, consider a simulator S that calls the simulator S1 of zero knowledge sumcheck
given in Theorem 4 for step 1, the simulator S2 of combining multiply claims to one claim with zero knowledge
given in Theorem 5 for step 2 and the simulator S3 of zkPC in Definition 4 for committing and opening of all
hiding polynomials as subroutines. Then S can simulate the partial view of every verifier V∗ for any general
arithmetic circuit C only given oracle access to x.

The complexity of our zero knowledge argument scheme follows from the efficiency of Protocol 6, the
efficency of Protocl 5 and the extra complexity of applying zkPC.Commit to the input layer demonstrated as
before.

5 Implementation and Evaluation

We fully implement our new interactive proof protocols for general arithmetic circuits and use them to
build a zero knowledge argument system for general arithmetic circuits. We name our new system Virgo++.
The implementation is in C++. There are around 1300 lines of code for the sumcheck protocol (Step 3(b)
of Protocol 4) and 1600 lines for the protocol combining multiple evaluations into one (Protocol 3). We
implement two variants of our interactive proofs as described in the optimization in Section 3.3. One is
expanding the randomness in the circuit as shown in Figure 1 and the other is letting the verifier expand the
randomness on her own. Our protocols work on any finite field, and we choose the extension field Fp2 for
the Mersenne prime p = 261 − 1. This is the same as in [21], and we choose it so that our interactive proof
protocols can be compatible with the polynomial commitments in [21] to build zero knowledge arguments.
The choice of the finite field does not affect our comparison to the original GKR protocol in the next Section.
Our protocols provide 100+ bits of security. We plan to make our implementation open-source.

Hardware. We ran all of the experiments on our laptop with an Intel Core i5-7200 CPU with 2.50GHz and
8GB of RAM. Our current implementation is not parallelized and we only utilize a single CPU core in the
experiments. We report the average running time of 10 executions.

5.1 Optimizations

We developed a concrete optimization during the implementation to reduce the size of the circuit in Figure 1.
Though asymptotically the prover time for both the sumcheck and the combination of multiple points are
linear, the majority of the running time in practice is on the latter. As we can see in Figure 1, the circuit
Ci contains all subsets of V0,i, . . . ,Vi−1,i and one more Vi−1,i coming from layer i − 1. The extra Vi−1,i
represents the set of left input wires of layer i − 1, which roughly equals to Vi as almost all gates in layer
i connect to layer i − 1. It contributes to almost half of the size of Ci. Instead, we replace the Ṽi−1,i(x) in

Equation 7 for layer i − 1 by Ṽi(x), which does not increase the size of the polynomial by much. We then
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Prover time (s) Verifier time (s) Proof size (KB)
29 211 213 29 211 213 29 211 213

d = 50
GKR 0.225 0.848 3.254 0.096 0.373 1.429 83 95 107

Our Scheme 1 0.116 0.389 1.244 0.040 0.130 0.432 276 396 534
Our Scheme 2 0.052 0.188 0.670 0.024 0.080 0.307 105 124 143

d = 75
GKR 0.460 1.780 6.864 0.180 0.707 2.751 129 147 166

Our Scheme 1 0.187 0.619 1.932 0.070 0.224 0.760 414 594 802
Our Scheme 2 0.081 0.288 1.044 0.042 0.145 0.560 171 200 229

Table 1: Comparison of our scheme 1, our scheme 2 and the original GKR on random circuits.

exclude the evaluation of this Ṽi from the circuit, and instead combine it with the evaluation of Ṽi from the
input of Ci using the same random linear combination approach in the original GKR protocol. With this
technique, we improve the overall prover time by 2×.

In particular, in our implementation, each gate in the original GKR protocol for layered circuits costs
around 20 field multiplications in the prover time. With this optimization, in our protocol, each gate in the
general circuit costs around 100 field multiplications. In the second variant without the expansion of the
random points in the circuit, the constant is further reduced to 47. It demonstrates that our new protocols
for general circuits not only preserves the linear prover time asymptotically, but also introduces a small
overhead in practice. Namely, as long as the layered circuit is 2.4–5× larger than the corresponding general
circuit, our new scheme will be faster on prover time.

5.2 Comparing to the GKR Protocol for Layered Circuits

In this section, we compare the performance of our new protocols with the original GKR protocol on general
arithmetic circuits. For a fair comparison, we re-implement the GKR protocol for layered arithmetic circuits
with the same field and the same libraries in C++. We generate random circuits with depth d = 50 and
d = 75. We vary the number of gates in each layer from 29 to 213. Our schemes can easily go beyond 213, but
the original GKR protocol on the corresponding layered circuits runs out of memory on our machine. We
randomly sample the type of each gate, input value and the wiring patterns. We execute our new protocols
directly on these general circuits. We refer the one with expansions in the circuit in Protocol 4 as scheme
1 and the one without the expansions discussed in Section 3.3 as scheme 2. We then transform the general
circuits to layered circuits by relaying necessary values layer by layer, and execute the original GKR protocol
on the layered circuits. We report the prover time, verifier time and proof size of these three schemes in
Table 1.

First, when we transform the general circuits to layered circuits, the size of the circuit increases by 13×
for d = 50 and by 19× for d = 75. This roughly agrees with the blowup of O(d|C|) and justifies the high
overhead of transforming general circuits to layered circuits. As shown in Table 1, when the depth is 50, the
prover time of our scheme 1 is faster by 2-3× than the original GKR protocol, while our scheme 2 is faster
by 4-5×. When the depth is 75, the speedup increases to 3-4× for scheme 1 and 6-8× for scheme 2. The
improvements match our analysis above on the blowup of the circuit size, and the concrete efficiency of our
protocols and the GKR protocol. Finally, the prover time in all schemes grow linearly with the size of the
circuit, and is very efficiency in practice.

Our protocols introduce an overhead on the proof size compared to the original GKR protocol. In
particular, the proof size of our first scheme is 3-5× larger than the GKR protocol, matching the log |C|
overhead in the complexity of the proof size. However, with our optimization, the proof size of our second
scheme is very close to the GKR protocol. It is only 1.3-1.4× larger, proving that this variant reduces the
proof size significantly. In all cases, the proof size is succinct. The largest proof size is still less than 1MB
and the proof size is always much smaller than the size of the circuit.
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Figure 3: Performance of our zero knowledge argument schemes.

As the circuits are generated randomly, the verifier time in all schemes is linear to the circuit size.
Therefore, the comparisons on the verifier time of the three protocols are similar to the comparisons of the
prover time. As shown in Table 1, our scheme 1 is faster by 2-3× than the GKR protocol on circuits with
d = 50, and 3-4× faster for d = 75. Surprisingly, the verifier time of our scheme 2 is even faster than scheme
1. This is because both schemes have linear verifier time for random circuits. The time is actually dominated
by the verifier time of the expansion circuit in Figure 1. By removing the expansion circuit, the verifier time
in scheme 2 is faster than scheme 1, even though the verifier has to expand all the random points on her
own. Therefore, we observe in the experiments that our scheme 2 improves the performance of scheme 1 on
all the aspects on random circuits. Compared to the original GKR protocol, it is much faster on the prover
time and the verifier time, and incurs only a small overhead on the proof size.

5.3 Experiments on Our Zero Knowledge Argument

In this section, we present the performance of our new zero knowledge argument for general arithmetic
circuits, as described in Section 4. We use the zero knowledge polynomial commitment scheme in [21] to
lift our new interactive proofs to zero knowledge arguments. As demonstrated in [20], the zero knowledge
versions of the sumcheck protocol and the GKR protocol only incur a small overhead on the prover time,
proof size and the verifier time. So we estimate the performance of our zero knowledge arguments by running
the plain version of our interactive proof protocols, combined with the zkPC on the witness.

We do experiments on the benchmark of computing the hash functions of SHA-256. We modify the
circuit generation file of [1, 20] to obtain the general arithmetic circuit for SHA-256. The circuit contains
other types of gates such as subtraction, bit decomposition and reconstruction. We modify our protocols
to support all these types of gates. Each SHA-256 circuit has 99,949 gates in total (around 217), with the
input size of 7,226 (around 213). We vary the number of SHA-256 in the circuit from 1 to 64 and report the
performance of our zero knowledge arguments built on scheme 1 and scheme 2 in Figure 3.

As shown in Figure 3, our schemes achieve good efficiency in practice. For the largest instance of 64
hashes, scheme 1 takes 15 seconds to generate the proof, the verifier time is 0.062 seconds and the proof size
is 353KB. Scheme 2 takes 12 seconds to generate the proof, the verifier time is 0.5 seconds and the proof
size is 191KB.

The prover time in both schemes increases roughly linearly as the number of hash functions increases,
which validates our linear algorithm for the prover on the total size of the circuit. It does increase with the
size of the input in O(n log n) time due to the zkPC scheme. Scheme 2 is better than scheme 1 in prover time
and proof size because of the interactive proof part, as we already showed in the previous section. However,
this time the verifier time of scheme 2 increases linearly as the number of hash functions, while the verifier
time of scheme 1 stays almost the same. This is due to the sublinear verifier time of scheme 2 for structured
(data parallel) circuits inherited from the original GKR protocol. All the multilinear extensions ˜add and

˜mult can be evaluated based on the wiring pattern of a single copy of SHA-256. For the proof size, both
schemes increase sublinearly as our zero knowledge arguments are succinct as stated in Theorem 6. Scheme
2 has shorter proof than scheme 1 because of the optimization in Section 3.3. It gives a trade-off between
the proof size and the verifier time.
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Due to the space limit, we omit the experimental comparisons to other existing zero knowledge argument
systems. We refer the readers to [18, 20, 21] for their performance on the same benchmark of SHA-256.

6 Conclusion

In this paper, we generalize the doubly efficient interactive proofs for layered arithmetic circuits to arbitrary
arithmetic circuits. The new protocols preserves the optimal prover complexity that is linear to the size
of the circuit. Experiments demonstrate that the new protocols can be implemented efficiently in practice,
and their prover time is an order of magnitude faster than the original GKR protocol on the corresponding
layered circuits.
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