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Abstract

Private information retrieval (PIR) lets a client retrieve an entry from a database without
the server learning which entry was retrieved. Here we study a weaker variant that we call
random-index PIR (RPIR), where the retrieved index is an output rather than an input of the
protocol, and is chosen at random. RPIR is clearly weaker than PIR, but it suffices for some
interesting applications and may be realized more efficiently than full-blown PIR.

We report here on two lines of work, both tied to RPIR but otherwise largely unrelated. The
first line of work studies RPIR as a primitive on its own. Perhaps surprisingly, we show that
RPIR is in fact equivalent to PIR when there are no restrictions on the number of communication
rounds. On the other hand, RPIR can be implemented in a “noninteractive” setting (with pre-
processing), which is clearly impossible for PIR. For two-server RPIR we even show a truly
noninteractive solution, offering information-theoretic security without any pre-processing.

The other line of work, which was the original motivation for our work, uses RPIR to
improve on the recent work of Benhamouda et al. (TCC’20) for maintaining secret values on
public blockchains. Their solution depends on a method for selecting many random public keys
from a PKI while hiding most of the selected keys from an adversary. However, the method
they proposed is vulnerable to a double-dipping attack, limiting its resilience. Here we observe
that a RPIR protocol, where the client is implemented via secure MPC, can eliminate that
vulnerability. We thus get a secrets-on-blockchain protocol (and more generally large-scale
MPC), resilient to any fraction f < 1/2 of corrupted parties, resolving the main open problem
left from the work of Benhamouda et al.

As the client in this solution is implemented via secure MPC, it really brings home the need
to make it as efficient as possible. We thus strive to explore whatever efficiency gains we can get
by using RPIR rather than PIR. We achieve more gains by using batch RPIR where multiple
indexes are retrieved at once. Lastly, we observe that this application can make do with a
weaker security guarantee than full RPIR, and show that this weaker variant can be realized
even more efficiently. We discuss one protocol in particular, that may be attractive for practical
implementations.

Keywords. Private information retrieval, Batch PIR, Random PIR, Large-scale MPC, Secrets
on blockchain, Random ORAM.
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1 Introduction

A Private Information Retrieval (PIR) scheme lets a client fetch an entry from a database held by
a server, without the server learning which entry was retrieved. The database is typically modelled
as an n-bit string DB ∈ {0, 1}n, known in full to the server. The client has an input index i ∈ [n],
and its goal it to retrieve the bit DB[i]. A PIR scheme is secure if the server cannot distinguish
between any two possible input indexes i, i′ for the client, and it is nontrivial if the server sends
to the client less than n bits. PIR was introduced by Chor et al. [5] who described a solution
with multiple non-colluding servers; a single-server solution was first described by Kushilevitz and
Ostrovsky [13].

1.1 Random-Index PIR (RPIR)

In this work we consider a similar setting, but with a twist. Rather than a specific index, in our
setting the client wishes to retrieve a random index from the database, without the server learning
which index was retrieved. Namely, instead of the index i being an input to the protocol, we consider
it an output, and require that it be random. We call such a scheme random-index PIR (RPIR).
While clearly a weaker variant of PIR, we show below that RPIR suffices for some interesting
applications. Of course, RPIR can be easily implemented by having the client choose i at random
and then run a PIR protocol. But being a weaker variant, we could hope that RPIR is easier and
more efficient to implement than full blown PIR. Such improved efficiency could be critical for some
applications, including our motivating application of large-scale secure MPC (which is described
below).

One measure of efficiency is the number of communication rounds. We show that, unlike PIR,
RPIR can be implemented in a “noninteractive” fashion. Namely, after a pre-processing stage in
which the client sends to the server some string whose length depends only on the security parameter
κ, we only allow server-to-client communication and we want to perform arbitrarily many RPIR
executions. It is clear that no such nontrivial PIR protocols exist, since there is no way for such
protocols to incorporate the client’s input. But we show that existing interactive PIR protocols
can be adapted to yield noninteractive RPIR protocols. Moreover, for the two-server setting we
show that a nontrivial noninteractive protocol is possible even without any pre-processing. Other
examples of settings where RPIR is more efficient than PIR are discussed in Section 1.3 below.

On the other hand, we show that such efficiency gains are necessarily limited, since every RPIR
protocol can be converted into a PIR protocol with only slightly more communication and rounds.
Specifically, given a r-round RPIR protocol with server communication m < n, we show how to
construct:

• A ((r + 1) logn)-round PIR with server communication 1 +m logn; or

• A (r + 2)-round PIR with server communication O(
√
mn).

We note that the latter transformation relies on a long client-to-server message. We also describe a
simple variant of it with a short client-to-server message, where the server communication is m+ n

2 .
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1.2 Applications

1.2.1 Computing on Public Blockchains

Our initial motivation for studying RPIR came from a recent work of Benhamouda et al. [2]
(BGG+) about maintaining secret values on public blockchains. In that work they construct a
scalable evolving-committee proactive secret-sharing (ECPSS) scheme, that allows dynamically-
changing small committees to maintain a secret over a public blockchain. The main challenge in
that work was to choose a small committee from within a large population in such a way that (a)
everyone can send messages to committee members, and yet (b) a mobile adversary does not learn
who they are and therefore cannot target them for corruption. Once chosen, such committees can
execute the proactive secret sharing protocol (or more generally any secure-MPC protocol).

A drawback of the BGG+ scheme is that, in order to guarantee an honest majority within the
committees, it can only tolerate up to about 1/4 corruptions overall. The reason is that committee-
selection is done by individual parties, who “nominate” members to the new committee by drawing
their public keys from a list and then re-randomizing them. This nomination style enables a double-
dipping adversarial strategy: corrupted parties can always nominate other corrupted parties, while
honest parties nominate randomly selected parties (so they too sometimes nominate corrupted
parties by chance).

To do better, we can try to delegate the nomination task to previous committees, who would
emulate an honest nominator via secure MPC. Roughly, the function computed by the committee-
selection procedure of [2] is

Nominate(n-public keys, randomness) = k re-randomized keys.

We can let previous committees compute that randomized function, without the adversary learning
anything about who the honest nominees are, hence depriving it of the double-dipping strategy
above. The problem with this solution, however, is that it scales poorly with the total number of
parties: The circuit of the Nominate function above has input of size linear in n, hence a naive
secure-MPC protocol for it would have complexity more than n.

This is where RPIR comes in. The only role that the input plays in the Nominate function is of
a database from which we choose k � n random entries. We therefore employ a variant of MPC-
in-the-head, letting previous committees play the role of the RPIR client while each committee
member individually plays the role of the RPIR server. (The database is the list of n public keys,
which is known to everyone.)

The result of the RPIR protocol is the previous committee holding a set of k random keys,
but since we have honest-majority in the committee then the adversary does not know whose keys
were chosen. The committee then runs a secure-MPC protocol to re-randomize the chosen keys
and output the result. This time, the circuit size depends only on k, not on the total number n of
keys. Putting all these ideas together we get:
Theorem (informal): In the model of [2], there exists a scalable ECPSS scheme tolerating any
fraction f < 1/2 of corrupted parties.

Of course, once we have the committees we can again let them compute on secrets rather than
just pass them along, hence we have:
Theorem (informal): In the model of [2], there exists a scalable secure MPC scheme tolerating any
fraction f < 1/2 of corrupted parties.
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1.2.2 PIR with Preprocessing

In many applications it is interesting to consider offline preprocessing before the inputs are known,
which can help improve the efficiency of the on-line computation once all the inputs are available.
This approach is very popular in contemporary secure-MPC work, and was also used for PIR (e.g.,
[1, 7]).

As it turns out, our PIR-to-RPIR reductions from Section 2.4 can be used for that purpose.
These reductions have the following format: They first run the underlying RPIR protocol on the
original database DB, letting the client learn a few random bits from it. The client then sends a
single message to the server, from which the server computes a new database DB′ of size n′ < n.
The parties then run a PIR protocol on the new database, and the client uses what it learns to
compute the bit that it needs from the original DB.

This format makes it possible to run the RPIR protocol in a pre-processing phase, before the
client knowns what index it wants, and only execute the last part during the online phase. Using
a standard PIR to implement the RPIR in the pre-processing step, we obtain a black-box method
of shifting work from the online to the offline phase of a PIR protocol. If CC(n, κ) is the server
communication complexity of an underlying PIR protocol (as a function of the database size n and
the security parameter κ), the online server communication complexity of the resulting protocol
with preprocessing will be only CC(n′, κ). Specifically:

• Using the SimplePIR protocol from Section 2.4, we obtain a PIR-with-Preprocessing proto-
col with offline communication CC(n, κ), online communication CC(n/2, κ), and the client
sending one more message of logn bits.

• Using the PartitionPIR protocol from Section 2.4, we get for any t < n a PIR-with-Preprocessing
protocol with offline communication t · CC(n, κ), online communication CC(O(n/t), κ), and
the client sending one more long message (of more than n bits).

1.3 Batch RPIR

In our first motivating application above, the client needs to fetch not one but k random entries
from the database, so we would like to amortize the work and implement it in complexity less
than that of k independent RPIR protocol runs. Building such batch PIR protocols from PIR was
studied by Ishai, Kushilevitz, Ostrovsky, and Sahai (IKOS) [12]. However, their solutions require
the underlying protocol to be a full-blown PIR protocol (rather than RPIR). It is not clear how to
build batch-RPIR protocols from an underlying RPIR protocol any better than either running k
independent instances of RPIR, or converting to full-blown PIR and using the IKOS solutions.

But it turns out that our motivating application can make do with a weaker security notion
than what RPIR provides. What we care about in this application is not quite that the indexes
look random to the server, but rather that a server with limited “corruption budget” in the entire
population cannot corrupt too many of the selected indexes (whp). Roughly, we can replace the
pseudorandomness of the indexes from the server’s perspective by unpredictability. Defining this
property takes some care, in Section 5.1 we provide a definition in the real/ideal style.

Having lowered the security bar, we take another look at the constructions from [12] and note
that we can use better parameters than are possible for batch-PIR (or batch-RPIR with strong
security). Moreover, we describe in Section 5.2 an even simpler construction that cannot possibly
work for batch PIR or strong-RPIR, but we prove that it meets our weaker security notion of
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batch RPIR. The simplicity and efficiency of this construction may be attractive for practical
implementations.

1.4 Multi-Server RPIR

It is known that nontrivial single-server PIR cannot offer information-theoretic privacy; nontrivial
single-server RPIR has the same limitation. It is interesting to ask whether by involving mul-
tiple non-colluding servers (each with the same database as input) we can build RPIR that is
(a) nontrivial, (b) information-theoretic and (c) noninteractive (meaning that only a single round
of communication — from each server to the client — is required). We answer this question in
the affirmative; we show a two-server nontrivial, information-theoretic noninteractive RPIR with
communication complexity equal to half the size of the database.

While it seems that multi-server RPIR cannot be used directly in the application of secure
computation on public blockchains, it can be used for PIR pre-processing (either for a multi-server
PIR execution with the same servers that participated in the pre-processing, or perhaps even for a
single-server PIR execution with only one of those servers).

1.5 Organization

In Section 2 we formally define RPIR and batch-RPIR and study the relations to PIR. In Section 3
we describe some constructions of RPIR in the noninteractive setting, and efficient constructions
of batch-RPIR with weak security. In Section 4 we describe the application of batch RPIR with
weak security to the architecture of Benhamouda et al. [2] for large-scale MPC. Motivated by this
application, we study in Section 5 more efficient constructions of batch-RPIR.

In Appendix A we describe the notion of a random-index oblivious-RAM (RORAM), which
relates to ORAM in the same way that RPIR relates to PIR. In particular we show that RORAM
can replace RPIR in the same context of large-scale MPC, offering a somewhat different performance
profile. For completeness, in Appendix B we discuss a third approach for the large-scale MPC
context that uses mix-nets.

2 Random-Index Private Information Retrieval

2.1 Background: Private Information Retrieval

A single-server Private Information Retrieval (PIR) scheme is a two-party protocol Π between a
server holding a n-bit string DB ∈ {0, 1}n and a client holding an index i ∈ [n]. In addition, both
parties know the security parameter κ.

We assume for simplicity that the server communication complexity, i.e. the number of bits sent
by the server, depends only on n and κ, but not on the specific values of DB and i (or the protocol
randomness), and denote it by CCΠ(n, κ). The two properties of interest for a PIR protocol Π are
its client-privacy (i.e. the index i is hidden from the server) and its communication complexity.

Definition 1 (Single-server PIR [13]). A two-party protocol Π is a (semi-honest) single-server PIR
if it satisfies:

Correctness. The client’s output is DB[i], except with probability negligible in κ.
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Client privacy. For every n, database DB ∈ {0, 1}n, and indexes i, i′ ∈ [n], the ensembles
serverView(Π(κ, n; i,DB))κ and serverView(Π(κ, n; i′, DB))κ are indistinguishable.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n.

A Symmetric PIR (SPIR) protocol [10] satisfies all the above, and in addition also the following
database privacy condition.

Database privacy. For every n, index i, and databases DB,DB′ ∈ {0, 1}n s.t. DB[i] = DB′[i],
the ensembles clientView(Π(κ, n; i,DB))κ, clientView(Π(κ, n; i,DB′))κ are indistinguishable.

Batch PIR. In this work we are also interested in amortized protocols in which the client queries
more than a single entry of the database at a time, but rather k indexes at a time. The definition
of batch PIR is identical to the above, except that the single index i ∈ [n] is replaced with a vector
~i ∈ [n]k. Everything else remains the same.

Multi-Server PIR. We additionally explore protocols involving multiple non-colluding servers.
The definition of multi-server PIR is similar to the above, except that client privacy is defined with
respect to each of the servers (individually).

Ideal functionality. A different approach for defining PIR is via an ideal functionality that
gives no output to the server and outputs DB[i] to an honest client.1 We will use that style of
definition for random-PIR below, as it seems easier to work with than the one above, especially for
the weaker-security variant from Section 5.1.

2.2 Defining RPIR

A random-index PIR (RPIR) protocol is different from PIR in that the index i is an output of the
client, rather than an input. Namely, RPIR is a two-party protocol between a server holding a
n-entry database DB ∈ {0, 1}n and a client with no input. At the conclusion of the protocol, the
client is supposed to get a pair (i,DB[i]), with i random in [n].

Just like standard PIR, an RPIR protocol is parametrized by the security parameter κ and the
database size n, both known to the two parties. As above, we assume that the server communication
complexity depends only on n and κ but not on the specific value of DB or the randomness, and
we denote it by CCΠ(n, κ). It will be convenient to define client-privacy by means of an “ideal
RPIR functionality.”

2.2.1 The RPIR functionality.

The functionality FRPIR accepts from the server an input DB ∈ {0, 1}∗ and then waits for the client
to ask for an output. If the client is honest then FRPIR sets n = |DB|, chooses i← [n] uniformly at
random, and returns (i,DB[i]) to the client. If the client is corrupted then the functionality just
gives it the entire database DB. (Alternatively, a random-SPIR functionality gives only DB[i] to
a corrupted client.)

1Note that standard PIR does not provide any privacy to the server, hence the functionality lets a corrupted client
get the entire database. Alternatively a SPIR functionality gives only DB[i] to a corrupted client.
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Definition 2 (Single-server RPIR). A two-party protocol Π is a single-server RPIR if it realizes the
functionality FRPIR above. It is nontrivial if for any κ and large enough n, it holds that CCΠ(n, κ) <
n. (Similarly, the protocol is single-server RSPIR if it realizes the random-SPIR functionality.)

We note that one can contemplate a security notion in between RPIR and RSPIR. For example
the functionality can let a corrupted client choose the index, or maybe even apply an arbitrary
predicate to the database.

2.3 Defining Multi-Server RPIR

We also consider a multi-server version of RPIR. An `-server RPIR protocol involves ` servers
Server1, . . . ,Server` each holding the same database DB ∈ {0, 1}n, and a client who wants to
retrieve a random index i of the database. Multi-server RPIR is interesting since, while nontrivial
single-server RPIR cannot provide information-theoretic privacy, nontrivial multi-server RPIR can.
We therefore require perfect correctness and client-privacy for multi-server RPIR. Since we do not
extend multi-server RPIR to the batch setting, we use the simple definitions of multi-server RPIR
that are analogous to those for PIR (Section 2.1).

Definition 3 (Multi-server RPIR). An (`+ 1)-party protocol Π is a (semi-honest) `-server RPIR
if it satisfies:

Correctness. For every n, every database DB ∈ {0, 1}n, and every index i ∈ [n], the client’s
output in Π(n; ⊥, DB, . . . ,DB) is (i,DB[i]) with probability 1

n .

Client privacy. For every n, every database DB ∈ {0, 1}n, and every server index j ∈ [`], the
view serverViewj(Π(n; ⊥, DB, . . . ,DB))κ is independent of the index i that the client outputs.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n (where the CCΠ(n, κ)
is communication complexity of all the servers).

2.4 RPIR is equivalent to PIR

In terms of existence, it is obvious that PIR implies RPIR: the client chooses a random index i ∈ [n]
and the parties then run a PIR protocol in which the client learns DB[i]. The opposite direction
is less clear: how can the client get a specific index in the database using the RPIR tool that only
provides random indexes? Below we show, however, that RPIR does imply PIR with very small
overhead. We begin with a simple PIR protocol that works when n is a power of two, makes a single
RPIR call, and has the server send n/2 additional bits. This protocol is described in Figure 1.

Lemma 1. For n a power of two, the SimplePIR protocol from Figure 1 is a nontrivial PIR protocol
in the hybrid-RPIR model in which the client sends logn bits and the server sends n/2 bits.

Proof. Correctness and complexity are obvious. For client privacy, note that in the hybrid-RPIR
model the client gets a uniformly random index j ∈ [n], and since n is a power of two then j is also a
uniformly random log(n)-bit string. Hence from the server’s perspective, the message δ = i⊕j from
the client is also a uniformly random log(n)-bit string, and in particular it carries no information
about the client’s input i.
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SimplePIR
[
Client(i ∈ [n]), Server(DB ∈ {0, 1}n)

]
(n is a power of two)

1. Server and client run RPIR
[
Client, Server(DB)

]
, client gets (j,DB[j]);

2. Client sends to server δ = i⊕ j (i, j are viewed as log(n)-bit strings)

3. Server partitions the index-set [n] into n/2 pairs p = {k, k ⊕ δ}, computes for each pair
σp = DB[k]⊕DB[k ⊕ δ], and sends these n/2 bits to the client;

4. Client computes DB[i] = DB[j]⊕ σ{i,j}.

Figure 1: A simple PIR protocol with one RPIR call and n/2 bits of communication

Next, we note that Steps 3-4 in the SimplePIR protocol actually implement the trivial PIR
protocol for a database of size n/2: The server sends all the n/2 bits and the client looks up the
one that it needs. We can do better by replacing these steps with a recursive call for the same PIR
protocol on this smaller database, as described in Figure 2.

RecursivePIR
[
Client(i ∈ [n]), Server(DB ∈ {0, 1}n)

]
(n is a power of two)

0. If n = 1 the server sends DB to the client. Else continue to Step 1.

1. The server and client run RPIR
[
Client, Server(DB)

]
, client gets (j,DB[j])

2. Client sends to server δ = i⊕ j (i, j are viewed as log(n)-bit strings)

3. Server partitions the index-set [n] into n/2 pairs p = {k, k ⊕ δ} and computes for each
pair the bit σp = DB[k]⊕DB[k ⊕ δ].

4. Let DB′ = (σp)p be the resulting database of size n/2, and let i′ ∈ [n/2] be the index
corresponding to the pair {i, j} in this database.
The parties run RecursivePIR

[
Client(i′), Server(DB′)

]
, client gets σi′ .

5. Client outputs DB[i] = DB[j]⊕ σi′ .

Figure 2: A recursive PIR protocol with logn calls to RPIR and one bit of communication

Theorem 1. An r-round RPIR with server-communication m = m(n, κ) and client-communication
k = k(n, κ) can be transformed into a PIR protocol with (r+1)dlogne rounds, server communication
1+∑dlogne

i=1 m(2i, κ) ≤ 1+m(n, κ)·dlogne, and client communication
∑dlogne
i=1 i+k(2i, κ) ≤

(dlog(n)e
2

)
+

k(n, κ) · dlogne.
Proof sketch. On a size-n database, the server pads it to size the nearest power of two and then the
parties run the RecursivePIR protocol from Figure 2. The complexity is obvious, and correctness
and privacy are argued by induction, following the same proof as for Lemma 1.

2.4.1 PIR from RPIR with Fewer Rounds

While the protocol in Figure 2 has a low communication complexity, it has a large number of
rounds. Below we describe instead a protocol that has the same number of rounds as the SimplePIR
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protocol from Figure 1, but lower server communication complexity. The basic idea is for the client
to learn more random indexes DB[j], then partition the bits in DB into larger sets instead of the
pairs {i, i ⊕ δ} from SimplePIR. Specifically, we have a parameter t that tells us how large should
these groups be.

PartitionPIR
[
Client(i ∈ [n]), Server(DB ∈ {0, 1}n)

]
(n is divisible by t)

1. Server and client run in parallel t′ executions RPIR
[
Client, Server(DB)

]
, where t′

is large enough to ensure that the client gets whp at least t − 1 distinct entries
(j1, DB[j1]), . . . , (jt−1, DB[jt−1]), all different from i.

2. Client chooses a random partition P of [n] into sets of size t, with one of them being
I = {i, j1, j2, . . . , jt−1}, and sends P to server.

3. For each t-subset J ∈ P, the server computes the bit σJ = ⊕j∈JDB[j], and sends these
n/t bits to the client.

4. Client computes DB[i] = DB[j1]⊕ · · · ⊕DB[jt−1]⊕ σI .

Figure 3: A partition-based PIR protocol

Exactly the same proof as Lemma 1 shows that this is a secure PIR protocol in the RPIR-
hybrid model, with t′ executions of the RPIR protocol all on the same database DB, and additional
server communication of n/t bits. If we have a r-round RPIR protocol with server communication
m = m(n, κ) < n/2, we can set t ≈

√
n/m and t′ = t(1+o(1)), and then we would get a (r+2)-round

PIR protocol with server communication t′m+ n/t = (1 + o(1))
√
nm+

√
mn ≈ 2

√
nm.

Theorem 2. Given a r-round RPIR protocol with server-communication m, there is a PIR protocol
with r + 2 rounds and server communication O(

√
mn).

We note that the client communication in the protocol is large, since describing a random
partition of [n] into t-subsets takes more than n bits. Finding a protocol with few rounds and small
client communication is an open problem.

3 RPIR Protocols

3.1 Noninteractive RPIR

While equivalent in terms of existence, RPIR can still be cheaper to implement than PIR by some
measures. In particular, the fact that the client has no input in RPIR means that it can be (almost)
noninteractive, something that is obviously impossible for PIR. Many interactive PIR protocols can
be converted to noninteractive RPIR protocols, below we sketch two such protocols. One based
on FHE, and the other on trapdoor permutations (similar to Kushilevitz-Ostrovsky [14]). In these
protocols the client sends a short “pre-processing message” to the server, and then the server can
succinctly send to the client arbitrarily many random entries from the database, without learning
what they are and without any more messages from the client. (These protocols can be upgraded
to handle a malicious server by adding succinct proofs of correct behavior.)
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3.1.1 Noninteractive RPIR from FHE.

It is fairly easy to implement noninteractive RPIR from FHE. For example, the client sends to
the server “once and for all” an encryption of a seed s for a PRF fs(·) with range [n]. Then the
server can run many instances of a protocol, where it chooses a random x, and homomorphically
computes i = fs(x) and y = DB[i]. The server sends the ciphertexts encrypting (i, y) to the client,
who can decrypt them.

3.1.2 Noninteractive RPIR from One-way Trapdoor Permutations.

This construction is based on the Kushilevitz-Ostrovsky PIR protocol from [14]. In this protocol
the client sends the description of a permutation to the server, and then the server can send as
many random indexes to the client as we want. As in the original Kushilevitz-Ostrovsky protocol,
each random index costs just a little less than n bits of communication for an n-bit database.

Background: UOWHFs from one-way permutations. Recall that Naor and Yung described
in [15] a construction for 2-to-1 universal one-way hash functions (UOWHF) based on one-way per-
mutations. Namely, given a one-way permutation π over {0, 1}k (and some other public randomness
that we ignore here) they define a 2-to-1 function hπ : {0, 1}k → {0, 1}k−1, such that given π and a
random x ∈ {0, 1}k, it is hard to find the second pre-image x′ 6= x such that hπ(x′) = hπ(x). How-
ever given a trapdoor π−1, it is easy to compute the two pre-images of any y ∈ {0, 1}k−1. Finally,
applying the Goldreich-Levin hardcore predicate [11], we also know that given the permutation π
and random x, r ∈ {0, 1}k, the inner product 〈r, x′〉 mod 2 is pseudorandom, where x′ is the second
pre-image of hπ(x).

A noninteractive variant of the Kushilevitz-Ostrovsky construction. In a pre-processing
phase, the client chooses a one-way permutation π over {0, 1}k together with its trapdoor π−1, and
sends π to the server. Let hπ(x) be a Naor-Yung UOWHF based on π, that has input length k and
output length k − 1.

The server partitions the database into pairs of k-bit blocks (x0
i , x

1
i ), i = 1, 2, . . .. For simplicity,

we assume below that x0
i 6= x1

i for all i (we mention at the end how to change the protocol when
this is not the case). The server also chooses a random r ∈ {0, 1}k that defines a Goldreich-Levin
hard-core predicate [11] ρr(x) = 〈x, r〉 mod 2. The server sends to the client the k-bit string r, and
also for each pair (x0

i , x
1
i ) it sends a tuple(

hπ(x0
i ), hπ(x1

i ), ρr(x0
i )⊕ ρr(x1

i )).

Note that each tuple is only (2k − 1)-bits long, whereas the pair itself has 2k bits, so this is a
nontrivial protocol (as long as there are more than k pairs).

For each received tuple (y0
i , y

1
i , σi), the client uses its trapdoor to invert the hash function,

computing the two possible pre-images u0
i , v

0
i ∈ h−1

π (y0
i ) and u1

i , v
1
i ∈ h−1

π (y1
i ). By construction,

x0
i = u0

i or x0
i = v0

i and similarly x1
i = u1

i or x1
i = v1

i . Next, the client finds an index i such that,

(a) either ρr(u0
i ) = ρr(v0

i ) and ρr(u1
i ) 6= ρr(v1

i ), or

(b) ρr(u0
i ) 6= ρr(v0

i ) and ρr(u1
i ) = ρr(v1

i ).
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As r was chosen at random and x0
i 6= x1

i for all i, there is at least one such index whp. If there are
more than one then the client chooses one of them at random. Moreover it can be shown that the
index used by the client is uniform in [n].

In case (a) the client knows that ρr(x0
i ) = ρr(u0

i ) = ρr(v0
i ), and so it can use σ = ρr(x0

i )⊕ρr(x1
i )

to determine the value of ρr(x1
i ), and therefore decide whether x1

i = u1
i or x1

i = v1
i . Similarly in

case (b) the client knows that ρr(x1
i ) = ρr(u1

i ) = ρr(v1
i ), so it can use σ to decide if x0

i = u0
i or

x0
i = v0

i . In either case, the client learns a single k-bit block of the database.
The security of this protocol follows from the OWUHF property and the Goldreich-Levin hard-

core predicate, in exactly the same way as in [14].

Theorem 3. If trapdoor one-way permutations exist, then there exists a nontrivial noninteractive
random-PIR protocol.

Remark: To deal with generic databases where we could have x0
i = x1

i for some i, the server can
choose another k-bit string w ∈ {0, 1}n which is also sent to the client, and use x′1i = x1

i ⊕w instead
of x1

i for all i. This ensures that x0
i 6= x′1i except with exponentially small probability, and the

client can mask-out w at the end of the protocol if needed.

3.2 Multi-Server RPIR Protocols

It is well known that nontrivial single-server PIR cannot offer information-theoretic security, and
RPIR is no different. To get nontrivial information-theoretic security we need to look at multi-server
solutions, where two or more non-colluding servers are used.

In Figure 4 below we describe a nontrivial two-server solution that offers information-theoretic
security and in addition is completely noninteractive. Differently than the protocols from Sec-
tion 3.1, this protocol does not even have a pre-processing phase. All it has are two messages, one
from each server, from which the client can deduce DB[i] for a random index i, with i independent
of the view of each server (separately). In this protocol, one server sends a single database record,
while the other sends n/2 values each of which correspond to the XOR of two database records.
The client is able to use the record sent by the first server to recover another record from one of the
values sent by the second server. (Reducing the communication complexity in this noninteractive
multi-server setting below n/2 for a a size-n database remains an interesting open problem.)

Lemma 2. For even n, the SimpleMSPIR protocol from Figure 4 is a noninteractive, nontrivial
two-server RPIR protocol with information theoretic security in which the servers send n/2+1 bits.

Proof. Correctness and complexity are obvious. For client privacy, we separately consider privacy
against Server1 and Server2. Server1, who chooses j, learns nothing about i since the random and
uniform δ is unknown to Server1, and each choice of δ leads to a different choice of i. Similarly,
Server2, who chooses δ, also learns nothing about i since the random and uniform index j is
unknown to Server2, and each choice of j leads to a different choice of i.

4 Applications to Large-Scale DoS-Resistant Computation

As described in the introduction, a strong motivation for RPIR is setting up communication chan-
nels to random parties who should remain anonymous. Below we call these target-anonymous
communication channels. Imagine a very large number of parties (perhaps millions), that want to
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SimpleMSPIR
[
Client, Server1(DB),Server2(DB) where DB ∈ {0, 1}n)

]
1. Server1 chooses a random index j ∈ [n] and sends DB[j] to Client.

2. Server2 chooses a random mask δ ∈ [n] (viewed as a log(n)-bit string).

(a) If δ = 0, Server2 sets DB′ = ⊥.
(b) Otherwise, let p1, . . . , pn/2 be the list of pairs of indices pk = (jk,1, jk,2) such that

jk,1 ⊕ jk,2 = δ (ordered e.g. by increasing smallest value in the pair). These pairs
are publicly computable given δ. Server2 obtains the database DB′ as DB′[k] =
DB[jk,1]⊕DB[jk,2]. (DB′ contains n/2 records.)

3. Server2 sends (δ,DB′) to Client.

4. If δ = 0, Client returns DB[j].

5. Otherwise, Client finds the pair pk such that j ∈ pk. Let i be the other index in pk.
Client returns (i,DB′[k]⊕DB[j]).

Figure 4: A simple multi-server RPIR protocol with n/2 bits of communication

securely perform some computation in the presence of a powerful denial of service (DoS) adversary.
While distributed computation requires sending and receiving messages, in this setting the parties
run the risk of being knocked offline by a targeted DoS attack as soon as the adversary learns that
they play an important role in the computation.

If the adversary is limited to attacking at most some fraction f of the parties, then one solution
is to run a secure MPC protocol among all the parties. If the MPC protocol is resilient to f
fraction of misbehaving participants, the DoS adversary will not be able to disable sufficiently many
participants to thwart the computation. But this resilience comes at a steep price, as MPC protocols
typically requires communication between all pairs of parties, which is completely infeasible at the
scales that we consider.

Another approach entails assigning special roles to a small number of parties, and relying on
them to carry out the computation. This could be much more efficient, but security is a challenge:
as soon as the adversary discovers what parties are playing the special roles, it can target those
parties and knock them offline. Hence, realizing these potential efficiency gains requires that the
parties playing special roles remain anonymous up until they speak, and moreover they can only
speak once before their special role is concluded, else the adversary can identify and target them.
The parties playing special roles can be thought of in terms of a sequence of committees, where
parties in committee i speak simultaneously in the i’th round.

Secure-MPC protocols where parties only need to speak once were described in several recent
works [2, 3, 6, 9]. But using these protocols in the presence of that powerful DoS adversary
requires solving a delicate problem: How can you send messages to these parties, in order to
provide them with the state that they need to carry out their task? This is where we want to use
target-anonymous channels. We need to continuously establish communication channels to random
parties, while preventing the adversary from learning who are the recipients, so that it cannot
target them for attacks.

Benhamouda et al. (BGG+) proposed in [2] one approach using a “nomination” process. First, a
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nominating committee is established using standard tools (such as VRFs, or by solving moderately
hard puzzles). Then, every (honest) nominator p chooses another random party q, looks up its
public key, and broadcasts a re-randomized version of that key. This lets everyone send messages
to q, without the adversary knowing who the recipient is. As pointed out in the introduction, a
side-effect of this nomination technique is that the adversary knows the identity of the nominee
if either the nominator or the nominee is corrupt. So, if overall only some fraction f of the
parties are corrupt, the adversary will know the identities of around f + (1− f)f of the committee
members. This doubling is unfortunate; it implies that honest majority among the nominees (which
is crucial for secure computation with guaranteed output delivery), requires that the overall fraction
is bounded by some f < 0.29. In the following, we outline an approach that does not have this
adversarial doubling effect.

4.1 Target Anonymous Communication Channels from RPIR

Rather than let individual parties establish target anonymous channels to future committee mem-
bers, our solution leverage past committees to do this job.

That is, past committees will run a secure-MPC protocol to choose a random small subset of
the public keys, re-randomize them, and then broadcast the result. Since past committees are
ensured (by induction) to have honest majority, we no longer allow corrupt nominators to choose
corrupt nominees. We are ensured that all future committee members are chosen at random, and
the adversary does not know who they are (unless it happened to corrupt them independently).

The only issue with this solution, is that the circuit describing the nominator’s function is large:
The input consists of everyone’s keys (which could number in the millions), hence a naive MPC
protocol will be too expensive. This is where we use RPIR, we let past committees simulate the
RPIR client, while the state of the RPIR server remains completely public (and so can be simulated
locally by each committee member). Specifically, the server state in our protocol consists of the list
of public keys belonging to all the parties, as well as some public randomness (e.g., derived from
a beacon). Since the client’s work and communication is much smaller than the database size, we
obtain a secure-MPC protocol that scales well with the total number of parties.

To simplify the presentation we describe this solution in terms of a noninteractive RPIR proto-
col, but of course it can be adapted to handle arbitrary RPIR protocols. Let Π = (Setup,Client, Server)
be a noninteractive RPIR protocol, where:

• Setup(1κ)→ (sk, pk) is the client’s setup function;

• Server(pk, DB, ρ)→ m is the server’s processing function (where ρ is randomness); and

• Client(sk,m)→ (i,DB[i]) is the client’s output function.

For simplicity, assume that we have a one-time trusted setup, which is used to run the Setup
procedure, makes pk publicly known by anyone, and shares sk among the members of an initial
committee. Let d be the number of rounds required to run Client together with a re-randomization
of the obtained key. Assume we are given a public source of randomness, and target anonymous
communication channels to d committees, each guaranteed to have an honest majority, and the
first of which has secret shares of the RPIR secret key sk. Then, we can generate communication
channels to an arbitrary additional number of committees by using our existing committees to run
the RPIR protocol (followed by key randomization).

12



Server: All committee members locally obtain the randomness ρ (from a public source of random-
ness), and evaluate Server(pk, DB, ρ)→ m. Note that, because the client secret state is secret
shared, this message is not enough to reveal the output to any individual committee member.
Note also that, since this computation was entirely local, no committee member needs to
speak during this computation.

Output: The members of the d committees run Client(sk,m) → (i,DB[i]), followed by a re-
randomization of the retrieved public key, using techniques from [2, 3, 6, 9] so that each
committee only needs to speak once. Then they publicly reveal the output, thus establishing
as many target-anonymous channels as needed to keep the process going.

This process consumes d committees, but can be used to make any desired number of key-
selections and rerandomizations. In particular we can use it to establish d more committees that
would handle the next selection, in addition to however many are needed to an external application.
We can even let the same committee handle different steps of different RPIR instances: The last
step in the protocol for the next committee, the second-to-last step in the protocol for the committee
after that, et cetera. To conclude, we state the following informal theorem.

Theorem 4. (informal) In the model of Benhamouda et al. [2] with a broadcast channel and mobile
adversary, given anonymous PKE (for the target-anonymous channels) and a nontrivial weak RPIR
protocol satisfying Definition 5, there exists a scalable evolving-committee proactive secret sharing
scheme (ECPSS) as per [2, Def 2.3], tolerating any fraction f < 1/2 of corrupt parties.

We note that the construction from [2] required other components (such as NIZK), but in
our honest-majority setting those can be replaced by information-theoretic counterparts. We also
comment that while the description above used public randomness, this can be replaced by the
client generating the required randomness via a secure-MPC protocol. Also, we can use the same
committees and the same techniques to get scalable secure-MPC for realizing arbitrary functions.

Theorem 5. (informal) In the model of Benhamouda et al. [2] with a broadcast channel and
mobile adversary, given anonymous PKE (for the target-anonymous channels) and a nontrivial
weak RPIR protocol satisfying Definition 5, there exists scalable secure-MPC protocols for realizing
any poly-time function, tolerating any fraction f < 1/2 of corrupt parties.

5 Batch RPIR

We consider the application to large-scale secure-MPC as a “stress test” for RPIR efficiency. Not
only do we need to run the RPIR client inside a secure-MPC protocol, but this protocol must use
the only-speak-once pattern which makes things hard, and we need to run very many copies of
it to generate enough target-anonymous channels for it to sustain itself. It is therefore crucial to
get the basic RPIR construction as efficient as can be for this application, which is what we do in
this section. In particular, we consider a batch protocol that can choose multiple random indexes
cheaper than choosing them one at a time, and also observe that the application can use a weaker
security property than Definition 2, making it possible to do even better.
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5.1 Definitions

Definition 2 can be easily adapted to amortized protocols in which the client gets more than a
single entry of the database — say k entries at a time. The functionality for this case, denoted
FkRPIR , is almost identical to the one from Section 2.2, except that the random single index i ∈ [n]
is replaced with a vector ~i ∈ [n]k. Everything else remains the same.

As we mentioned, it turns out that Definition 2 can sometimes be an overkill for applications
of batch RPIR. In particular our motivating application uses RPIR to choose a random subset
of indexes, where some subsets are “bad” (since they include too many corrupted parties), but
they are very rare. In such an application, we may not really care about the chosen subset being
random. Rather all we care about is that the odds of hitting a “bad subset” remains small. We
thus weaken the security condition to only say that every collection of subsets that has negligible
probability-mass by the uniform distribution, remains with a negligible probability-mass also in the
RPIR output.

Formalizing this requirement using a game-based approach seems rather awkward, since the dis-
tribution of indexes that we care about is the a-posteriori distribution as seen by a computationally-
bounded server. Fortunately it is easy to formulate it using the real/ideal approach of Definition 2.
All we need to do is change the FkRPIR functionality, so that instead of the uniform distribution, it
chooses the indexes from some other distribution D which is “not too different” than uniform. Let
us first define the statistical property of being not too different.

Definition 4 ((f, α)-domination). Let D1, D2 be two distributions with X being the union of their
support sets, and let f, α ∈ R+ be positive numbers. We say that D1 is (f, α)-dominated by D2 if
for any subset S ⊆ X it holds that D1(S) ≤ f ·D2(S) + α.

An ensemble D1 = {D1,k}k is polynomially dominated by another ensemble D2 = {D2,k}k if
each D1,i is (fi, αi)-dominated by D2,i, where {fk}k is polynomially bounded and {αk}k is negligible.

It is clear that if D1 is polynomially dominated by D2, and some collection S has negligible
probability in D2, then it also has negligible probability in D1.

The parametrized RPIR functionality FDRPIR. The functionality is similar to the standard
batch functionality FkRPIR, except that it is also parametrized by a distribution ensemble D = {Dn}n
(with Dn being a distribution over [n]k).

When the client is honest and the server input is some DB ∈ {0, 1}n, the functionality draws
an index set ~i← Dn (rather than uniform in [n]k) and returns to the client (~i,DB[~i]).

Definition 5 (Single-server batch weak RPIR). A two-party protocol Π is a single-server batch
weak RPIR if it realizes the functionality FDRPIR for some D which is polynomially dominated by the
uniform distribution over [n]κ (with κ the security parameter). It is nontrivial if the server sends
less than n bits.

5.2 Constructions

Ishai, Kushilevitz, Ostrovsky, and Sahai (IKOS) described in [12] several constructions for batch
PIR from standard PIR protocols. Unfortunately, even if we wanted to use those constructions
to fetch random indexes (rather than specific ones), the underlying protocol must still be full-
blown PIR (rather than RPIR). Luckily, it turns out that we can use similar approaches with an
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underlying RPIR protocol if we are willing to settle for the weaker security from Definition 5, and
we can even get must better parameters than what the IKOS constructions give.

Specifically, below we describe how to modify the IKOS “expander-based” construction from
[12]. The original construction, used to fetch k entries out of an n-entry database, is parameterized
by two more integers m > d ≥ 2. Using public randomness which is shared by the server and client,
the construction uses m bins and puts every database entry into d random bins. This created a
degree-d bipartite expander, with the n database entries on one side and the m bins on the other.
Then for every k-subset of entries that the client wants to fetch, it finds a perfect matching in that
expander graph, with the k requested entries on one side and a k-subset of the bins on the other.
The client then uses standard PIR to fetch these items from their bins (and dummy items from the
other bins).

As we mentioned above, even if we wanted to use that construction to fetch k random items, we
would still need to fetch specific items from selected bins, so the underlying protocol must be a PIR
protocol, rather than RPIR. In terms of parameters, that construction has “rate” of ρ = 1/d ≤ 1/2
(meaning the total space taken by all the bins is d times larger than the database size), and it
requires m = Ω(k(nk)1/(d−1)), which is optimal for replication-based constructions. We can apply
this construction with much better parameters, however, if we are willing to settle for the weak
security notion (but the underlying protocol must still be PIR rather than RPIR).

Lemma 3. There exists a weak-RPIR scheme as per Definition 5 based on the IKOS expander-based
construction [12], with parameters (k, d,m) such that m = (1 +O(e−d))k.

Proof sketch. When running the expander-based scheme above with a much smaller m, there will
necessarily be some k-subsets of indexes that cannot be retrieved. The RPIR protocol will therefore
have the client resample its indexes until it arrives at a subset that can be retrieved one per bin.

It is easy to see that the fraction of k-subsets that cannot be retrieved with some parameters
d,m, corresponds exactly to the failure probability of inserting k random elements into a Cuckoo
hash table [16] with d hash functions and table-size m. It is known that for d = 2 it is enough to
use m = (2 + ε)k to get failure probability o(1), and for larger d we get the same guarantee with
m = (1 + O(e−d))k (see e.g., Fountoulakis-Panagiotou-Steger [8]). The probability mass of each
of the achievable subsets is therefore increased only by a 1 + o(1) factor, which means that any
negligible-probability collection of subsets remain negligible.

5.2.1 A Practically Appealing Weak Batch-RPIR

While the construction above has good parameters, the work that the client has to perform is
far from simple, as it needs to resample indexes until some perfect matching can be found in the
construction graph. In our motivating application this would have to be done via secure MPC,
requiring a complex and costly protocol. One could attempt to simplify this construction by having
the client simply choose k random bins and retrieve a random item from each bin, but analyzing
this variant is very challenging. Instead, we describe and analyze below an even simpler and more
efficient construction.

The construction. In addition to n (the number of entries) and k (the number of indexes to
fetch), the construction is also parametrized by m (the number of bins). We assume that both
n and k are divisible by m, and note that k/m is playing a somewhat similar role to d in the
expander-based construction. We deterministically partition the indexes in [n] into m bins of size
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Simple Batch-RPIR (parameters m < k < n, m divides k, n)
1. Partition DB into m “bins”, Bi = {DB[ i·nm ], . . . , DB[ (i+1)n

m − 1]}
2. Client, Server run k copies of RPIR to retrieve k/m entries from each Bi.

Figure 5: A simple batch-RPIR protocol.

n/m each, for example {0, . . . , nm−1}, { nm , . . . ,
2n
m −1}, . . .. Then we just fetch k/m random indexes

from each bin using an underlying RPIR protocol. See Figure 5.
Note that by replicating each bin k/m times and fetching one item from each replica, we can

view this construction as a very specific instance of the IKOS construction from [12] with exactly
k bins, where instead of putting each item in d = k/m random bins we put the first n/m items
in bins 0, . . . km − 1, then the next n/m items in bins k

m , . . .
2k
m − 1, and so on. Note that we may

end up fetching the same item more than once in this protocol, but this is quite acceptable for our
application for large-scale MPC.

5.2.2 Analysis of the Simple Batch-RPIR Protocol.

Clearly, if the underlying RPIR protocol has work w(κ, n) and communication c(κ, n) on databases
of size n, then this protocol has work k ·w(κ, n/m) and communication k · c(κ, n/m). In particular
if the work is w(κ, n) = p(κ) · n then the work in this protocol is p(κ) · kn/m, which is m times
better than the naive solution of just running k RPIR instances against the entire database.

Theorem 6. The simple batch-RPIR protocol from Figure 5 is a weak-RPIR protocol as per
Definition 5, provided that the underlying RPIR protocol satisfies Definition 2 and that m =
O(log κ/ log log κ) (and k = poly(κ)).

We show that when drawing k elements at random from a universe of size n which is split evenly
between m bins, the probability drawing exactly k/m elements from each bin is only exponentially
small in m, regardless of n. Since m = O(log κ/ log log κ), it means a noticeable probability in κ.
We state the following lemma.

Lemma 4.
(n
k

)
/
(n/m
k/m

)m
= Θ( 1√

k
(C · k/m)m/2) for some constant C.

Proof. We use Stirling’s approximation (cf. [18]) – namely, there are constants C1 =
√

2π, and
C2 = e, such that for all positive t

C1
√
t · (t/e)t < t! < C2

√
t · (t/e)t.
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Using these bounds we have:(
n

k

)
/

(
n/m

k/m

)m
= n!(k/m)!m(n/m− k/m)!m

k!(n− k)!(n/m)!m

<
C

(1+2m)
2 · nn+ 1

2 · (k/m)k+ m
2 · ((n− k)/m)n−k+ m

2

C
(2+m)
1 · kk+ 1

2 · (n− k)n−k+ 1
2 · (n/m)n+ m

2

= C
(1+2m)
2 · k(m−1)/2 · (n− k)(m−1)/2

C
(2+m)
1 · n(m−1)/2 ·mm/2

<
C2

C2
1 ·
√
k
·
(
C4

2
C2

1
· k
m

)m/2
<

1
2
√
k
·
(
9k/m

)m/2
. (1)

Lemma 4 implies that drawing k/m elements from each of the m bins (rather than drawing k
elements uniformly from the entire universe) increases the probability of each k-subset by at most
a factor of Θ( 1√

k
(C · k/m)m/2) for some C < 9. For k = poly(κ) and m = O(log κ/ log log κ), this

factor is polynomial in the security parameter. Finally, the underlying RPIR protocol satisfying
Definition 2 implies that the server cannot distinguish the output of the protocol from drawing
exactly k/m random elements from each bin. This concludes the proof of Theorem 6.

5.2.3 Setting the Parameters.

While the general Theorem 6 only holds for very small m = O(log κ/ log log κ), in the context of
our motivating application we can choose much large values, linear in κ. The reason is that the
probability mass of the “bad subsets” in this case is exponentially small, not just negligible. As
we show below we can choose the committee-size k as a small multiple of the security parameter.
Hence, we not only get much better resilience than Benhamouda et al. [2], but also much smaller
committees, and the secure-MPC cost can be kept small by increasing the number of bins m.

In the application from Section 4 we have an adversaryA that watches an execution of the batch-
RPIR protocols (for choosing k parties from a universe of size n in m bins). Then A adaptively
corrupts up to f · n parties (for some f < 1/2). For each corrupted party, A learns if that party
was chosen or not, and its goal is to corrupt k/2 (or more) of the parties that were chosen by the
protocol.

To get concrete parameters, we can start by analyzing the naive RPIR protocol with one bin,
and then view Lemma 4 as quantifying the security loss by going to the more efficient protocol
with m bins. By that lemma, the min-entropy of D (and hence the security level) decreases by
roughly m

2 log(9k/m) bits when switching from one to m bins. Analyzing the naive protocol is
rather straightforward. For example, we can use the Chernoff bound, which says that for any
f � 1/2 we can set k = c · κ for some c = Θ(f(1

2 − f)2) to get security level of (say) 2κ. We can
then set m = κ/Θ(log c) = k/θ(c log c) and lose only κ bits, obtaining security κ while selecting
only a constant Θ(c log c) parties from each bin.

It turns out that for our parameter regime the Chernoff bound is rather loose, and we get much
better concrete parameters using an exact calculation. Specifically, for the one-bin protocol we need
to compute the probability that a random f -subset of [n] contains more than 1/2 of the elements
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f m k

0.2 10 440
0.2 40 640
0.25 10 680
0.25 40 1000

f m k

0.3 10 1080
0.3 40 1560
0.35 10 1850
0.40 10 3500

Table 1: Some parameters for batch-RPIR with n = 10000 and security level=128.

in [k]. The exact expression for this probability is
k∑

i=k/2

(
fn

i

)(
(1− f)n
k − i

)
/

(
n

k

)
,

which is easy to compute for specific n, f, k values. Accounting for the “penalty” from Lemma 4
we therefore get:

Lemma 5. For a specific setting of the parameters f, n, k,m, κ, if the underlying RPIR protocol
satisfies Definition 2 then for any poly-time adversary A it holds that,

Pr[A corrupts k/2 or more selected parties]

≤
∑k
i=k/2

(fn
i

)((1−f)n
k−i

)(n
k

) · 1
2
√
k
·
(9k
m

)m/2
+ negligible(κ).

In Table 1 we list a few example parameters for n = 10000 parties, corrupt fractions f ∈
[0.2, 0.4], and various k,m values that achieve security level κ = 128.
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A Random-Index Oblivious-RAM

In this section we note that a random-index ORAM (RORAM) can be used in our motivating
application instead of RPIR, resulting is a somewhat different performance profile. We begin by
defining RORAM.

A Random-Index ORAM (RORAM) is a two party protocol between a client and a server
similar to Oblivious RAM (ORAM), except that the client does not choose the indexes to read
from memory. Instead, these indexes are chosen at random (by the protocol), with the client
getting (i,Memi) while hiding them from the server. Similarly to ORAM, we have procedures for
Init, Read, and Write, except that the index to be read is not an input to Read but an output of it.
Definition 6 (RORAM Syntax). A Random-Index ORAM protocol (RORAM) consists of the
following components:

• Init(1κ,Mem)→ (cst; SST): The initialization algorithm takes as input the security parameter
and initial memory Mem ∈ {0, 1}∗ (that could be empty), and generates an initial secret client
state cst and a public server state SST.

• Read(cst, SST) → (i, x,SST′): The client fetches (i,Memi) (presumably for a random index
i ∈ |Mem|), and the server state is updated to SST′.2

• Write(cst, i, x, SST) → SST′: The content of the memory is modified by setting Mem[i] := x
and the server state is updated to SST′.

A RORAM protocol is nontrivial if the communication in each of Read and Write operations is
o(|Mem|).

Desired properties: The security notion for (computational) ORAM from [17] intuitively says
that the server should not learn anything about which data and in what order it is being accessed.
(We may also require that the server cannot learn if the operation is read or write.) As for RPIR,
here too it is convenient to define security by means of an ideal functionality.

RORAM Functionality. The functionality FRORAM takes as input a (possibly empty) initial
Mem ∈ {0, 1}∗ from the client. It stores Mem internally and gives the size of the memory |Mem| to
the server.

Thereafter, on input Read from the client it sets n := |Mem|, chooses at random an index
i ← [n], returns (i,Mem[i]) to the client, and outputs n to the server. On input Write(i, x) from
the client (i in unary) it modifies Mem[i] := x (extending the memory if needed), and outputs the
new |Mem| to the server.

2We can assume wlog that the client state does not change throughout the protocol.
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Definition 7 (RORAM). A two-party protocol Π is a Random ORAM if it realizes the functionality
FRORAM above.

A.1 Target Anonymous Channels from RORAM

One can use (batch) RORAM as an almost “drop-in” replacement for (batch) RPIR to establish
target-anonymous channels. Here too we have previous committees playing the part of the RORAM
client, where the server state is publicly known so every committee member can simulate the server
in its head. However, there are a few differences.

In the RPIR-based solution, the server state only changes when the database contents change;
that is, when public keys are added or removed due to a party joining or leaving the pool of
participants (or parties changing their keys). When this happens, no additional communication is
needed to run the RPIR server, since all parties can update the server state locally. In contrast, the
RORAM server state is evolving dynamically with each read/write operation, and the state depends
on the client secret. This has several consequences. First, setting up the server state takes O(n)
communication (where n is the number of parties in the pool of participants), since communication
with the client (played by the committees) is necessary for every write. Second, every party in the
pool of participants must continuously update the server state and keep a local copy of it, so that
it can simulate the server for itself if it gets selected to one of these committees. Namely, whenever
a client-simulating committee broadcasts an RORAM-client message, every party in the universe
must update its local copy of the RORAM-server state accordingly.

The rest of the construction works just like the RPIR-based solution, with the committees
implementing the RORAM client and any secrets that the client requires passed from committee
to committee using the proactive secret sharing technique of Benhamouda et al. [2]. The result is
summarized by the following informal theorem:

Theorem 7. In the model of Benhamouda et al. [2] with a broadcast channel and mobile adversary,
given anonymous PKE (for the target-anonymous channels) and a nontrivial RORAM protocol
satisfying Definition 7, there exists a scalable ECPSS scheme as per [2, Def 2.3], tolerating any
fraction f < 1/2 of corrupt parties.

We remark that there is an interesting trade-off between the RPIR-based and the RORAM-based
solutions: While both tools can provide a scalable solution (in that the amount of communication
in each step is independent of the universe size n), they differ in how many parties need to perform
local computation, and how much local computation each of them must do.

• When using RPIR, the only parties that need to perform local computations in each step are
the current committee members (so only O(κ) of them). However, each one of them must
play the RPIR server, so it must do at least Ω(n) operations.

• When using RORAM, every party in the universe must keep up to date with the evolving
server state, so every party must perform some computation in every step.3 On the other
hand, the computational complexity of one server-step is typically just polylog(n) (depending
on the underlying RORAM protocol).

3Parties can perform these computations lazily, only when they are selected to a committee, but this does not
change the total number of operations that they must perform.

21



Hence we have a choice between O(κ) parties performing Ω(n) operations each for RPIR, or all n
parties performing only polylog(n) operations each for RORAM. It is an interesting open problem
to find a solution where both the number of computing parties and the complexity of operations is
sublinear in n (possibly using some combination of RPIR and RORAM).

B Target Anonymous Channels from Mix-Nets

A different approach to setting up target anonymous communication channels is using Mix-Nets
[4], i.e., by repeatedly shuffling and re-randomizing all the keys. This solution can be implemented
simply by having individual parties self-select to shuffle and re-randomize all parties’ public keys,
then proves in zero knowledge that they did so correctly. Since the shuffling parties do not need
any secret state, they can self-select using VRFs or by solving moderately-hard puzzles. There is
no need to establish target-anonymous channels with these parties as recipients.

Notice that this setting is slightly different than traditional use of Mix-Nets, in that the shuffled
and re-randomized entities are themselves public keys, with the corresponding secret keys held by
individual parties. This means in particular that the adversary can always recognize its own keys
in the shuffled list; only the honest parties’ keys are hidden. Therefore, even after all the shuffling
is done, we still require fresh public randomness — unpredictable by the adversary — to select the
rerandomized keys from the shuffled database. (Otherwise a malicious last shuffler can plant keys
belonging to corrupt parties in the positions from which keys are to be selected.)

This solution uses κ (security parameter) shuffles, so that at least one of the shufflers will be
honest with overwhelming probability. As usual with Mix-Nets, all we need is one honest shuffler,
as biased shuffles do no harm as long as at least one shuffle along the way is uniform. Also, we
assume a synchronous model, so if one or more shufflers do not show up to play their roles, we
simply skip their turns.

The major drawback here is communication; each of the κ shufflers needs to broadcast n public
keys, or O(nκ) bits. This gives us a total communication complexity of O(nκ2). On the other
hand, this solution is very simple and requires no evolving secret state to be passed among the
parties, making it appealing in some practical settings where the number of parties is not so large.

The solution can be optimized further, along somewhat similar lines to the batch-RPIR con-
struction from Section 5.2.1: We divide the database of public keys into m bins each containing n

m
public keys. We then run the Mix-Net solution above on each bin separately, using independently-
chosen set of shufflers for each bin. Finally we use fresh public randomness to select k/m committee
members from each bin. Note that we can now use only s � κ shuffling steps, maybe as little
as s = Θ(1). Each bin has 2−s probability of having all corrupt shufflers, hence starting from
an f -fraction of corrupt parties the expected fraction of corrupt committee members per bin is
f ′ = 2−s + f(1 − 2−s), and setting m large enough we can ensure that the actual fraction is very
close to f ′ whp.

The total communication complexity of this modified scheme becomes O(nκs). For comparison,
the FHE-based batch RPIR approach (Section 3) in combination with YOSO MPC gives total
communication complexity of Õ(κ3), where both the size of a YOSO MPC committee and the
number of keys being selected (for communication channels to the next committee) is O(κ), and
the length of an FHE decryption share is Õ(κ). While the dependence of the communication
complexity on n in the Mix-Nets solution may appear crippling, in practice the term Õ(κ3) may
dwarf the number of participants n.
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