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Abstract

In tight compaction one is given an array of balls some of which are marked 0 and the rest are
marked 1. The output of the procedure is an array that contains all of the original balls except
that now the 0-balls appear before the 1-balls. In other words, tight compaction is equivalent
to sorting the array according to 1-bit keys (not necessarily maintaining order within same-key
balls). Tight compaction is not only an important algorithmic task by itself, but its oblivious
version has also played a key role in recent constructions of oblivious RAM compilers.

We present an oblivious deterministic algorithm for tight compaction such that for input
arrays of n balls requires O(n) total work and O(log n) depth. Our algorithm is in the EREW
Parallel-RAM model (i.e., the most restrictive PRAM model), and importantly we achieve
asymptotical optimality in both total work and depth. To the best of our knowledge no earlier
work, even when allowing randomization, can achieve optimality in both total work and depth.
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1 Introduction

Tight compaction aims to solve the following problem: given an array of elements each marked
with either the label 0 or 1, move all the 0-elements to the front of the array and all the 1-elements
to the end. In other words, we would like to sort an array of elements each tagged with a 1-bit
key. Moreover, due to its relationship to the classical sorting problem, tight compaction has been
an abstraction of interest and has been studied in the core algorithms literature for several decades
and in various models of computation. Notably, Pippenger’s elegant self-routing superconcentrator
construction [Pip96] implied a deterministic tight compaction algorithm completing in O(n) total
work and O(log n) depth (see Section 1.2 for other classical algorithmic results on this important
abstraction).

In this paper, we care about solving the tight compaction problem on a parallel RAM, but impos-
ing an additional natural privacy requirement commonly referred to as obliviousness. Specifically,
we require that the memory access patterns of the RAM be independent of the input array. In this
way, an adversary (e.g., an untrusted cloud server) who observes the RAM’s access patterns cannot
gather any information about the secret input. Besides being an interesting question on its own,
an important application of oblivious tight compaction is in the design of efficient Oblivious RAM
(ORAM) algorithms, as shown repeatedly in a sequence of recent works [CS17, CCS17, AKL+20],
including a very recent work of Asharov et al. [AKL+20] which demonstrated an asymptotically
optimal ORAM and closed a long-time open question in this line of work.

Clearly a näıve method to solve oblivious tight compaction is to rely on a sorting circuit such as
AKS [AKS83] to sort the entire input of n elements, consuming O(n·log n) work and O(log n) depth.
However, since general-purpose oblivious sorting must consume Ω(n·log n) work (under the indivisi-
bility assumption [BN16,LSX19] or assuming a well-known network coding conjecture [FHLS19]), a
very natural question is whether we can accomplish oblivious tight compaction with asymptotically
better overheads.

Pippenger’s result [Pip96], mentioned above, does not satisfy obliviousness. However, around
the same time, another independent work by Leighton et al. [LMS95] showed that there is an
almost oblivious randomized algorithm that accomplishes tight compaction except with negligible
probability in n in O(n · log logn) work and O(log n) depth — and the algorithm’s access patterns
leak only the total number of 0 elements in the input array, and nothing else. Subsequent works
by Mitchell and Zimmerman [MZ14] and Lin, Shi, and Xie [LSX19] improve upon Leighton et
al. [LMS95] by showing how to achieve full obliviousness (i.e., also hiding the number of 0s) while
retaining the same asymptotical overheads as Leighton et al. Like Leighton et al., Mitchell and
Zimmerman and Lin et al.’s algorithms are also randomized and have a negligible probability of
failure.

These results left open the question of devising a deterministic oblivious tight compaction
algorithm with linear total work, For a very long time there was no progress in either fronts until
the recent work by Asharov et al. [AKL+20] where they constructed a deterministic oblivious tight
compaction algorithm that consumes linear total work.1 While optimal in total work, Asharov et
al.’s algorithm is sequential and turning it into one with logarithmic depth seems non-trivial.2 We
ask whether one could have a clean and optimal result statement, that is,

Is it possible to construct a deterministic oblivious tight compaction algorithm that

1The work of Asharov et al. [AKL+20] subsumes and contains the work of Peserico [Pes18] so we neither mention
the latter explicitly nor compare to it.

2More precisely, the algorithm of Asharov et al., as written, has linear depth. However, as we explain in Section 2,
there are a couple of standard (yet non-trivial) tricks one can apply in order to make it consume O(logn · log logn)
depth. Modifying their scheme to consume only O(logn) depth seems to require new non-trivial ideas.
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consumes linear total work and logarithmic depth?

Essentially we ask whether one can match the best known non-oblivious deterministic result,
i.e., Pippenger’s algorithm [Pip96], but additionally achieving obliviousness. Note that any tight
compaction algorithm requires linear work and logarithmic depth on PRAMs with exclusive writes
(which is the model we work in), even without obliviousness. The former is since any algorithms
must at least read the input and the latter is due to an elegant and classical lower bound by Cook
et al. [CDR86].

1.1 Our Contributions

We close the gap in our understanding regarding this important algorithmic abstraction by answer-
ing the above question affirmatively, showing an algorithm that is optimal in total work as well as
in depth.

Theorem 1.1 (Informal). There exists a deterministic oblivious tight compaction algorithm such
that for an input array of n elements, the algorithm completes in O(n) total work and O(log n)
total depth (assuming that each element fits into a single memory word and a memory word can
hold at least log n bits).

Our result holds on an Exclusive-Read-Exclusive-Write (EREW) PRAM, i.e., the most re-
strictive PRAM model (which makes our result stronger). Furthermore, our algorithm is in the
“indivisible model”, i.e., while the algorithm can perform numeric computations on the 1-bit keys,
the elements themselves are “indivisible” and can only be moved around in memory [BN16].

In a very high level, our algorithm combines ideas, in a non black-box way, from the non-
oblivious tight compaction algorithm of Pippenger [Pip96] together with the oblivious yet sequential
algorithm of Asharov et al. [AKL+20]. See Section 2 for an overview of our technical highlights.

1.2 Related Work

As mentioned, the study of compaction algorithms is core to the classical algorithms literature due
to its close relations to sorting. We thus discuss additional related work.

The tight compaction problem has been studied in the core algorithms literature under various
models of computation. For PRAMs with exclusive-writes which is the model we consider, a classical
result by Cook et al. [CDR86] shows that a logarithmic lower bound exists for any algorithm even
without the obliviousness or indivisibility requirements. On a CRCW PRAM, there is a well-
known Ω(log n/ log log n)-depth lower bound for any algorithm even without the obliviousness or
indivisibility assumptions. Moreover, there is a matching non-oblivious upper bound that achieves
O(log n/ log log n) depth and linear total work [Rag90].

Another related abstraction, called stable tight compaction, aims to achieve the same task
as tight compaction, but now additionally requiring stability, i.e., in the output array, elements
with the same key must appear in the same order as the input. For oblivious algorithm subject
to the indivisibility assumptions, there is a separation between stable tight compaction and non-
stable ones. Specifically, a recent lower bound by Lin et al. [LSX19] shows that any oblivious
algorithm subject to the indivisibility assumption must incur Ω(n · log n) work to stably and tightly
compact an arbitrary input array of n elements (while without stability one can achieve it in O(n)
work [AKL+20]). Therefore, in this paper, we allow our tight compaction to not have to respect
stability.

Due to the close relationship of tight compaction and sorting, a natural question is whether one
can design algorithms in the so-called comparison-based model where the algorithm is only allowed
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to perform comparisons on keys and and move elements around. However, due to the well-known
0-1 principle for sorting, any comparison-based algorithm that can sort an array with 1-bit keys
must be able to sort any array with arbitrary keys. Thus we cannot constrain ourselves to the
comparison-based model since otherwise there would be an Ω(n · log n) lower bound [Knu98].

A relaxed abstraction, called loose compaction, is also studied extensively in the algorithms lit-
erature. Loose compaction solves the following problem: given an input array containing n elements
among which at most n/` are real and the rest are dummy (for some constant ` > 0), compress
the input array to half of the original size while not losing any real element in this process. Pip-
penger’s self-routing superconcentrator [Pip96] implies a non-oblivious loose compaction algorithm
with O(n) total work and O(log n) depth. Asharov et al. [AKL+20], relying on Pippenger’s work,
showed how to obtain oblivious loose compaction without increasing the asymptotical overhead.
Loose compaction has also received a lot of attention in the parallel (non-oblivious) algorithms
literature. There is a separation between loose and tight compaction on a CRCW PRAM. Specifi-
cally, Bast and Hagerup [BH95] showed the existence of an O(n) work and O(log∗ n) depth parallel
(non-oblivious) algorithm for performing loose compaction, while as mentioned Ω(log n/ log log n)
depth is necessary for tight compaction.

We note that, in the current paper as well as in previous works (e.g., Asharov et al. [AKL+20]),
we use loose compaction as an intermediate abstraction. Here, however, we are unable to use
previous constructions directly. In fact, we introduce another relaxation of loose compaction which
allows to “lose” a small fraction of real elements. While this allows us to implement this procedure
very efficiently (in work and depth), it introduces a new challenge of correcting the mistakes in
parallel afterwards. See Section 2 for details.

2 Technical Overview

In this section we give an overview of our construction with an emphasis on the main ideas used
to get Theorem 1.1.

It has been known for a while that the tight compaction problem is very related to the notion of
self-routing super-concentrator [Pip96, AKL+20]. Recall that a superconcentrator is a graph that
consists of n source vertices and n target vertices such that for any k ≤ n, any k-subset of sources is
connected to any k-subset of targets by k vertex-disjoint paths [Pip96,AHU74,Val76]. Intuitively,
one can imagine associating the input balls with the source vertices and then routing the 0 balls to
the first target vertices and the 1 balls to the last target vertices. However, this process (i.e., the
way the superconcentrator decides how to route) is known to be non-oblivious and the naive way
to make it oblivious is by sending “dummy messages” along unused edges—causing a logarithmic
overhead in the total work. Actually, working out the details of the algorithm, one can see that
the logarithmic overhead is independent of the size of the balls and so the actual total work is
O(n · log n+ dD/we · n) [CNS18], where D is the bit-size of each ball and w is the word size.

The recent work of Asharov et al. [AKL+20] managed to get this overhead down to O(dD/we·n)
using two ideas: (1) reducing to loose compaction and (2) packing and decomposition. We elaborate
on these ideas next.

Reducing to loose compaction. In this step the task of tight compaction is reduced to the
task of loose compaction. In loose compaction, one is given an array where balls are marked either
real or dummy and it is guaranteed that there are at most 1/` fraction of reals. Henceforth, we
arbitrarily assume that ` = 128. The goal is to output an array of size n/2 which contains all the
reals. First note that every real within the first n/2 locations is already in the “right” place and it
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should not be moved and so we only need to deal with the reals which are in the second half of the
array. To this end, Asharov et al. imagine the elements as associated with the left nodes of a good
bipartite expander and every misplaced real is swapped with a misplaced dummy (i.e. a real from
the second half of the array with a dummy from the first half) if and only if they are neighbors of
distance 2 on the expander. Using properties of the expander, one can show that this “handles”
almost all of the misplaced reals. Now, one can use loose compaction to compress the array (since
it now contains much fewer misplaced reals) and recurse on the the array of size n/2. The cost of
this reduction is linear—the bipartite graph has constant degree and each recursive step halves the
array size.

Decomposition and packing. These two ideas are used to implement loose compaction.
The idea is to zoom-in on the input array in various resolutions. In the smallest instance case, one
can pack lots of information into a single word and larger instances are decomposed to this smaller
one. Concretely, Asharov et al. define three scenarios, depending on the relation between n (the
number of balls in the input size) and w (the word size):

1. Small instances—If n ≤ w/ logw: In this case, one can basically “download” the input to the
client and solve loose compaction. More precisely, one can download 1 bit per input element,
saying whether it is real or not. This is enough to compute the disjoint routes which can then
be used to perform the actual routing.

2. Medium instances—If n ≤ (w/ logw)2: The idea is to “zoom out” and view each block of√
n ≤ w/ logw balls as one ball which is labeled dense if and only if it contains at least

√
n/4

real balls. Since the original array has at most 1/128 reals, the “zoomed out” array has at
most

√
n/32 denses. Notice that we can run our tight compaction procedure on this “zoomed

out” array, moving the dense blocks to the front, since it is a “small instance”. Next, we
run tight compaction for small instances again but now within the non-dense blocks. This
compresses 3/4 of the space for 3/4 of the blocks (which are non-dense by assumption).

3. Large instances—If n > (w/ logw)2: Now that we have tight compaction for small and
medium instances (by the above two items), and we get loose compaction for large instances
in a very similar way. We “zoom out” and view the input array as m = n/(w/ logw)2 blocks
each consisting of (w/ logw)2 elements. As before, we mark a block as dense if it contains more
than 1/4 or reals (as before, at most 1/32 fraction of the blocks can be dense). To perform loose
compaction on the “zoomed out” array we apply the naive oblivious algorithm to compute
routes. As mentioned, the naive algorithm has extra logarithmic overhead but this is okay
since we apply it on an array that contains m elements (indeed, O(m · logm+ dD/we ·m) ≤
O(dD/we · n)). Once the dense blocks are at the front, we can invoke tight compaction for
medium instances and compact each block in linear time. As before, this compresses 3/4 of
the space for 3/4 of the blocks.

This completes the high-level description of the algorithm of Asharov et al. We continue to
explain what are the challenges & ideas used to make it in depth O(log n).

Challenge 1. The first component that is not optimal for depth is the reduction to loose com-
paction. There, we perform swaps over the edges of a bipartite expander and naively performing all
of them in parallel does not work. Indeed, a single “misplaced” real node could be the distance-2
neighbor of two (or more) dummys so we have to be able to resolve these conflict somehow in low
depth.
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The solution for this is inspired by the solution for a similar problem from the superconcentrator
and sorting networks literature. The idea is to use a particular property of the expander graph:
there is a natural partitioning of the entire edge-set into a constant number of disjoint perfect
matchings. Using this, we can perform the swaps in parallel between different copies and it is
guaranteed that there will be no “collisions”.

Challenge 2. Recall that the construction of Asharov et al. consists of first reducing tight com-
paction to loose compaction and then solving loose compaction (for small, medium and finally large
instances). In terms of depth, naively the reduction from tight compaction to loose compaction
resumes for log n steps until the instance becomes of constant size. A simple observation is that we
can actually run the recursion only for O(log log n) steps until the instance size becomes O(n/ log n)
size in which case we can just invoke full-fledged oblivious sort [AKS83]. What about the depth
of loose compaction? For small instances it is O(n), for medium ones it is O(

√
n), and for large

ones it is O(log n) (the latter is the dominant one). In total, the depth of Asharov et al.’s con-
struction (after solving challenge 1 and the above observation about the depth of the recursion) is
O(log n · log log n). Getting rid of the extra log log n factor is the most challenging part of our work.

We do not know how to get loose compaction in depth better than O(log n). Our main idea
is to circumvent this by weakening the requirement from loose compaction by allowing it to err.
Concretely, we consider a weak version of loose compaction that we call weak compression which
takes an array of size n that has say 1/128 fraction of reals and it outputs an array of size n/2
that contains almost, say ε-fraction of, all reals. The main observation is that if ε is set to be
1/polylog(n), then weak compression can actually be realized in O(log log n) depth (rather than
O(log n) without errors). To see this, one has to recall the details of how the superconcentrator
chooses its routes. Roughly, this is a process that proceeds in “rounds” over a bipartite graph,
where at each round a constant fraction of nodes become satisfied (i.e., routes are found). After
O(log n) rounds, all nodes are satisfied, but after O(log log n) rounds all but 1/polylog(n) fraction
of nodes are satisfied.

Combining the above weak compression procedure with the reduction from tight compression
to (this variant of) loose compaction gives an abstraction we call a swapper and it costs linear work
and logarithmic depth. This abstraction can be viewed as (another) relaxation of tight compaction
where any 1-ball that appears before a 0-ball is swapped except for a 1/polylog(n) fraction of pairs
which remain “in reverse order”. All we are left to do is to correct these errors.

We correct the error by building (from scratch) a tight compaction procedure that works for
very sparse inputs (of density 1/polylog(n)) in linear work and logarithmic depth. Indeed, using
such a procedure we can easily swap the remaining misplaced elements. To get a tight compaction
procedure for sparse inputs, the idea is to first compress the array into one that is of size O(n/ log n).
Then, we can run full-fledged oblivious sort which completes the task.3

The key technical contribution is the way we compress the sparse array to size O(n/ log n) with
only O(log n) depth. Towards this end, we stack O(log log n) many instances of loose compaction,
each compressing the size by factor 1/2. Indeed, since the input is only of density 1/polylog(n),
O(log log n) layers are sufficient in terms of functionality. But what about complexity? We said
that the depth of loose compaction is O(log n) so stacking O(log log n) many instances of them does
not sound like a good idea. To see why this is okay, recall again that loose compaction is basically
implemented by using a fixed bipartite expander graph and doing: (1) finding an appropriate
matching (in rounds), and (2) performing the routing over the matching.

The basic observation is that step (1) can be parallelized among all layers and then using the

3Actually, this gives a stable tight compaction procedure for sparse input arrays.
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computed matchings, the routing can be directly performed. Parallelizing step (1) is not straight-
forward as in layer i for i > 1 we do not know who are the sources when the matching from layer i−1
has not been determined yet. But since the input is very sparse, we can compute all possibilities of
sources in each layer i. Since the bipartite graph has constant degree, the number of possibilities
only grows by a constant factor in every level and there are only O(log log n) levels so choosing
the parameters carefully, we can tolerate the extra polylog(n) factor in the number of possibilities.
Let us remark that a similar issue came up in the non-oblivious self-routing superconcentrator of
Pippenger [Pip96] and the above idea is inspired by Pippenger’s solution.

A bonus. As a bonus, the fact that we introduce weak versions of compaction that permit
various types of errors, allows us to simplify the construction of Asharov et al. Concretely, our
new algorithm has only two cases “large instances” and “small instances” (i.e., we got rid of the
“medium instances”).

Recall that in Asharov et al., for large instances (i.e., n > (w/ logw)2) it takes O(m · logm)
work to compute the matching. Thus, they choose the large-medium cutoff to be of size (w/ logw)2

so that in the large case m = n/(w/ logw)2 implies that O(m · logm) = O(n). Medium instances
(i.e., n ≤ (w/ logw)2) are still too large to be solved directly, so they further divide each medium
instance into

√
n small instances. The latter can be solved directly by packing. We, on the other

hand, have work overhead for large instances of only O(log logm). This allows us to split large
instances to m = n/ logw blocks which implies overhead O(m · log logm) = O(n). This directly
reduces us to the “small instance” case without going through the medium size instances case.

Sorting with more keys. Our tight compaction is an algorithm for sorting an array of n balls
where each ball is marked with a 1-bit key. Our algorithm can be extended to sort n balls marked
with K-bit keys where K is any constant. The idea is that our reduction to loose compaction
can be modified such that every element that is not “misplaced” will remain in the same location
throughout the execution of the algorithm. We elaborate on the details of this modification in
Remark 5.3. With this feature, we can first compact the array, moving the elements tagged with
the first key to the front, and then compact (recursively) the rest of the array, keeping those
elements at the front.

In more detail, to sort an array of balls marked with keys from [K], we first run the plain
tight compaction algorithm so that 1-balls (by k-balls we mean all balls marked with key k ∈ [K])
are moved to the front. Then, we apply the variant of tight compaction, mentioned above, to
compact 2-balls while keeping 1-balls unmoved. At the kth step for k ∈ [K], to move the k-balls to
their correct locations, we apply the variant of tight compaction to compact k-balls while keeping
1-balls through (k − 1)-balls in place. The procedure finishes after K iteration. By inspection,
this algorithm consumes O(K · n) total work and O(K · log n) depth (which remain linear and
logarithmic, respectively, as long as K is constant).

3 Preliminaries

3.1 Definitions

A parallel random-access machine (PRAM) is an interactive Turing machine that consists of a
memory and P CPUs. The memory is denoted as mem[N,w], and is indexed by the logical address
space [N ] = {1, 2, . . . , N}. We refer to each memory cell also as a word and we use w to denote
the bit-length of each word. Each CPU has an internal state that consists of O(1) words. The
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memory supports read/write instructions (op, addr, data), where op ∈ {read,write}, addr ∈ [N ] and
data ∈ {0, 1}w ∪ {⊥}. If op = read, then data = ⊥ and the returned value is the content of the
word located in logical address addr in the memory. If op = write, then the memory data in logical
address addr is updated to data. We use standard setting that w = Θ(logN) (so a word can store
an address). We follow the convention that each CPU performs one word-level operation per unit
time, i.e., arithmetic operations (addition or subtraction), bitwise operations (AND, OR, NOT,
or shift) or memory accesses (read or write). We assume only exclusive read and exclusive write
(EREW) where each memory word can only be read or written by at most one CPU at a time.
This is the most restricted model which makes our result stronger.

For an algorithm in the PRAM model, assuming the number P of CPUs is unlimited, we
characterize the efficiency by work and depth, where work is the total number of word-level operation
performed by all CPUs, and depth is the number of parallel steps consumed by the algorithm.
Because the algorithm runs on a PRAM of N memory words, we assume that the input to the
algorithm is described in n ≤ N words, which implies that w = Ω(log n) as w = Θ(logN).

Given an abstraction f ,4 a PRAM machine obliviously implements it if in addition to correctness
(namely, outputting a correct output on every input) it also holds that the access pattern to the
memory that the algorithm does, does not reveal anything about the input data. In this work,
it suffices to consider algorithms that deterministically implement functionalities. For a machine
M and an input I, denote by Addrs(M, I) the sequence of accessed memory addresses during the
execution M(I). We require oblivious simulation which we formalize by requiring the existence of
a simulator that simulates the distribution of Addrs without knowing I.

Definition 3.1 (Oblivious implementation). Let M be a PRAM machine that interacts with the
memory and implements a given functionality. We say that M is oblivious, if there exists a proba-
bilistic polynomial time simulator Sim such that for every input I, the two variables are identically
distributed

Addrs(M, I) and Sim(1|I|).

In the above we focus on perfect obliviousness, i.e., that the access pattern is perfectly sim-
ulatable. Note that there are weaker notions of obliviousness, such as statistical (requiring the
statistical distance between the above two distributions to be small) or computational (requiring
that the above two distributions are computationally indistinguishable).

3.2 Tools

We will use several (standard) tools on which we elaborate next.

Oblivious sorting. The work of Ajtai et al. [AKS83] shows that there is a comparator-based
circuit with O (n · log n) comparators and O(log n) depth that can sort any array of length n.

Theorem 3.2 (Ajtai et al. [AKS83]). There is a deterministic oblivious sorting algorithm in the
PRAM model with word size w that sorts n elements using O (dD/we · n · log n) work and O(log n)
depth, where D denotes the length of each element in bits.

4Note that we distinguish between an abstraction and a functionality (in terminology). A functionality specifies
exactly what the expected output is, while an abstraction may only do so partially. For example, the tight compaction
abstraction does not specify any ordering between same-key balls.
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Expanders. Our construction relies on dense family (i.e., one per say every power of 2) of constant
degree bipartite expander graphs that have several appealing properties: (1) their entire edge
set can be computed in linear time in the number of nodes and (2) their entire edge set can be
partitioned into a constant number of disjoint perfect matchings. For this, we use either of the well-
known construction of expander graphs presented by Margulis [Mar73], Gabber and Galil [GG81],
or Jimbo and Maruoka [JM87]. The fact that these graph satisfies the above properties is well-
known (for example, it was used in the sorting network of Ajtai et al. [AKS83] and the self-routing
superconcentratorsof Pippenger [Pip96]). Below, we provide a precise statement and give a proof
for completeness in Appendix A. We note that more modern constructions of expanders, while
giving better constants due to higher spectral gap, do not fit our purpose since they usually result
with families which are neither dense enough nor satisfy property (1).

Let G = (L,R,E) be a d-regular bipartite graph such that |L| = |R|. Let P1, . . . , Pd be a
partition of E into d disjoint perfect matchings. (Note that by Hall’s theorem [Hal35], such a
partition always exists though it may not unique and may not be efficiently computable for an
arbitrary d-regular bipartite.) We say the vertex u is the r-th neighbor of v, denoted as Γr(v), if
and only if (u, v) is an edge in Pr. The proof of the following theorem can be found in Appendix A.

Theorem 3.3. For any constant λ ∈ (0, 1), there exists a family of bipartite graphs {Gλ,n}n∈N and
a constant dλ ∈ N, such that for every n ∈ N being a power of 2, Gλ,n = (L,R,E) has |L| = |R| = n
vertices on each side, it is dλ-regular, and for every sets S ⊆ L, T ⊆ R, it holds that∣∣∣∣e(S, T )− dλ

n
· |S| · |T |

∣∣∣∣ ≤ λ · dλ ·√|S| · |T |,
where e(S, T ) is the number of edges (s, t) ∈ E such that s ∈ S and t ∈ T . Additionally, in the
word-RAM model with word size w such that w ≥ Ω(log n),

1. there exists a (uniform) linear work algorithm that on input 1n outputs the entire edge set of
Gλ,n.

2. there exists a (uniform) constant work algorithm that on input r ∈ [dλ], v ∈ L ∪R, computes
Γr(v), where Γr(v) is defined with respect to a fixed partition of Gλ,n.

4 Our Abstractions

We will realize tight compaction in Section 5 in linear work and logarithmic depth. On our path
towards this goal, we implement a few abstractions that we define next. They will not only help us
present the construction in a modular way, but we believe that some of them might be of indepen-
dent interest. All the following abstractions take as input an array of balls and are parameterized
by functions α(?), β(?), ε(?), or γ(?), where ? is a placeholder for the number of balls in the input
array.

4.1 Tight Compaction

In the tight compaction problem one is given an input array containing n balls each of which marked
with a 1-bit label that is either 0 or 1. The output is a permutation of the input array such that
all the 1-balls are moved to the front of the array.

Definition 4.1 (Tight compaction). Let I be an array of n balls such that each ball is labeled with
0 or 1. On input I, tight compaction outputs an array O which is a permutation of the balls in I
such that all the 0-balls appear before the 1-balls.
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4.2 Swapper and Imbalanced Swapper

An ε-swapper is parametrized by a function ε : N → [0, 1]. This procedure gets as input an array
I of n balls where each ball is marked with a color from {red, blue,⊥}. It is guaranteed that the
number of red balls is equal to the number of blue balls. The output of the procedure is an array
O of size n in which all but at most ε · n red-blue ball pairs are swapped.

Definition 4.2 (ε-swapper). Let I be an array of n balls such that each ball is marked either red,
blue, or ⊥ and the number of red balls equals to the number of blue balls. On input I, ε-swapper
outputs an array O of size n which is a permutation of I, the number of red balls equals to the
number of blue balls in O, the total number of red and blue balls in O is at most ε ·n, and for every
i ∈ [n]:

1. If I[i] is ⊥, then O[i] = I[i] and it is marked ⊥.

2. If I[i] is red (resp. blue), then either

(a) O[i] = I[i] and it is marked red (resp. blue), or

(b) O[i] = I[j] and marked ⊥ for some blue I[j] (resp. red I[j]).

An ε-imb-swapper (stands for imbalanced swapper) generalizes an ε-swapper. It also takes as
input an array I of n balls, where each ball is marked with a color from {red, blue,⊥}, but the
difference is that the number of red balls does not have to be equal to the number of blue balls. Let
q(I) = |nred − nblue|, where nϕ for ϕ ∈ {red, blue} is the number of balls with color ϕ in I, be the
number of “extra” balls in I from either color. On input I, an ε-imb-swapper outputs an array O
that satisfies the same requirement as O in Definition 4.2 except that the total number of balls in
O that are either red or blue is at most ε · n+ q(I).

We provide realizations for both primitives. We call the first realization Swapper and the second
one ImWeakSwapper, where the difference is not only the imbalance of red and blue balls but also the
value of ε. Specifically, for an input array with n balls, Swapper makes all necessary swaps except
for (1/poly log n)-fraction in O(log n) depth, whereas ImWeakSwapper makes all the necessary swaps
except for a constant fraction but in constant depth.

The following lemmas are proven in Sections 6.3 and 6.4, respectively:

Lemma 4.3 (Swapper). For all constants c ∈ N, letting ε(?) = 1/ logc ?, there exists a procedure
Swapper that implements ε-swapper in the PRAM model. Letting w be the word size, n be the number
of balls in the input array, and D be the size of each ball in bits, Swapper consumes O(dD/we · n)
work and O(log n) depth.

Lemma 4.4 (Imbalanced weak swapper). For every constant ` ∈ N, there exists a procedure
ImWeakSwapper that implements an (1/`)-imb-swapper in the PRAM model. Letting w be the
word size, n be the number of balls in the input array, and D be the size of each ball in bits,
ImWeakSwapper consumes O(dD/we · n) work and O(1) depth.

4.3 Compression

The next abstraction is called (α, β)-compression and it is parametrized by α, β : N → [0, 1] such
that ∀? ∈ N : α(?) ≤ β(?). It gets as input an array I of n balls where each ball is either real or
dummy. It is guaranteed that the number of real balls in I is at most α · n. The output of the
procedure is an array O of size β · n that contains all the real balls from I.

Definition 4.5 ((α, β)-compression). Let I be an array of n balls such that each balls is marked real
or dummy, where the number of real balls is at most α · n. On input I, (α, β)-compression outputs
an array O of size β · n that consists of all the real balls in I.
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The following lemmas are proven in Sections 6.2 and 6.7, respectively.

Lemma 4.6 (Compression). For all large enough constants c ∈ N, letting α(?) = 1/ logc ? and
β(?) = 1/ log ?, there exists a procedure Compression that implements an (α, β)-compression in the
PRAM model. Letting w be the word size, n be the number of balls in the input array, and D be
the size of each ball in bits, Compression consumes O(dD/we · n) work and O(log n) depth.

Lemma 4.7 (Fast compression for short inputs). There exists a constant α ∈ (0, 1/2) for which
there exists a procedure FastCompression that implements an (α, 1/2)-compression in the PRAM
model. Letting w be the word size, n ≤ w/ logw be the number of balls in the input array, and D
be the size of each ball in bits, FastCompression consumes O(dD/we · n)-work and O(n) depth.

4.4 Weak Compression

Lastly, we define γ-approx-(α, β)-compression for α, β, γ : N → [0, 1] such that ∀? ∈ N : γ(?) ≤
α(?) ≤ β(?). This algorithm is the same as (α, β)-compression except that there the is a “mistake”
on γ · n inputs which are not in the output array O. Those balls appear in another array E and
they are in the same positions as in I. That is, intuitively, the algorithm moves some real balls
from I into the output array O, while other real balls are not moved and still reside in I. We call
that array E. Note that 0-approx-(α, β)-compression is equivalent to (α, β)-compression, as E will
consist of only dummy balls.

Definition 4.8 (γ-approx-(α, β)-compression). Let I be an array of n balls such that each ball is
marked real or dummy, where the number of real balls is at most α · n. On input I, γ-approx
-(α, β)-compression is an algorithm that outputs two arrays O and E, such that

• O is an array of β · n balls that consists of all real balls in I except γ fraction.

• E is obtained by removing from I all the real balls that reside in O and replacing them with
dummys.

The following lemmas are proven in Sections 6.5 and 6.6, respectively.

Lemma 4.9 (Weak compression). There exists a constant α ∈ (0, 1/2), such that for all constants
c ∈ N, letting γ(?) = 1/ logc ?, there exists a procedure WeakCompression that implements a γ-approx
-(α, 1/2)-compression in the PRAM model. Letting w be the word size, n be the number of balls in
the input array, and D be the size of each ball in bits, WeakCompression consumes O(dD/we · n)
work and O(log log n) depth.

Lemma 4.10 (Slow weak compression). There exists a constant α ∈ (0, 1/2) such that for all
constants c ∈ N, letting γ(?) = 1/ logc ?, there exists a procedure SlowWeakCompression that imple-
ments a γ-approx-(α, 1/2)-compression in the PRAM model. Letting w be the word size, n be the
number of balls in the input array, and D be the size of each ball in bits, SlowWeakCompression
consumes O(n · log log n+ dD/we · n)-work and O(log log n) depth.

We summarize our lemmas and their complexities in Figure 1, where we let n denote the number
of balls in each input array. Figure 1 also depicts how our implementations correspond to each
other and provides an overview of the roadmap towards our tight compaction algorithm.

5 Parallel Tight Compaction

In this section we present our tight compaction algorithm.
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Name Reference Abstraction Worka Depth

TightCompaction Theorem 1.1 (§5) Tight Compaction O(n) O(log n)

Swapper Lemma 4.3 (§6.3) 1/polylog-swapper O(n) O(log n)
ImWeakSwapper Lemma 4.4 (§6.4) O(1)-imb-swapper O(n) O(1)

Compression Lemma 4.6 (§6.2) (1/polylog, 1/ log)-compression O(n) O(log n)
FastCompressionb Lemma 4.7 (§6.7) (O(1), 1/2)-compression O(n) O(n)

WeakCompression Lemma 4.9 (§6.5) 1/polylog-approx-(O(1), 1/2)-compression O(n) O(log log n)
SlowWeakCompression Lemma 4.10 (§6.6) 1/polylog-approx-(O(1), 1/2)-compression O(n · log logn) O(log log n)

aIn this table, we assume that D, each ball size in bits, is O(w).
bAssuming n ≤ w/ logw.

TightCompaction

Compression

Swapper

ImWeakSwapper

WeakCompression

SlowWeakCompression

FastCompression

Figure 1: The diagram depicted the relationship between the implementations of our abstractions.
TightCompaction is implemented using Compression and Swapper, where the latter is implemented us-
ing ImWeakSwapper and WeakCompression, and the latter is implemented using SlowWeakCompression and
FastCompression.

Theorem 5.1. [Restatement of Theorem 1.1] There exists an algorithm TightCompaction that
implements tight compaction in the PRAM model. Letting w be the word size, n be the number
of balls in the input array, and D be the size of each ball in bits, TightCompaction consumes
O(dD/we · n) work and O(log n) depth.

We use the Swapper and Compression algorithms from Lemmas 4.3 and 4.6. Specifically, we use
Compression to implement ( 1

logc ? ,
1

log ?)-compression for some constant c (see Lemma 4.6) and let

Swapper implement ( 1
logc ?)-swapper (for the same constant c).

Algorithm 5.2: TightCompaction(I)

• Input: an array I of n balls, each ball is labeled by a single bit 0 or 1.

• Procedure:

1. Color the misplaced 1-balls by blue and the misplaced 0-balls by red (notice
that there is the same amount of each).

(a) Count the number of 0-balls in I, let d be this number.

(b) For i = 1, 2, . . . , n, in parallel, do the following:

i. If I[i] is a 1-ball and i ≤ d, mark I[i] as blue.

ii. If I[i] is a 0-ball and i > d, mark I[i] as red.

iii. Otherwise, mark I[i] as ⊥.

2. Swap red and blue balls guaranteeing that only n/polylogn misplaced balls re-
main.

(a) Run Swapper(I) and let I′ be the resulting array.
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3. Mark and compress the remaining misplaced balls into an array of size
n/ log n.

(a) For each ball in I′, in parallel, mark it as real if it is red or blue, and mark as dummy
if ⊥.

(b) Run Compression(I′). Let C be the resulting array, and let Aux1 be the array record-
ing every move of balls during the compression.

4. Swap reds and blues in the compressed array by sorting the array (moving
reds to the front and blues to the end).

(a) Using an oblivious sort (e.g. AKS; see Theorem 3.2), permute the array C so that
red balls are at the front and blue balls are at the back. Let Aux2 be the array
recording every move of balls during the sorting.

(b) For each i ∈ [bn/2c], in parallel, swap C[i] and C[n− i+ 1] if and only if C[i] is red
and C[n− i+ 1] is blue. Let C ′ be the result.

5. Reverse route the swapped balls in the compressed array back into the orig-
inal one.

(a) Using Aux2 from Step 4a, perform the inversed permutation on C ′. Then, using
Aux1 from Step 3b, perform the inversed compression on C ′ back to I′. Let the
result be O.

• Output: The array O.

Proof of Theorem 5.1: Correctness follows by description. We analyze efficiency next. Step 1
consists of counting the number of 0-balls and then checking for every ball if it is misplaced or
not. Thus, this step consumes O(dD/we · n) work and O(log n) depth (by counting in a tree-like
manner). Step 2 consists, by Lemma 4.3, O(dD/we · n) work and O(log n) depth. Step 3 consists
of marking misplaced balls (O(dD/we · n) work and O(1) depth) and then compressing the array,
so by Lemma 4.6, this step consumes O(dD/we · n) work and O(log n) depth. Step 4 requires
oblivious sorting on an array of size n/ log n which incurs O(dD/we · n) work and O(log n) depth,
and swapping the misplaced balls which incurs O(dD/we · n) work and O(1) depth. Lastly, Step 5
reverses two steps from before. In total, the work is O(dD/we · n) and the depth is O(log n).

Remark 5.3 (Compacting with more keys). In TightCompaction, the balls marked as ⊥ in Step 1
are never moved throughout the execution and remain in the same place in the output array O.
Hence, whenever we want the first t balls to remain in the same location throughout the algorithm
while compacting the last n−t balls for some t ≤ n, it suffices to modify TightCompaction as follows.
First, we let TightCompaction get t as an extra input. Then, we modify Step 1 to always mark the
first t balls as ⊥, while counting 0-balls and marking blue and red on the remaining n − t balls.
This modification achieves the abstraction we mentioned in the end of Section 2 in the context of
compacting balls tagged with more than 1-bit keys: compacting an array while keeping some elements
in place.

6 Realizing the Abstractions

In this section we provide proofs of our abstractions, i.e., proofs for Lemmas 4.3, 4.4, 4.6, 4.7, 4.9,
and 4.10. We start with a common procedure for obliviously finding a matching with a particular
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structure in a bipartite graph. We use this procedure to implement Compression (Lemma 4.6) and
SlowWeakCompression (Lemma 4.10).

6.1 Find Matching

Let G = (L,R,E) be a d-regular bipartite graph. For r ∈ [d] and vertex u in Gλ,n, let Γr(u)
denote the r-th neighbor of u in Gλ,n. For a subset of edges M ⊆ E, and any node u ∈ L ∪ R,
let ΓM (u) = {v ∈ L ∪ R | (u, v) ∈ M} be the set of neighboring vertices of u in M . We define
an (a, b)-matching for a subset of nodes S ⊆ L on the left, as a subset of edges for which every
vertex from S is connected to at least a vertices on the right and that each vertex on the right is
connected to at most b vertices from S.5

Definition 6.1 ((a, b)-matching). We say that M ⊆ E is an (a, b)-matching of S ⊆ L in G iff (1)
for all u ∈ S, |ΓM (u)| ≥ a, and (2) for all v ∈ R, |ΓM (v)| ≤ b.

We relax Definition 6.1 to allow for an error. Namely, we define γ-approx-(a, b)-matching as an
(a, b)-matching except that condition (1) holds for all but a γ fraction of vertices from S. That is,
there is a subset S′ ⊆ S such that |S′| ≥ (1− γ) · |S| and for every u ∈ S′, |ΓM (u)| ≥ a.

Definition 6.2 (γ-approx-(a, b)-matching). We say that M ⊆ E is a γ-approx-(a, b)-matching of S
in G iff condition (1) holds for all but γ faction of nodes in S, and condition (2) still holds.

Let Gλ,n = (L,R,E) with λ := 1/64 be the dλ-regular expander from Theorem 3.3. Let
B := bdλ/2c. In the rest of this subsection, we prove the following two claims.

Claim 6.3 (SlowMatch). For any input I ⊆ [n] such that |I| ≤ n/32, the procedure SlowMatch
(see Algorithm 6.6) outputs a (B,B/4)-matching of I in Gλ,n. It consumes O(n · log n) work and
O(log n) depth.

Claim 6.4 (WeakSlowMatch). Let constant c > 0, and γ(n) = 1/ logc(n). For any input I ⊆
[n] such that |I| ≤ n/32, the procedure WeakSlowMatch (see Algorithm 6.7) outputs a γ-approx
-(B,B/4)-matching of I in Gλ,n. It consumes O(n · log log n) work and O(log log n) depth.

We also use the following claim from [AKL+20].

Claim 6.5 (FastMatch, [AKL+20, Claim 5.16]). For any input I ⊆ [n] such that |I| ≤ n/32 and
n ≤ w/ logw, there exists a procedure FastMatch outputs a (B,B/4)-matching of I in Gλ,n. It
consumes O(n) work and O(n) depth.

Overview. We start with a high-level overview of the non-oblivious matching algorithm, inspired
by Pippenger [Pip96], Chan et al. [CNS18], and Asharov et al. [AKL+20]. Claims 6.3, 6.4, and 6.5
are all based on this algorithm with minor variations, as we explain below. Given a bipartite
graph with vertices L, R and a set S ⊆ L of m marked vertices, we first mark all vertices in S as
“unsatisfied”. Then, in each round:

• Each unsatisfied vertex u ∈ S: Send a request to each one of the neighbors of u.

• Each vertex v ∈ R: If v received more than B/4 requests in each round, it replies with
“negative” to all requests it received in this round. Otherwise, it replies with “positive” to
all requests it received. (If v did not receive any request, it replies no positive nor negative.)

5 The term “matching” follows previous works [AKL+20], and it is also known as “assignment” or “com-
pactor” [CNS18,Pip96].
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• Each unsatisfied vertex u ∈ S: If u received more than B positive replies then take these
edges to the matching and change the status to “satisfied”.

The output is all the edges in the matching. Note that in each round there are O(|S|) = O(m)
transmitted messages, where each message is just a single bit. Using the expansion of the graph and
the fact that |S| is small enough, in each iteration the number of unsatisfied vertices is decreased
by a factor 1/2. This implies that within O(logm) iterations all unsatisfied vertices will become
satisfied. Claim 6.3 is obtained by running this algorithm while always simulating dummy access
to hide which node is transmitting messages and which is not. This causes a logarithmic blow-up
in the total work. Claim 6.4 is obtained by observing that if the above process is executed for
only O(log log n) iterations, then all but 1/polylog(n) fraction of vertices become satisfied. Lastly,
Claim 6.5 is obtained by observing that if n is small enough, the whole graph can fit into O(1)
words and so it can be read within O(1) queries and so we can run the above algorithm without
the logarithmic overhead incurred by simulating dummy accesses.

Algorithm 6.6: SlowMatch: (B,B/4)-matching

• Input: An array I of n indicators representing a subset I ⊂ [n] such that |I| ≤ n
32 and

n > w/ logw.

• The procedure:

1. Let M be a (dλ × n)-array of indicators initialized to all 0s, where M [r, i] indicates if
the r-th edge of the i-th left vertex is in the (B,B/4)-matching.

2. Let I ′ = I. Repeat the following for dlog ne iterations.
(a) Initialize two arrays Request and Positive, both containing n 0s.

(b) For each vertex u ∈ I ′, send a “request” to all neighbors of u: For each r ∈ [dλ],
perform the following sequentially.
For all vertex u ∈ L in parallel, if u ∈ I ′, increment Request [Γr(u)]. (If u 6∈ I′,
perform fake accesses)

(c) For each vertex v ∈ R, if v received from 1 to B/2 requests, then reply “positive” to
all neighbors of v: For each r ∈ [dλ], perform the following sequentially.
For all vertex v ∈ R in parallel, if 1 ≤ Request [v] ≤ B/2, then increment Positive[Γr(v)].
(Otherwise, perform fake accesses)

(d) For each vertex u ∈ I ′, if u received at least B positive replies, then u adds the edge
(u, x) to M such that x replied positively: For each r ∈ [dλ], perform the following
sequentially:
For all vertex u ∈ L in parallel, if u ∈ I ′ and Positive[u] ≥ B and Request [Γr(u)] ≤
B/2, then set M [r, u] := 1. (Otherwise, perform fake accesses)

(e) For each vertex u ∈ I ′, if u received at least B positive replies, then u removes itself
from I ′: For all vertex u ∈ L in parallel, if Positive[u] ≥ B, set I ′[u] := 0.

• Output: The array M .

Algorithm 6.7: WeakSlowMatch: 1/ logc(?)-approx-(B,B/4)-matching

• Input: An array I of n indicators representing a subset I ⊂ [n] such that |I| ≤ n
32 .

• The procedure:

1. Do everything exactly the same as in Algorithm 6.7, except that in step 2, perform
only c · log logn iterations.
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• Output: The array M .

Proof of Claim 6.3: Each sub-step in Step 2, including Steps 2b, 2c, and 2d, takes O(n) work
and O(1) depth as dλ is a constant. Hence, the dlog ne iterations result with O(n · log n) total work
and O(log n) depth. We next show that the output is a (B,B/4)-matching.

Observe that whenever a vertex u ∈ I ′ is removed from I ′, u adds at least B edges (and thus at
least B neighbors) to M , while for any vertex v ∈ R, the number of neighbors of v in M is at most
B/4. Hence, it suffices to show that all vertices in I are removed from I ′ at the end. For this, it
suffice to show that in each iteration of Step 2, the cardinality of I ′ is reduced (at least) by half.

Fix any iteration, let T ⊆ R be the set of vertices that got more than B/4 requests and thus do
not reply positively in Step 2c, i.e., T = {v ∈ R : Request [v] > B/4}. We henceforth say that all
vertices in T reply negatively in this proof even they do not reply anything in the procedure. We
obtain the following inequality

|T | · dλ
16

<
|T | ·B

4
< e(I ′, T ) ≤ dλ

n
· |I ′| · |T |+ λ · dλ ·

√
|I ′| · |T |, (1)

where the first inequality holds since B = bdλ/2c > dλ/4, the second inequality holds since every
vertex in T received more than B/4 requests from I ′ which implies that |T | · B/4 < e(I ′, T ), and
the last inequality follows from Theorem 3.3.

Dividing both sides of Inequality (1) by dλ · |T |, we have

1

16
< λ ·

√
|I ′|
|T |

+
|I ′|
n
.

Plugging in |I′|
n ≤

|I|
n ≤

1
32 and λ = 1/64, it follows that |T | < |I ′| /4 (which means that the

number of nodes that reply negatively is smaller than |I ′| /4). The set of vertices T has at most
dλ · |T | ≤ dλ · |I ′| /4 = B · |I ′| /2 incoming edges. Each such incoming edge will cause a negative
reply. By averaging, there are at most |I ′|/2 vertices that get at least B negatives (and the rest of
the vertices are satisfied).

Proof of Claim 6.4: The proof is very similar to the above proof of Claim 6.3 except that we
make only c · log log n iterations. Thus, the total work is O(n · log logn) and the depth is O(log log n)
depth. As in the proof of Claim 6.3, whenever a node u ∈ I ′ is removed from I ′, then at least B
neighbors are added and in each iteration the cardinality of I ′ is reduced (at least) by half. Thus,
after c · log log n iterations, all but O(1/ logc n) nodes are removed from I ′.

6.2 Compression

In this section we prove Lemma 4.6.

Lemma 4.6 (restated). For all large enough constants c ∈ N, letting α(?) = 1/ logc ? and β(?) =
1/ log ?, there exists a procedure Compression that implements an (α, β)-compression in the PRAM
model. Letting w be the word size, n be the number of balls in the input array, and D be the size of
each ball in bits, Compression consumes O(dD/we · n) work and O(log n) depth.

To implement ( 1
logc ? ,

1
log ?)-compression for large enough constant c ∈ N, the input is an array of

n balls, where at most n
logc n balls are real, and we want to compress the input down to n/ log n balls.
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Previously, it is known how to implement (α′, 1/2)-compression for small enough constant fraction
α′ using (B,B/4)-matching in a bipartite expander [Pip96,AKL+20,CNS18]: Very roughly, every µ
balls are interpreted as a block, and every B blocks are put on a left vertex of the bipartite expander,
where µ and B are some parameters (which we will formalize later); Then, the (B,B/4)-matching is
capable of routing all real blocks (i.e., a block contains any real ball) from left to right vertices while
guaranteeing that every right vertex has at most B/4 real blocks; Hence, merging the real blocks
on every two right vertices into one vertex yields an array of a half number of balls. A straw-man
implementation of ( 1

logc ? ,
1

log ?)-compression is applying SlowMatch for t := log log n rounds, but
given that SlowMatch takes O(log n) depth (Claim 6.3) to compute (B,B/4)-matching, the straw
man takes more than logarithmic depth.

To reduce the total depth of computing the t instances of (B,B/4)-matching, we separate the
matching into two phases. In the straw-man implementation, there is a bipartite expander in each
round, and every real block is routed through t layers of bipartite expanders. Our compression
connects all t expanders into a directed graph H, where each directed edge (u, v) represents a
potential move of a real or dummy block from u to v. In the first phase, given the input array, our
compression marks every vertex in the first-layer expander such that is associated with any real
block, and then it marks all vertices on H that is reachable by the first-layer marked vertices (i.e.,
mark a vertex if there exists a path from the first-layer marked vertices). In the second phase, we
compute all t instances of (B,B/4)-matching in parallel as the marked vertices are the only input
to SlowMatch, which it takes O(log n) depth as desired.

To ensure SlowMatch outputs correct (B,B/4)-matchings in the second phase, it suffices to
ensure that the fraction of marked vertices is at most 1/32 as required in Claim 6.3. Given that
the expanders are dλ-regular, after t = log log n layers, the number of marked vertices grows by
dtλ times, which is logc

′
n for some constant c′; Choosing a sufficiently large constant c > c′ in the

input satisfies the requirement. Finally, as the marked vertices consists of all the vertices that any
real block will be routed through, the resulting matchings are capable of routing all real blocks.
The algorithm is formalize in Algorithm 6.8.

Algorithm 6.8: Compression: ( 1
logc ? ,

1
log ?)-compression

• Input: an array I of n balls such that at most n
logc n are marked as real and all others are

marked as dummy.

• Procedure:

1. Let µ := blog nc and t := dlog log ne. Let λ := 1/64 and let Gλ,? be the family of
dλ-regular expander graphs from Theorem 3.3. Let B := bdλ/2c.

2. Interpret every µ balls as one block: Interpret I as an array A0 of n/µ blocks so that
each block A0[i] consists of µ balls. For each block A0[i], in parallel, mark A0[i] real if
A0[i] consists of at least one real ball (and mark dummy otherwise).

Initialize the routing graph H: Let m := n/(B · µ). For each j ∈ {0, . . . , t − 1}, let
Gλ,m/2j = (Lj , Rj , Ej) be the expander defined in Theorem 3.3 so that Lj = Rj = [m/2j ].
Then, for each j ∈ {0, . . . , t − 2}, connect every two vertices from Rj to each vertex in
Lj+1; That is, for each i ∈ [m/2j+1], add two edges from 2i− 1, 2i ∈ Rj to i ∈ Lj+1. Let
H be the resulting graph.

Initialize an indicator bit to 0 for all vertices: For each j = 0, . . . , t−1, initialize Mj and
M j as two arrays each consists of m/2j 0-bits.

3. Mark each vertex on H if the vertex is reachable by any real block:
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For each i ∈ [m], if any block in A0[(i− 1) ·B + 1, . . . , i ·B] is real, then set M0[i] := 1.

For j from 0 to t− 2 sequentially, compute the array Mj+1 indicators as follows:

(a) For each r ∈ [dλ], perform the following sequentially:
For all v ∈ [m/2j ] in parallel, set M j [Γr(v)] := 1 if Mj [v] = 1, where Γr(v) denotes
the r-th neighbor of the vertex v in the expander Gλ,m/2j as defined in Theorem 3.3.

(b) For all i ∈ [m/2j+1] in parallel, set Mj+1[i] := 1 if and only if M j [2i − 1] = 1 or
M j [2i] = 1.

4. Compute the (B,B/4)-matching: For all j from 0 to t − 1, in parallel, run Sj ←
SlowMatch(Mj) (from Claim 6.3).

5. Route all real blocks via the computed (B,B/4)-matchings: For each j from 1 to t, let
Aj be an array of n

µ·2j blocks initialized with dummy. Then, for each j from 0 to t − 1
sequentially, route all real blocks from Aj to Aj+1 using the matching Sj as follows:

– For each r ∈ [dλ], perform the following sequentially:

(a) For all v ∈ [m/2j ] in parallel, do the following:

i. If Sj [r, v] = 1, proceed the following; Otherwise, perform fake accesses.

ii. Sequentially find a real block in Aj [(v − 1) · B + 1, . . . , v · B], and move the
real block to a scratch space b[v].

iii. Let u = Γr(v) be the vertex in the expander Gλ,m/2j . Sequentially find an

empty block in Aj+1[(u− 1) · B2 + 1, . . . , u · B2 ] and then overwrite this empty
block with b[v].

• Output: Interpret the array At as balls and output the interpreted array of balls.

Proof of Lemma 4.6: We show that for any c ≥ 2 log dλ + 7, any n ≥ 4, Compression (Algo-
rithm 6.8) implements a ( 1

logc n ,
1

logn)-compression that consumes O(dD/we · n) work and O(log n)
depth.

We begin with upper-bounding the fraction of 1-indicators in the arrays Mj in Step 3. There are
at most n

logc n real balls in I, so the number of 1-indicators in M0 is at most n
logc n . For each j ∈ [t],

the number of 1-indicators increases by at most dλ times as dλ is the vertex degree of the expander

Gλ,m/2j−1 . Hence, the number of 1-indicators in Mt is at most (dλ)
t·n

logc n , while |Mt| = m/ log n.

Plugging in m = n
B·µ ≥

n
dλ·logn and (dλ)t ≤ (dλ)log logn = (log n)log dλ , gives that the fraction of

1-indicators in Mt is at most

(dλ)t · n
logc n · |Mt|

≤ (dλ)t+1

logc−2 n
= dλ · (log n)log dλ−c+2 ≤ dλ · 2− log dλ−5 ≤ 1

32
,

where the penultimate inequality follows since c = 2 log dλ + 7 and n ≥ 4. Hence, for each j from
0 to t, the fraction of 1-indicators in Mj is at most 1/32, which satisfies the input requirement of
SlowMatch. By Claim 6.3, Step 4 computes a correct (B,B/4)-matching for each Mj .

Using the correct (B,B/4)-matching, every real block in Aj is routed to Aj+1 inductively in
Step 5: The induction invariant is that a 1-indicator of Mj [i] = 1 implies that the number of real
blocks in Aj [(i − 1)B + 1, . . . , iB] is at most B, while a 0-indicator of Mj [i

′] = 0 implies that
Aj [(i

′−1)B+1, . . . , i′B] can not consist of any real block; Then, the subsequent (B,B/4)-matching
Sj is capable of routing at most B real blocks from Aj corresponding to each 1-indicator of Mj to
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the next array Aj+1 corresponding to some 1-indicators of Mj+1;
6 Inductively, all real blocks and

thus all real balls are routed into At of n/2t ≤ n/ log n balls as required.
The O(dD/we · n) work follows since we apply the subroutine SlowMatch (see Claim 6.3) only

on arrays of geometrically decreasing sizes from m = n
B·µ = O(n/ log n), which sums up to O(n),

times the size of a ball (dD/we). The O(log n) depth follows by that all instances of the subroutine
SlowMatch are performed in parallel (Step 4), which takes O(log n) depth by Claim 6.3, while other
steps take O(t) = O(log log n) depth and are asymptotically dominated.

6.3 Swapper

In this section we prove Lemma 4.3.

Lemma 4.3 (restated). For all constants c ∈ N, letting ε(?) = 1/ logc ?, there exists a procedure
Swapper that implements ε-swapper in the PRAM model. Letting w be the word size, n be the number
of balls in the input array, and D be the size of each ball in bits, Swapper consumes O(dD/we · n)
work and O(log n) depth.

Let c ∈ N be the constant for which we wish to implement (1/ logc ?)-swapper. We use
ImWeakSwapper (from Lemma 4.4) and WeakCompression (from Lemma 4.9). Particularly, we
use WeakCompression which implements (1/ logc1 ?)-approx-(α, 1/2)-compression for some constant
α ∈ (0, 1/2) (as in Lemma 4.9) and c1 := max{2c + 2, 4 − logα}, and ImWeakSwapper which
implements (α/2)-imb-swapper.

In a high-level, we start by applying ImWeakSwapper to the input array. This swaps a constant
fraction of balls in constant depth. Then, we compress (most of) the remaining balls into an array
of size n/2 using WeakCompression. Then, we recursively on this smaller array. The end of the
recursion is when the remaining array has size O(n/ log n) (namely after O(log log n) recursive
steps), in which case we can afford to run a full oblivious sorting algorithm (e.g., Theorem 3.2
which consumes O(n) work and has O(log n) depth). The formal description is given next. For
simplicity of notation in the recursive algorithm, we assume that n is a global fixed parameter.

Algorithm 6.9: Swapper : ε-swapper for ε(?) = 1/ logc ?

• Input: An array I of size ≤ n in which all balls are marked red, blue or ⊥. In the outermost
recursion (i.e., |I| = n), it is guaranteed that the number of red balls equals the number of
blue balls.

• The algorithm:

1. Base case: array is short enough to run oblivious sort.

(a) If |I| ≤ n/ log n: run oblivious sort (e.g., AKS; see Theorem 3.2) so that blue balls
are in the front and red balls are in the back, swap (blue, red) balls which reside in
symmetric locations (from the front and back), and reverse the previous oblivious
sort (i.e., identical to Step 4 of Algorithm 5.2). Output the resulting array.

2. Swap all but an O(1) fraction of balls.

(a) Run I′ ← ImWeakSwapper(I).

3. Compress the array.

(a) Consider all balls that are not marked red or blue in I′ as dummies. Consider all the
remaining red or blue balls as reals.

6 To achieve the routing, it suffices to use (B,B/2)-matching, but we are just reusing the stronger SlowMatch.
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(b) Run WeakCompression(I′), and let I′′ and E be the results. Note that I′′ is of size
|I′| /2 and it contains all the reals from I′ except for a γ-fraction, and E is of size
|I′| and it contains the γ = 1

logc1 |I′| fraction of reals that are not in I′′ (in the same

positions). Record all ball movements during this step in Aux.

4. Continue recursively.

(a) Run this algorithm Swapper recursively on I′′. Let O′ be the result.

5. Reverse route.

(a) Reverse route all real balls from O′ and E back into I′ using Aux, and let O be the
resulting array (note that |O| = |I|).

• Output: The array O.

Proof of Lemma 4.3: We show the correctness holds for all c ∈ N and all n ≥ 16 below. We say
a ball is a “color ball” if it is blue or red. Intuitively, we swap only (blue,red) pairs and all ⊥ balls
remain in the same place (after the reverse routing at Step 5). In each recursion, ImWeakSwapper
reduces the number of color balls to (α/2) · |I|, and then WeakCompression moves all but at most
|I|

logc1 |I| ≤
|I|

logc n color balls into the array I′′ of |I|/2 balls. Hence, roughly speaking, the fraction

of color balls in I′′ is at most α, and then the recursion continues to further reduce color balls.
However, this is not true since WeakCompression may move more blue and less red balls into I′′ (or
vice versa). Then, at the next recursion we need to ensure that (α/2)-imb-swapper gets as input
roughly a balanced number of red and blue balls so that it can further reduce the number of color
balls. To this end, we upper bound the imbalance and then show that our algorithms can handle
it.

Assume, without loss of generality, that each WeakCompression in all recursion levels moves more
blue and less red balls (so that the input I gets more blue balls). We say the difference between
the number of blue balls and red balls as “excess” for short. We show by induction that after
WeakCompression in each recursion level, the number of excess is increased by at most |I|

logc1 |I| . The
induction hypothesis holds for the outermost recursion trivially. Assume the induction hypothesis
holds until a recursion level t so that input |I| = n/2t > n/ log n. Then, by summing up the
increased excess of all recursion levels before t, the total excess in I is at most

t−1∑
j=0

n/2j

logc1(n/2j)
≤

t−1∑
j=0

n/2j

logc1/2 n
≤ 2n

logc1/2 n
,

where the first inequality holds as log(n/2j) ≥ log(n/ log n) ≥ log1/2 n holds for all n ≥ 16. Thus,
in recursion level t, using ImWeakSwapper at Step 2, I′ consists of at most |I′| ·α/2 + 2n

logc1/2 n
color

balls. Plugging in |I′| ≥ n/ log n, c1 ≥ 4− logα, and n ≥ 16, we have that

2n

logc1/2 n
≤ 2

(log n)c1/2−1
·
∣∣I′∣∣ ≤ 2(log n)(logα)/2

log n
·
∣∣I′∣∣ ≤ (α/2) ·

∣∣I′∣∣ ,
and thus I′ consists of at most α · |I′| color balls. Hence, at Step 3, WeakCompression proceeds
correctly on the α fraction color balls (by Lemma 4.9) and outputs E that consists of at most
|I′|

logc1 |I′| color balls. This bound on the number of color balls is exactly the induction hypothesis for
recursion level t, completing our claim.

Summing up, the total number of excess and thus the total number of color balls that go to E

(but not I′′) is at most
∑log logn

j=0
n/2j

logc1 (n/2j)
≤ 2n

logc1/2 n
. Due to the imbalance of blue and red, each
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color ball that goes to E incurs at most one color ball that can not be swapped and solved in the
base case, and hence, in the array O of the outermost recursion, the total number of color balls is
at most 4n

logc1/2 n
≤ 4n

logc+1 n
≤ n

logc n for all n ≥ 16. This bound fulfills the ε(n) = 1/ logc n property

and concludes correctness.
We analyze efficiency next. In the base case where |I| ≤ n/ log n, the total work of the algorithm

is O(dD/we · |I| · log |I|) ≤ O(dD/we · n) and the depth is O(log n). Consider the outermost
case where |I| = n. Step 2 takes linear work and O(1) depth. Step 3 takes linear work and
O(logw + log log n) depth by Lemma 4.9. The recursion stops after log log n iterations where in
each iteration the instance size reduces by 1/2 so the total work dD/we · O(n) + O(n/2) + . . . +
O(n/ log n) ≤ O(dD/we · n) and the total depth is O(logw+ log log n) +O(logw+ log log(n/2)) +
. . . + O(logw + log log(n/ log n)) ≤ O(log log n · (logw + log log n)). Reverse routing doubles the
work and depth. In total, the total work is O(dD/we·n) and the depth is O(log n+logw · log logn).

6.4 Imbalanced Weak Swapper

In this section we prove Lemma 4.4.

Lemma 4.4 (restated). For every constant ` ∈ N, there exists a procedure ImWeakSwapper that
implements an (1/`)-imb-swapper in the PRAM model. Letting w be the word size, n be the num-
ber of balls in the input array, and D be the size of each ball in bits, ImWeakSwapper consumes
O(dD/we · n) work and O(1) depth.

A procedure implementing (1/`)-swapper for all ` ∈ N with total linear work was developed in
Asharov et al. [AKL+20, Claim 5.9], and it actually implements (1/`)-imb-swapper for the same `
(we will prove this claim later in this subsection). However, the depth of their procedure is also
linear. While this is insufficient for our purposes, we still use their ideas as a starting point. Let
us recall the high-level details of their construction.

The procedure instantiates a d-regular bipartite expander (with sufficient expansion depending
on `) for d ∈ O(1) that consists of n vertices on both sides. Every ball is associated with a vertex
on the left, and for every two vertices that share the same neighbor, the two balls are swapped if
and only if the labels are (red, blue). By the vertex expansion of the bipartite expander, only a 1/`
fraction of misplaced balls may remain not swapped. The algorithm clearly requires linear work
as the graph contains a linear number of edges, however parallelizing it is challenging. Concretely,
every vertex on the bipartite expander has d neighbors, and so using a naive parallelization a
node could be swapped with several other nodes simultaneously, and it is not clear how to resolve
conflicts in low depth.

To get over this we use property 2 in the expander of Theorem 3.3. Namely, we use the
partition of the edge set of the bipartite expander into disjoint sets of perfect matchings (which
can be computed efficiently), and then perform the swaps in within the matchings in parallel.

Given the disjoint perfect matchings M1, . . . ,Md from Theorem 3.3, for every pair i, j ∈ [d], we
want to swap each pair of red and blue balls that are the 2-edge neighbors on the subgraph Mi∪Mj .
As the perfect matchings are parallel-friendly, one straw-man solution is to route all n balls via
both Mi and Mj from left to right (so there are two copies for each ball), swap every pair of red
and blue for every vertex on the right side, and then route balls backward via Mi and Mj , where
the routing and swapping are performed in parallel. However, the straw-man solution doesn’t work
as every vertex has two neighbors on Mi ∪Mj , and a red ball may be swapped with both two blue
balls in parallel, which still incurs a conflict. To this end, our second observation is that it suffices
to copy only reds via Mi, copy only blues via Mj , and then swap the pairs if needed; Given a ball
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is either red or blue exclusively, every ball has at most one copy now. We formally describe the
algorithm in the following.

Algorithm 6.10: ImWeakSwapper: ε-imb-swapper(I) for ε(?) = 1/`

• Input: An array I of n balls, each ball is labeled as red, blue or ⊥.

• Parameters: A parameter ` ∈ N.

• The algorithm:

1. Let λ := 1
2
√
`
, and let dλ be the vertex degree given by Theorem 3.3.

2. For each (i1, i2) ∈ [dλ]2, perform the following sequentially.
(a) Let Mi1 (resp. Mi2) be the i1-th (resp. i2-th) perfect matching given in Theorem 3.3.

(b) For all edges (k1, j) ∈ Mi1 and (k2, j) ∈ Mi2 , do the following: If (I[k1], I[k2]) are
labeled as (red, blue), then swap between I[k1] and I[k2]. Label both as⊥. Otherwise,
perform dummy swap. That is realized as below, where all loops are performed in
parallel.

i. Initialize two arrays R1, R2, each consists of n empty balls labeled as ⊥, For all
j ∈ [n], let k1 := Γi1(j) and k2 := Γi2(j) (so that (k1, j) is an edge in Mi1 and
(k2, j) is an edge in Mi2 for each j by property 2 of Theorem 3.3).

ii. For each edge (k1, j) in Mi1 , let R1[j] := I[k1] if I[k1] is red.
For each edge (k2, j) in Mi2 , let R2[j] := I[k2] if I[k2] is blue.

iii. For each j ∈ [n], if the pair (R1[j], R2[j]) is labeled (red, blue), then swap between
R1[j] and R2[j]), label both as ⊥. Otherwise, perform dummy swap.

iv. For each edge (k1, j) in Mi1 , let I[k1] := R1[j] if I[k1] is red.
For each edge (k2, j) in Mi2 , let I[k2] := R2[j] if I[k2] is blue.

• Output: The array I.

Proof of Lemma 4.4: The ImWeakSwapper algorithm runs in O(dD/we · n) time: Step 2 runs in
time O(dD/we · d2λ · n) = O(dD/we · n) as ` is a constant, thus λ is a constant, and then dλ is a
constant by Theorem 3.3. The depth is O(1) by Step 2 repeats Step 2b for O(d2λ) = O(1) iterations
and Step 2b has O(1) depth. It remains to prove the correctness.

Without loss of generality, assume the number of blue balls is greater than or equal to the number
of red balls in I (otherwise, the following argument will work symmetrically). Recall that q(I) is
defined as the excess number of blue balls. Let Gλ,n = (L,R,E) be the bipartite expander given in
Theorem 3.3, where L = R = [n]. We claim that it suffices to show that for all vertices k1, k2 ∈ L
and j ∈ R such that (k1, j), (k2, j) ∈ E, the pair (O[k1],O[k2]) cannot have labels (red, blue). To
see why, we consider to cases of q(I). If q(I) = 0, then the remaining bound of ε · n follows exactly
by the same spectral-expansion argument as the proof of Asharov et al. [AKL+20, Claim 5.9]. The
other case q(I) > 0 is more interesting: viewing the last q(I) excess blue balls as if they were labeled
as ⊥, the input I is reduced to the q(I) = 0 case, and then the bound ε · n+ q(I) follows by adding
up the q(I) = 0 case and the last q(I) excess; Note this reduction is only needed in the proof so
there is no additional cost in the procedure.

It remains to prove the above claim. Recall that, in Theorem 3.3, E =
⋃dλ
i=1Mi and for each

i ∈ [dλ], Mi is a perfect matching on Gλ,n. Suppose not for contradiction, the edges (k1, j), (k2, j) ∈
E and (O[k1],O[k2]) have labels (red, blue). Then, there must exist matchings Mi1 ,Mi2 such that
(k1, j) ∈Mi1 and (k2, j) ∈Mi2 . Because (O[k1],O[k2]) have labels (red, blue), (I[k1], I[k2]) must be
(red, blue) and satisfy the criteria of Step 2(b)ii. Hence the balls are copied to R1[j], R2[j], then
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swapped and relabeled to ⊥, and then moved back to I[k1], I[k2] with no label, which contradicts
that (O[k1],O[k2]) have labels.

6.5 Weak Compression

In this section we prove Lemma 4.9.

Lemma 4.9 (restated). There exists a constant α ∈ (0, 1/2), such that for all constants c ∈
N, letting γ(?) = 1/ logc ?, there exists a procedure WeakCompression that implements a γ-approx
-(α, 1/2)-compression in the PRAM model. Letting w be the word size, n be the number of balls in
the input array, and D be the size of each ball in bits, WeakCompression consumes O(dD/we · n)
work and O(log log n) depth.

Let c ∈ N be the constant for which we wish to implement (1/ logc ?)-approx-(α, 1/2)-compression
for some α ∈ (0, 1/2) to be determined shortly. We implement this procedure using FastCompression
(from Lemma 4.7) and SlowWeakCompression (from Lemma 4.10). Particularly, we use SlowWeakCompression
which implements (1/ logc1 ?)-approx-(α1, 1/2)-compression, for c1 = 2c+ 2 and some α1 ∈ (0, 1/2),
using super linear work but doubly logarithmic depth, and FastCompression which implements
(α2, 1/2)-compression for some α2 ∈ (0, 1/2) using linear work and depth. We let α = α1 · α2/4.

Algorithm 6.11: WeakCompression: 1/ logc ?-approx-(α, 1/2)-compression

• Public parameters: Size of input array n,

• Input: An array I with n balls each of size D bits, where at most α · n balls are real and the
rest are dummy.

• The procedure:

1. Let µ := min(logw, log logn).

2. Compress the array, keeping most of the dense blocks.
(a) Represent I as another array A that consists ofm := n/µ blocks each of size µ·D bits:

for each i ∈ [m], let A[i] be the block consists of all balls I[(i− 1) ·µ+ 1], . . . , I[i ·µ].

(b) For each i ∈ [m], label A[i] as dense if A[i] consists of more than µ ·(α2/2) real balls.

(c) Run (O1,E1) ← SlowWeakCompression(A), where |O1| = n/2 and |E1| = n (in
number of balls). Record all moves in array Aux1.

(d) Repeat the above process, this time on the array O1: interpret it as m/2 blocks each
of size µ·D, mark dense blocks as before, and let (O2,E2)← SlowWeakCompression(O1),
where |O2| = n/4, |E2| = n/2 (in number of balls). Record all moves in array Aux2.

(e) Using Aux1, reverse route the real balls in E2 back into O1, and then using Aux2,
reverse route and merge real balls from E1 and O1 back into an error array E of size
n (recall that E2 is in fact O1 where some elements were excluded into O2; reversing
E1 and O1 to A is also possible using Aux1).

3. Compress the sparse blocks.
(a) Replace all dense blocks in A with dummy blocks. For every i ∈ [n/µ], in parallel,

run O3,i ← FastCompression(A[i]), where A[i] is interpreted as µ balls, and then

again O′3,i ← FastCompression(O3,i). Note that |A[i]| = µ and
∣∣∣O′3,i∣∣∣ = µ/4.

4. Set O = O2‖O′3,1‖ . . . ‖O′3,n/µ (which is of total size n/2, as |O2| = n/4 and
∑n/µ

i=1

∣∣∣O′3,i∣∣∣ =

n/4.

5. Output: O and E.
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Proof of Lemma 4.9: We prove the correctness for all c ∈ N and all n ≥ 16 by analyzing the
sparsity α as below. Given the input I consists of at most α1α2

4 · n real balls, both A and O1

consist of at most 1
2α1 · nµ dense blocks, so the sparsity of A and O1 is α1/2 and α1, respectively.

Thus, SlowWeakCompression works correctly at Steps 2c-2d by Lemma 4.10. Afterwards, for each
non-dense block A[i] and O3,i, the sparsity is α2/2 and α2, respectively, and so FastCompression
works correctly at Step 3a by Lemma 4.7. Since SlowWeakCompression works, the total number of
real balls go to E is at most

m · µ
logc1 m

+
(m/2) · µ

logc1(m/2)
=

n

logc1(n/µ)
+

n/2

logc1(n/2µ)

≤ n

logc1(n/ log log n)
+

n/2

logc1(n/2 log log n)

≤ n

logc1/2 n
+

n/2

logc1/2 n
≤ n

logc n
,

where the first inequality holds by µ ≤ log logn, the second follows since log n
2 log logn ≥ log1/2 n

holds for all n ≥ 16, and the third follows by plugging in c1 = 2c+2 and log n ≥ 1+ 1
2 for all n ≥ 4.

All other real balls go to O and then correctness holds.
We next prove the efficiency of Algorithm 6.11. We divide the array into n/µ blocks of size µ

each. By Lemma 4.10, the SlowWeakCompression at Step 2c consumes O(nµ ·log log n+ n
µ ·dµD/we) =

O(n · dD/we) work as µ = min{logw, log logn} = min{log(Ω(log n)), log log n} = Ω(log logn), and
O(log log(n/µ)) = O(log log n) depth; The depth of counting and marking dense blocks at Step 2b
is O(logµ) and dominated. Finally, we run in parallel FastCompression on instances of µ ≤ logw
balls each, so the depth of is also O(µ) = O(log log n). We get overall O(log log n) depth and
O(dD/we · n) work.

6.6 Slow Weak Compression

In this section we prove Lemma 4.10.

Lemma 4.10 (restated). There exists a constant α ∈ (0, 1/2) such that for all constants c ∈ N,
letting γ(?) = 1/ logc ?, there exists a procedure SlowWeakCompression that implements a γ-approx
-(α, 1/2)-compression in the PRAM model. Letting w be the word size, n be the number of balls
in the input array, and D be the size of each ball in bits, SlowWeakCompression consumes O(n ·
log logn+ dD/we · n)-work and O(log log n) depth.

In our implementation, α = 1/128. Let c ∈ N be the constant for which we wish to implement
1/ logc ?-approx-(α, 1/2)-compression. The algorithm SlowWeakCompression uses a sub-procedure
WeakSlowMatch from Claim 6.4 (see Algorithm 6.7). Particularly, we use WeakSlowMatch that
implements (logc/2 ?)-approx-(B,B/4)-matching on the graph Gλ,n (from Theorem 3.3) with λ =
1/64, regularity dλ, and B = dλ/2.

Algorithm 6.12: SlowWeakCompression: 1/ logc ?-approx-(α, 1/2)-compression

• Input: An array I of n balls, in which at most α · n are real.

• The Procedure:

1.
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2. Interpret the array I as m := n/B bins, where each bin consists of B balls. Mark all
bins in I as dense or sparse, where a bin is dense if it consists of more than B/4 real balls.
Let S be an array of m indicators representing the set of indexes of the dense bins. Let
I′ be an array of m empty bins, where the capacity of a bin is B balls.

3. Let Gλ,m = (L,R,E) be the dλ-regular bipartite graph guaranteed by Theorem 3.3,
where |L| = |R| = m.

4. Compute M ←WeakSlowMatch(S).

5. Distribute: For each edge (u, v) ∈ E (where u ∈ L, v ∈ R), if (u, v) ∈ M , move a real
ball from bin I[u] to bin I′[v] and then mark bin I[u] as sparse. This step is achieved
in the following parallel way. Recall that WeakSlowMatch outputs M as a (dλ × m)-
array of indicators such that M [r, u] = 1 iff the r-th edge of vertex u ∈ L is in the
(B,B/4)-matching. For each r ∈ [dλ], perform the following sequentially:

(a) For all u ∈ [m], in parallel, do the following:

i. If M [r, u] = 1, proceed with the following (otherwise, perform fake accesses):

ii. Sequentially read every ball in bin I[u] and fetch the first encountered real ball,
then sequentially read every slot in bin I′[Γr(u)] and write the fetched real ball
to the first encountered empty slot.

iii. Mark bin I[u] as sparse.

6. Fold: Let O be an array of size m/2 empty bins, each of capacity of B balls. For all
i ∈ [m/2], in parallel, move all real balls from the bins marked sparse in the four bins
(I[i], I[m/2 + i]), (I′[i], I′[m/2B + i]) into bin O[i], and pad O[i] with dummy balls if
there are less than B real balls.

• Output: The array O, as well as the input array I.

Proof of Lemma 4.10: Given that m = O(n), by Claim 6.4, WeakSlowMatch takes O(n · log log n)
work and O(log log n) depth additively. Given that |E| = O(m) and B is a constant, the remaining
steps take work linear in dD/we ·m = O(dD/we · n) and O(1) depth.

We next show the correctness holds for all c ∈ N and all large enough n ≥ max{16, d2λ/4}. At
Step 2, there are at most m

32 dense bins as the total number of real balls is at most n
128 but each dense

bin consists of at least B/4 real balls; Thus, |S| ≤ m
32 , and M is a 1

logc/2 ?
-approx-(B,B/4)-matching

using WeakSlowMatch and by Claim 6.4. Hence, at most m
logcm dense bins are not distributed at

Step 5, which is at most Bm
logc/2m

= n
logc/2m

≤ n
logc/4 n

= n
logc n as logm = log(n/B) ≥ 1

2 log n ≥
log1/2 n holds for n ≥ d2λ/4 = B2 and for n ≥ 16.

6.7 Fast Compression

In this section we prove Lemma 4.7.

Lemma 4.7 (restated). There exists a constant α ∈ (0, 1/2) for which there exists a procedure
FastCompression that implements an (α, 1/2)-compression in the PRAM model. Letting w be the
word size, n ≤ w/ logw be the number of balls in the input array, and D be the size of each ball in
bits, FastCompression consumes O(dD/we · n)-work and O(n) depth.

The algorithm is the same as Algorithm 6.12, while using FastMatch from Claim 6.5 instead
of WeakSlowMatch at Step 4. Because FastMatch implements (B,B/4)-matching, the resulting
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matching M is capable of distributing all real balls in every dense bins at Step 5, correctness follows
directly (so there is no need to calculate the number of real balls remains in I). The work and
depth follows also immediately from Claim 6.5.
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A Proof of Theorem 3.3

Our expander graph will be the same as the one used in Asharov et al. [AKL+20], however, they
only proved that it has the required expansion property and that it satisfies property 1 (namely,
that the edge set can be efficiently sampled). Before showing how to compute Γr(v) efficiently
(i.e., property 2), let us recall the construction of Asharov et al. [AKL+20] which is based on the
expander of Gabber and Galil [GG81].7

7As we mentioned, for our purposes one can also use the expander of Jimbo and Maruoka [JM87] that has slightly
better constants.

26



Let n = m2 for an integer m, let H̄ = (V, Ē) be a graph of n vertices such that each vertex
v ∈ V is represented by v = (x, y) ∈ Z2

m, where Zm is the set of integers modulo m. The edge set
Ē is defined by

Ē =


(
(x, y), (x, y)

)
,

(
(x, y), (x+ y, y)

)
,(

(x, y), (x, x+ y)
)
,

(
(x, y), (x+ y + 1, y)

)
,(

(x, y), (x, x+ y + 1)
)


(x,y)∈V

,

where the additions are modulo m. Gabber and Galil proved that for all n = m2, the above H̄
satisfies the expander mixing lemma. Namely, for any S, T ⊆ V , it holds that∣∣∣∣e(S, T )− d̄

n
· |S| · |T |

∣∣∣∣ ≤ λ̄ · d̄ ·√|S| · |T |,
where d̄ = 10 is the degree of H̄, and λ̄ ∈ (0, 1) is a fixed constant. To obtain an expander Hλ

with arbitrary λ ∈ (0, 1), the standard approach is to raise H̄ to a constant power p (i.e., to put
an edge (u, v) in Hλ if the distance between u and v in H̄ is p) so that λ ≤ λ̄p while increasing
the degree to dλ = d̄p (see, e.g., [Vad12]). To obtain the bipartite expander Gλ,n = (L,R,E)
required by Theorem 3.3, it suffices to duplicate all vertices of V into L = R = V and then for each
u ∈ L, v ∈ R, to add an edge (u, v) into E if and only if (u, v) is an edge in Hλ.

To satisfy property 2, observe that each of the five mappings of Ē (e.g., (x, y) 7→ (x, x+ y+ 1))
is a bijection from V to V . Thus, raising H̄ to the pth power is just composing p bijections, which
yields d̄p bijections from V to V . In this process, each edge is chosen from the five bijections or
their inverses. Finally, the construction of Gλ,n from Hλ extends each V → V bijection to an
L → R bijection, and then each L → R bijection defines a perfect matching on Gλ,n. It follows
by construction that these d̄p perfect matchings constitute a partition of Gλ,n. Observe that, by
construction, for each vertex v and each bijection the mapping of v according to the bijection can
be evaluated using O(p) = O(1) word arithmetics if log n = O(w).
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