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Abstract. In this paper, various quantitative information-theoretic se-
curity reductions which correlate statistical difference between two prob-
ability distributions with security level’s gap between two cryptographic
schemes are proposed. Security is the most important prerequisite for
cryptographic primitives. In general, there are two kinds of security; one
is computational security, and the other is information-theoretic security.
We focus on latter one in this paper, especially the view point of bit se-
curity which is a convenient notion to indicate the quantitative security
level. We propose tighter and more generalized version of information-
theoretic security reductions than those of the previous works [1,2]. More
specifically, we obtain about 2.5-bit tighter security reduction than that
in previous work [2], and we devise a further generalized version of secu-
rity reduction in the previous work [1] by relaxing the constraint on the
upper bound of the information-theoretic measure, that is, λ-efficient.
Through this work, we propose the methodology to estimate the affects
on security level when κ-bit secure original scheme is implemented on
p-bit precision system. (Here, p can be set to any value as long as certain
condition is satisfied.) In the previous work [1], p was fixed as κ

2
, but our

result is generalized to make it possible to security level κ and precision
p variate independently. Moreover, we provide diverse types of security
reduction formulas for the five kinds of information-theoretic measures.
We are expecting that our results could provide an information-theoretic
guideline for how much the two identical cryptographic schemes (i.e., the
only difference is probability distribution) may show the difference in
their security level when extracting their randomness from two different
probability distributions. Especially, our results can be used to obtain
the quantitative estimation of how much the statistical difference be-
tween the ideal distribution and the real distribution affects the security
level.
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duction · Rényi divergence · statistical distance · max-log distance · λ-
efficient measure.
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1 Introduction

Nowadays, almost every modern cryptographic primitive depends their security
on some randomness value, which is extracted from a specific probability distri-
bution (e.g., lattice-based cryptographic scheme which extracts its randomness
from discrete Gaussian distribution). In other words, probability distribution
of the cryptographic scheme has an important influence on its security. From
this point of view, a lot of research has been conducted to analyze how security
level changes when the probability distribution for the randomness of the cryp-
tographic scheme is replaced by another probability distribution. Traditionally,
‘probability preservation property (PPP)’ [4,6] has been widely used to correlate
difference between two statistical distributions with adversary’s attack success
probability. This kind of security reduction enables us to compare relative secu-
rity level among cryptographic schemes. However only with PPP, we cannot have
any detailed quantitative information for security level. With this motivation,
several researchers have conducted studies to enable quantitative security anal-
ysis. Micciancio and Walter [1,2] deserve to be considered as leaders in this field.
They suggested various quantitative security reductions by way of information-
theoretic measures and they expressed the security reductions in terms of bit
security. However, we could notice that their reduction results could be further
improved and their results are informative only for limited cases.

In this paper, our contributions are as follows. First, we derive tighter secu-
rity reduction bounds than those of Micciancio and Walter. Second, we propose
a further generalized version of Micciancio and Walter’s security reduction result
by relaxing the constraint on the upper bound of the measure, that is, λ-efficient.
Through this work, we manage to propose the methodology to estimate the af-
fects on security level when κ-bit secure original scheme is implemented on p-bit
precision system. (p can be set to any value as long as certain condition is sat-
isfied.) Third, we provide various types of security reduction formulas for the
five kinds of information-theoretic measures; statistical distance, Rényi diver-
gence, Kullback-Leibler divergence, max-log distance, and relative error. These
measures are often used in cryptography for security reduction analysis.

This paper is organized as follows. In Section II, we briefly introduce some
essential concepts which are necessary to understand our results. Next, in Section
III, we provide our three main results. Finally, in Section IV, we conclude the
paper and present the future research directions.

2 Preliminaries

2.1 Information-Theoretic Measures

There are several widely known information-theoretic measures which are used
to analyze security reduction as follows.

i) Statistical Distance (∆SD)
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For any two discrete probability distributions P and Q, the statistical dis-
tance between P and Q is defined as

∆SD(P,Q) =
1

2

∑
x∈Supp(P )∪Supp(Q)

|P (x)−Q(x)|,

where Supp(·) denotes the support set of probability distribution.

ii) Rényi Divergence (RDα)
For any two discrete probability distributions P and Q such that Supp(Q) ⊆

Supp(P ), the Rényi divergence of order α between P and Q is defined as

a) α ∈ (1,∞): RDα(Q||P ) = (
∑

x∈Supp(Q)

Q(x)α

P (x)α−1 )
1

α−1

b) α = 1: RD1(Q||P ) = exp(
∑

x∈Supp(Q)

Q(x)logQ(x)
P (x) )

c) α =∞: RD∞(Q||P ) = max
x∈Supp(Q)

Q(x)
P (x) .

RDα satisfies many attractive features such as probability preservation property,
multiplicative property, data processing inequality, etc [4,5].

iii) Kullback-Leibler Divergence (∆KL)
For any two discrete probability distributions P and Q such that Supp(Q) ⊆

Supp(P ), the Kullback-Leibler divergence between P and Q is defined as

∆KL(Q||P ) =
∑

x∈Supp(Q)

Q(x)log
Q(x)

P (x)
.

iv) Max-Log Distance (∆ML)
For any two discrete probability distributions P and Q over the same support

(i.e., Supp(P ) = Supp(Q)), the max-log distance between P and Q is defined as

∆ML(P,Q) = max
x∈Supp(Q)

|lnP (x)− lnQ(x)|.

Note that we should apply ∆ML only in case when the support of two distribu-
tions are same.

v) Relative Error (δRE)
For any two discrete probability distributions P and Q, the relative error

between P and Q is defined as

δRE(P,Q) = max
x∈Supp(P )

|P (x)−Q(X)|
P (x)

.
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2.2 Special Kinds of Measures

Micciancio and Walter defined two special kinds of measures in their paper [1].
Those are ‘useful measure’ and ‘λ-efficient measure’. We will reuse their defini-
tions.

i) Useful Measure
Any measure δ that satisfies the following three properties is called useful

measure:

a) Probability preservation property: For any event E over the random vari-
able X, we have PrX←P [E] ≥ PrX←Q[E]− δ(P,Q), where X ← P (respec-
tively, X ← Q) denotes that X is sampled from probability distribution P
(respectively, Q). This property makes it possible to bound the probabil-
ity of an event occurring under distribution P in terms of the probability
of the same event occurring under distribution Q and the measure value
δ(P,Q). It is not hard to prove that this property is equivalent to the bound
∆SD(P,Q) ≤ δ(P,Q). This fact implies that δ = ∆SD satisfies this property
for sure.

b) Sub-additivity for joint distributions: Let (Xi)i and (Yi)i be two lists of
discrete random variables over the support

∏
i Si and let’s define X<i =

(X1, ..., Xi−1) (and similar for Y<i). Then

δ((Xi)i, (Yi)i) ≤
∑
i

max
a

δ([Xi|X<i = a], [Yi|Y<i = a]),

where the maximum value is taken over a ∈
∏
j<i Sj .

c) Data processing inequality: δ(f(P ), f(Q)) ≤ δ(P,Q) for any two probability
distributions P , Q and function f(·), i.e., the measure δ does not increase
under additional function application.

ii) λ-Efficient Measure
Consider a measure δ which satisfies the above two properties b) and c).

We call it ‘λ-efficient measure’ if it satisfies the following property d) instead of
property a):

d) Pythagorean probability preservation property (with parameter λ): For any
joint distributions (Pi)i and (Qi)i over support

∏
i Si, if δ(Pi|ai, Qi|ai) ≤ λ

is enjoyed for all i and ai ∈
∏
j<i Sj , then

∆SD((Pi)i, (Qi)i) ≤ ||(max
ai

δ(Pi|ai, Qi|ai))i||
2
.

2.3 New Notion of Bit Security

For long time, bit security has widely played a role to measure and estimate the
quantitative security level of cryptographic primitives. The traditional defini-
tion of bit security is pretty simple. It is defined as minA{log2

TA
εA
}, where for an
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arbitrary adversary A, TA and εA are adversary’s resources and attack success
probability, respectively. Micciancio and Walter designed a new concept of se-
curity game and they defined new notion of bit security in their work [2]. With
their newly devised security game, they redefined the adversary’s advantage.
They provided adversary’s advantage in terms of information-theoretic quanti-
ties. We will cite their definitions as follows.

Definition 1 [Definition 5, [2]] An n-bit security game is played by an ad-
versary A who is interacting with a challenger C. At the beginning of the game,
the challenger chooses a secret c, which is represented by the random variable
C ∈ {0, 1}n, from some distribution DC . At the end of the game, A outputs some
value, which is represented by the random variable A. The goal of the adversary
is to output a value a such that R(c, a), where R is some relation. A may output
a special symbol ⊥ such that R(c,⊥) and Rc(c,⊥) are both false.

Definition 2 [Definition 7, [2]] For any security game with corresponding ran-

dom variable C and A(C), the adversary’s advantage is advA = I(C;Y)
H(C) = 1 −

H(C|Y)
H(C) , where I(·; ·) is the mutual information between two random variables,

H(·) is the Shannon entropy of a random variable, and Y(C,A) is the random
variable with marginal distributions Yc,a = {y|C = c,A = a} defined as follows:

a) Yc,⊥ = ⊥, for all c
b) Yc,a = c, for all (c, a) ∈ R
c) Yc,a = {c′ ← DC |c′ 6= c}, for all (c, a) ∈ Rc.

Definition 3 [Definition 10, [2]] For a search game, the advantage of the adver-

sary A is advA = αAβA and for a decision game, it is advA = αA(2βA − 1)
2
,

where αA =Pr[A 6= ⊥] is output probability, and βA =Pr[R(C,A)|A 6= ⊥] is
conditional success probability.

3 Main Results

Micciancio and Walter found out quantitative security reductions between two
identical cryptographic schemes with all other conditions equal and differing only
in the probability distributions for which the schemes extract the randomness
[1,2]. Their works made it possible to guess how much security loss would occur
when the defined probability distribution is replaced by another distribution. In
other words, their works have provided information-theoretic guideline of secu-
rity level (i.e., how statistical difference of two distribution affects on security
level of cryptographic scheme). However, problems have been raised that their
results may not be tight enough and their results are informative only in limited
cases (i.e., their results give information only when the information-theoretic
measure values between two distributions are upper bounded by specific fixed
value, and the upper bound cannot be freely controllable). Due to these prob-
lems, it is necessary to bring out the tighter and the more generalized security
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reduction. Our first work is tighter version of Lemma 3 in [1] that is proved by
using similar approach to that of [1] as follows.

Theorem 1. Let SP and SQ be standard cryptographic schemes with black-
box access to probability distribution ensembles Pθ and Qθ, respectively. If SP

is κ-bit secure and δ(Pθ, Qθ) ≤ 2−
κ
2 for some 2−

κ
2 -efficient measure δ, then SQ

is (κ− log2
2

3−2e−1−
√
5−4e−1

) ≈ (κ− 2.374)-bit secure.

Proof. Suppose that TA
εQA

< 2
κ−log2

2

3−2e−1−
√

5−4e−1 is satisfied when an adversary

A satisfies TA
εPA
≥ 2κ. Now, let’s define some notations:

a) GPS,A (respectively, GQS,A): event that an adversary A succeeds in breaking

the scheme SP (respectively, SQ) with the probability εPA =Pr(GPS,A) (re-

spectively, εQA =Pr(GQS,A))

b) [GPS,A]n (respectively, [GQS,A]n): independent n copies of GPS,A (respectively,

GQS,A)

c) εPAn (respectively, εQAn): probability that A wins the security game [GPS,A]n

(respectively, [GQS,A]n) at least once

d) TAn : required resources that A wins the security game [GPS,A]n (respectively,

[GQS,A]n) at least once

e) q: adversary A’s number of queries

Applying probability preservation property and data processing inequality of
∆SD, we have

εPAn ≥ ε
Q
An −∆SD([GPS,A]n, [GQS,A]n)

≥ εQAn −∆SD((θi, Pθi)i, (θ
′
i, Qθ′i)i).

Here, (θi)
i
(respectively, (θ′i)

i
) is the sequence of queries made during the

game [GPS,A]n(respectively, [GQS,A]n). Note that at any point during the game,
conditioned on the event Ei that (θj , Pθj )j<i and (θ′j , Qθ′j )j<i take some specific
and the same value, the adversary behaves identically in the two games up to
the point that it makes the i-th query. Especially, the conditional distributions
(θi|Ei) and (θ′i|Ei) are the same and δ((θi|Ei), (θ′i|Ei)) = 0. This fact follows by
sub-additivity for joint distributions that

δ((θi, Pθi |Ei), (θ′i, Qθ′i |Ei)) ≤ δ((θi|Ei), (θ
′
i|Ei)) + δ(Pθ, Qθ)

≤ 0 + 2−
κ
2 = 2−

κ
2 .

This ensures that we can apply Pythagorean probability preservation property,
and thus we can guarantee that the following inequalities are also true.
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εPAn ≥ ε
Q
An −∆SD((θi, Pθi)i, (θ

′
i, Qθ′i)i)

≥ εQAn −
√
q × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × 2−

κ
2 .

At this point, without loss of generality, we suppose q ≤ TAn . Now we set
εQA = 1

n and note that TAn ≤ n× TA, and then we have

εQAn −
√
TAn × 2

−κ
2 ≥ εQAn −

√
nTA
2κ

= εQAn −
√

TA

2κεQA
.

From the first assumption in the proof, the following inequalities are satisfied
as

εPAn ≥ ε
Q
An −

√
TA

2κεQA

> εQAn −
√

2
−log2

2

3−2e−1−
√

5−4e−1

= 1− (1− εQA)n −
√

2
−log2

2

3−2e−1−
√

5−4e−1

> 1− e−1 −
√

2
−log2

2

3−2e−1−
√

5−4e−1

= 0.1929...

from εQA = 1
n and (1− εQA)n = (1− 1

n )n < e−1.

Meanwhile, considering union bound, we can notice εPAn ≤ n × εPA and re-
minding initial assumption εPA ≤

TA
2κ , we have

εPAn ≤
nTA
2κ

=
TA

2κεQA

< 2
−log2

2

3−2e−1−
√

5−4e−1

= 0.1929....

Summarizing the above results, we obtain

1− e−1 −
√

2
−log2

2

3−2e−1−
√

5−4e−1 < εPAn
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< 2
−log2

2

3−2e−1−
√

5−4e−1 .

After simple computing verification process, we can conclude that the upper and
lower bounds of εPAn are exactly the same. This is definitely a contradiction. This
contradiction must be from the first wrong assumption. Thus finally, we have

TA

εQA
≥ 2

κ−log2
2

3−2e−1−
√

5−4e−1

i.e., we show SQ preserves at least (κ− log2
2

3−2e−1−
√
5−4e−1

)-bit security. 2

Remark. In the previous work [1], Micciancio and Walter suggested (κ − 3)-
bit security preserving security reduction. We propose (κ − 2.374)-bit security
preserving security reduction in the above theorem. Our result is almost 1-bit
tighter than that of the previous reduction. This improvement will be enhanced
in the following results.

It is well known that ∆ML is λ-efficient measure for λ ≤ 1
3 [1,2]. Thus we

could derive the following corollary easily from Theorem 1.

Corollary 1. If SP is κ-bit secure and ∆ML(Pθ, Qθ) ≤ 2−
κ
2 (≤ 1/3), then

SQ is (κ− 2.374)-bit secure.

Also, from Lemma 6 in [1], we can naturally derive the following corollary.

Corollary 2. If SP is κ-bit secure and δRE(Pθ, Qθ) ≤ 1− e−2
−κ

2 (≤ 1− e− 1
3 ),

then SQ is (κ− 2.374)-bit secure.

In [2], Micciancio and Walter supported and justified their new “bit security”
definition by proving a number of technical results, including an application to
the security analysis of indistinguishability primitives (e.g., encryption schemes)
making use of (approximate) floating point numbers (refer to Section 5.3 in [2]).
Corollary 2 and Theorem 8 in [2] are their main results. In this paper, we make
both of them further tighter than those in [2]. Following lemma is an improved
version of Corollary 2 in [2].

Lemma 1. For any adversary A with resource T attacking SP and any event E
over A’s output, the probability of E is denoted by γP . The probability of E over
A’s output when attacking SQ is also denoted by γQ. If the efficient measure δ is√

γQ
T

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

-efficient and δ(Pθ, Qθ) ≤
√

γQ
T

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

,

then γQ ≤ 2×2y
3−2e−1−

√
5−4e−1

× γP ≈ 5.184× γP , where y is sufficiently small pos-

itive real number, i.e., y → 0+.
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Proof. Let’s consider the contraposition of Theorem 1, i.e., introduce k that
satisfies the following equation

2
k−log2

2

3−2e−1−
√

5−4e−1
−y

=
T

γQ
(< 2

k−log2
2

3−2e−1−
√

5−4e−1 ),

where y is sufficiently small positive real number.

For proof by contradiction, suppose

γQ >
2× 2y

3− 2e−1 −
√

5− 4e−1
× γP .

Then we have

2
k−log2

2

3−2e−1−
√

5−4e−1
−y

=
T

γQ

< T/(
2× 2y

3− 2e−1 −
√

5− 4e−1
× γP )

and it implies

2k <
T

γP
. (1)

Meanwhile, according to the contraposition of Theorem 1, if

T

γQ
< 2

k−log2
2

3−2e−1−
√

5−4e−1

is hold, then at least one of 2k > T
γP

or δ(Pθ, Qθ) > 2−
k
2 should be true. Now,

let’s remind the original condition of Lemma 1 such that δ satisfies

δ(Pθ, Qθ) ≤
√
γQ
T

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

and the value k also satisfies

2
k−log2

2

3−2e−1−
√

5−4e−1
−y

=
T

γQ
.

These facts imply that δ(Pθ, Qθ) ≤ 2−
k
2 holds for the selected k. Therefore, by

the contraposition of Theorem 1, 2k > T
γP

should be held but it is contradiction

to (1). It means that the initial assumption must be false. Thus, we have

γQ ≤
2× 2y

3− 2e−1 −
√

5− 4e−1
× γP .

2

9



Remark. Corollary 2 in [2] suggested the relation between γP and γQ as γQ ≤
16 × γP if efficient measure δ satisfies δ(Pθ, Qθ) ≤

√
γQ
16T (=

√
γQ
T × 0.25). Our

Lemma 1 proposes the relation between γP and γQ as γQ ≤ 5.184×γP if efficient

measure δ satisfies δ(Pθ, Qθ) ≤
√

γQ
T

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

(≈
√

γQ
T × 0.44). We

manage to derive more than 3 times tighter relation between γP and γQ, even
though the upper bound of δ(Pθ, Qθ) is larger than that of Corollary 2 in [2].
This fact implies that Corollary 2 in [2] provides us somewhat loose reduction.

Using Lemma 1, we could derive the following theorem which gives tighter
(κ− 5.54)-bit security reduction than (κ− 8)-bit security reduction of Theorem
8 in [2]. The proof is similar to that in [2].

Theorem 2. Let SP and SQ be 1-bit secrecy games with black-box access
to probability ensembles (Pθ)θ and (Qθ)θ, respectively, and δ be a λ-efficient

measure for any λ ≤
√

( 2
3−2e−1−

√
5−4e−1

)−1(≈ 0.44). If SP is κ-bit secure and

δ(Pθ, Qθ) ≤ 2−
κ
2 , then SQ is (κ − log2

18
3−2e−1−

√
5−4e−1

− y) ≈ (κ− 5.544)-bit

secure, where y is sufficiently small positive real number, i.e., y → 0+.

Proof. Consider an arbitrary adversaryA of SP , whose resource is upper bounded
by TA. Define A’s output probability as αAP , and its conditional success proba-

bility as βAP . From the κ-bit security of SP , the inequality αAP (2βAP − 1)
2 ≤ TA

2κ

is satisfied. For proof by contradiction, suppose

αAQ(2βAQ − 1)
2
> TA/2

κ−log2
18

3−2e−1−
√

5−4e−1
−y
.

From Lemma 1, we have

αAP ≥ (
2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1
× αAQ.

The reason why we can apply Lemma 1 is that δ is
√

γQ
TA

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

-

efficient measure, because the following inequalities are satisfied as
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√
(

2

3− 2e−1 −
√

5− 4e−1
)
−1

>

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

>

√
αAQ
TA

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

≥

√
αAQ(2βAQ − 1)

2

TA

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

=

√
γAQ
TA

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

>

√
2
log2

18×2y

3−2e−1−
√

5−4e−1 × 2−
κ
2 ×

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

= 3× 2−
κ
2 > 2−

κ
2 ≥ δ(Pθ, Qθ).

Now, consider ŜP and ŜQ which are somewhat modified version of SP and
SQ. They are almost the same with SP and SQ but the only difference is that
adversary A can restart the game with totally fresh randomness whenever it
wants. Consider an adversary B against Ŝ that simply runs A until A 6= ⊥
(restarting the game if A = ⊥) and outputs whatever A returns. If we define α
as α =min(αAP , α

A
Q), then adversary B’s resource TB satisfies TB < TA/α. B’s

output probability is αBP = αBQ = 1, and the conditional success probability, i.e.,

the case that successfully solve distinguish problem is βBP = βAP (or βBQ = βAQ) for

ŜP (or ŜQ, respectively). By the properties of λ-efficient measure δ and ∆SD,
we have

βBP ≥ βBQ −
√
TBδ(Pθ, Qθ) ≥ βBQ −

√
TB

2κ
.

Thus, we can have

2βBP − 1 ≥ 2βBQ − 1− 2

√
TB

2κ
.

From the given condition in the theorem, we also have

2βAP − 1 ≤

√
TA

αAP × 2κ

i.e., √
TA

α× 2κ
≥

√
TA

αAP × 2κ
≥ 2βAP − 1
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≥ 2βBQ − 1− 2

√
TB

2κ
> 2βBQ − 1− 2

√
TA

α× 2κ

⇒ 3

√
TA

α× 2κ
> 2βBQ − 1 = 2βAQ − 1.

If αAQ ≤ αAP , then we have α = αAQ. Considering our proof by contradiction
assumption, we have

2κ <
9TA

αAQ(2βAQ − 1)
2 < 9× 2

κ−log2
18×2y

3−2e−1−
√

5−4e−1 .

After some computation, we can simplify the above inequality to

1 < y + 1 < log2(3− 2e−1 −
√

5− 4e−1) < −1.374.

This is definitely a contradiction. If αAQ > αAP , then we have α = αAP and we
know that the following inequalities are valid as

(
2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1
× αAQ ≤ αAP

<
9TA

2κ(2βAQ − 1)
2 <

αAQ(3− 2e−1 −
√

5− 4e−1)

2y+1
.

By observation, we can notice that the upper bound and the lower bound of αAP
are exactly the same. This fact implies that the inequalities can be reduced to
1 < 1, and thus this case is also a contradiction. Above process tells us that our
initial assumption is false and finally we have

αAQ(2βAQ − 1)
2 ≤ TA/2

κ−log2
18

3−2e−1−
√

5−4e−1
−y

and theorem is clearly proven. 2

Remark. From Theorem 8 in [2], we propose 2.5-bit tighter security reduction
than that of Theorem 8 in [2]. We not only improve the tightness of security re-
duction, but also extend the possible ranges of λ value. Theorem 8 in [2] can be
applied for λ which satisfies λ ≤ 1

4 , but we extend its allowed ranges to λ ≤ 0.44.

Theorem 1 improves the work in [1]. However, it still has significant limita-
tions for its universal use, because we can apply Theorem 1 only in case when
efficient measure δ satisfies δ(Pθ, Qθ) ≤ 2−

κ
2 . In other words, we cannot apply

Theorem 1 to more general situations. There are many practical situations that
δ(Pθ, Qθ) is much smaller or bigger than 2−

κ
2 . We need more general criteria and

general methodology which give us theoretic guideline how statistical difference
affects on security level of cryptographic primitives. This motivation enables us

12



to come up with the following theorem.

Theorem 3. [Generalization of Theorem 1] Let SP and SQ be standard cryp-
tographic schemes with black-box access to probability distribution ensembles

Pθ and Qθ, respectively. If SP is κ-bit secure and δ(Pθ, Qθ) ≤ 2−
f(κ)

2 for some

2−
f(κ)

2 -efficient measure δ, then SQ is (2 log2(
√

1 + 2f(κ)−κ+2(1− e−1) − 1) −
f(κ)+2κ−2)-bit secure. Here, f(κ) should satisfy f(κ) ≥ −2 log2(1−e−1−2−κ),
where κ is security level of SP .

Proof. The overall flow of proof is similar to that of Theorem 1. Considering an
arbitrary adversary A, suppose that if TA

εPA
≥ 2κ is satisfied, then TA

εQA
< 2f(κ)−g(κ)

is satisfied. Here, without loss of generality, we suppose that g(·) is a monoton-
ically increasing function. The reason we can suppose like this is that we are
only interested in the value g(κ), not the original form of the function g(·). Our
purpose is finding g(κ), which should be expressed by κ and f(κ). Then, we will
use the same notations a), b), c), d), and e) in the proof of Theorem 1.

Applying probability preservation property and data processing inequality of
∆SD, we have

εPAn ≥ ε
Q
An −∆SD([GPS,A]n, [GQS,A]n)

≥ εQAn −∆SD((θi, Pθi)i, (θ
′
i, Qθ′i)i).

Here, (θi)i(respectively, (θ′i)i) is the sequence of queries made during the game

[GPS,A]n(respectively, [GQS,A]n). Note that at any point during the game, con-
ditioned on the event Ei that (θj , Pθj )j<i and (θ′j , Qθ′j )j<i take some specific
and the same value, the adversary behaves identically in the two games up to
the point that it makes the i-th query. Especially, the conditional distributions
(θi|Ei) and (θ′i|Ei) are the same and δ((θi|Ei), (θ′i|Ei)) = 0. This fact follows by
sub-additivity for joint distributions that

δ((θi, Pθi |Ei), (θ′i, Qθ′i |Ei)) ≤ δ((θi|Ei), (θ
′
i|Ei)) + δ(Pθ, Qθ)

≤ 0 + 2−
f(κ)

2 = 2−
f(κ)

2 .

This ensures that we can apply Pythagorean probability preservation property,
and thus we can guarantee that the following inequalities are also true as

εPAn ≥ ε
Q
An −∆SD((θi, Pθi)i, (θ

′
i, Qθ′i)i)

≥ εQAn −
√
q × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × 2−

f(κ)
2 .

13



At this point, without loss of generality, we suppose q ≤ TAn . Now we set εQA = 1
n

and note that TAn ≤ n× TA, and then we have

εQAn −
√
TAn × 2

−f(κ)
2 ≥ εQAn −

√
nTA
2f(κ)

= εQAn −
√

TA

2f(κ)εQA
.

Now from the first assumption TA
εQA

< 2f(κ)−g(κ) in this proof, the following

inequalities are satisfied as

εPAn ≥ ε
Q
An −

√
TA

2f(κ)εQA

> εQAn −
√

2−g(κ)

= 1− (1− εQA)n −
√

2−g(κ)

> 1− e−1 −
√

2−g(κ)

from εQA = 1
n and (1− εQA)n = (1− 1

n )n < e−1.

Meanwhile, considering union bound, we can notice that εPAn ≤ n × εPA.
Reminding the initial condition εPA ≤

TA
2κ , we have

εPAn ≤
nTA
2κ

=
TA

2κεQA
< 2f(κ)−g(κ)−κ.

Summarizing the above results, we have

1− e−1 −
√

2−g(κ) < εPAn < 2f(κ)−g(κ)−κ. (2)

We notice that if the inequality

1− e−1 −
√

2−g(κ) ≥ 2f(κ)−g(κ)−κ (3)

holds, (2) becomes contradiction. We want to find a sufficient condition to de-
rive the contradiction in the proof in order to draw out the contradiction on
the first assumption. Since we supposed that g(·) is an increasing function, the
left hand side of (3) monotonically increases as g(κ) increases. In contrary, for
fixed value f(κ), the right hand side of (3) monotonically decreases as g(κ) in-
creases. Thus the left hand side and the right hand side equations meet at one
point. The inequality is reversed at that point. This fact implies that if we con-
sider the equality in (3), we can have the tightest extreme case. Through some
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computation, we can solve the equality equation in (3) as

1− e−1 −
√

2−g(κ) = 2f(κ)−g(κ)−κ

⇐⇒ 2f(κ)−κ × 2−g(κ) +
√

2−g(κ) − (1− e−1) = 0

⇐⇒
√

2−g(κ) =

√
1 + 2f(κ)−κ+2(1− e−1)− 1

2f(κ)−κ+1

⇐⇒ −g(κ) = 2{log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)− (f(κ)− κ+ 1)}

= 2 log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)− 2f(κ) + 2κ− 2.

Thus we have

f(κ)− g(κ)

= 2log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)− f(κ) + 2κ− 2.

Then we can conclude that SQ preserves at least (2log2(
√

1 + 2f(κ)−κ+2(1− e−1)−
1)−f(κ)+2κ−2)-bit security. To maintain Theorem 3 meaningful, the obtained
security level should be non-negative. Thus, the condition f(κ)−g(κ) ≥ 0 should
be satisfied. This fact implies that the following inequalities are satisfied as

f(κ)− g(κ) ≥ 0

⇐⇒ 2 log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1) ≥ f(κ)− 2κ+ 2

⇐⇒
√

1 + 2f(κ)−κ+2(1− e−1) ≥ 2
f(κ)−2κ+2

2 + 1

⇐⇒ 2f(κ)−κ+2(1− e−1) ≥ 2f(κ)−2κ+2 + 2
f(κ)−2κ+4

2

⇐⇒ 2
f(κ)

2 −κ+2(1− e−1 − 2−κ) ≥ 2−κ+2

⇐⇒ 2
f(κ)

2 ≥ 1

1− e−1 − 2−κ

⇐⇒ f(κ) ≥ −2 log2(1− e−1 − 2−κ).

Thus, we can conclude that f(κ) should satisfy the condition

f(κ) ≥ −2log2(1− e−1 − 2−κ)

for applying Theorem 3. Once this condition is satisfied, we can arbitrary set
f(κ) value whatever we want. The detailed applying example of Theorem 3 will
be dealt with at following remark. Thus, we finish the proof. 2

Remark. Let’s take a look at an application of Theorem 3. At the end of Section
5.3 in [1], Micciancio and Walter argued that for a given set of parameters, if
we denote P as a perfect Gaussian distribution and Q as an output of the
new sampler, ∆ML(P,Q) ≤ 2−52 is satisfied. They applied their Lemma 3 in
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Fig. 1. Varying security level of SQ where f(κ) is fixed as 104.

[1] to analyze the security, but Lemma 3 in [1] has limitation that it can only
be applied for SP whose security level κ satisfies κ ≤ 104. In general, 104-bit
security is not enough. While in many situations, we want to be guaranteed at
least 128-bit security, Lemma 3 in [1] cannot be applied for κ = 128 case. In other
words, Lemma 3 in [1] cannot give any information for κ > 104. Contrary to
this, we can apply Theorem 3 for these cases. Suppose SP is 128-bit secure and
∆ML(P,Q) ≤ 2−52. We can arbitrary set as f(128) = 104 (i.e., ∆ML(P,Q) ≤
2−52 = 2−

f(128)
2 ) because the following inequality f(128) = 104 > −2 log2(1 −

e−1−2−128) ≈ 1.32 is trivially satisfied. Then, we can conclude that SQ preserves

at least (2 log2(
√

1 + 2f(128)−128+2(1− e−1)−1)−f(128)+2×128−2) ≈ 102.676-
bit security from Theorem 3.

Figure 1 indicates the varying security level of SQ where f(κ) is fixed as
104. Summarizing the discussion so far, we can interpret our Theorem 3 as
follows. Through Theorem 3, we can estimate the affects on security level when

κ-bit secure original scheme is implemented on f(κ)
2 -bit precision system. In the

previous work [1], f(κ) was fixed as κ, but our Theorem 3 is generalized to make

it possible to security level κ and precision f(κ)
2 variate independently. Through

Theorem 3, we can provide the theoretic ground on how security level of 128-bit
security scheme may change if it is implemented on 32-bit or 64-bit precision
system. Following Figure 2 is a 3-dimensional plot which indicates the security
level of SQ determined by κ and f(κ).

Until now, we have given tighter and more generalized versions of Micciancio
and Walter’s results which were introduced [1,2]. However, Theorems 1, 2, 3,
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Fig. 2. Varying security level of SQ with respect to κ and f(κ).

and Lemma 1 can only be applied with λ-efficient measure δ. There are sev-
eral information-theoretic measures which are used to analyze security reduc-
tion. Among them, only the max-log distance ∆ML has been proven that it is
a λ-efficient measure. As we already took a look at Corollary 2, we can apply
Theorems 1 and 3 also with δRE from Lemma 6 in [1]. But, we can’t apply our
theorems with RDα, ∆SD, and ∆KL directly. Thus, we have undertaken further
research to find out additional results for other measures. Those results are given
in the last two theorems and one corollary. Theorem 4 deals with infinity order
of RD, which is well-known to be closely related to ∆ML. Theorem 4 considers
only the case that adversary is in resource restricted environment. This kind
of premise is not that impractical, but actually practically meaningful, e.g., the
situation that adversary should succeed the attack within short time.

Theorem 4. [Applying to adversary in resource restricted environment] Let
SP and SQ be standard cryptographic schemes with black-box access to proba-
bility distribution ensembles Pθ and Qθ, respectively. If SP is κ-bit secure and
RD∞(Qθ||Pθ) ≤ 2

1
κn , then SQ is (κ − TA

κn )-bit secure, where TA ≤ κn+1 (i.e.,
adversary’s time resources are restricted).
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Proof. Notations are the same as the proofs of the previous theorems. From the
definition and the probability preservation property of RD∞, we have

RD∞(GQS,A||G
P
S,A) = max

x∈Supp(Q)
(
GQS,A(x)

GPS,A(x)
) ≥

εQA
εPA
.

Then, by applying multiplicative property and data processing inequality of
RD∞, we also have

RD∞(GQS,A||G
P
S,A) ≥

εQA
εPA
⇐⇒

εPA ≥
εQA

RD∞(GQS,A||GPS,A)

≥
εQA

RD∞(Qθ||Pθ)q
≥

εQA

RD∞(Qθ||Pθ)TA
.

Here, we assume that q ≤ TA as usual. From the given condition of Theorem 4,
we know that TA

εPA
≥ 2κ is satisfied, and thus we have the following inequalities

as

2−κ ≥ εPA
TA
≥
εQA
TA

1

RD∞(Qθ||Pθ)TA
≥
εQA
TA
× 2

−TA
κn

⇐⇒ 2−κ+
TA
κn ≥

εQA
TA

⇐⇒ TA

εQA
≥ 2κ−

TA
κn

⇐⇒ log2(
TA

εQA
) ≥ κ− TA

κn
.

Therefore, we can conclude that SQ preserves at least (κ− TA
κn )-bit security. To

maintain Theorem 4 meaningful, TA should satisfy the condition TA ≤ κn+1

because the obtained security level should be non-negative. Now, we finish the
proof. 2

However, the most widely used information-theoretic measure to analyze se-
curity reduction between two cryptographic schemes is the statistical distance
∆SD. It is important to estimate how much ∆SD value between two different
probability distributions affect on the security level. We can provide the theo-
retic guideline for the relationship between ∆SD and the security level in the
following theorem.

Theorem 5. Let SP and SQ be standard cryptographic schemes with black-
box access to probability distribution ensembles Pθ and Qθ, respectively. If SP
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is κ-bit secure and ∆SD(Pθ, Qθ) ≤ 2−h(κ), then SQ is log2
1

2−κ+2−h(κ)
-bit secure.

Here, h(κ) should satisfy h(κ) ≥ − log2 (1− 1
2κ ), where κ is the security level of

SP .

Proof. Notations are the same as the proofs of the previous theorems. From the
probability preservation property of ∆SD, we have

∆SD(GPS,A, G
Q
S,A) ≥ εQA − ε

P
A.

Then, applying additive property, data processing inequality, and q ≤ TA, we
can derive the following inequalities as

∆SD(GPS,A, G
Q
S,A) ≥ εQA − ε

P
A

⇐⇒ εPA ≥ ε
Q
A −∆SD(GPS,A, G

Q
S,A)

≥ εQA −∆SD(Pθ, Qθ)× q

≥ εQA −∆SD(Pθ, Qθ)× TA.

From the given condition of Theorem 5, we know that TA
εPA
≥ 2κ is satisfied, and

thus we have the following inequalities as

2−κ ≥ εPA
TA
≥
εQA
TA
−∆SD(Pθ, Qθ) ≥

εQA
TA
− 2−h(κ)

⇐⇒ 2−κ + 2−h(κ) ≥
εQA
TA

⇐⇒ TA

εQA
≥ 1

2−κ + 2−h(κ)

⇐⇒ log2
TA

εQA
≥ log2

1

2−κ + 2−h(κ)
.

Then we can conclude that SQ preserves at least log2
1

2−κ+2−h(κ)
-bit security.

To maintain Theorem 5 meaningful, the obtained security level should be non-
negative. Thus the condition log2

1
2−κ+2−h(κ)

≥ 0 should be satisfied and the
following inequalities are satisfied as

log2

1

2−κ + 2−h(κ)
≥ 0

⇐⇒ 1

2−κ + 2−h(κ)
≥ 1

⇐⇒ 2−κ + 2−h(κ) ≤ 1

⇐⇒ h(κ) ≥ − log2(1− 2−κ).

Thus, we can conclude that h(κ) should satisfy the condition

h(κ) ≥ −log2(1− 1

2κ
)
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Fig. 3. Varying security level of SQ with respect to κ and h(κ).

for applying Theorem 5. Now, we finish the proof. 2

From Pinsker’s inequality, for the relationship between ∆SD and ∆KL, the
following inequality is satisfied as

∆SD(P,Q) ≤
√

1

2
∆KL(Q||P ).

Using this formula, we can derive the following corollary without proof.

Corollary 3. If SP is κ-bit secure and ∆KL(Qθ||Pθ) ≤ 21−2h(κ), then SQ

is log2
1

2−κ+2−h(κ)
-bit secure. Here, h(κ) should satisfy h(κ) ≥ − log2 (1− 1

2κ ),

where κ is the security level of SP .

Remark. Similar as Theorem 3, Theorem 5 and Corollary 3 also can be in-
terpreted as follows. Through Theorem 5 (respectively, Corollary 3), we can
estimate the affects on security level when κ-bit secure original scheme is imple-
mented on h(κ)-bit (respectively, (1 − 2h(κ))-bit) precision system. Figure 3 is
a 3-dimensional plot which indicates the security level of SQ determined by κ
and h(κ).
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4 Conclusions and Future Works

In this paper, information-theoretic security reductions from the statistical differ-
ence between probability distributions were derived in terms of various information-
theoretic measures. We provide diverse types of security reduction formulas for
the five kinds of information-theoretic measures, those measures are; ∆SD, RD∞,
δKL, ∆ML, and, δRE . We proposed tighter and more generalized version of se-
curity reductions than those of the previous works [1,2]. These reduction results
are expected to provide information-theoretic methodology to estimate security
loss in situation such as replacing with the different probability distributions.

For future works, we will conduct further research to prove or disprove
whether the bit security reduction results are information-theoretic limit or not.
We are asking the question, “Is the tighter reduction than the proposed one
theoretically possible?” The second research topic is further generalization of
Theorem 4. Up to now, Theorem 4 only can deal with constrained adversary
and even it can be applied only for RD of infinity order. We want to generalize
Theorem 4 to cover arbitrary adversary and arbitrary orders. These might be
interesting future research topics.
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