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Abstract. In this paper, various quantitative information-theoretic se-
curity reductions which correlate statistical difference between two prob-
ability distributions with security level’s gap for two cryptographic schemes
are proposed. Security is the most important prerequisite for crypto-
graphic primitives. In general, there are two kinds of security; one is
computational security, and the other is information-theoretic security.
We focus on the latter one in this paper, especially the view point of bit
security which is a convenient notion to indicate the quantitative security
level. We propose tighter and more generalized version of information-
theoretic security reductions than those of the previous works [1,2]. More
specifically, we obtain about 2.5-bit tighter security reduction than that
in the previous work [2], and we devise a further generalized version of
security reduction in the previous work [1] by relaxing the constraint on
the upper bound of the information-theoretic measure, that is, λ-efficient.
Through this work, we propose the methodology to estimate the affects
on security level when κ-bit secure original scheme is implemented on
p-bit precision system. (Here, p can be set to any value as long as certain
condition is satisfied.) In the previous work [1], p was fixed as κ

2
, but

the proposed scheme is generalized to make it possible for security level
κ and precision p to variate independently. This makes a very big dif-
ference. The previous result cannot provide the exact lower bound value
of security level for the case p 6= κ

2
, but, it can only provide inaccurate

relative information for security level. In contrast to this, the proposed
result can provide the exact lower bound of estimation value of security
level as long as precision p satisfies the certain condition. Moreover, we
provide diverse types of security reduction formulas for the five kinds
of information-theoretic measures. We are expecting that the proposed
schemes could provide an information-theoretic guideline for how much
the two identical cryptographic schemes with different probability dis-
tribution may show the difference in their security level when extracting
their randomness from two different probability distributions. Especially,
the proposed schemes can be used to obtain the quantitative estimation
of how much the statistical difference between the ideal distribution and
the real distribution affects the security level [8,10,11].
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1 Introduction

Nowadays, almost every modern cryptographic primitive depends their security
on some randomness value, which is extracted from a specific probability distri-
bution (e.g., lattice-based cryptographic scheme which extracts its randomness
from discrete Gaussian distribution). In other words, probability distribution
of the cryptographic scheme has an important influence on its security. From
this point of view, a lot of research has been conducted to analyze how security
level changes when the probability distribution for the randomness of the cryp-
tographic scheme is replaced by another probability distribution. Traditionally,
‘probability preservation property (PPP)’ [4,6] has been widely used to correlate
difference between two statistical distributions with adversary’s attack success
probability. This kind of security reduction enables us to compare relative se-
curity level among cryptographic schemes. However only with PPP, we cannot
have any detailed quantitative information for security level. With this motiva-
tion, several researchers have conducted studies to enable quantitative security
analysis. Micciancio and Walter [1,2] deserve to be considered as leaders in this
field. They suggested various quantitative security reductions by information-
theoretic measures and they expressed the security reductions in terms of bit
security. However, we could notice that their reduction results could be further
improved and their results provide clear information only in limited cases.

In this paper, our contributions are given as follows. First, we derive tighter
security reduction bounds than those of Micciancio and Walter. Second, we pro-
pose a further generalized version of Micciancio and Walter’s security reduction
result by relaxing the constraint on the upper bound of the measure, that is,
λ-efficient. Through this work, we manage to propose the methodology to elab-
orately estimate the affects on security level when κ-bit secure original scheme
is implemented on p-bit precision system. (p can be set to any value as long
as certain condition is satisfied.) Third, we provide various types of security
reduction formulas for the five kinds of information-theoretic measures; statis-
tical distance, Rényi divergence, Kullback-Leibler divergence, max-log distance,
and relative error. These measures are often used in cryptography for security
reduction analysis.

This paper is organized as follows. In Section II, we briefly introduce some es-
sential concepts which are necessary to understand our results. Next, in Section
III, we provide three main results, that is, tighter security reductions for cryp-
tographic schemes, further generalized and more accurate security reduction,
and various forms of security reductions expressed by five kinds of information-
theoretic measures. Finally, in Section IV, we conclude the paper and present
the future research directions.
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2 Preliminaries

2.1 Information-Theoretic Measures

There are several widely known information-theoretic measures which are used
to analyze security reduction as follows.
i) Statistical Distance (∆SD)

For any two discrete probability distributions P and Q, the statistical dis-
tance between P and Q is defined as

∆SD(P,Q) =
1

2

∑
x∈Supp(P )∪Supp(Q)

|P (x)−Q(x)|,

where Supp(·) denotes the support set of probability distribution.

ii) Rényi Divergence (RDα)
For any two discrete probability distributions P and Q such that Supp(Q) ⊆

Supp(P ), the Rényi divergence of order α between P and Q is defined as

a) α ∈ (1,∞): RDα(Q||P ) = (
∑

x∈Supp(Q)

Q(x)α

P (x)α−1 )
1

α−1

b) α = 1: RD1(Q||P ) = exp(
∑

x∈Supp(Q)

Q(x)logQ(x)
P (x) )

c) α =∞: RD∞(Q||P ) = max
x∈Supp(Q)

Q(x)
P (x) .

RDα satisfies many attractive features such as probability preservation property,
multiplicative property, data processing inequality, etc [4,5,7].

iii) Kullback-Leibler Divergence (∆KL)
For any two discrete probability distributions P and Q such that Supp(Q) ⊆

Supp(P ), the Kullback-Leibler divergence between P and Q is defined as

∆KL(Q||P ) =
∑

x∈Supp(Q)

Q(x)log
Q(x)

P (x)
.

iv) Max-Log Distance (∆ML)
For any two discrete probability distributions P and Q over the same support

(i.e., Supp(P ) = Supp(Q)), the max-log distance between P and Q is defined as

∆ML(P,Q) = max
x∈Supp(Q)

|lnP (x)− lnQ(x)|.

Note that we should apply ∆ML only in case when the support sets of two dis-
tributions are same.
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v) Relative Error (δRE)
For any two discrete probability distributions P and Q, the relative error

between P and Q is defined as [3]

δRE(P,Q) = max
x∈Supp(P )

|P (x)−Q(X)|
P (x)

.

2.2 Special Kinds of Measures

Micciancio and Walter defined two special kinds of measures in their paper
[1]. Those are ‘useful measure’ and ‘λ-efficient measure’. We will reuse their
definitions.
i) Useful Measure

Any measure δ that satisfies the following three properties is called useful
measure:

a) Probability preservation property: For any event E over the random vari-
able X, we have PrX←P [E] ≥ PrX←Q[E]− δ(P,Q), where X ← P (respec-
tively, X ← Q) denotes that X is sampled from probability distribution P
(respectively, Q). This property makes it possible to bound the probabil-
ity of an event occurring under distribution P in terms of the probability
of the same event occurring under distribution Q and the measure value
δ(P,Q). It is not hard to prove that this property is equivalent to the bound
∆SD(P,Q) ≤ δ(P,Q). This fact implies that δ = ∆SD satisfies this property
for sure.

b) Sub-additivity for joint distributions: Let (Xi)i and (Yi)i be two lists of
discrete random variables over the support

∏
i Si and let’s define X<i =

(X1, ..., Xi−1) (and similar for Y<i). Then

δ((Xi)i, (Yi)i) ≤
∑
i

max
a

δ([Xi|X<i = a], [Yi|Y<i = a]),

where the maximum value is taken over a ∈
∏
j<i Sj .

c) Data processing inequality: δ(f(P ), f(Q)) ≤ δ(P,Q) for any two probability
distributions P , Q and function f(·), i.e., the measure δ does not increase
under additional function application.

ii) λ-Efficient Measure
Consider a measure δ which satisfies the above two properties b) and c).

We call it ‘λ-efficient measure’ if it satisfies the following property d) instead of
property a):

d) Pythagorean probability preservation property (with parameter λ): For any
joint distributions (Pi)i and (Qi)i over support

∏
i Si, if δ(Pi|ai, Qi|ai) ≤ λ

is enjoyed for all i and ai ∈
∏
j<i Sj , then

∆SD((Pi)i, (Qi)i) ≤ ||(max
ai

δ(Pi|ai, Qi|ai))i||
2
.
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2.3 New Notion of Bit Security

For long time, bit security has widely played a role to measure and estimate the
quantitative security level of cryptographic primitives. The traditional defini-
tion of bit security is pretty simple. It is defined as minA{log2

TA
εA
}, where for an

arbitrary adversary A, TA and εA are adversary’s resources and attack success
probability, respectively. Micciancio and Walter designed a new concept of se-
curity game and they defined new notion of bit security in their work [2]. With
their newly devised security game, they redefined the adversary’s advantage.
They provided adversary’s advantage in terms of information-theoretic quanti-
ties. We will cite their definitions as follows.

Definition 1 [Definition 5, [2]] An n-bit security game is played by an ad-
versary A who is interacting with a challenger C. At the beginning of the game,
the challenger chooses a secret c, which is represented by the random variable
C ∈ {0, 1}n, from some distribution DC . At the end of the game, A outputs some
value, which is represented by the random variable A. The goal of the adversary
is to output a value a such that R(c, a), where R is some relation. A may output
a special symbol ⊥ such that R(c,⊥) and Rc(c,⊥) are both false.

Definition 2 [Definition 7, [2]] For any security game with corresponding ran-

dom variable C and A(C), the adversary’s advantage is advA = I(C;Y)
H(C) = 1 −

H(C|Y)
H(C) , where I(·; ·) is the mutual information between two random variables,

H(·) is the Shannon entropy of a random variable, and Y(C,A) is the random
variable with marginal distributions Yc,a = {y|C = c,A = a} defined as follows:

a) Yc,⊥ = ⊥, for all c
b) Yc,a = c, for all (c, a) ∈ R
c) Yc,a = {c′ ← DC |c′ 6= c}, for all (c, a) ∈ Rc.

Definition 3 [Definition 10, [2]] For a search game, the advantage of the adver-

sary A is advA = αAβA and for a decision game, it is advA = αA(2βA − 1)
2
,

where αA =Pr[A 6= ⊥] is output probability, and βA =Pr[R(C,A)|A 6= ⊥] is
conditional success probability.

3 Main Results

Micciancio and Walter found out quantitative security reductions between two
identical cryptographic schemes with all other conditions equal and differing
only in the probability distributions for which the schemes extract the random-
ness [1,2]. Their works made it possible to guess how much security loss would
occur when the defined probability distribution is replaced by another distribu-
tion. In other words, their works have provided information-theoretic guideline
of security level (i.e., how statistical difference of two distribution affects on se-
curity level of cryptographic scheme). However, problems have been raised that
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their results may not be tight enough and provide clear information only in
limited cases. That is, their results give elaborate information only when the
information-theoretic measure values between two probability distributions are
upper bounded by specific fixed value. Otherwise, they can only tell inaccurate
relative information. Due to these problems, it is necessary to bring out the
tighter and the more generalized security reduction. Our first work is tighter
version of Lemma 3 in [1] that is proved by using similar approach to that in [1]
as follows.

Theorem 1. Let SP and SQ be standard cryptographic schemes with black-
box access to probability distribution ensembles Pθ and Qθ, respectively. If SP

is κ-bit secure and δ(Pθ, Qθ) ≤ 2−
κ
2 for some 2−

κ
2 -efficient measure δ, then SQ

is (κ− log2
2

3−2e−1−
√
5−4e−1

) ≈ (κ− 2.374)-bit secure.

Proof. Suppose that TA
εQA

< 2
κ−log2

2

3−2e−1−
√

5−4e−1 is satisfied when an adversary

A satisfies TA
εPA
≥ 2κ. Now, let’s define some notations:

a) GPS,A (respectively, GQS,A): event that an adversary A succeeds in breaking

the scheme SP (respectively, SQ) with the probability εPA =Pr(GPS,A) (re-

spectively, εQA =Pr(GQS,A))

b) [GPS,A]n (respectively, [GQS,A]n): independent n copies of GPS,A (respectively,

GQS,A)

c) εPAn (respectively, εQAn): probability that A wins the security game [GPS,A]n

(respectively, [GQS,A]n) at least once

d) TAn : required resources that A wins the security game [GPS,A]n (respectively,

[GQS,A]n) at least once
e) q: adversary A’s number of queries

Applying probability preservation property and data processing inequality of
∆SD, we have

εPAn ≥ ε
Q
An −∆SD([GPS,A]n, [GQS,A]n)

≥ εQAn −∆SD((θi, Pθi)i, (θ
′
i, Qθ′i)i).

Here, (θi)i(respectively, (θ′i)i) is the sequence of queries made during the

game [GPS,A]n(respectively, [GQS,A]n). Note that at any point during the game,
conditioned on the event Ei that (θj , Pθj )j<i and (θ′j , Qθ′j )j<i take some specific
and the same value, the adversary behaves identically in the two games up to
the point that it makes the i-th query. Especially, the conditional distributions
(θi|Ei) and (θ′i|Ei) are the same and δ((θi|Ei), (θ′i|Ei)) = 0. This fact follows by
sub-additivity for joint distributions that
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δ((θi, Pθi |Ei), (θ′i, Qθ′i |Ei))
≤ δ((θi|Ei), (θ′i|Ei)) + δ(Pθ, Qθ)

≤ 0 + 2−
κ
2 = 2−

κ
2 .

This ensures that we can apply Pythagorean probability preservation prop-
erty, and thus we can guarantee that the following inequalities are also true.

εPAn ≥ ε
Q
An −∆SD((θi, Pθi)i, (θ

′
i, Qθ′i)i)

≥ εQAn −
√
q × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × 2−

κ
2 .

At this point, without loss of generality, we suppose q ≤ TAn . Now we set
εQA = 1

n and note that TAn ≤ n× TA, and then we have

εQAn −
√
TAn × 2

−κ
2 ≥ εQAn −

√
nTA
2κ

= εQAn −
√

TA

2κεQA
.

From the first assumption in the proof, the following inequalities are satisfied
as

εPAn ≥ ε
Q
An −

√
TA

2κεQA

> εQAn −
√

2
−log2

2

3−2e−1−
√

5−4e−1

= 1− (1− εQA)n −
√

2
−log2

2

3−2e−1−
√

5−4e−1

> 1− e−1 −
√

2
−log2

2

3−2e−1−
√

5−4e−1

= 0.1929...

from εQA = 1
n and (1− εQA)n = (1− 1

n )n < e−1.
Meanwhile, considering union bound, we can notice εPAn ≤ n× εPA and reminding

7



initial assumption εPA ≤
TA
2κ , we have

εPAn ≤
nTA
2κ

=
TA

2κεQA

< 2
−log2

2

3−2e−1−
√

5−4e−1

= 0.1929....

Summarizing the above results, we obtain

1− e−1 −
√

2
−log2

2

3−2e−1−
√

5−4e−1 < εPAn

< 2
−log2

2

3−2e−1−
√

5−4e−1 .

After simple computing verification process, we can conclude that the upper and
lower bounds of εPAn are exactly the same. This is definitely a contradiction. This
contradiction must be from the first wrong assumption. Thus finally, we have

TA

εQA
≥ 2

κ−log2
2

3−2e−1−
√

5−4e−1

i.e., we show SQ preserves at least (κ− log2
2

3−2e−1−
√
5−4e−1

)-bit security.

Remark. In the previous work [1], Micciancio and Walter suggested (κ − 3)-
bit security preserving security reduction. We propose (κ − 2.374)-bit security
preserving security reduction in the above theorem. Our result is almost 1-bit
tighter than that of the previous reduction. The 1-bit improvement may seem
minimal, but this improvement will be enhanced in the later results, that is,
Theorem 2 up to 2.5-bit security gains and generalized result in Theorem 3.

In the previous work [9], Genise and Micciancio proposed a novel sampling
algorithm for G-lattices for any modulus q < bk (where the positive integers
b ≥ 2, k ≥ 1 are implicit parameters of the algorithm). Their proposed sampler
SAMPLEG outputs a sample with distribution statistically close to DΛ⊥u (gT ),s

(which denotes the ideal discrete Gaussian distribution defined on lattice coset
Λ⊥u (gT )). In Section 3.2 of [9], they provided quantitative security analysis of how
much security loss would occur when using SAMPLEG instead of DΛ⊥u (gT ),s.
Assuming that a cryptosystem using a perfect sampler for DΛ⊥u (gT ),s is κ-bit
secure, they concluded that swapping DΛ⊥u (gT ),s with SAMPLEG yields about

κ − 2 log(tb2) − 3log log q − 5 bits of security (where t is a tail-cut parameter)
under given conditions. In the process of deriving this result, they used their
Corollary 1, Proposition 1, and Lemma 3 in [1]. The important point here is
that they applied Lemma 3 in [1] to obtain this result. Because our Theorem
1 provides almost 1-bit tighter security reduction than that of Lemma 3 in [1],
we can expect to obtain additional security gains if we apply our Theorem 1 in
place of Lemma 3 in [1].
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It is well known that ∆ML and ∆KL are λ-efficient measures for λ ≤ 1
3 and

λ ≤ 2
9 , respectively, [1,2]. Thus we could derive the following corollaries easily

from Theorem 1.

Corollary 1. If SP is κ-bit secure and ∆ML(Pθ, Qθ) ≤ 2−
κ
2 (≤ 1/3), then

SQ is (κ− 2.374)-bit secure.

Corollary 2. If SP is κ-bit secure and ∆KL(Qθ||Pθ) ≤ 2−
κ
2 (≤ 2/9), then

SQ is (κ− 2.374)-bit secure.

Also, from Lemma 6 in [1], we have the relation∆ML(P,Q) ≤ − ln(1− δRE(P,Q)),
so we can naturally derive the following corollary.

Corollary 3. If SP is κ-bit secure and δRE(Pθ, Qθ) ≤ 1− e−2
−κ

2 (≤ 1− e− 1
3 ),

then SQ is (κ− 2.374)-bit secure.

In [2], Micciancio and Walter supported and justified their new “bit security”
definition by proving a number of technical results, including an application to
the security analysis of indistinguishability primitives (e.g., encryption schemes)
making use of (approximate) floating point numbers (refer to Section 5.3 in [2]).
Corollary 2 and Theorem 8 in [2] are their main results. In this paper, we make
both of them further tighter than those in [2]. Following lemma is an improved
version of Corollary 2 in [2].

Lemma 1. For any adversary A with resource T attacking SP and any event E
over A’s output, the probability of E is denoted by γP . The probability of E over
A’s output when attacking SQ is also denoted by γQ. If the efficient measure δ is√

γQ
T

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

-efficient and δ(Pθ, Qθ) ≤
√

γQ
T

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

,

then
γQ ≤ 2×2y

3−2e−1−
√
5−4e−1

× γP ≈ 5.184× γP , where y is sufficiently small positive

real number, i.e., y → 0+.

Proof. Let’s consider the contraposition of Theorem 1, i.e., introduce k that
satisfies the following equation

2
k−log2

2

3−2e−1−
√

5−4e−1
−y

=
T

γQ
(< 2

k−log2
2

3−2e−1−
√

5−4e−1 ),

where y is sufficiently small positive real number.

For proof by contradiction, suppose

γQ >
2× 2y

3− 2e−1 −
√

5− 4e−1
× γP .

Then we have

2
k−log2

2

3−2e−1−
√

5−4e−1
−y

=
T

γQ
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< T/(
2× 2y

3− 2e−1 −
√

5− 4e−1
× γP )

and it implies

2k <
T

γP
. (1)

Meanwhile, according to the contraposition of Theorem 1, if

T

γQ
< 2

k−log2
2

3−2e−1−
√

5−4e−1

is hold, then at least one of 2k > T
γP

or δ(Pθ, Qθ) > 2−
k
2 should be true. Now,

let’s remind the original condition of Lemma 1 such that δ satisfies

δ(Pθ, Qθ) ≤
√
γQ
T

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

and the value k also satisfies

2
k−log2

2

3−2e−1−
√

5−4e−1
−y

=
T

γQ
.

These facts imply that δ(Pθ, Qθ) ≤ 2−
k
2 holds for the selected k. Therefore, by

the contraposition of Theorem 1, 2k > T
γP

should be held but it is contradiction

to (1). It means that the initial assumption must be false. Thus, we have

γQ ≤
2× 2y

3− 2e−1 −
√

5− 4e−1
× γP .

Remark. Corollary 2 in [2] suggested the relation between γP and γQ as γQ ≤
16×γP if efficient measure δ satisfies δ(Pθ, Qθ) ≤

√
γQ
16T (=

√
γQ
T ×0.25). On the

other hand, Lemma 1 proposes the relation between γP and γQ as γQ ≤ 5.184×
γP if efficient measure δ satisfies δ(Pθ, Qθ) ≤

√
γQ
T

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

(≈√
γQ
T × 0.44). We manage to derive more than 3 times tighter relation between

γP and γQ, even though the upper bound of δ(Pθ, Qθ) is larger than that of
Corollary 2 in [2]. This fact implies that Corollary 2 in [2] provides us somewhat
loose reduction.

Using Lemma 1, we could derive the following theorem which gives tighter
(κ− 5.54)-bit security reduction than (κ− 8)-bit security reduction of Theorem
8 in [2]. The following theorem can be used to analyze the security of indistin-
guishability primitives. The proof is similar to that in [2].
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Theorem 2. Let SP and SQ be 1-bit secrecy games with black-box access
to probability ensembles (Pθ)θ and (Qθ)θ, respectively, and δ be a λ-efficient

measure for any λ ≤
√

( 2
3−2e−1−

√
5−4e−1

)−1(≈ 0.44). If SP is κ-bit secure and

δ(Pθ, Qθ) ≤ 2−
κ
2 , then SQ is (κ − log2

18
3−2e−1−

√
5−4e−1

− y) ≈ (κ− 5.544)-bit

secure, where y is sufficiently small positive real number, i.e., y → 0+.

Proof. Consider an arbitrary adversaryA of SP , whose resource is upper bounded
by TA. Define A’s output probability as αAP , and its conditional success proba-

bility as βAP . From the κ-bit security of SP , the inequality αAP (2βAP − 1)
2 ≤ TA

2κ

is satisfied. For proof by contradiction, suppose

αAQ(2βAQ − 1)
2
> TA/2

κ−log2
18

3−2e−1−
√

5−4e−1
−y
.

From Lemma 1, we have

αAP ≥ (
2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1
× αAQ.

The reason why we can apply Lemma 1 is that δ is
√

γQ
TA

√
( 2×2y
3−2e−1−

√
5−4e−1

)
−1

-

efficient measure, because the following inequalities are satisfied as

√
(
3− 2e−1 −

√
5− 4e−1

2
)

>

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

>

√
αAQ
TA

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

≥

√
αAQ(2βAQ − 1)

2

TA

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

=

√
γAQ
TA

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

>

√
2
log2

18×2y

3−2e−1−
√

5−4e−1 × 2−
κ
2

×

√
(

2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1

= 3× 2−
κ
2 > 2−

κ
2 ≥ δ(Pθ, Qθ).

Now, consider ŜP and ŜQ which are somewhat modified version of SP and
SQ. They are almost the same with SP and SQ but the only difference is that
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adversary A can restart the game with totally fresh randomness whenever it
wants. Consider an adversary B against Ŝ that simply runs A until A 6= ⊥
(restarting the game if A = ⊥) and outputs whatever A returns. If we define α
as α =min(αAP , α

A
Q), then adversary B’s resource TB satisfies TB < TA/α. B’s

output probability is αBP = αBQ = 1, and the conditional success probability, i.e.,

the case that successfully solves distinguish problem is βBP = βAP (or βBQ = βAQ)

for ŜP (or ŜQ, respectively). By the properties of λ-efficient measure δ and ∆SD,
we have

βBP ≥ βBQ −
√
TBδ(Pθ, Qθ) ≥ βBQ −

√
TB

2κ
.

Thus, we can have

2βBP − 1 ≥ 2βBQ − 1− 2

√
TB

2κ
.

From the given condition in the theorem, we also have

2βAP − 1 ≤

√
TA

αAP × 2κ

i.e., √
TA

α× 2κ
≥

√
TA

αAP × 2κ
≥ 2βAP − 1

≥ 2βBQ − 1− 2

√
TB

2κ
> 2βBQ − 1− 2

√
TA

α× 2κ

⇒ 3

√
TA

α× 2κ
> 2βBQ − 1 = 2βAQ − 1.

If αAQ ≤ αAP , then we have α = αAQ. Considering our proof by contradiction
assumption, we have

2κ <
9TA

αAQ(2βAQ − 1)
2 < 9× 2

κ−log2
18×2y

3−2e−1−
√

5−4e−1 .

After some computation, we can simplify the above inequality to

1 < y + 1 < log2(3− 2e−1 −
√

5− 4e−1) < −1.374.

This is definitely a contradiction. If αAQ > αAP , then we have α = αAP and we
know that the following inequalities are valid as

(
2× 2y

3− 2e−1 −
√

5− 4e−1
)
−1
× αAQ ≤ αAP

<
9TA

2κ(2βAQ − 1)
2 <

αAQ(3− 2e−1 −
√

5− 4e−1)

2y+1
.

12



By observation, we can notice that the upper bound and the lower bound of αAP
are exactly the same. This fact implies that the inequalities can be reduced to
1 < 1, and thus this case is also a contradiction. Above process tells us that our
initial assumption is false and finally we have

αAQ(2βAQ − 1)
2 ≤ TA/2

κ−log2
18

3−2e−1−
√

5−4e−1
−y

and theorem is clearly proved.

Remark. We propose 2.5-bit tighter security reduction than that of Theorem 8
in [2]. It can be interpreted as being 6 times more secure in terms of the number
of attack trials by adversary. We think that this result is by no means small
improvement. We not only improve the tightness of security reduction, but also
extend the possible ranges of λ value. Theorem 8 in [2] can be applied for λ
which satisfies λ ≤ 1

4 , but we extend its allowed ranges to λ ≤ 0.44.

Theorem 1 improves the work in [1]. However, it still has significant limitations
for its universal use, because we can obtain the exact lower bound of estimation
value of security level by applying Theorem 1 only in case when efficient mea-
sure δ satisfies δ(Pθ, Qθ) ≤ 2−

κ
2 . In other words, we can only obtain inaccurate

relative information about security level by applying Theorem 1 for otherwise.
There are many practical situations that δ(Pθ, Qθ) is much smaller or bigger
than 2−

κ
2 . We need more general criteria and methodology which give us theo-

retic guideline how statistical difference affects on security level of cryptographic
primitives. This motivation enables us to come up with the following theorem.

Theorem 3. [Generalization of Theorem 1] Let SP and SQ be standard cryp-
tographic schemes with black-box access to probability distribution ensembles

Pθ and Qθ, respectively. If SP is κ-bit secure and δ(Pθ, Qθ) ≤ 2−
f(κ)

2 for some

2−
f(κ)

2 -efficient measure δ, then SQ is (2 log2(
√

1 + 2f(κ)−κ+2(1− e−1) − 1) −
f(κ)+2κ−2)-bit secure. Here, f(κ) should satisfy f(κ) ≥ −2 log2(1−e−1−2−κ),
where κ is the security level of SP .

Proof. The overall flow of proof is similar to that of Theorem 1. Considering an
arbitrary adversary A, suppose that if TA

εPA
≥ 2κ is satisfied, then TA

εQA
< 2f(κ)−g(κ)

is also satisfied. Here, without loss of generality, we suppose that g(·) is a mono-
tonically increasing function. The reason why we can suppose like this is that we
are only interested in the value g(κ), not the original form of the function g(·).
Our purpose is finding g(κ), which should be expressed by κ and f(κ). Then,
we will use the same notations a), b), c), d), and e) in the proof of Theorem 1.

Applying probability preservation property and data processing inequality of
∆SD, we have

13



εPAn ≥ ε
Q
An −∆SD([GPS,A]n, [GQS,A]n)

≥ εQAn −∆SD((θi, Pθi)i, (θ
′
i, Qθ′i)i).

Here, (θi)
i
(respectively, (θ′i)

i
) is the sequence of queries made during the

game [GPS,A]n(respectively, [GQS,A]n). Note that at any point during the game,
conditioned on the event Ei that (θj , Pθj )j<i and (θ′j , Qθ′j )j<i take some specific
and the same value, the adversary behaves identically in the two games up to
the point that it makes the i-th query. Especially, the conditional distributions
(θi|Ei) and (θ′i|Ei) are the same and δ((θi|Ei), (θ′i|Ei)) = 0. This fact follows by
sub-additivity for joint distributions that

δ((θi, Pθi |Ei), (θ′i, Qθ′i |Ei))
≤ δ((θi|Ei), (θ′i|Ei)) + δ(Pθ, Qθ)

≤ 0 + 2−
f(κ)

2 = 2−
f(κ)

2 .

This ensures that we can apply Pythagorean probability preservation prop-
erty, and thus we can guarantee that the following inequalities are also true
as

εPAn ≥ ε
Q
An −∆SD((θi, Pθi)i, (θ

′
i, Qθ′i)i)

≥ εQAn −
√
q × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × δ(Pθ, Qθ)2

≥ εQAn −
√
TAn × 2−

f(κ)
2 .

At this point, without loss of generality, we assume q ≤ TAn . Now we set
εQA = 1

n and note that TAn ≤ n× TA, and then we have

εQAn −
√
TAn × 2

−f(κ)
2 ≥ εQAn −

√
nTA
2f(κ)

= εQAn −
√

TA

2f(κ)εQA
.

Now from the first assumption TA
εQA

< 2f(κ)−g(κ) in this proof, the following

inequalities are satisfied as

14



εPAn ≥ ε
Q
An −

√
TA

2f(κ)εQA

> εQAn −
√

2−g(κ)

= 1− (1− εQA)n −
√

2−g(κ)

> 1− e−1 −
√

2−g(κ)

from εQA = 1
n and (1− εQA)n = (1− 1

n )n < e−1.

Meanwhile, considering union bound, we can notice that εPAn ≤ n × εPA.
Reminding the initial condition εPA ≤

TA
2κ , we have

εPAn ≤
nTA
2κ

=
TA

2κεQA
< 2f(κ)−g(κ)−κ.

Summarizing the above results, we have

1− e−1 −
√

2−g(κ) < εPAn < 2f(κ)−g(κ)−κ. (2)

We notice that if the inequality

1− e−1 −
√

2−g(κ) ≥ 2f(κ)−g(κ)−κ (3)

holds, (2) becomes contradiction. We want to find a sufficient condition to de-
rive the contradiction in the proof in order to draw out the contradiction on
the first assumption. Since we assumed that g(·) is an increasing function, the
left hand side of (3) monotonically increases as g(κ) increases. In contrary, for
fixed value f(κ), the right hand side of (3) monotonically decreases as g(κ) in-
creases. Thus the left hand side and the right hand side equations meet at one
point. The inequality is reversed at that point. This fact implies that if we con-
sider the equality in (3), we can have the tightest extreme case. Through some
computation, we can solve the equality equation in (3) as

1− e−1 −
√

2−g(κ) = 2f(κ)−g(κ)−κ

⇐⇒ 2f(κ)−κ × 2−g(κ) +
√

2−g(κ) − (1− e−1) = 0

⇐⇒
√

2−g(κ) =

√
1 + 2f(κ)−κ+2(1− e−1)− 1

2f(κ)−κ+1

⇐⇒ −g(κ) = 2{log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)

− (f(κ)− κ+ 1)}

= 2 log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)

− 2f(κ) + 2κ− 2.
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Thus we have

f(κ)− g(κ)

= 2log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)− f(κ) + 2κ− 2.

Then we can conclude that SQ preserves at least (2log2(
√

1 + 2f(κ)−κ+2(1− e−1)−
1) − f(κ) + 2κ − 2)-bit security. It is not hard to show that the inequality

2log2(
√

1 + 2f(κ)−κ+2(1− e−1) − 1) − f(κ) + 2κ − 2 ≤ κ is satisfied. That is
because the following inequalities are satisfied as

2log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1)− f(κ) + 2κ− 2 ≤ κ

⇐⇒ log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1) ≤ f(κ)− κ+ 2

2

⇐⇒
√

1 + 2f(κ)−κ+2(1− e−1) ≤ 2
f(κ)−κ+2

2 + 1

⇐⇒ 1 + 2f(κ)−κ+2 − e−12f(κ)−κ+2 ≤ 1 + 2f(κ)−κ+2 + 2
f(κ)−κ+4

2 .

Also, to maintain Theorem 3 meaningful, the obtained security level should be
non-negative. Thus, the condition f(κ)− g(κ) ≥ 0 should be satisfied. This fact
implies that the following inequalities are satisfied as

f(κ)− g(κ) ≥ 0

⇐⇒ 2 log2(
√

1 + 2f(κ)−κ+2(1− e−1)− 1) ≥ f(κ)− 2κ+ 2

⇐⇒
√

1 + 2f(κ)−κ+2(1− e−1) ≥ 2
f(κ)−2κ+2

2 + 1

⇐⇒ 2f(κ)−κ+2(1− e−1) ≥ 2f(κ)−2κ+2 + 2
f(κ)−2κ+4

2

⇐⇒ 2
f(κ)

2 −κ+2(1− e−1 − 2−κ) ≥ 2−κ+2

⇐⇒ 2
f(κ)

2 ≥ 1

1− e−1 − 2−κ

⇐⇒ f(κ) ≥ −2 log2(1− e−1 − 2−κ).

Thus, we can conclude that f(κ) should satisfy the condition

f(κ) ≥ −2log2(1− e−1 − 2−κ)

for the theorem. Once this condition is satisfied, we can arbitrarily set f(κ) value
whatever we want. The detailed applying example of Theorem 3 will be dealt
with the following remark. Thus, we finish the proof.

Remark. It is not hard to show that Theorem 3 can be reduced to Theorem 1
when we substitute f(κ) = κ. It only requires some mathematical manipulations
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Table 1. Guaranteed security level of SQ by applying Lemma 3 in [1] and Theorem 3

κ
(Lemma 3 in [1])

κ
(Theorem 3)

104 116 128 104 116 128

f(κ)
104 101 ≥101 ≥101 101.63 102.68 102.68
116 ≥101 113 ≥113 103.31 113.63 114.68
128 ≥101 ≥113 125 103.34 115.31 125.63

as

f(κ) = κ

=⇒ κ− 2 + log2(
√

1 + 4(1− e−1)− 1)

= κ− log2

2

3− 2e−1 −
√

5− 4e−1

≈ κ− 2.374.

Table I indicates guaranteed security level of SQ with respect to security
level parameter κ and precision parameter f(κ), which is obtained by applying
Lemma 3 in [1] and Theorem 3, respectively. From Table I, we can deduce the
following facts. First, Theorem 3 (always) provides additional security gains
compared to Lemma 3 in [1]. Second, we need to pay attention that Lemma 3 in
[1] cannot provide the exact lower bound value of security level of SQ for the case
f(κ) 6= κ, but it can only provide inaccurate relative information. In contrast
to this, Theorem 3 always, without exception, provides the exact lower bound
of estimation value of security level of SQ as long as f(κ) satisfies the condition
f(κ) ≥ −2log2(1− e−1 − 2−κ). Theorem 3 deserves sufficient recognition for its
contribution just by removing the constraints imposed on the precision in the
previous work (in [1], the precision was fixed).

Summarizing the discussion so far, we can interpret Theorem 3 as follows.
Through Theorem 3, we can estimate the affects on security level when κ-bit se-

cure original scheme is implemented on f(κ)
2 -bit precision system. In the previous

work [1], f(κ) was fixed as κ, but Theorem 3 is generalized to make it possible

for security level κ and precision f(κ)
2 to variate independently. Through The-

orem 3, we can provide the theoretic ground on how security level of 128-bit
security scheme may change if it is implemented on 32-bit or 64-bit precision
system. Figure 1 shows a 3-dimensional plot which indicates the security level
of SQ determined by κ and f(κ).

Until now, we have given tighter and more generalized versions of Micciancio
and Walter’s results which were introduced in [1,2]. However, Theorems 1, 2, 3,
and Lemma 1 can only be applied with λ-efficient measure δ. There are several
information-theoretic measures which are used to analyze security reduction.
Among them, only the max-log distance ∆ML and the Kullback-Leibler diver-
gence ∆KL have been proven that those are λ-efficient measures. As we already
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Fig. 1. Security level of SQ with respect to κ and f(κ).

took a look at Corollary 3, we can apply Theorems 1, 2, and 3 also with δRE
from Lemma 6 in [1]. But, we can’t apply our theorems with RDα and ∆SD di-
rectly. Thus, we have undertaken further research to find out additional results
for other measures. Those results are given in the last two theorems. Theorem
4 deals with infinity order of RD, which is well-known to be closely related to
∆ML. Theorem 4 considers only the case that adversary is in resource restricted
environment (so that the adversary’s number of attack trials is limited). This
kind of premise is not that impractical, but actually practically meaningful, e.g.,
consider the situation that adversary should succeed the attack within limited
time.

Theorem 4. [Applying to adversary in resource restricted environment] Let
SP and SQ be standard cryptographic schemes with black-box access to proba-
bility distribution ensembles Pθ and Qθ, respectively. Consider the adversary A
whose number of queries is upper bounded by q (i.e., adversary’s attack resources
are restricted). If SP is κ-bit secure and RD∞(Qθ||Pθ) ≤ 1 + 2−p(κ), then SQ is

(κ− q×2−p(κ)
ln 2 )-bit secure. Here, p(κ) should satisfy p(κ) ≥ − log2(ln 2κ) + log2 q,

where κ is the security level of SP .
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Proof. Notations are the same as the proofs of the previous theorems. From the
definition and the probability preservation property of RD∞, we have

RD∞(GQS,A||G
P
S,A) = max

x∈Supp(Q)
(
GQS,A(x)

GPS,A(x)
) ≥

εQA
εPA
.

Then, by applying multiplicative property and data processing inequality of
RD∞, we also have

RD∞(GQS,A||G
P
S,A) ≥

εQA
εPA
⇐⇒

εPA ≥
εQA

RD∞(GQS,A||GPS,A)
≥

εQA
RD∞(Qθ||Pθ)q

.

Note that from the definition of natural constant e, the following inequalities are
satisfied as

RD∞(Qθ||Pθ)q ≤ (1 + 2−p(κ))
q
≤ eq×2

−p(κ)

= 2log2 e
q×2−p(κ)

.

From the given condition of Theorem 4, we know that TA
εPA
≥ 2κ is satisfied, and

thus we have the following inequalities as

2−κ ≥ εPA
TA
≥
εQA
TA

1

RD∞(Qθ||Pθ)q
≥
εQA
TA
× 2− log2 e

q×2−p(κ)

⇐⇒ 2−κ+log2 e
q×2−p(κ)

≥
εQA
TA

⇐⇒ TA

εQA
≥ 2κ−log2 e

q×2−p(κ)

⇐⇒ log2(
TA

εQA
) ≥ κ− log2 e

q×2−p(κ)

= κ− q × 2−p(κ)

ln 2
.

Therefore, we can conclude that SQ preserves at least (κ− q×2−p(κ)
ln 2 )-bit security.

It is trivial that the inequality κ − q×2−p(κ)
ln 2 ≤ κ is satisfied. Also, to maintain

Theorem 4 meaningful, the obtained security level should be non-negative. Thus

the condition κ− log2 e
q×2−p(κ) ≥ 0 should be satisfied and the following in-
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equalities are satisfied as

κ− log2 e
q×2−p(κ) ≥ 0

⇐⇒ κ ≥ log2 e
q×2−p(κ)

⇐⇒ 2κ ≥ eq×2
−p(κ)

⇐⇒ p(κ) ≥ − log2(
ln 2κ

q
) = − log2(ln 2κ) + log2 q.

Thus we can conclude that p(κ) should satisfy the condition

p(κ) ≥ − log2(ln 2κ) + log2 q

for the theorem. Now, we finish the proof.

Remark. We derived security reduction formula in terms of RD∞. Actually,
it may be possible to derive security reduction in terms of RD∞ as a corol-
lary from security reduction in terms of ∆ML, because RD∞ and ∆ML are
closely related. However, we found that eliciting an independent security reduc-
tion for RD∞ is also an interesting research topic. From the condition p(κ) ≥
− log2(ln 2κ) + log2 q, which should be satisfied to apply Theorem 4, we can no-
tice that if the number of queries of adversary increases, p(κ) should also increase
(i.e., the statistical similarity between Qθ and Pθ should be closer) to achieve
the same target security level. This fact fits well with our general intuition. Note
that Rényi divergence-based security analysis can provide significant gains when
the number of queries of adversary is restricted and the search problem is given.

However, the most widely used information-theoretic measure to analyze se-
curity reduction between two cryptographic schemes is the statistical distance
∆SD. It is important to estimate how much ∆SD value between two different
probability distributions affect on the security level. We can provide the theo-
retic guideline for the relationship between ∆SD and the security level in the
following theorem.

Theorem 5. Let SP and SQ be standard cryptographic schemes with black-
box access to probability distribution ensembles Pθ and Qθ, respectively. If SP

is κ-bit secure and ∆SD(Pθ, Qθ) ≤ 2−h(κ), then SQ is log2
1

2−κ+2−h(κ)
-bit secure.

Here, h(κ) should satisfy h(κ) ≥ − log2 (1− 1
2κ ), where κ is the security level of

SP .

Proof. Notations are the same as the proofs of the previous theorems. From the
probability preservation property of ∆SD, we have

∆SD(GPS,A, G
Q
S,A) ≥ εQA − ε

P
A.

Then, applying additive property, data processing inequality, and q ≤ TA, we
can derive the following inequalities as

∆SD(GPS,A, G
Q
S,A) ≥ εQA − ε

P
A
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⇐⇒ εPA ≥ ε
Q
A −∆SD(GPS,A, G

Q
S,A)

≥ εQA −∆SD(Pθ, Qθ)× q

≥ εQA −∆SD(Pθ, Qθ)× TA.

From the given condition of Theorem 5, we know that TA
εPA
≥ 2κ is satisfied, and

thus we have the following inequalities as

2−κ ≥ εPA
TA
≥
εQA
TA
−∆SD(Pθ, Qθ) ≥

εQA
TA
− 2−h(κ)

⇐⇒ 2−κ + 2−h(κ) ≥
εQA
TA

⇐⇒ TA

εQA
≥ 1

2−κ + 2−h(κ)

⇐⇒ log2
TA

εQA
≥ log2

1

2−κ + 2−h(κ)
.

Then we can conclude that SQ preserves at least log2
1

2−κ+2−h(κ)
-bit security. It is

trivial that the inequality log2
1

2−κ+2−h(κ)
≤ κ is satisfied. Also, to maintain The-

orem 5 meaningful, the obtained security level should be non-negative. Thus the
condition log2

1
2−κ+2−h(κ)

≥ 0 should be satisfied and the following inequalities
are satisfied as

log2

1

2−κ + 2−h(κ)
≥ 0

⇐⇒ 1

2−κ + 2−h(κ)
≥ 1

⇐⇒ 2−κ + 2−h(κ) ≤ 1

⇐⇒ h(κ) ≥ − log2(1− 2−κ).

Thus, we can conclude that h(κ) should satisfy the condition

h(κ) ≥ −log2(1− 1

2κ
)

for the theorem. Now, we finish the proof.

Remark. To the best of our knowledge, Theorem 5 is a first attempt to pro-
vide generalized security reduction with arbitrary precision in terms of ∆SD in
completed form. Similar to Theorem 3, Theorem 5 also can be interpreted as
follows. Through Theorem 5, we can estimate the affects on security level when
κ-bit secure original scheme is implemented on h(κ)-bit precision system. Figure
2 shows a 3-dimensional plot which indicates the security level of SQ determined
by κ and h(κ).
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Fig. 2. Security level of SQ with respect to κ and h(κ).

From Theorem 5, we can derive some corollaries. First, from Pinsker’s in-
equality, for the relationship between ∆SD and ∆KL, the following inequality is
satisfied as

∆SD(P,Q) ≤
√

1

2
∆KL(Q||P ).

Using this formula, we can derive the following corollary without proof.

Corollary 4. If SP is κ-bit secure and ∆KL(Qθ||Pθ) ≤ 21−2h(κ), then SQ

is log2
1

2−κ+2−h(κ)
-bit secure. Here, h(κ) should satisfy h(κ) ≥ − log2 (1− 1

2κ ),

where κ is the security level of SP .

Also, in [1], the following relation was proved as

∆KL(Q||P ) ≤ 8

9
δRE(P,Q)2.

Using this formula, we can derive the following corollary without proof.

Corollary 5. If SP is κ-bit secure and δRE(Pθ, Qθ) ≤ 3
2
√
2
2

1−2h(κ)
2 , then SQ

is log2
1

2−κ+2−h(κ)
-bit secure. Here, h(κ) should satisfy h(κ) ≥ − log2 (1− 1

2κ ),
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where κ is the security level of SP .

Finally, from Lemma 6 in [1], which indicates the relation between ∆ML and
δRE , we can also derive the following corollary.

Corollary 6. If SP is κ-bit secure and ∆ML(Pθ, Qθ) ≤ ln( 3
2
√
2
2

1−2h(κ)
2 + 1), then

SQ is log2
1

2−κ+2−h(κ)
-bit secure. Here, h(κ) should satisfy h(κ) ≥ − log2 (1− 1

2κ ),

where κ is the security level of SP .

4 Conclusions and Future Works

In this paper, information-theoretic security reductions from the statistical differ-
ence between probability distributions were derived in terms of various information-
theoretic measures. We provided diverse types of security reduction formulas for
the five kinds of information-theoretic measures, those measures are;∆SD, RD∞, δKL, ∆ML,
and δRE . We proposed tighter and more generalized version of security reductions
than those of the previous works [1,2]. These reduction results are expected to
provide information-theoretic methodology to estimate security loss in situation
such as replacing with the different probability distributions.

For future works, we will conduct further research to prove or disprove
whether the proposed quantitative security reduction results achieve information-
theoretic limit or not. We are asking the question, “Is the tighter reduction than
the proposed one theoretically possible?” The second research topic is further
generalization of Theorem 4. Up to now, Theorem 4 only can deal with con-
strained adversary and even it can be applied only for RD of infinity order. We
want to generalize Theorem 4 to cover arbitrary adversary and arbitrary orders.
These might be interesting future research topics.
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via Rényi divergence of optimized orders,” International Conference on Provable
Security, 2015.

8. T. Matsuda, K. Takashashi, and T. Murakami, “Improved security evaluation tech-
niques for imperfect randomness from arbitrary distributions,” 22nd International
Conference on Practice and Theory of Public Key Cryptography, 2019.

9. N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor lattices with
arbitrary modulus,” In Advances in Cryptology - EUROCRYPT 2018, vol. 10820
of Lecture Notes in Computer Science, pp. 174-203, 2018.

10. Y. Dodis and Y. Yu, “Overcoming weak expectations,” in Proc. 10th Theory of
Cryptography Conference (TCC), vol. 7785, pp. 1-22, 2013.

11. M. Backes, A. Kate, S. Meiser, and T. Ruffing, “Secrecy without perfect ran-
domness: Cryptography with (bounded) weak sources,” Applied Cryptography and
Network Security (ACNS) 2015, vol. 9092 of Lecture Notes in Computer Science,
pp. 675-695, 2015.

24


