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Abstract. This paper closes the question of the possibility of two-round
MPC protocols achieving different security guarantees with and without
the availability of broadcast in any given round. Cohen et al. [CGZ20]
study this question in the dishonest majority setting; we complete the
picture by studying the honest majority setting.
In the honest majority setting, given broadcast in both rounds, it is
known that the strongest guarantee — guaranteed output delivery —
is achievable [GLS15]. We show that in this setting, given broadcast in
the first round only, guaranteed output delivery is still achievable. Given
broadcast in the second round only, identifiable abort and all weaker
guarantees are achievable, but fairness — and thus guaranteed output
delivery — are not. Finally, using only peer-to-peer channels, for corrup-
tion thresholds t > 1 we show that the weakest guarantee — selective
abort — is the only one achievable. For t = 1 and n ≥ 4, it is known
[IKP10,IKKP15] that guaranteed output delivery (and thus all weaker
guarantees) are possible. We show that for t = 1 and n = 3 the strongest
achievable guarantee is selective abort, definitively resolving the question
of best achievable guarantees in two-round secure computation protocols.
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1 Introduction

In this paper we advance the study of round-optimal secure computation, fo-
cusing on secure computation with active corruptions, an honest majority, and
some setup (e.g. a public key infrastructure). It is known that in this setting,
secure computation is possible in two rounds. However, most known two-round
protocols in the honest majority setting either only achieve the weakest security
guarantee (selective abort) [ACGJ19], or make use of a broadcast channel in
both rounds [GLS15].

The only exception is the protocol of Cohen et al. [CGZ20], which achieves
secure computation with a stronger guarantee — unanimous abort — for a
dishonest majority (and thus also for an honest majority) with broadcast in the
second round only. Cohen et al. also showed that, given a dishonest majority,
selective abort is the strongest achievable security guarantee with broadcast in
the first round only, and unanimous abort is the strongest achievable guarantee
with broadcast in the second round only.

We make a study analogous to the work of Cohen et al. but in the honest
majority setting. Like Cohen et al., we consider all four broadcast patterns:
broadcast in both rounds, broadcast in the second round only, broadcast in the
first round only, and no broadcast at all. Gordon et al. [GLS15] showed that,
given broadcast in both rounds, the strongest guarantee — guaranteed output
delivery — is achievable. For each of the other broadcast patterns, we ask:

What is the strongest achievable security guarantee in this broadcast
pattern, given an honest majority?

We consider the following secure computation guarantees:

Selective Abort (SA): A secure computation protocol achieves selective
abort if every honest party either obtains the output, or aborts.
Unanimous Abort (UA): A secure computation protocol achieves unan-
imous abort if either all honest parties obtain the output, or they all (unan-
imously) abort.
Identifiable Abort (IA): A secure computation protocol achieves identi-
fiable abort if either all honest parties obtain the output, or they all (unani-
mously) abort, identifying one corrupt party.
Fairness (FAIR): A secure computation protocol achieves fairness if either
all parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.
Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the com-
putation output no matter what the adversary does.

Some of these guarantees are strictly stronger than others. In particular, guar-
anteed output delivery implies identifiable abort (since an abort never happens),
which implies unanimous abort, which in turn implies selective abort. Similarly,
guaranteed output delivery implies fairness, which implies unanimous abort.
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Fairness and identifiable abort are incomparable. In a fair protocol, in case of
an abort, both corrupt and honest parties get less information: corrupt parties
are guaranteed to learn nothing if the protocol aborts, but honest parties may
not learn anything about corrupt parties’ identities. On the other hand, in a
protocol with identifiable abort, in case of an abort corrupt parties may learn
the output, but honest parties will identify at least one corrupt party.

In Table 1, we summarize our results. Like the impossibility results of Cohen
et al., all of our impossibility results hold given arbitrary setup (such as a com-
mon reference string, a public key infrastructure, and correlated randomness).
Our feasibility results require setups of varying complexity. Below we give a very
brief description of our results. In section 1.1 we give a longer overview of our
results, and the techniques we use.

No Broadcast In this setting, we show that if the adversary controls two
or more parties (t > 1), selective abort is the best achievable guarantee. This
completes the picture, since (1) selective abort can indeed be achieved by
the results of Ananth et al. [ACGJ19], and (2) for t = 1, guaranteed output
delivery can be achieved by the results of Ishai et al. [IKP10], [IKKP15].
Broadcast in the First Round Only In this setting, we show that guar-
anteed output delivery — the strongest guarantee — can be achieved.
Broadcast in the Second Round Only In this setting, we show that fair-
ness is impossible if t ≥ n/3, and also if t > 1. If fairness is ruled out, the
best one can hope for is identifiable abort, and we show this can indeed be
achieved given an honest majority.

1.1 Technical Overview

In this section we summarize our results given each of the broadcast patterns in
more detail.

No Broadcast (P2P-P2P) Without a broadcast channel, we show that if an
adversary controls two or more parties (t > 1), only the weakest guarantee
— selective abort — is achievable. Ananth et al. [ACGJ19] give a protocol for
secure computation with selective abort in this setting; we prove that secure
computation with unanimous abort is not achievable.

Result 1 (Cor 1: P2P-P2P, UA, t > 1) Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t > 1.

We prove this by focusing on broadcast, where only one party (the dealer)
has an input bit, and all parties should output that bit. Specifically, we show
that computing broadcast with unanimous abort in two peer-to-peer rounds with
t > 1 is impossible1.
1 It is well known that computing broadcast with guaranteed output delivery requires
t rounds, but this of course does not imply the same for broadcast with unanimous
abort.
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Broadcast
Pattern t

selective
abort

unanimous
abort

identifiable
abort fairness

guaranteed
output
delivery

R1 R2

full full

n
2 ≤ t < n

3 3[GS18,BL18] 3[CGZ20] — —

p2p full 3 3[CGZ20] 7[CGZ20] — —

full p2p 3 7[CGZ20] 7 — —

p2p p2p 3[CGZ20] 7 7 — —

full full

n
3 ≤ t <

n
2

3(Obs 2) 3(Obs 2) 3(Obs 2) 3 3[GLS15]

p2p full 3(Obs 2) 3(Obs 2) 3? (Conj 1) 7(Cor 3) 7

full p2p 3(Obs 2) 3 3(Theorem 7) 3 3(Theorem 7)

p2p p2p 3[ACGJ19] 7(Cor 1) for
t > 1

7 for t > 1 7(Cor 1) for
t > 1

7 for t > 1

full full

t < n
3

3(Obs 2) 3(Obs 2) 3(Obs 2) 3(Obs 2) 3(Obs 2)

p2p full 3(Obs 2) 3(Obs 2) 3(Theorem 8) 7(Cor 4) for
t > 2

7 for t > 2

full p2p 3(Obs 2) 3 3(Theorem 7) 3 3(Theorem 7)

p2p p2p 3(Obs 2) 7(Cor 1) for
t > 1

7 for t > 1 7(Cor 1) for
t > 1

7 for t > 1

p2p p2p

t = 1, n = 2 3(Obs 2) 3 3 (Obs 1) 7 [Cle86] 7

t = 1, n = 3 3(Obs 2) 7(Cor 2) 7 7 (Cor 2) 7

t = 1, n = 4 3 3 3 ([IKKP15]) 3 3 ([IKKP15])

t = 1, n ≥ 5 3 3 3 ([IKP10]) 3 3 ([IKP10])

Table 1: Feasibility and impossibility for two-round MPC with different guar-
antees and broadcast patterns. (The R1 column describes whether broadcast is
available in round 1; the R2 column describes whether broadcast is available
in round 2.) Arrows indicate implication: the possibility of a stronger security
guarantee implies the possibility of weaker ones in the same setting, and the
impossibility of a weaker guarantee implies the impossibility of stronger ones in
the same setting.
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If an adversary controls only one party (t = 1), in Section 3.2 we show that for
n = 3, selective abort is still the strongest achievable guarantee. (Patra and Ravi
[PR18] give a similar result in the absence of a PKI and correlated randomness;
our impossibility result is stronger, as it holds even given arbitrary correlated
randomness.)

Result 2 (Cor 2: P2P-P2P, UA, t = 1, n = 3) Secure computation of gen-
eral functions with unanimous abort cannot be achieved in two rounds of peer-
to-peer communication for corruption threshold t = 1 when n = 3.

For n ≥ 5 and t = 1, Ishai et al. [IKP10] show that the strongest guarantee
— guaranteed output delivery — is achievable in two rounds of peer-to-peer
communication. (A different) Ishai et al. [IKKP15] then show the same for n = 4.
So, our impossibility result for n = 3 completes the picture in the case of one
corrupt party. (Note that, for n = 2 and t = 1, we are no longer in an honest
majority setting, so fairness is known to be impossible [Cle86]. Selective abort in
this setting is possible, and equivalent to both unanimous and identifiable abort,
since an aborting honest party is always in agreement with itself, and can always
identify its only peer as the cheater.)

Broadcast in the First Round Only (BC-P2P) We use the techniques of Cohen
et al. [CGZ20] to compile a protocol which achieves guaranteed output delivery
given two rounds of broadcast (as in Gordon et al. [GLS15]) into a protocol using
broadcast only in the first round.

Result 3 (Theorem 7: BC-P2P, GOD, n ≥ 2t+ 1) Secure computation of
general functions with guaranteed output delivery is possible in two rounds of
communication, only the first of which is over a broadcast channel, for corruption
threshold t such that n ≥ 2t+ 1.

The approach of Cohen et al. is to have each party leverage the available
round of broadcast to reliably communicate a garbled circuit corresponding to
the code they use to compute their second-round message (given their input and
all the first-round messages they receive). Using broadcast in the first round,
parties can also reliably communicate their first-round messages. The remaining
challenge is communicating the labels for the garbled circuits corresponding to
those first-round messages. Cohen et al. use additive secret sharing; in the first
round, parties additively share the labels (for their own garbled circuit), and in
the second round, they forward the shares of labels (for all garbled circuits) cor-
responding to the first-round messages they received. In order to achieve guaran-
teed output delivery rather than unanimous abort, we use (verifiable) threshold
secret sharing instead of additive secret sharing. We also leverage non-interactive
zero knowledge proofs to enforce consistent garbling and secret sharing. We give
the details of this construction in Section 4.2.
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Broadcast in the Second Round Only (P2P-BC) When broadcast is available in
the second round, not the first, it becomes more challenging to achieve fairness
(which is implied by guaranteed output delivery). In Section 3.2, we show that
fairness cannot be achieved with n ≤ 3t.

Result 4 (Cor 3: P2P-BC, FAIR, n ≤ 3t) Secure computation of general func-
tions with fairness cannot be achieved in two rounds of communication, only the
second of which is over a broadcast channel, for corruption threshold t such that
n ≤ 3t.

We show this by arguing that if the protocol is fair and n ≤ 3t, then a
corrupt player can send inconsistent messages in the first round and then use
the second round messages to obtain two different outputs, corresponding to
different choices of her own input – which, of course, violates privacy.

In Section 3.3, we use similar techniques to argue that fairness cannot be
achieved when t > 2 in this setting.

Result 5 (Cor 4: P2P-BC, FAIR, t > 2) Secure computation of general func-
tions with fairness cannot be achieved in two rounds of communication, only the
second of which is over a broadcast channel, for corruption threshold t > 2.

For n > 3t, in Section 4.3 we show how to achieve identifiable abort.

Result 6 (Theorem 8: P2P-BC, ID, n > 3t) Secure computation of general
functions with identifiable abort is achievable in two rounds of communication,
only the second of which is over a broadcast channel, for corruption threshold t
such that n > 3t.

Being limited to peer-to-peer channels in the first round is a more difficult
setting. The main challenge is that a party Pi may send an incorrect message,
or nothing at all, to party Pj in the first round. This may prevent Pj from
doing what she is supposed to in the second round. When Pj complains in the
second round it becomes clear that either Pi or Pj is corrupt, but since we want
identifiable abort, we must either find out who to blame or compute the correct
output anyway, without any further interaction.

We solve this by combining techniques similar to those of Cohen et al. with
a new trick, where Pj will broadcast a key shared with Pi in case something was
wrong in the first round. Then, when Pi broadcasts her second round message
msg2

i , we make sure that either this message is incorrect, so we can blame Pi, or
the shared key from Pj allows honest parties to decrypt enough of the information
in msg2

i to complete the computation.
Finally, we argue that the approach we use for n > 3t cannot extend to

n = 3t, but that we can leverage stronger assumptions (such as correlated ran-
domness and obfuscation) in that setting. We sketch a protocol achieving secure
computation of general functions with identifiable abort using correlated ran-
domness and obfuscation for corruption threshold t such that n > 2t.
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1.2 Open Questions

There are a number of questions still open. First, given a broadcast only in the
second round, it is unknown whether it is possible to get fairness or guaranteed
output delivery with t = 1 and n = 3, and t = 2 and n ≥ 7.

Additionally, in that same setting (given a broadcast only in the second
round), getting a construction achieving identifiable abort with n

3 ≤ t <
n
2 with-

out using correlated randomness or relying on obfuscation is an open problem
(Conj 1 refers to a sketched protocol achieving identifiable abort in that setting
with these flaws. Theorem 8 gives a construction without these flaws, but with
t < n

3 ).

1.3 Related Work

The quest for optimal round-complexity for secure computation protocols is a
well-established topic in cryptography. Starting with the first feasibility results
from almost 35 years ago [Yao86,GMW87,BGW88,CCD88] a lot of progress has
been made in improving the round complexity of protocols [GIKR01,Lin01,CD01]
[IK02,IKP10,IKKP15,GLS15,PR18,ACGJ18,CGZ20]. In this section we detail
the prior work that specifically targets the two-round setting. We divide the
discussion into two: impossibility and feasibility results.

Impossibility Results. Table 2 summarizes the known lower bounds on two-round
secure computation. Gennaro et al. [GIKR02] shed light on the optimal round-
complexity for general MPC protocols achieving fairness without correlated ran-
domness (e.g., PKI). Their model allows for communication over both authenti-
cated point-to-point channels and a broadcast channel. They show that in this
setting, three rounds are necessary for a protocol with at least t ≥ 2 corrupt par-
ties by focusing on the computation of exclusive-or and conjunction functions. In
a slightly different model, where the parties can communicate only over a broad-
cast channel, Gordon et al. [GLS15] show that the existence of a fair two-round
MPC protocol for an honest majority would imply a virtual black-box program
obfuscation scheme, which would contradict the well-known impossibility result
of Barak et al. [BGI+01]. Patra and Ravi [PR18] investigate the three party
setting. They show that three rounds are necessary for generic secure computa-
tion achieving unanimous abort when parties do not have access to a broadcast
channel, and that the same three are necessary for fairness even when parties do
have a broadcast channel.

It is well known that in the dishonest majority setting fairness cannot be
achieved for generic computation [Cle86]. Cohen et al. [CGZ20] study the fea-
sibility of two round secure computation with unanimous and identifiable abort
in the dishonest majority setting. Their results show that considering arbitrary
setup (e.g., a PKI) and communication over point-to-point channels, achieving
unanimous abort in two rounds is not possible even if the parties are addition-
ally allowed to communicate over a broadcast channel only in the first round,
and achieving identifiable abort in two rounds is not possible even if the parties
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Result n t Guarantee CRS? PKI? CR? R1 R2

[GIKR02] any t ≥ 2 fairness 3 7 7 BC + P2P BC + P2P
[GLS15] any t < n

2 fairness 3 7 7 BC BC
[PR18] n = 3 t = 1 fairness 3 7 7 BC + P2P BC + P2P
[PR18] n = 3 t = 1 UA 3 7 7 P2P P2P

[CGZ20] n = 3 t = 2 UA 3 3 3 BC P2P
[CGZ20] n = 3 t = 2 IA 3 3 3 P2P BC

Table 2: Previous impossibility results. Each row in this table describes a setting
where MPC is known to be impossible. “UA” stand for unanimous abort, and
“IA” for identifiable abort.

are additionally allowed to communicate over a broadcast channel only in the
second round.

Feasibility Results. Table 3 summarizes known two-round secure computation
constructions. While three rounds are necessary for fair MPC [GIKR02] for t ≥ 2
(without correlated randomness), Ishai et al. [IKP10] show that it is possible to
build generic two-round MPC with guaranteed output delivery when only a
single party is corrupt (t = 1) for n ≥ 5. Later, [IKKP15] showed the same for
n = 4, and that selective abort is also possible for n = 3.

The work of [GLS15] gives a three round generic MPC protocol that guar-
antees output delivery and is secure against a minority of semi-honest fail-stop
adversaries where parties only communicate over point-to-point channels; the
same protocol can be upgraded to be secure against malicious adversaries if the
parties are also allowed to communicate over a broadcast channel. Moreover,
assuming a PKI, the protocol can be compressed to only two rounds.

For n = 3 and t = 1, Patra and Ravi [PR18] present a tight upper bound
achieving unanimous abort in the setting with point-to-point channels and a
broadcast channel. The protocol leverages garbled circuits, (equivocal) non-
interactive commitment scheme and a PRG. In the same honest majority setting
but for arbitrary n, Ananth et al. [ACGJ18] build four variants of a two-round
protocol. Two of these variants are in the plain model (without setup), with
both point-to-point channels and broadcast available in both rounds. The first
achieves security with unanimous abort and relies on one-way functions, and
the second achieves guaranteed output delivery against fail-stop adversaries and
additionally relies on semi-honest oblivious transfer. Their other two protocols
require a PKI; and achieve guaranteed output delivery against fail-stop and
semi-malicious adversaries.

Finally, Cohen et al. [CGZ20] present a complete characterization of the fea-
sibility landscape of two-round MPC in the dishonest majority setting, for all
broadcast patterns. In particular, they show protocols (without setup) for the
cases of point-to-point communication in both rounds, point-to-point in the first
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Result n t Guarantee PKI? CRS? 1st round 2nd round Assumptions

[IKP10] n ≥ 5 t = 1 GOD 7 7 P2P P2P PRG
[IKKP15] n = 3 t = 1 SA 7 7 P2P P2P PRG
[IKKP15] n = 4 t = 1 GOD 7 7 P2P P2P injective OWF
[GLS15] any t < n

2 M-GOD 3 3 BC + P2P BC + P2P dFHE
[PR18] n = 3 t = 1 UA 3 3 BC + P2P BC + P2P GC, NICOM, eNICOM, PRG

[ACGJ18] any t < n
2 UA 7 7 BC + P2P BC + P2P OWF

[ACGJ18] any t < n
2 FS-GOD 3 7 BC + P2P BC + P2P OWF

[ACGJ18] any t < n
2 FS-GOD 7 7 BC + P2P BC + P2P OWF, SH-OT

[ACGJ18] any t < n
2 FS-GOD / SM-GOD 3 7 BC BC OWF

[CGZ20] any t < n SA 7 3 P2P P2P 2-round OT
[CGZ20] any t < n UA 7 3 P2P BC 2-round OT
[CGZ20] any t < n IA 7 3 BC BC 2-round OT

Table 3: Protocols for secure MPC with two-rounds. “UA” stands for unanimous
abort, “FS-GOD” for guaranteed output delivery against fail-stop adversaries,
“SM-GOD” for guaranteed output delivery against semi-malicious adversaries,
and “M-GOD” for guaranteed output delivery against malicious adversaries.

round and broadcast in the second round, and broadcast in both rounds. The
protocols achieve security with selective abort, unanimous abort and indentifi-
able abort, respectively. All protocols rely on two-round oblivious transfer.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone setting.2

Real-world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupted parties, their respective
private inputs, and an auxiliary input. The protocol is executed in rounds (i.e.,
the protocol is synchronous), where each round consists of the send phase and
the receive phase, where parties can respectively send the messages from this
round to other parties and receive messages from other parties. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. (Given a PKI and a broadcast channel,
such a fully connected point-to-point network can be instantiated.)

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
2 We note that our security proofs can translate to an appropriate (synchronous)

composable setting with minimal changes.
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instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output,
the corrupt parties produce no output, and the adversary outputs an arbitrary
function of its view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort, id-abort,
fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let
I ⊆ [n], of size at most t, be the set of indices of the corrupted parties. Then,
the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux to S and security parameter λ, denoted IDEALtype

f,I,S(aux)(x, λ),
is defined as the output vector of P1, . . . , Pn and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi
to the trusted party. The adversary may send to the trusted party arbitrary
inputs for the corrupted parties. Let x′i be the value actually sent as the input
of party Pi.

2. Trusted party answers adversary: The trusted party computes y = f(x′1, . . . , x′n).
If there are no corrupted parties or type = god, proceed to step 4.
(a) If type ∈ {sl-abort, un-abort, id-abort}: The trusted party sends y to S.
(b) If type = fairness: The trusted party sends ready to S.

3. Adversary S responds to trusted party:
(a) If type = sl-abort: The adversary S can select a set of parties that will

not get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing
all parties to obtain the output.) It sends (abort,J ) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The adversary can send abort to the trusted
party. If it does, we take J = [n] \ I.

(c) If type = id-abort: If it chooses to abort, the adversary S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n] \ I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the adversary S,

i. It sets the abort message abortmsg, as follows:

10



– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ J , and
y to every party Pj, j ∈ [n] \ J .

Note that, if type = god, we will never be in this setting, since S was
not allowed to ask for an abort.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupted parties output nothing, The adversary S outputs
an arbitrary function of the initial inputs {xi}x∈I , the messages received by
the corrupted parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type ∈ {sl-abort, un-abort, id-abort, fairness, god}. Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely computes
the function f with type security if for every PPT real-world adversary A there
exists a PPT simulator S such that for every I ⊆ [n] of size at most t, it holds
that{

REALΠ,I,A(aux)(x, λ)
}
x∈({0,1}∗)n,λ∈N

c
≡
{

IDEALtype
f,I,S(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N

.

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol Π as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msgi,
to compute Pi’s first messages to its peers; snd-msgi, to compute Pi’s second
messages; and outputi, to compute Pi’s output. Thus, a protocol Π can be
defined as {(frst-msgi, snd-msgi, outputi)}i∈[n].

The syntax of the algorithms is as follows:

– frst-msgi(xi, ri) → (msg1,i→1, . . . ,msg1,i→n) produces the first-round mes-
sages of party Pi to all parties. Note that a party’s message to itself can be
considered to be its state.

– snd-msgi(xi, ri,msg1,1→i, . . . ,msg1,n→i)→ (msg2,i→1, . . . ,msg2,i→n) produces
the second-round messages of party Pi to all parties.

– outputi(xi, ri,msg1,1→i, . . . ,msg1,n→i,msg2,1→i, . . . ,msg2,n→i)→ yi produces
the output returned to party Pi.

Throughout our negative results, we omit the randomness r, and instead
focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

11



3 Negative Results

For some of our negative results, we leverage similar negative results for broad-
cast (or byzantine agreement). To show that guaranteed output delivery is im-
possible in two rounds of peer-to-peer communication, we can use the fact that
broadcast cannot be realized in two rounds for t > 1 [FL82,DS83]. To show
the impossibility of weaker guarantees such as unanimous abort in this setting,
we prove (in Section 3.1) that a weaker flavor of broadcast, called (weak) de-
tectable broadcast [FGMv02] — where all parties either learn the broadcast bit,
or unanimously abort — cannot be realized in two rounds either.

Of course, these techniques do not suffice to prove impossibility when at least
one round of broadcast is available. In Sections 3.2 and 3.3, we leverage a protocol
property which we call last message resiliency to prove several impossibility
results in those settings. Informally, a protocol is last message resilient if its
output function can produce the correct output given only a subset of the last
round messages.

3.1 Impossibility of Weak Detectable Broadcast in Two Rounds
We state the definitions of broadcast and detectable broadcast (from Fitzi et
al. [FGMv02]) below.
Definition 4 (Broadcast). A protocol among n parties, where the dealer D =
P1 holds an input value x ∈ {0, 1} and every other party Pi, i ∈ [2, . . . , n] outputs
a value yi ∈ {0, 1}, achieves broadcast if it satisfies the following two conditions:

Validity: If the dealer D is honest then all honest parties Pi output yi = x.
Consistency: All honest parties output the same value y2 = · · · = yn = y.

Definition 5 (Detectable Broadcast). A protocol among n parties achieves
detectable broadcast if it satisfies the following three conditions:

Correctness: All honest parties unanimously accept or unanimously reject
the protocol. If all honest parties accept then the protocol achieves broadcast.
Completeness: If all parties are honest then all parties accept.
Fairness: If any honest party rejects the protocol then the adversary gets no
information about the dealer’s input x.

We additionally define weak detectable broadcast.
Definition 6 (Weak Detectable Broadcast). A protocol among n parties
achieves weak detectable broadcast if it satisfies only the correctness and com-
pleteness requirements of detectable broadcast.

An alternative way of viewing broadcast, through the lense of secure com-
putation, is by considering the simple broadcast function fbc(x,⊥, . . . ,⊥) =
(⊥, x, . . . , x) which takes an input bit x from the dealer D = P1, and outputs
that bit to all other parties. Broadcast (Definition 4) is exactly equivalent to
computing fbc with guaranteed output delivery; detectable broadcast (Defini-
tion 5) is equivalent to computing it with fairness; and weak detectable broadcast
(Definition 6) is equivalent to computing it with unanimous abort.
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Theorem 1. Weak detectable broadcast cannot be achieved in two rounds of
peer-to-peer communication for corruption threshold t > 1.

Proof. We prove Theorem 1 by contradiction. We let

Πwdbc = {(frst-msgi, snd-msgi, outputi)}i∈[1,...,n]

be the description of the two-round weak detectable broadcast protocol. (We use
the notation we introduce for two-round secure computation in Section 2.2, and
consider the weak detectable broadcast protocol to be a secure computation with
unanimous abort of fbc. We let x1 = x denote the bit being broadcast by the
dealer D = P1, and xi = ⊥ for i ∈ [2, . . . , n] be placeholders for other parties’
inputs.)

Below we describe a sequence of adversarial strategies with two corruptions
(t = 2). The dealer D = P1 is corrupt in all of these; at most one of the receiving
parties P2, . . . , Pn is corrupt at a time. Each subsequent strategy clearly requires
certain parties to output certain values, by the definition of weak detectable
broadcast. In the last strategy, we see a contradiction, where one party must
output both 0 and 1. Therefore, Πwdbc could not have been a weak detectable
broadcast protocol.
In all of the strategies below, we let msgb,i→j denote a party Pi’s bth-round
message to party Pj ; we only specify how these messages are generated when
this is done dishonestly.

Strategy 1:
Behavior: All parties behave honestly. D executes the protocol with x = 0.
Output: By completeness, all honest parties must accept the protocol. By
correctness, the protocol must thus achieve broadcast. By validity, all honest
parties must output 0.
Strategy 2M :
Behavior: D and P2 behave maliciously. D computes two different sets of
first-round messages, using different inputs x = 0 and x = 1, as follows:

(msg(0)
1,1→1, . . . ,msg(0)

1,1→n)← frst-msg1(x = 0)

(msg(1)
1,1→1, . . . ,msg(1)

1,1→n)← frst-msg1(x = 1)

D sends msg(0)
1,1→3, . . . ,msg(0)

1,1→n to parties P3, . . . , Pn.
Party P2 then computes two different sets of second-round messages, as fol-
lows:

(msg(0)
2,2→1, . . . ,msg(0)

2,2→n)← snd-msg2(⊥,msg(0)
1,1→2,msg1,2→2, . . . ,msg1,n→2)

(msg(1)
2,2→1, . . . ,msg(1)

2,2→n)← snd-msg2(⊥,msg(1)
1,1→2,msg1,2→2, . . . ,msg1,n→2)

P2 sends msg(1)
2,2→n to Pn (pretending, essentially, that D dealt a 1), and

msg(0)
2,2→i to other parties Pi (pretending that D dealt a 0). In the second

round, all parties compute their messages honestly; D uses x = 0.
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Output: P3, . . . , Pn−1 must accept and output 0, since their views are iden-
tical to those in the previous game. By correctness, Pn must also accept. By
consistency, Pn must also output 0.
Strategy 2H :
Behavior: P2 is honest again; D is still malicious. D sends msg(1)

1,1→2 to P2, and
msg(0)

1,1→i to other parties Pi. In the second round, D continues to represent
1 to P2 and 0 to the others.
Output: Pn must accept and output 0, since its view is the same as in the pre-
vious game. By correctness, P2, . . . , Pn−1 must also accept. By consistency,
P2, . . . , Pn−1 must also output 0.

Now, skipping ahead, we generalize, for k ∈ [3, . . . , n− 1]:

Strategy kM :
Behavior: D and Pk behave maliciously. D sends msg(1)

1,1→i to P2, . . . , Pk−1,
and msg(0)

1,1→i to the other parties Pk+1, . . . , Pn. In the second round, D con-
tinues to represent 1 to P2, . . . , Pk−1 and 0 to Pk+1, . . . , Pn.
In the second round, as P2 did in strategy 2M , Pk uses msg(0)

1,1→k to compute
(msg(0)

2,k→1, . . . ,msg(0)
2,k→n−1) (which it sends to P2, . . . , Pn−1), and msg(1)

1,1→k

to compute msg(1)
2,k→n (which it sends to Pn).

Output: P2, . . . , Pn−1 must accept and output 0, since their views are iden-
tical to those in the previous game. By correctness, Pn must also accept. By
consistency, Pn must also output 0.
Strategy kH :
Behavior: Pk is honest again.D sends msg(1)

1,1→i to P2, . . . , Pk, and msg(0)
1,1→i to

the other parties Pk+1, . . . , Pn. In the second round, D continues to represent
1 to P2, . . . , Pk and 0 to Pk+1, . . . , Pn.
Output: Pn must accept and output 0, since its view is the same as in the pre-
vious game. By correctness, P2, . . . , Pn−1 must also accept. By consistency,
P2, . . . , Pn−1 must also output 0.

We end with strategies nM , nH .

Strategy nM :
Behavior: D behaves honestly and executes the protocol with x = 1.
In the second round, Pn behaves maliciously; it pretends it got 0 towards, e.g.,
only P2. More precisely, Pn uses msg(0)

1,1→n to compute msg(0)
2,n→2 (which it

sends to P2), and msg(1)
1,1→n to compute (msg(1)

2,n→3, . . . ,msg2,n→n−2) (which
it sends to P3, . . . , Pn−1).
Output: P2 must accept and output 0, since its view is the same as in the pre-
vious game. By correctness, P3, . . . , Pn−1 must also accept. By consistency,
P3, . . . , Pn−1 must also output 0.
Strategy nH :
Behavior:
All parties behave honestly. D executes the protocol with x = 1.
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In strategy nH , on the one hand, by completeness, all honest parties must accept
the protocol; by validity, all honest parties must output 1. On the other hand,
since the view of P2 is the same as its view in the previous strategy, P2 must
output 0! This is a contradiction.

The impossibility of realizing weak detectable broadcast in two rounds for
t > 1 clearly implies that there exists a function (specifically, fbc) which is
impossible to compute with unanimous abort for t > 1 in two rounds of peer-to-
peer communication.

Corollary 1 (P2P-P2P, UA, t > 1). Secure computation of general functions
with unanimous abort cannot be achieved in two rounds of peer-to-peer commu-
nication for corruption threshold t > 1.

3.2 Impossibility Results for MPC with Unanimous Abort and
Fairness with n = 2t + 1

In our impossibility results in this section, we use a property which we call last
message resiliency.

Definition 7 (Last Message Resiliency). A protocol is t-last message re-
silient if, in an honest execution, any protocol participant Pi can compute its
output without using t of the messages it received in the last round.

More formally, consider a protocol Π = {(frst-msgi, snd-msgi, outputi)}i∈[1,...,n].
The protocol is t-last message resilient if, for each i ∈ [1, . . . , n] and each
S ⊆ {1, . . . , n}\{i} such that |S| ≤ t, the output function outputi returns the
correct output even without second round messages from parties Pi, i ∈ S. That
is, for all security parameters λ, for all sets S ⊆ {1, . . . , n}\{i} such that |S| ≤ t,
for all inputs x1, . . . , xn,

Pr
(

outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg′2,1→i, . . . ,msg′2,n→i)
6= outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg2,1→i, . . . ,msg2,n→i)

)
= negl(1λ)

over the randomness used in the protocol, where, for j ∈ [1, . . . , n],

(msg1,j→1, . . . ,msg1,j→n)← frst-msgj(xj),

(msg2,j→1, . . . ,msg2,j→n)← snd-msgj(xj ,msg1,1→j , . . . ,msg1,n→j),

and

msg′2,j→i =
{

msg2,j→i, if j 6∈ S,
⊥ otherwise.

Theorem 2. Any protocol Π which achieves secure computation with unani-
mous abort with corruption threshold t and whose last round can be executed
over peer-to-peer channels must be t-last message resilient.
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Proof. We prove this by contradiction. Assume Π achieves unanimous abort,
and is not t-resilient. Then, by definition, there exist inputs x1, . . . , xn, an i ∈
[1, . . . , n] and a subset S ⊆ {1, . . . , n}\{i} (such that |S| ≤ t) where, with non-
negligible probability,

outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg′2,1→i, . . . ,msg′2,n→i)
6= outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg2,1→i, . . . ,msg2,n→i)

(where the messages are produced in the way described in Definition 7).
The adversary can use this by corrupting Pj , j ∈ S; it will behave honestly,

except in the last round, where Pj , j ∈ S will not send messages to Pi. (Note that
the ability to send last round messages to some parties but not others relies on
the fact that the last round is over peer-to-peer channels.) With non-negligible
probability, Pi will receive an incorrect output (e.g. an abort). However, this
cannot occur in a protocol with unanimous abort; all other honest parties must
accept the protocol and produce the correct output (since their views are the
same as in an entirely honest execution), so Pi must as well.

Theorem 3. Any protocol Π which achieves secure computation with fairness
with corruption threshold t must be t-last message resilient.

Proof. We prove this by contradiction. Assume Π achieves fairness, and is not
t-resilient. Then, by definition, there exist inputs x1, . . . , xn, an i ∈ [1, . . . , n]
and a subset S ⊆ {1, . . . , n}\{i} (such that |S| ≤ t) where, with non-negligible
probability,

outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg′2,1→i, . . . ,msg′2,n→i)
6= outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg2,1→i, . . . ,msg2,n→i).

(where the messages are produced in the way described in Definition 7).
A rushing adversary can use this by corrupting Pj , j ∈ S. As in the previous

proof, it will behave honestly, except in the last round, where Pj , j ∈ S will not
send messages to Pi. With non-negligible probability, Pi will receive an incorrect
output (e.g. an abort), while the rushing adversary will learn the output, since
it will have all of the messages it would have gotten in a fully honest execution
of the protocol. This violates fairness.3

Theorem 4. There exists a function f such that any protocol Π securely real-
izing f with corruption threshold t such that n ≤ 3t and whose first round can
be executed over peer-to-peer channels cannot be t-last message resilient.

Proof. Consider a concrete function f=, which we design to emphasize that re-
computation with different inputs is a clear violation of privacy. Let each party
Pi, i ∈ [n] hold as input an index xi ∈ [0, . . . , l] (for, e.g., l = n). f= allows all
3 Note that while Pi does not learn the output, other honest parties might. How-

ever, even one honest party not receiving the output is a violation of fairness if the
adversary learns the output.
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parties to learn which parties had the same inputs. (For instance, for n = 3,
x1 = x3 = 0 and x2 = 1, all parties learn that P1 and P3 had the same input
which was different from P2’s input; they learn nothing else about other parties’
inputs.) More formally,

f=(x1, . . . , xn) = (M, . . . ,M),

where
M = {xi

?= xj}i,j∈[n].

Consider, without loss of generality, party P1. The adversary should clearly be
unable to recompute the function with both, e.g., x1 = 0 and x1 = 1 (assuming
the other corrupt parties’ inputs are not 0 or 1). If it does, it will learn both
the identities of all parties whose inputs were 0, and the identities of all parties
whose inputs were 1, whereas in an ideal execution, it can learn exactly one of
those two things.

We now show that, in a t-last message resilient (where n ≤ 3t) two-round
protocol Π where the first round is over peer-to-peer channels, P1 can always
learn both of those outputs. Consider a corrupt P1, and partition the honest
parties into two sets of equal size (assuming for simplicity that the number of
honest parties is even): S0 and S1. Note that |S0| = |S1| = n−t

2 ≤ t.
P1 uses x1 = 0 to compute its first round messages to S0; it uses x1 = 1 to

compute its first round messages to S1. (Note that the ability to send first round
messages based on different inputs relies on the fact that the first round is over
peer-to-peer channels.) All other parties behave honestly. Because the protocol
Π is t-last message resilient, and because S1 contains t or fewer parties, P1 has
enough second round messages excluding those it received from S1 to compute
its output. Note that all second round messages except for those received from
S1 are distributed exactly as in an honest execution with x1 = 0; therefore,
by last message resiliency, P1 finds out which other parties had 0 as an input.
Similarly, by excluding second round messages it received from S0, P1 finds out
which other parties had 1 as an input. This is clearly a violation of privacy.

Corollary 2 (P2P-P2P, UA, n ≤ 3t). Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t such that n ≤ 3t.

This corollary follows directly from Theorems 2 and 4.

Remark 1. Note that for t > 1, Cor 2 is subsumed by Cor 1. However, Cor 2
covers the case of t = 1 and n = 3, closing the question of unanimous abort with
honest majority in two rounds of peer-to-peer communication.

Corollary 3 (P2P-BC, FAIR, n ≤ 3t). Secure computation of general func-
tions with fairness cannot be achieved in two rounds the first of which is over
peer-to-peer channels for corruption threshold t such that n ≤ 3t.

This corollary follows from Theorems 3 and 4.
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3.3 Impossibility Results for MPC with Fairness with t > 2

We use a similar approach to show that secure computation with guaranteed
output delivery is impossible to achieve in two rounds the second of which is
over peer-to-peer channels if t > 2. To do this, we define a stronger notion of
last message resiliency.

Definition 8 (Strong Last Message Resiliency). t-Strong last message re-
siliency is defined as regular t-last message resiliency, but first-round messages
from Pj , j ∈ S can be maliciously generated.

More formally, consider a protocol Π = {(frst-msgi, snd-msgi, outputi)}i∈[1,...,n].
The protocol is t-last message resilient if, for each i ∈ [1, . . . , n] and each
S ⊆ {1, . . . , n}\{i} such that |S| ≤ t, the output function outputi returns the
same output even without second round messages from parties Pj , j ∈ S. That is,
for all security parameters λ, for all sets S ⊆ {1, . . . , n}\{i} such that |S| ≤ t,
for all PPT algorithms frst-msg∗j , j ∈ S, for all inputs x1, . . . , xn,

Pr
(

outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg′2,1→i, . . . ,msg′2,n→i)
6= outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg2,1→i, . . . ,msg2,n→i)

)
= negl(1λ)

over the randomness used in the protocol, where, for j ∈ [1, . . . , n],

(msg1,j→1, . . . ,msg1,j→n)←
{

frst-msgj(xj) if j ∈ {1, . . . , n}\S,
frst-msg∗j (xj) if j ∈ S,

(msg2,j→1, . . . ,msg2,j→n)← snd-msgj(xj ,msg1,1→j , . . . ,msg1,n→j),
and

msg′2,j→i =
{

msg2,j→i, if j ∈ {1, . . . , n}\S,
⊥ if j ∈ S.

Note that, if only t′ parties cheated in the first round of a t-strong last
message resilient protocol (for t′ < t), omitting any additional t − t′ second
round messages should not affect the computed output.

Theorem 5. There exists a function f such that any protocol Π securely realiz-
ing f with fairness with corruption threshold t must be (t−1)-strong last message
resilient.

Proof. Consider the function f= from the previous section, but augmented so
that every party has a length-n vector of values as input, and the parties only
learn whether xi and xj agree at indices i and j. We call the augmented function
f=′ . This is meant to ensure that any pair of distinct adversarial inputs reveals
different information about honest parties’ inputs. (Previously, if we had corrupt
Pa and Pa′ , xa = 0, xa′ = 1 revealed the same information to the adversary as
xa = 1, xa′ = 0.)

We prove the theorem by contradiction. Assume Π computes f=′ with fair-
ness, and is not (t − 1)-strong last message resilient. Then, by definition, there
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exist inputs x1, . . . , xn, an i ∈ [1, . . . , n] and a subset S ⊆ {1, . . . , n}\{i} (such
that |S| ≤ t− 1) such that, with non-negligible probability,

y 6= y′

where

y = outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg′2,1→i, . . . ,msg′2,n→i),

y′ = outputi(xi,msg1,1→i, . . . ,msg1,n→i,msg2,1→i, . . . ,msg2,n→i),
and the messages are produced in the way described in Definition 8.

Recall that by the definition of secure computation with fairness, the honest
output functions outputi will only produce the actual output on some set of
inputs, or abort. Recall also that f=′ gives the same output to all parties. So,
in a fair computation of f=′ , all honest parties will output the same thing.

– If either y or y′ are abort, the adversary can violate fairness. Without loss
of generality, say y′ = abort. The adversary corrupts all parties Pj , j ∈ S.
It then generates its messages as in Definition 8 and withholds the appro-
priate second-round messages, causing all parties to output y′ = abort. By
corrupting one additional party (but allowing it to behave honestly), the
adversary learns the output: it knows the second-round messages it with-
held from the honest parties, and can use those messages and the additional
corrupt party to compute y.

– If y 6= y′ and neither of them is abort, the adversary can violate privacy. As
before, the adversary corrupts all parties Pj , j ∈ S, generates its messages
as in Definition 8, and withholds the appropriate second-round messages,
causing all parties to output y′. By corrupting one additional party (but
allowing it to behave honestly), the adversary also learns y. y and y′ must
be different outputs of f=′ on the same honest party inputs; so, they must be
outputs of f=′ on different adversarial inputs. Thus, for at least one corrupt
party Pa, the adversary gets to test equality with the ath value in parties’
input vectors twice instead of once, which is clearly more than an adversary
would learn by interacting with a trusted third party. (Note that this is where
we used the augmented f=′ : for f=, computation with different adversarial
inputs does not guarantee that the adversary learns more about honest party
inputs. For f=′ , it does.)

Theorem 6. There exists a function f such that any protocol Π securely real-
izing f with corruption threshold t > 1 and whose first round can be executed
over peer-to-peer channels cannot be 2-strong last message resilient.

Proof. Consider the function f=′ from the previous section. We let y(0) be the
output on x1 = 0n, and y(1) be the output on x1 = 1n (with all other inputs
fixed).

We show that, in a 2-strong last message resilient two-round protocol Π
where the first round is over peer-to-peer channels, P1 and P2 can always learn
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both y(0) and y(1). Below we describe a sequence of adversarial strategies with
two corruptions (t = 2); parties P1 and P2 are corrupt in all of the strategies.
P1 misbehaves by sending first-round messages generated with x1 = 0n to some
parties, and first-round messages generated with x1 = 1n to others. Though P2
computes its messages honestly, the adversary uses its view to compute addi-
tional information.

The numbering of the strategies described below is a bit counterintuitive;
we start with strategy 2, which is simply an honest execution with x1 = 0n, so
P2 should clearly learn y(0). After that, strategies i ∈ [3, . . . , n] are all strate-
gies where P3, . . . , Pi receive a first-round message based on x1 = 1n, and
Pi+1, . . . , Pn receive a first-round message based on x1 = 0n.

Strategy i for i ∈ [2, . . . , n]:
Behavior: P1 and P2 are corrupt. P2 behaves honestly, but P1 uses x1 = 1n
to compute her first round messages to P3, . . . , Pi, and x1 = 0n to compute
her first round messages to Pi+1, . . . , Pn. (We don’t care how second-round
messages to P3, . . . , Pn are computed, since we focus on the output of P2.)
The first-round messages to honest parties in Strategy 2 are identically dis-
tributed to those in an honest execution with x1 = 0n, and the first-round
messages in Strategy n are identically distributed to those in an honest exe-
cution with x1 = 1n.
Defined values: For b ∈ {0, 1}, let msg(b)

1,1→2 and msg(b)
2,1→2 be P1’s messages

to P2 computed with x1 = bn; let msg(b)
2,2→2 be P2’s state (message to itself)

given that it received msg(b)
2,1→2. All messages received from honest parties

are computed by those parties honestly given the strategy i behavior of P1.
For b ∈ {0, 1}, we let

yb,i = output2(x2,msg(b)
1,1→2,msg1,2→2,msg2,3→2, . . . ,msg1,n→2,

msg(b)
2,1→2,msg(b)

2,2→2,msg2,3→2, . . . ,msg2,n→2).

The adversary corrupting P1 and P2 can always compute both y0,i and y1,i,
since it can compute msg(b)

1,1→2, msg(b)
2,1→2 and msg(b)

1,2→2 for b ∈ {0, 1} locally.
Observe that, by correctness, y0,2 = y(0), and y1,n = y(1).
For b ∈ {0, 1}, j ∈ [3, . . . , n] we also define values yb,i,j to be the output of
P2 computed without the second-round message from Pj .

yb,i,j = output2(x2,msg(b)
1,1→2,msg1,2→2,msg2,3→2, . . . ,msg1,n→2,

msg(b)
2,1→2,msg(b)

2,2→2,msg′2,3→2, . . . ,msg′2,n→2).

where

msg′2,j′→2 =
{

msg2,j′→2, if j′ 6= j,

⊥ otherwise.

By 2-strong last message resiliency, yb,i = yb,i,j for all j ∈ [3, . . . , n]. We also
know that yb,i−1,i = yb,i,i, since in the computation of both of these values the
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second-round message from Pi is omitted, which is the only input that differs. By
a combination of the previous two observations, we can conclude that yb,i−1 =
yb,i−1,i = yb,i,i = yb,i for all i ∈ [3, . . . , n]. So, yb,2 = · · · = yb,n.

By correctness, y0,2 = y(0). Since in strategy i the adversary corrupting
P1 and P2 can always compute y0,i = y0,2, we know that in any strategy, the
adversary can learn y(0). Similarly, by correctness, y1,n = y(1); so, in any strategy,
the adversary can learn y(1).

Corollary 4 (P2P-BC, FAIR, t > 2). Secure computation of general func-
tions with fairness cannot be achieved in two rounds the first of which is over
peer-to-peer communication for corruption threshold t > 2.

This corollary follows directly from Theorems 5 and 6.

4 Positive Results

In this section we describe our constructions. In Section 4.1 we list a few triv-
ial observations, for completeness. In Section 4.3 we describe our constructions
of secure computation with identifiable abort. In Section 4.2 we describe our
construction of secure computation with guaranteed output delivery. Our con-
structions use some tools described in Appendix A.

4.1 Trivial Observations

Observation 1 For n = 2, the possibility of selective abort implies the possibil-
ity of unanimous and identifiable abort.

One could argue that Obs 1 should hold for t = n − 1, because there is
only one honest party, so unanimity is trivial. However, we like to allow the
adversary to corrupt fewer than t parties; if the adversary chooses to corrupt
fewer than t = n − 1 parties, then there may be more than one honest party,
making unanimity among them more challenging.

Observation 2 The setting for t′ inherits all positive results from the identical
setting but with t > t′.

4.2 Guaranteed Output Delivery

In this section, we describe a protocol that achieves guaranteed output delivery
for n > 2t in two rounds, with broadcast available in the second round only.

One could argue that, in the case of guaranteed output delivery, it does
not matter whether the last round is over a broadcast channel or peer-to-peer
channels.

Claim. Any protocol that achieves guaranteed output delivery against an adver-
sary corrupting t parties in two broadcast rounds could be run with its second
round over peer-to-peer channels and still achieve the same guarantee, but with
t− 1 corruptions.
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Proof (sketch). The adversary certainly can’t abort honest parties by sending
them incorrect things in the second round, since in a protocol with guaranteed
output delivery, honest parties do not abort no matter what the adversary does.
All the adversary could hope to do is cause disagreement, where different honest
parties end up with output computed on different corrupt party inputs. However,
if the adversary could do that, it could violate the security of the protocol by
corrupting one additional honest party, computing different messages to it, and
obtaining the output on two different sets of its own inputs.

We can conclude that any protocol in which such an attack is possible is
insecure against t + 1 corruptions; equivalently, any protocol which is secure
against t corruptions does not permit such attacks in the second round when
run with at most t − 1 corruptions. So, any protocol that achieves guaranteed
output delivery in two broadcast rounds against t corrupt parties also achieves
guaranteed output delivery in one broadcast round followed by one round of
peer-to-peer communication against t− 1 corrupt parties.

Though this is a nice observation, the loss in corruption budget is dissatisfy-
ing. In this section, we prove that for any t, if there exists a protocol that achieves
guaranteed output delivery against t corruptions in two broadcast rounds, there
exists a protocol that achieves guaranteed output delivery against the same
number of corruptions in two rounds only the first of which uses broadcast.

Our protocol Πgod
bc−p2p follows the structure of the protocols described by

Cohen et al. [CGZ20]. Πgod
bc−p2p is a compiler that takes a protocol Πgod

bc which
achieves guaranteed output delivery given two rounds of broadcast (e.g., the
protocol of [GLS15]), and achieves the same when broadcast is only available
in the first round. Parties guarantee agreement on second-round messages by
garbling and broadcasting their second-message functions, instead of sending
the second messages peer-to-peer.

Notation: For every i ∈ [n], denote by Ci,x,r(m1, . . . ,mn) the Boolean cir-
cuit with hard-wired values x and r that upon receiving n inputs m1, . . . ,mn,
computes snd-msgi. For simplicity, assume that each first-round message is
` bits long, hence each such circuit has L = n · ` inputs bits. We are assum-
ing that the message ⊥ is a fixed message of the appropriate length. Let g
indicate the size of a garbling of C.
Common input:
– A two-broadcast-round protocol Πgod

bc , represented by the set of functions
{frst-msgi, snd-msgi, outputi}i∈[n].

– A garbling scheme (garble, eval, simGC).
– A CPA secure encryption scheme (keygen, enc, dec).
– A tSS out of n secret sharing scheme (share, reconstruct, simshare)

with tSS = n
2 + 1.

– A non-interactive zero-knowledge proof system (setup, prove, verify,
simP, simP.Extract). We use this proof system for the following three
relations.
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R1 =


φ =

m1
j , cGC,

{k̃0
i,l, k̃

1
i,l}i∈[n],l∈[L],

{pki}i∈[n]


w =

(
Cj,x,r, GC,
oGC, (x, r), RGC, Rss,
{R0

i,l, R
1
i,l}i∈[n],l∈[L])

)
m1
j = frst-msgj(x, r)
∧(GC, {K0

l ,K
1
l }l∈[L]) = garble(1λ, C;RGC)

∧cGC, oGC = commit(GC)
∧{{{kbj,l}j∈[n] = share(Kb

l ;RSS)}b∈{0,1}}l∈[L]
∧{{{k̃bi,l = enc(pki, k

b
i,l;Rbi,l)}b∈{0,1}}l∈[L]}i∈[n]


,

R2 = {φ = (pk, c,m), w = (sk, oGC)|m = dec(sk, c)}.

R3 = {φ = (cGC, GC), w = oGC|GC, oGC = open(cGC)}.

Protocol Πgod
bc−p2p with n = 2t+ 1

Private input. Every party Pi has a private input xi ∈ {0, 1}∗.
Setup. 1. Set up the PKI and publish for party Pi her public key pki.
2. Set up the common reference strings crs1 ← setup(1λ,R1), crs2 ←

setup(1λ,R2) and crs3 ← setup(1λ,R3) for the zero knowledge proof
system.

3. Set up the correlated randomness (r1, . . . , rn) ← Dbc
corr and distribute

ri to party Pi for i ∈ [n].
First round. Every party Pi proceeds as follows:
1. Let msg1

i = frst-msgi(xi, ri) be Pi’s first-broadcast-round message in
Πgod

bc .
2. Using fresh randomness RGCi , compute (GCi, ~Ki) =

garble(1λ, Ci,xi,ri ;RGCi), where ~Ki = (K0
1 ,K

1
1 , . . . ,K

0
L,K

1
L).

3. For every l ∈ L and b ∈ {0, 1}, using fresh randomness Rssi , compute
(kbi→1,l, . . . , k

b
i→n,l) = share(1λ,Kb

l ;Rssi).
4. cGCi , oGCi ← commit(GCi).
5. For every l ∈ L, j ∈ [n] and b ∈ {0, 1}, using fresh randomness Rbi→j,l,

compute k̃bi→j,l = enc(pkj , k
b
i→j,l;Rbi→j,l).

6. Compute a zero knowledge proof of correct behavior:
(a) Set φi =

(
msg1

i , cGCi , {k̃0
i→j,l, k̃

1
i→j,l}j∈[n],l∈[L], {pkj}j∈[n]

)
and

wi =
(

GCi, oGCi , Ci,xi,ri , (xi, ri), RGCi , Rssi , {R0
i,l, R

1
i,l}i∈[n],l∈[L]

)
.

(b) Run πi ← prove(crs1, φi, wi).
7. Broadcast (msg1

i , cGCi , {k̃0
i→j,l, k̃

1
i→j,l}l∈[L],j∈[n], πi).

Second round. Every party Pi proceeds as follows:
1. Let (msg1

j , cGCj , {k̃0
j→i,l, k̃

1
j→i,l}l∈[L], πj) be the first round received from

party Pj .
2. Let NA be the set of indices for which verify(crs1, φj , πj) = 1.
3. For every j /∈ NA set msg1

j = ⊥.
4. Denote the concatenation of all the messages msg1

j for j ∈ [n] as

(ν1, . . . , νL) = (msg1
1, . . . ,msg1

n) ∈ {0, 1}L
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5. For l ∈ [L] and j ∈ NA run kj→i,l ← dec(ski, k̃
νl
ji→i,l), and πj→i,l ←

prove
(
crs2, φ = (pki, k̃

νl
j→i,l, kj→i,l), w = ski

)
.

6. Set φGCi = (cGCi , GCi), wGCi = (oGCi) run πGCi ← prove(crs3, φGCi , wGCi).
7. Send to all the parties the message {GCi, πGCi , {kj→i,l, πj→i,l}l∈[L]}j∈NA.

Output. Every party Pi proceeds as follows:
1. Let {{kj′→j,l, πj′→j,l}l∈[L]}j′∈NA be the second-round message received

from party Pj .
2. Let NA′ be the set of indices j for which verify

(
crs2, φ =

(cGCi , GCi, pkj , k̃j′→j,l, kj′→j,l), πj′→j,l
)

= 1 and verify(crs3, φGCj′ =
(GCj′ , cGCj′ )) = 1 for all j′ ∈ NA.

3. For every j ∈ NA′, for every l ∈ [L] compute Kj,l =
reconstruct({kj→j′,l}j′∈NA′).

4. For every j ∈ NA′, evaluate the garbled circuit received from Pj as
msg2

j = eval(GCj ,Kj,1, . . . ,Kj,L).
5. For every j /∈ NA′ set msg2

j = ⊥.
6. Output y = outputi(xi, ri, (msg1

1, . . . ,msg1
n), (msg2

1, . . . ,msg2
n)).

Theorem 7 (BC-P2P, GOD, n > 2t). Let F be an efficiently computable
n-party function and let n > 2t. Let Πgod

bc be a two broadcast-round protocol that
securely computes F with guaranteed output delivery with a black-box straight-
line simulator. Assume that (garble, eval, simGC) is a secure garbling scheme,
(share, reconstruct, simshare) is a secure secret sharing scheme with threshold
n
2 +1, (keygen, enc, dec) is a CPA secure encryption scheme, and (setup, prove,
verify, simP, simP.Extract) is a non-interactive simulation-extractable zero-
knowledge proof system. Then, Πgod

bc−p2p securely computes F with guaranteed
output delivery in two rounds, the first of which is over a broadcast channel, and
the second of which is over peer-to-peer channels.

The simulator. Let Sgod
bc be the simulator for Πgod

bc . The simulator S proceeds as
follows:

Simulator Sgod
bc−p2p

Setup. 1. S sets up a PKI and runs (crs1, td1) ← setup(1λ),
(crs2, td2)← setup(1λ) and (crs3, td3)← setup(1λ).

2. S invokes A on her inputs and the simulated correlated randomness for
corrupted parties.

First round. S, on behalf of the honest party Ph for all h ∈ H, does the
following steps:
1. For every l ∈ L and b ∈ {0, 1}, S computes kbh→1,l, . . . , k

b
h→n,l ←

share(0L).
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2. For every l ∈ L, j ∈ [n], S computes k̃bh→j,l ← enc(pkj , k
b
h→j,l).

3. cGCh , oGCh ← commit(0g).
4. S invokes Sgod

bc in order to get first round message m̂sg1
h of Πbc.

5. Let φh =
(

m̂sg1
h, cGCh , {k̃0

h→j,l, k̃
1
h→j,l}j∈[n],l∈[L], {pkj}j∈[n]

)
. S runs

πh ← simP(crs1, td1, φh).
6. S broadcasts (m̂sg1

h, cGCh , {k̃0
h→j,l, k̃

1
h→j,l}l∈[L],j∈[n], πh).

Second round. Let {(m̂sg1
a, GCj , {k̃0

a→j,l, k̃
1
a→j,l}l∈[L],j∈[n], πa)}a∈A be the

set of messages received from A. S, on behalf of the honest party Ph for all
h ∈ H, does the following steps:
1. For a ∈ A, S runs simP.Extract(crs1, φa, πa). If one of the extraction

fails, S outputs abort.
2. Let NA be the set of indices for which the output of simP.Extract

matches the inputs of dishonest parties obtained from Sgod
bc . Let NA =

NA ∪ H. For every a /∈ NA, S sets msg1
a = ⊥.

3. S feeds messages {m̂sg1
a}a∈A to Sgod

bc receiving in response the corrupt
parties’ inputs ~x = {xi}i∈A. S simulates the interaction between Sgod

bc
and the trusted third party that computes F . Specifically, S forwards
the message that she received from Sgod

bc to the trusted third party,
and she receives back y. S forwards y to Sgod

bc , which outputs honest
messages {m̂sg2

h}h∈H.
4. Let

(ν1, . . . , νL) = (m̂sg1
1, . . . , m̂sg1

n) ∈ {0, 1}L.

5. For every l ∈ [L], S runs {kνlh→h′,l}h′∈H ←
simshare(Kh,l, {kνlh→a,l}a∈A).

6. Let Ch be the circuit computing snd-msgh with input and random-
ness set to 0. S runs (GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch, m̂sg2

h). Run
πGCh ← simP(crs3, td3, (cGCh , GCh)).

7. For l ∈ [L] and h′ ∈ NA ∩ H, S runs πνlh′→h,l ←
simP

(
crs2, td2, (pkh, k̃

νl
h′→h,l, k

νl
h′→h,l)

)
.

8. For l ∈ [L] and a ∈ NA ∩ A, S honestly runs kνla→h ← dec(skh, k̃
νl
a→h,l),

and πνla→h,l ← prove
(
crs2, td2, φ = (pkh, k̃

νl
a→h,l, k

νl
a→h,l), w = skh

)
.

9. S sends to A the message (πGCh , {k
νl
j→h,l, π

νl
j→h,l}l∈[L],j∈[n]).

Output. S outputs the output of A and terminates.

We will now proceeds through a series of hybrid experiments in oder to prove
that the joint distribution of the output of A and the outputs of the honest
parties in the ideal execution is computationally indistinguishable from the joint
distribution of the output of A and the outputs of the honest parties in a real
protocol execution. The hybrid experiments are listed below. The output of each
experiment is defined as the output of A and the output of the honest parties.
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– Expt0
A,A,Πbc−p2p

: In this experiment, the simulator S0 has access to the in-
ternal state of the trusted party computing F . Therefore S0 chooses the
output values of the honest parties. In the execution of Πbc−p2p the simu-
lator is interacting with A on behalf of the honest parties. The output of
this hybrid experiment is the output of the honest parties and the output
of A in the execution of Πbc−p2p explained above. It follow trivially that the
output of Expt0

A,A,Πbc−p2p
and the the output of the real world experiment

are identically distributed.
– Expt1

A,A,Πbc−p2p
: in this experiment Expt0

A,A,Πbc−p2p
is modified as follows. In

order to compute πh in the first round S1 runs simP(crs1, td1, φh), for h ∈ H.
Moreover S1 executes the step 1 of S.

Claim. Expt0
A,A,Πbc−p2p

and Expt1
A,A,Πbc−p2p

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H| + 1 hybrids arguments: in the
j-th hybrid experiment πh of honest party Ph with h ≤ j are simulated as
in Expt1

A,A,Πbc−p2p
and for h > j are computed as Expt0

A,A,Πbc−p2p
. In order to

claim that two neighboring hybrids are computationally indistinguishable we
can rely on the simulation extractability of the zero-knowledge proof system.
Notice that the abort probability between two neighboring hybrids increases
only of a negligible amount due to simulation extractability of the zero-
knowledge proof system. The proof conclude observing that the 0-th hybrid
corresponds to Expt0

A,A,Πbc−p2p
and the |H|-th corresponds to Expt1

A,A,Πbc−p2p
.

– Expt2
A,A,Πbc−p2p

: in this experiment Expt1
A,A,Πbc−p2p

is modified as follows. In
the second round, for all h ∈ H, S2 runs πGCh ← simP(crs3, td3, (cGCh , GCh))
where GCh is an honestly generated garbled circuit like in Πbc−p2p. Moreover
S3 for all j ∈ SA runs simP.Extract(crs3, (πGCj )) if the extraction fails output
abort, where πGCj is sent by corrupted party j and SA is the set of corrupted
party that send a second round message.

Claim. Expt2
A,A,Πbc−p2p

and Expt1
A,A,Πbc−p2p

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds in a similar way to the previous one.

– Expt3
A,A,Πbc−p2p

: in this experiment Expt2
A,A,Πbc−p2p

is modified as follows. Let
(νi,1, . . . , νi,L) be computed as in step 4 of Πbc−p2p (where NA is computed as
in Expt2

A,A,Πbc−p2p
). In the second round S3 runs πνlh′→h,l ← simP

(
crs2, td2, (pkh,

k̃νlh′→h,l, k
νl
h′→h,l)

)
, for h, h′ ∈ H. Moreover for h ∈ H j ∈ SA for l ∈ [L] S3

runs simP.Extract(crs2, (k̃νj,lh→j,l, kh→j,l), πh→j,l) where k̃νj,lh→j,l, kh→j,l is sent
by corrupted party j and SA is the set of corrupted parties that send a second
round message.

Claim. Expt3
A,A,Πbc−p2p

and Expt2
A,A,Πbc−p2p

are computationally indistinguish-
able.
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Proof (Sketch). The proof proceeds in a similar way to the previous one.

– Expt4
A,A,Πbc−p2p

: in this experiment Expt3
A,A,Πbc−p2p

is modified as follows. In
the first round, the simulator S4 sends a commitment to 0g for each honest
party. In more detail, S4 computes cGCh , oGCh ← commit(0g) for all h ∈ H.

Claim. Expt4
A,A,Πbc−p2p

and Expt3
A,A,Πbc−p2p

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H| + 1 hybrids arguments. In the
j-th hybrid experiment the commitments cGCh of the first j honest parties
Ph are commitments to 0g as in Expt4

A,A,Πbc−p2p
; for the other |H| − j honest

parties, the commitments are computed as in Expt3
A,A,Πbc−p2p

. In order to
claim that two neighboring hybrids are computationally indistinguishable
we can rely on the hiding property of the commitment scheme. The proof
concludes by observing that the 0-th hybrid corresponds to Expt3

A,A,Πbc−p2p

and the |H|-th corresponds to Expt4
A,A,Πbc−p2p

.

– Expt5
A,A,Πbc−p2p

: in this experiment Expt4
A,A,Πbc−p2p

is modified as follows. The
simulator S5 sends in the first round encryptions of 0L to all the honest
parties. In more detail, for every l ∈ L, h, h′ ∈ H and b ∈ {0, 1}, S5 computes
k̃bh→h′,l ← enc(pkh′ , 0L).

Claim. Expt5
A,A,Πbc−p2p

and Expt4
A,A,Πbc−p2p

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via 2|H|2l + 1 hybrids arguments. For
each h, h′ ∈ H, l ∈ [L], b ∈ {0, 1}, we define hybrid experiment Expth→h′,l,b.
In each subsequent experiment Expth→h′,l,b, the encryption k̃bh→h′,l′ becomes
an encryption of 0L. In order to claim that two neighboring hybrids are com-
putationally indistinguishable we can rely on the CPA security of the encryp-
tion scheme. The proof concludes observing that the 0-th hybrid corresponds
to Expt4

A,A,Πbc−p2p
and the last hybrid corresponds to Expt5

A,A,Πbc−p2p
.

– Expt6
A,A,Πbc−p2p

: in this experiment Expt5
A,A,Πbc−p2p

is modified as follows. The
shares are computed differently; in more detail, the simulator S6 computes
the shares on behalf of the honest parties according to step 3a of the ideal
world simulator S described above.
Let (νi,1, . . . , νi,L) be computed as in step 4 of Πbc−p2p (where NA is computed
as before). S6 computes for every l ∈ [L] for all h ∈ H k

νh,l
h→i1,l, . . . , k

νh,l
h→i|H|,l ←

simshare(Kh,l, k
νh,l
h→i1,l, . . . , k

νh,l
h→i|A|,l) (where Kh,l are computed as in step 3

of Πbc−p2p).

Claim. Expt6
A,A,Πbc−p2p

and Expt5
A,A,Πbc−p2p

are perfect indistinguishable.
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Proof (Sketch). Note that in the first round both in Expt6
A,A,Πbc−p2p

that in
Expt5

A,A,Πbc−p2p
the honest parties send encryptions of 0L to all the other

honest parties. To reconstruct a shared label A needs tSS shares, since by
assumption at least tSS of the parties are honest therefore A at the end of
the first round can not reconstruct any secret. Due to the security of the
secret sharing scheme Expt6

A,A,Πbc−p2p
and Expt5

A,A,Πbc−p2p
are perfect indis-

tinguishable.

– Expt7
A,A,Πbc−p2p

: this experiment proceeds as the experiment Expt6
A,A,Πbc−p2p

except that the garble circuits regarding the honest parties are computed
using the simulated procedure simGC. Let Ch,xh,rh be the circuit snd-msgh
with hard-wired input xh and randomness set to rh. S7 executes, for all
h ∈ H, (GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch,xh,rh ,msg2

h), where msg2
h is the

message computed by Ph in the execution of Πbc−p2p.

Claim. Expt6
A,A,Πbc−p2p

and Expt7
A,A,Πbc−p2p

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H| + 1 hybrids arguments: in the
j-th hybrid experiment the garble circuit of honest party Ph with h ≤ j are
simulated as in Expt7

A,A,Πbc−p2p
and for h > j are computed as Expt6

A,A,Πbc−p2p
.

In order to claim that two neighboring hybrids are computationally indis-
tinguishable we can rely on security of garbling scheme. The proof conclude
observing that the 0-th hybrid corresponds to Expt6

A,A,Πbc−p2p
and the |H|-th

corresponds to Expt7
A,A,Πbc−p2p

.

– Expt8
A,A,Πbc−p2p

: this experiment proceeds as the experiment Expt7
A,A,Πbc−p2p

except that the garble circuits regarding the honest parties are computed
using the simulated procedure simGC. Let Ch be the circuit snd-msgh with
hard-wired input and randomness set to 0. S8 executes, for all h ∈ H,
(GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch,msg2

h), where msg2
h is the message

computed by Ph in the execution of Πbc−p2p.

Claim. Expt8
A,A,Πbc−p2p

and Expt7
A,A,Πbc−p2p

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds similar to the proof of previous claim.

– Expt9
A,A,Πbc−p2p

: this experiment proceeds as the experiment Expt8
A,A,Πbc−p2p

except that instead of computing the messages of Πgod
bc relaying on honest

parties inputs, the simulator S9 uses the messages given in output by Sgod
bc .

Claim. Expt8
A,A,Πbc−p2p

and Expt9
A,A,Πbc−p2p

are computationally indistinguish-
able.

The indistinguishability between Expt8
A,A,Πbc−p2p

and Expt9
A,A,Πbc−p2p

follows
from the security ofΠgod

bc . More in details, any distinguisher between Expt8
A,A,Πbc−p2p
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and Expt9
A,A,Πbc−p2p

can be used to distinguish between Sgod
bc and real world

execution of Πgod
bc . Observe that the reduction goes thought because already

in Expt8
A,A,Πbc−p2p

the probability that the experiment aborts is negligible.
The proof crucially rely on the ability if the simulator Sgod

bc to extract the
adversary’s input from her first round of Πbc (which is sent over broadcast
channel in Πbc−p2p), and this is implied from the assumption that Sgod

bc is
strait-line and black-box.

The proof ends observing that in Expt9
A,A,Πbc−p2p

S9 does not need anymore
to have access to the internal state of the trusted third part that computes
F and therefore Expt9

A,A,Πbc−p2p
and the ideal world experiment are identically

distributed.

4.3 Identifiable Abort

In this section we show two protocols achieving secure computation with identi-
fiable abort in two rounds, with the first round only using peer-to-peer channels.
Our first protocol requires that t < n

3 ; the second requires that t < n
2 .

Our first protocol follows the structure of the protocols described by Cohen
et al. [CGZ20]. It is described as a compiler that takes a protocol Πbc which
achieves the desired guarantees given two rounds of broadcast, and achieves
those same guarantees in the broadcast pattern we are interested in, which has
broadcast available in the second round only. However, using the techniques of
Cohen et al. when limited to peer-to-peer channels in the first round is tricky.
One of the major challenges is that, in the techniques of Cohen et al., in the
second round, every party Pi must forward to everyone else exactly one of a
pair of objects (shares of labels) which Pi should have obtained from every other
party Pj . However, since the first round is over peer-to-peer channels, Pi can
claim that it didn’t get the shares of labels from Pj , and the computation must
still complete, since it is unclear who to blame — Pi or Pj . We get around this
by requiring Pi to publish a shared key with Pj if Pj didn’t send anything in
the first round. Pj must always broadcast encryptions of its label shares in the
second round; the shared key guarantees that either party Pi is able to forward
the appropriate share in the second round, or everyone is able to obtain both
shares by using the published key. If Pi and Pj were both honest, the adversary
obtaining both shares could lead to a violation of privacy; however, if the key is
published, we know that either Pi or Pj were corrupt, so the adversary knows
both shares anyway.

We next show that these techniques cannot be applied when n ≤ 3t; we
sketch a second protocol that uses stronger assumptions such as obfuscation, or
correlated randomness, to achieve identifiable abort for n

3 ≤ t <
n
2 .

P2P-BC Identifiable Abort with n > 3t Our first protocolΠ id-abort
p2p−bc achieves

security with identifiable abort when n > 3t and the first round is over peer-to-
peer channels. Π id-abort

p2p−bc , which follows the structure of the protocols described
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by Cohen et al. [CGZ20], is formally described in Figure 4.3 borrowing some
notation from Cohen et al. It uses the following:

Common Input:
– A two-broadcast-round protocol Πbc, represented by the set of functions
{frst-msgi, snd-msgi, outputi}i∈[n].

– A garbling scheme (garble, eval, simGC).
– A tSS-out-of-n secret sharing scheme (share, reconstruct, simshare)

with tSS = 2n
3 + 1.

– A symmetric encryption scheme (enc, dec).
– A commitment scheme (commit, open).
– A non-interactive key agreement scheme (keygen, keyagree).
– A non-interactive zero-knowledge proof system (setup, prove, verify,

simP, simP.Extract) for the following relations:

R1 =


φ =

(
{pkj}j∈[n], c, cGC,

{k0
j,l, k

1
j,l}l∈[k+1,...,L]}j∈[n]

)
w = (C, GC, R, oGC, o, ski)

ski is the secret key corresp. to pki
∧(GC, {K0

l ,K
1
l }l∈[L]) = garble(1λ, C;R)

∧open(c, o) = R
∧open(cGC, oGC) = GC
∧{{{kbj,l}j∈[n] =
share(Kb

l ;R)}b∈{0,1}}l∈[k+1,...,L]
∧kj = keyagree(pkj , ski)
∧{{{kbj,1 =
enc(kj , kbj,l;R)}b∈{0,1}}l∈[k+1,...,L]}j∈[n]


,

R2 =

φ =
(

pki, pkj ,

{kl, kl}l∈k+1,...,L

)
w = ski

ski is the secret key corresp. to pki
∧ k = keyagree(pkj , ski)
∧ {kl = enc(k, kl)}l∈[k+1,...,L]

 ,

R3 =
{
φ = (pki, pkj , k)
w = (ski)

ski is the secret key corresp. to pki
∧k = keyagree(pkj , ski)

}
.

Private Input: Each party Pi has a private input xi ∈ {0, 1}∗.
Public Key Infrastructure: Each party Pi has a secret key ski the asso-
ciated public key pki for which is known; these are used for key agreement.
Each party also holds randomness Ri to which a commitment cr,i is known.
(Pi also knows the associated opening oi.) For notational simplicity, we let
Pi re-use this same randomness Ri in several places; we implicitly assume
that Pi expands Ri to obtain distinct randomness by using a PRF in the
appropriate way.
Correlated randomness: The correlated randomness (r1, . . . , rn)← Dbc

corr
(for Πbc) is sampled at the onset of the protocol, and every party Pi receives
ri.
Notation: For every i ∈ [n], denote by Ci(xi, ri,m1, . . . ,mn) the boolean
circuit that takes as input Pi’s input xi, randomness ri, and first-round mes-
sages m1, . . . ,mn, and computes snd-msgi. For simplicity, assume that (xi, ri)
together are k bits long, and each first-round message is l bits long, so each
such circuit has L = k + n · l inputs bits.
Note that Ci is public; let g be the size of a garbled Ci.
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Protocol Π id-abort
p2p−bc with n = 3t+ 1

Private input: Every party Pi has a private input xi ∈ {0, 1}∗.
Setup.
1. Set up the PKI and publish for party Pi her public key (pki, cr,i).
2. Set up the common reference strings crs1 ← setup(1λ,R1), crs2 ←

setup(1λ,R2) and crs3 ← setup(1λ,R3) for the zero knowledge proof
system.

3. Set up the correlated randomness (r1, . . . , rn) ← Dbc
corr and distribute

ri to party Pi for i ∈ [n].
First round. Every party Pi proceeds as follows:
1. Let msg1

i = frst-msgi(xi, ri) be Pi’s first-round message in Πbc.
2. Compute (GCi, ~Ki)← garble(1λ, Ci;Ri), where ~Ki = {K0

j ,K
1
j }j∈[L].

3. For every index l ∈ [k+1, . . . , L] corresponding to a first-round message
and b ∈ {0, 1}, compute (kbi→1,l, . . . , k

b
i→n,l)← share(Kb

l ;Ri).
4. For every j ∈ [n], let ki,j ← keyagree(pkj , ski) be Pi’s shared key

with Pj . For every l ∈ [k + 1, . . . , L], b ∈ {0, 1} and j ∈ [n], compute
k
b

i→j,l ← enc(ki,j , kbi→j,l;Ri).
5. cGCi , oGCi ← commit(GCi).
6. Let msgi,GC = (cGCi , {{k

0
i→j,l, k

1
i→j,l}l∈[k+1,...,L]}j∈[n]).

7. Let φ = ({pkj}j∈[n], cR,i,msgi,GC), and w = (Ci, GCi, Ri, oGCi , oi, ski).
Compute πi ← prove(crs1, φ, w).

8. Send to all parties the message (msg1
i ,msgi,GC, πi).

Second Round. Every party Pi proceeds as follows:
1. Computes labels for its own garbled circuit corresponding to its own

input: Let (νi,1, . . . , νi,k) correspond to the bits of Pi’s input (xi, ri).
For every l ∈ [k], let Ki,l = K

νi,l
l .

2. Computes shares of labels for all garbled circuits as follows.
– Let Li,bad = {}. Here, Pi will store shared keys with parties Pj who

did not provide accepting πj .
– Let Li,good = {}. Here, Pi will store shares of labels for GCj for

accepting πj .
– For every j ∈ [n], let

(msg1
j→i,msgj,GC, πj) =

(msg1
j→i, (cGCj , {{k

0
j→j′,l, k

1
j→j′,l}l∈[k+1,...,L]}j′∈[n]), πj)

– Denote the concatenation of all the messages msg1
j→i as

(νi,k+1, . . . , νi,L) = (msg1
1→i, . . . ,msg1

n→i) ∈ {0, 1}n·l.

– For j ∈ [n],
• Let kj,i ← keyagree(pkj , ski).
• Verify πj .
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∗ It πj does not verify, let πi,j ← prove(crs3, φi,j =
(pki, pkj , kj,i), wi,j = (ski)), and add (kj,i, πi,j) to Li,bad.
This enables anyone to later extract all shares sent from Pj
to Pi.

∗ If πj verifies,
· For l ∈ [k + 1, . . . , L], let klj→i ← dec(kj,i, k

νi,l
j→i).

· Let φi,j = (pki, pkj , {k
νi,l
j→i, k

l
j→i}l∈[k+1,...,L]) and wi,j =

ski. Let πi,j ← prove(crs2, φi,j , wi,j).
· Add (msg1

j→i, kj→i, πi,j) to Li,good.
3. Broadcast (GCi,msgi,GC, πi, {Ki,l}l∈[k], Li,good, Li,bad).

Output. Every party Pi proceeds as follows:
1. For every j ∈ [n], let

(GCi,msgj,GC) =

(cGCj , {{k
0
j→j′,l, k

1
j→j′,l}l∈[k+1,...,L]}j′∈[n]), πj , {Kj,l}l∈[k], Lj,good, Lj,bad)

be the second-round message received from Pj .
2. For j ∈ [n]:

– If πj does not verify, output abortj .
– Let goodj be the set of j′ such that an element

(msg1
j→j′ , kj→j′ , πj′,j) is in Lj′,good, and let badj be the set

of j′ such that an element (kj,j′ , πj′,j) is in Lj′,bad.
– Define msg1

j as the message equal to at least n − t of msg1
j→j′ for

j′ ∈ goodj . If such a message does not exist, output abortj . Remove
all j′ with messages that do not match msg1

j from goodj .
3. Let (νk+1, . . . , νL) = (msg1

1, . . . ,msg1
n).

4. For j ∈ [n]:
– For j′ ∈ goodj , if πj′,j does not verify, output abortj′ .
– For j′ ∈ badj , if πj′,j does not verify, output abortj′ . Otherwise,

for l ∈ [k + 1, . . . , L], let kj→j′,l ← dec(kj,j′ , k
νl
j→j′).

– For l ∈ [k + 1, . . . , L], compute Kj,l =
reconstruct({kj→j′,l}j′∈goodj∪badj ). If the reconstruction fails
output abortj .

– Evaluate the garbled circuit GCj as msg2
j =

eval(GCj ,Kj,1, . . . ,Kj,L). If the evaluation fails, abortj .
5. Output y = outputi(xi, ri, (msg1

1, . . . ,msg1
n), (msg2

1, . . . ,msg2
n)).

Theorem 8 (P2P-BC, ID, n > 3t). Let F be an efficiently computable n-
party function and let n > 3t. Let Πbc be a two broadcast-round protocol that
securely computes F with identifiable abort with a black-box straight-line simu-
lator. Assume that (garble, eval, simGC) is a secure garbling scheme, (share,
reconstruct, simshare) is a secure secret sharing scheme with threshold 2n

3 +1,
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(enc, dec) is a secure symmetric encryption scheme with key space Dk, (commit,
open) is a secure commitment scheme, (keygen, keyagree) is a secure non-
interactive key exchange protocol with key distribution Dk, and (setup, prove,
verify, simP, simP.Extract) is a secure non-interactive zero-knowledge proof
system. Then, Πp2pbc securely computes F with identifiable abort over two rounds,
the first of which is over peer-to-peer channels, and the second of which is over
a broadcast channel.

Proof intuition. The protocol Πp2p−bc is a compiler, and should take as input
any two-broadcast-round protocolΠbc that securely computes F with unanimous
identifiable abort. Therefore the corresponding simulator S, that interacts with
adversary A, relies on the a simulator Sbc for Πbc. In particular, our simulator
S runs Sbc internally, acting like a proxy for the messages of Πbc: she forwards
the malicious parties’ Πbc messages received from A to Sbc, and she uses the
messages of Sbc to simulate the honest parties’ messages (that she compiles into
Πp2p−bc messages before forwarding to A). Moreover, S simulates the trusted
party’s messages to Sbc, forwarding the messages that she gots from Sbc to her
own trusted party (i.e., abort messages and the inputs/outputs of the adversary).
Note that Sbc extracts corrupt parties’ inputs from the first round message of Πbc
(if did not abort), because the simulator is straight-line and the MPC protocol
only has two rounds.

Unfortunately, as already observed by Cohen et al. [CGZ20], this strategy
requires some finesse in our setting, since in the first round of Πp2p−bc (which
is over peer-to-peer channels) the adversary could send different messages to
different honest parties. The challenges we face are (1) defining the adversary
Abc to which Sbc should correspond, and (2) choosing which of potentially several
different first-round messages from A to forward to Sbc. (These challenges are
largely related; the way in which we select messages to forward to Sbc defines
the adversary to which Sbc should correspond.)

We follow a simulation strategy that is based on the one used by Cohen et
al. We design a class of adversaries, one for each honest parties, called receiver-
specific adversaries {Ah}h∈H. Roughly speaking, a receiver-specific adversary
Ah is executing Πbc with the honest parties and internally runs A. Ah uses the
malicious parties’ messages generated by A: if A sends n

3 + 1 equal messages
to the honest parties in the first round, Ah forwards that message to all honest
parties; otherwise she forwards the message received by the honest party Ph.
Note that in Πp2p−bc in the second case (i.e., when there are more then n

3 + 1
of inconsistent messages) the adversary A will not recover any garbled circuit
labels corresponding to this message; so, S sends abort to the trusted party
(blaming the sender of the inconsistent message) and simulates garbled circuits
that output dummy value.

The security of Πbc guarantees that there exists a simulator for this class of
adversaries; the simulator S for Πp2p−bc will make use of it. S uses the simulator
Sk for Ak (where k is the smallest index in H) using the “standard” simulation
strategy explained in the beginning. It is important to notice that the strategies
of S for generating the first round message for A is exactly the strategy of Ak.
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Proof. Let A and H be, respectively, the set of corrupted parties and of honest
parties.

We assume that A is deterministic and that the output of A consists of her
entire view during the protocol, i.e., the auxiliary information, the input and
correlated randomness of all corrupted parties, and the messages received by
honest parties during the protocol.

Receiver-specific adversaries.

– Ak simulates the setup for A. In particular Ak sets up a PKI and
runs (crs1, td1) ← setup(1λ,R1), (crs2, td2) ← setup(1λ,R2), and
(crs3, td3)← setup(1λ,R3).

– Upon receiving the first-broadcast-round message msg1
h from an honest

party Ph in Πbc Ak does the following steps:
1. For every l ∈ [k + 1, . . . , L] and b ∈ {0, 1}, it computes
kbh→1,l, . . . , k

b
h→n,l ← share(0L).

2. For every j ∈ [n] let kh,j ← keyagree(pkj , skh) be Ph’s shared key
with Pj .

3. For every l ∈ [k+1, . . . , L] , j ∈ H and b ∈ {0, 1} compute k̄bh→j,l ←
enc(kh,j , 0L).

4. For every l ∈ [k+1, . . . , L] , j ∈ A and b ∈ {0, 1} compute k̄bh→j,l ←
enc(kh,j , kbh→j,l).

5. cGCh , oGCh ← commit(0g).
6. Let msgh,GC = (cGCh , {{k̄0

h→j,l, k̄
1
h→j,l}[k+1,...L]}j∈A).

7. Let φ = ({pkj}j∈[n], cr,h,msgh,GC) and run πh ← simP(crs1, td1, φ).
Then Ak sends msg1

h,msgh,GC, πh on behalf of every honest party Ph
to every corrupted Pi over the point-to-point channel in Πp2p−bc. Let
{(msg1

j→h,msgj,GC, πj)}j∈A be the set of messages received from A. For
every dishonest party Pj if there are there are at least 1

3 +1 of messages
msg1

j→i1 , . . . ,msg1
j→in , with ii ∈ H that are equal Ak broadcasts one of

them in Πbc, otherwise Ak broadcasts msg1
j→k in Πbc.

– Upon receiving the first-broadcast-round message msg2
h from an honest

party Ph in Πbc Ak computes the following steps:
1. Denote

(νh,k+1, . . . , νh,L) = (m̂sg1
1, . . . , m̂sg1

n) ∈ {0, 1}n·l.

2. Let Ch be the circuit computing snd-msgh run
(GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch, m̂sg2

h).
3. Let Lh,bad = {}. Here, Ph will store shared keys with parties Pj

who did not provide accepting πj . Let Lh,good = {}. Here, Ph will
store shares of labels for GCj for accepting πj .

4. Verify πj .
• If simP.Extract applied on πj aborts, let πh,j ←

prove(crs3, φh,j = (pkh, pkj , kj,h), wh,j = skh), and add
(kj,h, πh,j) to Lh,bad.
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• Else,
∗ For l ∈ [k + 1, . . . , L], let klj→h ← dec(kj,h, k

νh,l
j→h).

∗ For j ∈ A let φh,j = (pkh, pkj , {k
νh,l
j→h, k

l
j→h}l∈[k+1,...,L]) let

πh,j ← prove(crs2, φh,j , wh,j = skh).
∗ For j ∈ H let φh,j = (pkh, pkj , {k

νh,l
j→h, k

l
j→h}l∈[k+1,...,L]) run

πh,j ← simP(crs2, φh,j).
∗ Add (msg1

j→h, kj→h, πh,j) to Lh,good.
Ak sends (msgh,GC, πh, {Kh,l}l∈[k], Lh,good, Lh,bad) on behalf of honest
party Ph to A.
Let

(msgj,GC = (GCj , {{k
0
j→j′,l, k

1
j→j′,l}l∈[k+1,...,L]}j′∈[n]), πj , {Kj,l}l∈[k],

Lj,good, Lj,bad)

be the second-round message received from corrupted party Pj for j ∈
A.

– For j ∈ [A]:
• If simP.Extract applied on πj aborts, S sets msg2

j = ⊥.
• Let goodj be the set of j′ such that an element

(msg1
j→j′ , kj→j′ , πj′,j) is in Lj′,good, and let badj be the set

of j′ such that an element (kj,j′ , πj′,j) is in Lj′,bad.
• Define msg1

j as the message equal to at least n − t of msg1
j→j′ for

j′ ∈ goodj . If such a message does not exist, sets msg2
j = ⊥. Remove

all j′ with messages that do not match msg1
j from goodj .

– Let (νk+1, . . . , νL) = (msg1
1, . . . ,msg1

n).
– For j ∈ [A]:
• For j′ ∈ goodj , if simP.Extract applied on πj′,j aborts, sets msg2

j =
⊥.
• For j′ ∈ badj , if simP.Extract applied on πj′,j aborts, sets msg2

j =
⊥.Otherwise, for l ∈ [k + 1, . . . , L], let kj→j′,l ← dec(kj,j′ , k

νl
j→j′).

• For l ∈ [k + 1, . . . , L], compute Kj,l =
reconstruct({kj→j′,l}j′∈goodj∪badj ). If the reconstruction fails sets
msg2

j = ⊥.
• Evaluate the garbled circuit GCj as msg2

j =
eval(GCj ,Kj,1, . . . ,Kj,L). If the evaluation fails, sets msg2

j = ⊥.
– Finally, Ak broadcasts the messages msg2

j for every corrupted Pj in
Πbc, outputs whatever A outputs, and halts.
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Simulator S

By the security of Πbc, for every k ∈ A there exists a simulator Sk for the
adversarial strategy Ak such that for every auxiliary information aux and
input vector x = (x1, . . . , xn) it holds that ideal world and real world are
computationally indistinguishable. Every simulator Sk starts by sending
input values to her trusted party ~x′j = {x′i,j}i∈A Upon receiving the output
value y, the simulator Sk sends a message abortj/continue (for some j ∈
[n]), and finally outputs the simulated view of the adversary, consisting of
its input and the simulated messages of Πbc:

ˆviewj = { ˆauxj , {(xji , r
j
i )}i∈A, m̂sg1,j

1 , . . . , m̂sg1,j
n , m̂sg2,j

1 , . . . , m̂sg2,j
n }.

Let SRS be the simulator Sj where k is the minimal index s.t. k ∈ H. The
simulator S start invoking SRS on her input and receiving back ~x = {xi}i∈A

or an aborti, for some i ∈ [n]. S simulates the interaction between SRS and
the ideal functionality relaying on the trusted third part that computes
F . Specifically, S forwards the message that she received from SRS to the
trusted third part and if SRS did not abort she receives back y. S forwards
y to SRS which outputs the simulated view:

ˆviewRS = { ˆaux, {(xi, ri)}i∈A, m̂sg1
1, . . . , m̂sg1

n, m̂sg2
1, . . . , m̂sg2

n}.

The simulator S proceeds as follows:

Setup.
1. S sets up a PKI and runs crs1, td1 ← setup(1λ), crs2, td2 ← setup(1λ),

and crs3, td3 ← setup(1λ).
2. S invokes A on her inputs and the simulated correlated randomness for

corrupted parties.
First round.

3. S on behalf of the honest party Ph for all h ∈ H computes the following
steps:
(a) For every l ∈ [k + 1, . . . , L] and b ∈ {0, 1} computes

kbh→1,l, . . . , k
b
h→n,l ← share(0L).

(b) For every j ∈ [n] let kh,j ← keyagree(pkj , skh) be Ph’s shared key
with Pj .

(c) For every l ∈ [k+1, . . . , L] , j ∈ H and b ∈ {0, 1} compute k̄bh→j,l ←
enc(kh,j , 0L).

(d) For every l ∈ [k+1, . . . , L] , j ∈ A and b ∈ {0, 1} compute k̄bh→j,l ←
enc(kh,j , kbh→j,l).

(e) cGCh , oGCh ← commit(0g).
(f) S sets msg1

h = m̂sg1
h.

(g) Let msgh,GC = (cGCh , {{k̄0
h→j,l, k̄

1
h→j,l}[k+1,...L]}j∈A).

(h) Let φ = ({pkj}j∈[n], cr,h,msgh,GC) and run πh ← simP(crs1, td1, φ).
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(i) Send msg1
h,msgh,GC, πh to party Pi for i ∈ A.

4. Let {(msg1
i→h,msgi,GC, πi)}i∈A be the set of messages received from A.

Second round.
5. Let Lh,bad = {}. Here, Ph will store shared keys with parties Pj who did

not provide accepting πj . Let Lh,good = {}. Here, Ph will store shares
of labels for GCj for accepting πj .

6. If for every j ∈ A there are at least 1
3 + 1 of messages

msg1
j→i1 , . . . ,msg1

j→in equal to m̂sg1
j , with ii ∈ H, then S behaves as

honest party Ph for h ∈ H and proceeds as follows; otherwise S executes
Step 7:
(a) Denote

(νh,k+1, . . . , νh,L) = (m̂sg1
1, . . . , m̂sg1

n) ∈ {0, 1}n·l.

(b) Let Ch be the circuit computing snd-msgh run
(GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch, m̂sg2

h).
(c) For every l ∈ [k + 1, . . . , L] S runs k

νh,l
h→i1,l, . . . , k

νh,l
h→i|H|,l ←

simshare(Kh,l, τ, k
νh,l
h→i1,l, . . . , k

νh,l
h→i|A|,l).

7. Let j ∈ A be the minimal index for which there are less then 1
3 + 1

of messages msg1
j→i1 , . . . ,msg1

j→in equal to m̂sg1
j , with ii ∈ H, then S

behaves as honest party Ph for h ∈ H and proceeds as follows:
(a) S sends abortj to the trusted third part.
(b) S runs (GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch, 0L).
(c) For every g ∈ H let msg1

h→g = m̂sg1
h and denote

(νh,1, . . . , νh,L) = (msg1
1→h, . . . ,msg1

n→h) ∈ {0, 1}L.

8. Verify πj .
– If simP.Extract applied on πj aborts, let πh,j ← prove(crs3, φh,j =

(pkh, pkj , kj,h), wh,j = skh), and add (kj,h, πh,j) to Lh,bad.
– Else,
• For l ∈ [k + 1, . . . , L], let klj→h ← dec(kj,h, k

νh,l
j→h).

• For j ∈ A let φh,j = (pkh, pkj , {k
νh,l
j→h, k

l
j→h}l∈[k+1,...,L]) let

πh,j ← prove(crs2, φh,j , wh,j = skh).
• For j ∈ H let φh,j = (pkh, pkj , {k

νh,l
j→h, k

l
j→h}l∈[k+1,...,L]) run

πh,j ← simP(crs2, φh,j).
• Add (msg1

j→h, kj→h, πh,j) to Lh,good.
9. S (msgh,GC, πh, {Kh,l}l∈[k], Lh,good, Lh,bad) sends to A.

Output.
10. For every j ∈ [A], let

(msgj,GC = (GCj , {{k
0
j→j′,l, k

1
j→j′,l}l∈[k+1,...,L]}j′∈[n]), πj , {Kj,l}l∈[k],

Lj,good, Lj,bad)
be the second-round message received from Pj . S checks:

37



(a) For j ∈ [A]:
i. If simP.Extract applied on πj aborts, S sends abortj to the

trusted third part.
ii. Let goodj be the set of j′ such that an element

(msg1
j→j′ , kj→j′ , πj′,j) is in Lj′,good, and let badj be the set of

j′ such that an element (kj,j′ , πj′,j) is in Lj′,bad.
iii. Define msg1

j as the message equal to at least n − t of msg1
j→j′

for j′ ∈ goodj . If such a message does not exist, sends abortj
to the trusted third part. Remove all j′ with messages that do
not match msg1

j from goodj .
(b) Let (νk+1, . . . , νL) = (msg1

1, . . . ,msg1
n).

(c) For j ∈ [A]:
i. For j′ ∈ goodj , if simP.Extract applied on πj′,j aborts, sends

abortj to the trusted third part.
ii. For j′ ∈ badj , if simP.Extract applied on πj′,j aborts, sends

abortj to the trusted third part. Otherwise, for l ∈ [k +
1, . . . , L], let kj→j′,l ← dec(kj,j′ , k

νl
j→j′).

iii. For l ∈ [k + 1, . . . , L], compute Kj,l =
reconstruct({kj→j′,l}j′∈goodj∪badj ). If the reconstruction
fails output abortj .

iv. Evaluate the garbled circuit GCj as msg2
j =

eval(GCj ,Kj,1, . . . ,Kj,L). If the evaluation fails, sends
abortj to the trusted third part.

If S did not abort sends continue to the trusted third part.
11. S outputs the output of A and terminates.

We will now proceeds through a series oh hybrid experiments in oder to
prove that the joint distribution of the output of A and the output of the hon-
est parties in the ideal execution is computationally indistinguishable from the
joint distribution of the output of A and the output of honest parties in a real
protocol execution. The hybrid experiments are listed below. The output of the
experiments is defined as the output of A and the output of the honest parties.

1. Expt0
A,A,Πp2p−bc

: In this experiments, the simulator S0 has access to the
internal state of the trusted party computing F , therefore S0 chooses the
output values of the honest parties. In the execution of Πp2p−bc the simulator
is interacting with A on behalf of the honest parties. The output of this
hybrid experiment is the output of the honest parties and the output of
A in the execution of Πp2p−bc explained above. It follows trivially that the
output of Expt0

A,A,Πp2p−bc
and the the output of the real world experiment

are identically distributed.
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2. Expt1
A,A,Πp2p−bc

: in this experiment Expt0
A,A,Πp2p−bc

is modified as follows. The
simulator S1 start invoking SRS on her input and receiving back ~x = {xi}i∈A

or an aborti, for some i ∈ [n]. S1 simulates the interaction between SRS
and the ideal functionality relaying on the trusted third part. Specifically,
S1 forwards the message that she received from SRS to F and if SRS did not
abort she receives back y. S1 forwards y to SRS.
S1 checks that more than 1/3 of consistent messages have been sent to the
honest parties for each j ∈ A. If this is not the case S1 outputs abortj (where
j ∈ A is the minimal index for which A sends more then 1/3 of inconsistent
messages). S1 executes also the same checks that the ideal world simulator
S (described above) in steps 10(c)iii and 10(c)iv does. If one of the checks
fail S1 aborts identifying the cheater accordingly to the strategy of S in the
correspondisg steps.

Claim. Expt0
A,A,Πp2p−bc

and Expt1
A,A,Πp2p−bc

are computationally indistinguish-
able.

Proof (Sketch). If A sends more then 1/3 of inconsistent messages of Πbc
for some malicious party in Expt0

A,A,Πp2p−bc
the honest parties output abortj

(where j ∈ A is the minimal index for which A sends more then 1/3 of
inconsistent messages). Note that in this case the same check fails also in
Expt1

A,A,Πp2p−bc
, therefore S1 sends abortj to her trusted third part making

sure that the honest parties also in Expt1
A,A,Πp2p−bc

output abortj . If the
check above did not fail, then A recovers garble circuits and labels of the
honest parties and therefore A gets to learn the output. At this point A
could sends labels and garble circuits on behalf of dishonest parties. If the
garble circuit evaluation or the the secret sharing reconstruction fails honest
parties abort identifying the cheater j (where j ∈ A is the minimal index
for which garble circuit evaluation or the the secret sharing reconstruction
fails). In this case one of the checks in steps 10(c)iii and 10(c)iv fail and S1 in
Expt1

A,A,Πp2p−bc
sends abortj to F . We conclude that honest parties aborts in

Expt1
A,A,Πp2p−bc

only when the honest parties are aborting in Expt0
A,A,Πp2p−bc

.
If all the checks above did not fail then it is possible to claim that Expt0

A,A,Πp2p−bc

and Expt1
A,A,Πp2p−bc

are computationally indistinguishable relying on the se-
curity of Πbc.

3. Expt2
A,A,Πp2p−bc

: in this experiment Expt1
A,A,Πp2p−bc

is modified as follows. In
order to compute πh in the first round S2 runs simP(crs1, td1, φ), for h ∈ H.
Moreover S2 executes the step 8 of S.

Claim. Expt2
A,A,Πp2p−bc

and Expt1
A,A,Πp2p−bc

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H| + 1 hybrids arguments: in the
j-th hybrid experiment πh of honest party Ph with h ≤ j are simulated as
in Expt2

A,A,Πp2p−bc
and for h > j are computed as Expt1

A,A,Πp2p−bc
. In order
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to claim that two neighboring hybrids are computationally indistinguishable
we can rely on the simulation extractability property of the zero-knowledge
proof system. Notice that the abort probability between two neighboring
hybrids increases only of a negligible amount due to simulation extractability
of the zero-knowledge proof system. The proof conclude observing that the
0-th hybrid corresponds to Expt1

A,A,Πp2p−bc
and the |H|-th corresponds to

Expt2
A,A,Πp2p−bc

.

4. Expt3
A,A,Πp2p−bc

: in this experiment Expt2
A,A,Πp2p−bc

is modified as follows.
let φh,j = (pkh, pkj , {k

νh,l
j→h, k

l
j→h}l∈[k+1,...,L]) in the second round S3 runs

πh,j ← simP(crs2, φh,j), where {kνh,lj→h, k
l
j→h}l∈[k+1,...,L] are computed as in

Πp2p−bc. Moreover S3 executes the step, 10(c)i 10(c)ii of S.

Claim. Expt2
A,A,Πp2p−bc

and Expt3
A,A,Πp2p−bc

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds in a similar way to the on described for
Claim 3

5. Expt4
A,A,Πp2p−bc

: in equal to experiment Expt3
A,A,Πp2p−bc

except that the sim-
ulator S4 for the honest party sends in the first round commitment of 0g. In
more detail, S4 computes cGCh , oGCh ← commit(0g) for all h ∈ H.

Claim. Expt4
A,A,Πp2p−bc

and Expt3
A,A,Πp2p−bc

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H|+1 hybrids arguments: in the j-th
hybrid experiment cGCh of honest party Ph with h ≤ j are commitment of 0g
as in Expt4

A,A,Πp2p−bc
and for h > j are computed as Expt3

A,A,Πp2p−bc
. In order

to claim that two neighboring hybrids are computationally indistinguishable
we can rely on the hiding of the commitment scheme. The proof conclude
observing that the 0-th hybrid corresponds to Expt4

A,A,Πp2p−bc
and the |H|-th

corresponds to Expt3
A,A,Πp2p−bc

.

6. Expt5
A,A,Πp2p−bc

: in equal to experiment Expt4
A,A,Πp2p−bc

except that the sim-
ulator S5 sends in the first round encryptions of 0L to all the honest par-
ties. In more detail, for every l ∈ L, h, j ∈ H and b ∈ {0, 1} S5 computes
k̄bh→j,l ← enc(kh,j , 0L).

Proof (Sketch). The proof proceeds via 2(|H|2l + 1) hybrids arguments:
For each h, h′ ∈ H, l ∈ [L], b ∈ {0, 1}, we define hybrid experiment Expth→h′,l,b.
In each subsequent experiment Expth→h′,l,b, the encryption k̄bh→h′,l′ becomes
an encryption of 0L. In order to claim that two neighboring hybrids are
computationally indistinguishable we can rely on security of the encryption
scheme. The proof conclude observing that the 0-th hybrid corresponds to
Expt4

A,A,Πbc−p2p
and the last hybrid corresponds to Expt5

A,A,Πbc−p2p
.
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7. Expt6
A,A,Πp2p−bc

: this experiment proceeds as the experiment Expt5
A,A,Πp2p−bc

except that the shares are computed differently. In more details, the simula-
tor S6 computes the shares on behalf of the honest parties according to step
3a of the ideal world simulator S (described above).
Let (νh,1, . . . , νh,L) = (msg1

1→h, . . . ,msg1
n→h) and {mj→h}j∈[n] be the mes-

sages received by the honest party Ph in the first round of the execution of
Πp2p−bc. If A does not send more then 1/3 of inconsistent messages of Πbc to
the honest parties for any corrupted party S6 computes for every l ∈ [L] for
all h ∈ H S kνh,lh→i1,l, . . . , k

νh,l
h→i|H|,l ← simshare(Kh,l, k

νh,l
h→i1,l, . . . , k

νh,l
h→i|A|,l).

Claim. Expt5
A,A,Πp2p−bc

and Expt6
A,A,Πp2p−bc

are perfect indistinguishable.

Proof. We can rely on the security of the secret sharing scheme to claim that
Expt5

A,A,Πp2p−bc
and Expt6

A,A,Πp2p−bc
are perfect indistinguishable. Note that if

A sends more then 1/3 of inconsistent messages of Πbc in Expt5
A,A,Πp2p−bc

A
is not able to recover any of the honest parties secrets (that are the labels
for their garble circuit) since the reconstruction threshold is tss = 2

3n+ 1.

8. Expt7
A,A,Πp2p−bc

: this experiment proceeds as the experiment Expt6
A,A,Πp2p−bc

except that the garbled circuits regarding the honest parties are computed
using the simulated procedure simGC. In more detail, S7 executes, for all
h ∈ H, (GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch,xh,rh ,msg2

h), where msg2
h is the

message computed by Ph in the execution of Πp2p−bc and Ch,xh,rh is the
circuit snd-msgh with hard-wired input xh and randomness rh.

Claim. Expt7
A,A,Πp2p−bc

and Expt6
A,A,Πp2p−bc

are computationally indistinguish-
able.

Proof. The proof proceeds via |H|+ 1 hybrids arguments: in the j-th hybrid
experiment the garble circuit of honest party Ph with h ≤ j are simulated as
in Expt7

A,A,Πp2p−bc
and for h > j are computed as in Expt6

A,A,Πp2p−bc
. In order

to claim that two neighboring hybrids are computationally indistinguishable
we can rely on security of garbling scheme. The proof conclude observing that
the 0-th hybrid corresponds to Expt6

A,A,Πp2p−bc
and the |H|-th corresponds to

Expt7
A,A,Πp2p−bc

.

9. Expt8
A,A,Πp2p−bc

: in this experiment Expt7
A,A,Πp2p−bc

is modified as follows.
Let Ch be the circuit snd-msgh with hard-wired input and randomness set
to 0. If A sends more then 1/3 of inconsistent messages of Πbc for some
malicious party S8 on behalf of honest party Ph (for all h ∈ H) executes
(GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch, 0L) (i.e. she garbles the circuit on a
dummy output); otherwise she executes (GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch,
msg2

h), where msg2
h is the message computed by Ph in the execution of

Πp2p−bc.

Claim. Expt8
A,A,Πp2p−bc

and Expt7
A,A,Πp2p−bc

are computationally indistinguish-
able.
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Proof. This proceeds via hybrid experiments similar as in the proof of Claim
8, the only extra observation is that A does not learn the labels for the garble
scheme if the A sends more then 1/3 of inconsistent messages of Πbc both
in Expt8

A,A,Πp2p−bc
that in Expt7

A,A,Πp2p−bc
.

10. Expt9
A,A,Πp2p−bc

: this experiment proceeds as the experiment Expt8
A,A,Πp2p−bc

except that instead of computing the messages of Πbc relaying on honest
parties inputs, the simulator S9 uses the messages given in output by SRS.
More in details, in the first round for all h ∈ H S9 sends m̂sg1

h, and in the
second round computes (GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch, m̂sg2

h) (if the
check in Step 6 does not fail).

Claim. Expt9
A,A,Πp2p−bc

and Expt8
A,A,Πp2p−bc

are computationally indistinguish-
able.

Proof. In Expt9
A,A,Πp2p−bc

the adversary learns the second messages of Πbc
w.r.t. the honest parties only when the honest parties agree on a same first
round message msg1

i of Πbc from dishonest party Pi, that is when Pi sends
more than 1/3 of consistent messages to the honest parties for the first
round of Πbc. Therefore the indistinguishability between Expt9

A,A,Πp2p−bc
and

Expt8
A,A,Πp2p−bc

follows from the security of Πbc. More in details, any distin-
guisher between Expt9

A,A,Πp2p−bc
and Expt8

A,A,Πp2p−bc
can be used to distinguish

between SRS and real execution with the receiver-specific adversary.
As observed in [CGZ20], the proof crucially rely on the ability oif the sim-
ulator SRS to extract the adversary’s input from her first round of Πbc, and
this is implied from the assumption that SRS is strait-line and black-box.
Indeed, these properties for two rounds MPC guarantee that SRS will extract
the adversary’s input from her first round of Πbc.

The proof ends observing that in Expt9
A,A,Πp2p−bc

S9 does not need anymore
to have access to the internal state of the trusted third part that computes
F and therefore Expt9

A,A,Πp2p−bc
and the ideal world experiment are identically

distributed.

P2P-BC Identifiable Abort with n > 2t Next, we argue that the techniques
we use to build Πp2pbc do not apply when n ≤ 3t. Let tMPC denote the threshold
of the secure computation protocol, and let tSS denote the threshold of the secret
sharing scheme we use (where tSS +1 parties can reconstruct the secret, but tSS
cannot). We cannot achieve identifiable abort with the protocol structure of
Cohen et al. for tMPC ≥ n

3 , for the following reason.
In order to achieve identifiable abort, honest parties must be able to recon-

struct garbled circuit labels without the help of malicious parties in the second
round. Malicious parties could claim to receive a different first-round message
from the underlying Πbc, and thus forward incorrect label shares. Honest parties
will not know whether to blame those parties or the message sender, and since
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they are unable to identify a cheater, they must be able to reconstruct garbled
circuit labels and complete the computation. So, we need

tSS < n− tMPC .

On the other hand, no malicious party should be able to reconstruct more than
one label for the same input wire in an honest party’s garbled second message
function. Since the first message is sent over peer-to-peer channels, a malicious
party can always send 0 to half the honest parties (getting their shares of the 0
label for a given wire), and 1 to the other half (getting their shares of the 1 label
for the same wire). Malicious parties hold shares of both wires; so, it’s important
that they be unable to combine their shares with only half the honest parties’
shares to reconstruct a label. We get

tSS ≥ tMPC + n− tMPC

2 = n+ tMPC

2 .

tMPC (satisfying both those constraints) is maximized at dn3 − 1e.
While we are unable to use the techniques of Cohen et al. for 3t ≥ n > 2t, we

conjecture that we could use less efficient techniques such as obfuscation, and
stronger setup.

Conjecture 1 (P2P-BC, ID, n > 2t). Given (a) obfuscation and (b) correlated
randomness, we can achieve secure computation with identifiable abort in two
rounds only the second of which is over a broadcast channel, for n > 2t.

We informally sketch a construction achieving secure computation with iden-
tifiable abort as per Conj 1. We note that this construction is incredibly im-
practical; we sketch it here simply to demonstrate feasibility, or, rather, the
infeasibility of a negative result. We believe that its security can be based on
indistinguishability obfuscation.

The construction requires a PKI, and correlated randomness in the form of an
obfuscated program which is hardcoded with (a) the function being computed,
(b) all parties’ public keys, and (c) a secret decryption key. Parties send all
their peers a signed encryption of their input in the first round; in the second
round, they broadcast signed echos of those encryptions. They then use the echos
as inputs to the obfuscated program, which gives them the output. The echos
provide a verifiable broadcast of the encrypted inputs, in the sense that after
the second round, each party holds proof that sufficiently many other parties
saw the same encrypted inputs. This proof is checked by the program before it
produces an output, and serves to prevent the adversary from recomputing the
output with different inputs.

In more detail, consider the function outputf,sk,pk1,...,pkn
(described in Fig-

ure 1), in which a secret decryption key sk (the public encryption key pk corre-
sponding to which is known to all parties) is hard-coded, along with the function
f , and all parties’ signature verification keys pk1, . . . , pkn. The obfuscation of
output, as well as the public encryption key pk, is available in a CRS.
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Each party Pi encrypts its input xi to the CRS as ci ← enc(pk, xi), and
signs that ciphertext as σi ← sign(ski, ci), and sends all parties (ci, σi) in the
first round over peer-to-peer channels. Each party then concatenates all of the
messages it got in the first round as mi = {(cj , σj)}j∈{1,...,n}\{i}, and signs this
concatenation as σ′i ← sign(ski,mi). Pi then broadcasts (mi, σ

′
i) in the second

round.
If a corrupt party does not broadcast anything in the second round (or pro-

vides a bad signature), it will be caught by the first for-loop of output. If a
corrupt party sends different ciphertexts to different honest parties in the first
round, it will be caught by the first if-statement of the second for-loop. If a
corrupt party does not provide at least one honest party with its ciphertext, it
will be caught by the second if-statement of that for-loop.

outputf,sk,pk1,...,pkn
((m1, σ

′
1), . . . , (mn, σ′n)) :

for i ∈ [1, . . . , n] do
if verify(pki,mi, σ

′
i) = reject then

return aborti
end if
Parse mi = {(cj,i, σj,i)}j∈{1,...,n}\{i}

end for
Let dj,i = verify(pkj , cj,i, σj,i).
for j ∈ [1, . . . , n] do

if ∃i, i′ s.t. cj,i 6= cj,i′ and dj,i = dj,i′ = accept then
return abortj

end if
if @i1 6= . . . 6= it+1 s.t. cj,i1 = · · · = cj,it+1 and dj,i1 = · · · = dj,it+1 = accept then

return abortj
else

xj ← dec(sk, cj,i1 )
end if

end for
return f(x1, . . . , xn)

Fig. 1: Function or Circuit to Obtain Computation Output
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A Building Blocks

In this section we define the building blocks necessary for our protocols.

Symmetric Key Encryption
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Definition 9. A Symmetric-Key Encryption scheme is a tuple of efficient algo-
rithms ENC = (keygen, enc, dec) defined as follows.

keygen(1λ)→ sk: The probabilistic algorithm keygen takes as input the se-
curity parameter λ ∈ N, and outputs a secret key sk.
enc(sk,m; r)→ c: The probabilistic algorithm enc takes as input the secret
key pk, a message m ∈ M, and implicit randomness ρ ∈ R, and outputs a
ciphertext c = enc(sk,m; r). The set of all ciphertexts is denoted by C.
dec(sk, c)→ m: The deterministic algorithm dec takes as input the secret
key sk and a ciphertext c ∈ C and outputs m = dec(sk, c) which is either
equal to some message m ∈M or to an error symbol ⊥.

We require the following properties of a symmetric encryption scheme:

Correctness. We say that ENC satisfies correctness if for all sk ← keygen(1λ)
there exists a negligible function ν : N→ [0, 1] such that that Pr[dec(sk, enc(sk,m))
= m] ≥ 1− ν(λ) (where the randomness is taken over the internal coin tosses of
algorithm enc).

CPA security. We say that ENC is CPA-secure if for all PPT adversaries A the
following quantity is negligible:

Pr
[
b′ = b : b′ ← A(c); c← enc(sk,mb); b← {0, 1}

(m0,m1)← A(1λ); sk← keygen(1λ)

]
.

Public Key Encryption

Definition 10. A Public-Key Encryption (PKE) scheme is a tuple of efficient
algorithms PKE = (keygen, enc, dec) defined as follows.

keygen(1λ)→ (pk, sk): The probabilistic algorithm keygen takes as input the
security parameter λ ∈ N, and outputs a public/secret key pair (pk, sk).
enc(pk,m; r)→ c: The probabilistic algorithm enc takes as input the public
key pk, a message m ∈ M, and implicit randomness ρ ∈ R, and outputs a
ciphertext c = enc(pk,m; r). The set of all ciphertexts is denoted by C.
dec(sk, c)→ m: The deterministic algorithm dec takes as input the secret
key sk and a ciphertext c ∈ C and outputs m = dec(sk, c) which is either
equal to some message m ∈M or to an error symbol ⊥.

We require the following properties of a PKE scheme:

Correctness. A PKE scheme meets the correctness property if the decryption of
a ciphertext encrypting a given plaintext yields the plaintext. We say that PKE
satisfies correctness if for all (pk, sk) ← keygen(1λ) there exists a negligible
function ν : N → [0, 1] such that that Pr[dec(sk, enc(pk,m)) = m] ≥ 1 − ν(λ)
(where the randomness is taken over the internal coin tosses of algorithm enc).
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CPA security. The standard security notion for PKE schemes goes under the
name of security against chosen-plaintext attacks (CPA), and informally states
that no efficient adversary given the public key can distinguish the encryption of
two (possibly known) messages. Let PKE = (keygen, enc, dec) be a PKE sche-
me. We say that PKE is CPA-secure if for all PPT adversaries A the following
quantity is negligible:

Pr
[
b′ = b : b′ ← A(pk, c); c← enc(pk,mb); b← {0, 1}

(m0,m1)← A(pk); (pk, sk)← keygen(1λ)

]
.

Non-Interactive Zero-Knowledge Arguments of Knowledge We take
this definition from Groth and Maller [GM17].

Definition 11 (Non-Interactive Zero-Knowledge Arguments of Knowl-
edge). A non-interactive zero-knowledge argument of knowledge scheme NIZK
consists of the following algorithms:

setup(1λ,R)→ (crs, td): Upon input the security parameter, sets up the
global common reference string crs and the trapdoor td for the NIZK system.
prove(crs, φ, w)→ π: Upon input the common reference string crs for a re-
lation R, a statement φ and a witness w, returns a proof π that (φ,w) ∈ R.
verify(crs, φ, π)→ accept/reject: Upon input the common reference string
crs for a relation R, a statement φ and a proof π, verifies whether π proves
the existence of a witness w such that (φ,w) ∈ R.
simP(crs, td, φ)→ π: Upon input the common reference string crs for a rela-
tion R, the trapdoor td and a statement φ, simulates a proof of the existence
of a witness w such that (φ,w) ∈ R.

We require the following properties of a NIZK scheme:

Completeness. For any (φ,w) ∈ R we have that

Pr
[
verify(φ, π) = 1

∣∣∣∣ (crs, td)← setup(1λ,R)
π ← prove(φ,w)

]
≥ 1− negl(λ) .

Zero Knowledge. We say that NIZK has zero-knowledge if for all PPT adversaries
A and sufficiently large λ, there exists a negligible function negl(λ) such that
|Pr[A wins ]− 1

2 | ≤ negl(λ) in the following experiment:

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setup(1λ,R)

b← {0, 1}

Repeat poly(λ) times{
φ,w

−−−−−−−−−−−−−−−−−−−−−−−−−−B
if b = 0: π ← prove(crs, φ, w)
if b = 1: π ← simP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′
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Simulation Extractability. We say that NIZK is simulation extractable if for all
PPT adversaries A and sufficiently large λ, there exists an extraction algo-
rithm simP.ExtractA and a negligible function negl(λ) such that Pr[A wins ] ≤
negl(λ) in the following experiment:

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setup(1λ,R)

Qsim = ∅

Repeat poly(λ) times{
φ

−−−−−−−−−−−−−−−−−−−−−−−−−−B
π ← simP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−− add π to Qsim

φ∗, π∗

−−−−−−−−−−−−−−−−−−−−−−−−−−B
w∗ ← simP.ExtractA(crs, td, τA)

If all of the following checks pass,
A wins:

(φ∗, w∗) 6∈ R
verify(crs, φ∗, π∗) = accept
π∗ 6∈ Qsim

Commitment Scheme A commitment scheme allows a party to commit to
a value while keeping it hidden from the others, and later it allows the same
party to reveal the committed value with the guarantee that the commitment is
binding [Ped92].
Definition 12. A commitment scheme consists of the following algorithms:

com(msg)→ (decom, com): The commitment algorithm takes as input a mes-
sage msg ∈ {0, 1}λ and outputs a decommitment value decom ∈ {0, 1}λ and
a commitment value com ∈ {0, 1}λ.
open(decom, com)→ {msg,⊥}: The opening algorithm takes as input a de-
commitment value decom ∈ {0, 1}λ and a commitment value com ∈ {0, 1}λ
and outputs either a message msg or ⊥ in case com is not a valid commitment
to any message.

We require the following properties of a commitment scheme:

(Perfect) Completeness. We say that a commitment scheme is complete if for
all messages m ∈ {0, 1}λ and (decom, com)← com(m), we have that

Pr[open(com, decom) = m] = 1.

Hiding. The hiding property means that no adversary can distinguish which of
two messages are locked into the commitment. We say that C is computational-
ly/statistically hiding if,

Pr

b = b′

∣∣∣∣∣∣∣∣
(msg0,msg1)← A(1λ);
b← {0, 1};
(decom, com)← com(msgb);
b′ ← A(com)

 ≤ 1
2 + negl(λ) ,

is a negligible function for all ppt/unbounded adversaries A.
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Binding. Informally, binding says that the adversary cannot open the commit-
ment in two different ways. We say that C is binding if no efficient adversary
can find values (com, decom0, decom1,msg0,msg1) ∈ {0, 1}λ with msg0 6= msg1
such that open(com, decom0) = msg0 and open(com, decom1) = msg1.

Yao’s Garbled Circuits Yao’s garbled circuit [Yao82,BHR12] is a two-party
secure computation scheme where the parties jointly compute a function output
on private inputs. One party garbles the circuit, and the other party evaluates
it.

Definition 13. A projective garbling scheme consists of the following algorithms:

garble(1λ, C)→ (GC,K): The garbling algorithm garble takes as input the
security parameter λ and a boolean circuit C : {0, 1}` → {0, 1}m, and it out-
puts a garbled circuit GC and ` pairs of garbled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ).

For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that
Kb
` ∈ {0, 1}λ.

eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm eval takes as input the
garbled circuit GC and ` garbled labels K1, . . . ,K`, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. A garbling scheme Π = (garble, eval) is correct if for any boolean
circuit C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) it holds that

Pr[eval(GC,K[x]) 6= C(x)] = negl(λ),

where (GC,K) ← garble(1λ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ), and K[x] =

(Kx1
1 , . . . ,Kx`

` ).
Next, we formally define the security notions we require for a garbling scheme.

Privacy. A garbling scheme is private if there exists a simulator simGC such that
for every PPT adversary A it holds that∣∣∣Pr

[
Exptpriv

Π,A,simGC(λ, 0) = 1
]
− Pr

[
Exptpriv

Π,A,simGC(λ, 1) = 1
]∣∣∣ ≤ negl(λ),

where the experiment Exptpriv
Π,A,simGC(λ, b) is defined as follows:

1. The adversary A specifies C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) ∈
{0, 1}`.

2. The challenger responds as follows:
– If b = 0 set (GC,K) ← garble(1λ, C) with K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ).

Responds with (GC,K[x]) where K[x] = (Kx1
1 , . . . ,Kx`

` ).
– If b = 1 then respond with (GC,K1, . . . ,K`)← simGC(1λ, C(x)).

3. The adversary outputs a bit b′ as the output of the experiment.
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Obliviousness. A garbling scheme is oblivious if there exists a simulator simGC
such that for every PPT adversary A it holds that∣∣Pr

[
Exptobliv

Π,A,simGC(λ, 0) = 1
]
− Pr

[
Exptobliv

Π,A,simGC(λ, 1) = 1
]∣∣ ≤ negl(λ),

where the experiment Exptobliv
Π,A,simGC(λ, b) is defined as follows:

1. The adversary A specifies C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) ∈
{0, 1}`.

2. The challenger responds as follows:
– If b = 0 set (GC,K) ← garble(1λ, C) with K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ).

Responds with (GC,K).
– If b = 1 then respond with (GC,K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` )← simGC(1λ).

3. The adversary outputs a bit b′ as the output of the experiment.

Non-Interactive Key Exchange (NIKE) A non-interactive key-exchange
protocol allows two parties to jointly compute a cryptographic key.

Definition 14. A non-interactive key exchange scheme, parametrized by a dis-
tribution D, consists of the following algorithms:

keygen(1λ)→ (pk, sk): This algorithm produces a public - private key pair.
keyagree(pk, sk)→ k: This algorithm, given a public key and a secret key
from a different key pair, produces a shared key for the holder of the public
key and the holder of the secret key. Importantly, this algorithm should return
the same key when run on Pi’s public key and Pj’s secret key, and vice versa.

We require the following properties of a non-interactive key exchange scheme:

Correctness. We say that a non-interactive key exchange scheme is correct if

Pr

 (pk0, sk0)← keygen(1λ);
(pk1, sk1)← keygen(1λ);
keyagree(pk0, sk1) = keyagree(pk1, sk0)

 ≥ 1− negl(λ) .

Security. We say that a non-interactive key exchange scheme is correct if is
secure if for all PPT adversaries A,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← keygen(1λ);
(pk1, sk1)← keygen(1λ);
b← {0, 1};
k0 ← keyagree(pk1, sk0);
k1 ← D;
b′ ← A(pk0, pk1, kb)

 ≤
1
2 + negl(λ) .
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Secret Sharing Scheme A t-out-of-n secret sharing scheme allows a party to
“split” a secret into n shares that can be distributed among different parties. To
reconstruct the original secret x at least t shares need to be supplied [CDN15].

Definition 15. A t-out-of-n secret sharing scheme consists of the following al-
gorithms:

– share(x) → (s1, . . . , sn): The randomized algorithm share takes a secret x
as input and output a sequence of shares.

– reconstruct(s1, . . . , s`)→ x: The reconstruct algorithm reconstruct upon
input a vector of ` shares outputs the secret x whenever ` ≥ t.

We require the following properties of a t-out-of-n secret sharing scheme:

Privacy. The privacy property says that any combination of up to t − 1 shares
should leak no information about the secret x. Formally, for all (unbounded)
adversaries A, for any set P ′ = (P ′1, . . . , P ′`) ⊆ P such that ` < t, and for every
two secrets x0, x1,

Pr
[
A(s′) = 1 : s = share(x0);

s′ = (sP ′1 , . . . , sP ′` )

]
≡ Pr

[
A(s′) = 1 : s = share(x1);

s′ = (sP ′1 , . . . , sP ′` )

]
.

Shares simulatability. Additionally, we require the existence of an efficient simu-
lator for the generated shares. Formally, there exists a PPT simulator simshare
and a negligible function negl(λ) such that for every PPT adversary A, every
secret x and sufficiently large λ,

|Pr [A(share(x)) = 1]− Pr [A(simshare(λ)) = 1] | ≤ negl(λ).

52


	Broadcast-Optimal Two Round MPC  with an Honest Majority
	Introduction
	Technical Overview
	Open Questions
	Related Work

	Secure Multiparty Computation (MPC) Definitions
	Security Model
	Notation

	Negative Results
	Impossibility of Weak Detectable Broadcast in Two Rounds
	Impossibility Results for MPC with Unanimous Abort and Fairness with n= 2t+ 1
	Impossibility Results for MPC with Fairness with t> 2

	Positive Results
	Trivial Observations
	Guaranteed Output Delivery
	Identifiable Abort
	P2P-BC Identifiable Abort with n> 3t
	P2P-BC Identifiable Abort with n> 2t


	Preliminaries
	Symmetric Key Encryption
	Public Key Encryption
	Non-Interactive Zero-Knowledge Arguments of Knowledge
	Commitment Scheme
	Yao's Garbled Circuits
	Non-Interactive Key Exchange (NIKE)
	Secret Sharing Scheme




