
Broadcast-Optimal Two Round MPC
with an Honest Majority

Ivan Damg̊ard, Bernardo Magri, Divya Ravi, Luisa Siniscalchi, and
Sophia Yakoubov

Aarhus University, Denmark

Abstract. This paper closes the question of the possibility of two-round
MPC protocols achieving different security guarantees with and without
the availability of broadcast in any given round. Cohen et al. [CGZ20]
study this question in the dishonest majority setting; we complete the
picture by studying the honest majority setting.
In the honest majority setting, given broadcast in both rounds, it is
known that the strongest guarantee — guaranteed output delivery —
is achievable [GLS15]. We show that, given broadcast in the first round
only, guaranteed output delivery is still achievable. Given broadcast in
the second round only, we give a new construction that achieves identi-
fiable abort, and we show that fairness — and thus guaranteed output
delivery — are not achievable in this setting. Finally, if only peer-to-peer
channels are available, we show that the weakest guarantee — selective
abort — is the only one achievable for corruption thresholds t > 1 and
for t = 1 and n = 3. On the other hand, it is already known that selective
abort can be achieved in these cases. In the remaining cases, i.e., t = 1
and n ≥ 4, it is known [IKP10,IKKP15] that guaranteed output delivery
(and thus all weaker guarantees) are possible.

Table of Contents

Broadcast-Optimal Two Round MPC with an Honest Majority 1
Ivan Damg̊ard, Bernardo Magri, Divya Ravi, Luisa Siniscalchi, and
Sophia Yakoubov

1 Introduction . 2
1.1 Technical Overview . 4
1.2 Related Work . 7

2 Secure Multiparty Computation (MPC) Definitions 9
2.1 Security Model . 9
2.2 Notation . 11

3 No Broadcast: Impossibility of Unanimous Abort 12
4 Broadcast in the Second Round: Impossibility of Fairness 16
5 Completing the Picture: Impossibility Results for n ≤ 3t 18
6 Broadcast in the First Round: Guaranteed Output Delivery 21
7 One-or-Nothing Secret Sharing . 22

7.1 Definitions . 23
Syntax . 23
Security . 24

7.2 Constructions . 25
8 Broadcast in the Second Round: Identifiable Abort 27

8.1 Proof of Security . 32
A Building Blocks . 43

Symmetric Key Encryption . 43
Public Key Encryption . 44
Non-Interactive Zero-Knowledge Arguments of Knowledge 45
Commitment Scheme . 46
Garbling Scheme . 47
Non-Interactive Key Exchange . 49
Threshold Secret Sharing Scheme . 50
Digital Signatures . 51

1 Introduction

In this paper we advance the study of round-optimal secure computation, focus-
ing on secure computation with active corruptions, an honest majority, and some
setup (e.g. a public key infrastructure). It is known that in this setting, secure
computation is possible in two rounds (whereas one round is clearly not enough).
However, most known two-round protocols in the honest majority setting either
only achieve the weakest security guarantee (selective abort) [ACGJ19], or make
use of a broadcast channel in both rounds [GLS15]. Since broadcast channels are
expensive, it is important to try to minimize their use (while achieving strong
security guarantees).

The only step in this direction is the protocol of Cohen et al. [CGZ20]. They
achieve secure computation with unanimous abort for a dishonest majority (and
thus also for an honest majority) with broadcast in the second round only, and
they also show that unanimous abort is the strongest achievable guarantee in this
setting. Finally, Cohen et al. showed that, given a dishonest majority, selective
abort is the strongest achievable security guarantee with broadcast in the first
round only.

We make a study analogous to the work of Cohen et al. but in the honest
majority setting. Like Cohen et al., we consider all four broadcast patterns:
broadcast in both rounds, broadcast in the second round only, broadcast in the
first round only, and no broadcast at all. Gordon et al. [GLS15] showed that,
given broadcast in both rounds, the strongest guarantee — guaranteed output
delivery — is achievable. For each of the other broadcast patterns, we ask:

What is the strongest achievable security guarantee in this broadcast
pattern, given an honest majority?

We consider the following security guarantees:

Selective Abort (SA): A secure computation protocol achieves selective
abort if every honest party either obtains the output, or aborts.
Unanimous Abort (UA): A secure computation protocol achieves unan-
imous abort if either all honest parties obtain the output, or they all (unan-
imously) abort.
Identifiable Abort (IA): A secure computation protocol achieves identi-
fiable abort if either all honest parties obtain the output, or they all (unani-
mously) abort, identifying one corrupt party.
Fairness (FAIR): A secure computation protocol achieves fairness if either
all parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.
Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the com-
putation output no matter what the adversary does.

Some of these guarantees are strictly stronger than others. In particular, guar-
anteed output delivery implies identifiable abort (since an abort never happens),

2

which implies unanimous abort, which in turn implies selective abort. Similarly,
guaranteed output delivery implies fairness, which implies unanimous abort.
Fairness and identifiable abort are incomparable. In a fair protocol, in case of
an abort, both corrupt and honest parties get less information: corrupt parties
are guaranteed to learn nothing if the protocol aborts, but honest parties may
not learn anything about corrupt parties’ identities. On the other hand, in a
protocol with identifiable abort, in case of an abort corrupt parties may learn
the output, but honest parties will identify at least one corrupt party.

Broadcast
Pattern t

selective
abort

unanimous
abort

identifiable
abort fairness

guaranteed
output
delivery

R1 R2

BC BC

1 < t < n
2

3 3 3 [GLS15] 3 3 [GLS15]

P2P BC 3 3 3 (Thm 9) 7 (Thm 2) for
t > 1

7 for t > 1

7 (Cor 3) for
n ≤ 3t

7 for n ≤ 3t

BC P2P 3 3 3 (Thm 7) 3 3 (Thm 7)

P2P P2P 3 [ACGJ19] 7 (Cor 1) for
t > 1

7 for t > 1 7 (Thm 2) for
t > 1

7 for t > 1

7 (Cor 3) for
n ≤ 3t

7 for n ≤ 3t

P2P P2P

t = 1, n = 3 3 [ACGJ19] 7 (Cor 2) 7 7 (Cor 2) 7

t = 1, n = 4 3 3 3 ([IKKP15]) 3 3 ([IKKP15])

t = 1, n ≥ 5 3 3 3 ([IKP10]) 3 3 ([IKP10])

Table 1: Feasibility and impossibility for two-round MPC in the honest majority setting
with different guarantees and broadcast patterns.
The R1 column describes whether broadcast is available in round 1; the R2 column
describes whether broadcast is available in round 2.
Arrows indicate implication: the possibility of a stronger security guarantee implies
the possibility of weaker ones in the same setting, and the impossibility of a weaker
guarantee implies the impossibility of stronger ones in the same setting.

In Table 1, we summarize our results. Like the impossibility results of Cohen
et al., all of our impossibility results hold given arbitrary setup (such as a com-
mon reference string, a public key infrastructure, and correlated randomness).
Our feasibility results use only a PKI and CRS. Below we give a very brief de-
scription of our results. It turns out that going from dishonest to honest majority
allows for stronger security guarantees in some, but not all cases. In section 1.1
we give a longer overview of our results, and the techniques we use.

3

No Broadcast In this setting, we show that if the adversary controls two or
more parties (t > 1), or if t = 1, n = 3, selective abort is the best achievable
guarantee. This completes the picture, since (1) selective abort can indeed be
achieved by the results of Ananth et al. [ACGJ19], and (2) for t = 1, n ≥ 4,
guaranteed output delivery can be achieved by the results of Ishai et al.
[IKP10], [IKKP15].
Broadcast in the First Round Only In this setting, we show that guar-
anteed output delivery — the strongest guarantee — can be achieved.
Broadcast in the Second Round Only In this setting, we show that fair-
ness is impossible if t ≥ n/3, or if t > 1 (again, in the remaining case of
t = 1, n ≥ 4, guaranteed output delivery can be achieved). If fairness is ruled
out, the best one can hope for is identifiable abort, and we show this can
indeed be achieved given an honest majority.

To achieve identifiable abort with broadcast in the second round only, we
introduce a new tool called one-or-nothing secret sharing, which we believe to be
of independent interest. One-or-nothing secret sharing is a flavor of secret sharing
that allows a dealer to share a vector of secrets. Once the shares are distributed
to the receivers, they can vote on which secret to reconstruct by publishing
“ballots”. Each receiver either votes for the secret she wishes to reconstruct,
or abstains (by publishing a special equivocation ballot). If only one secret is
voted for, and gets sufficiently many votes, the ballots enable reconstruction
of that secret. On the other hand, if receivers disagree about which secret to
reconstruct, nothing is revealed. This could have applications to voting scenarios
where, though some voters may remain undecided, unanimity among the decided
voters is important.

1.1 Technical Overview

In this section we summarize our results given each of the broadcast patterns in
more detail.

No Broadcast (P2P-P2P) Without a broadcast channel, we show that only the
weakest guarantee — selective abort — is achievable. Ananth et al. [ACGJ19]
give a protocol for secure computation with selective abort in this setting; we
prove that secure computation with unanimous abort is not achievable, implying
impossibility for all stronger guarantees. More specifically, we get the following
two results:

Result 1 (Cor 1: P2P-P2P, UA, t > 1) Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t > 1.

4

Result 2 (Cor 2: P2P-P2P, UA, t = 1, n = 3) Secure computation of gen-
eral functions with unanimous abort cannot be achieved in two rounds of peer-
to-peer communication for corruption threshold t = 1 when n = 3 1.

We prove the first result by focusing on broadcast, where only one party (the
dealer) has an input bit, and all parties should output that bit. We show that
computing broadcast with unanimous abort in two peer-to-peer rounds with
t > 1 is impossible2.

The only case not covered by these two results is t = 1 and n ≥ 4. However
for this case, it follows from results by Ishai et al. [IKP10] and [IKKP15] that
the strongest guarantee — guaranteed output delivery — is achievable in two
rounds of peer-to-peer communication.

For completeness, we note that the case of n = 2 and t = 1 is special. We are
no longer in an honest majority setting, so fairness is known to be impossible
[Cle86]. The other three guarantees are possible and equivalent.

Broadcast in the First Round Only (BC-P2P) We show that any first-round
extractable two broadcast-round protocol (where the simulator demonstrating
security of the protocol can extract parties’ inputs from their first-round mes-
sages and it is efficient to check whether a given second-round message is correct)
can be run over one broadcast round followed by one peer-to-peer round with-
out any loss in security. Since the protocol of Gordon et al. [GLS15] satisfies
these properties, we conclude that guaranteed output delivery is achievable in
the honest majority setting as long as broadcast is available in the first round.

Result 3 (Thm 7: BC-P2P, GOD, n ≥ 2t+ 1) Secure computation of gen-
eral functions with guaranteed output delivery is possible in two rounds of com-
munication, only the first of which is over a broadcast channel, for corruption
threshold t such that n ≥ 2t+ 1.

Broadcast in the Second Round Only (P2P-BC) When broadcast is available in
the second round, not the first, it turns out that fairness (and hence guaranteed
output delivery) cannot be achieved. More specifically, we obtain the following
two results:

Result 4 (Cor 3: P2P-BC, FAIR, n ≤ 3t) Secure computation of general func-
tions with fairness cannot be achieved in two rounds of communication, only the
second of which is over a broadcast channel, for corruption threshold t such that
n ≤ 3t.
1 Patra and Ravi [PR18] give a similar result in the absence of a PKI and correlated

randomness; our impossibility result is stronger, as it holds even given arbitrary
correlated randomness

2 It is well known that computing broadcast with guaranteed output delivery requires
t rounds, but this of course does not imply the same for broadcast with unanimous
abort.

5

Result 5 (Thm 2: P2P-BC, FAIR, t > 1) Secure computation of general func-
tions with fairness cannot be achieved in two rounds of communication, only the
second of which is over a broadcast channel, for corruption threshold t > 1.

Both these results are shown using the same basic idea, namely if the protocol
is fair, we construct an attack in which corrupt players send inconsistent messages
in the first round and then use the second round messages to obtain two different
outputs, corresponding to different choices of their own input — which, of course,
violates privacy.

Combining the two results, we see that fairness is unachievable when broad-
cast is only available in the second round (the only case not covered is t = 1, n ≥ 4
where guaranteed output delivery is possible, as discussed above). We therefore
turn to the next-best guarantee, which is identifiable abort; in Section 8, we
show how to achieve it for n > 2t.

Result 6 (Thm 9: P2P-BC, ID, n > 2t) Secure computation of general func-
tions with identifiable abort is achievable in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t such
that n > 2t.

To show this result, we use a high-level strategy adopted from Cohen et al.
Namely, we start from any protocol that achieves identifiable abort for honest
majority given two rounds of broadcast, and compile this into a protocol that
works when the first round is limited to peer-to-peer channels. While Cohen
et al. achieve unanimous abort this way, we aim for the stronger guarantee of
identifiable abort, since we assume honest majority.

To explain our technical contribution, let us follow the approach of Cohen
et al. and see where we get stuck. The idea is to have each party broadcast
a garbled circuit in the second round. This garbled circuit corresponds to the
code they would use to compute their second-round message in the underlying
protocol (given their input and all the first-round messages they receive). In the
first round (over peer-to-peer channels), the parties additively secret share all
the labels for their garbled circuit, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
for each bit of first-round message she receives, each party forwards her share of
the corresponding label in everyone else’s garbled circuit. Cohen et al. used this
approach to achieve unanimous abort for dishonest majority.

However, even assuming honest majority, this will not be sufficient for iden-
tifiable abort. The main issue is that corrupt parties may send inconsistent
messages in the first round. This problem cannot be solved just by requiring
each party to sign their first-round messages, because Pi may send an invalid
signature — or nothing at all — to Pj . Pj then cannot do what she was sup-
posed to in the second round; so, all she can do is to complain, but she cannot
demonstrate any proof that Pi cheated. All honest parties now agree that either
Pi or Pj is corrupt, but there is no way to tell which one. This is not an issue if
we aim for unanimous abort; however, if we aim for identifiable abort, we must

6

either find out who to blame or compute the correct output anyway, without
any further interaction.

We solve this problem by introducing a new primitive we call one-or-nothing
secret sharing. This special kind secret sharing allows a dealer to share several
values simultaneously. (In our case, the values would be two garbled circuit labels
for a given bit b.) The share recipients can then “vote” on which of the values to
reconstruct; if they aren’t sure (in our case, they wouldn’t be sure if they didn’t
get b in the first round), they are able to “abstain”, which essentially means
casting their vote with the majority. As long as there are no contradictory votes
and a minority of abstain votes, reconstruction of the appropriate value succeeds;
otherwise, the privacy of all values is guaranteed.

We use this primitive to share the labels for the garbled circuits as sketched
above. If all reconstructions succeed, we get the correct output. Otherwise, we
can identify a corrupt player. By requiring parties to sign their first-round mes-
sages, we can ensure that if there are contradicting votes, all parties can agree
that some party Pi sent inconsistent messages in the first round. If there is a ma-
jority of abstains, this proves that some particular Pi sent an invalid first-round
message to at least one honest party.

1.2 Related Work

The quest for optimal round-complexity for secure computation protocols is a
well-established topic in cryptography. Starting with the first feasibility results
from almost 35 years ago [Yao86,GMW87,BGW88,CCD88] a lot of progress has
been made in improving the round complexity of protocols [GIKR01,Lin01,CD01]
[IK02,IKP10,IKKP15,GLS15,PR18,ACGJ18,CGZ20]. In this section we detail
the prior work that specifically targets the two-round setting. We divide the
discussion into two: impossibility and feasibility results.

Result n t Guarantee CRS? PKI? CR? R1 R2

[GIKR02] any t ≥ 2 fairness 3 7 7 BC + P2P BC + P2P
[GLS15] n = 3 t = 1 fairness 3 7 7 BC BC
[PR18] n = 3 t = 1 fairness 3 7 7 BC + P2P BC + P2P
[PR18] n = 3 t = 1 UA 3 7 7 P2P P2P

[CGZ20] n = 3 t = 2 UA 3 3 3 BC P2P
[CGZ20] n = 3 t = 2 IA 3 3 3 P2P BC

Table 2: Previous impossibility results. Each row in this table describes a setting
where MPC is known to be impossible. “UA” stand for unanimous abort, and “IA” for
identifiable abort.

7

Impossibility Results. Table 2 summarizes the known lower bounds on two-round
secure computation. Gennaro et al. [GIKR02] shed light on the optimal round-
complexity for general MPC protocols achieving fairness without correlated ran-
domness (e.g., PKI). Their model allows for communication over both authenti-
cated point-to-point channels and a broadcast channel. They show that in this
setting, three rounds are necessary for a protocol with at least t ≥ 2 corrupt par-
ties by focusing on the computation of exclusive-or and conjunction functions. In
a slightly different model, where the parties can communicate only over a broad-
cast channel, Gordon et al. [GLS15] show that the existence of a fair two-round
MPC protocol for an honest majority would imply a virtual black-box program
obfuscation scheme, which would contradict the well-known impossibility result
of Barak et al. [BGI+01].

Patra and Ravi [PR18] investigate the three party setting. They show that
three rounds are necessary for generic secure computation achieving unanimous
abort when parties do not have access to a broadcast channel, and that the same
three are necessary for fairness even when parties do have a broadcast channel.
Badrinarayanan et al. [BMMR21] study broadcast-optimal three-round MPC
with guaranteed output delivery given an honest majority and CRS, and show
that use of broadcast in the first two rounds is necessary.

It is well known that in the dishonest majority setting fairness cannot be
achieved for generic computation [Cle86]. Cohen et al. [CGZ20] study the fea-
sibility of two round secure computation with unanimous and identifiable abort
in the dishonest majority setting. Their results show that considering arbitrary
setup (e.g., a PKI) and communication over point-to-point channels, achieving
unanimous abort in two rounds is not possible even if the parties are addition-
ally allowed to communicate over a broadcast channel only in the first round,
and achieving identifiable abort in two rounds is not possible even if the parties
are additionally allowed to communicate over a broadcast channel only in the
second round.

Feasibility Results. Table 3 summarizes known two-round secure computation
constructions. While three rounds are necessary for fair MPC [GIKR02] for t ≥ 2
(without correlated randomness), Ishai et al. [IKP10] show that it is possible to
build generic two-round MPC with guaranteed output delivery when only a
single party is corrupt (t = 1) for n ≥ 5. Later, [IKKP15] showed the same for
n = 4, and that selective abort is also possible for n = 3.

The work of [GLS15] gives a three round generic MPC protocol that guar-
antees output delivery and is secure against a minority of semi-honest fail-stop
adversaries where parties only communicate over point-to-point channels; the
same protocol can be upgraded to be secure against malicious adversaries if the
parties are also allowed to communicate over a broadcast channel. The use of
broadcast channel in the last round can be avoided (and point-to-point channels
can be used instead), as shown by Badrinarayanan et al. [BMMR21]. Moreover,
assuming a PKI, the protocol of [GLS15] can be compressed to only two rounds.

For n = 3 and t = 1, Patra and Ravi [PR18] present a tight upper bound
achieving unanimous abort in the setting with point-to-point channels and a

8

Result n t Guarantee PKI? CRS? 1st round 2nd round Assumptions

[IKP10] n ≥ 5 t = 1 GOD 7 7 P2P P2P PRG
[IKKP15] n = 3 t = 1 SA 7 7 P2P P2P PRG
[IKKP15] n = 4 t = 1 GOD 7 7 P2P P2P injective OWF
[GLS15] any t < n

2 M-GOD 3 3 BC + P2P BC + P2P dFHE
[PR18] n = 3 t = 1 UA 7 7 BC + P2P BC + P2P GC, NICOM, eNICOM, PRG

[ACGJ18] any t < n
2 UA 7 7 BC + P2P BC + P2P OWF

[ACGJ18] any t < n
2 FS-GOD 3 7 BC + P2P BC + P2P OWF

[ACGJ18] any t < n
2 FS-GOD 7 7 BC + P2P BC + P2P OWF, SH-OT

[ACGJ18] any t < n
2 FS-GOD / SM-GOD 3 7 BC BC OWF

[GS18] any t < n UA 7 3 BC BC 2-round OT
[CGZ20] any t < n SA 7 3 P2P P2P 2-round OT
[CGZ20] any t < n UA 7 3 P2P BC 2-round OT
[CGZ20] any t < n IA 7 3 BC BC 2-round OT

Table 3: Protocols for secure MPC with two-rounds. “UA” stands for unanimous abort,
“FS-GOD” for guaranteed output delivery against fail-stop adversaries, “SM-GOD”
for guaranteed output delivery against semi-malicious adversaries, and “M-GOD” for
guaranteed output delivery against malicious adversaries.

broadcast channel. The protocol leverages garbled circuits, (equivocal) non-
interactive commitment scheme and a PRG. In the same honest majority setting
but for arbitrary n, Ananth et al. [ACGJ18] build four variants of a two-round
protocol. Two of these variants are in the plain model (without setup), with
both point-to-point channels and broadcast available in both rounds. The first
achieves security with unanimous abort and relies on one-way functions, and
the second achieves guaranteed output delivery against fail-stop adversaries and
additionally relies on semi-honest oblivious transfer. Their other two protocols
require a PKI; and achieve guaranteed output delivery against fail-stop and
semi-malicious adversaries.

Finally, Cohen et al. [CGZ20] present a complete characterization of the
feasibility landscape of two-round MPC in the dishonest majority setting, for all
broadcast patterns. In particular, they show protocols (without a PKI) for the
cases of point-to-point communication in both rounds, point-to-point in the first
round and broadcast in the second round, and broadcast in both rounds. The
protocols achieve security with selective abort, unanimous abort and identifiable
abort, respectively. All protocols rely on two-round oblivious transfer.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone setting.3

3 We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes.

9

Real-world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input. The protocol is executed in rounds (i.e.,
the protocol is synchronous), where each round consists of the send phase and
the receive phase, where parties can respectively send the messages from this
round to other parties and receive messages from other parties. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. (Given a PKI and a broadcast channel,
such a fully connected point-to-point network can be instantiated.)

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output,
the corrupt parties produce no output, and the adversary outputs an arbitrary
function of its view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort, id-abort,
fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let
I ⊆ [n], of size at most t, be the set of indices of the corrupt parties. Then,
the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux to S and security parameter λ, denoted IDEALtype

f,I,S(aux)(x, λ),
is defined as the output vector of P1, . . . , Pn and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi
to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′i be the value actually sent as the input
of party Pi.

10

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′1, . . . , x′n). If there are no corrupt parties or type = god, proceed to step 4.
(a) If type ∈ {sl-abort, un-abort, id-abort}: The trusted party sends {yi}i∈I to
S.

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will
not get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing
all parties to obtain the output.) It sends (abort,J) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n] \ I.

(c) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n] \ I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ J , and
yj to every party Pj, j ∈ [n] \ J .

Note that, if type = god, we will never be in this setting, since S was
not allowed to ask for an abort.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupt parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type ∈ {sl-abort, un-abort, id-abort, fairness, god}. Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely computes
the function f with type security if for every PPT real-world adversary A there
exists a PPT simulator S such that for every I ⊆ [n] of size at most t, it holds
that{

REALΠ,I,A(aux)(x, λ)
}
x∈({0,1}∗)n,λ∈N

c
≡
{

IDEALtype
f,I,S(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N

.

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol Π as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msgi,
to compute Pi’s first messages to its peers; snd-msgi, to compute Pi’s second
messages; and outputi, to compute Pi’s output. Thus, a protocol Π can be
defined as {(frst-msgi, snd-msgi, outputi)}i∈[n].

The syntax of the algorithms is as follows:

11

– frst-msgi(xi, ri) → (msg1
i→1, . . . ,msg1

i→n) produces the first-round mes-
sages of party Pi to all parties. Note that a party’s message to itself can
be considered to be its state.

– snd-msgi(xi, ri,msg1
1→i, . . . ,msg1

n→i)→ (msg2
i→1, . . . ,msg2

i→n) produces the
second-round messages of party Pi to all parties.

– outputi(xi, ri,msg1
1→i, . . . ,msg1

n→i,msg2
1→i, . . . ,msg2

n→i)→ yi produces the
output returned to party Pi.

When the first round is over broadcast channels, we consider frst-msgi to
return only one message — msg1

i . Similarly, when the second round is over
broadcast channels, we consider snd-msgi to return only msg1

i .
Throughout our negative results, we omit the randomness r, and instead

focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 No Broadcast: Impossibility of Unanimous Abort

For our negative results in the setting where no broadcast is available, we lever-
age related negative results for broadcast (or byzantine agreement). To show that
guaranteed output delivery is impossible in two rounds of peer-to-peer commu-
nication, we can use the fact that broadcast cannot be realized in two rounds
for t > 1 [FL82,DS83]. To show the impossibility of weaker guarantees such as
unanimous abort in this setting, we prove that a weaker flavor of broadcast,
called (weak) detectable broadcast [FGMv02] — where all parties either learn
the broadcast bit, or unanimously abort — cannot be realized in two rounds
either.

We state the definitions of broadcast and detectable broadcast (from Fitzi et
al. [FGMv02]) below.

Definition 4 (Broadcast). A protocol among n parties, where the dealer D =
P1 holds an input value x ∈ {0, 1} and every other party Pi, i ∈ [2, . . . , n] outputs
a value yi ∈ {0, 1}, achieves broadcast if it satisfies the following two conditions:

Validity: If the dealer D is honest then all honest parties Pi output yi = x.
Consistency: All honest parties output the same value y2 = · · · = yn = y.

Definition 5 (Detectable Broadcast). A protocol among n parties achieves
detectable broadcast if it satisfies the following three conditions:

Correctness: All honest parties unanimously accept or unanimously reject
the protocol. If all honest parties accept then the protocol achieves broadcast.
Completeness: If all parties are honest then all parties accept.
Fairness: If any honest party rejects the protocol then the adversary gets no
information about the dealer’s input x.

We additionally define weak detectable broadcast.

12

Definition 6 (Weak Detectable Broadcast). A protocol among n parties
achieves weak detectable broadcast if it satisfies only the correctness and com-
pleteness requirements of detectable broadcast.

An alternative way of viewing broadcast, through the lense of secure com-
putation, is by considering the simple broadcast function fbc(x,⊥, . . . ,⊥) =
(⊥, x, . . . , x) which takes an input bit x from the dealer D = P1, and outputs
that bit to all other parties. Broadcast (Definition 4) is exactly equivalent to
computing fbc with guaranteed output delivery; detectable broadcast (Defini-
tion 5) is equivalent to computing it with fairness; and weak detectable broadcast
(Definition 6) is equivalent to computing it with unanimous abort.

Theorem 1. Weak detectable broadcast cannot be achieved in two rounds of
peer-to-peer communication for corruption threshold t > 1.

Proof. We prove Thm 1 by contradiction. We let

Πwdbc = {(frst-msgi, snd-msgi, outputi)}i∈[1,...,n]

be the description of the two-round weak detectable broadcast protocol. We use
the notation we introduce for two-round secure computation in Section 2.2, and
consider the weak detectable broadcast protocol to be a secure computation with
unanimous abort of fbc. We let x1 = x denote the bit being broadcast by the
dealer D = P1, and xi = ⊥ for i ∈ [2, . . . , n] be placeholders for other parties’
inputs. We assume that µ = (1 − negl) is the overwhelming probability with
which security of Πwdbc holds.

Below we consider an execution of Πwdbc and a sequence of scenarios involving
different adversarial strategies with two corruptions (t = 2). The dealer D = P1
is corrupt in all of these; at most one of the receiving parties P2, . . . , Pn is corrupt
at a time. We argue that each subsequent strategy clearly requires certain parties
to output certain values, by the definition of weak detectable broadcast. In the
last strategy, we see a contradiction, where some parties must output both 0 and
1. Therefore, Πwdbc could not have been a weak detectable broadcast protocol.
In all of the strategies below, we let msgb,i→j denote a party Pi’s bth-round
message to party Pj ; we only specify how these messages are generated when
this is done dishonestly.

Scenario 1: D is corrupt.
Round 1: D behaves honestly using input x = 0.
Round 2: D behaves honestly using input x = 0.

By completeness (which holds since everyone behaved honestly), all honest
parties must accept the protocol. By correctness, the protocol must thus
achieve broadcast. By validity, all honest parties must output 0. Thus, we
can infer that honest parties must output 0 with probability at least µ.
Scenario 2M : D and P2 are corrupt.

13

Round 1: D computes two different sets of messages, using different
inputs x = 0 and x = 1, as follows:

(msg1,(0)
1→1 , . . . ,msg1,(0)

1→n)← frst-msg1(x = 0)

(msg1,(1)
1→1 , . . . ,msg1,(1)

1→n)← frst-msg1(x = 1)

D sends msg1,(0)
1→3 , . . . ,msg1,(0)

1→n to parties P3, . . . , Pn. P2 behaves honestly.
Round 2: D behaves honestly using input x = 0. P2 computes two dif-
ferent sets of second-round messages, as follows:

(msg2,(0)
2→1 , . . . ,msg2,(0)

2→n)← snd-msg2(⊥,msg1,(0)
1→2 ,msg1

2→2, . . . ,msg1
n→2)

(msg2,(1)
2→1 , . . . ,msg2,(1)

2→n)← snd-msg2(⊥,msg1,(1)
1→2 ,msg1

2→2, . . . ,msg1
n→2)

P2 sends msg2,(1)
2→n to Pn (pretending, essentially, that D dealt a 1), and

msg2,(0)
2→i to other parties Pi (pretending that D dealt a 0).

P3, . . . , Pn−1 must accept and output 0 with probability at least µ, since their
views are identical to those in the previous scenario. By correctness (which
holds with probability µ), Pn must also accept when other honest parties
accept (which occurs with probability µ). It now follows from consistency
that Pn must also output 0 with probability at least µ× µ = µ2.
Scenario 2H : D is corrupt.

Round 1: D sends msg1,(1)
1→2 to P2, and msg1,(0)

1→i to other parties Pi.
Round 2: D continues to represent x = 1 towards P2 and x = 0 towards
the others.

Pn must accept and output 0 with probability at least µ2, since its view
is the same as in the previous scenario. By correctness (which holds with
probability µ), P2, . . . , Pn−1 must also accept when Pn accepts (which occurs
with probability µ2). It now follows from consistency that P2, . . . , Pn−1 must
also output 0 with probability at least µ2 × µ = µ3.

Now, skipping ahead, we generalize, for k ∈ [3, . . . , n− 1]:

Scenario kM : D and Pk are corrupt.
Round 1: D sends msg1,(1)

1→i to P2, . . . , Pk−1, and msg1,(0)
1→i to the other

parties Pk+1, . . . , Pn. Pk acts honestly.
Round 2: D continues to represent x = 1 to P2, . . . , Pk−1 and x = 0 to
Pk+1, . . . , Pn. In the second round Pk acts analogously to P2 in scenario
2M ; i.e., Pk uses msg1,(0)

1→k to compute (msg2,(0)
k→1, . . . ,msg2,(0)

k→n−1) (which it
sends to P2, . . . , Pn−1), and msg1,(1)

1→k to compute msg2,(1)
k→n (which it sends

to Pn).
P2, . . . , Pn−1 must accept and output 0 with probability at least µ2(k−1)−1 =
µ2k−3, since their views are identical to those in the previous scenario (namely
Scenario (k−1)H). By correctness (which holds with probability µ), Pn must
also accept when other honest parties accept. It now follows from consistency
that Pn must also output 0 with probability at least µ2k−3 × µ = µ2(k−1).

14

Scenario kH : D is corrupt.
Round 1: D sends msg1,(1)

1→i to P2, . . . , Pk, and msg1,(0)
1→i to the other par-

ties Pk+1, . . . , Pn.
Round 2: D continues to represent x = 1 to P2, . . . , Pk and x = 0 to
Pk+1, . . . , Pn.

Pn must accept and output 0 with probability at least µ2(k−1), since its view
is the same as in the previous scenario. By correctness (which holds with
probability µ), P2, . . . , Pn−1 must also accept. It now follow from consistency
that P2, . . . , Pn−1 must also output 0 with probability at least µ2(k−1)×µ =
µ2k−1.

We end with Scenarios nM , nH .

Scenario nM : D and Pn are corrupt.
Round 1: D behaves honestly using input x = 1. Pn behaves honestly.
Round 2: D behaves honestly using input x = 1. Pn pretends D dealt
a 0 towards, e.g., only P2. More precisely, Pn uses msg1,(0)

1→n to compute
msg2,(0)

n→2 (which it sends to P2), and msg1,(1)
1→n to compute (msg2,(1)

n→3, . . . ,

msg2,(1)
n→n−1) (which it sends to P3, . . . , Pn−1).

P2 must accept and output 0 with probability at least µ2(n−1)−1 = µ2n−3,
since its view is the same as in the previous scenario (namely, Scenario (n−
1)H). By correctness, P3, . . . , Pn−1 must also accept. It now follows from
consistency that P3, . . . , Pn−1 must also output 0 with probability at least
µ2n−3 × µ = µ2(n−1).
Scenario nH : D is corrupt.

Round 1: D behaves honestly using input x = 1.
Round 2: D behaves honestly using input x = 1.

In Scenario nH , on the one hand, by completeness (which holds as everyone
behaved honestly), all honest parties must accept the protocol; by validity, all
honest parties must output 1. On the other hand, since the view of P3, . . . , Pn−1
is the same as their respective views in the previous scenario, they must output
0 with probability at least µ2(n−1), which is overwhelming (as µ2(n−1) = (1 −
negl(λ))2n−2 ≥ 1− (2n− 2)× negl(λ), by binomial expansion).

This is a contradiction.

The impossibility of realizing weak detectable broadcast in two rounds for
t > 1 clearly implies that there exists a function (specifically, fbc) which is
impossible to compute with unanimous abort for t > 1 in two rounds of peer-to-
peer communication.

Corollary 1 (P2P-P2P, UA, t > 1). There exist functions f such that no
n-party two-round protocol can compute f with unanimous abort against t > 1
corruptions in two rounds of peer-to-peer communication.

15

4 Broadcast in the Second Round: Impossibility of
Fairness

In this section, we show that it is not possible to design fair protocols tolerating
t > 1 corruptions when broadcast is available only in the second round.

Theorem 2 (P2P-BC, FAIR, t > 1). There exist functions f such that no n-
party two-round protocol can compute f with fairness against t > 1 corruptions
while making use of broadcast only in the second round (i.e. where the first round
is over point-to-point channels and second round uses both broadcast and point-
to-point channels).

In our proof we use the function fmot, which is defined below. Let P1 hold as
input a bit X1 = b ∈ {0, 1}, and every other party Pi (i ∈ {2, . . . , n}) hold as
input a pair of strings, denoted as Xi = (x0

i , x
1
i).

fmot
(
X1 = b,X2 = (x0

2, x
1
2), . . . , Xn = (x0

n, x
1
n)
)

= (xb2, xb3, . . . , xbn).

Proof. We prove Thm 2 by contradiction. Let Π be a protocol that computes
fmot with fairness by using broadcast only in the second round. Consider an
execution of Π where Xi denotes the input of Pi. We describe a sequence of
scenarios C1, . . . , Cn, C

∗
n. In each scenario, P1 and at most one other party is

corrupt. In all the scenarios, the corrupt parties behave honestly (in particular,
they use their honest inputs), but may drop incoming or outgoing messages.

At a high-level, the sequence of scenarios is designed so that corrupt P1 drops
her first-round message to one additional honest party in each scenario. We show
that in each scenario, the adversary manages to obtain the output computed with
respect to X1 = b and (at least some of) the honest parties’ inputs. This leads
to a contradiction, because the final scenario involves no first-round messages
from P1 related to its input X1 = b, but the adversary is still able to learn xbi
corresponding to some honest Pi. In particular, this implies that the adversary
is able to re-compute second-round messages from P1 with different choices of
input X1, obtaining multiple outputs (on different inputs).

Before describing the scenarios in detail, we define some useful notation. Let
(X1, . . . , Xn) denote a specific combination of inputs that are fixed across all sce-
narios. Let µ = (1− negl) denote the overwhelming probability with which the
security of Π holds. We assume, without loss of generality, that the second round
of Π involves broadcast communication alone (as given a PKI and a broadcast
channel, point-to-point communication can be realized by broadcasting encryp-
tions of the private messages using the public key of the recipient). Let m̃sg2

i

denote Pi’s second-round broadcast message, computed honestly given that Pi
did not receive the private message (i.e. the communication over point-to-point
channel) from P1 in the first round.

Scenario C1: P1 is corrupt.
Round 1: P1 behaves honestly (i.e. follows the instructions of Π).
Round 2: P1 behaves honestly.

16

Since everyone behaved honestly, it follows from correctness that P1 obtains the
output y = fmot(x1, . . . , xn) = (xb2, xb3, . . . , xbn) with probability at least µ.

Scenario C2: P1 and P2 are corrupt.
Round 1: P1 and P2 behave honestly.
Round 2: P1 remains silent. P2 pretends she did not receive a first-round
message from P1. In more detail, P2 sends m̃sg2

2 over broadcast channel.

The adversary’s view subsumes her view in the previous scenario, so the adver-
sary learns the output y = (xb2, xb3, . . . , xbn) which allows her to learn xbi corre-
sponding to each honest Pi. It thus follows from security of Π that honest parties
must also obtain xbi corresponding to each honest Pi (i.e. for i ∈ [n]\{1, 2}) with
probability at least µ. If not, then either correctness or fairness is violated, which
contradicts our assumption that Π is secure.

Scenario C3: P1 and P3 are corrupt.
Round 1: P1 behaves honestly, but does not send a message to P2. P3
behaves honestly.
Round 2: P1 remains silent. P3 pretends that she did not receive a first-
round message from P1 (i.e. she sends m̃sg2

3 via broadcast).

The adversary’s view subsumes the view of an honest P3 in Scenario C2 (which
includes m̃sg2

2); so, the adversary learns {xbi}i∈[n]\{1,2} with probability at least
µ. Due to security of Π (which holds with probability µ), we can infer that when
the adversary obtains this information (which occurs with probability µ), honest
parties P2, P4, P5, . . . , Pn must also learn xbi corresponding to each honest Pi (i.e.
for i ∈ [n] \ {1, 3}) with probability at least µ × µ = µ2. More specifically, this
inference follows from fairness of Π and our assumption that Π realizes the ideal
functionality fmot.

Scenario C4: P1 and P4 are corrupt.
Round 1: P1 behaves honestly, except that she does not send a message
to P2 and P3. P4 behaves honestly.
Round 2: P1 remains silent. P4 pretends that she did not receive a first-
round message from P1 (i.e. she sends m̃sg2

4 via broadcast).

The adversary’s view subsumes the view of an honest P4 in Scenario C3 (which in-
cludes m̃sg2

j , where j ∈ {2, 3}). Therefore, the adversary would learn {xbi}i∈[n]\{1,3}
with probability at least µ2. It now follows from security of Π (which holds with
probability at least µ) that honest P2, P3, P5, . . . , Pn must obtain xbi correspond-
ing to each honest Pi (i.e. for i ∈ [n]\{1, 4}) with probability at least µ2×µ = µ3.

Generalizing the above for k = 3 to n:

Scenario Ck: P1 and Pk are corrupt.
Round 1: P1 behaves honestly, except that she does not send a message
to P2, P3, . . . , Pk−1. Pk behaves honestly.
Round 2: P1 remains silent. Pk pretends that she did not receive a first-
round message from P1 (i.e. she sends m̃sg2

k via broadcast).

17

The adversary’s view subsumes the view of an honest Pk in Scenario Ck−1
(which includes messages m̃sg2

j , where j ∈ {2, . . . , k − 1}). Thus, the adversary
learns {xbi}i∈[n]\{1,k−1} with probability at least µk−2. Security of Π (which
holds with probability at least µ) dictates that honest parties should obtain xbi
corresponding to each honest Pi (i.e. for i ∈ [n]\{1, k}) with probability at least
µk−2 × µ = µk−1.

Finally, we describe the last scenario:

Scenario C∗n: P1 and Pn are corrupt.
Round 1: P1 remains silent. Pn behaves honestly.
Round 2: P1 and Pn remain silent.

The adversary’s view subsumes her view in Scenario Cn (which includes mes-
sages m̃sg2

j , where j ∈ {1, . . . , n − 1}). Thus, in Scenario C∗n, the adversary is
able to learn {xbi}i∈[n]\{1,n−1} with probability at least µn−2. Note that µn−2 =
(1−negl(λ))n−2 ≥ 1− (n− 2)×negl(λ) (by binomial expansion), which is over-
whelming. This leads us to the final contradiction – C∗n does not involve any mes-
sage from P1 related to the input X1 = b, but the adversary was able to obtain
{xbi}i∈[n]\{1,n−1}. This implies that the adversary can compute {xb′i }i∈[n]\{1,n−1}
with respect to any input X1 = b′ of her choice. This “residual attack” breaks
the privacy property of the protocol, as it allows the adversary to learn both
input strings of an honest Pi, where i ∈ {2, . . . , n− 2} (which is not allowed as
per the ideal realization of fmot).

Lastly, we point that the above proof requires that the function computed
is such that each party receives the output. This is because the inference in
Scenario Ck (k ∈ [n]) relies on the adversary obtaining output on behalf of Pk.

5 Completing the Picture: Impossibility Results for
n ≤ 3t

In the previous two sections, we showed the impossibility of unanimous abort
when no broadcast is available, and the impossibility of fairness when broadcast
is only available in the second round. However, both of those impossibility results
only hold for t > 1. In this section, using different techniques, we extend those
results to the case when t = 1 and n = 3. In our impossibility results in this
section, we use a property which we call last message resiliency.

Definition 7 (Last Message Resiliency). A protocol is t-last message re-
silient if, in an honest execution, any protocol participant Pi can compute its
output without using t of the messages it received in the last round.

More formally, consider a protocol Π = {(frst-msgi, snd-msgi, outputi)}i∈[1,...,n].
The protocol is t-last message resilient if, for each i ∈ [1, . . . , n] and each
S ⊆ {1, . . . , n}\{i} such that |S| ≤ t, the output function outputi returns the
correct output even without second round messages from parties Pi, i ∈ S. That

18

is, for all security parameters λ, for all sets S ⊆ {1, . . . , n}\{i} such that |S| ≤ t,
for all inputs x1, . . . , xn,

Pr
(

outputi(xi,msg1
1→i, . . . ,msg1

n→i, m̃sg2
1→i, . . . , m̃sg2

n→i)
6= outputi(xi,msg1

1→i, . . . ,msg1
n→i,msg2

1→i, . . . ,msg2
n→i)

)
= negl(λ)

over the randomness used in the protocol, where, for j ∈ [1, . . . , n],

(msg1
j→1, . . . ,msg1

j→n)← frst-msgj(xj),

(msg2
j→1, . . . ,msg2

j→n)← snd-msgj(xj ,msg1
1→j , . . . ,msg1

n→j),

and

m̃sg2
j→i =

{
msg2

j→i, if j 6∈ S,
⊥ otherwise.

Theorem 3. Any protocol Π which achieves secure computation with unani-
mous abort with corruption threshold t and whose last round can be executed
over peer-to-peer channels must be t-last message resilient.

Proof. We prove this by contradiction. Assume Π achieves unanimous abort,
and is not t-resilient. Then, by definition, there exist inputs x1, . . . , xn, an i ∈
[1, . . . , n] and a subset S ⊆ {1, . . . , n}\{i} (such that |S| ≤ t) where, with non-
negligible probability,

outputi(xi,msg1
1→i, . . . ,msg1

n→i, m̃sg2
1→i, . . . , m̃sg2

n→i)
6= outputi(xi,msg1

1→i, . . . ,msg1
n→i,msg2

1→i, . . . ,msg2
n→i)

(where the messages are produced in the way described in Definition 7).
The adversary can use this by corrupting Pj , j ∈ S; it will behave honestly,

except in the last round, where Pj , j ∈ S will not send messages to Pi. (Note that
the ability to send last round messages to some parties but not others relies on
the fact that the last round is over peer-to-peer channels.) With non-negligible
probability, Pi will receive an incorrect output (e.g. an abort). However, this
cannot occur in a protocol with unanimous abort; all other honest parties must
accept the protocol and produce the correct output (since their views are the
same as in an entirely honest execution), so Pi must as well.

Theorem 4. Any protocol Π which achieves secure computation with fairness
with corruption threshold t must be t-last message resilient.

Proof. We prove this by contradiction. Assume Π achieves fairness, and is not
t-resilient. Then, by definition, there exist inputs x1, . . . , xn, an i ∈ [1, . . . , n]
and a subset S ⊆ {1, . . . , n}\{i} (such that |S| ≤ t) where, with non-negligible
probability,

outputi(xi,msg1
1→i, . . . ,msg1

n→i, m̃sg2
1→i, . . . , m̃sg2

n→i)
6= outputi(xi,msg1

1→i, . . . ,msg1
n→i,msg2

1→i, . . . ,msg2
n→i).

19

(where the messages are produced in the way described in Definition 7).
The adversary can use this by corrupting Pj , j ∈ S. As in the previous

proof, it will behave honestly, except in the last round, where Pj , j ∈ S will not
send messages to Pi. With non-negligible probability, Pi will receive an incorrect
output (e.g. an abort), while the rushing adversary will learn the output, since
it will have all of the messages it would have gotten in a fully honest execution
of the protocol. This violates fairness.4

Theorem 5. There exists a function f such that any protocol Π securely real-
izing f with corruption threshold t such that n ≤ 3t and whose first round can
be executed over peer-to-peer channels cannot be t-last message resilient.

Proof. Consider the function fmot described in the proof of Thm 2, where party
P1 provides as input a choice bit X1 = b ∈ {0, 1} and every other party Pi
provides as input a pair of strings i.e. Xi = (x0

i , x
1
i).

Consider an adversary corrupting P1. The adversary should clearly be unable
to recompute the function with multiple inputs, e.g., with respect to both X1 = 0
and X1 = 1 (as this will allow it to learn both the input strings of the honest
parties which is in contrast to an ideal execution, where it can learn exactly one
of the input strings).

We now show that, in a t-last message resilient (where n ≤ 3t) two-round
protocol Π where the first round is over peer-to-peer channels, P1 can always
learn both of those outputs. Consider a corrupt P1, and partition the honest
parties into two sets of equal size (assuming for simplicity that the number of
honest parties is even): S0 and S1. Note that |S0| = |S1| = n−t

2 ≤ t.
P1 uses X1 = 0 to compute its first round messages to S0; it uses X1 = 1 to

compute its first round messages to S1. (Note that the ability to send first round
messages based on different inputs relies on the fact that the first round is over
peer-to-peer channels.) All other parties behave honestly. Because the protocol
Π is t-last message resilient, and because S1 contains t or fewer parties, P1 has
enough second round messages excluding those it received from S1 to compute
its output. Note that all second round messages except for those received from
S1 are distributed exactly as in an honest execution with X1 = 0; therefore, by
last message resiliency, P1 learns (x0

2, x
0
3, . . . , x

0
n) (as per the definition of fmot).

Similarly, by excluding second round messages it received from S0, P1 learns the
output (x1

2, x
1
3, . . . , x

1
n) i.e. the output computed based on X1 = 1. This is clearly

a violation of privacy.

Corollary 2 (P2P-P2P, UA, n ≤ 3t). Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t such that n ≤ 3t.

This corollary follows directly from Theorems 3 and 5.
4 Note that while Pi does not learn the output, other honest parties might. How-

ever, even one honest party not receiving the output is a violation of fairness if the
adversary learns the output.

20

Remark 1. Note that for t > 1, Cor 2 is subsumed by Cor 1. However, Cor 2
covers the case of t = 1 and n = 3, closing the question of unanimous abort with
honest majority in two rounds of peer-to-peer communication.

Corollary 3 (P2P-BC, FAIR, n ≤ 3t). Secure computation of general func-
tions with fairness cannot be achieved in two rounds the first of which is over
peer-to-peer channels for corruption threshold t such that n ≤ 3t.

This corollary follows from Theorems 4 and 5.

6 Broadcast in the First Round: Guaranteed Output
Delivery

In this section, we argue that any protocol that achieves guaranteed output
delivery in two rounds of broadcast also achieves guaranteed output delivery
when broadcast is available in the first round only. We first show that if the
protocol achieves guaranteed output delivery with corruption threshold t in two
rounds of broadcast, it achieves the same guarantee with threshold t−1 when the
second round is over peer-to-peer channels. We next show that if the first-round
messages commit corrupt parties to their inputs, the second round can be run
over peer-to-peer channels with no loss in corruption budget.

Theorem 6. Let Πgod
bc be a two broadcast-round protocol that securely computes

the function f with guaranteed output delivery against an adversary corrupting
t parties. Then Πgod

bc achieves the same guarantee when the second round is run
over peer-to-peer channels but with t− 1 corruptions.

Proof (Sketch). Let Π̃god
bc denote the protocol where the second round is run

over peer-to-peer channels but with t− 1 corruptions. Towards a contradiction,
assume Π̃god

bc is not secure against (t− 1) corruptions; in particular, assume that
there is an adversary Ã that breaks security.

We first observe that Ã certainly can’t cause honest parties to abort in Π̃god
bc

by sending them incorrect things in the second round, since Πgod
bc achieves guar-

anteed output delivery, meaning that honest parties do not abort no matter
what Ã does. Therefore, all Ã can hope for is to cause disagreement in Π̃god

bc .
In particular, Ã can send different second-round messages to different honest
parties, hoping that honest parties end up with outputs computed on different
corrupt party inputs. However, if Ã could do that, we could use Ã to build an
adversary A that breaks the security of Πgod

bc by corrupting one additional hon-
est party, mentally sending different messages to it, and obtaining the output on
two different sets of its own inputs.

Suppose Ã can make a pair of honest parties in Π̃god
bc — Pi and Pj — obtain

different outputs by sending different second-round messages to them. Then, we
construct our adversary A for Πgod

bc as follows. A corrupts the same t− 1 parties
as Ã, as well as one additional honest party — Pi — who will behave semi-
honestly. A uses the second-round messages sent by Ã to Pj as her broadcast

21

second-round messages in Πgod
bc . However, A also computes what Pi’s output

would have been if she had broadcast the second-round messages sent by Ã to
Pi. This allows A to obtain the output on behalf of Pi on two different sets of
inputs, breaking the security of Πgod

bc (and completing the proof).

Theorem 7. Let Πgod
bc be a two broadcast-round protocol that securely computes

the function f with guaranteed output delivery with the additional constraint that
a simulator can extract inputs from the first-round messages and it is efficient
to check whether a given second-round message is correct. Then Πgod

bc achieves
the same guarantee when the second round is run over point-to-point channels.

Proof (Sketch). Starting from the protocol Πgod
bc it is possible to define another

protocol Πgod
bcp2p that has the following modifications: (1) the second round mes-

sages of Πgod
bc are sent over point-to-point channels and (2) the honest parties

compute their output based on all the first round messages and the subset C of
second round messages that are generated correctly. (Observe that |C| ≥ n− t,
because at least n− t parties are honest.)

Relying on the GOD security of Πgod
bc , it is possible to claim that Πgod

bcp2p also
achieves GOD. This follows from two important observations. First, since the
input is extracted from the first round of Πgod

bcp2p which is over broadcast, the
adversary cannot cause disagreement among the honest parties with respect to
her input (i.e. she cannot send messages based on different inputs to different
honest parties). Second, in Πgod

bcp2p the honest parties are always able to compute
the output; otherwise, the honest parties in Πgod

bc would not have been able to
compute an output when A does not send any second round message, which
contradicts GOD security.

Next, we observe that the two broadcast-round protocol of Gordon et al.
[GLS15] has the two properties required by Thm 7. The protocol of Gordon
et al. [GLS15] uses zero knowledge proofs to compile a semi-malicious protocol
into a fully malicious one. The zero knowledge proofs accompanying the first
round messages can be used for input extraction; the zero knowledge proofs
accompanying the second round messages can be used to efficiently determine
which of these second round messages are generated correctly.

7 One-or-Nothing Secret Sharing

In Section 8, we will show a protocol that achieves security with identifiable
abort in the honest majority setting in two rounds, only the second of which
is over broadcast. In this section, we introduce an important building block for
that protocol which we call one-or-nothing secret sharing.

We define one-or-nothing secret sharing as a new flavor of secret sharing
wherein the dealer can share a vector of secrets. While traditional secret sharing
schemes are designed for receivers to eventually publish their shares and recover
the entirety of what was shared, one-or-nothing secret sharing is designed for

22

receivers to eventually recover at most one of the shared values. While recon-
struction usually requires each party to contribute its entire share, in one-or-
nothing secret sharing, each party instead votes on the index of the value to
reconstruct by producing a “ballot” based on its secret share. If two parties vote
for different indices, the set of published ballots should reveal nothing about any
of the values. However, some parties are allowed to equivocate — they might be
unsure which index they wish to vote for, so they will support the preference of
the majority. If a majority votes for the same index, and the rest equivocate, the
ballots enable the recovery of the value at that index.

Our secure computation construction in Section 8 uses one-or-nothing secret
sharing to share labels for garbled circuits. However, we imagine one-or-nothing
secret sharing might be of independent interest, e.g. in voting scenarios where
unanimity among the decided voters is important.

7.1 Definitions

Syntax The natural syntax for a one-or-nothing secret sharing scheme consists
of a tuple of three algorithms (share, vote, reconstruct).

share(x(1), . . . , x(l))→ (s, s1, . . . , sn) is an algorithm that takes l values x(1),
. . . , x(l), and produces the secret shares s1, . . . , sn, as well as the public share
s.
vote(s, si, v)→ si is an algorithm that takes the public share s, a secret
share si, and a vote v, where v ∈ {1, . . . , l,⊥} can either be an index of a
value, or it can be ⊥ if party i is unsure which value it wants to vote for. It
outputs a public ballot si.
reconstruct(s, s1, . . . , sn)→ {x(v),⊥} is an algorithm that takes the public
share s, all of the ballots s1, . . . , sn, and outputs either the value x(v) which
received a majority of votes, or outputs ⊥.

Non-Interactive One-or-Nothing Secret Sharing We modify this natural syntax
to ensure that each party can vote even if they have not received a secret share.
This is important in case e.g. the dealer is corrupt, and chooses not to distribute
shares properly. We call such a scheme a non-interactive one-or-nothing secret
sharing scheme. A non-interactive one-or-nothing secret sharing scheme consists
of a tuple of four algorithms (setup, share, vote, reconstruct).

setup(1λ)→ sk is an algorithm that produces a key shared between the
dealer and one of the receivers. (This can be non-interactively derived by
both dealer and receiver by running setup on randomness obtained from e.g.
key exchange.)
share(sk1, . . . , skn, x(1), . . . , x(l))→ s is an algorithm that takes the n shared
keys sk1, . . . , skn and the l values x(1), . . . , x(l), and produces a public share
s.
vote(ski, v)→ si is an algorithm that takes a secret share si and a vote v,
where v ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if

23

party i is unsure which value it wants to vote for. It outputs a public ballot
si.
reconstruct(s, s1, . . . , sn)→ {x(v),⊥} is an algorithm that takes the public
share s, all of the ballots s1, . . . , sn, and outputs either the value x(v) which
received a majority of votes, or outputs ⊥.

Security We require three properties of one-or-nothing secret sharing: correct-
ness, privacy (which requires that if fewer than t + 1 parties vote for an index,
the value at that index stays hidden) and contradiction-privacy (which requires
that if two parties vote for different indices, all values stay hidden). Below we
define these formally for non-interactive one-or-nothing secret sharing.

Definition 8 (One-or-Nothing Secret Sharing: Correctness). Informally,
this property requires that when at least n − t parties produce their ballot using
the same v (and the rest produce their ballot with ⊥), reconstruct returns x(v).
(When t = n

2 − 1, n− t is a majority.)
More formally, a one-or-nothing secret sharing scheme is correct if for any

security parameter λ ∈ N, any vector of secrets (x(1), . . . , x(l)), any index v ∈ [l]
and any subset S ⊆ [n], |S| ≥ n− t,

Pr

x = x(v) :

ski ← setup(1λ) for i ∈ [n]
s← share(sk1, . . . , skn, x(1), . . . , x(l))

si ← vote(ski, v) for i ∈ S
si ← vote(ski,⊥) for i ∈ [n] \ S
x← reconstruct(s, s1, . . . , sn)

 ≥ 1− negl(λ),

where the probability is taken over the random coins of the algorithms.

Definition 9 (One-or-Nothing Secret Sharing: Privacy). Informally, this
property requires that when no honest parties produce their ballot using v, then
the adversary learns nothing about x(v).

More formally, a one-or-nothing secret sharing scheme is private if for any
security parameter λ ∈ N, for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

24

Adversary A Challenger C

b← {0, 1}
A ⊂ {1, . . . , n}(s.t. |A| ≤ t)

−−−−−−−−−−−−−−−−−−−−−−−−−−B H := {1, . . . , n}\A
x

(v)
0 , x

(v)
1 (s.t. |x(v)

0 | = |x
(v)
1 |)

−−−−−−−−−−−−−−−−−−−−−−−−−−B x(v) := x
(v)
b

{x(v′)}v′∈{1,...,l}\{v}

v, {vi 6= v}i∈H
−−−−−−−−−−−−−−−−−−−−−−−−−−B

ski ← setup(1λ) for i ∈ [n]
s← share(sk1, . . . , skn, x(1), . . . , x(l))
si ← vote(ski, vi) for i ∈ H

{ski}i∈A, s, {si}i∈H
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b′ = b

Definition 10 (One-or-Nothing Secret Sharing: Contradiction-Privacy).
Informally, this property requires that if two different parties produce their ballots
using different votes vi 6= vj such that vi 6= ⊥ and vj 6= ⊥, then the adversary
should learn nothing at all.

More formally, a one-or-nothing secret sharing scheme is contradiction-private
if for any security parameter λ ∈ N, for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

b← {0, 1}
A ⊂ {1, . . . , n}(s.t. |A| ≤ t)

−−−−−−−−−−−−−−−−−−−−−−−−−−B H := {1, . . . , n}\A
x

(v)
0 , x

(v)
1 (s.t. |x(v)

0 | = |x
(v)
1 |)

−−−−−−−−−−−−−−−−−−−−−−−−−−B x(v) := x
(v)
b

for v ∈ {1, . . . , l}
for v ∈ {1, . . . , l}

{vi}i∈H
−−−−−−−−−−−−−−−−−−−−−−−−−−B

ski ← setup(1λ) for i ∈ [n]
s← share(sk1, . . . , skn, x(1), . . . , x(l))
si ← vote(ski, vi) for i ∈ H

{ski}i∈A, s, {si}i∈H
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b′ = b
and there exists i, j ∈ H

s.t. vi 6= vj , vi 6= ⊥ and vj 6= ⊥

7.2 Constructions

A first attempt would be to additively share all the values x(1), . . . , x(l). How-
ever, this fails because if all of the honest parties compute vote on ⊥ (by e.g.

25

publishing both their additive shares), the adversary will be able to reconstruct
all of the values, violating privacy (Definition 9).

Instead, we instantiate a non-interactive one-or-nothing secret sharing scheme
as follows, using a symmetric encryption scheme SKE = (keygen, enc, dec) (de-
fined in Appendix A).

Figure 7.1: Non-Interactive One-or-Nothing Secret Sharing

setup(1λ)→ sk: Choose l+1 symmetric encryption keys k(1), . . . , k(l), k(⊥) us-
ing SKE.keygen(1λ). Let sk = (k(1), . . . , k(l), k(⊥)).
share(sk1, . . . , skn, x(1), . . . , x(l))→ s:
1. Compute (x(v)

1 , . . . , x
(v)
n) as the additive sharing of x(v) for v ∈ [l].

2. Compute (x(v)
i→1, . . . , x

(v)
i→n) as the threshold sharing of x(v)

i with threshold
t for v ∈ [l], i ∈ [n].

3. Parse (k(1)
i , . . . , k(l)

i , k
(⊥)
i) = ski for i ∈ [n].

4. Compute c(v)
i = enc(k(v)

i , x
(v)
i) for v ∈ [l], i ∈ [n].

5. Compute c(v)
i→j = enc

(
k(⊥)
i , enc(k(v)

j , x
(v)
i→j)

)
for v ∈ [l], i ∈ [n], j ∈ [n].

6. Output s = ({c(v)
i }i∈[n],v∈[l], {c(v)

i→j}i,j∈[n],v∈[l]).
vote(ski, v)→ si where v ∈ {1, . . . , l,⊥}: Output si = (v, k(v)

i).
reconstruct(s, s1, . . . , sn)→ {x(v),⊥}:
1. Parse ({c(v)

i }i∈[n],v∈[l], {c(v)
i→j}i,j∈[n],v∈[l]) = s.

2. Parse (vi, ki) = si for i ∈ [n].
3. If there does not exist a v ∈ {1, . . . , l} such that at least (n− t) parties vote

for v and everyone else votes for ⊥, output ⊥.
4. Let v 6= ⊥ denote the only value which received votes; let S ⊆ {1, . . . , n}

be the set of i such that vi = v.
5. For i ∈ S (so, vi = v), compute xi = dec(ki, c(v)

i).
6. For i /∈ S (so, vi = ⊥), for each j ∈ S, compute xi→j =

dec
(
ki, dec(kj , c(v)

i→j)
)
. Let xi denote the value reconstructed using the

threshold shares {xi→j}j∈S .
7. If there exists any i such that xi = ⊥, output ⊥. Else, output x =

∑n

i=1 xi.

Theorem 8. The above construction is a secure non-interactive one-or-nothing
sharing scheme when n > 2t.

Proof. We prove correctness, privacy and contradiction-privacy below.

Correctness: Suppose a set of at least (n − t) parties vote for v, and oth-
ers vote for ⊥. Hence, v would be established as the majority vote. Let S
and T denote the set of indices corresponding to parties voting for v and ⊥
respectively. Firstly, it directly follows from the steps of reconstruct that
x

(v)
i 6= ⊥ can be obtained for i ∈ S. Further, since |S| ≥ n − t > t holds, it

follows that x(v)
i shared using threshold t can be successfully reconstructed

corresponding to each i ∈ T . Lastly, since S ∪ T = [n], we can infer that
x

(v)
i 6= ⊥ for each i ∈ [n]; thereby reconstruct would output x(v).

26

Privacy: Suppose no honest party votes for v. Consider an honest party i.
We show that the adversary learns nothing about x(v)

i , which suffices to show
that x(v) remains perfectly hidden from the adversary. If party i votes for
vi 6= v, then it follows from the steps in vote that party i does not reveal
any information related to k(v)

i or k(⊥)
i . Due to the security of the encryption

scheme, the adversary learns nothing about x(v)
i from c

(v)
i and {c(v)

i→j}j∈[n].
Next, suppose party i votes for ⊥ and publishes k(⊥)

i . In this case, we note
that the adversary can use k(⊥)

i and k(v)
j to decrypt c(v)

i→j and obtain the
share x(v)

i→j if party j is corrupt. However, c(v)
i→j corresponding to an honest

party j can be decrypted by the adversary only if party j reveals k(v)
j ; since

this occurs only when honest party j votes for v (which does not happen as
per our assumption), we can conclude that the adversary learns no informa-
tion from c

(v)
i→j corresponding to an honest party j. Thus, the adversary has

access to at most t shares of x(v)
i which is shared using threshold t. It now

follows from the privacy of threshold secret sharing that the adversary learns
no information about x(v)

i .

Contradiction Privacy: Suppose two different honest parties, say parties
i and j, publish votes for vi 6= vj , vi, vj 6= ⊥. First, we argue that the adver-
sary learns nothing about x(vi)

j , which suffices to prove that adversary learns
nothing about x(vi). Since honest party j voted for vj 6= vi, the adversary
does not have access to k(vi)

j or k(⊥)
j . Therefore, the adversary cannot obtain

any information related to x(vi)
j via c(vi)j or c(vi)j→k (for any j ∈ [n]). A similar

argument as above can be used to show that the adversary learns nothing
about x(vj)

i , which suffices to prove that adversary learns nothing about x(vj).

8 Broadcast in the Second Round: Identifiable Abort

In this section, we show a protocol achieving secure computation with identifiable
abort in two rounds, with the first round only using peer-to-peer channels, when
t < n

2 .
One could hope that executing a protocol Πbc that requires two rounds of

broadcast over one round of peer-to-peer channels followed by one round of
broadcast will simply work, just like in the case of one round of broadcast fol-
lowed by one round of peer-to-peer channels (Section 6). However, this is not
the case. When the first round is over peer-to-peer channels, the danger is that
corrupt parties might send inconsistent messages to honest parties in that round.
Allowing honest parties to compute their second-round messages based on in-
consistent first-round messages might violate security. So, we must somehow
guarantee that all honest-party second-round messages are based on the same
set of first-round messages.

27

Our protocol follows the structure of the protocols described by Cohen et al.
[CGZ20]. It is described as a compiler that takes a protocol Πbc which achieves
the desired guarantees given two rounds of broadcast, and achieves those same
guarantees in the broadcast pattern we are interested in, which has broadcast
available in the second round only. In the compiler of Cohen et al., to ensure
that honest parties base their second-round messages on the same view of the
first round, parties garble and broadcast their second-message functions. In more
detail, in the first round the parties secret share all the labels for their garbled
circuit using additive secret sharing, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
each party sends their garbled second-message function, and for each bit of first-
round message she receives, she forwards her share of the corresponding label
in everyone else’s garbled circuit. The labels corresponding to the same set of
first-round messages are reconstructed for each party’s garbled second-message
function, thus guaranteeing consistency.

We use a similar approach. However, as mentioned in the introduction, there
are other challenges to address when our goal is identifiable (as opposed to
unanimous) abort. In the techniques of Cohen et al., in the second round, for
each bit of every first-round message, every party Pi must forward to everyone
else exactly one of a pair of shares of labels which Pi should have obtained from
every other party Pj . However, since the first round is over peer-to-peer channels,
Pi can claim that it didn’t get the shares of labels from Pj , and the computation
must still complete (i.e. the correct label needs to be reconstructed), since it is
unclear who to blame — Pi or Pj 5

An alternative approach might be to use threshold secret sharing instead of
additive secret sharing to share the garbled labels. In order to ensure that honest
parties can either identify a cheater or reconstruct at least one of each pair of
labels, we would need to set our secret sharing threshold to be at most n − t.
However, when t = n

2 −1, the adversary only needs one additional honest party’s
share to reconstruct any given label. If she sends different first-round messages to
different honest parties, they will contribute shares of different labels, enabling
the adversary to reconstruct both labels for some input wires. This allows the
adversary to violate honest parties’ privacy.

This is where our non-interactive one-or-nothing secret sharing primitive
comes into play. Parties can use it to secret share the pair of labels for each
wire of their garbled circuit by only broadcasting one value — the public share
— in the second round. By the non-interactive design of the one-or-nothing
secret sharing scheme, parties don’t even need to have seen the public share to
contribute to reconstruction, so no party can claim to be unable to contribute.
The privacy properties of the scheme guarantee that at most one label per wire
will be recovered. Moreover, if an honest party is not sure which label share to
choose (which may happen if she did not get a valid first-round message of Πbc),

5 Note that this is not an issue in the protocol with unanimous abort of Cohen et al.
since if the reconstruction of the label fails, the honest parties can simply abort.

28

she can still enable the recovery of the appropriate label (by contributing an
equivocation ballot).

We also have to consider how to identify an adversary that sends different
first-round messages from the underlying protocol to different honest parties. We
thus require each party Pi to sign these first-round messages; each other party Pj
will only act upon first-round messages from Pi with valid signatures, and echo
those messages (and signatures). In this way, we can identify Pi as a cheater as
long as she included valid signatures with her inconsistent messages. If she did
not, then either enough parties will complain about Pi to implicate her, or the
equivocation ballots will allow the computation to complete anyway.

At a very high level, our protocol can be described as follows. In the first
round, the parties send their first-round message of Πbc along with a signature to
each of their peers. In the second round (over broadcast), the parties do the fol-
lowing: (1) compute a garbling of their second-message function; (2) secret share
all the labels for their garbled circuit using the one-or-nothing secret sharing; (3)
vote for the share of the corresponding label (based on the first-round message
received) in everyone else’s garbled circuit; (4) compute a zero-knowledge proof
to ensure the correctness of the actions taken in the second round; and (5) echo
all the first-round messages of Πbc with the corresponding signatures received
from the other parties in the first round.

Intuitively, our protocol achieves identifiable abort due to the following. First,
if a corrupt party is not caught, she must have sent a first-round message with
a valid signature to at least one honest party; otherwise, n− t > t parties would
claim to have a conflict with her, which implicates her as a cheater (since at
least one honest party is clearly accusing her). Second, she must not have sent
two different first-round messages with valid signatures; otherwise, those two
contradictory signatures would implicate her. Third, the zero-knowledge proof in
the second round ensures that every corrupt party garbles and shares its garbled
circuit labels correctly. We can conclude that, by the correctness property of the
secret sharing scheme, if no party is caught, then one label from each label pair
is reconstructed, and the underlying protocol Πbc can be carried out.

In Figure 8.1, we describe our protocol Π id-abort
p2p−bc that achieves identifiable

abort in one round of peer-to-peer communication followed by one round of
broadcast for n > 2t.

We assume that the parties have access to the following tools:

– A protocol Πbc achieving security with identifiable abort over two rounds of
broadcast, represented by the set of functions {frst-msgi, snd-msgi, outputi}i∈[n].
Additionally, let Ci(xi, ri,msg1, . . . ,msgn) denote the boolean circuit that
takes as input Pi’s input xi, randomness ri and the first round messages
msg1, . . . ,msgn and computes snd-msgi. For simplicity assume that (xi, ri)
is z bits long and that each first round message is ` bits long, so each circuit
has L = z + n · ` input bits. Note that Ci is public.

– A garbling scheme (garble, eval, simGC). Let q be the size of a label.
– A digital signature scheme (gen, sign, ver).

29

– A non-interactive one-or-nothing secret sharing scheme (setup, share, vote,
reconstruct).

– A non-interactive key agreement scheme (keygen, keyagree). (We abuse no-
tation slightly by assuming that keyagree outputs a vector of shared keys;
we do this for simplicity of exposition, and because the output of keyagree
can always be used as a PRF seed to obtain a vector of shared keys in a
black-box way.)

– A non-interactive zero-knowledge proof system (setupZK, prove, verify, simP,
simP.Extract) for the following relation:

R =

φ =

i ∈ [n], {pkj}j∈[n],
{msgj}j∈[n], GC,
C, {Kνα

α }α∈[z],
{sα}α∈[z+1,...,L],
{skα}α∈[z+1,...,L],k∈[n]

w = (sk, R1, R2, R3, ν)

sk is the secret key corresp. to pki
∧{{shkj,α}α∈[z+1,...,L] ← keyagree(pkj , sk)}j∈[n]
∧(GC, {Kb

α}b∈{0,1},α∈[L])← garble(1λ, C;R1)
∧{sα ← share(shk1,α, . . . , shkn,α,Kb

α;R2)}b∈{0,1},α∈[z+1,...,L]
∧for j ∈ [n] let bα denotes the αth bit in msgj ,
{skα ← vote(shkk,α, bα;R3)}k∈[n],α∈{z+(j−1)`+1,...,z+j·`}

,

Figure 8.1: Π id-abort
p2p−bc with n > 2t

Private input. Every party Pi has a private input xi ∈ {0, 1}∗.
Setup. 1. Set up the PKI; each party Pi publishes the public signature veri-

fication key pki corresponding to her secret signing key ski.
2. Set up the common reference strings crs← setupZK(1λ,R).
3. Sample the correlated randomness (ri, . . . , rn)← Dbc

corr (for Πbc), and give
ri to Pi.

First Round (P2P). Each party Pi does the following:
1. Let msg1

i ← frst-msgi(xi, ri) be Pi’s first round message in Πbc and σi ←
sign(ski,msg1

i).
2. Send (msg1

i , σi) to Pj for j ∈ [n].
Second Round (BC). Each party Pi does the following:
1. Compute (GCi, ~Ki)← garble(1λ, Ci;Ri,1), where ~Ki = {K(0)

i,α ,K
(1)
i,α}α∈[L].

2. Let (νi,1, . . . , νi,z) denote the bits corresponding to (xi, ri). Set Ki,α =
K
νi,α
i,α for α ∈ [z].

3. Derive shared keys corresponding to each Pj and for each index α ←
[z + 1, . . . , L] using NIKE: shkj,α ← keyagree(pkj , ski), where shkj,α =(
k(0), k(1), k(⊥)).

4. Compute sα ← share(shk1,α, . . . , shkn,α,K
(0)
i,α ,K

(1)
i,α ;Ri,2) for each α ∈ [z+

1, . . . , L].
5. Suppose (msg1

j , σj) was received from Pj in Round 1. With respect to each
Pj , execute the following steps:

- If ver(pkj ,msg1
j , σj) = reject, then set bα = ⊥ for α ∈ {z+ (j− 1)`+

1, . . . , z + j · `} and set (msg1
j , σj) = ⊥. Else, let bz+α denotes the αth

bit in msg1
j .

- For each k ∈ [n] and α ∈ {z + (j − 1)` + 1, . . . , z + j · `}, compute
ski,α ← vote(shkk,α, bα;Ri,3).

30

6. Set φi = (i, {pkj}j∈[n], {msg1
j}j∈[n], GCi, Ci, {Ki,α}α∈[z], {sα}α∈[z+1,...,L],

{ski,α}α∈[z+1,...,L],k∈[n]) and wi = (ski, Ri,1, Ri,2, Ri,3, ν = (xi, ri)). Com-
pute πi ← prove(crs, φi, wi).

7. Broadcast
(
πi, {msg1

j , σj}j∈[n], GCi, {Ki,α}α∈z, {sα}α∈{z+1,...,L},

{ski,α}α∈{z+1,...,L},k∈[n]

)
.

Output Computation. Each party Pi proceeds as follows:
1. For each j ∈ [n]

- If verify(crs, φj , πj) 6= 1, then output abortj .
- If there exists a pair of distinct indices i1, i2 such that (msg1

j , σj) broad-
cast by Pi1 and Pi2 are not identical but both the signatures are valid
(i.e. ver(pkj ,msg1

j , σj) = accept), then output abortj . Else, set msg1
j

to the corresponding message broadcast by Pj in Round 2.
2. Let GCj denote the garbled circuit broadcast by Pj (j ∈ [n]). The following

steps are carried out with respect to each GCj :
- For α ∈ [z], set Kj,α to the corresponding label broadcast by Pj in

Round 2.
- For α ∈ {z + 1, . . . , L}, compute Kj,α =

reconstruct(sjα, sj1,α, . . . , sjn,α), where sjα refers to sα broadcast
by Pj in Round 2 and sjk,α (k ∈ [n]) is broadcast by Pk in Round 2.
If Kj,α = ⊥ and the wire at index α corresponds to input msg1

k (i.e.
α ∈

{
z + (k − 1)`+ 1, . . . , z + k`}), then output abortk.

- Evaluate the garbled circuit GCj as msg2
j = eval(GCj ,Kj,1, . . . ,Kj,L). If

the evaluation fails, output abortj .
3. Output y = outputi

(
xi, ri, (msg1

1, . . .msg1
n), (msg2

1, . . .msg2
n)
)
.

Theorem 9 (P2P-BC, ID, n > 2t). Let F be an efficiently computable n-
party function and let n > 2t. Let Πbc be a two broadcast-round protocol that
securely computes F with identifiable abort with the additional constraint that
the straight-line simulator can extract inputs from the first-round messages. As-
suming a setup with CRS and PKI, and that (garble, eval, simGC) is a secure
garbling scheme, (gen, sign, ver) is a digital signature scheme, (share, vote,
reconstruct, verify) is a one-or-nothing secret sharing scheme, (keygen, keyagree)
is a non-interactive key agreement scheme and (setupZK, prove, verify, simP,
simP.Extract) is a secure non-interactive zero-knowledge proof system. Then,
Π id-abort

p2pbc securely computes F with identifiable abort over two rounds, the first of
which is over peer-to-peer channels, and the second of which is over a broadcast
channel.

Remark 2. Note that when the underlying protocol Πbc is instantiated using the
protocols of Gordon et al. or Cohen et al. [GLS15,CGZ20], then our construction
relies only on CRS and PKI (and does not require correlated randomness).

31

8.1 Proof of Security

Proof Intuition. The protocol Π id-abort
p2pbc is a compiler, and should take as input

any two-broadcast-round protocolΠbc that securely computes F with unanimous
identifiable abort. Therefore the corresponding simulator S, that interacts with
adversary A, relies on the a simulator Sbc for Πbc. In particular, our simulator
S runs Sbc internally, acting as a proxy for the messages of Πbc: she forwards
the malicious parties’ Πbc messages received from A to Sbc, and she uses the
messages of Sbc to simulate the honest parties’ messages (that she compiles into
Π id-abort

p2pbc messages before forwarding to A). Moreover, S simulates the trusted
party’s messages to Sbc, forwarding the messages (i.e., abort messages and the
inputs/outputs of the adversary) that she gets from Sbc to her own trusted party.
Note that, if Sbc will need the corrupt parties’ inputs, Sbc extracts them from the
corrupt parties’ first round Πbc messages (if Πbc did not abort), with a simulator
which is straight-line and black box.

Unfortunately, as already observed by Cohen et al., this strategy requires
some finesse in our setting, since in the first round of Π id-abort

p2pbc (which is over peer-
to-peer channels) the adversary could send different messages to different honest
parties. The challenges we face are (1) defining the adversary Abc to which Sbc
should correspond, and (2) choosing which of potentially several different first-
round messages from A to forward to Sbc. (These challenges are largely related;
the way in which we select messages to forward to Sbc defines the adversary to
which Sbc should correspond.)

We follow a simulation strategy that is based on the one used by Cohen et
al. We design a class of adversaries, one for each honest party, called receiver-
specific adversaries {Ah}h∈H. Roughly speaking, a receiver-specific adversary
Ah executes Πbc with the honest parties and internally runs A. Ah uses the
malicious parties’ messages generated by A:

1. Ah forwards the message received by the honest party Ph if one of the
following two conditions hold: (1) there exists at least two honest parties
to whom A sends different first-round messages of Πbc along with valid
signatures ; (2) In the first round, none of the honest parties receive a first-
round message from A with a valid signature.

2. Otherwise, there exists exactly one (unique) first-round message of Πbc with
a valid signature and Ah forwards that message to all honest parties.

Note that in Π id-abort
p2pbc in the first case due to the security properties of the one-

or-nothing secret sharing scheme we are guaranteed that the adversary A will
not recover the garbled circuit labels corresponding to this message; so, S sends
abort to the trusted party (blaming the sender of the inconsistent message) and
simulates garbled circuits that output a dummy value.

In the second case we will rely on the security of Πbc. In particular, the
security of Πbc guarantees that there exists a simulator for this class of receiver-
specific adversaries {Ah}h∈H; the simulator S for Π id-abort

p2pbc will make use of it.
S uses the simulator Sk for Ak (where k is the smallest index in H) using the
“standard” proxy simulation strategy explained earlier. The crucial point is that

32

in this case S can obtain the inputs of A using Sk which extracts from the
first-round message of Πbc.

It is important to notice that the strategies of S for generating the first round
message for A is exactly the strategy of Ak.

Proof. Let A and H be, respectively, the set of corrupt parties and the set of
honest parties.

We assume that A is deterministic and that the output of A consists of
her entire view during the protocol, i.e., the auxiliary information, the input
and correlated randomness (if required by the underlying protocol Πbc) of all
corrupt parties, and the messages received by honest parties during the protocol.
We start by giving the description of the receiver specific adversary and then of
our simulator S.

Figure 8.2: The Receiver Specific Adversary Ak

Setup: Ak simulates the setup for A. In particular Ak sets up a PKI and
runs (crs, td)← setupZK(1λ,R).
First Round:

– For each h ∈ H upon receiving the first-broadcast-round mes-
sage msg1

h from an honest party Ph in Πbc, Ak computes σh ←
sign(skh,msg1

h) and sends (msg1
h, σh) over the point-to-point channel

to A in Π id-abort
p2pbc .

Let {(msg1
j→h, σ

1
j→h}j∈A be the set of messages received from A. For

each party Pj with j ∈ A:
1. Ak broadcasts msg1

j→k in Πbc and sets msg1
j = msg1

j→k,msg2
j = ⊥

if one of the following 2 conditions holds:
(a) There exists a pair of distinct indices h1, h2 ∈ H such that

(msg1
j→h1

, σ1
j→h1

) and (msg1
j→h2

, σ1
j→h2

) are not identical but
both the signatures are valid;

(b) For all k ∈ H the signature σ1
j→k is invalid.

2. Else, Ak broadcasts msg1
j in Πbc, where msg1

j refers to the unique
first-round message with valid signature received from Pj . This
message is unique because none of the conditions above were true.
(note that Pj could also send no message at all or invalid signa-
tures to some, but not all, honest parties).

Second Round: For each h ∈ H, upon receiving the first-broadcast-
round message msg2

h from an honest party Ph in Πbc; Ak computes the
following steps:
1. Let Ch be the circuit computing snd-msgh, run

(GCh, K̃h,1, . . . , K̃h,L)← simGC(1λ, Ch,msg2
h).

2. Derive shared keys corresponding to each Pj for each α ∈ {z +
1, . . . , L} using NIKE: shkj,α ← keyagree(pkj , skh), where shkj,α =(
k(0), k(1), k(⊥)). Note that if j ∈ H then the generated keys are taken

at random from the distribution D (which is an implicit parameter of
key agreement scheme).

33

3. For j ∈ [n] consider the message msg1
j and set K

bz+α
h,α =

K̃h,α,K(1−bz+α)
h,α = 0q, where bz+α denotes the αth bit in msg1

j for
α ∈ {z + (j − 1)`+ 1, . . . , z + j · `}.

4. Compute sα ← share(shk1,α . . . , shkn,α,K
(0)
h,α,K

(1)
h,α) for each α ∈

[z + 1, . . . , L].
5. Suppose (msg1

j , σj) was received from Pj in Round 1. With respect
to each Pj , execute the following steps:

- If ver(pkj ,msg1
j , σj) = reject, then set bα = ⊥ for α ∈ {z+ (j−

1)`+1, . . . , z+j ·`} and set (msg1
j , σj) = ⊥. Else, let bz+α denotes

the αth bit in msg1
j .

- For each k ∈ [n] and α ∈ {z+ (j − 1)`+ 1, . . . , z+ j · `}, compute
skh,α ← vote(shkk,α, bα).

6. Set φ = (h, {pkj}j∈[n], {msg1
j}j∈[n], GCh, Ch, {K̃h,α}α∈[z], {sα}α∈[z+1,...,L],

{skh,α}α∈[z+1,...,L],k∈[n]). Compute π ← simP(crs, td, φ).
7. Ak broadcasts in Π id-abort

p2pbc to A the message:(
π, {msg1

j , σj}j∈[n], GCh, {K̃h,α}α∈z, {sα}α∈{z+1,...,L}, {skh,α}k∈[n],α∈{z+1,...,L}

)
.

Output Computation. For each party Ph, with h ∈ H, proceed as fol-
lows:
1. For each j ∈ A, if simP.Extract fails on input of π, then set msg2

j = ⊥.
2. Let GCj denote the garbled circuit broadcast by Pj (j ∈ [n]). The

following steps are carried out with respect to each GCj :
- For α ∈ [z], set Kj,α to the corresponding label broadcast by Pj

in Round 2.
- For α ∈ {z + 1, . . . , L}, compute Kj,α =

reconstruct(sjα, s
j
1,α, . . . , s

j
n,α), where sjα refers to sα broadcast

by Pj in Round 2 and sjk,α (k ∈ [n]) is broadcast by Pk in Round
2.

- Evaluate the garbled circuit GCj as msg2
j =

eval(GCj ,Kj,1, . . . ,Kj,L).
3. Finally, Ak broadcasts the messages msg2

j for every corrupt Pj in Πbc,
outputs whatever A outputs, and halts.

By the security of Πbc, for every k ∈ A there exists a simulator Sk for the
adversarial strategy Ak such that for every auxiliary information aux and input
vector x = (x1, . . . , xn) it holds that ideal world and real world are computation-
ally indistinguishable. Every simulator Sk starts by extracting corrupt parties’
input values ~x′k = {x′i,k}i∈A, and sending them to her trusted party. Upon receiv-
ing the output value y, the simulator Sk sends a message abortj/continue (for
some j ∈ A), and finally outputs the simulated view of the adversary, consisting
of its input and the simulated messages of Πbc:

ˆviewk = { ˆauxk, {(xki , rki)}i∈A, m̂sg1,k
1 , . . . , m̂sg1,k

n , m̂sg2,k
1 , . . . , m̂sg2,k

n }.

34

Our simulator S will make use of SRS that is the simulator Sk where k is the
minimal index s.t. k ∈ H.

Figure 8.3: Simulator S

The simulator S starts by invoking SRS and simulating for SRS the in-
teraction with Ak making use of the adversary A as described above. S
receives back (from SRS) ~x = {xi}i∈A or an abortj , for some j ∈ A. S
simulates the interaction between SRS and the ideal functionality, relying
on the trusted third party that computes F . Specifically, S forwards the
messages (e.g. extracted inputs or abort messages) that she receives from
SRS to the trusted third party, and if SRS did not abort she receives y in
response. S forwards y to SRS which outputs the simulated view:

ˆviewRS = { ˆaux, {(xi, ri)}i∈A, m̂sg1
1, . . . , m̂sg1

n, m̂sg2
1, . . . , m̂sg2

n}.

After invoking SRS (as described above) to get simulated honest party first
round messages, the simulator S executes the following steps. Note that
because the adversary A is deterministic, the executions above and below
will always result in the same adversarial behavior (and transcript) up
until the second round.

1. Setup: S sets up a PKI and runs (crs, td)← setupZK(1λ,R).
2. First Round:

(a) On behalf of honest party Ph, for all h ∈ H, computes σ̂h ←
sign(skh, m̂sg1

h) and sends (m̂sg1
h, σ̂h) to A.

(b) Let {(msg1
j→h, σ

1
j→h}j∈A be the set of messages received from A.

For each party Pj with j ∈ A:
i. Sets flagj = 0, m̂sg1

j = msg1
j→h if one of the following 2 condi-

tions hold:
A. There exists a pair of distinct indices h1, h2 ∈ H such that

(msg1
j→h1

, σ1
j→h1

) and (msg1
j→h2

, σ1
j→h2

) are not identical
but both the signatures are valid.

B. For all k ∈ H the signature σ1
j→k is invalid.

ii. Else sets flagj = 1 and let m̂sg1
j be the message send by Pj

(along with a valid signature) to one or more honest parties
a.

3. Second Round: On behalf of honest party Ph, for all h ∈ H, S
computes the following steps:
(a) If there exist j ∈ A s.t. flagj = 0 let Ch be the circuit com-

puting snd-msgh run (GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch, 0L)
and send abortj to the trusted third party. Else, run
(GCh,Kh,1, . . . ,Kh,L)← simGC(1λ, Ch, m̂sg2

h).
(b) Derive shared keys corresponding to each Pj for each α ∈

[z + 1, . . . , L] using NIKE: shkj,α ← keyagree(pkj , skh), where
shkj,α =

(
k(0), k(1), k(⊥)). Note that if j ∈ H then the generated

35

keys are taken at random from the distribution D (which is an
implicit parameter of key agreement scheme).

(c) For j ∈ [n] consider the message m̂sg1
j and set K

bz+α
h,α =

K̃h,α,K(1−bz+α)
h,α = 0q, where bz+α denotes the αth bit in m̂sg1

j

for α ∈ {z + (j − 1)`+ 1, . . . , z + j · `}.
(d) Compute sα ← share(shk1,α . . . , shkn,α,K

(0)
h,α,K

(1)
h,α) for each α ∈

[z + 1, . . . , L].
(e) Suppose (msg1

j→h, σj→h) was received from Pj ∈ A in Round 1.
With respect to each Pj , where j ∈ A, execute the following steps:

- If ver(pkj ,msg1
j→h, σj→h) = reject, then set bα = ⊥ for

α ∈ {z+(j−1)`+1, . . . , z+j ·`} and set (msg1
j→h, σj→h) = ⊥.

Else, let bz+α denotes the αth bit in msg1
j→h.

- For each k ∈ [n] and α ∈ {z + (j − 1)` + 1, . . . , z + j · `},
compute skh,α ← vote(shkk,α, bα).

(f) For each Pj ∈ H, execute the following step (where bz+α denotes
the αth bit in m̂sg1

j): For each k ∈ [n] and α ∈ {z + (j − 1)` +
1, . . . , z + j · `}, compute skh,α ← vote(shkk,α, bα).

(g) Set φ = (h, {pkj}j∈[n], {m̂sg1
j , }j∈H, {msg1

j→h}j∈A, GCh, Ch, {K̃h,α}α∈[z],

{sα}α∈[z+1,...,L], {skh,α}α∈[z+1,...,L],k∈[n]) Compute π ←
simP(crs, td, φ).

(h) Broadcasts
(
π, {m̂sg1

j , σ̂j}j∈H, {msg1
j→h, σj→h}j∈A, GCh,

{Kh,α}α∈z, {sα}α∈{z+1,...,L}, {skh,α}k∈[n],α∈{z+1,...,L}

)
to A.

4. Output Computation. For each party Ph, with h ∈ H, proceeds as
follows:
(a) For each j ∈ A

- If simP.Extract fails on input π, then sends abortj to the
trusted third party.

- If there exists a pair of distinct indices i1, i2 such that
(msg1

j , σj) broadcast by Pi1 and Pi2 are not identical but both
the signatures are valid, then send abortj to the trusted third
party. Else, set msg1

j to the corresponding message broadcast
by Pj in Round 2.

(b) Let GCj denote the garbled circuit broadcast by Pj (j ∈ [n]). The
following steps are carried out with respect to each GCj :

i. For α ∈ [z], set Kj,α to the corresponding label broadcast by
Pj in Round 2.

ii. For α ∈ {z + 1, . . . , L}, compute Kj,α =
reconstruct(sjα, s

j
1,α, . . . , s

j
n,α), where sjα refers to sα

broadcast by Pj in Round 2 and sjk,α (k ∈ [n]) is broadcast
by Pk in Round 2. If Kj,α = ⊥ and the wire at index α corre-
sponds to input msg1

k (i.e. α ∈
{
z+ (k− 1)`+ 1, . . . , z+ k`}),

then sends abortk to the trusted third party.

36

iii. Evaluate the garbled circuit GCj as msg2
j =

eval(GCj ,Kj,1, . . . ,Kj,L). If the evaluation fails, sends
abortj to the trusted third party.

(c) If S did not abort sends continue to the trusted third party.
(d) S outputs the output of A and terminates.

a Note that in this case if Pj sends messages along with valid signature to
different honest parties these messages are identical.

We now define a series of hybrid experiments in order to prove that the joint
distribution of the output of A and the output of the honest parties in the ideal
execution is computationally indistinguishable from the joint distribution of the
output of A and the output of honest parties in a real protocol execution. The
hybrid experiments are listed below. The output of the experiments is defined
as the output of A and the output of the honest parties.
1. Expt0

A,A,Π id-abort
p2pbc

: In this experiment, the simulator S0 has access to the inter-
nal state of the trusted party computing F , therefore S0 can see the input
values of honest parties and chooses the output values of the honest parties.
In the execution of Π id-abort

p2pbc the simulator is interacting with A on behalf of
the honest parties. The output of this hybrid experiment is the output of the
honest parties and the output of A in the execution of Π id-abort

p2pbc explained
above. It follows trivially that the output of Expt0

A,A,Π id-abort
p2pbc

and the output
of the real world experiment are identically distributed.

2. Expt1
A,A,Π id-abort

p2pbc
: In this experiment Expt0

A,A,Π id-abort
p2pbc

is modified as follows. The
simulator S1 start invoking SRS on her input and receiving back ~x = {xi}i∈A

or an aborti, for some i ∈ A. S1 simulates the interaction between SRS and
the ideal functionality relying on the trusted third party. Specifically, S1
forwards the message that she received from SRS to F and if SRS did not
abort she receives back y. S1 forwards y to SRS.
Let {(msg1

j→h, σ
1
j→h}j∈A be the set of messages received from A in Round

1, from all h ∈ H. S1 checks that for every dishonest party Pj :
(a) If there exists a pair of distinct indices h1, h2 ∈ H such that (msg1

j→h1
, σ1
j→h1

)
and (msg1

j→h2
, σ1
j→h2

) are not identical but both the signatures are valid
sets flagj = 0, m̂sg1

j = msg1
j→h.

(b) For all k ∈ H the signature σ1
j→k is invalid.

If one of the above conditions hold S1 will sends abortj to the trusted third
party after that the second round is played (as an honest player and S would
do).
S1 executes also the same checks that the ideal world simulator S (described
above) in steps 4(b)ii and 4(b)iii does. If one of the checks fail S1 aborts
identifying the cheater according to the strategy of S in the corresponding
steps.
Claim. Expt0

A,A,Π id-abort
p2pbc

and Expt1
A,A,Π id-abort

p2pbc
are computationally indistinguish-

able.

37

Proof (Sketch). In Expt0
A,A,Π id-abort

p2pbc
the honest parties output abortj if A, on

behalf of some malicious party j, does one of the following actions: (1) sends
different first messages of Πbc along with valid signatures or (2) sends invalid
signatures to all honest parties. Note that in this case the same check fails
also in Expt1

A,A,Π id-abort
p2pbc

, therefore S1 sends abortj to her trusted third party
making sure that the honest parties also in Expt1

A,A,Π id-abort
p2pbc

output abortj . If
the check described above did not fail, then A recovers the garbled circuits
and labels of the honest parties and therefore A gets to learn the output. At
this point A could sends labels and garbled circuits on behalf of dishonest
parties. If the garbled circuit evaluation fails corresponding to garbler Pj or
the one-or-nothing secret sharing reconstruction fails corresponding to the
message msg1

k, honest parties abort identifying the cheater j or k respec-
tively (where the cheater identified corresponds to the minimal index for
which garbled circuit evaluation or the the one-or-nothing secret sharing re-
construction fails) in Expt0

A,A,Π id-abort
p2pbc

. In this case in Expt1
A,A,Π id-abort

p2pbc
one of the

checks in steps 4(b)ii and 4(b)iii of S fail and therefore S1 in Expt1
A,A,Π id-abort

p2pbc

sends abortj or abortk to F accordingly. We conclude that honest par-
ties aborts in Expt1

A,A,Π id-abort
p2pbc

only when the honest parties are aborting in
Expt0

A,A,Π id-abort
p2pbc

.
If all the checks above did not fail then it is possible to claim that Expt0

A,A,Π id-abort
p2pbc

and Expt1
A,A,Π id-abort

p2pbc
are computationally indistinguishable relying on the se-

curity of Πbc.
3. Expt2

A,A,Π id-abort
p2pbc

: In this experiment Expt1
A,A,Π id-abort

p2pbc
is modified as follows. In

order to compute π of party Ph, in the second round, S2 runs simP(crs, td, φ),
for h ∈ H. Moreover S2 executes the check that S does in 4a .
Claim. Expt2

A,A,Π id-abort
p2pbc

and Expt1
A,A,Π id-abort

p2pbc
are computationally indistinguish-

able.
Proof (Sketch). The proof proceeds via |H| + 1 hybrids arguments: in the
i-th hybrid experiment, π of honest party Ph with h ≤ i are simulated as
in Expt2

A,A,Π id-abort
p2pbc

and for h > i are computed as in Expt1
A,A,Π id-abort

p2pbc
. In order

to claim that two consecutive hybrids are computationally indistinguishable,
we can rely on the simulation extractability property of the zero-knowledge
proof system. Notice that the abort probability between two consecutive
hybrids increases only by a negligible amount due to simulation extractability
of the zero-knowledge proof system. The proof concludes by observing that
the 0-th hybrid corresponds to Expt1

A,A,Π id-abort
p2pbc

and the |H|-th corresponds to
Expt2

A,A,Π id-abort
p2pbc

.

4. Expt3
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt2

A,A,Π id-abort
p2pbc

except that for the honest parties, S3 generates the keys of the key agreement
scheme as described in step 3b of S.

38

Claim. Expt2
A,A,Π id-abort

p2pbc
and Expt3

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H|+1 hybrids arguments: in the i-th
hybrid experiment the keys of the key agreement scheme of honest party Ph
with h ≤ i are generated as in Expt3

A,A,Π id-abort
p2pbc

and for h > i are computed
as in Expt2

A,A,Π id-abort
p2pbc

. In order to claim that two neighboring hybrids are
computationally indistinguishable we can rely on security of key agreement
scheme. The proof conclude observing that the 0-th hybrid corresponds to
Expt2

A,A,Π id-abort
p2pbc

and the |H|-th corresponds to Expt3
A,A,Π id-abort

p2pbc
.

5. Expt4
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt3

A,A,Π id-abort
p2pbc

except that for the honest parties, S4 executes share following the steps 3b,
3c described for S.

Claim. Expt4
A,A,Π id-abort

p2pbc
and Expt3

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

The proof proceeds via |H|+ 1 hybrids arguments: in the i-th hybrid exper-
iment, honest party Ph with h ≤ i executes share as in Expt4

A,A,Π id-abort
p2pbc

and
for h > i executes share as in Expt3

A,A,Π id-abort
p2pbc

. It follows from the security
properties of one-or-nothing secret sharing that two consecutive hybrids are
computationally indistinguishable. In more detail, let us consider the labels
K0
h,v,K

1
h,v for the garbled circuit of the honest party Ph and specifically for

a wire v, where v corresponds to the input of some malicious party Pj (i.e.
to the message msg1

j). We analyze the following cases:
(a) In the first round A (on behalf of Pj) sends different first messages

msg1
j , m̃sg1

j of Πbc along with valid signatures to honest parties. W.l.o.g.
let us assume that the messages msg1

j , m̃sg1
j differ in the bit correspond-

ing to the wire v, then at least two different honest parties runs vote
w.r.t. different bits (i.e. the votes of the honest parties would be for
different inputs, which are both different from ⊥). Therefore, from the
contradiction-privacy of the one-or-nothing secret sharing we are guar-
anteed that the adversary learns none of the labels.

(b) In the first round A (on behalf of Pj) sends invalid signatures to all
honest parties, then all the honest parties run vote w.r.t. ⊥. Therefore,
no honest party executes vote w.r.t. 0 or 1. Now, from the privacy of
the one-or-nothing secret sharing we are guaranteed that no-information
will be revealed about K0

h,v and K1
h,v.

(c) If conditions 5a, 5b do not verify then all the honest parties that receive
a message along with a valid signature have the identical message msg1

j .
Therefore the honest parties will runs vote on input ⊥ or w.r.t. the same
bits bv, where bv corresponds to the vth bit of msg1

j . In this case from
the privacy of the one-or-nothing secret sharing we are guaranteed that

39

no-information will be revealed about K1−bv
h,v (which in Expt4

A,A,Π id-abort
p2pbc

will corresponds to the dummy label 0q).
The same analysis can be conducted for the wire of the garbled circuits of
party Ph.
The proof conclude observing that the 0-th hybrid corresponds to Expt3

A,A,Π id-abort
p2pbc

and the |H|-th corresponds to Expt4
A,A,Π id-abort

p2pbc
.

6. Expt5
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt4

A,A,Π id-abort
p2pbc

except that the garbled circuits corresponding to the honest parties are com-
puted using the simulated procedure simGC. In more detail, S5 executes,
for all h ∈ H, (GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch,msg2

h), where msg2
h is

the message computed by Ph in the execution of Πbc and Ch is the circuit
snd-msgh.

Claim. Expt4
A,A,Π id-abort

p2pbc
and Expt5

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H|+1 hybrids arguments: in the i-th
hybrid experiment the garbled circuit of honest party Ph with h ≤ i are sim-
ulated as in Expt5

A,A,Π id-abort
p2pbc

and for h > i are computed as in Expt4
A,A,Π id-abort

p2pbc
.

In order to claim that two neighboring hybrids are computationally indis-
tinguishable we can rely on security of garbling scheme. The proof conclude
observing that the 0-th hybrid corresponds to Expt4

A,A,Π id-abort
p2pbc

and the |H|-th
corresponds to Expt4

A,A,Π id-abort
p2pbc

.

7. Expt6
A,A,Π id-abort

p2pbc
: in this experiment Expt5

A,A,Π id-abort
p2pbc

is modified as follows. Let
Ch be the circuit snd-msgh.
If in the first round A (on behalf of Pj for some j ∈ A) sends different first
messages msg1

j , m̃sg1
j of Πbc along with valid signatures to honest parties or

does not send a first-round message with valid signature to any honest party,
then Ph (for all h ∈ H) executes (GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch, 0L)
(i.e. she garbles the circuit on a dummy output); otherwise she executes
(GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch,msg2

h), where msg2
h is the message

computed by Ph in the execution of Πbc.

Claim. Expt5
A,A,Π id-abort

p2pbc
and Expt6

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). This proceeds via hybrid experiments similar as in the proof
of Claim 6, the only extra observation is that in both in Expt6

A,A,Π id-abort
p2pbc

that in
Expt5

A,A,Π id-abort
p2pbc

A does not learn all the labels for the garbled circuit if one of
this conditions hold: (1) in the first round A (on behalf of Pj) sends different
first messages msg1

j , m̃sg1
j ofΠbc along with valid signatures to honest parties;

(2) in the first round A (on behalf of Pj) sends invalid signatures to all honest

40

parties. Note that due to partial evaluation resiliency property of the garbled
circuit if A does not learn all the labels, A is not able to evaluate the garbled
circuit of the honest party Ph.

8. Expt7
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt6

A,A,Π id-abort
p2pbc

except that instead of computing the messages of Πbc using honest parties
inputs, the simulator S6 uses the messages given as output by SRS. In more
detail: For all h ∈ H in the first round: S7 sends m̂sg1

h; in the second round
S7 computes (GCh,Kh,1, . . . ,Kh,L) ← simGC(1λ, Ch, m̂sg2

h) (if the check in
step 2b does not set any flag to 0) and executes vote w.r.t. the messages
{m̂sg1

h}h∈H.

Claim. Expt7
A,A,Π id-abort

p2pbc
and Expt6

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). In Expt7
A,A,Π id-abort

p2pbc
the adversary learns the second messages

of Πbc w.r.t. the honest parties only when the honest parties agree on a same
first round message msg1

i of Πbc from dishonest party Pj , that is when Pj
sends a unique message with valid signature to a subset of the honest parties
for the first round of Πbc (and invalid or no message to others) 6. There-
fore the indistinguishability between Expt7

A,A,Π id-abort
p2pbc

and Expt6
A,A,Π id-abort

p2pbc
fol-

lows from the security of Πbc. In more detail, any distinguisher between
Expt6

A,A,Π id-abort
p2pbc

and Expt7
A,A,Π id-abort

p2pbc
can be used to distinguish between SRS

and a real execution with the receiver-specific adversary. As observed in
[CGZ20], the proof crucially rely on the ability of the simulator SRS to ex-
tract the adversary’s input from her first round of Πbc.

The proof ends observing that in Expt7
A,A,Π id-abort

p2pbc
S7 does not need anymore

to have access to the internal state of the trusted third party that computes
F and therefore Expt7

A,A,Π id-abort
p2pbc

and the ideal world experiment are identically
distributed.

References

ACGJ18. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Round-optimal secure multiparty computation with honest major-
ity. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 395–424. Springer, Heidelberg, Au-
gust 2018.

ACGJ19. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Two round information-theoretic MPC with malicious security. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 532–561. Springer, Heidelberg, May 2019.

6 Note that the one-or-nothing secret sharing scheme allow the honest parties to agree
on a same first message of Πbc even if, in the first round, an adversary sends nothing
or invalid signatures to multiple (but not all) honest parties.

41

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

BMMR21. Saikrishna Badrinarayanan, Peihan Miao, Pratyay Mukherjee, and Divya
Ravi. On the round complexity of fully secure solitary mpc with honest
majority. Cryptology ePrint Archive, Report 2021/241, 2021. https://
eprint.iacr.org/2021/241.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

CD01. Ronald Cramer and Ivan Damg̊ard. Secure distributed linear algebra in a
constant number of rounds. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 119–136. Springer, Heidelberg, August 2001.

CGZ20. Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal
two-round MPC. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 828–858. Springer,
Heidelberg, May 2020.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors
are faulty (extended abstract). In 18th ACM STOC, pages 364–369. ACM
Press, May 1986.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-
tine agreement. SIAM J. Comput., 12(4):656–666, 1983.

FGMv02. Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Uncon-
ditional byzantine agreement and multi-party computation secure against
dishonest minorities from scratch. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 482–501. Springer, Heidelberg,
April / May 2002.

FL82. Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Inf. Process. Lett., 14(4):183–186, 1982.

GIKR01. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round
complexity of verifiable secret sharing and secure multicast. In 33rd ACM
STOC, pages 580–589. ACM Press, July 2001.

GIKR02. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round
secure multiparty computation. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 178–193. Springer, Heidelberg, August 2002.

GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with
fairness and guarantee of output delivery. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 63–82. Springer, Heidelberg, August 2015.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017.

42

https://eprint.iacr.org/2021/241
https://eprint.iacr.org/2021/241

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

GS18. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 468–499. Springer, Heidelberg, April / May 2018.

IK02. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure compu-
tation via perfect randomizing polynomials. In Peter Widmayer, Fran-
cisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Ei-
denbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380 of LNCS,
pages 244–256. Springer, Heidelberg, July 2002.

IKKP15. Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-
Cherniavsky. Secure computation with minimal interaction, revisited. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 359–378. Springer, Heidelberg, Au-
gust 2015.

IKP10. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty com-
putation with minimal interaction. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 577–594. Springer, Heidelberg, August 2010.

Lin01. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party
computation. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 171–189. Springer, Heidelberg, August 2001.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

PR18. Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 425–458.
Springer, Heidelberg, August 2018.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

A Building Blocks

In this section we define the building blocks necessary for our protocols.

Symmetric Key Encryption

Definition 11 (Symmetric-Key Encryption (SKE)). A symmetric-key en-
cryption (SKE) scheme is a tuple of efficient algorithms SKE = (keygen, enc, dec)
defined as follows.

43

keygen(1λ)→ sk: The probabilistic algorithm keygen takes as input the se-
curity parameter λ ∈ N, and outputs a secret key sk.
enc(sk,msg; r)→ c: The probabilistic algorithm enc takes as input the secret
key pk, a message msg ∈M, and implicit randomness ρ ∈ R, and outputs a
ciphertext c = enc(sk,msg; r). The set of all ciphertexts is denoted by C.
dec(sk, c)→ msg: The deterministic algorithm dec takes as input the secret
key sk and a ciphertext c ∈ C and outputs msg = dec(sk, c) which is either
equal to some message msg ∈M or to an error symbol ⊥.

We require the following properties of a symmetric encryption scheme:

Correctness. We say that SKE satisfies correctness if for all sk← keygen(1λ),

Pr[dec(sk, enc(sk,msg)) = msg] ≥ 1− negl(λ)

(where the randomness is taken over the internal coin tosses of algorithm enc).

Semantic Security. We say that SKE satisfies semantic security if for all PPT
adversaries A, for (msg0,msg1)← A(1λ), if |msg0| = |msg1|,

Pr
[
A(c) = b : sk← keygen(1λ); b← {0, 1};

c← enc(sk,msgb);

]
≤ 1

2 + negl(λ)

(where the randomness is taken over the internal coin tosses of A, keygen and
enc).

Public Key Encryption

Definition 12 (Public-Key Encryption (PKE)). A public-key encryption
(PKE) scheme is a tuple of efficient algorithms PKE = (keygen, enc, dec) defined
as follows.

keygen(1λ)→ (pk, sk): The probabilistic algorithm keygen takes as input the
security parameter λ ∈ N, and outputs a public/secret key pair (pk, sk).
enc(pk,msg; r)→ c: The probabilistic algorithm enc takes as input the public
key pk, a message msg ∈M, and implicit randomness ρ ∈ R, and outputs a
ciphertext c = enc(pk,msg; r). The set of all ciphertexts is denoted by C.
dec(sk, c)→ msg: The deterministic algorithm dec takes as input the secret
key sk and a ciphertext c ∈ C and outputs msg = dec(sk, c) which is either
equal to some message msg ∈M or to an error symbol ⊥.

We require the following properties of a PKE scheme:

Correctness. We say that PKE satisfies correctness if for all (pk, sk)← keygen(1λ),

Pr[dec(sk, enc(pk,msg)) = msg] ≥ 1− negl(λ)

(where the randomness is taken over the internal coin tosses of algorithm enc).

44

CPA Security. We say that PKE satisfies semantic security if for all PPT adver-
saries A, for (msg0,msg1)← A(1λ), if |msg0| = |msg1|,

Pr
[
A(pk, c) = b : (pk, sk)← keygen(1λ); b← {0, 1};

c← enc(pk,msgb)

]
≤ 1

2 + negl(λ)

(where the randomness is taken over the internal coin tosses of A, keygen and
enc).

Non-Interactive Zero-Knowledge Arguments of Knowledge We take
this definition from Groth and Maller [GM17].

Definition 13 (Non-Interactive Zero-Knowledge Arguments of Knowl-
edge (NIZKAoK)). A non-interactive zero-knowledge argument of knowledge
(NIZK) scheme is a tuple of efficient algorithms NIZK = (setupZK, prove, verify, simP)
defined as follows.

setupZK(1λ,R)→ (crs, td): The algorithm setupZK takes as input the secu-
rity parameter λ ∈ N, and outputs the global common reference string crs
and the trapdoor td for the NIZK system.
prove(crs, φ, w)→ π: The algorithm prove takes as input the common ref-
erence string crs for a relation R, a statement φ and a witness w, and outputs
a proof π that (φ,w) ∈ R.
verify(crs, φ, π)→ accept/reject: The algorithm verify takes as input
the common reference string crs for a relation R, a statement φ and a proof π,
and verifies whether π proves the existence of a witness w such that (φ,w) ∈
R.
simP(crs, td, φ)→ π: The algorithm simP takes as input the common ref-
erence string crs for a relation R, the trapdoor td and a statement φ, and
outputs a simulated proof of the existence of a witness w such that (φ,w) ∈ R.

We require the following properties of a NIZK scheme:

Correctness. We say that NIZK satisfies correctness if for any (φ,w) ∈ R, we
have that

Pr
[
verify(φ, π) = 1

∣∣∣∣ (crs, td)← setupZK(1λ,R)
π ← prove(φ,w)

]
≥ 1− negl(λ)

(where the randomness is taken over the internal coin tosses of setupZK, prove
and verify).

Zero Knowledge. We say that NIZK satisfies zero-knowledge if for all PPT ad-
versaries A,

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

45

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setupZK(1λ,R)

b← {0, 1}

Repeat poly(λ) times{
φ,w

−−−−−−−−−−−−−−−−−−−−−−−−−−B
if b = 0: π ← prove(crs, φ, w)
if b = 1: π ← simP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Simulation Extractability. We say that NIZK satisfies simulation extractability if
for all PPT adversaries A there exists an extraction algorithm simP.ExtractA
such that

Pr[A wins] ≤ negl(λ)

in the following experiment:

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setupZK(1λ,R)

Qsim = ∅

Repeat poly(λ) times{
φ

−−−−−−−−−−−−−−−−−−−−−−−−−−B
π ← simP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−− add π to Qsim

φ∗, π∗

−−−−−−−−−−−−−−−−−−−−−−−−−−B
w∗ ← simP.ExtractA(crs, td, τA)

If all of the following checks pass,
A wins:

(φ∗, w∗) 6∈ R
verify(crs, φ∗, π∗) = accept
π∗ 6∈ Qsim

Commitment Scheme A commitment scheme allows a party to commit to a
value while keeping it hidden, and to later reveal the committed value with the
guarantee that the commitment is binding [Ped92].

Definition 14 (Commitment Scheme). A commitment (C) scheme is a tuple
of efficient algorithms C = (com, open) defined as follows.

com(msg)→ (decom, com): The commitment algorithm com takes as input a
message msg ∈ {0, 1}λ and outputs a decommitment value decom ∈ {0, 1}λ
and a commitment value com ∈ {0, 1}λ.
open(decom, com)→ {msg,⊥}: The opening algorithm open takes as input
a decommitment value decom ∈ {0, 1}λ and a commitment value com ∈
{0, 1}λ and outputs either a message msg or ⊥ in case decom is not a valid
decommitment for com.

We require the following properties of a commitment scheme:

46

Correctness. We say that a commitment scheme C satisfies correctness if for
any message msg ∈ {0, 1}λ and (decom, com)← com(msg), we have that

Pr[(com, decom) = msg] ≥ 1− negl(λ).

Hiding. The hiding property requires a commitment reveals nothing about the
underlying message. More formally, we say that a commitment scheme C satisfies
hiding if for all PPT adversaries A,

Pr

b = b′

∣∣∣∣∣∣∣∣
(msg0,msg1)← A(1λ);
b← {0, 1};
(decom, com)← com(msgb);
b′ ← A(com)

 ≤ 1
2 + negl(λ) .

Binding. The binding property requires that an adversary cannot open a commit-
ment in two different ways. More formally, we say that a commitment scheme
C satisfies binding if for all PPT adversaries A,

Pr

msg0,msg1 6= ⊥,msg0 6= msg1

∣∣∣∣∣∣
(com, decom0, decom1)← A(1λ);
msg0 ← open(com, decom0);
msg1 ← open(com, decom1)

 ≤ negl(λ) .

Garbling Scheme A garbling scheme, introduced by Yao [Yao82] and formal-
ized by Bellare et al. [BHR12], enables a party to “encrypt” or “garble” a circuit
in such a way that it can be evaluated on inputs — given tokens or “labels”
corresponding to those inputs — without revealing what the inputs are.

Definition 15 (Garbling Scheme). A projective garbling scheme is a tuple
of efficient algorithms GC = (garble, eval) defined as follows.

garble(1λ, C)→ (GC,K): The garbling algorithm garble takes as input the
security parameter λ and a boolean circuit C : {0, 1}` → {0, 1}m, and outputs
a garbled circuit GC and ` pairs of garbled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
`).

For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that
Kb
` ∈ {0, 1}λ.

eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm eval takes as input the
garbled circuit GC and ` garbled labels K1, . . . ,K`, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. We say GC satisfies correctness if for any boolean circuit C : {0, 1}` →
{0, 1}m and x = (x1, . . . , x`) it holds that

Pr[eval(GC,K[x]) 6= C(x)] = negl(λ),

where (GC,K) ← garble(1λ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
`), and K[x] =

(Kx1
1 , . . . ,Kx`

`).

47

Next, we formally define the security notions we require for a garbling scheme.
When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of la-
bels reveals nothing about the input the labels correspond to, and privacy requires
that the additional knowledge of the decoding information reveals only the appro-
priate output. In our work, we do not consider decoding information separately
(but rather, consider it to be included in the garbled circuit), so we do not need
obliviousness. However, we introduce a new property that is necessary for our
setting: partial evaluation resiliency, which requires that without knowledge of
at least one label corresponding to each bit of input, nothing about the output is
revealed.

Privacy. Informally, privacy requires that a garbled circuit together with a set
of labels reveal nothing about the input the labels correspond to (beyond the ap-
propriate output).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B
x = (x1, . . . , x`) ∈ {0, 1}`

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}
if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
`))← garble(1λ, C)

Ki = K
xi
i

for i ∈ [`]
if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, C, C(x))
GC,K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Partial Evaluation Resiliency. We introduce an additional property of garbled
circuits which we call partial evaluation resiliency. Informally, this property re-
quires that unless the adversary has at least one label corresponding to every bit,
she learns nothing about the output.

More formally, we say that GC satisfies partial evaluation resiliency if there
exists a simulator simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

48

Adversary A Challenger C

C : {0, 1}` → {0, 1}m, i ∈ [`]
−−−−−−−−−−−−−−−−−−−−−−−−−−B

x = (x1, . . . , x`) ∈ {0, 1}`
−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

if b = 0:
(GC, (K0

1 , K
1
1 , . . . , K

0
` , K

1
`))← garble(1λ, C)

Kj = K
xj
j

for j ∈ [`]
if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, C)
K = {Kj}j∈[`],j 6=i

GC,K
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Note that existing garbling schemes clearly meet a weaker definition which
requires that given no labels, the garbled circuit GC reveals nothing about the
input. We can easily augment any garbling scheme GC = (garble, eval) that
meets this weaker definition to meet the stronger definition as well. We do this
simply by encrypting each label with `−1 one-time pads, each of which is bundled
with one of the other labels. More formally, we define G̃C = (g̃arble, ẽval) as
follows.

g̃arble(1λ):
1. Run (GC,K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
`)← garble(1λ).

2. For each i, j ∈ [`], i 6= j: let ki,j ← {0, 1}λ.
3. For each i ∈ [`], b ∈ {0, 1}: let K̃b

i =
(
Kb
i⊕
(
⊕j∈[`],j 6=iki,j

)
, {kj,i}j∈[`],j 6=i

)
.

4. Return (GC, K̃0
1 , K̃

1
1 , . . . , K̃

0
` , K̃

1
`).

ẽval(GC, K̃1, . . . , K̃`):
1. For i ∈ [`]: parse (K ′i, {kj,i}j∈[`],j 6=i)← K̃i.
2. For i ∈ [`]: let Ki ← K ′i ⊕

(
⊕j∈[`],j 6=i ki,j

)
.

3. Return eval(GC,K1, . . . ,K`).

Non-Interactive Key Exchange A non-interactive key-exchange protocol
allows two parties to jointly compute a cryptographic key.
Definition 16 (Non-Interactive Key Exchange (NIKE)).

A non-interactive key exchange (NIKE) scheme, parametrized by a distribu-
tion D, is a tuple of efficient algorithms NIKE = (keygen, keyagree) defined as
follows.

keygen(1λ)→ (pk, sk): The key generation algorithm keygen takes as input
the security parameter λ and outputs a public - private key pair.
keyagree(pk, sk)→ k: The key agreement algorithm keyagree takes as in-
put a public key and a secret key from a different key pair, and outputs a
shared key for the holder of the public key and the holder of the secret key.
Importantly, this algorithm should return the same key when run on Pi’s
public key and Pj’s secret key, and vice versa.

We require the following properties of a non-interactive key exchange scheme:

49

Correctness. We say that a non-interactive key exchange NIKE scheme is correct
if

Pr

 (pk0, sk0)← keygen(1λ);
(pk1, sk1)← keygen(1λ);
keyagree(pk0, sk1) = keyagree(pk1, sk0)

 ≥ 1− negl(λ) .

Security. We say that a non-interactive key exchange scheme is secure if for all
PPT adversaries A,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣∣

(pk0, sk0)← keygen(1λ);
(pk1, sk1)← keygen(1λ);
b← {0, 1};
k0 ← keyagree(pk1, sk0);
k1 ← D;
b′ ← A(pk0, pk1, kb)

 ≤
1
2 + negl(λ) .

Threshold Secret Sharing Scheme A t-out-of-n secret sharing scheme allows
a party to “split” a secret into n shares that can be distributed among different
parties. To reconstruct the original secret x at least t+1 shares need to be used.

Definition 17 (Secret Sharing). A t-out-of-n secret sharing scheme is a tuple
of efficient algorithms (share, reconstruct) defined as follows.

share(x)→ (s1, . . . , sn): The randomized algorithm share takes as input a
secret x and output a set of n shares.
reconstruct({si}i∈S⊆[n],|S|>t)→ x: The reconstruct algorithm reconstruct
takes as input a vector of at least t+ 1 shares and outputs the secret x.

We require the following properties of a t-out-of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the shares of
a secret x should always reconstruct to x. More formally, a secret sharing scheme
is perfectly correct if for any secret x, for any subset S ⊆ [n], |S| > t,

Pr
[
x = x′ : (s1, . . . , sn)← share(x)

x′ ← reconstruct({si}i∈S)

]
= 1,

where the probability is taken over the random coins of share. Moreover, if a
negligible error probability is allowed, we simply say that the scheme is correct.

Privacy. The privacy property requires that any combination of up to t shares
should leak no information about the secret x. More formally, we say that a
secret sharing scheme is private if for all (unbounded) adversaries A, for any
set A ⊆ {1, . . . , n}, |A| ≤ t and any two secrets x0, x1 (such that |x0| = |x1|),

Pr
[
A(s) = 1 : {si}i∈[n] = share(x0);

s = {si}i∈A

]
≡ Pr

[
A(s) = 1 : {si}i∈[n] = share(x1);

s = {si}i∈A

]
.

50

Share Simulatability. Additionally, we require an efficient simulator for the gen-
erated shares. More formally, we say that a secret sharing scheme is share sim-
ulatable if there exists a PPT simulator simshare such that for every PPT
adversary A, for any set A ⊆ {1, . . . , n}, |A| ≤ t (and H = {1, . . . , n}\A), and
any two secrets x0, x1, for (s0, . . . , sn) ← share(x0), (s′1, . . . , s′n) ← share(x1)
and {s′′i }i∈H ← simshare({si}i∈A, x0),

|Pr [A({si}i∈A, {si}i∈H) = 1]− Pr [A({si}i∈A, {s′′i }i∈H) = 1] | ≤ negl(λ).

In our constructions, we use the Shamir’s threshold secret sharing scheme
[Sha79], and refer to its algorithms as (Shamir.s, Shamir.reconstruct).

Digital Signatures

Definition 18 (Digital Signatures). A digital signature scheme is a tuple of
efficient algorithms (gen, sign, ver) defined as follows.

gen(1λ)→ (vk, sk): The randomized algorithm gen generates a verification
and signing key pair.
sign(sk,msg)→ σ: The signing algorithm sign takes as input a secret sign-
ing key sk and a message msg, and produces a signature.
ver(vk,msg, σ)→ {accept, reject}: The verification algorithm ver takes
as input a public verification key vk, a message msg and a signature σ, out-
puts accept if the signature looks valid, and reject otherwise.

We require the following properties of a digital signature scheme:

Correctness For every pair (vk, sk) ← gen(1λ) and every msg ∈ {0, 1}∗,
we have that ver(pk,msg, sign(sk,msg)) = accept.
Security For every PPT algorithm A, we have that

Pr[Asign(sk,·) = (msg, σ) s.t.msg wasn’t queried by A and ver(pk,m, σ) = 1] < negl(λ).

51

	Broadcast-Optimal Two Round MPC with an Honest Majority
	Introduction
	Technical Overview
	Related Work

	Secure Multiparty Computation (MPC) Definitions
	Security Model
	Notation

	No Broadcast: Impossibility of Unanimous Abort
	Broadcast in the Second Round: Impossibility of Fairness
	Completing the Picture: Impossibility Results for n3t
	Broadcast in the First Round: Guaranteed Output Delivery
	One-or-Nothing Secret Sharing
	Definitions
	Syntax
	Security

	Constructions

	Broadcast in the Second Round: Identifiable Abort
	Proof of Security

	Building Blocks
	Symmetric Key Encryption
	Public Key Encryption
	Non-Interactive Zero-Knowledge Arguments of Knowledge
	Commitment Scheme
	Garbling Scheme
	Non-Interactive Key Exchange
	Threshold Secret Sharing Scheme
	Digital Signatures

