
Silent Two-party Computation Assisted by Semi-trusted Hardware

Yibiao Lu
Zhejiang University

luyibiao@zju.edu.cn

Bingsheng Zhang
Zhejiang University

bingsheng@zju.edu.cn

Weiran Liu
Alibaba Group

weiran.lwr@alibaba-inc.com

Lei Zhang
Alibaba Group

zongchao.zl@taobao.com

Kui Ren
Zhejiang University
kuiren@zju.edu.cn

Abstract—With the advancement of the trusted execution environ-
ment (TEE) technologies, hardware-supported secure computing
becomes increasingly popular due to its efficiency. During the
protocol execution, typically, the players need to contact a third-
party server for remote attestation, ensuring the validity of the
involved trusted hardware component, such as Intel SGX, as well
as the integrity of the computation result. When the hardware
manufacturer is not fully trusted, sensitive information may be
leaked to the third-party server through backdoors, side-channels,
steganography, and kleptography, etc. In this work, we introduce
a new security notion called semi-trusted hardware model, where
the adversary is allowed to passively and/or maliciously corrupt
the hardware component. Therefore, she can learn the input of
the hardware component and might also tamper the output. We
show that two-party computation can still be significantly sped up
in this new model. When the semi-trusted hardware is instantiated
by Intel SGX, to generate 10k random OT’s, our protocol is 60X
and 340X faster than the EMP-IKNP-ROT in the LAN and WAN
setting, respectively. For the AES, SHA-1, and SHA-256 evaluation,
our protocol is 4-5X and 40-50X faster than the EMP-SH2PC in
the LAN and WAN setting, respectively.

1. Introduction

In secure multi-party computation (MPC), two or more play-
ers want to collectively compute a function and receive its output
without revealing their inputs to the other players. In the past
decades, MPC has gradually transitioned from theory to practice,
and it has been widely used in many security critical real-
world applications, such as private set intersection and secure
auction. In spite of its success, MPC is still not efficient for
complicated real-time tasks due to its computational overhead
and high communication cost. Meanwhile, recent development of
trusted execution environment (TEE) technologies, such as Intel
SGX and ARM TrustZone, enables a new approach for privacy-
preserving computation. Hardware-supported secure computing
can greatly accelerate an MPC process by avoiding expensive
cryptographic operations. However, this kind of constructions in-
troduce additional hardware setup assumptions that require new
trust roots, e.g. Intel. Recent exposure of Intel source code [1]
raises a security concern on possible backdoors contained in
its design. Moreover, many side-channel and micro-architecture

Bingsheng Zhang is the corresponding author.

attacks [2]–[6] have been discovered to compromise the security
guarantees provided by trusted hardware components.

When the hardware manufacturer is not fully trusted, sen-
sitive information may be leaked through backdoors, side-
channels, steganography and kleptography, etc. For instance,
Intel SGX utilizes the remote attestation mechanism to ensure the
validity of the enclave execution environment and the integrity
of the computation result. More specifically, Intel’s (anonymous)
attestation is based on an anonymous group signature scheme
called Intel Enhanced Privacy ID (EPID) [7]. To verify that an
outcome is computed by a pre-agreed program in a genuine
SGX, Quoting Enclave (QE) will produce a quote by signing
the report with the group signature. The users then need to
contact the remote Intel Attestation Service (IAS) (or some
other alternative servers) for verification. If Intel is malicious,
sensitive information may be leaked from the SGX component to
the IAS through the signatures, using for example kleptography
techniques. (Currently, Intel SGX uses 4000-bit RSA signatures.)
That means the input of SGX might be revealed to the adversary
during the protocol execution.

When the hardware provider is not allied with the MPC
participants, is it possible to still use potentially malicious leaky
hardware components to accelerate MPC executions with privacy
assurance?1 In this work, we answer this question affirmatively.
New model. We introduce a new semi-trusted hardware model,
where the adversary A is allowed to passively or maliciously
corrupt the hardware ideal functionality FHW. FHW is param-
eterized with a PPT ITM M, which specifies its functionality.
When the hardware functionality FHW is passively corrupted,
the adversary A can learn all the incoming messages received
by FHW; when FHW is maliciously corrupted, in addition to
leaning the incoming messages, the adversary A can replace the
original M with an arbitrary ITM M∗; namely the adversary A
can fully control the execution of FHW.

We formalize our model in the Universal Composibility (UC)
framework [8]. In this security framework, the adversary A is
allowed to control the network and corrupt some machines (ideal
functionalities and/or MPC players). In this work, we focus on
two-party computation, and we circumvent some impossibility
results, we introduce some restrictions to the environment Z and
the adversary A to enable efficient constructions. More precisely,
we assume the hardware manufacturer will not collude with the

1. In this work, we don’t address the information leakage problem from SGX
to the host PC during the execution via the side-channel attacks.

MPC players; therefore, we restrict the adversary A to only
corrupt either the semi-trusted hardware functionality FHW or
the player(s) P1 (and/or P2).
Our constructions. We propose a new type of two-party compu-
tation (2PC) protocols called silent MPC that uses semi-trusted
hardware to significantly reduce the communication between the
2PC players. The main idea is to use semi-trusted hardware
for those MPC computation that does not depend on the actual
protocol inputs; thus no sensitive information is leaked to the
hardware components. Take random OT (ROT) generation as an
example, assume the Receiver uses an SGX-enabled machine,
while there is no special hardware requirement to the Sender.
During the ROT protocol, the Sender only needs to exchange a
random seed ω with the Receiver’s SGX enclave via a secure
channel. Both parties can then generate polynomially many ROT
copies without any further communication. Namely, for each
ROT copy, the Sender locally computes R(0)

ctr ← PRFω(ctr, 0)

and R(1)
ctr ← PRFω(ctr, 1) from the seed ω using some pseudo-

random function PRF, where ctr is the counter; meanwhile,
the SGX picks a random bit bctr ← {0, 1}, and then it
generates R(bctr)

ctr ← PRFω(ctr, bctr). The SGX locally outputs
〈bctr, R(bctr)ctr〉 to the Receiver.

For garbled circuit (GC) evaluation, the communication
between the 2PC players can also be dramatically reduced.
Similarly, we assume the GC Evaluator uses an SGX-enabled
machine, while there is no special hardware requirement to the
GC Garbler. Note that, the main cost of a GC-based 2PC protocol
is the transmission of the garbled tables of the entire circuit.
Analogously, during the GC protocol, the Garbler exchanges a
random seed k with the Evaluator’s SGX enclave via a secure
channel. The SGX can then internally generate the garbled tables
and locally outputs them to the Evaluator without network com-
munication. The only communication needed is for transmitting
the input labels from the Garbler to the Evaluator. Hence, the
overall communication is linear to the input size and independent
of the circuit size.
Remark. We would like to emphasize that naively using the
secure hardware components, such as SGX, to prepare the ROT
copies and GC tables in the offline phase won’t result in a (UC)
simulatable 2PC protocol. This is because the simulator cannot
extract the malicious Evaluator’s input in the offline phase, yet
it needs to learn the MPC output (from the ideal functionality)
to simulate the (fake) GC tables in the real/hybrid world. As
described in Sec. 4 later, the protocol should invoke the secure
hardware component at the right moment along with the 2PC
protocol execution.

To handle malicious adversaries, the 2PC players need to
check the correctness of the garbled circuit(s) generated by FHW,
we adopt the cut-and-choose technique, i.e., FHW generates a
number of garbled circuits; P2 checks some of them and evalu-
ates the others, and the majority of the output of the evaluation
circuits will be considered as the final output. Note that there
are two subtle problems should be addressed when adopting the
cut-and-choose technique.
• A malicious party (P1 and/or P2) may use inconsistent

inputs for different garbled circuits.
• P1 may carry out a selective failure attack on P2’s input,

e.g., P1 may selectively provide incorrect wire labels for
some of P2’s input; according to whether the protocol
aborts, P1 can learn some information about P2’s input.

To address P1’s input inconsistency problem, we utilize the
XOR-gadget technique introduced by Mohassel and Riva [10].

To address P2’s input inconsistency problem, we use single-
choice OT (SCROT) to ensure the choice bit of P2 for the same
input bit is consistent among all the garbled circuits.

To address the selective failure problem, we adopt the cut-
and-choose OT technique introduced by Lindell and Pinkas [11]
to our scenario.
Efficiency. Table. 1 shows the performance comparison between
the well-known IKNP OT extension protocol [12] implemented
in EMP-toolkit [9] and our silent ROT protocol. We perform the
experiments on an SGX-enabled Dell OptiPlex 7080 equipped
with an Intel Core 8700 CPU @ 3.20 GHz with 32 GB RAM.
In the LAN setting (Bandwidth: 1Gbps, Delay: 1ms), our silent
ROT protocol is up to 200X faster w.r.t. the sender’s running time
and up to 60X faster w.r.t. the receiver’s running time than the
EMP-IKNP-ROT [9]. In the WAN setting (Bandwidth: 100Mbps,
Delay: 25ms), our silent ROT protocol is up to 2100X faster
w.r.t. the sender’s running time and up to 340X faster w.r.t. the
receiver’s running time than the EMP-IKNP-ROT.

Table. 2 shows the performance comparison between the
well-known EMP-SH2PC [9] protocol and our semi-honest set-
ting silent 2PC protocol. We perform the experiments on this
same machine as above. We test the garbling time, the garbled ta-
bles transmission time, and the evaluation time separately. Since
in our protocol, the garbling process is also performed in the
SGX enclave at the evaluator side, we split the evaluator running
time of our protocol into two parts: (i) the SGX running time
and (ii) normal mode CPU running time. We take the AES-non-
expanded, SHA-1, SHA-256 circuit evaluation as benchmarks. In
the LAN setting, our silent 2PC protocol is 4-5X faster than the
EMP-SH2PC [9]. In the WAN setting, our silent 2PC protocol
is 40-50X faster than the EMP-SH2PC.
Roadmaps. In Sec. 2 we provide notations and the necessary
background knowledge for garbling scheme and Intel SGX. In
Sec. 3 we describe the 2PC functionality under the UC frame-
work and introduce the semi-trusted hardware model. In Sec. 4,
we present our silent 2PC protocols both in the semi-honest
setting and malicious setting. We then examine the security of
our protocols in Sec. 5. Further, we provide our implementation
details and benchmarks in Sec. 6. Finally, we discuss the related
works in Sec. 7 and give a conclusion.

2. Preliminaries

Notation. Throughout this paper, we use the following notations
and terminologies. Let λ ∈ N be the security parameter. Denote
the set {a, a + 1, . . . , b} by [a, b], let [b] denote [1, b], and let
empty set denote ∅. When A is an array, |A| stands for the
size of A in terms of the number of entries. We abbreviate
probabilistic polynomial time as PPT. When S is a set, s ← S
stands for sampling s uniformly at random from S. When A

TABLE 1: Performance comparison of the ROT protocol (Result obtained from SGX-enabled Dell OptiPlex 7080 (Intel Core 8700 CPU @ 3.20
GHz, 32 GB RAM, OS: Ubuntu 18.04 LTS).

ROT Network setting Sender’s running time (in ms) Receiver’s running time (in ms)
EMP-IKNP-ROT [9] Our ROT EMP-IKNP-ROT [9] Our ROT

1× 104
LAN (Bandwidth: 1Gbps, Delay: 1ms) 14.977 0.074 9.909 0.162
WAN (Bandwidth: 100Mbps, Delay: 25ms) 166.191 0.079 58.062 0.169

1× 105
LAN (Bandwidth: 1Gbps, Delay: 1ms) 31.439 0.780 19.355 1.575
WAN (Bandwidth: 100Mbps, Delay: 25ms) 412.157 0.795 69.015 1.477

1× 106
LAN (Bandwidth: 1Gbps, Delay: 1ms) 168.007 6.182 142.919 15.910
WAN (Bandwidth: 100Mbps, Delay: 25ms) 1712.939 6.402 1462.461 16.032

1× 107
LAN (Bandwidth: 1Gbps, Delay: 1ms) 1557.127 51.616 1430.743 103.937
WAN (Bandwidth: 100Mbps, Delay: 25ms) 14159.030 51.280 13829.248 103.435

1× 108
LAN (Bandwidth: 1Gbps, Delay: 1ms) 14863.647 505.289 14039.182 995.987
WAN (Bandwidth: 100Mbps, Delay: 25ms) 138028.607 501.757 137034.187 980.795

TABLE 2: Performance comparison of the semi-honest setting 2PC protocol (Result obtained from SGX-enabled Dell OptiPlex 7080 (Intel Core
8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu 18.04 LTS). It shows the running time (in ms) for evaluating AES-non-expanded, SHA-1, and
SHA-256 circuits 1000 times, respectively.

Circuit Network setting EMP-SH2PC [9] running time (in ms) Our 2PC protocol running time (in ms)
Garbler Transmission Evaluator Garbler Transmission Evaluator (SGX+PC)

AES-non-expanded LAN (1Gbps, 1ms) 252.854 1842.682 237.081 ≈ 0 ≈ 0 266.184 + 198.824
WAN (100Mbps, 25ms) 268.459 19259.730 258.939 ≈ 0 ≈ 0 272.311 + 202.442

SHA-1 LAN (1Gbps, 1ms) 1477.546 10125.825 1435.283 ≈ 0 ≈ 0 1264.749 + 1086.122
WAN (100Mbps, 25ms) 1481.897 104323.883 1439.263 ≈ 0 ≈ 0 1267.931 + 1085.896

SHA-256 LAN (1Gbps, 1ms) 3738.750 24493.608 3570.436 ≈ 0 ≈ 0 3051.586 + 2662.728
WAN (100Mbps, 25ms) 3523.648 257959.467 3341.378 ≈ 0 ≈ 0 3052.418 + 2665.292

is a randomised algorithm, y ← A(x) stands for running A on
input x with a fresh random coin r. When needed, we denote
y := A(x; r) as running A on input x with the explicit random
coin r. Let poly(·) and negl(·) be a polynomially-bounded
function and negligible function, respectively. We assume each
party has a unique PID, and for readability, we refer Pi as the
PID for the party Pi.
Garbling Scheme. As defined in [13], a garbling scheme GC
consists of the following PPT algorithms (Gb,En,Ev,De).
• Gb(1λ, f) is the garbling algorithm that takes input as the

security parameter λ ∈ N and a circuit f , and it returns
a garbled circuit F , encoding information e, and decoding
information d.

• En(e, x) is the encoding algorithm that takes input as the
encoding information e and an input x, and it returns a
garbled input X .

• Ev(F,X) is the evaluation algorithm that takes input as the
garbled circuit F and the garbled input X , and it returns a
garbled output Y .

• De(d, Y) is the decoding algorithm that takes input as the
decoding information d and the garbled output Y , and it
returns the plaintext output y.

A garbling scheme GC := (Gb,En,Ev,De) is called pro-
jective if e consists of 2n wire labels, where n is the number
of input bits. For notation simplicity, we denote n1 and n2 as
the input size of x1 and x2, respectively, and n1 + n2 = n.
For the i-th input bit, we denote the corresponding wire labels
as (X

(0)
i , X

(1)
i). Let e := {(X(0)

i , X
(1)
i)}i∈[n]; the encoding

algorithm En(e, x) simply outputs X(x[i])
i , i ∈ [n], where x[i]

stands for the i-th bit of x.
Analogously, a garbling scheme is called output-projective if

d consists of 2 labels for each output bits, which can be denoted
as (Z

(0)
i , Z

(1)
i). we use m to represent the length of the output.

Let d := {(Z(0)
i , Z

(1)
i)}i∈[m]; the decoding algorithm De(d, Y)

outputs y[i], i ∈ [m], where y[i] is the i-th bit of y such that
Z
y[i]
i = Yi, simple equality test works for this check.

In this work, we assume GC is both projective and output-
projective.

Definition 1 (Correctness [13]). We say a garbling scheme
(Gb,En,Ev,De) is correct if for all functions f and input x:

Pr[(F, e, d)← Gb(1λ, f) : De(d,Ev(F,En(e, x))) = f(x)] = 1 .

Definition 2 (Simulatable Privacy [13]). We say a garbling
scheme (Gb,En,Ev,De) is simulatable private if for all functions
f and input x, there exists a PPT simulator Sim such that for
all PPT adversary A the following holds:

Pr

 (F0, e0, d0)← Gb(1λ, f);X0 ← En(e, x);
(F1, X1, d1)← Sim(1λ, f(x),Φ(f));
b← {0, 1}; b∗ ← A(Fb, Xb, db) : b = b∗

 = negl(λ) .

where Φ is the side-information function.

Yao’s GC Optimizations and Our Choice. Throughout the past
decades, several optimization techniques have been proposed to
improve the efficiency of Yao’s garbled circuit (GC). In this
section, we examine a few Yao’s GC optimizations and analyze
their suitability for our work to achieve the best performance.

In the classical garbling scheme, the GC generator needs
to invoke PRF 4 times for each gate to create a garbled table
consists of 4 ciphertexts. The GC evaluator also needs to invoke
PRF up to 4 times for each gate to decrypt all these ciphertexts
and obtains an output wire label.

Beaver et al. [14] introduced a technique called point-and-
permute. By appending a select bit to each wire label, one can
easily determine the places of the corresponding ciphertexts.
Therefore, for a garbled table, the GC evaluator can decide
which ciphertext to decrypt according to the select bit and only
invoke PRF once. Nevertheless, each garbled table still contains
4 ciphertexts, and it takes 4 PRF calls to generate. We adopt this
technique in our design, as it greatly reduces the GC evaluator’s
computational cost, and it is compatible with other optimizations.

Naor et al. [15] introduced a garbled row-reduction tech-
nique known as GRR3 to reduce the garbled table size. The
main idea is to fix 1 of the 4 ciphertexts, e.g. the top one,
in each garbled table to be 0, and thus can be eliminated. In
our construction, the memory of the enclave is limited, and this
technique can reduce memory usage of GC generation.

Kolesnikov et al. [16] introduced the free-XOR technique.
This technique allows us to garble and evaluate XOR gates for
free. To do this, the offset between a wire’s 0-label and its 1-label
of the entire circuit is fixed to ∆. Therefore, one can generate
or evaluate an XOR gate via a simple XOR operation. This
technique can greatly improve the performance of our scheme.

We note that, in a conventional 2PC setting, the other opti-
mization techniques, such as GRR2 [17] and half-gates [18], may
be helpful to further improve scheme performance. However,
GRR2 is not compatible with free-XOR. Although half-gates is
compatible with the aforementioned three optimizations, it is not
ideal for our construction. The reason is that the main benefit
of half-gates is to reduce the non-XOR gate garbled table size
to 2, but it needs 2 PRF invocations to evaluate. Whereas, in
our design, the GC size is not the bottleneck of our overall
performance, because the GC is transmitted between the SGX
enclave and the host locally. While, without half-gates, each non-
XOR gate garbled table only needs 1 PRF invocation to evaluate.

Intel SGX. Intel Software Guard Extensions (SGX) is a widely
used technology that enhances security of data and code. It
allows developers to create guarded private region called enclave
in processor reserved memory (PRM) and execute programs in
the enclave. The enclave is a isolated execution environment,
high-level softwares, including operating system and BIOS, can’t
break down the integrity and confidentiality guarantees of its
computation. In execution, a party can remotely attest the gen-
uinity of an enclave, provide private information to the enclave
and verify the outcome is computed by a pre-agreed program
with an advanced feature of Intel SGX called remote attestation.
More specifically, Intel’s (anonymous) attestation is based on
an anonymous group signature scheme called Intel Enhanced
Privacy ID (EPID) [7]. The enclave to be attested first invoke
the EREPORT instruction to create a locally verifiable report of
its attributes and measurement, and send this report to a special
enclave named Quoting Enclave (QE). The QE verifies the report
and produce a remotely verifiable quote by signing the quote
with the group signature. The enclave then forwards the quote
to the challenge party, and the party can contact with the remote
Intel Attestation Service (IAS) server for verification. The IAS
will first verify the group signature and then create a attestation
verification report as a response.

It interacts with players P := {P1, P2} and the adversary S. Let Pc be the
set of corrupted parties.
Initially, set Pc = ∅.
Compute:
• Upon receiving (COMPUTE, sid, xi) from party Pi ∈ P :

– If Pi ∈ Pc, send a notification (COMPUTENOTIFY, sid, xi, Pi) to S;
Otherwise, send a notification (COMPUTENOTIFY, sid, |xi|, Pi) to S;

– If it has received x1 from P1 and x2 from P2:
∗ Compute y ← f(x1, x2);

– Send (OUTPUT, sid, P2) to adversary S:
∗ Upon receiving (DELIVER, sid, P2) from S, it sends

(COMPUTE, sid, y) to P2;
Corruption handling:
• Upon receiving (CORRUPT, sid, Pi) from the adversary S, if Pi ∈ P :

– Set Pc := Pc ∪ {Pi};
– Send (INPUT, sid, xi, Pi) to S if xi is already defined;

Functionality Ff
2pc

Figure 1: Functionality Ff
2pc

3. Security Model

Universal Composibility. Our security model is based on the
Universal Composibility (UC) framework [8], which lays down
a solid foundation for designing and analyzing protocols secure
against attacks in an arbitrary network execution environment
(therefore it is also known as network aware security model).
Roughly speaking, in the UC framework, protocols are carried
out over multiple interconnected machines; to capture attacks, a
network adversary A is introduced, which is allowed to corrupt
some machines (i.e., have the full control of all physical parts
of some machines); in addition, A is allowed to partially control
the communication tapes of all uncorrupted machines, that is, it
sees all the messages sent from and to the uncorrupted machines
and controls the sequence in which they are delivered. Then,
a protocol ρ is a UC-secure implementation of a functionality
F , if it satisfies that for every network adversary A attacking
an execution of ρ, there is another adversary S—known as the
simulator—attacking the ideal process that uses F (by corrupting
the same set of machines), such that, the executions of ρ with
A and that of F with S makes no difference to any network
execution environment.

The idea world execution. In the ideal world, P1 and P2

only communicate with an ideal functionality Ff2pc during
the execution. As depicted in Fig. 1, party Pi ∈ P sends
(COMPUTE, sid, xi) to the functionality Ff2pc, and Ff2pc sends
a notification (COMPUTENOTIFY, sid, xi, Pi) to the adversary
S if Pi is corrupted; Otherwise, Ff2pc leaks the input size
(COMPUTENOTIFY, sid, |xi|, Pi) to S. When both parties’ inputs
are received, Ff2pc computes y ← f(x1, x2). It then sends
(COMPUTE, sid, y) to P2 if the adversary S allows. For cor-
ruption handling, if the adversary S corrupts party Pi ∈ P , Ff2pc
adds Pi to the set of corrupted parties, Pc, and leaks Pi’s input
xi to S if it is already defined.

The real world execution. The real/hybrid world protocol Π
utilises a semi-trusted hardware components, which are modeled

It interacts with players P := {P1, P2} and the adversary A. It is parameter-
ized with a PPT ITM M and a Boolean flag corrupted.
Initially, set corrupted := false;
• Upon receiving (CORRUPT, sid,M∗) from A:

– Set corrupted := true;
– If M∗ 6= ∅, replace M := M∗;

• Upon receiving (RUN, sid, xi) from party Pi ∈ P :
– If corrupted = true:
∗ Send leakage message (RUNNOTIFY, sid, xi, Pi) to A;

– If corrupted = false:
∗ Send notification message (RUNNOTIFY, sid, Pi) to A;

– When (RUN, sid, x1) and (RUN, sid, x2) are both received:
∗ Run (y1, y2)← M(x1, x2);
∗ For i ∈ {1, 2}, send (Run, sid, yi) to Pi;

Semi-trusted Hardware Functionality FHW[M]

Figure 2: The semi-trusted hardware functionality FHW[M]

as the ideal functionality FHW. Later, we will discuss how
FHW is instantiated by Intel SGX in practice. For notation
simplicity, we define FHW as a template, and specify the required
functionalities in the description of a PPT Turing machine M.
Our semi-honest setting protocol Πs

2pc uses FHW[Ms]; whereas,
our malicious setting protocol Πm

2pc uses FHW[Mm].

3.1. Semi-trusted Hardware Model

We introduce a new notion, called semi-trusted hardware
model. Unlike the conventional trusted hardware model, the
semi-trusted hardware functionality FHW[M] shown in Fig. 2
can be corrupted by the adversary A. The functionality FHW[M]
is parameterized with a PPT Turing machine M and a Boolean
flag corrupted to indicate whether the hardware is corrupted. The
parties P1 and P2 can invoke FHW[M] to compute (y1, y2) ←
M(x1, x2) by sending the input x1 and x2 respectively to FHW.
The input xi is in the form of 〈CMD,Data〉, where CMD is the
command that specifies which function M is going to execute,
and Data is the function’s input.

However, the adversary A is allowed to corrupt FHW via
the (CORRUPT, sid,M∗) command. When A is a semi-honest
adversary, it sets M∗ = ∅. In execution, if FHW is corrupted,
it will leak each party’s input to A. When A is a malicious
adversary, M∗ can be arbitrarily defined by A (not necessarily
PPT), and FHW computes (y1, y2)← M∗(x1, x2) instead. After
the computation, FHW sends the output y1 to the party P1 and
y2 to the party P2.

Description of Ms. We now define the Turing machine Ms

for FHW that will be used for our 2PC protocol in the semi-
honest adversarial setting. As depicted in Fig. 3, Ms accepts
two commands – GC (to generate garbled circuit) and ROT (to
generate random OT’s).

When both P1 and P2 submit 〈GC, f〉, Ms picks a random
seed k ← {0, 1}λ and generates the garbled circuit (F, e, d) ←
Gb(1λ, f ; k). After that, Ms outputs y1 := k and y2 := (F, d).

When both P1 and P2 submit 〈ROT, `〉, Ms first picks a
random key ω ← {0, 1}λ. For i ∈ [`], Ms picks a random bit

Ms(x1, x2) :

• Parse x1 = 〈CMD1, x
′
1〉 and x2 = 〈CMD2, x

′
2〉;

• If CMD1 = CMD2 = GC:
– Parse x′1 = f1 and x′2 = f2;
– Assert f1 = f2;
– Pick random k ← {0, 1}λ;
– Generate (F, e, d)← Gb(1λ, f1; k);
– Return y1 := k and y2 := (F, d);

• If CMD1 = CMD2 = ROT:
– Parse x′1 = `1 and x′2 = `2;
– Assert `1 = `2;
– Pick random ω ← {0, 1}λ;
– For i ∈ [`1]:
∗ Pick random bi ← {0, 1};
∗ Generate R(bi)

i ← PRFω(i, bi);

– Return y1 := ω and y2 := {〈bi, R
(bi)

i 〉}i∈[`2];

Description of Ms

Figure 3: Description of Ms

bi ← {0, 1}, and then it generates R(bi)
i ← PRFω(i, bi). After

that, Ms outputs y1 := ω and y2 := {〈bi, R(bi)
i 〉}i∈[`].

Instantiation of Ms. In practice, Ms can be instantiated by just
running an SGX enclave on the P2 side. P1 will remotely interact
with P2’s SGX enclave via a secure channel established by
remote attestation. We use 128-bit AES-NI as the PRF algorithm.
As introduced in Sec. 2, we adopt three GC optimizations,
respectively are point-and-permute, GRR3 and free-XOR. For
the GRR3 optimization, we set the 0-label of the output wire as
the first row of the garbled table, and XOR each row with this
0-label, then the first row becomes an all 0 string and thus can
be eliminated.
Description of Mm. The Turing machine Mm will be used for our
2PC protocol in the malicious adversarial setting. As depicted in
Fig. 4, Mm accepts three commands – GC (to generate garbled
circuits), ROT (to generate random OT’s), and SCROT (to
generate single-choice random OT’s). Different from Ms, all the
three commands need an extra argument to specify the output
directions of the protocols, i.e., P1 and P2 can be the sender (or
the receiver) of the oblivious transfer protocol, and the evaluator
(or the garbler) of the garbling scheme, respectively. For notation
simplicity, we use ψ ∈ {1, 2} to specify the output directions.

When both P1 and P2 submit 〈GC, f, `, ψ〉, Mm gener-
ates ` copies of the garbled circuits – for j ∈ [`]: (i) pick
a random seed ωj ← {0, 1}λ and (ii) generate the garbled
circuit (Fj , ej , dj) ← Gb(1λ, f ;ωj). After that, Mm outputs
yψ := {ωj}j∈[`] and y3−ψ := {Fj , dj}j∈[`].

When both P1 and P2 submit 〈ROT, `, η, ψ〉, Mm generates
` batches of the random OT’s, and each batch contains η copies
of random OT’s. For j ∈ [`], it picks a random key ωj ←
{0, 1}λ and computes σj ← hash(ωj). In the j-th batch, Mm

for i ∈ [η], (i) pick random bj,i ← {0, 1} and (ii) generate
R

(bj,i)
j,i ← PRFωj (bj,i). After that, Mm outputs yψ := {ωj}j∈[`]

and y3−ψ :=

{
σj ,
{〈
bj,i, R

(bj,i)
j,i

〉}
i∈[η]

}
j∈[`]

.

When both P1 and P2 submit 〈SCROT, `, η, ψ〉, Mm gener-

Mm(x1, x2) :

• Parse x1 = 〈CMD1, x
′
1〉 and x2 = 〈CMD2, x

′
2〉;

• If CMD1 = CMD2 = GC:
– Parse x′1 = 〈f1, `1, ψ1〉 and x′2 = 〈f2, `2, ψ2〉;
– Assert f1 = f2, `1 = `2 and ψ1 = ψ2 ∈ {1, 2};
– For j ∈ [`1]:
∗ Pick random ωj ← {0, 1}λ;
∗ Generate (Fj , ej , dj)← Gb(1λ, f1;ωj);

– Return yψ1
:= {ωj}j∈[`1] and y3−ψ1

:= {Fj , dj}j∈[`1];

• If CMD1 = CMD2 = ROT:
– Parse x′1 = 〈`1, η1, ψ1〉 and x′2 = 〈`2, η2, ψ2〉;
– Assert `1 = `2, η1 = η2 and ψ1 = ψ2 ∈ {1, 2};
– For j ∈ [`1]:
∗ Pick random ωj ← {0, 1}λ;
∗ Compute σj ← hash(ωj);
∗ For i ∈ [η1]:

· Pick random bj,i ← {0, 1};
· Generate R

(bj,i)

j,i ← PRFωj (bj,i);

– Return yψ1
:= {ωj}j∈[`1] and

y3−ψ1
:=

{
σj ,
{〈
bj,i, R

(bj,i)

j,i

〉}
i∈[η1]

}
j∈[`1]

;

• If CMD1 = CMD2 = SCROT:
– Parse x′1 = 〈`1, η1, ψ1〉 and x′2 = 〈`2, η2, ψ2〉;
– Assert `1 = `2, η1 = η2, and ψ1 = ψ2 ∈ {1, 2};
– For i ∈ [η1]: pick random bi ← {0, 1}
– For j ∈ [`1]:
∗ Pick random ωj ← {0, 1}λ;
∗ Compute σj ← hash(ωj);
∗ For i ∈ [η1]: generate R(bi)

j,i ← PRFωj (i, bi);

– Return yψ1
:= {ωj}j∈[`1] and

y3−ψ1
:=

(
{σj}j∈[`1] , {bi}i∈[η1] ,

{
R

(bi)

j,i

}
i∈[η1],j∈[`1]

)
;

Description of Mm

Figure 4: Description of Mm

ates ` batches of the single-choice random OT’s, and each batch
contains η copies of single-choice random OT’s. The procedure
is similar to the random OT generation. The only difference is
that in single-choice random OT’s, the i-th ROT’s in each batch
use the same choice bit bi ∈ {0, 1}.
Instantiation of Mm. In practice, Mm can instantiated by run-
ning SGX enclaves on both P1 and P2 sides. Upon initial-
ization, two enclaves need to jointly pick a common random
seed through a coin flipping protocol. We then utilize pseudo-
randomness instead of picking true random coins to save com-
munication between P1 and P2. The hash function is defined as
hash(x) := PRFk(x) ⊕ x, where k is a fresh random key. The
GC optimizations are the same as Ms.

4. Silent 2PC Protocols

4.1. The semi-honest setting protocol

Let f be the function that P1 and P2 want to jointly
compute. Denote n1 and n2 as the input size of P1 and P2

in f , respectively. As depicted in Fig. 5, in the semi-honest
setting protocol, both parties first sends (Run, sid, 〈ROT, n2〉)
to FHW[Ms] to generate n2 ROT copies. After that, P1 receives
ω as the seed of ROT, and it generates R(0)

i ← PRFω(i, 0),
R

(1)
i ← PRFω(i, 1), i ∈ [n2]. Meanwhile, P2 receives the ROT

copies {〈bi, R(bi)
i 〉}i∈[n2] from FHW[Ms], it then computes and

sends the choice bits {ci := bi ⊕ x2,i}i∈[n2] to P1.
Next, both parties send (Run, sid, 〈GC, f〉) to FHW[Ms].

After that, P1 obtains the GC seed k. P1 then generates the GC:
(F, e, d) ← GC.Gb(1λ, f ; k)2. Subsequently, P1 computes the
OT responses W (0)

i := X
(0)
n1+i⊕R

(ci)
i , W (1)

i := X
(1)
n1+i⊕R

(ci⊕1)
i ,

i ∈ [n2], and P1 sends {W (0)
i ,W

(1)
i }i∈[n2] along with its

input labels {Zi := X
(x1,i)
i }i∈[n1] to P2. P2 receives the gar-

bled tables, decoding information (F, d) from FHW[Ms], and
{Zi}i∈[n1], {W

(0)
i ,W

(1)
i }i∈[n2] from P1. P2 computes Zn1+j :=

W
(x2,j)
j ⊕ R

(bj)
j for j ∈ [n2]. At the end, P2 evaluates Y ←

GC.Ev(F, (Z1, . . . , Zn1+n2
)), and decodes y ← GC.De(d, Y).

4.2. The malicious setting protocol

In our security setting, the hardware functionality FHW[Mm]
may be maliciously corrupted. Therefore, our protocol also
need to verify the validity of the output of FHW[Mm]. Before
presenting the formal protocol description, we first give some
intuition in the following.
Intuition. In the spirit of our design, the evaluator shall receive
the garbled circuit(s) from FHW[Mm] instead of the garbler.
Hence, when FHW[Mm] is instantiated by a local SGX, there is
no communication between P1 and P2. Since the FHW[Mm] can
be maliciously corrupted, it’s necessary to verify if the FHW[Mm]
correctly generates the ROT copies the GC tables. Roughly
speaking, we adopt the cut-and-choose technique, which require
the FHW[Mm] to generate p(λ) copies of the garbled circuit and
allows the evaluator the check some of them, where p() is some
polynomial function. After the check is finished, the evaluator
will evaluate the unchecked copies and consider the majority of
the outputs of the evaluation circuits as the final output. Note that
naive cut-and-choose GC tables can only ensure the correctness
of the garbled circuits. To achieve active security, in addition,
we need to guarantee the followings.
• The players (the garbler and the evaluator) should use the

same input when evaluating different garbled circuits.
• There should be a mechanism to prevent a malicious the

garbler from carrying out the selective failure attack.
To address the problem that the evaluator uses inconsis-

tent inputs, we introduce a new type of ROT functionality to
FHW[Mm] called single-choice random OT (SCROT). That is a
batch of ROT’s using the same choice bit. This can be used to
force the evaluator to use the same choice bit (i.e., input wire
value) among different GC copies.

We use the cut-and-choose OT technique [11] to (i) check
the validity of the ROT and SCROT copies generated by poten-
tially malicious FHW[Mm], and (ii) the selective failure attacks
launched by P1 or P2. Further, to ensure the garbler’s input
consistency, we adopt the XOR-gadget technique introduced by
Mohassel and Riva [10]. In this technique, both the garbler and
the evaluator needs to evaluate x1⊕r, where r is a random value

2. In practice, P1 only needs to generate the corresponding encoding infor-
mation of the GC, e, i.e. the wire labels; therefore, GC.Gb is only partially
executed for efficiency.

Let n1 and n2 be f ’s input size of P1 and P2, respectively. Denote n := n1 + n2 as the overall input size.

Protocol description:
• Upon receiving (COMPUTE, sid, xi := (xi,1, . . . , xi,ni)) from the environment Z , the party Pi ∈ P :

– Send (Run, sid, 〈ROT, n2〉) to FHW[Ms], which will reply (Run, sid, αi);
• Upon receiving (Run, sid, α1) from FHW[Ms], the party P1:

– Parse α1 = ω;
– For i ∈ [n2]: generate R(0)

i ← PRFω(i, 0) and R(1)
i ← PRFω(i, 1);

• Upon receiving (Run, sid, α2) from FHW[Ms], the party P2:

– Parse α2 = {〈bi, R
(bi)

i 〉}i∈[n2];
– Send {ci := bi ⊕ x2,i}i∈[n2] to P1;
– Send (Run, sid, 〈GC, f〉) to FHW[Ms];

• Upon receiving {ci}i∈[n2] from P2, the party P1:
– Send (Run, sid, 〈GC, f〉) to FHW[Ms], and obtain (Run, sid, k);
– Generate (F, e, d)← GC.Gb(1λ, f ; k);
– Parse e = {X(0)

i , X
(1)
i }i∈[n];

– For i ∈ [n2]: compute W (0)
i := X

(0)
n1+i ⊕ R

(ci)

i and W (1)
i := X

(1)
n1+i ⊕ R

(ci⊕1)

i ;

– Send {Zi := X
(x1,i)

i }i∈[n1] and {W (0)
i ,W

(1)
i }i∈[n2] to P2;

• Upon receiving (Run, sid, (F, d)) from FHW[Ms], and {Zi}i∈[n1], {W
(0)
i ,W

(1)
i }i∈[n2] from P1, the party P2:

– For j ∈ [n2], compute Zn1+j := W
(x2,j)

j ⊕ R
(bj)

j ;
– Evaluate Y ← GC.Ev(F, (Z1, . . . , Zn1+n2

));
– Decode y ← GC.De(d, Y);
– Return (COMPUTE, sid, y) to the environment Z;

Protocol Πs
2pc

Figure 5: The semi-honest setting protocol Πs
2pc in the FHW[Ms]-hybrid model

chosen by the garbler. The garbler evaluates the garbled circuits
for the function f̂(x, r) := x⊕r which are called XOR-gadgets,
and the evaluator needs to evaluate the garbled circuits for the
function f

′
((x1, r), x2) := (f(x1, x2), x1 ⊕ r).

As in the work [10], the evaluator use three checks to ensure
the garbler use the same input x1 in the majority of the evaluation
circuits: (i) checking if the garbler use the same input value in
the evaluation of the XOR-gadgets, we use single-choice OT to
guarantee this consistency; (ii) checking if the result of the j-th
XOR-gadget equals to the x1 ⊕ rj from the j-th garbled circuit
for the evaluation circuits, we ask the garbler to commit to its
evaluation results of the evaluation XOR-gadgets and decommit
some of them later to audit; (iii) checking if the same rj is used
in the j-th garbled circuit and the j-th XOR-gadget, we require
the garbler to send all the rj labels for the garbled circuits at
the beginning of the protocol, and for the circuits to be checked,
the garbler sends the seeds of the garbled circuits and the rj
labels for XOR-gadgets to the evaluator. Then the evaluator
can generate the wire labels of those garbled circuits, since the
evaluator already has the wire labels of the XOR-gadgets, it can
computes the value of rj in both the j-th garbled circuit and the
j-th XOR-gadget and perform the check.
Protocol description. Let n1 and n2 be the input size of P1 and
P2 in circuit f , respectively. Denote n := n1 +n2 as the overall
input size. Let p() be a polynomial function. Define argument
function f ′((x1, r), x2) := (f(x1, x2), x1 ⊕ r) and the XOR-
gadget function f2(x, r) := x⊕ r.

We use hash-based commitment scheme. Namely, to commit
m ∈ {0, 1}∗, Com(m), the committer picks a random string
ρ← {0, 1}λ and computes the commitment as hash(m, ρ). ρ is
also known as the decommitment value.

As depicted in Fig. 6 and Fig. 7, in the malicious setting
protocol, both parties first sends (Run, sid, 〈ROT, n1, 2〉) and
(Run, sid, 〈SCROT, n1, 2〉) to FHW[Mm] to generate the random
OTs that will be used for the XOR-gadgets, then they sends
(Run, sid, 〈SCROT, n2, 1〉) to FHW[Mm] to generate the random
OTs that will be used for the garbled circuits.

After that, P1 obtains the ROT copies and the SCROT copies
for the XOR-gadgets, the hash values of the corresponding seeds,
along with the seeds of the SCROT copies for the garbled
circuits. P1 then picks p(λ) random values rj ∈ {0, 1}n1 ,
and it generates n2 SCROT copies R̃

(0)
j,i ← PRFω̃j (i, 0) and

R̃
(1)
j,i ← PRFω̃j (i, 1). Subsequently, P1 sends the select bits
{ĉj,i := b̂j,i ⊕ rj,i}i∈[n1],j∈[p(λ)] and {c̄i := b̄i ⊕ x1,i}i∈[n1]

to P2, and it sends (Run, sid, 〈GC, 〈f2, p(λ), 2〉〉) to FHW[Mm].
Next, P2 obtains the ROT seeds and the SCROT seeds

for the XOR-gadgets, and the SCROT copies for the garbled
circuits from FHW[Mm], it also receives the selects bits from
P1. It then sends (Run, sid, 〈GC, 〈f2, p(λ), 2〉〉) to FHW[Mm],
which will reply the seeds of the XOR-gadgets k̈j . P2 uses
these seeds to generate p(λ) XOR-gadget copies (F̈j , ëj , d̈j)←
GC.Gb(1λ, f2; k̈j), where ëj = {Ẍ(0)

j,i , Ẍ
(1)
j,i }i∈[2n1] are the input

wire labels. Subsequently, it uses the ROT seeds to generate
R̂

(0)
j,i ← PRFω̂j (i, 0) and R̂

(1)
j,i ← PRFω̂j (i, 1), and it computes

Ŵ
(0)
j,i := Ẍ

(0)
j,n1+i ⊕ R̂

(ĉj,i)
j,i and Ŵ (1)

j,i := Ẍ
(1)
j,n1+i ⊕ R̂

(ĉj,i⊕1)
j,i , it

also generates the SCROT copies R̄(0)
j,i , R̄

(1)
j,i and W̄ (0)

j,i , W̄
(1)
j,i in

the same way. After that, it sends the select bits used in garbled
circuits {c̃i := b̃i ⊕ x2,i}i∈[n2] and the encrypted XOR-gadget
wire labels {Ŵ (0)

j,i , Ŵ
(1)
j,i , W̄

(0)
j,i , W̄

(1)
j,i }i∈[n1],j∈[p(λ)] to P1, it also

sends (Run, sid, 〈GC, 〈f1, p(λ), 1〉〉) to FHW[Mm] to generate the
garbled circuit copies.

P1 then receives the garbled tables and the decoding in-

Let n1 and n2 be the input size of P1 and P2 in circuit f , respectively. Denote n := n1 + n2 as the overall input size. Let p() be a polynomial function.
Define functions f1((x1, r), x2) := (f(x1, x2), x1 ⊕ r) and f2(x, r) := x⊕ r.

Protocol Description:
• Upon receiving (COMPUTE, sid, xi := (xi,1, . . . , xi,ni)) from the environment Z , the party Pi ∈ P :

– Send (Run, sid, 〈ROT, n1, 2〉) to FHW[Mm], which will reply (Run, sid, αi) to Pi;
– Send (Run, sid, 〈SCROT, n1, 2〉) to FHW[Mm], which will reply (Run, sid, βi) to Pi;
– Send (Run, sid, 〈SCROT, n2, 1〉) to FHW[Mm], which will reply (Run, sid, γi) to Pi;

• Upon receiving (Run, sid, α1), (Run, sid, β1) and (Run, sid, γ1) from FHW[Mm], the party P1:

– Parse α1 =

{
σ̂j ,

{〈
b̂j,i, R̂

(b̂j,i)

j,i

〉}
i∈[n1]

}
j∈[p(λ)]

, β1 =

(
{σ̄j}j∈[p(λ)] ,

{
b̄i
}
i∈[n1]

,
{
R̄

(b̄i)

j,i

}
i∈[n1],j∈[p(λ)]

)
, and γ1 = {ω̃j}j∈[p(λ)];

– For j ∈ [p(λ)]:
∗ Pick random rj ← {0, 1}n1 ;
∗ For i ∈ [n2], generate R̃(0)

j,i ← PRFω̃j (i, 0) and R̃(1)
j,i ← PRFω̃j (i, 1);

– Send {ĉj,i := b̂j,i ⊕ rj,i}i∈[n1],j∈[p(λ)] and {c̄i := b̄i ⊕ x1,i}i∈[n1] to P2;
– Send (Run, sid, 〈GC, 〈f2, p(λ), 2〉〉) to FHW[Mm];

• Upon receiving (Run, sid, α2), (Run, sid, β2), (Run, sid, γ2) from FHW[Mm] and {ĉj,i}i∈[n1],j∈[p(λ)], {c̄i}i∈[n1] from P1, the party P2:

– Send (Run, sid, 〈GC, 〈f2, p(λ), 2〉〉) to FHW[Mm], and obtain (Run, sid, {k̈j}j∈[p(λ)]) from FHW[Mm];

– Parse α2 = {ω̂j}j∈[p(λ)], β2 = {ω̄j}j∈[p(λ)], and γ2 =

(
{σ̃j}j∈[p(λ)] ,

{
b̃i
}
i∈[n2]

,
{
R̃

(b̃i)

j,i

}
i∈[n2],j∈[p(λ)]

)
;

– For j ∈ [p(λ)]:

∗ Generate (F̈j , ëj , d̈j)← GC.Gb(1λ, f2; k̈j), and parse ëj = {Ẍ(0)
j,i , Ẍ

(1)
j,i }i∈[2n1];

∗ For i ∈ [n1]:

· Generate R̂(0)
j,i ← PRFω̂j (i, 0) and R̂(1)

j,i ← PRFω̂j (i, 1);

· Generate R̄(0)
j,i ← PRFω̄j (i, 0) and R̄(1)

j,i ← PRFω̄j (i, 1);

· Compute Ŵ (0)
j,i := Ẍ

(0)
j,n1+i ⊕ R̂

(ĉj,i)

j,i and Ŵ (1)
j,i := Ẍ

(1)
j,n1+i ⊕ R̂

(ĉj,i⊕1)

j,i ;

· Compute W̄ (0)
j,i := Ẍ

(0)
j,i ⊕ R̄

(c̄j,i)

j,i and W̄ (1)
j,i := Ẍ

(1)
j,i ⊕ R̄

(c̄j,i⊕1)

j,i ;

– Send {c̃i := b̃i ⊕ x2,i}i∈[n2], {Ŵ
(0)
j,i , Ŵ

(1)
j,i , W̄

(0)
j,i , W̄

(1)
j,i }i∈[n1],j∈[p(λ)] to P1;

– Send (Run, sid, 〈GC, 〈f1, p(λ), 1〉〉) to FHW[Mm];

• Upon receiving (Run, sid, {(F̈j , d̈j)}j∈[p(λ)]) from FHW[Mm], and {c̃i}i∈[n2], {Ŵ
(0)
j,i , Ŵ

(1)
j,i , W̄

(0)
j,i , W̄

(1)
j,i }i∈[n1],j∈[p(λ)] from P2, the party P1:

– Send (Run, sid, 〈GC, 〈f1, p(λ), 1〉〉) to FHW[Mm], and obtain (Run, sid, {kj}j∈[p(λ)]) from FHW[Mm];
– For j ∈ [p(λ)]:

∗ Generate (Fj , ej , dj)← GC.Gb(1λ, f1; kj), and parse ej = {X(0)
j,i , X

(1)
j,i }i∈[2n1+n2];

∗ For i ∈ [n2], compute W̃ (0)
j,i := X

(0)
j,i ⊕ R̃

(c̃j,i)

j,i and W̃ (1)
j,i := X

(1)
j,i ⊕ R̃

(c̃j,i⊕1)

j,i ;

∗ For i ∈ [n1], compute Z̈j,i := W̄
(x1,i)

j,i ⊕ R̄
(b̄j,i)

j,i and Z̈j,n1+i := Ŵ
(rj,i)

j,i ⊕ R̂
(b̂j,i)

j,i ;

– Send {Zj,n1+i := X
(rj,i)

j,n1+i}i∈[n1],j∈[p(λ)] and {W̃ (0)
j,i , W̃

(1)
j,i }i∈[n2],j∈[p(λ)] to P2;

• Upon receiving (Run, sid, {(Fj , dj)}j∈[p(λ)]) from FHW[Ms], and {Zj,n1+i}i∈[n1],j∈[p(λ)], {W̃
(0)
j,i , W̃

(1)
j,i }i∈[n2],j∈[p(λ)] from P1, the party P2:

– For i ∈ [n2], compute Zj,2n1+i := W̃
(x2,i)

j,i ⊕ R̃
(b̃j,i)

j,i ;

Protocol Πm
2pc

Figure 6: The malicious setting protocol Πm
2pc in the FHW[Mm]-hybrid model (Part I)

formation of the XOR-gadgets from FHW[Mm], and {c̃i}i∈[n2],
{Ŵ (0)

j,i , Ŵ
(1)
j,i , W̄

(0)
j,i , W̄

(1)
j,i }i∈[n1],j∈[p(λ)] from P2. It sends the

command (Run, sid, 〈GC, 〈f1, p(λ), 1〉〉) to FHW[Mm], and ob-
tains (Run, sid, {kj}j∈[p(λ)]). Next, it uses the garbled circuit
seeds to generate (Fj , ej , dj) ← GC.Gb(1λ, f1; kj), where
ej = {X(0)

j,i , X
(1)
j,i }i∈[2n1+n2] are the input wire labels in gar-

bled circuits. It then computes W̃
(0)
j,i := X

(0)
j,i ⊕ R̃

(c̃j,i)
j,i and

W̃
(1)
j,i := X

(1)
j,i ⊕ R̃

(c̃j,i⊕1)
j,i as the encrypted wire labels in

garbled circuits. Subsequently, it decrypts its input wire labels
in XOR-gadgets by computing e Z̈j,i := W̄

(x1,i)
j,i ⊕ R̄(b̄j,i)

j,i and

Z̈j,n1+i := Ŵ
(rj,i)
j,i ⊕ R̂

(b̂j,i)
j,i . After that, P1 sends the wire

labels corresponding to rj in the garbled circuits {Zj,n1+i :=

X
(rj,i)
j,n1+i}i∈[n1],j∈[p(λ)] and {W̃ (0)

j,i , W̃
(1)
j,i }i∈[n2],j∈[p(λ)] to P2,

and P2 computes Zj,2n1+i := W̃
(x2,i)
j,i ⊕ R̃(b̃j,i)

j,i to decrypts its
wire labels in the garbled circuits.

P1 and P2 then jointly choose a random set I ⊆ [p(λ)] such
that |I| = p(λ)/2 as the check set; [p(λ)]\I is called evaluation
set. They then perform the following cut-and-choose procedure.

P1 evaluates all the evaluation XOR-gadgets, generates com-
mitments for the outputs and sends these commitments to P2.
P1 also sends the seeds of the check garbled circuits along with
the SCROT seeds used for these garbled circuits, and the wire
labels of rj in the check XOR-gadgets to P2. Subsequently,
for the check set, P2 computes the hash values of the SCROT
seeds and asserts these values equals to the hash values obtained
from FHW[Mm]. P2 then generates the garbled circuits copies
by invoking GC.Gb, and it asserts these copies equals to those
obtained from FHW[Mm]. Next, P2 generates the SCROT copies
R
∗(0)
j,i ← PRFω̃j (0) and R∗(1)

j,i ← PRFω̃j (1), and it decrypts P1’s
inputs for the SCROT’s, it then asserts P1’s inputs are exactly
the wire labels corresponding to P2’s inputs in garbled circuits.
After that, P2 extracts the value of rj that P1 used in garbled

. Cut and choose
• The party P1 and P2 use coin-flipping protocol to jointly choose a random set I ⊆ [p(λ)] such that |I| = p(λ)/2;
• The party P1:

– For j ∈ [p(λ)] \ I:

∗ Evaluate Ÿj ← GC.Ev
(
F̈j ,
(
Z̈j,1, . . . , Z̈j,2n1

))
;

∗ Generate a commitment (Cj ,Dj)← Com(Ÿj);

– Sends
{
Z̈j,n1+i := Ẍ

(rj,i)

j,n1+i

}
i∈[n1],j∈I

, {kj}j∈I , {ω̃j}j∈I and {Cj}j∈[p(λ)]\I to P2;

• Upon receiving
{
Z̈j,i

}
i∈[n1+1,2n1],j∈I

, {kj}j∈I , {ω̃j}j∈I and {Cj}j∈[p(λ)]\I from P1, the party P2:

– For j ∈ I:
∗ Assert hash(ω̃j) = σ̃j ;
∗ Generate (F∗j , e

∗
j , d
∗
j)← GC.Gb(1λ, f1; kj), and parse e∗j =

{
X

(0)∗
j,i , X

(1)∗
j,i

}
i∈[2n1+n2]

;

∗ Assert F∗j = Fj and d∗j = dj ;
∗ For i ∈ [n2]:

· Generate R∗(0)
j,i ← PRFω̃j (0) and R∗(1)

j,i ← PRFω̃j (1);

· Compute X
′(0)
j,2n1+i := W̃

(0)
j,i ⊕ R

∗(bi⊕x2,i)

j,i and X
′(1)
j,2n1+i := W̃

(1)
j,i ⊕ R

∗(bi⊕x2,i⊕1)

j,i ;

· Assert X∗(0)
j,2n1+i = X

′(0)
j,2n1+i and X∗(1)

j,2n1+i = X
′(1)
j,2n1+i.

∗ For i ∈ [n1]:

· Find r(1)
j,i such that Zj,n1+i = X

∗
(
r
(1)
j,i

)
j,n1+i and r(2)

j,i such that Z̈j,n1+i = Ẍ

(
r
(2)
j,i

)
j,n1+i ;

· Assert r(1)
j,i = r

(2)
j,i ;

– Send
{
k̈j
}
j∈[p(λ)]\I

, {ω̂j}j∈[p(λ)]\I and {ω̄j}j∈[p(λ)]\I to P1;

• Upon receiving
{
k̈j
}
j∈[p(λ)]\I

, {ω̂j}j∈[p(λ)]\I and {ω̄j}j∈[p(λ)]\I from P2, the party P1:

– For j ∈ [p(λ)] \ I:
∗ Assert hash(ω̂j) = σ̂j and hash(ω̄j) = σ̄j ;
∗ Generate (F̈∗j , ë

∗
j , d̈
∗
j)← GC.Gb(1λ, f2; k̈j), and parse ë∗j = {Ẍ∗(0)

j,i , Ẍ
∗(1)
j,i }i∈[2n1];

∗ Assert F̈∗j = F̈j and d̈∗j = d̈j ;
∗ For i ∈ [n1]:

· Generate R̂∗(0)
j,i ← PRFω̂j (0) and R̂∗(1)

j,i ← PRFω̂j (1);

· Generate R̄∗(0)
j,i ← PRFω̄j (0) and R̄∗(1)

j,i ← PRFω̄j (1);

· Compute Ẍ
′(0)
j,n1+i := Ŵ

(0)
j,i ⊕ R̂

∗(b̂i⊕rj,i)
j,i and Ẍ

′(1)
j,n1+i := Ŵ

(1)
j,i ⊕ R̂

∗(b̂i⊕rj,i⊕1)

j,i ;

· Compute Ẍ
′(0)
j,i := W̄

(0)
j,i ⊕ R̄

∗(b̄i⊕x1,i)

j,i and Ẍ
′(1)
j,i := W̄

(1)
j,i ⊕ R̄

∗(b̄i⊕x1,i⊕1)

j,i ;

· Assert Ẍ∗(0)
j,i = Ẍ

′(0)
j,i , Ẍ∗(1)

j,i = Ẍ
′(1)
j,i , Ẍ∗(0)

j,n1+i = Ẍ
′(0)
j,n1+i and Ẍ∗(1)

j,n1+i = Ẍ
′(1)
j,n1+i.

– Send decommitments {Dj}j∈[p(λ)]\I and
{
Zj,i := X

(x1,i)

j,i

}
i∈[n1],j∈[p(λ)]\I

to P2;

• Upon receiving decommitments {Dj}j∈[p(λ)]\I and {Zj,i}i∈[n1],j∈[p(λ)]\I , the party P2:

– For j ∈ [p(λ)] \ I:
∗ Evaluate Yj ← GC.Ev(Fj , (Zj,1, . . . , Zj,2n1+n2));
∗ Decode yj ← GC.De(dj , Yj);
∗ Parse yj = (yj,1, yj,2) = (f(x1, x2), x1 ⊕ rj);
∗ Check if P1’s commitment corresponding to labels of value x1 ⊕ rj = yj,2.

– Record the majority of {yj,1}j /∈I as yout, and return (COMPUTE, sid, yout) to the environment Z;

Protocol Πm
2pc

Figure 7: The malicious setting protocol Πm
2pc in the FHW[Mm]-hybrid model (Part II)

circuits and XOR-gadgets, and asserts P1 uses same rj in the j-
th garbled circuit and the j-th XOR-gadget. If the check passes,
P2 sends the seeds of XOR-gadgets and the corresponding seeds
of ROT’s and SCROT’s for the evaluation circuits to P1.

After receiving the seeds, P1 first computes the hash of the
ROT seeds and the SCROT seeds, and it asserts these values
equals to those values it obtains from FHW[Mm]. P1 then gener-
ates the evaluation XOR-gadgets along with the related SCROT’s
and ROT’s, and it checks if P2 honestly use the random OTs to
transfer the wire labels of XOR-gadgets. If all the checks pass,
P1 decommits to the results of the evaluation XOR-gadgets and
sends its wire labels in the evaluation garbled circuits. P2 then
evaluates all the evaluation garbled circuits. Finally, P2 checks

if the value of rj ⊕ x1 from the outputs of garbled circuits are
identical to the outputs from the XOR-gadgets. If the check
passes, P2 assumes P1’s input is consistent in most garbled
circuits, and it records the majority outputs of the evaluation
garbled circuits as the final protocol result.

5. Security

In practice, we assume the hardware manufacturer will not
collude with the MPC players; otherwise, when P1 (or P2) is
colluding with FHW, no input privacy can be guaranteed. We
first examine why our protocols are secure at the high level,
and then formally state the security of our semi-honest setting

protocol Πs
2pc and malicious setting protocol Πm

2pc in Thm. 1 and
Thm. 2, respectively, where we restrict the adversary A to only
corrupt either the semi-trusted hardware functionality FHW or
the player(s) P1 (and/or P2).

In the semi-honest setting, the view of FHW[Ms] is the
MPC function f and some public parameters, which is already
known to the environment Z and the adversary A; therefore, no
additional information would be leaked through FHW[Ms] to the
adversary A. Since FHW[Ms] could only be passively corrupted,
the correctness of GC tables and ROT copies are preserved. The
input privacy of protocol Πs

2pc is guaranteed by the simulatable
privacy property of the underlying GC garbling scheme.

In the malicious setting, FHW[Mm], P1, and P2 may be
maliciously corrupted. The main design principle is as follows.
In P1’s point of view, either FHW[Mm] or P2 could be corrupted.
Similarly, in P2’s point of view, either FHW[Mm] or P1 could be
corrupted. Note that our protocol does not provide accountability,
i.e., when the protocol abort, we are not required to identify
which party is guilty. Therefore, P1 (or P2) could treat the
messages received from FHW[Mm] as if they are generated and
delivered by P2 (or P1).
FHW[Mm] combines (a) the XOR-gadget technique [10]

to ensure the input consistency of P1, (b) single-choice OT
(SCROT) to ensure the choice bit of P2 for the same input bit
is consistent among all the garbled circuits, and (c) the cut-and-
choose OT technique [11] to prevent selective failure attacks.

In total, p1(λ) copies of GC are generated. Currently, we
consider the majority of the evaluation result as the final result.
A malicious FHW can only influence the evaluation result by
generating incorrect garbled tables and incorrect ROT copies. It
can success, i.e., influences the result, only when the check to the
check circuits passes and the majority of the evaluation circuits
are incorrect. According to the computation in the work [11], its
success probability is about 2−0.311λ. In other words, we need
to use p1(λ) ≈ 132 to achieve a 40-bit security guarantee.

Remark. There are other better cut-and-choose techniques can
be found in the literature, but they are not compatible with
our protocols. For instance, Lindell [19] and Huang et al. [20]
propose protocols achieving a cheating probability of 2−λ. The
Lindell’s work [19] introduces a new technique such that, if the
party P1 is caught cheating, P2 is able to learn P1’s input and
computes the function by itself. However, in our design principle,
FHW[Mm] should not learn P1’s input, and thus this technique is
not suitable for our protocols. The work of Huang et al. [20] uses
symmetric cut-and-choose where both parties need to generate
garbled circuits and check the garbled circuits generated by the
other party, and the final output is determined jointly. In our
work, we use the malicious FHW[Mm] to generate the garbled
circuits for both parties, and FHW[Mm] can easily manipulate the
final result by providing same incorrect garbled circuits to both
parties.

Theorem 1. If PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ is a
secure PRF function, and GC := (Gb,En,Ev,De) is a secure
simulatable private garbling scheme, protocol Πs

2pc described in
Fig. 5 UC-realizes Ff2pc as described in Fig. 1 in the FHW[Ms]-
hybrid model against any PPT semi-honest adversaries who can

TABLE 3: Performance of our malicious setting 2PC protocol with 40-
bit security guarantee (Result obtained from SGX-enabled Dell OptiPlex
7080 (Intel Core 8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu
18.04 LTS). The LAN setting: 1Gbps bandwidth, 1ms delay; the WAN
setting: 100Mbps bandwidth, 25ms delay.

Circuit Network setting Running time (in ms)
Garbler Evaluator

AES-non-expanded LAN 133.410 135.101
WAN 796.561 805.641

SHA-1 LAN 443.719 451.660
WAN 1404.330 1428.117

SHA-256 LAN 844.175 861.919
WAN 1850.553 1890.025

corrupt either FHW[Ms] or the player(s) P1 (and/or P2) with
static corruption.

The proof is provided in App. A.

Theorem 2. If PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ is a
secure PRF function, and GC := (Gb,En,Ev,De) is a secure
simulatable private garbling scheme, protocol Πm

2pc described in
Fig. 6 and Fig. 7 UC-realizes Ff2pc as described in Fig. 1 in the
FHW[Mm]-hybrid model against any PPT malicious adversaries
who can corrupt either FHW[Mm] or the player(s) P1 (and/or
P2) with static corruption.

The proof is provided in App. B.

6. Implementation and Benchmarks

Our protocol is implemented in C++ using Intel SGX SDK
on Linux. We use AES-NI for the PRF algorithm. To efficiently
generate ROT’s in the SGX enclave, we carefully analyze the
performance bottleneck and notice that if we just generate one
copy of ROT at once, then the Receiver needs to enter the en-
clave for many times, and the enter/exit may cause performance
loss. Because this, we group ROT’s into batches, and choose the
optimal batch size according to the test result.

We already explained our choice of GC optimizations in
Sec. 2, and here we provide more details. Denote the seed of the
garbled circuit as k, to generate the wire labels, we first compute
the PRFk(0) and force it’s least significant bit to be 1, and the
result is the ∆ in the free-XOR optimization. Subsequently, we
invoke the PRF for n times in the form PRFk(i) to generate the
0-label of the i-th input, then we compute ∆ ⊕ PRFk(i) to get
the 1-label of the i-th input. After obtaining all the wire labels,
we computes k

′
:= PRFk(n + 1) as the seed for generation of

garbled tables.
With regard to the generation of the garbled circuits, we

assume the order of the gates in the circuit description is layer-
designed such that, for a gate to be garbled, it’s input wire
won’t be the output wire of a gate that hasn’t been garbled.
Hence, we can garble the gates as this order. For a XOR gate,
since free-XOR is used, its garbled tables is eliminated, and
we simply XOR the two input wires’ 0-label to obtain the 0-
label of the output wire. For each non-XOR gate, we invoke the
hash algorithm for 4 times for different input value combinations

to generate 4 ciphertexts. After that, we can determine each
ciphertext’s place in the garbled table according to the select
bit, i.e., the least significant bit of the wire labels, as desribed in
the point-and-permute optimization. Denote the first input wire
label’s select bit as sa and the second input wire label’s select
bit as sb, the ciphertext derived from these two wire labels will
be placed in the (sa + 2 ∗ sb + 1)-th row of the garbled table.
Furthermore, since we adopt the GRR3 optimization, we set the
value of the first row as the output wire’s 0-label, and XOR each
row with it, then the first row becomes an all 0 string and thus
can be eliminated.

The evaluation process use the same seed as the garbling
process, since the SGX enclave runs on the Evaluator’s machine,
this seed can be locally transferred. The evaluation order is also
as in the circuit description. For each XOR gate, the Receiver
only has two wire labels and we XOR these two label to obtain
the result. For each non-XOR gate, we use the input wire labels
to compute 1 ciphertext using PRF and determine its place
according to the input wire labels’ select bits.

We perform the experiments on an SGX-enabled Dell Opti-
Plex 7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz
with 32.0 GB RAM, running Ubuntu 18.04 LTS.

We evaluate all protocols in two simulated network settings:
(i) a LAN setting with 1Gbps bandwidth and 0.1ms delay and
(ii) a WAN setting with 100Mbps bandwidth and 25ms delay.

To test the performance of our ROT generation protocol, we
compared our protocol with the implementation of the IKNP
OT extension protocol in EMP-ROT [9]. Table. 1 shows the
performance comparison for generating 104 to 108 copies of
ROT, where the result is the average of 10 tests.

To test the performance of the semi-honest 2PC protocols,
our benchmarks use three Bristol circuits, which consists of only
AND gates, XOR gates and inverters, respectively are AES-non-
expanded circuit, SHA-1 circuit and SHA-256 circuit. The AES-
non-expanded circuit contains 33872 wires and 33616 gates,
including 6800 AND gates; in this circuit, the party P1’s input
size, the party P2’s input size and the output size are all 128
bits. The SHA-1 circuit contains 107113 wires and 106601 gates,
including 37300 AND gates; in this circuit, the party P1’s input
size is 512 bits while the party P2 doesn’t have a input, and the
output size is 160 bits. The SHA-256 circuit contains 236624
wires and 236112 gates, including 90825 AND gates; in this
circuit, the party P1’s input size is 512 bits while the party P2

doesn’t have a input, and the output size is 256 bits. For the
semi-honest setting protocol, we compared our protocol with
EMP-SH2PC [9].

Table. 2 shows the performance comparison for evaluating
the aforementioned benchmark circuits for 1000 times, and the
results are the average of 10 tests. We measure the garbling time,
transmission time, and the evaluation time separately. For our
protocol, since the garbling procedure is executed in the SGX
enclave at the evaluator side, we present the evaluator running
time of our protocol in two parts: (i) the SGX running time and
(ii) normal mode CPU running time.

Table. 3 shows the performance of our malicious setting 2PC
protocol with 40-bit security guarantee, i.e., p1(λ) = 132 copies
of GC tables are generated for cut-and-choose. It takes 135 ms
to securely evaluate the AES-non-expanded circuit once in the

LAN setting, and 805 ms in the WAN setting. The numbers for
SHA-1 and SHA-256 are 451 ms and 861 ms in the LAN setting,
respectively.

7. Related Work

Felsen et al. [21] proposed an Intel SGX-based secure func-
tion evaluation (SFE) approach in which private inputs are sent
to enclave. In their protocol, only the inputs and the outputs
need to be transferred, the communication complexity of their
protocol is optimal up to an additive constant. They evaluate
the Boolean circuit representation of the function in enclave to
provide security with regards to software side-channel attacks. In
addition, they reduce the problem of private function evaluation
(PFE) to the problem of SFE by using universal circuits and are
the first to address PFE problem via TEEs. They give a prototype
implementation of their protocol and compare its performance
with state-of-art implementations of Yao’s GC and the GMW
protocols, the result shows their protocol’s efficiency.

In our work, we also use Intel SGX to accelerate compu-
tation. However, we keep the enclave away from private inputs
to guarantee privacy even when the enclave is corrupted. To
use a enclave that does not know private inputs, we propose a
modified edition of Yao’s GC protocol. The hardware component
only generates the ROT copies and garbled tables in the pre-
computation process, and all the processes related to the private
input is executed outside the enclave

Bahmani et al. [22] proposed an intuitive approach in which
the program in an isolated execution environment (IEE) plays the
role of a trusted third party and the major part of computational
load is left to the untrusted machine. In this way, they reach
a minimum communication complexity that only depends on
number of inputs and outputs. Obviously, the trust to IEE and
hardware manufacturer is crucial. They introduced a novel notion
of labelled attested computation (LAC) and give a LAC-based
solution with rigorous security guarantees. They implement Intel
SGX-based version of their protocol and compare it with the
ABY framework, and their solution is hundreds of times faster
than ABY.

Gupta et al. [23] proposed a protocol using Intel SGX for
SFE problem which is secure in the semi-honest model, they
also show how to improve their protocol’s security. They notice
the problem that the developers need to trust hardware and hard
supplier when using Intel SGX, but don’t propose a feasible
solution. Because SGX-enabled CPU was not available at the
time when they finished their research, they did not give the
implementation of their protocol. However, they estimate the
amounts of cryptographic operations that their protocol and
Yao’s garbled circuit protocol need, and expect a huge improve-
ment of performance.

In our work, we focus on the problem that the hardware com-
ponent can also be corrupted, and propose a semi-honest setting
protocol and a malicious setting protocol. In these protocols, we
isolate the hardware component from the private inputs, and only
use the hardware to execute some pre-computation processes.

Choi et al. [24] consider the possibility of SGX being
compromised and want to protect the most sensitive data in any
case. They propose a hybrid SFE-SGX protocol which consists

of calculation in SGX enclave and standard cryptographic tech-
niques. The function to be evaluated is partitioned into several
round functions, the odd rounds are executed in enclave and
the even rounds are done using a scheme based on garbled
circuit. They claim that, if the partition scheme is proper, which
means no private inputs is leaked by intermediate values, their
hybrid approach ensures security against semi-hones adversary.
They also notice that there are numerous side-channel attacks
against SGX that can extract information from enclave, so they
deploy corresponding mitigation techniques to protect privacy.
They present how to use this hybrid protocol to solve privacy-
preserving retrieval and privacy-preserving navigation, and the
evaluation shows that the hybrid protocol achieves up to 38
times of performance improvement over the pure garbled circuit
protocol.

In our work, the computation is also done both in the enclave
and out of the enclave. In Choi’s work, the enclave gets part of
the private input, while we ensure the enclave is isolated with
any private data and only some pre-computation work need to be
done in enclave, which guarantees privacy even if the enclave is
compromised. Choi’s work is based on the assumption that the
partition of function is properly done, however, partitioning itself
is a hard problem which requires careful consideration. While
our work is based on the garbled circuit protocol, and we don’t
rely on this additional requirement.

Chakraborty et al. [25] use the trusted hardware to enable
intellectual property protection. Only users who possesses autho-
rized hardware can use the deep learning model to predict. For
the unauthorized users, the model accuracy will greatly decrease
such that they can hardly obtain an accurate result.

For the cut-and-choose technique, Lindell and Pinkas [11]
notice that the selective failure attack is possible because only
garbled circuits are checked. They introduced a new primitive
called cut-and-choose oblivious transfer, which allows the GC
evaluator to simultaneously check garbled circuits and oblivious
transfers. Furthermore, they augment their cut-and-choose OT
protocol to a single-choice cut-and-choose OT protocol, which
ensures the input consistency of the GC evaluator. The GC
generator uses zero-knowledge proof to prove that its inputs
are consistent. They use majority voting to decide the output,
resulting in an error probability of 2−0.311λ. In other words, to
achieve an error probability of 2−40, about 132 garbled circuits
should be used.

In our work, we borrow their idea of using cut-and-choose
to prevent selective failure attack. The different thing is, in our
protocol, the OT protocol is based on the ROT generated on a
seed by the trusted hardware SGX, so we let SGX compute the
hash of the seed and transfer to P2, and P2 can catch a cheating
P1 that wants to carry out selective failure attack by verifying
these hash values. The input consistency of P2 is also guaranteed
by the single-choice OT protocol.

To further improve efficiency, Lindell [19] proposed another
protocol based on the primitive cut-and-choose OT. In this
protocol, a malicious adversary can only successfully cheat with
a probability of probability of 2−λ, in comparison with the pre-
vious protocol, the number of garbled circuits needed to achieve
a cheating probability of 2−40 is reduced from 132 to 40. In
addition to the protocol based on cut-and-choose, he adds another

secure evaluation which enables the GC evaluator to obtain the
input of a cheat GC garbler who uses inconsistent inputs. Then,
the GC evaluator can compute the result by itself. The output
computed by the GC evaluator and the output computed by the
GC protocol seems no difference to the GC garbler, therefore,
a malicious GC generator can cheat only when all the check
circuits are correct and all the evaluation circuits are incorrect,
resulting in a cheating probability of 2−λ.

In the same period, Huang et al. [20] also proposed a protocol
based on cut-and-choose that achieves a cheating probability of
2−λ. They design the protocol in a symmetric setting, where both
parties generate garbled circuits and evaluate those generated
by the other party. In their protocol, a party outputs value v
for an output wire if and only if for each party, at least one
of the evaluation circuits is evaluated to v on that wire. Since
an honest party always generate correct garbled circuits, the
correctness won’t be broken down unless all the check circuits
generated by the other party are correct and all the evaluation
circuits generated by the other party are incorrect, so a cheating
probability of 2−λ is achieved.

In our work, however, we find it difficult to further reduce
the cheat probability and improve the efficiency as described in
Sec. 5, and we leave this possible improvement as future work.

8. Conclusion

In this work, we investigate the problem where the trusted
hardware manufacturer are not fully trusted, and the hardware
components may leak sensitive information to the remote servers
through backdoors, side-channels, steganography, and kleptogra-
phy, etc. We first present a new security notion called semi-
trusted hardware model, where the adversary is allowed to
passively and/or maliciously corrupt the hardware component.
We then propose a new type of two-party computation (2PC)
protocols called silent MPC that uses semi-trusted hardware to
significantly reduce the communication between the 2PC players.
Our constructs use semi-trusted hardware for pre-computation
that does not depend on the actual protocol inputs; thus no
sensitive information is leaked to the hardware components.
We implemented our protocols and compared it with the EMP-
toolkit. When the semi-trusted hardware is instantiated by Intel
SGX, our ROT protocol is several magnitude times faster than
than the EMP-IKNP-ROT, and our semi-honest 2PC protocol is
also significantly faster than the EMP-SH2PC in both LAN and
WAN setting. We emphasize this line of research is far from
being completed, and we will generalize our technique to multi-
party computation scenarios as the future work.

References

[1] G. Dan and S. Jim, “More than 20gb of intel source
code and proprietary data dumped online,” [EB/OL],
https://arstechnica.com/information-technology/2020/08/
intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
Accessed August 30, 2020.

[2] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter, “Leaky cauldron on the dark land: Understanding
memory side-channel hazards in sgx,” in CCS’17, 2017, pp. 2421–2434.

[3] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi, “Software grand exposure:SGX cache attacks are practical,” in
WOOT’17, 2017.

[4] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution,” in USENIX Security’17, 2017, pp. 1041–1056.

[5] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in USENIX Security’18, 2018, pp. 991–1008.

[6] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.-H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” IEEE
Security & Privacy, vol. 18, no. 3, pp. 28–37, 2020.

[7] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel®
software guard extensions: Epid provisioning and attestation services,”
White Paper, vol. 1, no. 1-10, p. 119, 2016.

[8] R. Canetti, “Universally composable security: A new paradigm for cryp-
tographic protocols,” in FOCS’01. IEEE, 2001, pp. 136–145.

[9] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient MultiParty
computation toolkit,” https://github.com/emp-toolkit, 2016.

[10] P. Mohassel and B. Riva, “Garbled circuits checking garbled circuits: More
efficient and secure two-party computation,” in CRYPTO’13. Springer,
2013, pp. 36–53.

[11] Y. Lindell and B. Pinkas, “Secure two-party computation via cut-and-
choose oblivious transfer,” Journal of cryptology, vol. 25, no. 4, pp. 680–
722, 2012.

[12] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers
efficiently,” in CRYPTO’03. Springer, 2003, pp. 145–161.

[13] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,”
in CCS’12, 2012, pp. 784–796.

[14] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in STOC’90, 1990, pp. 503–513.

[15] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in EC’99, 1999, pp. 129–139.

[16] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor gates
and applications,” in ICALP’08. Springer, 2008, pp. 486–498.

[17] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASIACRYPT’09. Springer, 2009, pp.
250–267.

[18] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in
EUROCRYPT’15. Springer, 2015, pp. 220–250.

[19] Y. Lindell, “Fast cut-and-choose-based protocols for malicious and covert
adversaries,” Journal of Cryptology, vol. 29, no. 2, pp. 456–490, 2016.

[20] Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party computation
using symmetric cut-and-choose,” in CRYPTO’13. Springer, 2013, pp.
18–35.

[21] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and private
function evaluation with intel sgx,” in CCSW@CCS’19, 2019, pp. 165–
181.

[22] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from sgx,” in FC’17.
Springer, 2017, pp. 477–497.

[23] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor, “Using
intel software guard extensions for efficient two-party secure function
evaluation,” in FC’16. Springer, 2016, pp. 302–318.

[24] J. I. Choi, D. Tian, G. Hernandez, C. Patton, B. Mood, T. Shrimpton, K. R.
Butler, and P. Traynor, “A hybrid approach to secure function evaluation
using sgx,” in AsiaCCS’19, 2019, pp. 100–113.

[25] A. Chakraborty, A. Mondal, and A. Srivastava, “Hardware-assisted intel-
lectual property protection of deep learning models,” in DAC’20, 2020.

https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://github.com/emp-toolkit

Appendix

1. Proof of Theorem. 1

Theorem 1. If PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ is a
secure PRF function, and GC := (Gb,En,Ev,De) is a secure
simulatable private garbling scheme, protocol Πs

2pc described in
Fig. 5 UC-realizes Ff2pc as described in Fig. 1 in the FHW[Ms]-
hybrid model against any PPT semi-honest adversaries who can
corrupt either FHW[Ms] or the player(s) P1 (and/or P2) with
static corruption.

Proof. To prove Thm. 1, we construct a simulator S such
that no non-uniform PPT environment Z can distinguish
between (i) the real execution EXEC

FHW[Ms]
Πs

2pc,A,Z
where the parties

P := {P1, P2} run protocol Πs
2pc in the FHW[Ms]-hybrid model

and the corrupted parties are controlled by a dummy adversary
A who simply forwards messages from/to Z , and (ii) the ideal
execution EXECFf2pc,S,Z

where the parties P1 and P2 interact

with functionality Ff2pc in the ideal world, and corrupted parties
are controlled by the simulator S. We consider following cases.

Case 1: FHW[Ms] is corrupted; P1 and P2 are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[Ms] as well as honest parties P1 and P2. In addition, the
simulator S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |xi|, Pi) for an

honest party Pi from the external Ff2pc, the simulator S
sends (Run, sid, 〈ROT, n2〉) to FHW[Ms] on behave of Pi.

• Upon receiving (Run, sid, Qi) from the party Pi ∈ P
via the interface of FHW[Ms], S acts as FHW[Ms] to
send (RUNNOTIFY, sid, Qi, Pi) to A. S then simulates the
FHW[Ms] functionality as defined.

• When the simulated party P2 receive {〈bi, R(bi)
i 〉}i∈[n2]

from FHW[Ms], S acts as P2 to send {ci := bi}i∈[n2] to
the simulated party P1.
S then acts as both P1 and P2 to send (Run, sid, 〈GC, f〉) to
FHW[Ms]. It then simulates the rest communication between
P1 and P2 according to the protocol description as if both
P1 and P2 receive (COMPUTE, sid, 0) from Z .

Indistinguishability. Assume the communication between P1

and P2 is via the secure channel functionality FSC, the views
of A and Z in EXEC

FHW[Ms]
Πs

2pc,A,Z
and EXECFf2pc,S,Z

are identical.
Therefore, it is perfectly indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[Ms] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[Ms] as well as honest P2. In addition, the simulator S
simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x2|, P2) from the

external Ff2pc, the simulator S sends (Run, sid, 〈ROT, n2〉)
to FHW[Ms] on behave of P2.

• When the simulated party P2 receive {〈bi, R(bi)
i 〉}i∈[n2]

from FHW[Ms], S acts as P2 to send {ci := bi}i∈[n2]

to the simulated party P1. S then acts as P2 to send
(Run, sid, 〈GC, f〉) to FHW[Ms].

• When P2 receives {Zi}i∈[n1] and {W (0)
i ,W

(1)
i }i∈[n2] from

P1, S uses the internal GC label information (F, e, d) of the
simulated FHW[Ms] to extract P1’s input x∗1. It then sends
(COMPUTE, sid, x∗1) to the external Ff2pc on behave of P1.

• Upon receiving (OUTPUT, sid, P2) from the external
FHW[Ms], if A allows P2 to finish the protocol execution
and obtains y, S sends (DELIVER, sid, P2) to the external
Ff2pc.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H1.
Hybrid H0: It is the real protocol execution EXEC

FHW[Ms]
Πs

2pc,A,Z
.

Hybrid H1: H1 is the same as H0 except that in H1, P2 sends
{c′i := bi}i∈[n2] to P1, instead of {ci := bi ⊕ x2,i}i∈[n2].

Claim 1. H1 and H0 are perfectly indistinguishable.

Proof. Since bi are the ROT select bits randomly picked by
FHW[Ms], the distribution of {c′i}i∈[n2] and {ci}i∈[n2] are iden-
tical. Therefore, H1 and H0 are perfectly indistinguishable.

The adversary’s view of H1 is identical to the simulated
view EXECFf2pc,S,Z

. Therefore, it is perfectly indistinguishable.

Case 3: P2 is corrupted; P1 and FHW[Ms] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[Ms] as well as honest P1. In addition, the simulator S
simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x1|, P1) from the

external Ff2pc, the simulator S sends (Run, sid, 〈ROT, n2〉)
to FHW[Ms] on behave of P1.

• When P1 receives {ci}i∈[n2] from P2, S uses the internal
GC label information (F, e, d) of the simulated FHW[Ms]
to extract P2’s input x∗2. It then sends (COMPUTE, sid, x∗2)
to the external Ff2pc on behave of P2.

• Upon receiving (COMPUTE, sid, y) from the external Ff2pc
for P2, the simulator S uses the GC simulator to generate
(F ′, X ′, d′)← Sim(1λ, y,Φ(f)).

• Upon receiving (Run, sid, 〈GC, f〉) from both parties P1

and P2 to FHW[Ms], S sends (F ′, d′) as the GC tables and
decode information to P2 on behave of FHW[Ms].
S then uses X ′ as the wire labels to generate {Zi}i∈[n1]

and {W (0)
i ,W

(1)
i }i∈[n2] as follows:

1. For i ∈ [n1], set Zi := X ′i;
2. For i ∈ [n2]: set W

(x2,i)
i := X ′n1+i ⊕ R

(bi)
i and

W
(x2,i⊕1)
i := R

(bi⊕1)
i ;

S then acts as P1 to send those messages to P2.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution EXEC

FHW[Ms]
Πs

2pc,A,Z
.

Hybrid H1: H1 is the same as H0 except that H1 uses true
random numbers R

(0)
i , R

(1)
i ← {0, 1}λ instead of R

(b)
i ←

PRFω(i, b), b ∈ {0, 1}.

Claim 2. PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ is a se-
cure PRF function with adversarial distinguishing advantage
AdvPRF(A, λ), then H1 and H0 are indistinguishable with dis-
tinguishing advantage n2 · AdvPRF(A, λ).

Proof. It is a straightforward reduction; namely, by hybrid argu-
ment, we can show that if there exists an adversary A who can
distinguish H1 from H0, then we can construct an adversary B
who can break the PRF.

Hybrid H2: H2 is the same as H1 except that H2 generates
(F ′, X ′, d′)← Sim(1λ, y,Φ(f)), and then it uses X ′ as the wire
labels to generate {Zi}i∈[n1] and {W (x2,i)

i }i∈[n2]. FHW[Ms] also
sends (F ′, d′) as the GC tables and decoding information to P2.

Claim 3. If GC is simulatable private with adversar-
ial distinguishing advantage Advprv.sim,Φ,SimGC (A, λ), then H2

and H1 are indistinguishable with distinguishing advantage
Advprv.sim,Φ,SimGC (A, λ).

Proof. First of all, by the requirement of simulatable privacy
in Def. 2, (F ′, X ′, d′) ← Sim(1λ, y,Φ(f)) should be indis-
tinguishable from the real one. Moreover, since P2 does not
know R

(bi⊕1)
i , if there is an adversary A who can distinguish

the distribution of {W (0)
i ,W

(1)
i }i∈[n2] from the real one with

probability ε, then we can construct an adversary B who has the
same distinguishing advantage Advprv.sim,Φ,SimGC (B, λ) = ε.

The adversary’s view of H2 is identical to the simulated
view EXECFf2pc,S,Z

. Therefore, if GC is simulatable private,

the views of A and Z in EXEC
FHW[Ms]
Πs

2pc,A,Z
and EXECFf2pc,S,Z

are
indistinguishable with distinguishing advantage

n2 · AdvPRF(A, λ) + Advprv.sim,Φ,SimGC (A, λ) = negl(λ) .

Case 4: P1 and P2 are corrupted; FHW[Ms] is honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . The simulator S simulates the
functionality FHW[Ms].

Indistinguishability. This is a trivial case. Since both P1 and
P2 are controlled by the adversary A, no message is simulated
by S.

This concludes the proof.

2. Proof of Theorem. 2

Theorem 2. If PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ is a
secure PRF function, and GC := (Gb,En,Ev,De) is a secure
simulatable private garbling scheme, protocol Πm

2pc described in
Fig. 6 and Fig. 7 UC-realizes Ff2pc as described in Fig. 1 in the
FHW[Mm]-hybrid model against any PPT malicious adversaries
who can corrupt either FHW[Mm] or the player(s) P1 (and/or
P2) with static corruption.

Proof. To prove Thm. 2, we construct a simulator S such
that no non-uniform PPT environment Z can distinguish
between (i) the real execution EXEC

FHW[Mm]
Πm

2pc,A,Z
where the parties

P := {P1, P2} run protocol Πm
2pc in the FHW[Mm]-hybrid model

and the corrupted parties are controlled by a dummy adversary
A who simply forwards messages from/to Z , and (ii) the ideal
execution EXECFf2pc,S,Z

where the parties P1 and P2 interact

with functionality Ff2pc in the ideal world, and corrupted parties
are controlled by the simulator S. We consider following cases.

Case 1: FHW[Mm] is corrupted; P1 and P2 are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[Mm] as well as honest parties P1 and P2. In addition, the
simulator S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |xi|, Pi) for an

honest party Pi from the external Ff2pc, the simulator S
acts as Pi to perform according to the protocol description
as if Pi receives (COMPUTE, sid, 0) from Z .

• Upon receiving (Run, sid, Qi) from the party Pi ∈ P
via the interface of FHW[Mm], S acts as FHW[Mm] to
send (RUNNOTIFY, sid, Qi, Pi) to A. S then simulates the
FHW[Mm] functionality as defined.

• Upon receiving (OUTPUT, sid, P2) from the external Ff2pc,
the simulator S returns (DELIVER, sid, P2) if the simulated
P2 does not abort and obtains the protocol output y.

Indistinguishability. Assume the communication between P1

and P2 is via the secure channel functionality FSC, the views
of A and Z in EXEC

FHW[Mm]
Πm

2pc,A,Z
and EXECFf2pc,S,Z

are identical.
Therefore, it is perfectly indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[Mm] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[Mm] as well as honest P2. In addition, the simulator S
simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x2|, P2) from the

external Ff2pc, the simulator S acts as P2 to perform
according to the protocol description as if P2 receives
(COMPUTE, sid, 0) from Z .

• When the simulated party P2 receive {c̄i := b̄i⊕x∗1,i}i∈[n1]

from P1, S uses the knowledge of b̄i from the in-
ternal state of FHW[Mm] to extract x∗1. S then sends
(COMPUTE, sid, x∗1) to the external Ff2pc on behave of P1.

• The simulator S aborts, if the simulated P2 completes the
protocol execution, yet the majority of the r(1)

j,i used in the
evaluation set of the garbled circuits Fj are inconsistent
with the r(2)

j,i used in the evaluation set of the XOR-gadget
circuits F̈j , j ∈ [p(λ)] \ I.

• Upon receiving (OUTPUT, sid, P2) from the external Ff2pc,
the simulator S returns (DELIVER, sid, P2) if the simulated
P2 does not abort and obtains the protocol output y.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution EXEC

FHW[Mm]
Πm

2pc,A,Z
.

Hybrid H1: H1 is the same as H0 except that in H1, P2 sends
{c̃′i := b̃i}i∈[n2] to P1, instead of {c̃i := b̃i ⊕ x2,i}i∈[n2].

Claim 4. H1 and H0 are perfectly indistinguishable.

Proof. Since bi are the ROT select bits randomly picked by
FHW[Ms], the distribution of {c̃′i}i∈[n2] and {c̃i}i∈[n2] are iden-
tical. Therefore, H1 and H0 are perfectly indistinguishable.

Hybrid H2: H2 is the same as H1 except that in H2, the simula-
tor S aborts, if P1 and P2 completes the protocol execution, yet
the majority of the r(1)

j,i used in the evaluation set of the garbled
circuits Fj are inconsistent with the r(2)

j,i used in the evaluation
set of the XOR-gadget circuits F̈j , j ∈ [p(λ)] \ I.

Claim 5. The distinguishing advantage between H2 and H1 is
less than 2−(p(λ)/4−1).

Proof. The probability that the adversary A can distinguish H2

from H1 is exactly the probability where all the r(1)
j,i used in the

check set of the garbled circuits Fj are the same with the r(2)
j,i

used in the check set of the XOR-gadget circuits F̈j , j ∈ I;
however, the majority of the r(1)

j,i used in the evaluation set of
the garbled circuits Fj are inconsistent with the r(2)

j,i used in the
evaluation set of the XOR-gadget circuits F̈j , j ∈ [p(λ)]\I. For
every security parameter λ ∈ N, the above probability is

p =

p(λ)/2∑
i=p(λ)/4

(
p(λ)−i
p(λ)/2

)(
p(λ)
p(λ)/2

) =
1(
p(λ)
p(λ)/2

) · p(λ)/2∑
i=p(λ)/4

(
p(λ)− i
p(λ)/2

)

=
1(
p(λ)
p(λ)/2

) · 3/4·p(λ)∑
i=0

(
i

p(λ)/2

)
=

1(
p(λ)
p(λ)/2

) · (3/4 · p(λ) + 1

p(λ)/2 + 1

)
<

1

2p(λ)/4−1

The adversary’s view of H2 is identical to the simulated
view EXECFf2pc,S,Z

. Therefore, the probability that the adversary

can distinguish EXECFf2pc,S,Z
from EXEC

FHW[Mm]
Πm

2pc,A,Z
is bounded by

2−(p(λ)/4−1), which is negligible in λ.

Case 3: P2 is corrupted; P1 and FHW[Mm] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[Mm] as well as honest party P1. In addition, the simulator
S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x1|, P1) from the

external Ff2pc, the simulator S acts as P1 to perform
according to the protocol description as if P1 receives
(COMPUTE, sid, 0) from Z .

• When the simulated party P1 receive {c̃i := b̃i⊕x∗2,i}i∈[n2]

from P2, S uses the knowledge of b̃i from the in-
ternal state of FHW[Mm] to extract x∗2. S then sends
(COMPUTE, sid, x∗2) to the external Ff2pc on behave of P2.

• Upon receiving (OUTPUT, sid, P2) from the external Ff2pc,
the simulator S returns (DELIVER, sid, P2) if the simulated
P1 does not abort.

• Upon receiving (COMPUTE, sid, y) from the external Ff2pc
for P2, the simulator S picks a random check set I. For
j ∈ I, S generates (F ′j , X

′
j , d
′
j) ← GC.Gb(1λ, f1; kj).

For j ∈ [p(λ)/I], S uses the GC simulator to generate
(F ′j , X

′
j , d
′
j)← Sim(1λ, (y, rj),Φ(f1)).

• Upon receiving (Run, sid, 〈GC, 〈f1, p(λ), 1〉〉) from both P1

and P2 to FHW[Mm], S sends {(F ′j , d′j)}j∈[p(λ)] as the
GC tables and decode information to P2 on behave of
FHW[Mm].

• For i ∈ [n2], j ∈ [p(λ)], S then sets W̃ (x2,i)
j,i := X ′j,n1+i ⊕

R̃
(bi)
j,i and W̃ (x2,i⊕1)

j,i := R̃
(bi⊕1)
j,i ; It then acts as P1 to send

{W̃ (0)
j,i , W̃

(1)
j,i }i∈[n2],j∈[p(λ)] to P2;

• The simulator S simulates the coin-flipping protocol to fix
the check set as I as chosen before.

• S then uses X ′j as the wire labels to generate
{Zj,i := X ′j,i}i∈[n1],j∈[p(λ]]\I . It then acts as P1 to send
{Zj,i}i∈[n1],j∈[p(λ)]\I to P2.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H5.
Hybrid H0: It is the real protocol execution EXEC

FHW[Mm]
Πm

2pc,A,Z
.

HybridH1:H1 is the same asH0 except that inH1, S simulates
the coin-flipping protocol to fix a random check set I.

Claim 6. H1 and H0 are indistinguishable if the underlying
coin-flipping protocol is UC-secure.

Hybrid H2: H2 is the same as H1 except that in the
random OT generation, H2 uses λ-bit true random numbers
{R̂(0)

j,i , R̂
(1)
j,i , R̄

(0)
j,i , R̄

(1)
j,i }i∈[n1],j∈[p(λ)], {R̃

(0)
j,i , R̃

(1)
j,i }i∈[n2],j∈[p(λ)]

instead of using PRF.

Claim 7. PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ is a se-
cure PRF function with adversarial distinguishing advantage
AdvPRF(A, λ), then H1 and H0 are indistinguishable with dis-
tinguishing advantage (2n1 + n2) · p(λ) · AdvPRF(A, λ).

Proof. It is a straightforward reduction; namely, by hybrid argu-
ment, we can show that if there exists an adversary A who can
distinguish H1 from H0, then we can construct an adversary B
who can break the PRF.

Hybrid H3: H3 is the same as H2 except that in H3, when the
simulated party P1 receive {c̃i := b̃i ⊕ x∗2,i}i∈[n2] from P2, S
uses the knowledge of b̃i from the internal state of FHW[Mm] to
extract x∗2. S then sends (COMPUTE, sid, x∗2) to the external Ff2pc
on behave of P2. After receiving (COMPUTE, sid, y) from the
external Ff2pc for P2, the simulator S uses the GC simulator to
generate (F ′j , X

′
j , d
′
j)← Sim(1λ, (y, rj),Φ(f1)), j ∈ [p(λ)/I].

For i ∈ [n2], j ∈ [p(λ)], S then sets W̃ (x2,i)
j,i := X ′j,n1+i ⊕

R̃
(bi)
j,i and W̃

(x2,i⊕1)
j,i := R̃

(bi⊕1)
j,i ; It then acts as P1 to send

{W̃ (0)
j,i , W̃

(1)
j,i }i∈[n2],j∈[p(λ)] to P2; S then uses X ′j as the wire

labels to generate {Zj,i := X ′j,i}i∈[n1],j∈[p(λ]]\I .

Claim 8. If GC is simulatable private with adversarial distin-
guishing advantage Advprv.sim,Φ,SimGC (A, λ), then H3 and H2 are
indistinguishable with distinguishing advantage

p(λ)/2 · Advprv.sim,Φ,SimGC (A, λ) .

Proof. First of all, by the requirement of simulatable privacy
in Def. 2, (F ′, X ′, d′) ← Sim(1λ, y,Φ(f)) should be indis-
tinguishable from the real one. Moreover, since P2 does not
know R̃

(bi⊕1)
j,i , by hybrid argument, if there is an adversary

A who can distinguish the distribution of {Zj,i}i∈[n1],j∈[p(λ]]\I

and {W̃ (x2,i)
j,i }i∈[n2],j∈[p(λ)]\I from the real one, then we can

construct an adversary B who can break the simulation privacy
of GC.

Hybrid H4: H4 is the same as H3 except that in H4, the
simulator S sends {c̄′i := b̄i}i∈[n1] to P2, instead of {c̄i :=
b̄i ⊕ x1,i}i∈[n1] for XOR-gadgets.

Claim 9. H4 and H3 are perfectly indistinguishable.

Proof. Since b̄i are the ROT select bits randomly picked by
FHW[Mm], the distribution of {c̄′i}i∈[n1] and {c̄i}i∈[n1] are iden-
tical. Therefore, H4 and H3 are perfectly indistinguishable.

The adversary’s view of H4 is identical to the simulated view
EXECFf2pc,S,Z

. Therefore, the views of A and Z in EXEC
FHW[Mm]
Πm

2pc,A,Z
and EXECFf2pc,S,Z

are negligible indistinguishable with distin-
guishing advantage

(2n1+n2)·p(λ)·AdvPRF(A, λ)+p(λ)/2·Advprv.sim,Φ,SimGC (A, λ) .

Case 4: P1 and P2 are corrupted; FHW[Mm] is honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . The simulator S simulates the
functionality FHW[Mm].

Indistinguishability. This is a trivial case, since both P1 and P2

are controlled by the adversary A.
This concludes the proof.

	Introduction
	Preliminaries
	Security Model
	Semi-trusted Hardware Model

	Silent 2PC Protocols
	The semi-honest setting protocol
	The malicious setting protocol

	Security
	Implementation and Benchmarks
	Related Work
	Conclusion
	References
	Appendix
	Proof of Theorem. 1
	Proof of Theorem. 2

