
Silent Two-party Computation Assisted by Semi-trusted Hardware

Yibiao Lu
Zhejiang University

luyibiao@zju.edu.cn

Bingsheng Zhang
Zhejiang University

bingsheng@zju.edu.cn

Weiran Liu
Alibaba Group

weiran.lwr@alibaba-inc.com

Lei Zhang
Alibaba Group

zongchao.zl@taobao.com

Kui Ren
Zhejiang University
kuiren@zju.edu.cn

Abstract—With the advancement of the trusted execution environ-
ment (TEE) technologies, hardware-supported secure computing
becomes increasingly popular due to its efficiency. During the
protocol execution, typically, the players need to contact a third-
party server for remote attestation, ensuring the validity of the
involved trusted hardware component, such as Intel SGX, as well
as the integrity of the computation result. When the hardware
manufacturer is not fully trusted, sensitive information may be
leaked to the third-party server through backdoors, side-channels,
steganography, and kleptography, etc. In this work, we introduce
a new security notion called semi-trusted hardware model, where
the adversary is allowed to passively and/or maliciously corrupt
the hardware component. Therefore, she can learn the input of
the hardware component and might also tamper the output. We
show that two-party computation (2PC) can still be significantly
sped up in this new model. When the semi-trusted hardware is
instantiated by Intel SGX, to generate 10k random OT’s, our
protocol is 24X and 450X faster than the EMP-IKNP-ROT in the
LAN and WAN setting, respectively. For the AES-128, SHA-256,
and SHA-512 evaluation, our protocol is 4.9-5.4X and 40-46X faster
than the EMP-SH2PC in the LAN and WAN setting, respectively.
We also show how to achieve malicious security with little overhead.

1. Introduction

In secure multi-party computation (MPC), two or more play-
ers want to collectively compute a function and receive its output
without revealing their inputs to the other players. In the past
decades, MPC has gradually transitioned from theory to practice,
and it has been widely used in many security critical real-
world applications, such as private set intersection and secure
auction. In spite of its success, MPC is still not efficient for
complicated real-time tasks due to its computational overhead
and high communication cost. Meanwhile, recent development of
trusted execution environment (TEE) technologies, such as Intel
SGX and ARM TrustZone, enables a new approach for privacy-
preserving computation. Hardware-supported secure computing
can greatly accelerate an MPC process by avoiding expensive
cryptographic operations. However, this kind of construction in-
troduces additional hardware setup assumptions that require new
trust roots, e.g., Intel. Recent exposure of Intel source code [1]

Bingsheng Zhang is the corresponding author.

raises a security concern on possible backdoors contained in
its design. Moreover, many side-channel and micro-architecture
attacks [2]–[6] have been discovered to compromise the security
guarantees provided by trusted hardware components.

When the hardware manufacturer is not fully trusted, sen-
sitive information may be leaked through backdoors, side-
channels, steganography and kleptography, etc. For instance,
Intel SGX uses the remote attestation mechanism to ensure the
validity of the enclave execution environment and the integrity
of the computation result. More specifically, Intel’s (anonymous)
attestation is based on an anonymous group signature scheme
called Intel Enhanced Privacy ID (EPID) [7]. To verify that an
outcome is computed by a pre-agreed program in a genuine
SGX, Quoting Enclave (QE) will produce a quote by signing
the report with the group signature. The users then need to
contact the remote Intel Attestation Service (IAS) (or some
other alternative servers) for verification. If Intel is malicious,
sensitive information may be leaked from the SGX component to
the IAS through the signatures, using for example kleptography
techniques. (Currently, Intel SGX uses 4000-bit RSA signatures.)
That means the input of SGX might be revealed to the adversary
during the protocol execution.

When the hardware provider is not allied with the MPC
participants, is it possible to still use potentially malicious leaky
hardware components to accelerate MPC executions with privacy
assurance?1 In this work, we answer this question affirmatively.

New model. We introduce a new semi-trusted hardware model,
where the adversary A is allowed to passively or maliciously
corrupt the hardware ideal functionality FHW. FHW is param-
eterized with a probabilistic polynomial time (PPT) interactive
Turing machine (ITM) M, which specifies its functionality. When
the hardware functionality FHW is passively corrupted, the ad-
versary A can learn all the incoming messages received by FHW;
when FHW is maliciously corrupted, in addition to leaning the
incoming messages, the adversary A can replace the original
M with an arbitrary ITM M∗; namely, A can fully control the
execution of FHW.

We formalize our model in the Universal Composibility (UC)
framework [8]. In this security framework, the adversary A is
allowed to control the network and corrupt some machines (ideal

1. In this work, we assume trusted hardware components can be securely
realized in the coming future, and we don’t address the information leakage
problem from SGX to the host PC during the execution via the side-channel
attacks.

functionalities and/or MPC players). In this work, we focus
on two-party computation. We circumvent some impossibility
results, and we introduce some restrictions to the environment
Z and the adversary A to enable efficient constructions. More
precisely, we assume the hardware manufacturer does not collude
with the MPC players; therefore, we restrict the adversary A to
only corrupt either the semi-trusted hardware functionality FHW
or the player(s) P1 (and/or P2). Notice that our model is different
from the server-aided model [9], where the server cannot be
maliciously corrupted. Therefore, protocols like authenticated
garbling [10] cannot be naively adopted in the malicious setting.
Moreover, our main observation is that FHW can be instantiated
by local trusted hardware components to save communication.
We note that our constructions can be easily modified to ensure
security in the scenario where P1 and FHW are colluding2;
while we don’t have an efficient solution to handle the collusion
between P2 and FHW yet, as this setting could be reduced to
standard two-party computation without assistance of FHW in
practice.
Our constructions. We propose a new type of two-party compu-
tation (2PC) protocols called silent MPC that uses semi-trusted
hardware to significantly reduce the communication between the
2PC players. The main idea is to use semi-trusted hardware
for those MPC computation that does not depend on the actual
protocol inputs; thus no sensitive information is leaked to the
hardware components. Take random OT (ROT) generation as an
example, assume the Receiver uses an SGX-enabled machine,
while there is no special hardware requirement to the Sender.
During the ROT protocol, the Sender only needs to sends a ran-
dom seed k0

1 to the Receiver’s SGX enclave via a secure channel,
and the Receiver also sends a random seed k0

2 to the enclave
locally. Both parties can then generate polynomially many ROT
copies without any further communication. Namely, for a ROT
copy, the Sender locally computes R0

ctr ← PRFk01 (ctr, 0) and
R1

ctr ← PRFk01 (ctr, 1) from the seed k0
1 using some pseudo-

random function PRF, where ctr is the counter; meanwhile,
the SGX generates the ROT choice bit bctr from the seed k0

2

using some pseudo-random number generator PRG, and then
it computes Rbctrctr ← PRFk01 (i, bctr). The SGX locally outputs
{Rbctrctr }ctr to the Receiver.

For garbled circuit (GC) evaluation, the communication
between the 2PC players can also be dramatically reduced.
Similarly, we assume the GC Evaluator uses an SGX-enabled
machine, while there is no special hardware requirement to
the GC Garbler. Note that, the main cost of a GC-based 2PC
protocol is the transmission of the garbled tables of the entire
circuit. Analogously, during the GC protocol, the Garbler sends
a random seed k1

1 to the Evaluator’s SGX enclave via a secure
channel. The SGX can then internally generate the garbled tables
and locally outputs them to the Evaluator without network com-

2. For instance, in the semi-honest setting, we just let P1 and P2 produce
ROT’s by themselves instead of using FHW; for malicious setting, we can use
the cut-and-choose techinque to ensure GC correctness. Note that the overall
communication can still be made independent to the circuit size.

munication. The only communication needed is for transmitting
the input labels from the Garbler to the Evaluator. Hence, the
overall communication is linear to the input size and independent
of the circuit size.
Remark. We would like to emphasize that naively using the
secure hardware components, such as SGX, and a simulatable
private garbling scheme in a blackbox fashion to prepare the ROT
copies and GC tables in an offline phase won’t result in a (UC)
simulatable 2PC protocol. This is because the simulator cannot
extract the malicious Evaluator’s input in the offline phase, yet
it needs to learn the MPC output (from the ideal functionality)
to invoke the GC simulator (cf. Def. 2) to produce the (fake)
GC tables in the real/hybrid world. As described in Sec. 4 later,
the protocol should invoke the secure hardware component at
the right moment along with the 2PC protocol execution.

In Sec. 6, we show how to further reduce the online com-
munication in the semi-honest setting using the masked GC
technique. The idea of using masks to hide the truth table of
each gate can trace back to the point-and-permute technique [12].
In standard GC, all the masks are known to P1, while in our
constructions, the masks for P2’s input can be generated by the
SGX, which is unknown to P1. Therefore, P2 can directly fetch
its input labels without using OT.

To handle malicious adversaries, the 2PC players need to
check the correctness of the garbled circuit and ROT copies. In-
tuitively, we let P1 and SGX independently generate the garbled
circuit using the same seed. During the protocol, SGX outputs
the garbled circuit to P2, and P1 only sends the corresponding
hash digest. Therefore, P2 can check the consistency of the
garbled circuit generated by SGX and P1 to ensure correctness,
as the adversary cannot simultaneously corrupt both P1 and
SGX. Similarly, for ROT, we let P1 sends H(R0) and H(R1)
to P2 to ensure the correctness of Rb. Moreover, we also use
hash to prevent P1 from sending wrong GC labels, launching a
selective failure attack for instance.

Efficiency. We mainly compare the performance of our proto-
cols with the well-known EMP-toolkit maintained by Wang et
al. [11]. Table. 1 shows the performance comparison between the
passively secure IKNP OT extension protocol [13] implemented
in EMP-toolkit [11] and our silent ROT protocol (semi-honest
security). We perform the experiments on an SGX-enabled Dell
OptiPlex 7080 equipped with an Intel Core 8700 CPU @ 3.20
GHz with 32 GB RAM. In the LAN setting (Bandwidth: 1Gbps,
Delay: 1ms), our silent ROT protocol is 22-39X faster w.r.t.
the sender’s running time and 9-14X faster w.r.t. the receiver’s
running time than the EMP-IKNP-ROT [11]. In the WAN setting
(Bandwidth: 100Mbps, Delay: 25ms), our silent ROT protocol
is 189-333X faster w.r.t. the sender’s running time and 93-451X
faster w.r.t. the receiver’s running time than the EMP-IKNP-ROT.

Table. 2 shows the performance comparison between EMP-
SH2PC [11] and our semi-honest setting silent 2PC protocol.
(EMP-SH2PC provides an efficient semi-honest 2PC implemen-
tation based on Yao’s GC protocol with half-gates [14] opti-
mization.) We perform the experiments on this same machine as
above. We test the garbling time, the garbled tables transmission
time, and the evaluation time separately. Since in our protocol,
the garbling process is performed in the SGX enclave at the

TABLE 1: Performance comparison of the ROT protocol. Result obtained from SGX-enabled Dell OptiPlex 7080 (Intel Core 8700 CPU @ 3.20
GHz, 32 GB RAM, OS: Ubuntu 18.04 LTS).

ROT Network setting Sender’s running time (in ms) Receiver’s running time (in ms)
EMP-IKNP-ROT [11] Our ROT EMP-IKNP-ROT [11] Our ROT

1× 104
LAN (Bandwidth: 1Gbps, Delay: 1ms) 2.889 0.074 3.908 0.162
WAN (Bandwidth: 100Mbps, Delay: 25ms) 26.331 0.079 76.358 0.169

1× 105
LAN (Bandwidth: 1Gbps, Delay: 1ms) 17.790 0.780 19.355 1.575
WAN (Bandwidth: 100Mbps, Delay: 25ms) 150.502 0.795 200.030 1.477

1× 106
LAN (Bandwidth: 1Gbps, Delay: 1ms) 154.373 6.182 150.621 15.910
WAN (Bandwidth: 100Mbps, Delay: 25ms) 1451.043 6.402 1495.294 16.032

1× 107
LAN (Bandwidth: 1Gbps, Delay: 1ms) 1507.961 51.616 1451.562 103.937
WAN (Bandwidth: 100Mbps, Delay: 25ms) 13859.934 51.280 13963.502 103.435

1× 108
LAN (Bandwidth: 1Gbps, Delay: 1ms) 15030.832 505.289 14470.057 995.987
WAN (Bandwidth: 100Mbps, Delay: 25ms) 138028.607 501.757 137034.187 980.795

TABLE 2: Performance comparison of the generation, transmission and evaluation process of the garbled circuit in the OT-based semi-honest setting
2PC protocol. Result obtained from the same experiment environment as in Table 1. It shows the running time (in ms) for evaluating AES-128,
SHA-256, and SHA-512 circuits 1000 times, respectively.

Circuit Network setting EMP-SH2PC [11] running time (in ms) Our 2PC protocol running time (in ms)
Garbler Transmission Evaluator Garbler Transmission Evaluator (SGX+PC)

AES-128 LAN (1Gbps, 1ms) 246.557 1742.094 229.339 6.902 ≈ 0 255.154 + 167.353
WAN (100Mbps, 25ms) 265.919 18335.009 234.264 6.760 ≈ 0 253.243 + 166.239

SHA-256 LAN (1Gbps, 1ms) 829.398 6135.087 776.880 19.656 ≈ 0 842.603 + 580.064
WAN (100Mbps, 25ms) 839.626 64433.208 777.284 20.362 ≈ 0 844.843 + 580.685

SHA-512 LAN (1Gbps, 1ms) 2434.915 15745.170 2388.890 40.062 ≈ 0 2544.834 + 1639.701
WAN (100Mbps, 25ms) 2303.479 163362.579 2418.025 40.394 ≈ 0 2533.623 + 1640.262

TABLE 3: Performance comparison of the computation process of the malicious setting 2PC protocol. Result obtained from the same experiment
environment as in Table 1. It shows the running time (in ms) for evaluating AES-128, SHA-256, and SHA-512 circuits once, respectively.

Circuit Network setting EMP-AG2PC [11] running time (in ms) Our running time (in ms)
Garb. offline Garb. online Eval. offline Eval. online Garbler Evaluator

AES-128 LAN (1Gbps, 1ms) 94.744 5.185 92.055 5.193 7.315 10.518
WAN (100Mbps, 25ms) 1345.708 53.440 1240.956 53.385 109.039 161.901

SHA-256 LAN (1Gbps, 1ms) 210.676 6.303 201.701 6.272 13.751 19.076
WAN (100Mbps, 25ms) 2299.404 52.474 2196.297 52.440 119.712 175.740

SHA-512 LAN (1Gbps, 1ms) 435.581 9.634 423.302 9.593 27.327 38.110
WAN (100Mbps, 25ms) 4095.115 56.471 4044.428 56.426 132.298 195.837

evaluator side, we split the evaluator running time of our protocol
into two parts: (i) the SGX running time and (ii) normal mode
CPU running time. The garbler running time is the time to
generate the input wire labels. We take the AES-128, SHA-
256, and SHA-512 circuit evaluation as benchmarks. In the LAN
setting, our silent 2PC protocol is 4.9-5.4X faster than the EMP-
SH2PC [11]. In the WAN setting, our silent 2PC protocol is
40-46X faster than the EMP-SH2PC.

Table. 3 shows the performance comparison between EMP-
AG2PC [11] and our malicious setting silent 2PC protocol.
(EMP-AG2PC implements an efficient maliciously secure two-
party computation protocol, authenticated garbling [10].) We
perform the experiments on this same machine as above. We
take the AES-128, SHA-256, and SHA-512 circuit evaluation
as benchmarks, and the results are the average of 100 tests.
All the one-time expenses are omitted, e.g., creating enclave in
our protocol and initialize Fpre in EMP-AG2PC. EMP-AG2PC
consists of three computing phases: (i) function independent
offline phase, (ii) function dependent offline phase and (iii)
online phase. (i) and (ii) are collectively called offline phase. In
the LAN setting, our silent 2PC protocol is 13-16X faster w.r.t.
the garbler’s running time and 9-11X faster w.r.t. the evaluator’s

running time than the EMP-AG2PC [11]. In the WAN setting,
our silent PC protocol is 12-31X faster w.r.t. the garbler’s running
time and 8-20X faster w.r.t. the evaluator’s running time than the
EMP-AG2PC.

2. Preliminaries

Notation. Throughout this paper, we use the following notations
and terminologies. Let λ ∈ N be the security parameter. Denote
the set {a, a + 1, . . . , b} by [a, b], let [b] denote [1, b], and let
∅ denote empty set. When A is an array, |A| stands for the
size of A in terms of the number of entries. We abbreviate
probabilistic polynomial time as PPT, and interactive Turing
machine as ITM. When S is a set, s← S stands for sampling s
uniformly at random from S. When A is a randomised algorithm,
y ← A(x) stands for running A on input x with a fresh random
coin r. When needed, we denote y := A(x; r) as running
A on input x with the explicit random coin r. Let poly(·)
and negl(·) be a polynomially-bounded function and negligible
function, respectively. We assume each party has a unique PID.
For readability, we refer Pi as the PID for the party Pi.

Suppose f(x1, x2) = y is a function (circuit). Denote f.n1

and f.n2 as the input size of x1 and x2, respectively. Let f.n =
f.n1 + f.n2. Denote f.m as the size of the output y and f.N as
the overall wire number in f . For notation simplicity, we also
use n1, n2, n,m,N to represent f.n1, f.n2, f.n, f.m, f.N when
there will be no ambiguity.
Garbling Scheme. As defined in [15], a garbling scheme GC
consists of the following PPT algorithms (Gb,En,Ev,De).
• Gb(1λ, f) is the garbling algorithm that takes input as the

security parameter λ ∈ N and a circuit f , and it returns
a garbled circuit F , encoding information e, and decoding
information d.

• En(e, x) is the encoding algorithm that takes input as the
encoding information e and an input x, and it returns a
garbled input X .

• Ev(F,X) is the evaluation algorithm that takes input as the
garbled circuit F and the garbled input X , and it returns a
garbled output Y .

• De(d, Y) is the decoding algorithm that takes input as the
decoding information d and the garbled output Y , and it
returns the plaintext output y.

A garbling scheme GC := (Gb,En,Ev,De) is called pro-
jective if e consists of 2f.n wire labels. For the i-th input
bit, we denote the corresponding wire labels as (X0

i , X
1
i). Let

e := {(X0
i , X

1
i)}i∈[n]; the encoding algorithm En(e, x) simply

outputs Xx[i]
i , i ∈ [n], where x[i] is the i-th bit of x.

Analogously, a garbling scheme is called output-projective if
d consists of 2 labels for each output bits, which can be denoted
as (Z0

i , Z
1
i). Let d := {(Z0

i , Z
1
i)}i∈[m]; the decoding algorithm

De(d, Y) outputs y[i], i ∈ [m], where y[i] is the i-th bit of y s.t.
Z
y[i]
i = Yi.

In this work, we assume the garbling scheme GC is both
projective and output-projective.

Definition 1 (Correctness [15]). We say a garbling scheme
(Gb,En,Ev,De) is correct if for all functions f and input x:

Pr[(F, e, d)← Gb(1λ, f) : De(d,Ev(F,En(e, x))) = f(x)] = 1 .

Definition 2 (Simulatable Privacy [15]). We say a garbling
scheme (Gb,En,Ev,De) is simulatable private if for all functions
f and input x, there exists a PPT simulator Sim such that for
all PPT adversary A the following holds:

Pr

 (F0, e0, d0)← Gb(1λ, f);X0 ← En(e, x);
(F1, X1, d1)← Sim(1λ, f(x),Φ(f));
b← {0, 1}; b∗ ← A(Fb, Xb, db) : b = b∗

 = negl(λ) .

where Φ is the side-information function.

Yao’s GC Optimizations and Our Choice. Throughout the past
decades, several optimization techniques have been proposed to
improve the efficiency of Yao’s garbled circuit (GC). In this
section, we examine a few Yao’s GC optimizations and analyze
their suitability for our work to achieve the best performance, the
concrete performance analysis is taken from the work of Zahur
et al. [14].

In the classical garbling scheme, the GC generator needs to
invoke the hash function H 4 times for each gate to create a

It interacts with players P := {P1, P2} and the adversary S. Let Pc be the
set of corrupted parties.
Initially, set Pc = ∅.
Compute:
• Upon receiving (COMPUTE, sid, xi) from party Pi ∈ P :

– If Pi ∈ Pc, send a notification (COMPUTENOTIFY, sid, xi, Pi) to S;
Otherwise, send a notification (COMPUTENOTIFY, sid, |xi|, Pi) to S;

– If it has received x1 from P1 and x2 from P2:
∗ Compute y ← f(x1, x2);

– Send (OUTPUT, sid, P2) to adversary S:
∗ Upon receiving (DELIVER, sid, P2) from S, it sends

(COMPUTE, sid, y) to P2;
Corruption handling:
• Upon receiving (CORRUPT, sid, Pi) from the adversary S, if Pi ∈ P :

– Set Pc := Pc ∪ {Pi};
– Send (INPUT, sid, xi, Pi) to S if xi is already defined;

Functionality Ff
2pc

Figure 1: Functionality Ff
2pc

garbled table consists of 4 ciphertexts. The GC evaluator also
needs to invoke H up to 4 times for each gate to decrypt all
these ciphertexts and obtains an output wire label.

Beaver et al. [12] introduced a technique called point-and-
permute. By appending a select bit to each wire label, one can
easily determine the places of the corresponding ciphertexts.
Therefore, for a garbled table, the GC evaluator can decide
which ciphertext to decrypt according to the select bit and only
invoke H once. Nevertheless, each garbled table still contains
4 ciphertexts, and it takes 4 H invocations to generate. We
adopt this technique in our design, as it greatly reduces the GC
evaluator’s computational cost, and it is compatible with other
optimizations.

Naor et al. [16] introduced a garbled row-reduction tech-
nique known as GRR3 to reduce the garbled table size. The
main idea is to fix 1 of the 4 ciphertexts, e.g., the top one,
in each garbled table to be 0, and thus can be eliminated. In
our construction, the memory of the enclave is limited, and this
technique can reduce memory usage of GC generation.

Kolesnikov et al. [17] introduced the free-XOR technique.
This technique allows us to garble and evaluate XOR gates for
free. To do this, the offset between each wire’s 0-label and
1-label in the entire circuit is fixed to ∆. Therefore, one can
generate or evaluate an XOR gate via a simple XOR operation.
This technique can greatly improve the performance of our
scheme.

We note that, in a conventional 2PC setting, the other opti-
mization techniques, such as GRR2 [18] and half-gates [14], may
be helpful to further improve scheme performance. However,
GRR2 is not compatible with free-XOR. Although half-gates is
compatible with the aforementioned three optimizations, it is not
ideal for our construction. The reason is that the main benefit of
half-gates is to reduce the non-XOR gate garbled table size to 2,
but it needs 2 H invocations to evaluate. Whereas, in our design,
the GC size is not the bottleneck of our overall performance,
because the GC table is transmitted between the SGX enclave
and the host locally. While, without half-gates, each non-XOR
gate garbled table only needs 1 H invocation to evaluate.

It interacts with players P := {P1, P2} and the adversary A. It is parameter-
ized with a PPT ITM M, a state Ψ, and a Boolean flag corrupted.
Initially, set Ψ := ∅ and corrupted := false;
• Upon receiving (CORRUPT, sid,M∗) from A:

– Set corrupted := true;
– If M∗ 6= ∅, replace M := M∗;

• Upon receiving (RUN, sid, xi) from party Pi ∈ P :
– If corrupted = true:
∗ Send leakage message (RUNNOTIFY, sid, xi, Pi) to A;

– If corrupted = false:
∗ Send notification message (RUNNOTIFY, sid, Pi) to A;

– When (RUN, sid, x1) and (RUN, sid, x2) are both received:
∗ Run (y1, y2; Ψ)← M(x1, x2; Ψ);
∗ For i ∈ {1, 2}, send (Run, sid, yi) to Pi;

Semi-trusted Hardware Functionality FHW[M]

Figure 2: The semi-trusted hardware functionality FHW[M]

Intel SGX. Intel Software Guard Extensions (SGX) is a widely
used technology that enhances security of data and code. It
allows developers to create guarded private region called enclave
in processor reserved memory (PRM) and execute programs in
the enclave. The enclave is an isolated execution environment,
high-level softwares, including operating system and BIOS, can’t
break down the integrity and confidentiality guarantees of its
computation. In execution, a party can remotely attest the gen-
uinity of an enclave, provide private information to the enclave
and verify the outcome is computed by a pre-agreed program
with an advanced feature of Intel SGX called remote attestation.
More specifically, Intel’s (anonymous) attestation is based on
an anonymous group signature scheme called Intel Enhanced
Privacy ID (EPID) [7]. The enclave to be attested first invokes
the EREPORT instruction to create a locally verifiable report of
its attributes and measurement, and sends this report to a special
enclave named Quoting Enclave (QE). The QE verifies the report
and produces a remotely verifiable quote by signing the quote
with the group signature. The enclave then forwards the quote
to the challenge party, and the party can contact with the remote
Intel Attestation Service (IAS) server for verification. The IAS
will first verify the group signature and then create a attestation
verification report as a response.

3. Security Model

Universal Composibility. Our security model is based on the
Universal Composibility (UC) framework [8], which lays down
a solid foundation for designing and analyzing protocols secure
against attacks in an arbitrary network execution environment
(therefore it is also known as network aware security model).
Roughly speaking, in the UC framework, protocols are carried
out over multiple interconnected machines; to capture attacks, a
network adversary A is introduced, which is allowed to corrupt
some machines (i.e., have the full control of all physical parts
of some machines); in addition, A is allowed to partially control
the communication tapes of all uncorrupted machines, that is, it
sees all the messages sent from and to the uncorrupted machines
and controls the sequence in which they are delivered. Then,
a protocol ρ is a UC-secure implementation of a functionality

F , if it satisfies that for every network adversary A attacking
an execution of ρ, there is another adversary S—known as the
simulator—attacking the ideal process that uses F (by corrupting
the same set of machines), such that, the executions of ρ with
A and that of F with S makes no difference to any network
execution environment.

The ideal world execution. In the ideal world, P1 and P2

only communicate with an ideal functionality Ff2pc during
the execution. As depicted in Fig. 1, party Pi ∈ P sends
(COMPUTE, sid, xi) to the functionality Ff2pc, and Ff2pc sends
a notification (COMPUTENOTIFY, sid, xi, Pi) to the adversary
S if Pi is corrupted; Otherwise, Ff2pc leaks the input size
(COMPUTENOTIFY, sid, |xi|, Pi) to S. When both parties’ inputs
are received, Ff2pc computes y ← f(x1, x2). It then sends
(COMPUTE, sid, y) to P2 if the adversary S allows. For cor-
ruption handling, if the adversary S corrupts party Pi ∈ P , Ff2pc
adds Pi to the set of corrupted parties, Pc, and leaks Pi’s input
xi to S if it is already defined.

The real world execution. The real/hybrid world protocol Π
uses a semi-trusted hardware components, which are modeled
as the ideal functionality FHW. Later, we will discuss how
FHW is instantiated by Intel SGX in practice. For notation
simplicity, we define FHW as a template, and specify the required
functionalities in the description of a PPT Turing machine M. We
use FHW[MOT-GC] in our semi-honest/malicious setting protocol
ΠOT-GC

2pc .

3.1. Semi-trusted Hardware Model

We introduce a new notion, called semi-trusted hardware
model. Unlike the conventional trusted hardware model, the
semi-trusted hardware functionality FHW[M] shown in Fig. 2
can be corrupted by the adversary A. The functionality FHW[M]
is parameterized with a PPT ITM M, a state Ψ and a Boolean
flag corrupted to indicate whether the hardware is corrupted. The
parties P1 and P2 can invoke FHW[M] to compute (y1, y2; Ψ)←
M(x1, x2; Ψ) by sending the input x1 and x2 respectively to
FHW.

However, the adversary A is allowed to corrupt FHW via
the (CORRUPT, sid,M∗) command. When A is a semi-honest
adversary, it sets M∗ = ∅. In execution, if FHW is corrupted,
it will leak each party’s input to A. When A is a malicious
adversary, M∗ can be arbitrarily defined by A (not necessarily
PPT), and FHW computes (y1, y2; Ψ)← M∗(x1, x2; Ψ) instead.
After the computation, FHW sends the output y1 to the party P1

and y2 to the party P2.
Description of MOT-GC. We now define the Turing machine
MOT-GC for FHW that will be used for our 2PC protocol in the
semi-honest/malicious adversarial setting. As depicted in Fig. 3,
MOT-GC generates garbled circuit and random OT’s. We use [S]
label to indicate instructions only included in the machine used
in the semi-honest setting protocol, and [M] label to indicate
instructions only included in the machine used in the malicious

MOT-GC(x1, x2; Ψ) :

• Parse x1 = 〈CMD1, x
′
1〉 and x2 = 〈CMD2, x

′
2〉;

• If CMD1 = CMD2 = ROT:
– Parse x′1 = 〈k01, `1〉 and x′2 = 〈k02, `2〉;
– Assert `1 = `2;
– Generate (b1, . . . , b`1)← PRG(k02);
– For i ∈ [`1]: generate Rbii ← PRF

k01
(i, bi);

– Return y1 := ∅, y2 := {Rbii }i∈[`1], and Ψ := k01 ;
• If CMD1 = CMD2 = GC:

– Parse x′1 = 〈k11, f1〉 and x′2 = f2;
– Assert f1 = f2;
– Generate (F, e, d)← Gb(1λ, f1; k11);
– [M] Parse e = {(X0

i , X
1
i)}i∈[f1.n]; /* Malicious */

– [M] For i ∈ [f1.n2]: /* Malicious */
∗ [M] Generate R0

i ← PRF
k01

(i, 0), R1
i ← PRF

k01
(i, 1);

∗ [M] Set σ0
i := H(R0

i ⊕X
0
i+f1.n1

, R1
i ⊕X

1
i+f1.n1

) and
σ1
i := H(R1

i ⊕X
0
i+f1.n1

, R0
i ⊕X

1
i+f1.n1

);

– [S] Return y1 := ∅ and y2 := (F, d); /* Semi-honest */
– [M] Return y1 := ∅ and y2 := (F, d, {σ0

i , σ
1
i }i∈[f1.n2]); /* Mal

*/

Description of MOT-GC

Figure 3: Description of MOT-GC

setting protocol. Unlabeled instructions are perfomed in both
settings.

When P1 sends 〈ROT, 〈k0
1, `1〉〉 and P2 sends

〈ROT, 〈k0
2, `2〉〉, MOT-GC parses their inputs to obtain their ROT

seeds and the number of ROT copies, it then asserts P1 and P2

send the same ROT number `1 = `2.
To generate the ROT copies, MOT-GC first generates the

ROT choice bits (b1, . . . , b`1) ← PRG(k0
2), and for i ∈ [`1],

it computes Rbii ← PRFk01 (i, bi). After that, MOT-GC returns
{Rbii }i∈[`1] to P2 and stores Ψ := k0

1 .
When P1 sends 〈GC, 〈k1

1, f1〉〉 and P2 sends 〈GC, f2〉,
MOT-GC parses their input to obtain the GC seed k1

1 and the
circuit to be computed, and it asserts P1 and P2 send the same
circuit f1 = f2. MOT-GC then generates the garbled circuit by
(F, e, d) ← Gb(1λ, f ; k1

1). In the semi-honest setting, MOT-GC

can simply returns (F, d) to P2.
In the malicious setting, in addition to generate the GC copy,

MOT-GC needs to produce some verification messages. More
specifically, MOT-GC first parses the encoding information e =
{(X0

i , X
1
i)}i∈[f1.n], and it fetches the seed k0

1 from the state Ψ.
Next, for i ∈ [f1.n2], MOT-GC generates R0

i ← PRFk01 (i, 0) and
R1
i ← PRFk01 (i, 1). It then sets σ0

i := H(R0
i ⊕X0

i+f1.n1
, R1

i ⊕
X1
i+f1.n1

) and σ1
i := H(R1

i ⊕X0
i+f1.n1

, R0
i ⊕X1

i+f1.n1
). These

hash values {σ0
i , σ

1
i }i∈[f1.n2] can help P2 verify that P1 honestly

transfer the input wire labels in the OT process. In the end,
MOT-GC returns (F, d, {σ0

i , σ
1
i }i∈[f1.n2]) to P2.

Instantiation of MOT-GC. In practice, MOT-GC can be instantiated
by just running an SGX enclave on the P2 side. P1 will remotely
interact with P2’s SGX enclave via a secure channel established
by remote attestation. We use 128-bit AES-NI to implement the
PRF and PRG algorithms.

As introduced in Sec. 2, we adopt three GC optimizations,
respectively are point-and-permute, GRR3 and free-XOR. For
the point-and-permute, we set the least significant bits of the wire
labels as the select bits, and arrange the garbled table according

to these bits. For the GRR3 optimization, we set the 0-label of the
output wire as the first row of the garbled table, and XOR each
row with this 0-label, then the first row becomes an all 0 string
and thus can be eliminated. And the free-XOR optimization is
implemented as described.

4. Silent 2PC Protocols

In this section, we present our silent 2PC protocols in the
semi-honest setting and malicious setting. A straightforward
approach is to split the protocol into an offline phase and an
online phase. In the offline phase, the parties don’t know their
inputs, and they interact with FHW to obtain the GC tables and
sufficiently many ROT copies; in the online phase, the parties use
their inputs to exchange the GC labels and evaluate the function
f . Unfortunately, only by the simulatable private GC definition
(cf. Def. 2), this approach won’t result in a UC simulatable
secure protocol. The subtle issue is as follows. When P2 is
corrupted, the simulator S needs to extract its input so it can send
P2’s input to the ideal functionality Ff2pc and learn the function
output from it. S has to simulate (fake) GC tables according
to the function output and the function f , and it then sends
the simulated (fake) garbled circuit and the simulated (fake)
decoding information to P2 on behalf of FHW, so the corrupted
P2 will see a right output after evaluating the garbled circuit.
Obviously, if the GC tables are generated in an offline phase,
it is impossible for S to invoke the GC simulator, because the
inputs of the function haven’t been determined, let along the
function output.
Description of ΠOT-GC

2pc . We depict our semi-honest/malicious
setting protocol in Fig. 4, where f is the function that P1 and
P2 want to jointly compute, as described in Sec. 2, n1, n2

and n are the input size of P1, the input size of P2 and the
overall input size, respectively. In Fig. 4, we use [S] label to
indicate instructions only included in the semi-honest setting
protocol, and [M] label to indicate instructions only included
in the malicious setting protocol, we also comment on these
special line’s end to emphasize this difference. Other instructions
not labeled should be included in both the semi-honest setting
protocol and the malicious setting protocol.
The semi-honest setting protocol. In the semi-honest setting
protocol, the party P2 first picks a random k0

2 ← {0, 1}λ
as its ROT seed, and sends (Run, sid, 〈ROT, 〈k0

2, n2〉〉) to
FHW[MOT-GC] to generate n2 ROT copies. Meanwhile, P1 also
picks a random k0

1 ← {0, 1}λ, and for i ∈ [n2], it generates the
ROT copies R0

i ← PRFk01 (i, 0), R1
i ← PRFk01 (i, 1) by itself. P1

then sends (Run, sid, 〈ROT, 〈k0
1, n2〉〉) to FHW[MOT-GC].

After that, P2 receives the ROT copies {Rbii }i∈[n2] from
FHW[MOT-GC], it then invokes PRG with its ROT seed to gener-
ate (b1, . . . , bn2). Next, P2 computes and sends the choice bits
{ci := bi⊕x2,i}i∈[n2] to P1, and it sends (Run, sid, 〈GC, f〉) to
FHW[MOT-GC] to generate the garbled circuit.

Subsequently, P1 picks a random k1
1 ← {0, 1}λ as the GC

seed and generates a GC copy by (F̂ , ê, d̂)← GC.Gb(1λ, f ; k1
1),3

3. In practice, P1 only needs to generate the encoding information of the GC,
e, i.e., the input wire labels; therefore, GC.Gb is only partially executed for
efficiency.

Protocol description:
• Upon receiving (COMPUTE, sid, x2 := (x2,1, . . . , x2,n2)) from the environment Z , the party P2:

– Pick random k02 ← {0, 1}
λ;

– Send (Run, sid, 〈ROT, 〈k02, n2〉〉) to FHW[MOT-GC];
• Upon receiving (COMPUTE, sid, x1 := (x1,1, . . . , x1,n1

)) from the environment Z , the party P1:

– Pick random k01 ← {0, 1}
λ;

– For i ∈ [n2]:
∗ Generate R0

i ← PRF
k01

(i, 0), R1
i ← PRF

k01
(i, 1);

∗ [M] Set σ0
1,i := H(R0

i), σ
1
1,i := H(R1

i); /* Malicious */

– Send (Run, sid, 〈ROT, 〈k01, n2〉〉) to FHW[MOT-GC];
– [M] Send {σ0

1,i, σ
1
1,i}i∈[n2] to P2; /* Malicious */

• Upon receiving (Run, sid, {Rbii }i∈[n2]) from FHW[MOT-GC] (and [M] {σ0
1,i, σ

1
1,i}i∈[n2] from P1), the party P2:

– Generate (b1, . . . , bn2)← PRG(k02);
– For i ∈ [n2]:

∗ [M] Set σ̂1,i := H(R
bi
i), and assert σ̂1,i = σ

bi
1,i; /* Malicious */

∗ Set ci := bi ⊕ x2,i;
– Send {ci}i∈[n2] to P1;
– Send (Run, sid, 〈GC, f〉) to FHW[MOT-GC];

• Upon receiving {ci}i∈[n2] from P2, the party P1:

– Pick random k11 ← {0, 1}
λ;

– Generate (F̂ , ê, d̂)← Gb(1λ, f ; k11);
– [M] Set σ2 := H(F̂ , d̂); /* Malicious */
– Parse ê = {(X0

i , X
1
i)}i∈[n];

– For i ∈ [n2]:

∗ Compute W 0
i := R

ci
i ⊕X

0
n1+i and W 1

i := R
ci⊕1

i ⊕X1
n1+i;

∗ [M] Compute σ̂ci⊕1

3,i = H(R
ci⊕1

i ⊕X0
n1+i, R

ci
i ⊕X

1
n1+i); /* Malicious */

– Send (Run, sid, 〈GC, 〈k11, f〉〉) to FHW[MOT-GC];
– Send {Zi := X

x1,i
i }i∈[n1], {W 0

i ,W
1
i }i∈[n2] (and [M] σ2, {σ̂ci⊕1

3,i }i∈[n2]) to P2;

• Upon receiving {Zi}i∈[n1], {W 0
i ,W

1
i }i∈[n2] (and [M] σ2, {σ̂ci⊕1

3,i }i∈[n2]) from P1 and (Run, sid, (F, d)) (and [M] {σ0
3,i, σ

1
3,i}i∈[n2]) from

FHW[MOT-GC], P2:
– [M] Set σ̂2 := H(F, d) and assert σ̂2 = σ2; /* Malicious */
– For i ∈ [n2]:
∗ [M] Set σ̂ci3,i := H(W 0

i ,W
1
i), and assert σ̂0

3,i = σ0
3,i and σ̂1

3,i = σ1
3,i; /* Malicious */

∗ Compute Zn1+i := W
x2,i
i ⊕ Rbii ;

– Evaluate Y ← GC.Ev(F, (Z1, . . . , Zn));
– Decode y ← GC.De(d, Y);
– Return (COMPUTE, sid, y) to the environment Z;

Protocol ΠOT-GC
2pc

Figure 4: The semi-honest/malicious setting protocol ΠOT-GC
2pc in the FHW[MOT-GC]-hybrid model

it then parses the encoding information to obtain the input wire
labels {(X0

i , X
1
i)}i∈[n]. For i ∈ [n2], P1 computes the OT

responses W 0
i := Rcii ⊕X0

n1+i and W 1
i := Rci⊕1

i ⊕X1
n1+i. Next,

P1 sends the GC seed k1
1 to FHW[MOT-GC], and it sends the wire

labels corresponding to its input value {Zi := X
x1,i

i }i∈[n1] and
the OT responses {W 0

i ,W
1
i }i∈[n2] to P2.

After that, P2 receives the garbled tables and the decoding
information (F, d) from FHW[MOT-GC], and it receives P1’s input
wire labels and the OT responses from P1. Then, for i ∈ [n2], P2

computes Zn1+i := W
x2,i

i ⊕ Rbii to obtain its input wire label.
At the end, P2 evaluates Y ← GC.Ev(F, (Z1, . . . , Zn1+n2

)), and
decodes y ← GC.De(d, Y).
The malicious setting protocol. As depicted in Fig. 4, the
party P2 first picks a random k0

2 ← {0, 1}λ as its ROT
seed, and sends (Run, sid, 〈ROT, 〈k0

2, n2〉〉) to FHW[MOT-GC]
to generate n2 ROT copies. Meanwhile, P1 also picks a ran-
dom k0

1 ← {0, 1}λ. For i ∈ [n2], P1 generates the ROT
copies R0

i ← PRFk01 (i, 0), R1
i ← PRFk01 (i, 1) and com-

putes their hash values by σ0
1,i := H(R0

i), σ
1
1,i := H(R1

i).

P1 then sends (Run, sid, 〈ROT, 〈k0
1, n2〉〉) to FHW[MOT-GC] and

{σ0
1,i, σ

1
1,i}i∈[n2] to P2.

After that, P2 receives the ROT copies {Rbii }i∈[n2] from
FHW[MOT-GC] and {σ0

1,i, σ
1
1,i}i∈[n2] from P1, it then invoke

PRG with its ROT seed to generate (b1, . . . , bn2
). Next, for

i ∈ [n2], P2 computes σ̂1,i := H(Rbii) and compares it with
σbi1,i to check Rbii ’s correctness. If no check fails, P2 computes
and sends the choice bits {ci := bi ⊕ x2,i}i∈[n2] to P1, and
it sends (Run, sid, 〈GC, f〉) to FHW[MOT-GC] to generate the
garbled circuit.

Subsequently, P1 picks a random k1
1 ← {0, 1}λ as the GC

seed and generates a GC copy by (F̂ , ê, d̂)← GC.Gb(1λ, f ; k1
1).

P1 computes the hash of the garbled tables and decoding
information by σ2 := H(F̂ , d̂), and it parses the encoding
information to obtain the input wire labels {(X0

i , X
1
i)}i∈[n]. For

i ∈ [n2], P1 generates the OT responses W 0
i := Rcii ⊕ X0

n1+i

and W 1
i := Rci⊕1

i ⊕ X1
n1+i, and a hash value σ̂ci⊕1

3,i =

H(Rci⊕1
i ⊕X0

n1+i, R
ci
i ⊕X1

n1+i). Next, P1 sends the GC seed

k1
1 to FHW[MOT-GC], and it sends the wire labels corresponding

to its input value {Zi := X
x1,i

i }i∈[n1], the hash values σ2 and
{σ̂ci⊕1

3,i }i∈[n2], and the OT responses {W 0
i ,W

1
i }i∈[n2] to P2.

After that, P2 receives the garbled tables F , the decod-
ing information d and the hash values of the OT responses
{σ0

3,i, σ
1
3,i}i∈[n2] from FHW[MOT-GC]. P2 sets σ̂2 := H(F, d) and

asserts σ̂2 = σ2. Then, for i ∈ [n2], P2 sets σ̂ci1,i := H(W 0
i ,W

1
i),

it then verifies that P1 is honest in the OT process by checking
σ̂0

3,i = σ0
3,i and σ̂1

3,i = σ1
3,i; after these checks are finished, P2

computes Zn1+i := W
x2,i

i ⊕ Rbii to obtain its input wire label.
At the end, P2 evaluates Y ← GC.Ev(F, (Z1, . . . , Zn1+n2

)), and
decodes y ← GC.De(d, Y).

5. Security

In this section, we examine the security of our schemes.
We assume the hardware manufacturer will not collude with the
MPC players; otherwise, when P1 (or P2) is colluding with FHW,
no input privacy can be guaranteed.4

We first examine why our schemes are secure at the
high level, and then formally state the security of our semi-
honest/malicious setting protocol ΠOT-GC

2pc in Thm. 1/Thm. 2, re-
spectively, where we restrict the adversary A to only corrupt ei-
ther the semi-trusted hardware functionality FHW or the player(s)
P1 (and/or P2).

In the semi-honest setting, the view of FHW[MOT-GC] is the
MPC function f , the length of P2’s input n2 and some random
seeds, f and n2 are already known to the environment Z and the
adversary A, and the seeds are true random numbers; therefore,
no additional information would be leaked to the adversary
A. Since FHW[MOT-GC] could only be passively corrupted, the
correctness of garbled circuit and ROT copies are preserved.
The input privacy of protocol ΠOT-GC

2pc is guaranteed by the
simulatable privacy property of the underlying garbling scheme
GC.

In the malicious setting, FHW[MOT-GC], P1, and P2 may be
maliciously corrupted. The main design principle is as follows.
In P1’s point of view, either FHW[MOT-GC] or P2 could be
corrupted. Similarly, in P2’s point of view, either FHW[MOT-GC]
or P1 could be corrupted. Note that our protocol does not provide
accountability, i.e., when the protocol abort, we are not required
to identify which party is guilty. Thus, P2 can use messages
generated by FHW[MOT-GC] and messages sent by P1 to carry
out a mutual verification, and it aborts if any inconsistency is
detected.

More specifically, the ROT copies {Rbii }i∈[n2] produced by
FHW[MOT-GC] are checked using hash values σ0

1,i := H(R0
i) and

σ1
1,i := H(R1

i) sent by P1. This check has to be done before P1

receives the OT choice bits {ci}i∈[n2], otherwise P1 can carry
out a selective failure attack to learn the ROT bits {bi}i∈[n2]

and extract P2’s private input. The garbled tables and decoding
information (F, d) are also validated via a hash digest provided

4. We note that our schemes can be easily modified to ensure security in the
scenario where P1 and FHW are colluding; while we don’t have an efficient
solution to handle the collusion between P2 and FHW yet, as this setting could
be reduced to standard two-party computation without assistance of FHW in
practice.

by P1. To verify that P1 is honest in the OT process, P2 uses hash
values of all possible OT responses from FHW[MOT-GC]. Since a
malicious FHW[MOT-GC] may provide incorrect values, when P1

sends a OT response Rcii ⊕X0
n1+i, R

ci⊕1
i ⊕X1

n1+i, it also sends
the hash of the other message Rci⊕1

i ⊕X0
n1+i, R

ci
i ⊕X1

n1+i. Then
FHW[MOT-GC] can’t distinguish between aborts due to incorrect
OT responses and aborts due to incorrect hash values.

Theorem 1. If PRF : {0, 1}λ × {0, 1}λ 7→ {0, 1}λ is a secure
PRF function, PRG : {0, 1}λ 7→ {0, 1}`(λ) is a secure PRG
function, and GC := (Gb,En,Ev,De) is a secure simulatable
private garbling scheme, protocol ΠOT-GC

2pc (semi-honest setting)
described in Fig. 4 UC-realizes Ff2pc as described in Fig. 1 in the
FHW[MOT-GC]-hybrid model against any PPT semi-honest adver-
saries who can corrupt either FHW[MOT-GC] or the player(s) P1

(and/or P2) with static corruption.

Proof. To prove Thm. 1, we construct a simulator S such that no
non-uniform PPT environment Z can distinguish between (i) the
real execution EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z where the parties P := {P1, P2}

run protocol ΠOT-GC
2pc in the FHW[MOT-GC]-hybrid model and

the corrupted parties are controlled by a dummy adversary A
who simply forwards messages from/to Z , and (ii) the ideal
execution EXECFf2pc,S,Z

where the parties P1 and P2 interact

with functionality Ff2pc in the ideal world, and corrupted parties
are controlled by the simulator S. We consider following cases.

Case 1: FHW[MOT-GC] is corrupted; P1 and P2 are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[MOT-GC] as well as honest parties P1 and P2. In addition,
the simulator S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |xi|, Pi) for an

honest party Pi from the external Ff2pc, the simula-
tor S picks random k0

i ← {0, 1}λ and then sends
(Run, sid, 〈ROT, 〈k0

i , n2〉〉) to FHW[MOT-GC] on behave of
Pi.

• Upon receiving (Run, sid, Qi) from the party Pi ∈ P via
the interface of FHW[MOT-GC], S acts as FHW[MOT-GC] to
send (RUNNOTIFY, sid, Qi, Pi) to A. S then simulates the
FHW[MOT-GC] functionality as defined.

• When the simulated party P2 receive {Rbii }i∈[n2] from
FHW[MOT-GC], S acts as P2 to compute (b1, . . . , bn2) ←
PRG(k0

2), and then it sends {ci := bi}i∈[n2] to the simulated
party P1 and send (Run, sid, 〈GC, f〉) to FHW[MOT-GC].

• S then simulates the rest communication between P1 and
P2 according to the protocol description as if both P1 and
P2 receive (COMPUTE, sid, 0) from Z .

Indistinguishability. Assume the communication between P1

and P2 is via the secure channel functionality FSC, the views
of A and Z in EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z and EXECFf2pc,S,Z

are identical.
Therefore, it is perfectly indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[MOT-GC] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[MOT-GC] as well as honest P2. In addition, the simulator
S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x2|, P2) from the

external Ff2pc, the simulator S picks random k0
2 ← {0, 1}λ

and then sends (Run, sid, 〈ROT, 〈k0
2, n2〉〉) to FHW[MOT-GC]

on behave of P2.
• Upon receiving (Run, sid, 〈ROT, 〈k0

1, n2〉〉) from P1 and
(Run, sid, 〈ROT, 〈k0

2, n2〉〉) from P2, for i ∈ [n2], S acts
as FHW[MOT-GC] to compute R0

i ← PRFk01 (i, 0), R1
i ←

PRFk01 (i, 1), and it picks a random bi ← {0, 1}. S then
sends {Rbii }i∈[n2] to the simulated party P2 on behave of
FHW[MOT-GC].

• When the simulated party P2 receive {Rbii }i∈[n2] from
FHW[MOT-GC], S acts as P2 to send {ci := bi}i∈[n2]

to the simulated party P1. S then acts as P2 to send
(Run, sid, 〈GC, f〉) to FHW[MOT-GC].

• When P2 receives {Zi}i∈[n1] and {W 0
i ,W

1
i }i∈[n2] from P1,

S uses the internal GC label information (F, e, d) of the
simulated FHW[MOT-GC] to extract P1’s input x∗1. It then
sends (COMPUTE, sid, x∗1) to the external Ff2pc on behave
of P1.

• Upon receiving (OUTPUT, sid, P2) from the external
FHW[MOT-GC], if A allows P2 to finish the protocol ex-
ecution and obtains y, S sends (DELIVER, sid, P2) to the
external Ff2pc.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, the ROT
choice bits b1, . . . , bn2 are true random bits instead of computing
from (b1, . . . , bn2)← PRG(k0

2).

Claim 1. If PRG : {0, 1}λ 7→ {0, 1}n2 is a secure PRG function
with adversarial distinguishing advantage AdvPRG(A, λ), then
H1 and H0 are indistinguishable with distinguishing advantage
AdvPRG(A, λ).

Proof. It is a straightforward reduction; namely, by hybrid argu-
ment, we can show that if there exists an adversary A who can
distinguish H1 from H0, then we can construct an adversary B
who can break the PRG.

Hybrid H2: H2 is the same as H1 except that in H2, P2 sends
{c′i := bi}i∈[n2] to P1, instead of {ci := bi ⊕ x2,i}i∈[n2].

Claim 2. H2 and H1 are perfectly indistinguishable.

Proof. Since bi are the ROT select bits randomly picked by
FHW[MOT-GC], the distribution of {c′i}i∈[n2] and {ci}i∈[n2] are
identical. Therefore, H2 and H1 are perfectly indistinguish-
able.

The adversary’s view of H2 is identical to the simulated view
EXECFf2pc,S,Z

. Therefore, the overall distinguishing advantage is
AdvPRG(A, λ).

Case 3: P2 is corrupted; P1 and FHW[MOT-GC] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[MOT-GC] as well as honest P1. In addition, the simulator
S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x1|, P1) from the

external Ff2pc, the simulator S picks random k0
1 ← {0, 1}λ

and R0
i ← {0, 1}λ, R1

i ← {0, 1}λ. It then sends
(Run, sid, 〈ROT, 〈k0

1, n2〉〉) to FHW[MOT-GC] on behave of
P1.

• Upon receiving (Run, sid, 〈ROT, 〈k0
1, n2〉〉) from P1

and (Run, sid, 〈ROT, 〈k0
2, n2〉〉) from P2, S acts as

FHW[MOT-GC] to compute (b1, . . . , bn2
) ← PRG(k0

2). S
then fetches {R0

i , R
1
i }i∈[n2] from the simulated P1 and

sends {Rbii }i∈[n2] to P2.
• When P1 receives {ci}i∈[n2] from P2, S fetches {bi}i∈[n2]

from FHW[MOT-GC]’s internal state. S then extracts P2’s
input x∗2,i := ci⊕bi. After that, it sends (COMPUTE, sid, x∗2)

to the external Ff2pc on behave of P2.
• Upon receiving (COMPUTE, sid, y) from the external Ff2pc

for P2, the simulator S uses the GC simulator to generate
(F ′, X ′, d′)← Sim(1λ, y,Φ(f)).

• Upon receiving (Run, sid, 〈GC, 〈k1
1, f〉〉) from P1 and

(Run, sid, 〈GC, f〉) from P2 to FHW[MOT-GC], S sends
(F ′, d′) as the GC tables and decode information to P2 on
behave of FHW[MOT-GC]. S then uses X ′ as the wire labels
to generate {Zi}i∈[n1] and {W 0

i ,W
1
i }i∈[n2] as follows:

1. For i ∈ [n1], set Zi := X ′i;
2. For i ∈ [n2]: set W x2,i

i := X ′n1+i⊕R
bi
i and W x2,i⊕1

i :=

Rbi⊕1
i ;
S then acts as P1 to send those messages to P2.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z .

Hybrid H1: H1 is the same as H0 except that H1 uses true ran-
dom numbers R0

i , R
1
i ← {0, 1}λ instead of Rbi ← PRFk01 (i, b),

b ∈ {0, 1}.

Claim 3. If PRF : {0, 1}λ × {0, 1}λ 7→ {0, 1}λ is a se-
cure PRF function with adversarial distinguishing advantage
AdvPRF(A, λ), then H1 and H0 are indistinguishable with dis-
tinguishing advantage 2n2 · AdvPRF(A, λ).

Proof. It is a straightforward reduction; namely, by hybrid argu-
ment, we can show that if there exists an adversary A who can
distinguish H1 from H0, then we can construct an adversary B
who can break the PRF.

Hybrid H2: H2 is the same as H1 except that H2 generates
(F ′, X ′, d′)← Sim(1λ, y,Φ(f)), and then it uses X ′ as the wire
labels to generate {Zi}i∈[n1] and {W x2,i

i }i∈[n2]. FHW[MOT-GC]
also sends (F ′, d′) as the GC tables and decoding information
to P2.

Claim 4. If GC is simulatable private with adversar-
ial distinguishing advantage Advprv.sim,Φ,SimGC (A, λ), then H2

and H1 are indistinguishable with distinguishing advantage
Advprv.sim,Φ,SimGC (A, λ).

Proof. First of all, by the requirement of simulatable privacy in
Def. 2, (F ′, X ′, d′)← Sim(1λ, y,Φ(f)) should be indistinguish-
able from the real one. Moreover, since P2 does not know Rbi⊕1

i ,
if there is an adversary A who can distinguish the distribution of
{W 0

i ,W
1
i }i∈[n2] from the real one with probability ε, then we

can construct an adversary B who has the same distinguishing
advantage Advprv.sim,Φ,SimGC (B, λ) = ε.

The adversary’s view of H2 is identical to the simulated
view EXECFf2pc,S,Z

. Therefore, if GC is simulatable private, the

views of A and Z in EXEC
FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z and EXECFf2pc,S,Z

are
indistinguishable with distinguishing advantage

2n2 · AdvPRF(A, λ) + Advprv.sim,Φ,SimGC (A, λ) = negl(λ) .

Case 4: P1 and P2 are corrupted; FHW[MOT-GC] is honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . The simulator S simulates the
functionality FHW[MOT-GC].

Indistinguishability. This is a trivial case. Since both P1 and
P2 are controlled by the adversary A, no message is simulated
by S.

This concludes the proof.

Theorem 2. If PRF : {0, 1}λ × {0, 1}λ 7→ {0, 1}λ is a secure
PRF function, PRG : {0, 1}λ 7→ {0, 1}`(λ) is a secure PRG
function, H : {0, 1}∗ 7→ {0, 1}λ is a collision resistant hash
function, and GC := (Gb,En,Ev,De) is a secure simulatable
private garbling scheme, protocol ΠOT-GC

2pc (malicious setting)
described in Fig. 4 UC-realizes Ff2pc as described in Fig. 1 in
the FHW[MOT-GC]-hybrid model against any PPT malicious ad-
versaries who can corrupt either FHW[MOT-GC] or the player(s)
P1 (and/or P2) with static corruption.

The proof is provided in App. B.

6. Further reducing communication

In this section, we show how to further reduce the online
communication complexity in the semi-honest setting. The main
observation is as follows. P2 can use some masks to hide its
inputs, and directly send these masked inputs to P1 to fetch
the corresponding input wire labels; while in our original semi-
honest setting protocol as presented in Fig. 4, P2 has to use OT
to obtain its wire labels. Note that using OT to transfer 1 label
needs 2λ + 1 bits communication, and directly fetch one only
needs λ+ 1 bits.

The idea of using masks in garbled circuit can trace back to
the point-and-permute technique [12] – Beaver et al. append a
select bit to each wire label, and arrange each garbled table
according to the select bits of the input wire labels. Before
presenting our protocol, we first specify the FHW functionality
as Mmask-GC. It performs two tasks: (i) generate pseudo random

input masks, send P1 and P2 the masks of their inputs; (ii)
generate masked garbled circuit, send the input wire labels to
P1 and the garbled tables and decoding information to P2.
During the protocol Πmask-GC

2pc execution, both parties first query
the FHW[Mmask-GC] for their input masks; then, P2 hides its
input with masks, and sends the masked input to P1; thereafter,
both parties use FHW[Mmask-GC] to generate the garbled circuit;
after receiving the input wire labels, P1 sends the wire labels
corresponding to both parties’ masked inputs to P2; at the end,
P2 evaluates the garbled circuit and decode the output. Due to
space limitation, we put the detailed description of Mmask-GC and
the protocol Πmask-GC

2pc in Fig. 5 and Fig. 6 in Appendix A.
Security. The security analysis of the improved protocol
Πmask-GC

2pc is analogous to semi-honest setting ΠOT-GC
2pc under the

same assumption. The proof is much similar to the one of
Thm. 1, so we only provide a high level description here.
As in the semi-honest setting protocol ΠOT-GC

2pc , we isolate
the FHW[Mmask-GC] from any private inputs, so even when
FHW[Mmask-GC] is corrupted, the input privacy can be guaranteed;
and the correctness of FHW[Mmask-GC]’s outputs are preserved
since we only consider passive corruption. For P2’s privacy, since
P2’s input is masked by pseudo random bits, P1 cannot learn
P2’s real input. When P2 is corrupted, we can extract its inputs
from the masked input received by P1.
Efficiency. Table. 4 shows the performance comparison our two
semi-honest setting protocols ΠOT-GC

2pc and Πmask-GC
2pc . We take

the AES-128, SHA-256, and SHA-512 circuit evaluation as
benchmarks. In the LAN setting, Πmask-GC

2pc is 2.06-2.15X faster
w.r.t. the Garbler’s running time and 1.16-1.45X faster w.r.t.
the Evaluator’s running time than ΠOT-GC

2pc . In the WAN setting,
Πmask-GC

2pc is 2.01-2.04X faster w.r.t. the Garbler’s running time
and 1.41-1.49X faster w.r.t. the Evaluator’s running time than
ΠOT-GC

2pc .

7. Implementation and Benchmarks

Our protocol is implemented in C++ using Intel SGX SDK
on Linux. We use AES-NI for the PRF algorithm. To efficiently
generate ROT’s in the SGX enclave, we carefully analyze the
performance bottleneck and notice that if we just generate one
copy of ROT at once, then the Receiver needs to enter the enclave
for many times, and the enter/exit may cause performance loss.
Because this, we group ROT’s into batches, and choose the
optimal batch size according to the test result.

We already explained our choice of GC optimizations in
Sec. 2, and here we provide more details. Denote the seed of the
garbled circuit as k, to generate the wire labels, we first compute
the PRFk(0) and force its least significant bit to be 1, and the
result is the ∆ in the free-XOR optimization. Subsequently, we
invoke the PRF for n times in the form PRFk(i) to generate the
0-label of the i-th input, then we compute ∆ ⊕ PRFk(i) to get
the 1-label of the i-th input. After obtaining all the wire labels,
we computes k

′
:= PRFk(n + 1) as the seed for generation of

garbled tables.
With regard to the generation of the garbled circuits, we

assume the order of the gates in the circuit description is layer-
designed such that, for a gate to be garbled, it’s input wire won’t

TABLE 4: Performance comparison of the computation process of the semi-honest setting protocols ΠOT-GC
2pc and Πmask-GC

2pc . Result obtained from
SGX-enabled Dell OptiPlex 7080 (Intel Core 8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu 18.04 LTS). It shows the running time (in ms)
for evaluating AES-128, SHA-256, and SHA-512 circuits once, respectively.

Circuit Network setting Garbler running time (in ms) Evaluator running time (in ms)
ΠOT-GC

2pc Πmask-GC
2pc ΠOT-GC

2pc Πmask-GC
2pc

AES-128 LAN (1Gbps, 1ms) 4.653 2.255 7.607 5.240
WAN (100Mbps, 25ms) 101.905 50.567 155.027 103.970

SHA-256 LAN (1Gbps, 1ms) 4.729 2.286 9.392 6.828
WAN (100Mbps, 25ms) 102.131 50.577 160.933 110.272

SHA-512 LAN (1Gbps, 1ms) 4.934 2.291 12.221 10.448
WAN (100Mbps, 25ms) 103.404 50.650 176.338 124.731

be the output wire of a gate that hasn’t been garbled. Hence, we
can garble the gates as this order. For a XOR gate, since free-
XOR is used, its garbled tables is eliminated, and we simply
XOR the two input wires’ 0-label to obtain the 0-label of the
output wire. For each non-XOR gate, we generate 4 ciphertexts
for different input wire label combinations. After that, we can
determine each ciphertext’s place in the garbled table according
to the select bit, i.e., the least significant bit of the wire labels,
as desribed in the point-and-permute optimization. Denote the
first input wire label’s select bit as sa and the second input wire
label’s select bit as sb, the ciphertext derived from these two wire
labels will be placed in the (sa+2∗sb+1)-th row of the garbled
table. Furthermore, since we adopt the GRR3 optimization, we
compute the output wire’s label in this way: if the first row is
generated from two 1-label, we set the value of output wire’s 1-
label as the first row’s value; otherwise, we set the value of the
output wire’s 0-label as the first row’s value. Once we know the
value of the output wire’s 0-label/1-label, the other label can be
computed by simply XOR ∆ with it. Next, we XOR each row
with appropriate output wire label, then the first row becomes
an all 0 string and thus can be eliminated.

The evaluation process use the same seed as the garbling
process, since the SGX enclave runs on the Evaluator’s machine,
this seed can be locally transferred. The evaluation order is also
as in the circuit description. For each XOR gate, the Evaluator
only has two wire labels and we XOR these two label to obtain
the result. For each non-XOR gate, we invoke H with the input
wire labels, and decrypt one row in the garbled table, whose
place can be computed according to the input wire labels’ select
bits.

We use two types of hash functions in our construction.
To efficiently generate the GC table, we instantiate the hash
function H using block ciphers.This idea can trace back to the
JustGarble system [19], in this work, Bellare et al. modeled a
public fixed-key AES as a random permutation π, and construct
the garbled circuit bashed on π. Motivated by JustGarble, Zahur
et al. [14] use a random permutation π to construct the hash
function H , and π is instantiated by a public fixed-key AES in
a particular way. However, in recent work of Guo et al. [20], an
attack that can completely break the security of garbling scheme
instantiated by public fixed-key AES is found, and they claim
that constructing the hash function in a different way can prevent
this attack. Their implementation is also based on AES, while
the hash function is evaluated on both the input and a tweak,
and it involves re-keying AES rather than fixed-key AES. In

our implementation, we construct the hash function H based
on the work of Guo et al. [20]. On the other hand, in our
malicious setting, we mostly need the compression property of
the underlying hash function for efficient verification; therefore,
SHA256 is adopted.

We perform the experiments on an SGX-enabled Dell Opti-
Plex 7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz
with 32.0 GB RAM, running Ubuntu 18.04 LTS.

We evaluate all protocols in two simulated network settings:
(i) a LAN setting with 1Gbps bandwidth and 0.1ms delay and
(ii) a WAN setting with 100Mbps bandwidth and 25ms delay.

To test the performance of our ROT generation protocol, we
compared our protocol with the implementation of the IKNP
OT extension protocol [13] in EMP-ROT [11]. Table. 1 shows
the performance comparison for generating 104 to 108 copies of
ROT, where the result is the average of 10 tests.

To test the performance of the 2PC protocols, our bench-
marks use three Bristol Fashion format circuits [21], which con-
sists of only AND gates, XOR gates and inverters, respectively
are AES-128 circuit, SHA-256 circuit and SHA-512 circuit.
The AES-128 circuit contains 36919 wires and 36663 gates,
including 6400 AND gates; in this circuit, the party P1’s input
size, the party P2’s input size and the output size are all 128
bits. The SHA-256 circuit contains 135841 wires and 135073
gates, including 22573 AND gates; in this circuit, the party P1’s
input size is 512 bits, the party P2’s input size and the output
size are both 256 bits. The SHA-512 circuit contains 351153
wires and 349617 gates, including 57947 AND gates; in this
circuit, the party P1’s input size is 1024 bits, the party P2’s
input size and the output size are both 512 bits. For the semi-
honest setting protocol, we compared our protocol with EMP-
SH2PC [11] (EMP-SH2PC provides an efficient semi-honest
2PC implementation based on Yao’s GC protocol with half-
gates [14] optimization); for the malicious setting protocol, we
compared our protocol with EMP-AG2PC [11] (EMP-AG2PC
implements an efficient maliciously secure two-party computa-
tion protocol, authenticated garbling [10]).

Table. 2 shows the performance comparison for evaluating
the aforementioned benchmark circuits for 1000 times using the
semi-honest setting protocols, and the results are the average
of 10 tests. Table. 3 shows the performance comparison for
evaluating the aforementioned benchmark circuits once using the
malicious setting protocols, and the results are the average of
100 tests. All the one-time expenses are omitted, e.g., creating
enclave in our protocol and initialize Fpre in EMP-AG2PC.

8. Related Work

As a closely related work, Mohassel et al. [9] proposed
a scheme that enables efficient secure computation on mobile
phones. Their protocol is constructed in a Server-Aided set-
ting, where a semi-honest (covert) server who does not collude
with protocol players is used to accelerate computation. Their
protocol is based on the GMW protocol [22] and the Beaver
triples [23], and is secure against malicious adversary. Although
looks similar, there are many differences between this work
and theirs. Our intention is to reduce the communication in
the protocol execution, so we use trusted hardware that can
be deployed locally to assist computation, while they focus
on light-weight schemes that can be implemented on mobile
phones. Moreover, unlike [9], the semi-trusted hardware can be
maliciously corrupted in our model.

Wang et al. [10] proposed an efficient framework for ma-
liciously secure two-party computation, which is known as
Authenticated Garbling. Later, Katz et al. [24] make authenti-
cated garbling compatible with the half-gates [14] optimization,
resulting in a protocol for malicious secure 2PC in which the
communication complexity of the online phase is essentially
equivalent to that of state-of-the-art semi-honest secure 2PC.

Gupta et al. [25] proposed a protocol using Intel SGX for
SFE problem which is secure in the semi-honest model, they
also show how to improve their protocol’s security. However,
no implementation is provided in their work due to the lack of
equipments. They also notice the problem that the developers
need to trust hardware and hard supplier when using Intel SGX,
but don’t propose a feasible solution.

Bahmani et al. [26] proposed an intuitive approach in which
the program in an isolated execution environment (IEE) plays the
role of a trusted third party and the major part of computational
load is left to the untrusted machine. In this way, they reach
a minimum communication complexity that only depends on
number of inputs and outputs. Obviously, the trust to IEE and
hardware manufacturer is crucial. They introduced a novel notion
of labelled attested computation (LAC) and give a LAC-based
solution with rigorous security guarantees. They implement Intel
SGX-based version of their protocol and compare it with the
ABY framework, and their solution is hundreds of times faster
than ABY.

Felsen et al. [27] proposed an Intel SGX-based secure func-
tion evaluation (SFE) approach in which private inputs are sent
to enclave. In their protocol, only the inputs and the outputs
need to be transferred, the communication complexity of their
protocol is optimal up to an additive constant. They evaluate
the Boolean circuit representation of the function in enclave to
provide security with regards to software side-channel attacks. In
addition, they reduce the problem of private function evaluation
(PFE) to the problem of SFE by using universal circuits and are
the first to address PFE problem via TEEs. They give a prototype
implementation of their protocol and compare its performance
with state-of-the-art implementations of Yao’s GC and the GMW
protocols.

Choi et al. [28] consider the possibility of SGX being
compromised and want to protect the most sensitive data in any
case. They propose a hybrid SFE-SGX protocol which consists

of calculation in SGX enclave and standard cryptographic tech-
niques. The function to be evaluated is partitioned into several
round functions, the odd rounds are executed in enclave and
the even rounds are done using a scheme based on garbled
circuit. They claim that, if the partition scheme is proper, which
means no private inputs is leaked by intermediate values, their
hybrid approach ensures security against semi-hones adversary.
They also notice that there are numerous side-channel attacks
against SGX that can extract information from enclave, so they
deploy corresponding mitigation techniques to protect privacy.
They present how to use this hybrid protocol to solve privacy-
preserving retrieval and privacy-preserving navigation, and the
evaluation shows that the hybrid protocol achieves up to 38
times of performance improvement over the pure garbled circuit
protocol.

In our work, the computation is also done both in the enclave
and out of the enclave. In Choi’s work, the enclave gets part of
the private input, while we ensure the enclave is isolated with any
private data and only produce information independent of inputs,
which guarantees privacy even if the enclave is compromised.
Choi’s work is based on the assumption that the partition of
function is properly done, however, partitioning itself is a hard
problem which requires careful consideration. While our work
is based on the garbled circuit protocol, and we don’t rely on
this additional requirement.

Chakraborty et al. [29] use the trusted hardware to enable
intellectual property protection. They propose an obfuscation
framework called Hardware Protected Neural Network (HPNN)
in which a deep neural network is trained as a function of a secret
key and then, the obfuscated deep learning model is hosted on
a public model sharing platform.

9. Conclusion

In this work, we investigate the problem where the trusted
hardware manufacturer are not fully trusted, and the hardware
components may leak sensitive information to the remote servers
through backdoors, side-channels, steganography, and kleptog-
raphy, etc. In our model, the adversary is allowed to passively
and/or maliciously corrupt the hardware component. We present
two efficient semi-honest setting 2PC protocols and one effi-
cient malicious setting 2PC protocol. The communication of our
protocols only depends on the input size regardless the circuit
size. We implemented our protocols and compared it with the
EMP-toolkit. When the semi-trusted hardware is instantiated by
Intel SGX, our ROT protocol is several magnitude times faster
than than the EMP-IKNP-ROT, and our semi-honest setting (and
malicious setting) 2PC protocol is also significantly faster than
the EMP-SH2PC (and EMP-AG2PC). We will generalize our
technique to more multi-party computation scenarios, such as
PSI and PPML, in the future.

References

[1] G. Dan and S. Jim, “More than 20gb of intel source
code and proprietary data dumped online,” [EB/OL],
https://arstechnica.com/information-technology/2020/08/
intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
Accessed August 30, 2020.

[2] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter, “Leaky cauldron on the dark land: Understanding
memory side-channel hazards in sgx,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,
pp. 2421–2434.

[3] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi, “Software grand exposure: Sgx cache attacks are practical,” in
11th USENIX Workshop on Offensive Technologies (WOOT 17), 2017.

[4] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 1041–1056.

[5] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 991–1008.

[6] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2019, pp. 142–157.

[7] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel®
software guard extensions: Epid provisioning and attestation services,”
White Paper, vol. 1, no. 1-10, p. 119, 2016.

[8] R. Canetti, “Universally composable security: A new paradigm for crypto-
graphic protocols,” in Proceedings 42nd IEEE Symposium on Foundations
of Computer Science. IEEE, 2001, pp. 136–145.

[9] P. Mohassel, O. Orobets, and B. Riva, “Efficient server-aided 2pc for mobile
phones,” Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 2,
pp. 82–99, 2016.

[10] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and efficient
maliciously secure two-party computation,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 21–37.

[11] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient Multi-
Party computation toolkit,” 2016, https://github.com/emp-toolkit/ Accessed
January 5th, 2021.

[12] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the twenty-second annual ACM symposium
on Theory of computing, 1990, pp. 503–513.

[13] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers
efficiently,” in Annual International Cryptology Conference. Springer,
2003, pp. 145–161.

[14] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2015, pp. 220–250.

[15] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,”
in Proceedings of the 2012 ACM conference on Computer and communi-
cations security, 2012, pp. 784–796.

[16] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mech-
anism design,” in Proceedings of the 1st ACM conference on Electronic
commerce, 1999, pp. 129–139.

[17] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor gates
and applications,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2008, pp. 486–498.

[18] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in International conference on the theory
and application of cryptology and information security. Springer, 2009,
pp. 250–267.

[19] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling
from a fixed-key blockcipher,” in 2013 IEEE Symposium on Security and
Privacy. IEEE, 2013, pp. 478–492.

[20] C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu, “Better concrete security for
half-gates garbling (in the multi-instance setting),” in Annual International
Cryptology Conference. Springer, 2020, pp. 793–822.

[21] D. Archer, V. A. Abril, S. Lu, P. Maene, N. Mertens, D. Sijacic, and
N. Smart, “’Bristol Fashion’ MPC Circuits,” 2020, https://homes.esat.
kuleuven.be/∼nsmart/MPC/ Accessed January 5th, 2021.

[22] S. Micali, O. Goldreich, and A. Wigderson, “How to play any mental
game,” in Proceedings of the Nineteenth ACM Symp. on Theory of Com-
puting, STOC, 1987, pp. 218–229.

[23] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in
Annual International Cryptology Conference. Springer, 1991, pp. 420–
432.

[24] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing authenti-
cated garbling for faster secure two-party computation,” in Annual Inter-
national Cryptology Conference. Springer, 2018, pp. 365–391.

[25] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor, “Using
intel software guard extensions for efficient two-party secure function
evaluation,” in International Conference on Financial Cryptography and
Data Security. Springer, 2016, pp. 302–318.

[26] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from sgx,” in Interna-
tional Conference on Financial Cryptography and Data Security. Springer,
2017, pp. 477–497.

[27] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and private
function evaluation with intel sgx,” in Proceedings of the 2019 ACM
SIGSAC Conference on Cloud Computing Security Workshop, 2019, pp.
165–181.

[28] J. I. Choi, D. Tian, G. Hernandez, C. Patton, B. Mood, T. Shrimpton, K. R.
Butler, and P. Traynor, “A hybrid approach to secure function evaluation
using sgx,” in Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, 2019, pp. 100–113.

[29] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted intellec-
tual property protection of deep learning models,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://github.com/emp-toolkit/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/

Appendix

1. Descriptions of Mmask-GC and Πmask-GC
2pc

In this section, we provide a detailed description of Mmask-GC

and Πmask-GC
2pc , the optimization techniques we adopted is the

same as in the protocol ΠOT-GC
2pc .

We first define the Turing machine Mmask-GC for FHW. As
depicted in Fig. 5, Mmask-GC generates input masks and masked
garbled circuit. When P1 sends 〈MASK, 〈k0

1, f1〉〉 and P2 sends
〈MASK, 〈k0

2, f2〉〉, Mmask-GC asserts P1 and P2 send the same
circuit f1 = f2, and it sets the seed by k0 := k0

1 ⊕ k0
2 . Mmask-GC

then generates the input masks (ρ1, . . . , ρf1.n)← PRG(k0) and
sends P1 and P2 their respective masks.

When P1 sends 〈GC, 〈k1
1, f1〉〉 and P2 sends 〈GC, 〈k1

2, f2〉〉,
Mmask-GC asserts P1 and P2 send the same circuit f1 = f2, and
it sets the seed of the masked garbled circuit by k1 := k1

1 ⊕ k1
2 .

To generate the wire labels, Mmask-GC sets ∆← PRFk1(0). Then
for i ∈ [f.n], it computes the 0-label X0

i ← PRFk1(i) and the 1-
label is set by X1

i := X0
i ⊕∆. After that, Mmask-GC generates the

garbled tables in topological order. We use G(i, j, k) to represent
a gate: its input wires are the i-th wire and the j-wire, and its
output wire is the k-th wire. For an XOR gate, we simply sets the
mask and the 0-label of the k-th wire as ρk = ρi⊕ρj and X0

k =
X0
i ⊕X0

j ; for an AND gate, we first computes T := H(X0
i , X

0
j),

then set the output wire’s mask ρk := T[1] ⊕ (ρi ∧ ρj) and its
T[1]-label XT[1]

k := T , note that this label can either be 0-label
or 1-label, and the other label has an offset ∆ with it. After
the mask bit of all three wires are known, Mmask-GC computes
a masked truth value, and generates the masked garbled table

by U1 := H(X0
i , X

1
j) ⊕ X x̂

(0,1)
k

k , U2 := H(X1
i , X

0
j) ⊕ X x̂

(1,0)
k

k

and U3 := H(X1
i , X

1
j) ⊕ X x̂

(1,1)
k

k . At the end, Mmask-GC sends
∆ and the input wires’ 0-labels to P1, and sends the masked
garbled tables and the decoding information to P2. The decoding
information is the mask bits of the output wires.

We depict the protocol Πmask-GC
2pc in Fig. 6 , where f is the

function that P1 and P2 want to jointly compute. In Πmask-GC
2pc ,

both parties first pick their random number k0
i ← {0, 1}λ, i ∈

1, 2, and send (Run, sid, 〈MASK, 〈k0
i , f〉〉) to FHW[MOT-GC].

FHW[MOT-GC] returns the masks ρi to P1 and P2 so they can
use these masks to hide their inputs.

After that, P2 computes zi+n1
:= x2,i ⊕ ρi+n1

, for i ∈
[n2] and picks another random number k1

2 ← {0, 1}λ. It
then sends {zi+n1}i∈[n2] to P1 and (Run, sid, 〈GC, 〈k1

2, f〉〉) to
FHW[MOT-GC].

Subsequently, P2 also picks random k1
1 ← {0, 1}λ and

sends (Run, sid, 〈GC, (k1
1, f)〉) to FHW[MOT-GC], which will re-

ply (Run, sid, (∆, {X0
i }i∈[n])). It uses the masks to hide its input

by computing zi := x1,i ⊕ ρi, for i ∈ [n1]. Next, it selects
wire labels corresponding to both P1 and P2’s masked input, if
zi = 1, it XOR ∆ with X0

i to obtain X1
i . It sends the input wire

labels {Zi := X
x̂1,i

i }i∈[n1] and {Zi+n1 := X
x̂2,i

i+n1
}i∈[n2] and its

masked input {zi}i∈[n1] to P2.
After P2 receiving P1’s masked inputs {zi}i∈[n1] and these

input wire labels {Zi}i∈[n] from P1, and the garbled tables and

Mmask-GC(x1, x2; Ψ) :

• Parse x1 = 〈CMD1, x
′
1〉 and x2 = 〈CMD2, x

′
2〉;

• If CMD1 = CMD2 = MASK:
– Parse x′1 = 〈k01, f1〉 and x′2 = 〈k02, f2〉;
– Assert f1 = f2;
– Set k0 := k01 ⊕ k

0
2 ;

– Generate (ρ1, . . . , ρf1.n)← PRG(k0);
– Return y1 := {ρi}i∈[f1.n1], y2 := {ρi}i∈[f1.n1+1,f1.n], and

Ψ := {ρi}i∈[f1.n];
• If CMD1 = CMD2 = GC:

– Parse x′1 = 〈k11, f1〉 and x′2 = 〈k12, f2〉;
– Assert f1 = f2;
– Set k1 := k11 ⊕ k

1
2 ;

– Generate ∆← PRFk1 (0);
– For i ∈ [f1.n], generate X0

i ← PRFk1 (i) and X1
i := X0

i ⊕∆;
– Generate the garbled circuit F in topological order:

For each gate G(i, j, k):
∗ XOR gate: set ρk = ρi ⊕ ρj and X0

k = X0
i ⊕X

0
j ;

∗ AND gate:
· Set T := H(X0

i , X
0
j);

· Set x̂(0,0)
k = T[1] and X

x̂
(0,0)
k
k := T ;

· Set ρk := T[1] ⊕ (ρi ∧ ρj);
· Set x̂(0,1)

k := (ρi ∧ ρj ⊕ 1)⊕ ρk;
· Set x̂(1,0)

k := (ρi ⊕ 1 ∧ ρj)⊕ ρk;
· Set x̂(1,1)

k := (ρi ⊕ 1 ∧ ρj ⊕ 1)⊕ ρk;
· Generate the garbled table as

U1 := H(X0
i , X

1
j)⊕X

x̂
(0,1)
k
k ,

U2 := H(X1
i , X

0
j)⊕X

x̂
(1,0)
k
k , and

U3 := H(X1
i , X

1
j)⊕X

x̂
(1,1)
k
k , where

X
(0)
k ⊕X(1)

k = ∆;

– Return y1 := (∆, {X0
i }i∈[f1.n]) and y2 := (F, d), where F

consists of all the AND gates’ garbled table and d consists of the
mask bit for the output wire;

Description of Mmask-GC

Figure 5: Description of Mmask-GC

decoding information F, d from FHW[Mmask-GC], it evaluates the
garbled circuit in topological order according to the masked
inputs and their corresponding labels, and it decodes the output
using the mask bits.

2. Security Proof in the Malicious Setting

Theorem 2. If PRF : {0, 1}λ × {0, 1}λ 7→ {0, 1}λ is a secure
PRF function, PRG : {0, 1}λ 7→ {0, 1}`(λ) is a secure PRG
function, H : {0, 1}∗ 7→ {0, 1}λ is a collision resistant hash
function, and GC := (Gb,En,Ev,De) is a secure simulatable
private garbling scheme, protocol ΠOT-GC

2pc (malicious setting)
described in Fig. 4 UC-realizes Ff2pc as described in Fig. 1 in
the FHW[MOT-GC]-hybrid model against any PPT malicious ad-
versaries who can corrupt either FHW[MOT-GC] or the player(s)
P1 (and/or P2) with static corruption.

Proof. To prove Thm. 2, we construct a simulator S such that no
non-uniform PPT environment Z can distinguish between (i) the
real execution EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z where the parties P := {P1, P2}

run protocol ΠOT-GC
2pc in the FHW[MOT-GC]-hybrid model and

the corrupted parties are controlled by a dummy adversary A
who simply forwards messages from/to Z , and (ii) the ideal

Protocol description:
• Upon receiving (COMPUTE, sid, xi := (xi,1, . . . , xi,ni)) from the environment Z , the party Pi:

– Pick random k0i ← {0, 1}
λ;

– Send (Run, sid, 〈MASK, 〈k0i , f〉〉) to FHW[MOT-GC];
• Upon receiving (Run, sid, {ρi}i∈[n1+1,n]) from FHW[Mmask-GC], the party P2:

– For i ∈ [n2]: compute zi+n1 := x2,i ⊕ ρi+n1 ;
– Pick random k12 ← {0, 1}

λ;
– Send {zi+n1

}i∈[n2] to P1;
– Send (Run, sid, 〈GC, 〈k12, f〉〉) to FHW[MOT-GC];

• Upon receiving (Run, sid, {ρi}i∈[n1]) from FHW[Mmask-GC] and {zi}i∈[n1+1,n] from P2, the party P1:

– Pick random k11 ← {0, 1}
λ;

– Send (Run, sid, 〈GC, (k11, f)〉) to FHW[MOT-GC], which will reply (Run, sid, (∆, {X0
i }i∈[n])) ;

– For i ∈ [n1]: compute zi := x1,i ⊕ ρi;
– Send {zi}i∈[n1], {Zi := X

x̂1,i
i }i∈[n1] and {Zi+n1 := X

x̂2,i
i+n1

}i∈[n2] to P2;

• Upon receiving {zi}i∈[n1] and {Zi}i∈[n] from P1 and (Run, sid, (F, d)) from FHW[Mmask-GC], the party P2:
– Evaluate the garbled circuit in topological order. For each gate G(i, j, k):
∗ XOR gate, compute zk := zi ⊕ zj and Zk := Zi ⊕ Zj ;
∗ AND gate, compute T := H(Zi, Zj). If 2 ∗ zi + zj = 0, set zk := T[1] and Zk := T ; else, decode the (2 ∗ zi + zj − 1)-th row of the

garbled table by computing zk := (T ⊕ U2∗zi+zj)[1] and Zk := T ⊕ U2∗zi+zj ;
– For i ∈ [m], decode the output by computing yi := zi+N−m ⊕ λi+N−m;
– Return (COMPUTE, sid, {yi}i∈[m]) to the environment Z;

Protocol Πmask-GC
2pc

Figure 6: The semi-honest setting protocol Πmask-GC
2pc in the FHW[Mmask-GC]-hybrid model

execution EXECFf2pc,S,Z
where the parties P1 and P2 interact

with functionality Ff2pc in the ideal world, and corrupted parties
are controlled by the simulator S. We consider following cases.

Case 1: FHW[MOT-GC] is corrupted; P1 and P2 are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[MOT-GC] as well as honest parties P1 and P2. In addition,
the simulator S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x2|, P2) from the

external Ff2pc, the simulator S picks random k0
2 ← {0, 1}λ

and then sends (Run, sid, 〈ROT, 〈k0
2, n2〉〉) to FHW[MOT-GC]

on behave of P2.
• Upon receiving (COMPUTENOTIFY, sid, |x1|, P1) from the

external Ff2pc, the simulator S picks random k0
1 ← {0, 1}λ.

For i ∈ [n2], the simulator S generates R0
i ← PRFk01 (i, 0),

R1
i ← PRFk01 (i, 1), and it computes σ0

1,i := H(R0
i), σ

1
1,i :=

H(R1
i). S then sends (Run, sid, 〈ROT, 〈k0

1, n2〉〉) to
FHW[MOT-GC] and {σ0

1,i, σ
1
1,i}i∈[n2] to P2 on behave of P1.

• Upon receiving (Run, sid, Qi) from the party Pi ∈ P via
the interface of FHW[MOT-GC], S acts as FHW[MOT-GC] to
send (RUNNOTIFY, sid, Qi, Pi) to A. S then simulates the
FHW[MOT-GC] functionality as defined.

• When the simulated party P2 receives {Rbii }i∈[n2] from
FHW[MOT-GC] and {σ0

1,i, σ
1
1,i}i∈[n2] from P1, S acts as P2

to compute (b1, . . . , bn2) ← PRG(k0
2). For i ∈ [n2], S

computes σ̂1,i := H(Rbii), and asserts σ̂1,i = σbi1,i. After
that, it sends {ci := bi}i∈[n2] to the simulated party P1 and
send (Run, sid, 〈GC, f〉) to FHW[MOT-GC].

• When the simulated party P1 receives {ci}i∈[n2] from the
simulated party P2, S acts as P1 to pick random k1

1 ←
{0, 1}λ and generate (F̂ , ê, d̂)← Gb(1λ, f ; k1

1). It then sets

σ2 := H(F̂ , d̂) and parses ê = {(X0
i , X

1
i)}i∈[n]. Thereafter,

S acts as P1 according to the protocol description as if
x1 = 0. More specifically, for i ∈ [n2]: S computes W 0

i :=
Rcii ⊕X0

n1+i and W 1
i := Rci⊕1

i ⊕X1
n1+i; it then computes

σ̂ci⊕1
3,i = H(Rci⊕1

i ⊕ X0
n1+i, R

ci
i ⊕ X1

n1+i). After that, S
sends (Run, sid, 〈GC, 〈k1

1, f〉〉) to FHW[MOT-GC] and {Zi :=
X0
i }i∈[n1], σ2, and {W 0

i ,W
1
i , σ̂

ci⊕1
3,i }i∈[n2] to P2.

• When the simulated party P2 receives {Zi}i∈[n1], σ2, and
{W 0

i ,W
1
i , σ̂

ci⊕1
3,i }i∈[n2] from P1 and (Run, sid, (F, d)) from

FHW[MOT-GC], S computes σ̂2 := H(F, d), and asserts
σ̂2 = σ2. Thereafter, for i ∈ [n2], S computes σ̂ci3,i :=
H(W 0

i ,W
1
i), and asserts σ̂0

3,i = σ0
3,i and σ̂1

3,i = σ1
3,i.

• Upon receiving (OUTPUT, sid, P2) from the external Ff2pc,
the simulator S returns (DELIVER, sid, P2) if and only if
all the checks are valid.

Indistinguishability. Assume the communication between
P1 and P2 is via the secure channel functionality FSC, the
views of A and Z in EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z and EXECFf2pc,S,Z

are
identical except the scenario where the real-world output y is
different from the ideal-world output y′. This happens when
the malicious FHW[MOT-GC] provides inconsistent information,
yet she manages to pass all the hash validations. It means that
the adversary provides at least one different hash preimage
that would hashes to the same value as the original preimage.
Therefore, the simulator and the adversary can jointly outputs
two messages m1 6= m2 such that H(m1) = H(m2). Assume
H is a collision resistant cryptographic hash function, the
views of A and Z in EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z and EXECFf2pc,S,Z

are
indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[MOT-GC] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[MOT-GC] as well as honest P2. In addition, the simulator
S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x2|, P2) from the

external Ff2pc, the simulator S picks random k0
2 ← {0, 1}λ

and then sends (Run, sid, 〈ROT, 〈k0
2, n2〉〉) to FHW[MOT-GC]

on behave of P2.
• Upon receiving (Run, sid, 〈ROT, 〈k0

1, n2〉〉) from P1

and (Run, sid, 〈ROT, 〈k0
2, n2〉〉) from P2, S acts

as FHW[MOT-GC] to compute R0
i ← PRFk01 (i, 0),

R1
i ← PRFk01 (i, 1), and picks a random bi ← {0, 1}, for

i ∈ [n2]. S then sends {Rbii }i∈[n2] to the simulated party
P2 on behave of FHW[MOT-GC].

• When the simulated party P2 receives {Rbii }i∈[n2] from
FHW[MOT-GC] and {σ0

1,i, σ
1
1,i}i∈[n2] from P1, for i ∈ [n2],

S uses the internal bi to computes σ̂1,i := H(Rbii), and
asserts σ̂1,i = σbi1,i. After that, it sends {ci := bi}i∈[n2] to
P1 and send (Run, sid, 〈GC, f〉) to FHW[MOT-GC].

• When the simulated party P2 receives {Zi}i∈[n1], σ2, and
{W 0

i ,W
1
i , σ̂

ci⊕1
3,i }i∈[n2] from P1 and (Run, sid, (F, d)) from

FHW[MOT-GC], S computes σ̂2 := H(F, d), and asserts
σ̂2 = σ2. Thereafter, S fetches the internal GC label
information (F, e, d) and {R0

i , R
1
i }i∈[n2] from the simulated

FHW[MOT-GC]. For i ∈ [n2], S acts as P2 to assert W 0
i =

Rcii ⊕X0
n1+i , W 1

i = Rci⊕1
i ⊕X1

n1+i and σ̂ci⊕1
3,i = σci⊕1

3,i . In
addition, S uses the internal GC label information (F, e, d)
of the simulated FHW[MOT-GC] together with {Zi}i∈[n1] to
extract P1’s input x∗1. It then sends (COMPUTE, sid, x∗1) to
the external Ff2pc on behave of P1.

• Upon receiving (OUTPUT, sid, P2) from the external Ff2pc,
the simulator S returns (DELIVER, sid, P2) if and only if all
the checks are valid and A allows P2 to finish the protocol
execution and obtains y.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H3.
Hybrid H0: It is the real protocol execution EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, the ROT
choice bits b1, . . . , bn2 are true random bits instead of computing
from (b1, . . . , bn2)← PRG(k0

2).

Claim 5. If PRG : {0, 1}λ 7→ {0, 1}n2 is a secure PRG function
with adversarial distinguishing advantage AdvPRG(A, λ), then
H1 and H0 are indistinguishable with distinguishing advantage
AdvPRG(A, λ).

Proof. It is a straightforward reduction; namely, by hybrid argu-
ment, we can show that if there exists an adversary A who can
distinguish H1 from H0, then we can construct an adversary B
who can break the PRG.

Hybrid H2: H2 is the same as H1 except that in H2, P2 sends
{c′i := bi}i∈[n2] to P1, instead of {ci := bi ⊕ x2,i}i∈[n2].

Claim 6. H2 and H1 are perfectly indistinguishable.

Proof. Since bi are the ROT select bits randomly picked by
FHW[MOT-GC], the distribution of {c′i}i∈[n2] and {ci}i∈[n2] are
identical. Therefore, H2 and H1 are perfectly indistinguish-
able.

Hybrid H3: H3 is the same as H2 except that in H3,
P2 fetches the internal GC label information (F, e, d) and
{R0

i , R
1
i }i∈[n2] from the simulated FHW[MOT-GC]. After receiv-

ing {W 0
i ,W

1
i }i∈[n2] from P1, it checks if W 0

i = Rcii ⊕X0
n1+i

and W 1
i = Rci⊕1

i ⊕X1
n1+i; otherwise, S aborts.

Claim 7. If H is a collision resistant cryptographic hash func-
tion, H3 and H2 are indistinguishable.

Proof. The difference between H2 and H3 is that in H2, P2

only checks H(W 0
i ,W

1
i) whereas in H3, P2 directly checks if

W 0
i = Rcii ⊕X0

n1+i and W 1
i = Rci⊕1

i ⊕X1
n1+i. It is easy to see

when H is a collision resistant cryptographic hash function, H3

and H2 are indistinguishable.

The adversary’s view of H3 is identical to the simulated view
EXECFf2pc,S,Z

. Therefore, the overall distinguishing advantage is
AdvPRG(A, λ).

Case 3: P2 is corrupted; P1 and FHW[MOT-GC] are honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . S simulates the interface of
FHW[MOT-GC] as well as honest P1. In addition, the simulator
S simulates the following interactions with A.
• Upon receiving (COMPUTENOTIFY, sid, |x1|, P1) from the

external Ff2pc, the simulator S picks random k0
1 ← {0, 1}λ.

For i ∈ [n2], the simulator S picks random R0
i ← {0, 1}λ,

R1
i ← {0, 1}λ, and it computes σ0

1,i := H(R0
i), σ

1
1,i :=

H(R1
i). S then sends (Run, sid, 〈ROT, 〈k0

1, n2〉〉) to
FHW[MOT-GC] and {σ0

1,i, σ
1
1,i}i∈[n2] to P2 on behave of P1.

• Upon receiving (Run, sid, 〈ROT, 〈k0
1, n2〉〉) from P1

and (Run, sid, 〈ROT, 〈k0
2, n2〉〉) from P2, S acts as

FHW[MOT-GC] to compute (b1, . . . , bn2
) ← PRG(k0

2). S
then fetches {R0

i , R
1
i }i∈[n2] from the simulated P1 and

sends {Rbii }i∈[n2] to P2.
• When P1 receives {ci}i∈[n2] from P2, S fetches {bi}i∈[n2]

from FHW[MOT-GC]’s internal state. S then extracts P2’s
input x∗2,i := ci⊕bi. After that, it sends (COMPUTE, sid, x∗2)

to the external Ff2pc on behave of P2.
• Upon receiving (COMPUTE, sid, y) from the external Ff2pc

for P2, the simulator S uses the GC simulator to generate
(F ′, X ′, d′)← Sim(1λ, y,Φ(f)).

• Upon receiving (Run, sid, 〈GC, 〈k1
1, f〉〉) from P1 and

(Run, sid, 〈GC, f〉) from P2 to FHW[MOT-GC], S sends
(F ′, d′) as the GC tables and decode information to P2

on behave of FHW[MOT-GC]. S then uses X ′ as the wire
labels to generate {Zi}i∈[n1] and {W 0

i ,W
1
i , σ̂

ci⊕1
3,i }i∈[n2]

as follows:
1. For i ∈ [n1], set Zi := X ′i;
2. For i ∈ [n2]: set W x2,i

i := X ′n1+i ⊕ R
bi
i , W x2,i⊕1

i :=

Rbi⊕1
i , and σ̂ci⊕1

3,i := H(Rci⊕1
i ⊕X0

n1+i, R
ci
i ⊕X1

n1+i).
S then acts as P1 to send those messages to P2.

Indistinguishability. The indistinguishability is proven through
a series of hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution EXEC

FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z .

Hybrid H1: H1 is the same as H0 except that H1 uses true ran-
dom numbers R0

i , R
1
i ← {0, 1}λ instead of Rbi ← PRFk01 (i, b),

b ∈ {0, 1}.

Claim 8. If PRF : {0, 1}λ × {0, 1}λ 7→ {0, 1}λ is a se-
cure PRF function with adversarial distinguishing advantage
AdvPRF(A, λ), then H1 and H0 are indistinguishable with dis-
tinguishing advantage 2n2 · AdvPRF(A, λ).

Proof. It is a straightforward reduction; namely, by hybrid argu-
ment, we can show that if there exists an adversary A who can
distinguish H1 from H0, then we can construct an adversary B
who can break the PRF.

Hybrid H2: H2 is the same as H1 except that H2 generates
(F ′, X ′, d′) ← Sim(1λ, y,Φ(f)), and then it uses X ′ as the
wire labels to generate {Zi}i∈[n1] and {W x2,i

i , σ̂ci⊕1
3,i }i∈[n2].

FHW[MOT-GC] also sends (F ′, d′) as the GC tables and decoding
information to P2.

Claim 9. If GC is simulatable private with adversar-
ial distinguishing advantage Advprv.sim,Φ,SimGC (A, λ), then H2

and H1 are indistinguishable with distinguishing advantage
Advprv.sim,Φ,SimGC (A, λ).

Proof. First of all, by the requirement of simulatable privacy in
Def. 2, (F ′, X ′, d′)← Sim(1λ, y,Φ(f)) should be indistinguish-
able from the real one. Moreover, since P2 does not know Rbi⊕1

i ,
if there is an adversary A who can distinguish the distribution of
{W 0

i ,W
1
i }i∈[n2] from the real one with probability ε, then we

can construct an adversary B who has the same distinguishing
advantage Advprv.sim,Φ,SimGC (B, λ) = ε.

The adversary’s view of H2 is identical to the simulated
view EXECFf2pc,S,Z

. Therefore, if GC is simulatable private, the

views of A and Z in EXEC
FHW[MOT-GC]

ΠOT-GC
2pc ,A,Z and EXECFf2pc,S,Z

are
indistinguishable with distinguishing advantage

2n2 · AdvPRF(A, λ) + Advprv.sim,Φ,SimGC (A, λ) = negl(λ) .

Case 4: P1 and P2 are corrupted; FHW[MOT-GC] is honest.

Simulator. The simulator S internally runs A, forwarding mes-
sages to/from the environment Z . The simulator S simulates the
functionality FHW[MOT-GC].

Indistinguishability. This is a trivial case. Since both P1 and
P2 are controlled by the adversary A, no message is simulated
by S.

This concludes the proof.

	Introduction
	Preliminaries
	Security Model
	Semi-trusted Hardware Model

	Silent 2PC Protocols
	Security
	Further reducing communication
	Implementation and Benchmarks
	Related Work
	Conclusion
	References
	Appendix
	Descriptions of Mmask-GC and 2pcmask-GC
	Security Proof in the Malicious Setting

