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Abstract. In this paper we analyze permissionless blockchain protocols, whose dis-
tributed consensus algorithm lies on a Proof-of-Work composed of k ≥ 1 sequential
hash-puzzles. We put our focus on a restricted scenario, widely used in the blockchain
literature, in which the number of miners, their hash rates, and the difficulty values of
the hash-puzzles are constant throughout time. Our main contribution is a closed-form
expression for the mining probability of a miner, that is, the probability the miner com-
pletes the Proof-of-Work of the next block to be added to the blockchain before every
other miner does. Our theoretical results can be applied to existing Proof-of-Work based
blockchain protocols, such as Bitcoin or Ethereum. We also point out some security is-
sues implied by our findings, which make not trivial at all the design of multi-stage (i.e.
k ≥ 2) Proof-of-Work blockchain protocols.
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1 Introduction

Blockchains. Bitcoin and the blockchain technology came to the fore in 2008, when an enig-
matic web navigator published the famous Bitcoin Whitepaper, using the pseudonymous of Satoshi
Nakamoto [17]. Bitcoin was presented as a decentralized cryptocurrency working on top of the
Bitcoin’s blockchain, which, in turn, was proposed as a public, tamper-resistant, distributed, and
decentralized transaction ledger, maintained and replicated entirely and consistently by anonymous,
unpermissioned, and trustless nodes, in a weakly synchronized ([24]) peer-to-peer network.

Roughly speaking, the Bitcoin blockchain is a chain of blocks. Each block has a set of block
headers. Block headers include a hash pointer to a Merkle tree storing some transactions, and
a hash pointer to the previous block in the chain [18]. Bitcoin transactions are mainly used for
Bitcoin transfers between Bitcoin addresses. The only way to extend the Bitcoin’s blockchain, as
well as to create new coins, is by mining a new block that accommodates transactions not already
added to the blockchain. In order to mine a block, it is required to complete a Proof-of-Work.
In general, in current permissionless blockchain protocols, the Proof-of-Work consists of solving
a single hash-puzzle. The hash-puzzle game works as follows: every distributed competitor, called
miner, runs on-top of a Bitcoin node and he is required to compose a new block with some of the
valid transactions he has heard from the network. Each miner tries to find a nonce to add to the
block headers of his composed block, in such a way that the hash value of the set of block headers is,
in binary, lower than the target value of the hash-puzzle [18]. The first miner who finds a valid nonce
for his block – the first miner who completes the Proof-of-Work – is the winner. He broadcasts his
block to the network, and he gets as a reward an amount of coins, given by the sum of the current
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block reward value and the transaction fees of every transaction in the proposed block [1]. At the
same time, he starts to mine the next block of the chain, following the one just mined. Any other
non-faulty miner receives the block, verifies that the block is valid, and adds it to his local version
of the blockchain. Then, he starts to mine the next block of the chain, following the one just mined.
Outline and contributions. Our contribution is twofold. Firstly, in Section 2, we provide a brief
overview of blockchain protocols whose consensus mechanism lies on a Proof-of-Work composed
of a single hash-puzzle. This Proof-of-Work model is currently used in blockchains as Bitcoin and
Ethereum. In Subsection 2.1, we provide a mathematical analysis of this Proof-of-Work model, with
respect to the target and difficulty value of the hash-puzzle, and to the hash rates of the miners. In
Bitcoin the hash rate indicates the number of trials in the Proof-of-Work game a miner performs
per unit of time. If we consider 1 second as a unit of time, then the unit of measure of the hash rate
is the number of hash function executions per second (hash/s) [2]. In particular, our contribution
formally proves, under some simplifying assumptions widely used in the blockchain literature, the
equivalence between the ratio of the global hash rate a miner has, that is, the ratio between the
hash rate of the miner and the sum of the hash rates of all the miners, and his mining probability,
that is, the probability the miner completes the Proof-of-Work of the next block to be added to
the blockchain before every other miner does. At the best of the authors’ knowledge, no previous
work formally carried out this analysis comprehensively under the same assumptions. Secondly, in
Section 3, we introduce recent related work on alternative blockchain protocols whose Proof-of-Work
is composed of k ≥ 1 sequential hash-puzzles. In Section 4 we extend and generalize the analysis
made in Subsection 2.1 (under the same simplifying assumptions) to this new model of blockchain
protocols. In these protocols, every miner has to sequentially find k nonces to add to the block
headers of his proposed block, in order to complete the Proof-of-Work of his block. Each miner
can start the hash-puzzle number s + 1 of the Proof-of-Work of a block only after he has found
a valid nonce for the hash-puzzle number s. The first miner who completes the last hash-puzzle
of the Proof-of-Work of his proposed block is the winner. We provide a closed-form expression for
the mining probability, which is valid in Proof-of-Works composed of a generic k ≥ 1 number of
sequential hash-puzzles. We exhibit an example which shows that, if k ≥ 2, then the ratio of the
global hash rate held by a miner and his mining probability are not necessarily equal. Such an
example rises up important security issues.

2 Single hash-puzzle Proof-of-Works

In Subsection 2.1, we provide a brief overview of blockchain protocols whose consensus mechanism
lies on a Proof-of-Work composed of a single hash-puzzle. In particular, we present a mathematical
analysis of the mechanics of this Proof-of-Work model, and we formally prove, under some simpli-
fying assumptions widely used in the blockchain literature, the equivalence between the ratio of the
global hash rate held by a miner and his mining probability.

In Subsection 2.2, we complete our overview by presenting some problems that can occur in
real-world single-stage Proof-of-Work based blockchain protocols.

2.1 A mathematical analysis of Proof-of-Works composed of a single hash-puzzle

Let h > 0 be the current hash rate of a miner, and let d be a positive value, denoting the current
difficulty of the hash-puzzle. The difficulty value in Bitcoin, d, is d = 2256/t, where t is a positive
value indicating the current target value of the hash-puzzle. The hash-puzzle’s output space is
{0, 1}256, since the Bitcoin hash-puzzle uses a double SHA-256 hash function circuit.
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Roughly speaking, using the random-oracle assumption1 to model the hash function (assumption
widely used in the Bitcoin and the blockchain literature [10, 19, 5]), for any distinct input x, the
output of the hash function can be considered as uniformly and independently distributed in the
output space. It follows that, under the assumptions of constant hash-puzzle difficulty, every trial
the miner makes to complete the Proof-of-Work is an independent experiment, each of them having
probability of success2 prob = t/2256 = 1/d. The independent experiment is also known as a
Bernoulli trial [10, 11, 13]. Under the assumptions of constant hash-puzzle difficulty and constant
hash rate, the number of successes per unit of time in a sequence of identically distributed Bernoulli
trials is described by a homogeneous Poisson point process, having rate parameter λ = h/d [7, 20].
The rate parameter indicates the average number of successes per unit of time3. In our scenario, the
homogeneous Poisson point process is a stochastic process, which describes the number of Proof-
of-Works the miner completes per interval of time; a new point found in the homogeneous Poisson
point process corresponds bijectively to a new valid nonce found – a new Proof-of-Work completed,
or, equivalently, a new block mined – by the miner. Formally, the probability of having k ∈ N0

successes in the interval of time (a, b) is [7]

P
(
Successes(a,b) = k

) def
=
(
Λ(b)− Λ(a)

)k · e−(Λ(b)−Λ(a)) · (k!)−1 (1)

Here Λ(t) is Λ(t) def
=
∫ t
0λ(t)dt , ∀t ≥ 0 [7]. The function λ(t) is the aforementioned rate parameter.

Given our assumptions on constant hash rate and difficulty parameter, λ(t) is constant throughout
time and the process is homogeneous. Moreover, as we stated before, we have λ(t) = h/d, ∀ t ≥ 0
[7, 20].

The interarrival time between two successive points in a homogeneous Poisson point process, as
well as the time between the time a miner begins to participate in the Proof-of-Work of a block
(i.e. "point 0" in his Poisson process) and the time the miner finds the first point ("point 1" in
his Poisson process), are described by a exponential distribution with the same λ-parameter of the
process [6, 18].

Consider M ≥ 2 competing miners trying to mine the block with block height γ ∈ N0. The block
height value of a block indicates the number of blocks in the blockchain preceding that block. Let Xp

be the exponential distribution describing the interarrival time between two successive blocks found
by miner p, for each p ∈ {1, . . . ,M}. The parameter of Xp is λp = hp/d, where hp > 0 is the hash
rate of miner p, and d > 0 denotes the difficulty of the hash-puzzle. Denote by fXp (t) = P (Xp =
t) = λp e

−λp·t the probability density function, and by RXp (t) = P (Xp > t) = e−λp·t the survival
function relative to Xp. If each miner starts to mine block γ at the same time, then the winner is
the miner whose Poisson point process first finds a point. Therefore, for each p ∈ {1, . . . ,M}, the
probability with which miner p mines block γ is independent from the hash-puzzle’s difficulty and
target values, and it is equal to the ratio of the global hash rate the miner possesses, as we formally
1 We will implicitly use this assumption throughout the entire work.
2 For completeness, it is worth noting that, in the literature, the difficulty value is also indicated as d′ = (216 −
1) · 2208/t ≈ 2224/t, and, as a consequence, the probability value as prob = t/2256 ≈ 1/(d′ · 232) [16]. The value
(216 − 1) · 2208 ≈ 2224 is the maximum allowed target value in Bitcoin [16, 18]. Nevertheless, our results are
independent from this consideration, as they can be equivalently applied to both notations by setting d′ ≈ d/232.

3 In a homogeneous Poisson process the average number of successes in t units of time is λ · t [6]. If we let t be a
unit of time, i.e. t = 1, then the statement holds.
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prove below

P (p mines block γ) =
∫ ∞
0
fXp (t)

∏M
z=1
z 6=p

RXz (t) dt =

∫ ∞
0
λp e

−λp·t ∏M
z=1
z 6=p

e−λz ·t dt =

=

∫ ∞
0
λp
∏M
z=1 e

−λz ·t dt =

∫ ∞
0
λp e

−(
∑M
z=1 λz)·t dt = λp

∫ ∞
0

e−(
∑M
z=1 λz)·t dt =

= λp
−1∑M
z=1 λz

·
[
e−(

∑M
j=0 λj)·t

]∞
0

= λp
−1∑M
z=1 λz

· (−1) =
λp∑M
z=1 λz

=
hp∑M
z=1 hz

On the other hand, a new Proof-of-Work is globally completed every time one of the M miners
"finds a point" in his Poisson point process. Thus, the global block mining event can be mathemat-
ically represented as the sum of the M homogeneous Poisson point processes. Due to the mutual
independence of the processes, the sum of the M homogeneous Poisson point processes is still a
homogeneous Poisson point process, with rate parameter λglob =

∑M
p=1 λp =

∑M
p=1 hp/d. Hence, the

waiting time until a new Proof-of-Work is globally completed is given by an exponential distribu-
tion with a constant rate parameter λglob. The expected value of the exponential distribution – the
expected time until a new block is mined –, λ−1glob, should be λ−1glob = 10 minutes [18, 13].

However, despite the aforementioned static model, widely used in theoretical studies on the
Bitcoin and blockchain technology [7, 12, 20], in the real Bitcoin network the number of miners
involved in the mining game and their hash rates are not constant throughout time. Consequently,
the hash-puzzle difficulty needs to be periodically updated. Therefore, the Poisson point processes
describing a miner’s mining process and the global mining process are not necessarily homogeneous
[7]. The Bitcoin’s hash-puzzle difficulty parameter is periodically updated every 2016 blocks added
to the longest valid chain ([18]) of the blockchain, by considering the block arrival times of the last
2016 added blocks [12], in order to let the mean waiting time between two successive blocks mined
be ten minutes. Moreover, the value of the current global hash rate, hglob =

∑M
p=1 hp, is not public,

since the hash rates of every miner are unknown, but it can be implicitly estimated from the block
arrival times of the past blocks [7, 12, 3].

2.2 Forks

Due to faulty actions, caused by network propagation delays or malicious miners, temporary forks
in the Bitcoin blockchain are possible. To cope with this issue, the Bitcoin protocol has adopted the
longest-valid chain rule [18]. Accordingly, each honest network node selects the longest valid-chain
of his local version of the blockchain as the relevant chain. A chain is valid if it is composed only of
valid blocks and transactions. A transaction is valid if it has been written according to the Bitcoin
rules, the digital signature of the coin sender is valid, and the sender has not tried to double-spend
a coin that he had already spent in another transaction. A block is valid if its Proof-of-Work has
been solved, and every transaction the block accommodates is valid [18].

At the same time, forks may also cause a block recently added in a miner’s longest chain to
suddenly "disappear" from the blockchain. Indeed, another miner may broadcast to the network
a different longest valid chain. In this case, the most recent blocks of the first miner become stale
or orphan block, and all the transaction sets they contain will "disappear" with them. To address
this issue, the Bitcoin rules have adopted the heuristic of transaction confirmations. A transaction
is considered to be permanently added to the blockchain if a block that contains the transaction
has been mined, and six other blocks have been mined on top of it, such that the block is the
seventh last block in its branch. The intuition is that, if six successive blocks are mined extending
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a branch, then, with high probability, the majority of the network nodes have that branch in their
local views of the blockchain. At this point, this branch will presumably be the longest valid chain
in the long-term.

For completeness, we present a brief overview of what a faulty miner is [25, 15]. Generally, a
miner is faulty when he mines a block that does not completely respect the blockchain protocol
rules. A faulty behavior may be accidentally caused by external factors or voluntarily caused by the
miner’s actions. As an example regarding the first case, the blockchain local version in possession
of the miner may not be fully up-to-date, and thus the miner’s last mined block, which extends the
miner’s longest chain, may not extend other miner’s longest chain. In this case, the other miners
would reject the block, after receiving it. In the second case, a miner may intentionally misbehave,
that is, he may be a malicious miner. As an example, he may intentionally mine a new block on top
of the blockchain’s branch that he prefers, in order to perform an attack such as the double-spending
attack [21].

3 Related work on Multi-Stage Proof-of-Work Blockchain protocols

In this section, we present an overview of related work on multi-stage Proof-of-Work blockchain
protocols. In particular, in Subsection 3.1, we describe a recently proposed multi-stage Proof-of-
Work blockchain protocol, while in Subsection 3.2 we list some issues we found on the proposed
protocol.

3.1 Multi-Stage Proof-of-Work blockchain

The first work on multi-stage Proof-of-Work blockchain protocols dates back to 2019 [22]. The
protocol proposed in [22], which is based on Bitcoin technology, targeted the waiting time for
transaction confirmation in Bitcoin. Since in Bitcoin a new block is globally found on average every
ten minutes, it is required averagely about an hour until the transactions, carried by the newest
mined block, are confirmed. The author proposed an alternative mining game, by dividing the Proof-
of-Work in k ≥ 1 consecutive hash-puzzles, that have to be solved sequentially. He denoted each
hash-puzzle with the term stage. We use the terms stage and sequential hash-puzzle interchangeably.
Moreover, the author proposed a pipeline-like architecture for block mining, to increase the efficiency
of mining. The goal was to get a higher block throughput rate, and, consequently, a lower time for
transaction confirmations, and a higher transaction processing rate4. The author pointed out to have
obtained, implicitly, also the sharding ([14]) property. Roughly speaking, the sharding property
incentivizes a more collaborative mining among distributed miners, thanks to which the network
miners divide their work trying to jointly mine a shared block composed of an agreed upon set of
transactions [14]. In [22], the network miners are free to partition themselves into groups, called
pipelines. Miners inside a pipeline are furtherly partitioned into subgroups. The sharding property
in the blockchain protocol proposed in [22] ensures that miners belonging to different subgroups
of a pipeline work collaboratively on different pieces, or shards, of a job, in order to mine a shared
block.

Hardware incompatible hash functions. The protocol employs µ hardware incompatible hash func-
tions, G0, . . . Gµ−1. Two hash functions are hardware incompatible if any type of ASIC, or other
special-purpose hardware, that allows to compute the output of one function faster than general-
purpose mining hardware, cannot be easily reconfigured to give an advantage over general-purpose
4 Presently, Bitcoin processes 7 transactions per second on average [18].
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hardware in the computation of the other function [22]. There is no correlation between k and µ.
The purpose of using hardware incompatible hash functions is to make it harder for miners to obtain
high values for the hash rates in multiple stages. The author suggested the NIST finalists for the
SHA-3 competition as a valid set of hardware incompatible hash functions.

Transactions. A transaction is a tuple (IL, OL, σ) [22], where

1. IL = ((pk1, c1), . . . , (pks, cs)), given a s ≥ 1. For each i ∈ {1, . . . , s}, pki is a public key, ci is the
amount of coins to be withdrawn from the Bitcoin address H(pki), where H is a hash function
defined at protocol level.

2. OL = ((α1, δ1), . . . , (αt, δt)), given a t ≥ 1. For each j ∈ {1, . . . , t}, αj is a recipient address
and δj is the amount of coins to send to αj .

3.
∑s

i=1 ci ≥
∑t

j=1 δj . The difference
(∑s

i=1 ci
)
−
(∑t

j=1 δj
)
≥ 0 is the value of the sum of the

transaction fees in the block.
4. σ is the set of signatures on the pair (IL, OL), computed with the private keys ski corresponding

to pki, for each i ∈ {1, . . . , s}.

Genesis-blocks composition and their Proof-of-Work. The first k blocks of the blockchain, B0, . . . ,
Bk−1 are the genesis-blocks. They do not carry any transaction, and they must be mined to boot-
strap the cryptocurrency and to mine some initial coins. This way, it becomes possible making
transactions, by transacting the existing coins. The structure of the i-th genesis-block, for each
i ∈ {0, . . . , k − 1}, is the following [22]

t i, ηi, τ i, αi, ci
bdigesti,
i,

where

i is the block number, such that 0 ≤ i ≤ k − 1

bdigest0 = H0 (0, t0, η0, τ0, α0, c0)

bdigesti = Hi (bdigesti−1, t i, ηi, τ i, αi, ci) for each i ∈ {1, . . . , k − 1}
t i is the target value of the hash puzzle of block i, for each i ∈ {0, . . . , k − 1}
ηi is the nonce of block i, for each i ∈ {0, . . . , k − 1}
τ i is the timestamp of the completion time of block i’s Proof-of-Work, for each i ∈ {0, . . . , k − 1}
αi is the address of the recipient of block i’s reward, for each i ∈ {0, . . . , k − 1}
ci is the reward for mining block i, for each i ∈ {0, . . . , k − 1}

The Proof-of-Work for the genesis-block i is valid if bdigesti < t i. Thus, the Proof-of-Work of a
genesis-block is almost identical to Bitcoin’s.

General-blocks composition and their Proof-of-Work. The Proof-of-Work of a general-block is di-
vided into k ≥ 1 sequential stages. The hash function of the s-th stage is Hs = Gs mod µ, for each
s ∈ {0, . . . , k − 1}. Each stage target and difficulty parameters are set such that, globally, the ex-
pected time to solve each stage, denoted by T , is the same. There is no fixed amount of coins given
to a single user as block reward, since the rewarding system is divided into stage rewards. A stage
reward is a fixed amount of coins, given to the user that successfully completes a stage of a block.
It consists of newly created coins, which will be effectively generated once the block has been fully
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mined and submitted to the network. Moreover, the winners of different stages of a block also have
to divide the transaction fees obtained from the transactions in the block.

The structure of a general-block is the following [22]

tk−1, ηk−1, τk−1, αk−1, ck−1

...
t1, η1, τ1, α1, c1
t0, η0, τ0, α0, c0
L,
bdigest,
bn,

where

bn ≥ k is the block number
bdigest is the digest of the block
L is the possibly empty hash tree of transactions carried by the block
ts is the target value of the hash puzzle of stage s, for each s ∈ {0, . . . , k − 1}
ηs is the nonce of stage s, for each s ∈ {0, . . . , k − 1}
τ s is the timestamp of the completion time of stage s’s hash-puzzle, for each s ∈ {0, . . . , k − 1}
αs is the address of the recipient of stage s’s reward, for each s ∈ {0, . . . , k − 1}
cs is the reward for completing stage s, for each s ∈ {0, . . . , k − 1}

Consider a general-block Bi+k, with i ≥ 0. Based on the definition of the protocol, the outputs
of the stages and the value of bdigesti+k are obtained through the following computation [22]

gi+k,0 = H0

(
bdigesti, i+ k,RH(Li+k), t i+k,0, αi+k,0, ci+k,0, τ i+k,0, ηi+k,0

)
gi+k,1 = H1

(
bdigesti+1, gi+k,0, t i+k,1, αi+k,1, ci+k,1, τ i+k,1, ηi+k,1

)
...
gi+k,k−1 = Hk−1

(
bdigesti+k−1, gi+k,k−2, t i+k,k−1, αi+k,k−1, ci+k,k−1, τ i+k,k−1,
ηi+k,k−1

)
where



RH(Li+k) is the root hash of the possibly empty hash tree in which the
block’s transactions are stored

gi+k,s is output of stage s, for each s ∈ {0, . . . , k − 1}
t i+k,s is the target value of the hash puzzle of stage s, for each s ∈ {0, . . . , k − 1}
ηi+k,s is the nonce of stage s, for each s ∈ {0, . . . , k − 1}
τ i+k,s is the timestamp of the completion time of stage s, for each s ∈ {0, . . . , k − 1}
αi+k,s is the address of the recipient of stage s’s reward, for each s ∈ {0, . . . , k − 1}
ci+k,s is the reward for completing stage s, for each s ∈ {0, . . . , k − 1}

The Proof-of-Work is valid if and only if gi+k,s < ti+k,s, for each s ∈ {0, . . . , k−1}. Finally, the value
of gi+k,k−1 is assigned to bdigesti+k. Following the protocol, stage s of block Bi+k’s Proof-of-Work
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requires the output of stage s − 1 of block Bi+k’s Proof-of-Work as input, for each i ≥ 0 and for
each s ∈ {1, . . . , k − 1}. Furthermore, stage s of block Bi+k’s Proof-of-Work requires bdigesti+s
as input, for each i ≥ 0, and for each s ∈ {0, . . . , k − 1}. The first general-block has the second
condition always satisfied, since all of his previous blocks have been already mined by someone in
the network to bootstrap the protocol. We will exploit later this property in our security analysis
on the mining probability regarding block Bk. Due to the nature of the Proof-of-Work, the author
suggested a pipeline-like mining architecture, in which physical miners which work in the same
pipeline are partitioned into k groups. The architecture may be realized by letting the k groups
work in parallel and on different shards of the same problem, according to the sharding property
mentioned earlier in this Section. If the general-blocks already mined in the blockchain are i ≥ 0,
group s works on stage s of block Bi+k−s, for each s ∈ {0, . . . , k− 1}. This way, miners in the same
pipeline belonging to different groups mine collaboratively to complete the Proof-of-Work of a block
before the other pipelines do, in order to obtain the mining reward. At the same time, miners on the
same stage mine competitively. Finally, different pipelines compete against each other to mine the
blocks. Generally, once a miner in a group completes a stage, he broadcasts to the network all the
information necessary to start the successive stage of the same block, and to prove that the stage
has been successfully completed. The pipeline-like mining architecture is depicted in Figure 1.

Fig. 1: The pipeline-like mining architecture with i = 0. The x axis denotes the time. The Proof-
of-Works of at maximum k blocks can be active in the same moment. Following the protocol, the
expected time to complete each stage of every block is the same.

3.2 Issues

In this Subsection, we list some issues we found on the proposed protocol.

1. If k ≥ 2 is the number of stages, then the mining probability of a miner and the ratio of the
global hash rate the miner holds are not necessarily equal, as shown in Subsection 4.6.

2. Some hardware incompatible hash functions may be present in multiple stages. In this case, the
advantage the miner has gained by buying an ASIC for those hash functions may be worthwhile
in many stages.

3. A pipeline-like mining architecture cannot be easily constructed, since stage mining is a stochas-
tic event. As a consequence, the pipeline-like block mining architecture can hardly ever be per-
fectly synchronized among different stages. Considering a single pipeline, it is possible to prove
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that the probability that stage s of block Bi+k is completed exactly at the same time of comple-
tion of stage s− 1 of block Bi+k+1 is negligible, for each i ≥ 0 and for each s ∈ {1, . . . , k − 1}.

For completeness, other possible security issues regarding this protocol have been proposed in
[9, 8].

4 Mining probability

In this Section, we propose a closed-form expression for the mining probability. The expression
found is valid in every blockchain protocol whose Proof-of-Work is composed of k ≥ 1 sequential
hash-puzzles, under the assumptions of constant hash rates and hash-puzzles difficulties, and by
letting every miner start to mine a block at the same time. Each miner can start the stage s+ 1 of
his Proof-of-Work only after he has found a valid nonce in stage s, for all s ∈ {0, . . . k − 2}.

As described in Subsection 2.1, although difficult to be satisfied in practice, these assumptions
are widely used in the Bitcoin and blockchain literature [7, 12, 20]. It is worth remarking that
these results may be applied to Proof-of-Work based blockchain protocol proposed in the future.
Moreover, as will be stated in Subsection 4.5, we finally prove that, when k = 1, these results are
equivalent to those valid in existing Proof-of-Work based blockchain protocols, such as Bitcoin or
Ethereum, which have been proved in Subsection 2.1.

As announced in Subsection 3.1, in the protocol proposed in [22], the expression is applicable
to the Proof-of-Work of the first general block Bk under the aforementioned assumptions. Indeed,
all the genesis blocks have already been mined before the Proof-of-Work of block Bk had started.
Consequently, as soon as a miner completes stage s of block Bk’s Proof-of-Work, he can immediately
start stage s+ 1 of the same Proof-of-Work, for each s ∈ {0, . . . , k − 2}. Conversely, given a block
Bi+k, such that i ≥ 1 and s ∈ {0, . . . , k−2}, when a miner completes stage s of block Bi+k, he may
need to wait until someone in the network mines and broadcasts block Bi+s+1, and bdigesti+s+1 is
available. Only at this point, he can start stage s+1 of block Bi+k. For this reason, we will restrict
our analysis to block Bk.

4.1 Notation

We use the following notation:

– the integer k ≥ 1 denotes the number of sequential hash-puzzles a Proof-of-Work is composed
of.

– the integer M ≥ 2 denoted the number of competing miners involved in the Proof-of-Work of a
block.

– d0, . . . , dk−1 are the positive real values representing hash-puzzles difficulties.
– hp,s is a positive real value, denoting the hash rate of miner p on stage s, for all p ∈ {1, . . . ,M}

and for all s ∈ {0, . . . , k − 1}.
– Xp,s is the exponential distribution describing the time miner p takes to complete the stage s of

a block, for all p ∈ {1, . . . ,M}, and for all s ∈ {0, . . . , k − 1}.
– λp,s = hp,s/ds is the positive real parameter of Xp,s, for all p ∈ {1, . . . ,M}, and for all s ∈
{0, . . . , k − 1}.

Let p ∈ {1, . . . ,M}. The time miner p takes to complete the entire Proof-of-Work of a block is
given by the hypoexponential distribution Xp,+k =

∑k−1
s=0 Xp,s. The distribution Xp,+k is simply

the sum of the time miner p takes to complete every stage of his Proof-of-Work. We can represent
the time to complete a block’s Proof-of-Work this way, since every single stage can be described
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by its own independent Poisson point process. The Poisson point process related to the first stage
starts at the same time the Proof-of-Work of the block does. Completing a stage is equal to finding
the first point into its Poisson process. As soon as the first point in a stage’s Poisson process is
found, the stage’s process is not relevant anymore, and the next stage (i.e. the next Poisson process)
starts. Therefore, the time to complete every single stage is described by an exponential distribution
(as in Bitcoin), while the time to complete the Proof-of-Work is the sum of the individual stages’
exponential distributions.

4.2 The hypoexponential distribution

The probability density function and the survival function of the hypoexponential distribution have
been presented by Scheuer [23], and, as closed-form expressions, by Amari and Misra [4].

Results on the hypoexponential distribution. As explained in [23], the literature studies on
the hypoexponential distribution have been divided into three major subcases, as follows:

1. In the first subcase, λp,s = λp,s′ , for all s′ 6= s, and s, s′ ∈ {0, . . . , k − 1}. The hypoexponential
distribution is reduced to an Erlang distribution with shape parameter k and rate parameter λp,
with λp = λp,0 = . . . = λp,k−1.

2. In the second subcase, λp,s 6= λp,s′ , for all s′ 6= s, and s, s′ ∈ {0, . . . , k − 1}.
3. In the third subcase, λp,s can be either equal or not equal to λp,s′ , for all s′ 6= s, and s, s′ ∈
{0, . . . , k − 1}.

The first two cases have been deeply studied in mathematics over the years, and we will not focus
on them. Scheuer, Amari, and Misra have been the first researchers focusing on the third, and most
general, scenario. It is worth remarking that the hypoexponential distribution is not memoryless,
as opposed to the exponential distribution.

4.3 Probability density function and survival function

In this Subsection we recall the Amari and Misra’s closed-form expressions for the probability density
function and the survival function of a hypoexponential distribution [4], omitting the majority of
the low-level technical details that have led to the composition of the two expressions, which are
not necessary for our goals. We refer to the original papers for the complete mathematical analysis
of the two expressions.
Let p ∈ {1, . . . ,M}. Let fXp,+k (t) = P (Xp,+k = t) be the probability density function, and let
RXp,+k (t) = P (Xp,+k > t) be the survival function of Xp,+k . In order to compute fXp,+k (t)
and RXp,+k (t), the exponential random variables Xp,s and Xp,s′ (such that s′ 6= s, and s, s′ ∈
{0, . . . , k − 1}) which satisfy the condition λp,s = λp,s′ must be grouped together. Their common λ
value must be denoted with a new parameter. For example, if k = 4, λp,0 = λp,3, and λp,1 = λp,2,
then two new parameters, βp,1 and βp,2, can be set as follows:

λp,0 = λp,3 = βp,1
λp,1 = λp,2 = βp,2

At the same time, denote by rp,1 and rp,2 the number of λ-parameters having value equal to βp,1 and
βp,2, respectively. At this point, if the number of different λ values is ap, then ap pairs are obtained:
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(βp,1, rp,1), . . . , (βp,ap , rp,ap). It holds that
∑ap

qp=1 rp,qp = k. The probability density function fXp,+k (t)
is ([23], equation 13)

fXp,+k (t)
def
= Bp

ap∑
qp=1

rp,qp∑
lp=1

Φp,qp,lp (− βp,qp)
(rp,qp − lp)! (lp − 1)!

trp,qp− lp e−βp,qp t (2)

where



Bp =
(∏ap

qp=1(βp,qp)
rp,qp

)
Φp,qp,lp (t) = (−1)lp−1 · (lp − 1)! ·

∑
Ω2p (1)

∏ap
jp=1
jp 6=qp

(ijp+rp,jp−1
ijp

)
· τjp , (see [4], equation 4)

τjp = (βp,jp + t)−(rp,jp+ijp ) , (see [4], between equations 3 and 4)

Ω2p(1) =
∑ap

jp=1
jp 6=qp

ijp = lp − 1 : ijp ∈ N0 for each jp ∈ {1, . . . , ap} , (see [4], Notation Paragraph)

The survival function is ([4], equation 3)

RXp,+k (t)
def
= Bp

ap∑
qp=1

rp,qp∑
lp=1

Ψp,qp,lp (− βp,qp)
(rp,qp − lp)! (lp − 1)!

trp,qp− lp e−βp,qp t (3)

where Bp is defined as above, and

Ψp,qp,lp (t) = − (−1)lp−1 · (lp − 1)! ·
∑

Ω2p (0)

∏ap
jp=0
jp 6=qp

(ijp+rp,jp−1
ijp

)
· τjp , (see

[4], equation 5. See [4], Notation Paragraph for the "-" sign)

τjp as above

Ω2p(0) =
∑ap

jp=0
jp 6=qp

ijp = lp − 1 : ijp ∈ N0 for each jp ∈ {0, . . . , ap} , (see [4], Notation Paragraph)

βp,0 = 0, rp,0 = 1 , (see [4], between equations 2 and 3)

4.4 A closed-form expression for the mining probability

The expression is valid under the assumptions described at the beginning of this Section. Actu-
ally, given the memoryless property of the exponential distribution, the assumption on the common
Proof-of-Work starting time can be slightly relaxed. Indeed, the expression of the mining probability
is still valid even if we assume a scenario where theM miners start their respective Proof-of-Work of
a block at different times. However, it is required that, at some time t∗, every miner has started his
Proof-of-Work and is still currently working on the first hash-puzzle. In this case, the mining proba-
bility of a miner can be computed with our expression by considering time t∗ as the common starting
time of the Proof-of-Work of every miner. Similarly, the assumptions of constant hash rates and hash-
puzzles difficulties can be slightly relaxed too. Indeed, the only variables involved in the computation
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of the mining probability are the λ-parameters of the hypoexponential distributions. Hence, we can
simply require that the λ-parameters of the hypoexponential distributions are constant throughout
time. Recalling λp,s = hp,s/ds, for each p ∈ {1, . . . ,M}, and for each s ∈ {0, . . . , k − 1}, it follows
that these assumptions can be replaced with slightly weaker assumptions of constant ratios hp,s/ds,
for each p ∈ {1, . . . ,M}, and for each s ∈ {0, . . . , k − 1}. In Subsection 4.5 we show that, if k = 1,
our expression is reduced to the mining probability of permissionless blockchain protocols whose
Proof-of-Work is composed of one hash-puzzle. Therefore, the aforementioned relaxations can be
applied to the mining probability expression of these blockchains too (discussed in Subsection 2.1).
Let p ∈ {1, . . . ,M} be a miner, and γ a non-negative integer. The probability miner p is the first
one in completing the Proof-of-Work of block γ is

P (p mines block γ) =

∫ ∞
0

fXp,+k (t)

M∏
z=1
z 6=p

RXz,+k (t) dt (4)

By substituting expressions (2) and (3), the integration above is equal to

∫ ∞
0

(
Bp

ap∑
qp=1

rp,qp∑
lp=1

Φp,qp,lp (− βp,qp )
(rp,qp−lp)! (lp−1)!

trp,qp− lp e−βp,qp t

)
·

( M∏
z=1
z 6=p

Bz

( az∑
qz=1

rz,qz∑
lz=1

Ψz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

trz,qz− lz e−βz,qz t
) )

dt

Due to the linearity of integration, the expression above is equal to

( M∏
z=1

Bz

)∫ ∞
0

( ap∑
qp=1

rp,qp∑
lp=1

Φp,qp,lp (− βp,qp )
(rp,qp−lp)! (lp−1)!

trp,qp− lp e−βp,qp t

)
·

( M∏
z=1
z 6=p

( az∑
qz=1

rz,qz∑
lz=1

Ψz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

trz,qz− lz e−βz,qz t
) )

dt

More concisely, the expression above is( M∏
z=1

Bz

)∫ ∞
0

( M∏
z=1

( az∑
qz=1

rz,qz∑
lz=1

Θz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

trz,qz− lz e−βz,qz t
) )

dt

where

Θz,qz ,lz (− βz,qz) =
{
Φz,qz ,lz (− βz,qz), iff z = p
Ψz,qz ,lz (− βz,qz), otherwise

}
Due to the distributive property of multiplication over addition, the expression above is equal

to ( M∏
z=1

Bz

)∫ ∞
0

a1∑
q1=1

r1,q1∑
l1=1

. . .

aM∑
qM=1

rM,qM∑
lM=1

( M∏
z=1

Θz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

trz,qz− lz e−βz,qz t
)
dt

Due to the linearity of integration, the expression above is equal to( M∏
z=1

Bz

) a1∑
q1=1

r1,q1∑
l1=1

. . .

aM∑
qM=1

rM,qM∑
lM=1

(∫ ∞
0

( M∏
z=1

Θz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

trz,qz− lz e−βz,qz t
)
dt

)
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and to( M∏
z=1

Bz

)
·
a1∑
q1=1

r1,q1∑
l1=1

. . .

aM∑
qM=1

rM,qM∑
lM=1

(( M∏
z=1

Θz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

)
·
∫ ∞
0
t
∑M
z=1(rz,qz− lz) e−

∑M
z=1 βz,qz t dt

)
(5)

Euler’s Gamma Function. According to the definition of the Euler’s gamma function, if we let
t2 = ηt, then for each α, η ∈ R, α, η 6= 0, it holds that∫ ∞

0

tα · e−η·tdt =

∫ ∞
0

1

ηα
t2
α · e−t2 · 1

η
dt2 =

1

ηα+1

∫ ∞
0

t2
α · e−·t2dt2 =

a!

ηα+1

If we let α =
∑M

z=1(rz,qz − lz) and η =
∑M

z=1 βz,qz , it holds that∫ ∞
0
t
∑M
z=1(rz,qz− lz) e−

∑M
z=1 βz,qz t dt =

(∑M
z=1 βz,qz

)−1−∑M
z=1(rz,qz− lz) ·

(∑M
z=1(rz,qz − lz)

)
!

Hence, expression (5) can be equivalently defined as( M∏
z=1

Bz

)
·
a1∑
q1=1

r1,q1∑
l1=1

. . .

aM∑
qM=1

rM,qM∑
lM=1

(( M∏
z=1

Θz,qz,lz (− βz,qz )
(rz,qz−lz)! (lz−1)!

)
·
(∑M

z=1 βz,qz
)−1−∑M

z=1(rz,qz− lz) ·

·
(∑M

z=1(rz,qz − lz)
)
!
)

=

=
( M∏
z=1

Bz

)
·
a1∑
q1=1

r1,q1∑
l1=1

. . .

aM∑
qM=1

rM,qM∑
lM=1

((∏M
z=1

Θz,qz,lz
(− βz,qz )

(lz−1)!

)
·Multinomial(

∑M
z=1(rz,qz− lz)); (r1,q1−l1), ... ,(rM,qM−lM )(∑M

z=1 βz,qz

)1+∑M
z=1(rz,qz− lz)

)
where

Multinomial(
∑M
z=1(rz,qz− lz)); (r1,q1−l1), ... ,(rM,qM−lM )

=

(∑M
z=1(rz,qz − lz)

)
!∏M

z=1

(
(rz,qz − lz)!

)
is a multinomial coefficient. Letting

Φ′z,qz ,lz (t) =
Φz,qz,lz (t)
(lz−1)! = (−1)lz−1 ·

∑
Ω2z (1)

∏
jz

(ijz+rz,jz−1
ijz

)
· τjz

Ψ ′z,qz ,lz (t) =
Ψz,qz,lz (t)
(lz−1)! = − (−1)lz−1 ·

∑
Ω2z (0)

∏
jz

(ijz+rz,jz−1
ijz

)
· τjz

Θ′z,qz ,lz (− βz,qz) =

{
Φ′z,qz ,lz (− βz,qz), iff z = p

Ψ ′z,qz ,lz (− βz,qz), otherwise

}
the mining probability of miner p is

P (p mines block γ) =
( M∏
z=1

Bz

)
·
a1∑
q1=1

r1,q1∑
l1=1

. . .

aM∑
qM=1

rM,qM∑
lM=1((∏M

z=1 Θ
′
z,qz,lz

(− βz,qz )
)
·Multinomial(

∑M
z=1(rz,qz− lz)); (r1,q1−l1), ... ,(rM,qM−lM )(∑M

z=1 βz,qz

)1+∑M
z=1(rz,qz− lz)

) (6)
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To the best of the authors’ knowledge expression (6) is no further simplifiable.

4.5 The closed-form expression for the mining probability with k = 1

If k = 1, expression (6) is reduced to the mining probability of permissionless blockchain protocols
whose Proof-of-Work is composed of one hash-puzzle.

Proof. Look at the closed-form expression of the mining probability (6). Let p ∈ {1, . . . ,M}. If
k = 1, the time miner p takes to complete the Proof-of-Work follows the hypoexponential distribu-
tion Xp,+1 with parameter λp,0 = hp,0/d0, where hp,0 > 0 denotes the hash rate of miner p, and
d0 is the value indicating the difficulty of the hash-puzzle. After grouping operations, it remains a
single pair (βp,1, 1), with βp,1 = λp,0. Hence, the number of distinct β-values is ap = 1, and the
number of occurrences of this single β-value is rp,1 = 1, for each p ∈ {1, . . . ,M}.

If k = 1, expression (6) consists of a single addend

P (p mines block γ) =
( M∏
z=1

Bz

)
·

1∑
q1=1

1∑
l1=1

. . .

1∑
qM=1

1∑
lM=1(Φ′p,qp,lp (− βp,qp ) ·

(∏M
z=1
z 6=p

Ψ ′z,qz,lz (− βz,qz )
)
·Multinomial(

∑M
z=1(rz,qz− lz)); (r1,q1−l1), ... ,(rM,qM−lM )(∑M

z=1 βz,qz

)1+∑M
z=1(rz,qz− lz)

) (7)

It holds that

∏M
z=1Bz =

∏M
z=1 λz,0 since Bz = λz,0 for each z ∈ {1, . . . ,M}

Multinomial(
∑M
z=1(rz,qz− lz)); (r1,q1−l1), ... ,(rM,qM−lM )

= 1 since rz,qz = lz = 1 for each z ∈ {1, . . . ,M}

(∑M
z=1 βz,qz

)1+∑M
z=1(rz,qz− lz) =

∑M
z=1 λz,0 since rz,qz = lz, qz = 1, βz = λz,0 for each z ∈ {1, . . . ,M}

and
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

Φ′p,qp,lp (− βp,qp) = 1.
Proof. Φ′p,qp,lp (− βp,qp) = Φ′p,1,1 (− λp,0) since qp = 1, lp = 1, and βp,qp = βp,1 = λp,0 as defined

in Subsection 4.3. Following the definition of Φ′, it holds that
Φ′p,1,1 (− λp,0) =

∑
Ω2p (1)

∏ap
jp=1
jp 6=qp

(ijp+rp,jp−1
ijp

)
· τjp since lp = 1.

Focusing on the summation, in particular on the definition of Ω2p(1) provided in Subsection 4.3,
we have the constraint Ω2p(1) =

∑1
jp=1
jp 6=1

ijp = 0 : ijp ∈ N0 for each jp ∈ {1} , since qp = 1, ap = 1,

and lp = 1. It follows that i1 can take any possible non-negative integer γ to satisfy the constraint.
Once the value is arbitrarily assigned, we can focus on the product

∏ap
jp=1
jp 6=qp

(ijp+rp,jp−1
ijp

)
· τjp .

Since qp = ap = 1, and jp 6= qp by definition, we have an empty product. Therefore
Φ′p,1,1 (− λp,0) =

∑
i1=γ

1 = 1, where γ is a arbitrary and constant non-negative integer.

Ψ ′z,qz ,lz (− βz,qz) = 1
λz,0

for each z ∈ {1, . . . ,M}, z 6= p.

Proof. Let z ∈ {1, . . . ,M}, z 6= p. We have Φ′z,qz ,lz (− βz,qz) = Φ′z,1,1 (− λz,0) since qz = 1, lz = 1,
and βz,qz = βz,1 = λz,0 as defined in Subsection 4.3. Following the definition of Ψ ′, it holds that
Ψ ′z,1,1 (− λz,0) = −

∑
Ω2z (0)

∏az
jz=0
jz 6=qz

(ijz+rz,jz−1
ijz

)
· τjz since lz = 1. Focusing on the summation,

in particular on the definition of Ω2z(0) provided in Subsection 4.3, we have the constraint
Ω2z(0) =

∑1
jz=0
jz 6=1

ijz = 0 : ijz ∈ N0 for each jz ∈ {0, 1} , since qz = 1, az = 1, and lz = 1. It

follows that i0 = 0, while i1 can take any possible non-negative integer γ to satisfy the
constraint. Once the value is arbitrarily assigned, only the product

∏az
jz=0
jz 6=qz

(ijz+rz,jz−1
ijz

)
· τjz is left.

Putting it all together, we recall βz,0 = 0, rz,0 = 1, as defined in Subsection 4.3,
qz = 1, az = 1, and lz = 1, and we recall that Ω2z(0) can be substituted by i0 = 0 and i1 = γ,
with γ ∈ N0. It holds that Ψ ′z,1,1 (− λz,0) = −

∑
Ω2z (0)

∏az
jz=0
jz 6=qz

(ijz+rz,jz−1
ijz

)
· τjz =

= −
∑

i0=0
i1=γ

∏1
jz=0
jz 6=1

(ijz+rz,jz−1
ijz

)
· τjz = −

∑
i0=0
i1=γ

∏
jz=0

(ijz+rz,jz−1
ijz

)
· τjz =

= −
∑

i0=0
i1=γ

(i0+rz,0−1
i0

)
· τ0 = −

(rz,0−1
0

)
· τ0. We recall rz,0 = 1. Hence, what is left is− τ0.

According to its definition, τ0 = (βz,0 + t)−(rz,0+i0) = (−λz,0)−1, since βz,0 = 0, rz,0 = 1, i0 = 0,
while the input of function Ψ , t, is t = λz,0. Therefore Ψ ′z,1,1 (− λz,0) = −τ0 = 1

λz,0
.

Putting it all together, what is left in expression (7) is

(∏M
z=1 λz,0

)
·

∏M
z=1
z 6=p

1
λz,0(∑M

z=1 λz,0
) =

λp,0∑M
z=1 λz,0

=
hp,0∑M
z=1 hz,0

Q.E.D.

4.6 Ratio of the global hash rate a miner holds and his mining probability

The mining probability in a multi-stage Proof-of-Work blockchain protocol can be practically com-
puted with several tools, such as Matlab or Wolfram Mathematica. We used the hypoexponential
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distribution library of Wolfram Mathematica, in order to compute the mining probability through
expression (4). Alternatively, we implemented a Mathematica Library, which computes the mining
probability directly through expression (6). Benchmarking results prove that, at least in the case
in which M ≤ 5 and k ≤ 5, our implementation of expression (6) can be faster than the built-in
Mathematica library in computing the mining probability value on a standard personal computer5.
Therefore, one practical application of expression (6) may be a time-efficient computation of the
mining probability. The authors believe that more advanced and peculiar implementations of ex-
pression (6) may improve the time performances even more6.

In the following, we describe the relationship between the ratio of the global hash rate a miner
holds and his mining probability. In particular, we prove that, if k ≥ 2, then the ratio of the global
hash rate in possession of a miner and his mining probability are not necessarily equal.

Example 1. Let M = 2, k = 2, and d0 = 28, d1 = 212. If h1,0 = 1053.3420821484203 hash/s,
h1,1 = 3350.877902092879 hash/s, h2,0 = 388.6077318015238 hash/s, h2,1 = 6217.723708824381
hash/s, then the first miner possesses the 39.99% of the global hash rate7 and obtains a mining
probability of 0.49100464.

Such a case can occur in the Proof-of-Work of the first general block, Bk, in the mining archi-
tecture proposed in [22]. Indeed, suppose that the second miner is initially the only miner in the
blockchain network, and he has just mined the k genesis blocks to bootstrap the blockchain protocol.
Let the hash functions used in the two stages be hardware incompatible. Following the protocol, the
difficulties of the hash-puzzles are set and updated at repeated intervals, to let the expected time to
complete the two stages be the same. It means that E[X2,0]

def
= 1/λ2,0 is equal to E[X2,1]

def
= 1/λ2,1.

This constraint is satisfied in the example. Right before the second miner starts to mine block Bk,
the first miner joins the mining game. Similar cases to the one described in Example 1 might ad-
vantage a clever miner, who may optimally divide his hash rate among the different hash-puzzles,
and obtain a mining probability value higher than the ratio of the global hash rate he holds. As a
consequence, multi-stage Proof-of-Work blockchain protocols may be more vulnerable than single-
stage counterparts to attacks such as the 51% attack [18], Indeed, if a "low hash-rated" miner is
malicious, and his mining probability is greater than 0.50, then the miner would easily become a
51% attacker, and he would "control" the blockchain protocol [18].

5 Conclusion

In this paper we obtained a closed-form expression for the mining probability, which is valid, under
some assumptions, in permissionless blockchain protocol whose Proof-of-Work is composed of k ≥ 1
sequential hash-puzzles. Our theoretical results can be applied to existing Proof-of-Work based
blockchain protocols, such as Bitcoin or Ethereum. Eventually, we proved that, if k ≥ 2, then the
ratio of the global hash rate held by a miner and his mining probability are not necessarily equal.
This might advantage a clever miner, who may optimally divide his hash rate among the different
hash-puzzles, and obtain a mining probability value higher than the ratio of the global hash rate
he holds. Such a possibility opens up critical security issues. Multi-stage Proof-of-Work blockchain
protocols deserve further and careful investigations.
5 The benchmarking was performed on a Notebook HP Pavilion Laptop 15-cs2023nl, equipped with a quad-core
CPU Intel Core

TM
i7-8565U CPU running at 1.80GHz, 8MB cache, and 16GB (2x8) SO-DIMM SDRAM DDR4

running at 2400MHz.
6 Our source code, a comprehensive documentation, and the information regarding the benchmark tests done are
available on GitHub: https://github.com/FraMog/MiningProbabilityMultiStageProof-of-Work.

7 The ratio of the global hash rate the first miner possesses is (h1,0 + h1,1)/(h1,0 + h1,1 + h2,0 + h2,1).

https://github.com/FraMog/MiningProbabilityMultiStageProof-of-Work
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