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Abstract
We initiate the study of multi-party functional encryption (MPFE) which unifies and abstracts out

various notions of functional encryption which support distributed ciphertexts or secret keys, such as
multi-input FE, multi-client FE, decentralized multi-client FE, multi-authority FE, dynamic decentralized
FE, adhoc multi-input FE and such others. Using our framework, we identify several gaps in the literature
and provide some constructions to fill these:

1. Multi-Authority ABE with Inner Product Computation. The recent work of Abdalla et al.
(ASIACRYPT’20) constructed a novel “composition” of Attribute Based Encryption (ABE) and
Inner Product Functional Encryption (IPFE), namely functional encryption schemes that combine
the access control functionality of attribute based encryption with the possibility of performing
linear operations on the encrypted data. In this work, we extend the access control component
to support the much more challenging multi-authority setting, i.e. “lift” the primitive of ABE
in their construction to multi-authority ABE for the same class of access control policies (LSSS
structures). This yields the first construction of a nontrivial multi-authority FE beyond ABE from
simple assumptions on pairings to the best of our knowledge.
Our techniques can also be used to generalize the decentralized attribute based encryption scheme of
Michalevsky and Joye (ESORICS’18) to support inner product computation on the message. While
this scheme only supports inner product predicates which is less general than those supported by
the Lewko-Waters (EUROCRYPT’11) construction, it supports policy hiding which the latter does
not. Our extension inherits these features and is secure based on the k-linear assumption, in the
random oracle model.

2. Function Hiding DDFE. The novel primitive of dynamic decentralized functional encryption
(DDFE) was recently introduced by Chotard et al. (CRYPTO’20), where they also provided the
first construction for inner products. However, the primitive of DDFE does not support function
hiding, which is a significant limitation for several applications. In this work, we provide a new
construction for inner product DDFE which supports function hiding. To achieve our final result,
we define and construct the first function hiding multi-client functional encryption (MCFE) scheme
for inner products, which may be of independent interest.

3. Distributed Ciphertext-Policy ABE. We provide a distributed variant of the recent ciphertext-
policy attribute based encryption scheme, constructed by Agrawal and Yamada (EUROCRYPT’20).
Our construction supports NC1 access policies, and is secure based on “Learning With Errors” and
relies on the generic bilinear group model as well as the random oracle model.

Our new MPFE abstraction predicts meaningful new variants of functional encryption as useful targets
for future work.
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1 Introduction
Functional encryption (FE) [SW05, BSW11] is a powerful generalization of public key encryption which
enables a user to learn a function of the encrypted data. Concretely, in FE, a secret key SKf is associated
with a function f and the ciphertext CTx is associated with a message x (in the domain of f). And, by
combining SKf with CTx, the decryptor learns f(x) and nothing else.

The original motivation behind the concept of functional encryption, as discussed in [BSW11], was to
put forth a new broad vision of encryption systems. Since its introduction, the concept of FE has been
massively impactful in several aspects: (i) it helped unify the existing literature on encryption systems
(such as identity-based encryption [Sha84, BF01], attribute-based encryption [SW05, GPSW06], predicate
encryption [KSW08] and more) and place them under a single umbrella which enabled clear comparisons, (ii)
it helped in predicting new natural encryption primitives that had not been studied before, such as partially
hiding predicate/functional encryption [GVW15], and (iii) it served as the right abstraction to understand
the relationship of this broad concept with other notions in cryptography, such as to indistinguishability
obfuscation [AJ15, BV15].

Supporting Multiple Users. Subsequently, many new primitives arose to generalize FE to the multi-
user setting – multi-input functional encryption [GGG+14], multi-client functional encryption [CDSG+18a],
decentralized multi-client functional encryption, adhoc multi-input functional encryption [ACF+20], multi-
authority attribute based encryption [Cha07], dynamic decentralized functional encryption [CDSG+20] and
such others. Similar to the many special cases of functional encryption, these notions are related yet different
and it is often difficult to understand how they compare to one-another, whether they use related techniques,
and what is known in terms of feasibility. Moreover, each new variant that springs up acquires a different
name, leading to a plethora of acronyms which clutter the landscape, often adding to confusion rather than
clarity.

In this work, we initiate the study of “Multi-Party Functional Encryption” (MPFE) which unifies and
abstracts out various notions of multi-user functional encryption, such as those described above. Our
starting point is the observation that all above notions of FE support some form of distributed ciphertexts or
distributed keys or both. In more detail, we summarize the state of affairs as:

1. Distributed Ciphertexts. The primitives of multi-input functional encryption (MIFE) [GGG+14]
and multi-client functional encryption (MCFE) [CDSG+18a] generalize FE to support distributed inputs.
Both notions permit different parties P1, . . . ,Pn each with inputs x1, . . . ,xn to compute joint functions
on their data, namely f(x1, . . . ,xn). Each party encrypts its input xi to obtain CTi, a key authority
holding a master secret MSK generates a functional key SKf and these enable the decryptor to compute
f(x1, . . . ,xn).
The main difference between these definitions lies in the way the inputs can be combined. In multi-client
functional encryption (MCFE), inputs xi are additionally associated with public “labels” labi and inputs
can only be combined with other inputs that share the same label. On the other hand, multi-input
functional encryption does not restrict the way that inputs are combined and permits all possible
combinations of inputs. Both primitives are defined as key policy systems – namely, the access control
policy or function is embedded in the secret key rather than the ciphertext.

2. Distributed Keys. Distribution or decentralization of keys in the context of FE has also been
considered in various works, to achieve two primary objectives (not necessarily simultaneously) – a)
handling the key escrow problem, so that there is no single entity in the system that holds a powerful
master secret against which no security can hold, and b) better fitting real world scenarios where different
authorities may be responsible for issuing keys corresponding to different attributes of a user, such as
offices for passport, drivers license and such others. We summarize some relevant primitives next.

(a) Decentralized Attribute Based Encryption with Policy Hiding (DABE): A decentralized policy-
hiding ABE, denoted by DABE [MJ18] was proposed by Michalevsky and Joye to handle the
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key escrow problem. In a DABE scheme, there are n key authorities, each of which run a local
setup to generate their private and public keys. An encryptor encrypts a message m along with a
general access structure C, while secret keys corresponding to (the same) attribute x are issued by
independent authorities. Decryption recovers m if C(x) = 1. The access policy in the ciphertext is
hidden.

(b) Multi-Authority Functional Encryption (MAFE): The notion of Multi-Authority FE/ABE [Cha07,
LW11, BCG+17] emerged to address the second objective, i.e. handling the case where different
authorities are responsible for different sets of attributes. Since ABE is a special case of FE, we focus
on MAFE. A MAFE scheme is defined as a ciphertext-policy scheme, namely the policy/function
is embedded in the ciphertext as against the function keys. In MAFE, n key authorities may
independently generate their private and public keys, without any interaction. An encryptor
computes a ciphertext for a message m along with a policy f over the various authorities. Any
authority i, can generate a token for a user P for attributes labi. A decryptor with tokens for labi
from authority i ∈ [n], can decrypt the ciphertext to recover f(lab1, . . . , labn,m).

3. Distributed Ciphertexts and Keys. Some primitives allow to distribute both ciphertexts and keys.
Some examples below.

(a) Decentralized Multi-Client Functional Encryption (D-MCFE): The notion of decentralized multi-
client FE was defined by Chotard et al. [CDSG+18a, ABKW19, LŢ19] in order to handle the key
escrow problem in an MCFE scheme. D-MCFE is defined as a key policy primitive, and adapts
MCFE as described above to ensure that there is no single master secret held by any entity – the
parties participate in an interactive setup protocol to establish their individual (correlated) master
secret keys. In more detail, there are n parties, each holding MSKi for i ∈ [n], that compute
ciphertexts for their inputs (labi,xi) as well as generate partial decryption keys SKi,f for a given
function f . The decryptor can combine the partial secret keys and individual ciphertexts to
compute f(x1, . . . ,xn) if and only if all the labels are equal.

(b) Ad Hoc MIFE (aMIFE): Similar to D-MCFE, this notion was introduced in [ACF+20] to handle
the key escrow problem in MIFE. This notion is key policy, and offers some additional features as
compared to D-MCFE — non-interactive setup and dynamic choice of function arity as well as
parties that participate in a computation. This notion does not differentiate between key authorities
and users, and lets users generate their own partial decryption keys along with ciphertexts. Thus,
for i ∈ [n], party i computes a ciphertext for xi and partial key SKf,i which can be combined by
the decryptor to obtain f(x1, . . . ,xn).

(c) Dynamic Decentralized FE (DDFE): This primitive was introduced very recently in [CDSG+20] to
further generalize aMIFE – it requires non-interactive, local setup and allows dynamic choice of
function arity as in aMIFE, but additionally allows partial decryption keys provided by users to be
combined in more general ways than in aMIFE. Also, unlike aMIFE, it supports the public key
setting.

1.1 Unifying the View: Multi-Party Functional Encryption
While the above notions enable controlled manipulation of encrypted data in increasingly expressive ways,
they are too related to warrant independent identities. To unify and extend the above primitives, we propose
the notion of multi-party functional encryption (MPFE). All the above examples (and more) can be cast
as examples of MPFE with a suitable choice of parameters: this clarifies the connections between these
primitives. MPFE allows for both distributed ciphertexts and distributed keys, and specifies how these may
be combined for function evaluation. To avoid bifurcating key-policy and ciphertext-policy schemes, we allow
either ciphertext or key inputs to encode functions. To better capture attribute and function hiding, we
allow every message or function being encoded to have a public and private part. To support schemes with
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interactive, independent or centralized setup, we allow the setup algorithm of MPFE to function in any of
these modes.

A bit more formally, let nx be the number of ciphertext inputs and ny be the number of key inputs. Let
X = Xpub×Xpri be the space of ciphertext inputs and Y = Ypub×Ypri be the space of key inputs. We define
two aggregation functions as Aggx : Xnx → X , and Aggy : Yny → Y, which specify how these inputs may be
combined to capture a given primitive. The definitions of the algorithms that constitute an MPFE scheme
are the same as in all prior work:

– a Setup algorithm outputs the encryption keys for nx encryptors and master keys for ny key authorities.
This algorithm1 may now run in one of three modes (Central, Local,Decentralized), which captures
centralized setup, local/independent setup or decentralized/interactive setup.

– an Encrypt algorithm which is run independently by nx users, each encoding their own message
xi = (xpub,i, xpri,i) with their own encryption key EKi.

– a key-generation algorithm KeyGen which is run independently by all ny key authorities, each generating
its own partial key for an input yj = (ypub,j , ypri,j) of its choice using its own master secret key MSKj .

– a decryption algorithm Decrypt, which given input the partial keys {SKi}i≤ny and partial ciphertexts
{CTj}j≤nx can combine them to compute U

(
Aggx({xi}),Aggy({yj})

)
, where U is the universal circuit.

Note that either xi or yj can be descriptions of functions, capturing both key and ciphertext policy schemes. By
suitably choosing nx, ny, Aggx, Aggy and the mode of setup, namely (mode ∈ {Central, Local,Decentralized}),
the above abstraction lets us specify all the aforementioned primitives in a unified manner, and also allows us
to instantiate these parameters in different ways to yield new, meaningful primitives. Please see Section 3 for
the formal definition and Section 4 for details on how the above primitives can be expressed as instances of
MPFE.

Dynamic MPFE. In the above description, we assume that the number of parties as well as the aggregation
functions are input to the setup algorithm. A more powerful definition could support full dynamism, where
the parties generate their own keys, join the protocol dynamically without prior agreement, and choose the
functionality (in our case Aggx and Aggy) dynamically so that it can change for every instance of the protocol.

While dynamism is obviously desirable, it is significantly harder to instantiate since it necessitates a local
setup algorithm without any co-ordination between the parties. While there do exist some constructions
for dynamic FE supporting multiple users, such as adhoc MIFE [ACF+20] and DDFE [CDSG+20], most
constructions in the literature are “static” and rely on centralized or interactive setup [GGG+14, ACGU20,
CZY19, ABKW19, LŢ19, ABG19, CDSG+18a, CDSG+18b]. Thus, a definition which is inherently dynamic
would preclude representation of most constructions in the literature.

For simplicity of notation and ease of workability, we define MPFE with and without dynamism separately.
We provide the definition of the static variant in Section 3 and the dynamic variant in Section 3.1. We
note that these two variants may be condensed to a single one using additional notation but this makes the
definitions harder to work with.

Feasibility. In Appendix A, we provide a general feasibility of MPFE for circuits from the minimal assumption
of MIFE for circuits.

1.2 Comparison with Prior Work
The notions of D-MCFE, aMIFE and DDFE are most closely related to our work, since they allow combining
both ciphertexts and keys simulataneously. However, our notion differs from these in important ways. To

1If the setup mode is decentralized/interactive, then the description of setup could correspond to an interactive multi-round
protocol instead of an algorithm. However, for ease of exposition we abuse the notation and use setup algorithm to refer to the
corresponding protocol description.
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begin, the setup algorithms of the above primitives have a fixed format – in D-MCFE, this is interactive,
while for aMIFE and DDFE, it is decentralized and non-interactive. Thus, aMIFE and DDFE cannot capture
D-MCFE and vice versa. Moreover, neither of these can capture most existing constructions in the literature
which have trusted, centralized setup as discussed above. In contrast, we allow setup to have either of these,
as well as other formats, allowing us to capture all the above primitives and more (see Section 4). Next,
D-MCFE, aMIFE require partial keys to represent the same function. While DDFE does allow partial keys to
be combined in expressive ways, it does not support any function hiding. Even the support for partial input
hiding in these primitives is less than complete: for instance, aMIFE does not support public input in the
ciphertext, and while DDFE allows for some part of the input to be public, this is via a separate empty key ε.
In contrast, MPFE captures public and private input in both the ciphertext and the function key directly,
making it feasible (in the case of function inputs) and simpler (in the case of ciphertext inputs) to capture
partial hiding.

The most important feature of MPFE is that is captures existing constructions using a uniform, simple
notation, allowing to place all prior work on the same map, making these constructions easier to compare
and allowing to identify gaps between these. Using our MPFE framework, we interpolate the space in prior
work to predict several new, natural and useful primitives. Then, we provide multiple new constructions
from simple, standard assumptions to address these limitations (described next), as well as identify novel new
primitives (described in Section 1.5) to be constructed in future work.

1.3 New Constructions
We next describe the new constructions we provide in this work.

Multi-Authority ABE ◦ IPFE. The recent work of Abdalla et al. [ACGU20] (ACGU20) constructed a
novel “composition” of ABE and IPFE, namely functional encryption schemes that combine the access
control functionality of attribute based encryption with the possibility of performing linear operations on
the encrypted data. In more detail, the message space contains a policy predicate φ ∈ NC1 and a message
vector v ∈ Z`q, while decryption keys are jointly associated with an attribute vector x ∈ {0, 1}n and a key
vector u ∈ Z`q. The functionality provided by such a system is that a decryptor recovers the inner product
value 〈u,v〉 if φ(x) = 1. Thus, it provides a fine-grained access control on top of inner product functional
encryption (IPFE) capability. For ease of exposition, we denote this primitive, which is called “IPFE with
fine-grained access control” in [ACGU20] by ABE ◦ IPFE in our work2. Abdalla et al. [ACGU20] provide a
construction leveraging state of the art ABE from pairings to support predicates represented by Linear Secret
Sharing Schemes (LSSS) in the above functional encryption scheme.

Seen from the lens of MPFE, the ACGU20 construction has nx = ny = 1, with (xpub, xpri) = (φ,v),
(ypub, ypri) = ((fx,u),⊥) where fx is a function that takes as input three arguments (φ,v,u) and outputs
〈u,v〉 if φ(x) = 1. The aggregation functions are trivial as there is only a single encryptor and key generator.
In this work, we extend the ACGU20 construction to the multiparty setting. In more detail, we support
ny = n for some fixed, polynomial n and Local mode of setup algorithm, so that each key generator generates
its key components locally and independently. The number of encryptors nx as well as the (xpub, xpri) remain
unchanged. However, each of the n key generators now has input (ypub, ypri) = ((GIDi, xi,ui),⊥) where
GIDi ∈ {0, 1}∗ is a global identifier, xi ∈ {0, 1} is an attribute bit, and ui ∈ Z`q is the key vector for i ∈ [n].
The Aggx function remains trivial as before but the Aggy function checks if all the global identifiers match
GID1 = . . . = GIDn, key vectors are consistent u1 = . . . = un, and sets (ypub, ypri) = ((fx,u),⊥) if so, where
x = (x1, . . . , xn) and fx is as above.

The above generalization has been studied in the literature in the context of ABE under the name
multi-authority ABE, or MA-ABE – here, we extend the access control component of ACGU20 to support
the multi-authority setting, i.e. “lift” the primitive of ABE ◦ IPFE to MA-ABE ◦ IPFE. Our construction
departs significantly from ACGU20 in details – our starting point is the MA-ABE construction of Lewko and

2We caution the reader that the notation ABE ◦ IPFE is for readability and does not denote a formal composition.
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Waters [LW11] which we extend to support inner product computation. This yields the first construction of a
nontrivial multi-authority FE beyond ABE from simple assumptions on pairings to the best of our knowledge.

Using our techniques, we also extend the decentralized attribute based encryption (DABE) scheme of
Michalevsky and Joye [MJ18] to support inner product computations. While [MJ18] only supports inner
product predicates unlike [LW11], it supports policy hiding unlike the latter – our extension inherits these
features.

Function Hiding DDFE. The novel primitive of dynamic decentralized inner product functional encryption
(IP-DDFE) was recently introduced by Chotard et al. [CDSG+20], where they also provided the first
construction. As discussed above, DDFE is an instance of dynamic MPFE. Using the notation of MPFE, we
have the setup algorithm in the Local mode, so that each party i can dynamically join the system by generating
a public key PKi and a master secret key MSKi. For encryption, party i sets (xpub, xpri) =

(
(UM , labM ),xi

)
where UM is the set of parties whose inputs will be combined and labM is a label which imposes a constraint
on which values can be aggregated together. For key generation, party i sets (ypub, ypri) =

(
(yi,UK ,y),⊥

)
where UK is a set of public keys that defines the support of the inner product, and y is an agreed upon
vector y = {yi}i∈UK . The function Aggx checks if the public inputs (UM , labM ) match for all parties and
that all the ciphertexts are provided for the set UM . If so, outputs (UM ,x) where x = (x1‖ . . . ‖xnx). The
function Aggy checks that all values UK and y are the same for all parties, and that value yi matches with
its corresponding component in the agreed vector. If so, it outputs the function fUK ,y which takes as input
(UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

However, as discussed before, the primitive of DDFE does not support function hiding. We see this as a
significant limitation of this notion. Function hiding is a well studied and very useful property with many
applications – for instance, it allows parties to securely delegate computation to an untrusted server without
the server being able to learn the functionality. In some cases, knowing the functionality and the output
(which the server computes in the clear) may leak information about the underlying data. In other cases,
the functionality itself may be private and protected by copyright laws. In our work, we provide a new
construction for IP-DDFE which supports function hiding. In more detail, the key generator, similar to
the encryptor associates a label labK with its vector yi and combining partial keys is only possible when
their labels match. Importantly, the key vector yi may now be hidden analogously to the vector xi in the
ciphertext.

In more detail, for key generation, party i sets (ypub, ypri) =
(
(UK , labK),yi

)
where UK , labK have the

same roles as UM , labM , respectively. The function Aggy, analogously to Aggx checks that all values UK
and labK are the same for all parties. If so, it outputs the function fUK ,y=(y1‖...‖yny ) which takes as input
(UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

To achieve our final result, we define and construct the first function hiding MCFE scheme for inner
products, which may be of independent interest.

Ciphertext-Policy ABE with Distributed Key Generation. We provide a multiparty variant of the
recent ciphertext-policy attribute based encryption scheme, constructed by Agrawal and Yamada [AY20].
In our scheme, the setup algorithm is run in the Local mode and key generation is distributed amongst
ny = n parties for any polynomial n. As in single-party ABE, we have nx = 1 (hence Aggx is trivial) where
(xpub, xpri) = (C,m) where C is a circuit in NC1 and m is a hidden bit. For key generation, the ith party
produces a key for (ypub, ypri) = ((y,GID, yi),⊥) where GID is a global identifier, and y is an agreed upon
vector y = (y1, . . . , yn). The aggregation function Aggy checks if all the values GID and y are the same, and
that value yi matches with its corresponding component in the agreed vector y. It then outputs a function
fy which takes as input a circuit C and message m and outputs m if C(y) = 1. Our construction is secure
based on “Learning With Errors” and relies on the generic bilinear group model as well as the random oracle
model. We show that as long as at least one authority is honest, the scheme remains secure.
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1.4 Technical Overview
In this section, we provide an overview of the techniques used for our constructions. We begin with our two
constructions that extend multi-authority schemes [LW11, MJ18] to support inner products.

Multi-Authority ABE◦ IPFE for LSSS Access Structures. We described the functionality of MA-ABE◦
IPFE in Section 1.3. Security is defined in a multifold setting where: (1) adversary is allowed to corrupt the
key authorities, (2) make key queries that do not satisfy the challenge policy predicate φ∗, and (3) also make
key queries that satisfy the challenge policy predicate φ∗ but decrypt to the same value for both challenge
vectors (that is, 〈u,v∗0〉 = 〈u,v∗1〉).

A natural first line of attack is to consider whether such a scheme can generically be built from combining
these two primitives. As it turns out, any such generic construction suffers from the common problem of
mix and match attacks, that is, we must prevent an authorized MA-ABE portion of the key from being used
along with an IPFE portion of an unauthorized key. Another idea is to extend the ABE ◦ IPFE construction of
[ACGU20] to support multiple authorities. However, this work relies on the predicate encoding framework
which is not suitable as-is for our application. Instead, our approach is to start with the multi-authority ABE
construction by Lewko and Waters [LW11] for LSSS access structures, and show how to leverage it’s intrinsic
algebraic structure to add an inner product functionality “on top” of the multi-authority ABE construction.

To begin, we provide an informal sketch of a simplified version of our construction. Recall that an access
policy corresponding to a linear secret sharing scheme access structure contains a share generating matrix A
and a row index to party index mapping function ρ.

LSetup : The i-th authority samples a length ` masking vector αi as its secret key, and publishes its encoding[
αi

]
T

in the target group as the public key.

KeyGen : To generate a secret key for key vector u, the i-th authority projects αi on the vector space defined
by key vector u. That is, if the attribute bit xi is 13, then the partial decryption key is simply

[
〈αi,u〉

]
.

Enc : For encrypting a message vector v under an access policy (A, ρ), the encryptor first secret shares the
message vector v using the access policy A into a share matrix Sv. That is, Sv is a random matrix
with the property that for each accepting attribute x there exists a reconstruction vector zx such that
z>x · Sv = v>. It next arranges the authority public keys

[
αi

]
T

row-wise in a matrix ∆ as per the
function ρ, that is i-th row on ∆ is ρ(i)-th public key

[
αρ(i)

]
T

. Finally, it output the ciphertext as the
following matrix

CT0 =
[
Sv + ∆� (r⊗ 1>)

]
T
, CT1 =

[
r
]
,

where r is a random vector of appropriate dimension and � denotes the component-wise multiplications
between two matrices of same dimensions.

Dec : A decryptor then simply left-multiplies CT0 with the reconstruction vector zx and right-multiplies with
the key vector u to compute the following:

z>x · CT0 · u = z>x ·
[
Sv + ∆� (r⊗ 1>)

]
T
· u

=
[
v> · u + z>x · (∆� (r⊗ 1>)) · u

]
T

=
[
v> · u + z>x · (∆� (r⊗ u>))

]
T

It next arranges the partial decryption keys
[
〈αi,u〉

]
row-wise in a vector K as per the function ρ, that

is i-th element of K is ρ(i)-th decryption key
[
〈αρ(i),u〉

]
. It performs the component pairing between

K and CT1, and then takes the linear combination as specified by zx which can be simplified as follows:

z>x · e (K,CT1) =
[
z>x · (∆� (r⊗ u>))

]
T

3As in prior ABE schemes based on bilinear maps, the key is empty when xi = 0.
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Finally, it can recover
[
v> · u

]
T

from the above two terms, and learn the exponent value by brute force
search.

Now in the above sketch we ignored the global identifier GID that is necessary for tying together the partial
decryption keys provided by each authority, and we also ignore the modifications necessary for proving
security under standard bilinear assumptions. At a very high level, for proving security we rely on ideas from
the dual system paradigm [Wat09] as in the multi-authority ABE scheme of [LW11]. However, we must deal
with several new challenges to adapt this paradigm to our setting, as we describe next.

In the dual system paradigm, the intuition is that the reduction algorithm first switches all the secret
keys to semi-functional keys, and thereafter it also switches the challenge ciphertext to a semi-functional
ciphertext, and after both these changes security follows directly from the property that semi-functional secret
keys and ciphertexts are not compatible for decryption. In IPFE, we cannot hope to execute the same strategy
directly since now we cannot switch all secret keys to semi-functional keys since some secret keys might
allow decrypting the challenge ciphertext (but they still would not help in distinguishing by admissibility
constraints on the attacker). At this point, we define the concept of partial semi-functional ciphertexts such
that (at a high level) we first switch all the rejecting secret keys to semi-functional while leaving the accepting
keys as is, and thereafter we switch the challenge ciphertext to be a “partial” semi-functional ciphertext such
that this hides the non-trivial information about the encrypted message vectors.

Although this intuition seems to work at a high level, it is still insufficient since it is unclear how to switch
the entire ciphertext to semi-functional in the standard model. To that end, our idea is to switch all the
accepting secret keys (including the ones for satisfying predicates) to their semi-functional counterparts as
well, but now ensure that the challenge ciphertext components that the accepting keys interact with are only
nominally semi-functional. Here the difference between a regular ciphertext, a nominally semi-functional,
and a standard semi-functional ciphertext is that – regular ciphertexts lie in a special subgroup with no
special blinding terms; while nominally semi-functional ciphertexts have structured blinding factors outside
the special subgroup but it does not affect decryption irrespective of the type of secret key being used; and a
standard semi-functional ciphertext has unstructured blinding factors outside the special subgroup such that
it affects decryption when using semi-functional keys. Now switching portions of the challenge ciphertext as
nominally semi-functional is necessary because of two reasons: first, making the entire challenge ciphertext
semi-functional will affect decryption w.r.t. accepting keys which will be distinguishable for the adversary;
second, it is unclear how to sample the challenge ciphertext in which only one component is semi-functional
while other are regular sub-encryptions due to the fact that these different ciphertext components are
significantly correlated. Thus, we get around this barrier by ensuring that the challenge ciphertext is sampled
as what we call a partial semi-functional ciphertext (which has nominally semi-functional components along
with a standard semi-functional component).

Please see Section 5 for the formal construction and proof. Our construction relies on standard assumptions
over composite-order bilinear groups, but could be also be easily adapted to prime-order groups with a
security proof in the generic group model as in [LW11].

DABE ◦ IPFE for Inner Product Predicates, with Policy Hiding. Next, we extend the construction
of decentralized attribute based encryption by Michalevsky and Joye [MJ18] to incorporate inner product
functional encryption. Observe that [MJ18] supports only inner product predicates but allows for hiding
the policy in the ciphertext. While our extension to the scheme of [MJ18] also yields a multi-authority ABE
extended to support inner products as above, the details of the transformation are quite different. We observe
that the algebraic structure of [MJ18] makes it amenable to incorporating the IPFE functionality using
ideas developed in the literature for constructing IPFE generically from public-key encryption which have
special structural and homomorphic properties [ABDCP15, ALS16, BJK15]. We proceed to describe this
transformation next.

In an overly simplified version of the Michalevsky-Joye construction, one could interpret the i-th key
authority as simply sampling a pair of secret exponents δi, wi ← Zp, where δi is regarded as the partial
message masking term, while wi is considered the i-th attribute bit binding term. Now each authority’s public
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key is simply set as the group encodings
[
δi
]

and
[
wi
]
. Implicitly, the scheme uses the linear combination of

partial message masking terms δ =
∑
i δi to derive the main message masking term (used for deriving the

secret key encapsulating the message, or the KEM key in short).
To encrypt a message m under attribute x, the user chooses randomness r ← Zp and computes

[
rδ
]
T

to
be used as the KEM key, and binds each attribute bit to a ciphertext component as

[
(xiα+wi)r

]
(where

[
α
]

is taken from the CRS). It sets the ciphertext to be C0 =
[
r
]
, Cm = m ·

[
rδ
]
T

, and Ci =
[
(xiα+ wi)r

]
for

i ∈ [n]. While a partial secret key for policy vector y for user GID is simply generated as Ki,y =
[
δi − yiwih

]
where

[
h
]

is computed as H(GID) so as to bind the different authorities’ secret keys. The decryption can be
simply performed given the bilinear operation as:

Dec({Ki,y}i,CT) = Cm∏
i
e(Ci,H(GID)yi )·

∏
i
e(Ki,y,C0)

=
m·
[
rδ
]
T[

〈x,y〉αrh+�����∑
i
wihyir

]
T
·
[
δr−�����∑

i
yiwihr

]
T

= m[
〈x,y〉αrh

]
T

As discussed above, we upgrade the [MJ18] construction using ideas from [ABDCP15, ALS16, BJK15]
as follows. During key generation, each authority now samples a vector of partial masking terms instead
of a single element, i.e. δi ← Z`p, and appropriately sets the public key too. Implicitly, the main message
masking term is now set as δ =

∑
i δi. To encrypt a message vector u under attribute vector x, the user

chooses randomness r ← Zp and computes
[
rδ
]
T

to be used as the KEM key for encrypting u index-by-index,
and binds the attribute bit as before. Thus, only the message binding ciphertext component changes to
Cm =

[
rδ + u

]
T

. Looking ahead, it will be decryptor’s job to first homomorphically take an inner product
between the Cm vector and the inner product key vector v. Next, a partial secret key for policy vector y and
inner-product vector v for user GID is generated as Ki,y,v =

[∑
j δi,jvj − yiwih

]
. In words, the idea here is

that the partial secret key now uses a linear combination of its partial (un)masking term
∑
j δi,jvj depending

on the underlying inner-product vector v. The decryption can be naturally extended by performing inner
products via the bilinear operations.

As in the case of our first construction, the proof techniques in [MJ18] do not apply directly as they were
specially designed for ABE which is an all-or-nothing encryption primitive, and do not translate directly to
IPFE. Again, we solve this issue by a careful analysis in the dual system paradigm [Wat09]. We refer the
reader to Appendix B for more details.

Function-Hiding DDFE for Inner Products. In this section, we describe the main ideas in the
construction of our function hiding DDFE for inner products. The functionality of IP-DDFE was discussed in
Section 1.3. Informally, the security of DDFE requires that the adversary cannot distinguish two sets {CT0

i }
and {CT1

i } of ciphertexts even given a set {SKi} of secret keys and a set {MSKi} of master secret keys of
corrupted parties as long as two sets of values are the same that are legitimately obtained from {CT0

i } and
{CT1

i } using {SKi} and {MSKi}. Let us recall dynamic decentralized inner product functional encryption
(IP-DDFE) by Chotard et al. [CDSG+20].

The starting point of the IP-DDFE scheme of [CDSG+20] is the multi-client inner product functional
encryption (IP-MCFE) scheme in [CDSG+18a], where participants {1, ..., n} in the system are a priori fixed,
and there is an authority who generates encryption keys mcEKi for each party and a master secret key
mcMSK, which is used to generate secret keys mcSK. Here, mcMSK = {mcMSKi}i∈[n] and mcEKi = mcMSKi
(and we denote an encryption key for i by mcMSKi in what follows). We also recall that in MCFE, only a set
of ciphertexts with the same label can be decrypted. Chotard et al. [CDSG+20] lifted the IP-MCFE scheme to
an IP-DDFE scheme via following steps. First, each party joins the system dynamically by generating a key Ki
of a pseudorandom function (PRF) as a master secret key MSKi. In encryption and key generation for party
set U , party i ∈ U generates mcMSKi,U on the fly, which corresponds to mcMSKi of the IP-MCFE scheme for
participants U . Then, it can generate mcCTi,U and mcSKi,U with mcMSKi,U , which corresponds to CTi and
SKi of the IP-DDFE scheme. Second, they introduce a class of DDFE called DSum, which allows a decryptor
to securely obtain mcSKU =

∑
i∈U mcSKi,U from encryption of partial secret keys {mcSKi,U}i∈U . Then, the
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decryptor can compute mcDec(mcSKU , {mcCTi,U}i∈U ). DSum also plays a role in preventing combination of
partial secret keys for which the agreed vectors are inconsistent.

Our Function-Hiding IP-DDFE. Our approach is to lift function-hiding IP-MCFE to function-hiding
IP-DDFE following their blueprint. Unfortunately, there are no function-hiding IP-MCFE schemes, and we
need to start with constructing this. Our first idea is to leverage the recent conversion by Abdalla et al.
[ABG19] from IPFE to IP-MCFE. However, this idea does not work since all parties share the same encryption
key of an IPFE scheme in their converted schemes, and once a single party is corrupted, the adversary can
completely decode the entire secret keys. Thus, their conversion is not applicable to the function-hiding
setting.

To address this challenge, we devise a new technique to convert function-hiding IPFE to function-hiding
IP-MCFE, which is inspired by the function-hiding multi-input IPFE scheme by Datta et al. [DOT18]. In
their scheme, each party i has a master secret key iMSKi of a function-hiding IPFE scheme, the ciphertext
miCTi of xi is iCTi[(xi, 1)], and the secret key miSK of {yi}i∈[n] is {iSKi[(yi, ri)]}i∈[n] where ri are randomly
chosen so that

∑
i∈[n] ri = 0. iCTi[x] and iSKi[y] denotes the ciphertext of x and the secret key of y in the

function-hiding IPFE scheme, respectively. To lift their MIFE to MCFE, we need to add the label checking
mechanism and security against corruption of parties. Fortunately, we can achieve the latter almost for
free since each party uses independent master secret key and corruption of a party does not affect other
parties’ ciphertexts and secret keys. We can achieve the former by changing miCTi to iCTi[(xi, ti)] where
ti = H(lab) is a hash of a label. Then, a decryptor can learn

∑
(〈xi,yi〉+ tiri), which reveals

∑
〈xi,yi〉 only

when t1 = · · · = tn. We can prove the masking term tiri hides 〈xi,yi〉 under the SXDH assumption in the
random oracle model.

Our next step is to lift function-hiding IP-MCFE to function-hiding IP-DDFE. To do so, we must address
additional technical challenges as described next. In the original definition of IP-DDFE, recall that each
secret key is associated with (yi,U ,y = {yi′}i′∈U ) where the first element yi is a vector for a linear function
while the third element y is an agreed vector that controls combination of partial secret keys. More precisely,
a decryptor can combine partial secret keys to obtain a full secret key for y only when it has {SKi}i∈U
associated with y. However, y cannot be hidden in the blueprint by Chotard et al. To tackle this, we observe
that the role of the agreed vector is analogous to a label in the ciphertext, controlling combination of partial
secret keys. Thus, we alternatively use an independent label labK to create a natural symmetry between
inputs for encryption and key generation. Now, since the vector yi for a linear function can be hidden by
function-hiding IP-MCFE, we obtain function-hiding IP-DDFE.

Another deviation from their blueprint arises in the part that securely generates mcSKU from mcSKi,U .
In our IP-MCFE construction, mcSKi,U = iSKi[(yi, ri)] and mcSKU = {iSKi[(yi, ri)]}i∈U . Thus, we do not
need to sum up mcSKi,U to obtain mcSKU , instead, each party has to somehow generate a secret share ri
without interaction such that

∑
i∈[U ] ri = 0 only when all mcSKi,U are generated on behalf of the same

label. To handle this issue, we employ a technique by Chase and Chow [CC09] to generate such shares via
pseudorandom function. Please see Section 6 for more details.

Distributed Ciphertext-Policy ABE The recent construction of Agrawal-Yamada [AY20] proposed a
succinct ciphertext-policy ABE for log-depth circuits provably secure under LWE in the bilinear generic group
model. In our work, we extend the setup and key generation in [AY20] among a polynomial number of
authorities that are working completely non-interactively and asynchronously. We start by describing the
syntax of a distributed CP-ABE scheme. In a fully distributed setting, the authorities run their local setup
algorithms individually to generate a fresh master public-secret key pair (PK,MSK) per authority such that
given a sequence of, say N , master public keys {PKi}i∈[N ], an encryptor could encrypt a message µ for a
predicate circuit F of its choice. Such ciphertexts can be decrypted after obtaining a partial predicate key
from all N authorities for a consistent identifier GID, and attribute vector x such that F (x) = 1. Note that
here the key generation algorithm is run locally (and independently) by each authority, which on input its
master key MSKi along with GID and attribute x, computes a partial key SKi,GID,x. While correctness is
natural, security must be defined carefully.
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In this work, we consider the strongest form of corruption, where we allow the adversary to pick the key
parameters for all corrupt authorities, and also allow it to query honest authorities on identifier-attribute
pairs (GID,x) such that F ∗(x) = 1 (where F ∗ is the challenge predicate circuit) as long as there is at least one
honest authority to which the adversary did not query the pair (GID,x). All other queries are unconstrained
since if F ∗(x) = 0, then such keys should not be useful for decryption to begin with. The intuition behind
allowing the queries to honest authorities such that F ∗(x) = 1 is that we want to prevent partial secret keys
for two distinct accepting attributes provided by two distinct authorities to be usable for decryption.

To describe our construction, we recall the high level structure of the Agrawal-Yamada scheme [AY20],
which in turn uses the BGG+ ABE construction [BGG+14]. Roughly, a BGG+ ciphertext is sampled in two
steps — first, it samples a sequence of 2` encodings {ψi,b}i,b; second, depending upon the attribute x the
final ciphertext consists of ` encodings {ψi,xi}i. (Note that BGG+ is a key-policy scheme, whereas we are
building a ciphertext-policy system.) The main idea behind the ciphertext-policy ABE of [AY20] is as follows:

Setup : Sample 2` random exponents wi,b, store it as master secret key, and give its encoding {
[
wi,b

]
1}i,b as

the public key.

KeyGen : To generate a secret key for attribute x ∈ {0, 1}`, first sample a random exponent δ and then given
out

[
δ/wi,xi

]
2 for i ∈ [`] as the secret key.

Enc : To encrypt under predicate F , the encryptor samples all 2` BGG+ encodings {ψi,b}i,b, and also samples
a random exponent γ. It then gives out the ciphertext as a BGG+ secret key for predicate C along with
encodings

[
γwi,bψi,b

]
1 for i ∈ [`], b ∈ {0, 1}.

Dec : A decryptor pairs the encodings
[
γwi,xiψi,xi

]
1 with

[
δ/wi,xi

]
2 to learn

[
γδψi,xi

]
T

, and then it performs
the BGG+ decryption in the exponent to learn the plaintext.

For the multi-authority extension, each authority samples its own sequence of 2` random exponents w(j)
i,b

for j ∈ [N ]. Then during encryption, the encryptor N -out-of-N (additively) secret shares the BGG+ encodings
{ψi,b}i,b into {φ(j)

i,b }i,b for j ∈ [N ]. Now it encodes each sequence of {φ(j)
i,b }i,b terms under the corresponding

authority’s master public key as above. During decryption, a decryptor will first recover {φ(j)
i,xi
}i for all j in

the exponent, then add them to reconstruct the actual BGG+ ciphertext {ψi,xi}i which it can decrypt as
before. In order to let multiple independent authorities sample the same δ, we rely on a hash function which
we model as a ROM, and set

[
δ
]
2 = H(GID).

Although our multi-authority transformation is natural, the proof does not follow trivially from [AY20].
This is primarily due to the fact that in the distributed setting, the adversary could potentially make key
queries on accepting attributes as long as there is at least one honest party that does not receive the same
query. Such queries did not exist in the single-authority setting. However, we can extend the single-authority
proof to the multi-authority setting by a careful analysis of the additional “bad” zero-test queries that an
adversary can make. Please see Section 7 for more details.

1.5 Predicting New and Useful Primitives via MPFE
One of the most exciting benefits of MPFE is that it provides the right framework to pose new, compelling
questions that have not been studied before. For example, a very interesting question is what new kinds of
dynamic key accumulation are possible, namely how to combine keys of different users chosen dynamically. So
far, most existing literature on FE systems that enable aggregation of multiple decryption keys still consider
very restricted scenarios: (i) each partial decryption key corresponds to a portion of a much larger decryption
key of a single user (e.g., distributed/decentralized/multi-authority FE etc), (ii) each partial decryption key
corresponds to a function and many such keys may be combined if they each encode the same function (e.g.
adhoc MIFE, D-MCFE).

However, the ability to combine keys in much more creative ways can enable several cool new applications.
As an example, consider the following notion of “reputation point based encryption” – in this setting, each user
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key is associated with a subject tag T (say math, history etc) and a reputation value v (that is, a point score
denoted as an integer). Now an encryptor specifies a tag T ′ along with a threshold reputation value w, and
hides its message m under it. That is, CT(T ′, w,m) denotes such a ciphertext, and we require the functionality
that such a ciphertext should be decryptable by any sequence of user keys SK(T1, v1), . . .SK(T`, v`) where all
the subject tags match (T ′ = T1 · · · = T`) and the combined reputation value of the group

∑
i≤` vi is greater

than threshold w. For example, an encryption of a message under subject ‘math’ and minimum reputation
value of 1000 points can be decrypted by not only a single user with 1000 reputation points in ‘math’ but
also by say a group of three users with 400, 250, 350 reputation points (respectively) in ‘math’, but not by a
group of users who satisfy either the subject check or the reputation point check but not both. To the best of
our knowledge, such an encryption framework has not been studied before, but our MPFE framework enables
expressing and introducing such an encryption functionality.

To supplement this new abstraction, we sketch a generic construction of this new multi-key FE primitive
from a multi-authority ABE scheme in Section 8. We also identify other useful new primitives that have not
been studied before as tagets for future work.

Acknowledgements. We thank Fabrice Mouhartem for helpful discussions and collaboration during early
stages of this work. We are grateful to Edouard Dufour Sans, David Pointcheval and Romain Gay for
insightful discussions about DDFE which led to refinements in the definition of dynamic MPFE.

2 Preliminaries
Notation. We begin by defining the notation that we will use throughout the paper. We use bold letters
to denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to
denote the set [1, n]. Concatenation is denoted by the symbol ‖.

Throughout the paper, we use λ to denote the security parameter. We say a function f(λ) is negligible if
it is O(λ−c) for all c > 0, and we use negl(λ) to denote a negligible function of λ. We say f(λ) is polynomial
if it is O(λc) for some constant c > 0, and we use poly(λ) to denote a polynomial function of λ. We use the
abbreviation PPT for probabilistic polynomial-time. The function log x is the base 2 logarithm of x.

2.1 Access Structures and Linear Secret-Sharing Schemes
We recall the concepts of access structures and linear secret-sharing schemes (LSSS). We follow the notation
from prior works [GPSW06, LW11].

Definition 2.1 (Access Structures). Let {Pi}i∈[n] be a set of parties. A collection A ⊆ 2{P1,...,Pn} is monotone
if ∀B,C : if B ∈ A and B ⊆ C, then C ∈ A. An access structure (respectively, monotone access structure) is
a collection (respectively, monotone collection) A of non-empty subsets of {Pi}i∈[n]. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets.

As in prior work in the bilinear setting, attributes will play the role of parties and we will only consider
monotone access structures. We observe that more general access structures can be (inefficiently) realized
with our techniques by letting the negation of an attribute be a separate attribute (this doubles the total
number of attributes).

Definition 2.2 (Linear Secret-Sharing Schemes (LSSS)). A secret sharing scheme Π over a set of parties P
is called linear (over Zp) if:

1. The shares for each party form a vector over Zp.

2. There exists a `×m matrix A called the share-generating matrix for Π such that the x-th row of A is
labeled by a party ρ(x) (ρ is a function from row index to party index). When we consider the column
vector v = (s, r2, . . . , rn)>, where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly
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chosen, then A · v is the vector of ` shares of the secret s according to Π. The share (A · v)x belongs to
party ρ(x).

Linear reconstruction property: Let S denote an authorized set, and define I ⊆ [`] as I = {x : ρ(x) ∈ S}.
Then the first basis vector of canonical basis of Zmp , that is (1, 0, . . . , 0)> is in the span of rows of A indexed
by I, and there exist constants {wx ∈ Zp}x∈I such that, for any valid shares {shx}x of a secret s according
to Π, we have:

∑
x∈I wxshx = s. And, these constants can be found in polynomial time with respect to the

size of the share-generating matrix A.

2.2 Bilinear Map Preliminaries
Here, we introduce our notation for bilinear maps and the bilinear generic group model following Baltico
et.al [BCFG17], who specializes the framework by Barthe [BFF+14] for defining generic k-linear groups to
the bilinear group settings. The definition closely follows that of Maurer [Mau05], which is equivalent to the
alternative formulation by Shoup [Sho97].

Notation on Bilinear Maps. In this work, we use bilinear groups for our various MPFE constructions.
Some of our constructions rely on composite order bilinear groups, while other rely on prime order asymmetric
bilinear groups. Below we define our notations for both.
Asymmetric prime order bilinear groups. An asymmetric bilinear group generator takes as input 1λ
and outputs a group description
G = (q,G1,G2,GT , e, g1, g2), where q is a prime of Θ(λ) bits, G1, G2, and GT are cyclic groups of order q,
e : G1 ×G2 → GT is a non-degenerate bilinear map, and g1 and g2 are generators of G1 and G2, respectively.
In more detail, we have:

• Bilinearity: ∀g1 ∈ G1, g2,∈ G2, a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)ab,

• Non-Degeneracy: e(g1, g2) 6= 1GT for g1 6= 1G1 and g2 6= 1G2 , where 1G1 , 1G2 and 1GT are the identity
elements of groups G1,G2 and GT respectively.

We require that the group operations in G1, G2, and GT as well as the bilinear map e can be efficiently
computed. We employ the implicit representation of group elements: for a matrix A over Zq, we define
[A]1 := gA

1 , [A]2 := gA
2 , [A]T := gA

T , where exponentiation is carried out component-wise.
We also use the following less standard notations. For vectors w = (w1, . . . , w`)> ∈ Z`q and v =

(w1, . . . , w`)> ∈ Z`q of the same length, w � v denotes the vector that is obtained by component-wise
multiplications. Namely, v�w = (v1w1, . . . , v`w`)>. When w ∈ (Z∗q)`, v�w denotes the vector v�w =
(v1/w1, . . . , v`/w`)>. It is easy to verify that for vectors c,d ∈ Z`q and w ∈ (Z∗q)`, we have (c�w)�(d�w) =
c � d. For group elements [v]1 ∈ G`1 and [w]1 ∈ G`2, [v]1 � [w]2 denotes ([v1w1]T , . . . , [v`w`]T )>, which is
efficiently computable from [v]1 and [w]2 using the bilinear map e.

We now recall the k-linear assumption on prime order bilinear groups over source group G1. It can be
analogously define for group G2 as well.

Assumption 2.3 (k-linear in G1). For every PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Pr

A (Π, g1, g2, g
a
1 , g

zβ
1
)

= b :

Π = (q,G1,G2,GT , e (·, ·))← Gen(1λ)
g1 ← G1, g2 ← G2, β ← {0, 1}
a← Zkq ,b← Zkq , z1 ← Zk+1

q

z0 = (a1b1, . . . , akbk,
∑
i bi)

 ≤ 1/2 + negl(λ).

Generic Bilinear Group Model. Let G = (q,G1,G2,GT , e, g1, g2) be a bilinear group setting, L1, L2,
and LT be lists of group elements in G1, G2, and GT respectively, and let D be a distribution over L1,
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State: Lists L1, L2, LT over G1, G2, GT respectively.

Initializations: Lists L1, L2, LT sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear map, and equalities.
– For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and returns its handle

(s, |Ls|).
– For all s ∈ {1, 2, T}: negs(h1, h2) appends Ls[h1]−Ls[h2] to Ls and returns its handle (s, |Ls|).
– mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle (T, |LT |).
– ztT (h) returns 1 if LT [h] = 0 and 0 otherwise.

All oracles return ⊥ when given invalid indices.

Figure 2.1: Generic group model for bilinear group setting G = (q,G1,G2,GT , e, g1, g2) and distribution
D.

L2, and LT . The generic group model for a bilinear group setting G and a distribution D is described in
Fig. 2.1. In this model, the challenger first initializes the lists L1, L2, and LT by sampling the group elements
according to D, and the adversary receives handles for the elements in the lists. For s ∈ {1, 2, T}, Ls[h]
denotes the h-th element in the list Ls.

The handle to this element is simply the pair (s, h). An adversary running in the generic bilinear group
model can apply group operations and bilinear maps to the elements in the lists. To do this, the adversary
has to call the appropriate oracle specifying handles for the input elements. The challenger computes the
result of a query, stores it in the corresponding list, and returns to the adversary its (newly created) handle.
Handles are not unique (i.e., the same group element may appear more than once in a list under different
handles).

We remark that we slightly simplify the generic group model of Baltico et. al [BCFG17]. Whereas they
allow the adversary to access the equality test oracle, which is given two handles (s, h1) and (s, h2) and
returns 1 if Ls[h1] = Ls[h2] and 0 otherwise for all s ∈ {1, 2, T}, we replace this oracle with the zero-test
oracle, which is given a handle (s, h) and returns 1 if Ls[h] = 0 and 0 otherwise only for the case of s = T .
We claim that even with this modification, the model is equivalent to the original one. This is because we can
perform the equality test for (s, h1) and (s, h2) using our restricted oracles as follows. Let us first consider the
case of s = T . In this case, we can get the handle (T, h′) corresponding to LT [h1]− LT [h2] by calling negT
and addT . We then make a zero-test query for (T, h′). Clearly, we get 1 if Ls[h1] = Ls[h2] and 0 otherwise.
We next consider the case of s ∈ {1, 2}. This case can be reduced to the case of s = T by lifting the group
elements corresponding to h1 and h2 to the group elements in GT by taking bilinear maps with an arbitrary
non-unit group element in G3−s, which is possible by calling mape.
Symbolic Group Model. The symbolic group model for a bilinear group setting G and a distribution DP
gives to the adversary the same interface as the corresponding generic group model, except that internally the
challenger stores lists of element in the field Zp(X1, . . . , Xn) instead of lists of group elements. The oracles
adds, negs, map, and zt computes addition, negation, multiplication, and equality in the field. In our work,
we will use the subring Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] of the entire field Zp(X1, . . . , Xn). Note that any
element f in Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] can be represented as

f(X1, . . . , Xn) =
∑

(c1,...,cn)∈Zn
ac1,...,cnX

c1
1 · · ·Xcn

n

using {ac1,...,cn ∈ Zp}(c1,...,cn)∈Zn , where we have ac1,...,cn = 0 for all but finite (c1, . . . , cn) ∈ Zn. Note that
this expression is unique.
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Composite order bilinear groups. A composite order bilinear group generator takes as input 1λ and
number of prime-order subgroups k, and outputs a group description ((p1, p2, . . . , pk) , (N,G,GT , e (·, ·))),
where pi’s are primes such that pi ∈ {2λ−1, . . . , 2λ − 1} for all i ∈ [k], N =

∏
i pi, G and GT are groups of

order N and e is an efficiently computable function computing a non-degenerate bilinear map taking two
group elements of G to a group element in GT . For any set S ⊆ [k], let GS ⊆ G denote the (unique) subgroup
of order pS =

∏
i∈S pi. Observe that for any S ⊆ [k], given {pi}i∈S , one can sample a uniformly random

element from GS .
We now state the assumptions we make on composite order bilinear groups. All our assumptions belong

in the family of subgroup decision assumptions introduced by Bellare, Waters, and Yilek [BWY11]. These
same assumptions appear in the work of Lewko and Waters [LW11].

Assumption 2.4. We say that the assumption holds with respect to Gen for three primes if for any stateful
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr
[
A(Π, g1, Tb) = b : ((p1, p2, p3),Π)← Gen(1λ, 3); Π = (N,G,GT , e)

g1 ← G1;T0 ← G; T1 ← G1; b← {0, 1}

]
≤ 1/2 + negl(λ).

Assumption 2.5. We say that the assumption holds with respect to Gen for three primes if for any stateful
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

[
A(Π, g1, g3, h1h2, Tb) = b :

((p1, p2, p3),Π)← Gen(1λ, 3); Π = (N,G,GT , e)
g1, h1 ← G1;h2 ← G2; g3 ← G3

T0 ← G1; T1 ← G{1,2}; b← {0, 1}

]
≤ 1/2 + negl(λ).

Assumption 2.6. We say that the assumption holds with respect to Gen for three primes if for any stateful
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

[
A(Π, g1, h1g3, g2h3, Tb) = b :

((p1, p2, p3),Π)← Gen(1λ, 3); Π = (N,G,GT , e)
g1, h1 ← G1; g2 ← G2; g3, h3 ← G3

T0 ← G{1,2}; T1 ← G{1,3}; b← {0, 1}

]
≤ 1/2 + negl(λ).

Assumption 2.7. We say that the assumption holds with respect to Gen for three primes if for any stateful
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

A( Π,{gi}i∈[3] , Tb,

ga1 , g
b
1g
b
3, g

c
1, g

ac
1 gd3

)
= b :

((p1, p2, p3),Π)← Gen(1λ, 3); Π = (N,G,GT , e)
g1 ← G1; g2 ← G2; g3 ← G3

a, b, c, d← ZN , T0 ← e(g1, g1)abc; T1 ← GT ; b← {0, 1}

 ≤ 1/2 + negl(λ).

2.3 Basic Tools
Pseudorandom Functions. A pseudorandom function (PRF) family F = {PRFK}K∈K with a key space
K, a domain X , and a range Y is a function family that consists of functions PRFK : X → Y.

Definition 2.8. Let R be a set of functions consisting of all functions whose domain and range are X and Y
respectively. A PRF family F is said to be secure if for any PPT adversary A, the following condition holds,

|Pr[APRFK(·)(1λ) = 1]− Pr[AR(·)(1λ) = 1]| ≤ negl(λ),

where K ← K and R← R.

Non-interactive key exchange (NIKE). A NIKE scheme for shared key space K consists of the three
algorithms.

Setup(1λ)→ PP. It takes a security parameter 1λ and outputs a public parameter PP.

KeyGen(PP)→ (PK,SK). It takes PP and outputs a public key PK and the corresponding secret key SK.

SharedKey(PK,SK)→ K. It takes PK and SK and deterministically outputs a shared key K ∈ K.
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Correctness. A NIKE scheme is correct if, for all λ ∈ N, we have

Pr

Ki,j = Kj,i :

PP← Setup(1λ)
(PKi,SKi), (PKj ,SKj)← KeyGen(PP)
Ki,j = SharedKey(PKi,SKj)
Kj,i = SharedKey(PKj ,SKi)

 = 1.

Security. We say a NIKE scheme is IND-secure if, for all stateful PPT adversaries A, we have

Pr

β = β′ :

β ← {0, 1}, PP← Setup(1λ)
S ← A(PP)
(PKi,SKi)← KeyGen(PP)
CS, (i′, j′)← A({PKi}i∈S) where i′, j′ ∈ S\CS and i′ 6= j′

K0
i′,j′ = SharedKey(PKi′ ,SKj′), K1

i′,j′ ← K
β′ ← A({SKi}i∈CS ,Kβi′,j′)

 ≤ 1/2 + negl(λ).

3 Multi-Party Functional Encryption
In this section, we define our notion of multi-party functional encryption (MPFE). Let nx be the number of
ciphertext inputs and ny be the number of key inputs. Let X = Xpub ×Xpri be the space of ciphertext inputs
and Y = Ypub × Ypri be the space of key inputs. We define two aggregation functions as Aggx : Xnx → X ∗,
and Aggy : Yny → Y∗.

An MPFE scheme is defined as a tuple of 4 algorithms/protocols MPFE = (Setup,KeyGen,Encrypt,Decrypt).
To suitably capture existing primitives, we define our Setup algorithm/protocol to run in three modes, described
next.
Setup modes. The Setup algorithm/protocol can be run in different modes: central, local, or interactive.
For mode ∈ {Central, Local, Interactive}, consider the following.

Central : Here the Setup algorithm is run by one trusted third party which outputs the master secret keys
and encryption keys for all users in the system.

Local : Here it is run independently by different parties without any interaction, and each party outputs its
own encryption key and/or master secret key.

Interactive : Here it is an interactive protocol run by a set of users, at the end of which, each user has its
encryption key and/or master secret key. We note that these keys may be correlated across multiple
users.

A multi-party functional encryption (MPFE) consists of the following:

Setup
(
1λ, nx, ny,Aggx,Aggy

)
: This algorithm/protocol can be executed in any one of the three modes

described above.4 Given input the security parameter, number of ciphertext inputs nx, number of key
inputs ny and two aggregation functions Aggx, Aggy as defined above, this algorithm outputs a set of
encryption keys {EKi}i≤nx , master secret keys {MSKi}i≤ny and public key PK.

KeyGen (PK,MSK, j, y = (ypub, ypri)): Given input the public key PK, a master secret key MSK, user index
j ∈ [ny] and a function input y = (ypub, ypri), this algorithm outputs a secret key SKy.

Encrypt (PK,EK, i, x = (xpub, xpri)): Given input the public key PK, an encryption key EK, user index
i ∈ [nx], an input x = (xpub, xpri), this algorithm outputs a ciphertext CTx.

4We omit specifying the mode in the syntax for notational brevity.
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Decrypt
(
PK, {SKj}j≤ny , {CTi}i≤nx

)
: Given input the public key PK, a set of secret keys {SKj}j≤ny and a

set of ciphertexts {CTi}i≤nx , this algorithm outputs a value z or ⊥.

We remark that in the local setup mode, it will be helpful to separate the setup algorithm into a global setup,
denoted by GSetup along with a local setup, denoted by LSetup, where the former is used only to generate
common parameters of the system, such as group descriptions and such.

Correctness. We say that an MPFE scheme is correct if, ∀(nx, ny) ∈ N2, ciphertext inputs xi ∈ X for
i ∈ [nx], key inputs yj ∈ Y for j ∈ [ny], message and function aggregation circuits Aggx and Aggy, it holds
that:

Pr

z = z′ :

(PK, {EKi}, {MSKj})← Setup(1λ, nx, ny,Aggx,Aggy)
CTi ← Encrypt(PK,EKi, i, xi) ∀i ∈ [nx]
SKj ← KeyGen(PK,MSKj , j, yj) ∀j ∈ [ny]
z ← Decrypt

(
PK, {SKj}j≤ny , {CTi}i≤nx

)
z′ = U

(
Aggx({xi}),Aggy({yj})

)
 = 1.

Recall that U is the universal circuit with appropriate input and output size.

Indistinguishability based security. Next, we define security of MPFE. The security definition is
modelled in a similar fashion to MIFE security [GGG+14, §2.2] while taking into account corruption queries.

For any choice of parameters λ, nx, ny, aggregation functions Aggx,Aggy, and master keys K =
(PK, {EKi}i∈[nx], {MSKj}j∈[ny ])← Setup(1λ, nx, ny,Aggx,Aggy), we define the following list of oracles:

CorruptK(·), upon a call to this oracle for any i ∈ [nx] or j ∈ [ny], the adversary gets the corresponding
encryption key EKi or master secret key MSKj . In the case of a local setup, the adversary could instead
also supply the oracle with adversarially generated keys for the corresponding user; whereas in case of an
interactive setup, the adversary could simulate the behavior of the queried user index in the setup protocol.
(Let Sx ⊆ [nx] and Sy ⊆ [ny] denote the set of user indices for which the corresponding encryption and master
keys have been corrupted.)5

KeyK,β(·, ·), upon a call to this oracle for an honest user index j ∈ [ny], function inputs (yk,0j , yk,1j ) (where
yk,bj =

(
yk,bj,pub, y

k,b
j,pri

)
for b ∈ {0, 1}), the challenger first checks whether the user j was already corrupted

or not. That is, if j ∈ Sy, then it sends nothing, otherwise it samples a decryption key for function input
yk,βj using key MSKj and sends it to the adversary. (Here β is the challenge bit chosen at the start of the
experiment.)

EncK,β(·, ·), upon a call to this oracle for an honest user index i ∈ [nx], message inputs (x`,0i , x`,1i ) (where
x`,bi =

(
x`,bi,pub, x

`,b
i,pri

)
for b ∈ {0, 1}), the challenger first checks whether the user i was already corrupted or

not. That is, if i ∈ Sx, then it sends nothing, otherwise it samples a ciphertext for input x`,βi using key EKi
and sends it to the adversary.

We let Qx and Qy be the number of encryption and key generation queries (respectively) that had
non-empty responses. Let Qx = {(i, (x`,0, x`,1))}`∈[Qx] be the set of ciphertext queries and Qy =
{(j, (yk,0j , yk,1j ))}k∈[Qy ] be the set of key queries.

We say that an adversary A is admissible if:

1. For each of the encryption and key challenges, the public components of the two challenges are equal,
namely x`,0pub = x`,1pub for all ` ∈ [Qx], and yk,0pub = yk,1pub for all k ∈ [Qy].

5Note that in case EKi is completely contained in some MSKj then make a master secret corruption query for j will also add
the corresponding index i to Sx, and vice versa. At a very high level, although having separate aggregation functions for partial
secret key and ciphertexts as part of the framework allows us to capture a highly expressive class of encryption scheme; defining
the most general notion of security for MPFE that captures all different types of setup and key distribution settings could be
very dense. To that end, here we provide a clean security game which captures the existing encryption primitives. Capturing
security for each setup mode and corruption model individually would be more precise in certain settings.
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2. For each of the encryption and key challenges, the private components of the two challenges are also
equal, namely x`,0pri = x`,1pri for all ` ∈ [Qx] whenever (i, (x`,0, x`,1)) ∈ Qx and i ∈ Sx, and yk,0pri = yk,1pri for
all k ∈ [Qy] whenever (j, (y`,0, y`,1)) ∈ Qy and j ∈ Sy. That is, the private components must be the
same as well if the user index i or j, that the query was made for, was corrupted during the execution.

3. There do not exist two sequences (−→x 0,−→y 0) and (−→x 1,−→y 1) such that:

U
(
Aggx({x0

i }),Aggy({y0
j })
)
6= U

(
Aggx({x1

i }),Aggy({y1
j })
)

and i) for every i ∈ [nx], either xbi was queried or EKi was corrupted, and ii) for every j ∈ [ny], either
ybj was queried or MSKj was corrupted, and iii) at least one of inputs

{
xbi
}
,
{
ybj
}

were queried and
indices i, j were not corrupted. (Note that if i ∈ [nx] or j ∈ [ny] were queried to the Corrupt oracle, the
adversary can generate partial keys or ciphertexts for any value of its choice.)

An MPFE scheme (Setup,KeyGen,Encrypt,Decrypt) is said to be IND secure if for any admissible PPT
adversary A, all length parameters nx, ny ∈ N, and aggregation functions Aggx,Aggy, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

ACorruptK(·),KeyK,β(·),EncK,β(·)(1λ,PK) = β :
K← Setup(1λ, nx, ny,Aggx,Aggy),

K = (PK, {EKi}i, {MSKj}j),
β ← {0, 1}

 ≤ 1
2 + negl(λ).

Remark 3.1 (Weaker notions of security). We say the scheme is selective IND secure if the adversary outputs
the challenge message and function pairs at the very beginning of the game, before it makes any queries or
receives the PK. One may also consider the semi-honest setting, where the Corrupt oracle is not provided, or
the case of static corruptions where the adversary provides all its corruptions once and for all at the start of
the game.

3.1 Dynamic Multi-Party Functional Encryption
In this section, we define the dynamic notion of multi-party functional encryption (MPFE). We consider the
fully dynamic setting where the number of key/ciphertext inputs is unspecified during setup time, and the
aggregation functions are also specified only during key generation and encryption times. In the dynamic
setting, an interactive or centalized setup is not meaningful since the number of parties is itself not known
during setup time, hence we restrict ourselves to the local setup mode for simplicity.

Let X = Xpub ×Xpri be the space of ciphertext inputs and Y = Ypub × Ypri be the space of key inputs.
Also, let PK be the space to which each local public key belongs. A dynamic multi-party functional encryption
scheme (MPFE) with local setup is defined as a tuple of 5 algorithms/protocols MPFE = (GSetup, LSetup,
KeyGen,Encrypt,Decrypt) with the following syntax:

GSetup(1λ): On input the security parameter, the global setup algorithm samples a globally shared set of
public parameters PP.

LSetup(PP): Given input the public parameters, the local setup algorithm outputs a tuple consisting of local
public key PK, an encryption key EK, and a master secret key MSK. (Here the local public key is just
regarded as a public identifier for the user, and not given as explicit input to other algorithms since it
could always be added to the encryption and/or master secret key.)

KeyGen
(
MSK, j, y = (ypub, ypri) ,Aggy

)
: Given input a master secret key MSK, user index j ∈ [ny]6, a

function input y = (ypub, ypri), and an aggregation function Aggy : (PK×Y)ny → Y∗ (for some ny ∈ N),
this algorithm outputs a secret key SKj .

6Note that both the key generator and encryptor take as input the user index as well. This is not an additional requirement
as in our current definition we are modeling the aggregation functions as a circuit, and thus both the key generator and encryptor
could explicitly provide at which slot in the aggregation circuit do they want their inputs to be read. As we remark later
in Remark 3.2, if we model the aggregation function in the uniform computation model, then we could avoid providing the user
index as an input to the key generation and encryption algorithms.
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Encrypt (EK, i, x = (xpub, xpri) ,Aggx): Given input an encryption key EK, user index i ∈ [nx], an input
x = (xpub, xpri), and an aggregation function Aggx : (PK × X )nx → X ∗ (for some nx ∈ N), this
algorithm outputs a ciphertext CTi.

Decrypt ((SKj)j , (CTi)i): Given input a sequence of secret keys (SKj)j and a sequence of ciphertexts (CTi)i,
this algorithm outputs a value z or ⊥.

Correctness. We say that an MPFE scheme is correct if, ∀(N,nx, ny) ∈ N3, ciphertext inputs xi ∈ X for
i ∈ [nx], key inputs yj ∈ Y for j ∈ [ny], message and function aggregation circuits Aggx and Aggy, and
indexing functions indexx : [nx]→ [N ], indexy : [ny]→ [N ] it holds that:

Pr

z = z′ :

PP← GSetup(1λ)
(PK`,EK`,MSK`)← LSetup(PP) ∀` ∈ [N ]
CTi ← Encrypt(EKindexx(i), i, xi,Aggx) ∀i ∈ [nx]
SKj ← KeyGen(MSKindexy(j), j, yj ,Aggy) ∀j ∈ [ny]
z ← Decrypt

(
(SKj)j≤ny , (CTi)i≤nx

)
z′ = U

(
Aggx

(
(PKindexx(i), xi)i

)
,Aggy

(
(PKindexy(j), yj)j

))

 = 1.

Recall that U is the universal circuit with appropriate input and output size.

Indistinguishability based security. Here we extend the security experiment for multi-party functional
encryption that we provided in Section 3 to the dynamic user setting in the local setup mode. Since we are
working in the dynamic setting, we need to define the following oracles7:

HonestGen(), upon a call to this oracle, the challenger samples a fresh tuple of local public key, encryption
key, and master key (PK,EK,MSK), and stores them in a list  Lsetup. It sends PK to the adversary. (Note that
if the scheme is a public key scheme, then the challenger sends the encryption key EK to the adversary.)

Corrupt(·, ·), upon a call to this oracle for an honest user local public key PK and key type type ∈
{enc,master}, the challenger first checks whether the list  Lsetup contains a key pair associated with PK. If
there is such a key pair (PK,EK,MSK), then it sends either the EK or MSK depending on the type queried.
Otherwise, it sends nothing.8

Keyβ(·, ·, ·, ·), upon a call to this oracle for an honest user local public key PK, function inputs (yk,0j , yk,1j )
(where yk,bj =

(
yk,bj,pub, y

k,b
j,pri

)
for b ∈ {0, 1}), index j, aggregation function Aggky,j , the challenger first checks

whether the list  Lsetup contains a key pair associated with PK. If there is such a key pair (PK,EK,MSK), then
it samples a decryption key for function input yk,βj using key MSK and sends it to the adversary. Otherwise,
it sends nothing. (Here β is the challenge bit chosen at the start of the experiment.)

Encβ(·, ·, ·, ·), upon a call to this oracle for an honest user local public key PK, inputs (x`,0j , x`,1j ) (where
x`,bj =

(
x`,bj,pub, x

`,b
j,pri

)
for b ∈ {0, 1}), index j, aggregation function Agg`x,j , the challenger first checks whether

the list  Lsetup contains a key pair associated with PK. If there is such a key pair (PK,EK,MSK), then it
samples a ciphertext for input x`,βj using key EK and sends it to the adversary. Otherwise, it sends nothing.
(Here β is the challenge bit chosen at the start of the experiment.)

We let Qx and Qy be the number of encryption and key generation queries (respectively) that had
non-empty responses. Let Qx = {(PK`, (x`,0j , x`,1j ), j,Agg`x,j)}`∈[Qx] be the set of ciphertext challenge queries
and Qy = {(PKk, (yk,0j , yk,1j ), j,Aggky,j)}k∈[Qy ] be the set of key challenge queries.

We say that an adversary A is admissible if:
7Note that all these oracles have access to all other oracle’s state.
8As we point out in the static setting, in case EKi is completely contained in some MSKi (or vice versa), then making a

master secret corruption query for i will also imply that encryption key for i has been corrupted too (and vice versa).
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1. For each of the encryption and key challenges, the public components of the two challenges are equal,
namely x`,0j,pub = x`,1j,pub for all ` ∈ [Qx], and yk,0j,pub = yk,1j,pub for all k ∈ [Qy].

2. For each of the encryption and key challenges, the private components of the two challenges are also
equal, namely x`,0j,pri = x`,1j,pri for all ` ∈ [Qx], and yk,0j,pri = yk,1j,pri for all k ∈ [Qy] if the encryption key
EK` or the master secret key MSKk, that the query was made for, was corrupted during the execution
(respectively).

3. There do not exist two sequences ((
−→
PKx,−→x 0), (

−→
PKy,−→y 0)) 6= ((

−→
PKx,−→x 1), (

−→
PKy,−→y 1)) and aggregation

functions Aggx,Aggy such that:

U
(
Aggx

(
(PKx,i, x0

i )i
)
,Aggy

(
(PKy,j , y0

j )j
))
6= U

(
Aggx

(
(PKx,i, x1

i )i
)
,Aggy

(
(PKy,j , y1

j )j
))

and i) xbi was queried for aggregation function Aggx, index i and public key PKx,i, and ii) ybj was
queried for aggregation function Aggy, index j and public key PKy,j , and iii) at least one of inputs{
xbi
}
,
{
ybj
}

were queried and public key PKx,i,PKy,j was not corrupted. Note that if some xbi or ybj
was not queried by the adversary, then it can generate partial keys or ciphertexts for any value of its
choice by performing a fresh key generation since this is a fully dynamic system, however that samples
a fresh public as well.

An MPFE scheme (GSetup, LSetup,KeyGen,Encrypt,Decrypt) is said to be IND secure if for any admissible
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr
[
AHonestGen(), Corrupt(), Keyβ(), Encβ()(1λ) = β : β ← {0, 1}

]
≤ 1

2 + negl(λ).

Remark 3.2 (Potential variations). The above multi-party function encryption system that we define allows
the users to dynamically join the system in the permissionless model, where each incoming user only needs
to know the public parameters and not interact with any authority. A slightly weaker setting could be a
permissioned model in which users can still dynamically join the system but they need to contact the global
authority (which sampled the public parameters) either for some identification tokens or its encryption and
master secret key pair in order to prevent totally unrestricted computation which happens in the permissionless
model.

Also, we want to point out that in our current framework we let the users select the aggregation functions
during individual functional key and ciphertext generation to allow for more flexibility. This could be relaxed
even further by letting the aggregation functions be either be described in a uniform computation model, or
using an ensemble of non-uniform functions. Also, one could instead restrict the flexibility in aggregation by
asking each user to choose their aggregation functions at setup time. Such flexibilities will be important in
capturing the notion of DDFE described in Section 4.

4 Capturing Existing Primitives as MPFE
We now show that our model is general enough to capture several existing notions in the literature as special
cases. To simplify notation, we assume that every input is associated with an index which indicates its
position in the set of arguments to the universal circuit U . Here, we assume that the input to U which
represents a circuit that must be emulated, is always associated with index 1 in either the first argument or
the second argument.

Multi-Input Functional Encryption (MIFE): A Multi-Input Functional Encryption scheme, denoted by
MIFE [GGG+14], can be viewed as a special case of MPFE with a centralized setup. In an MIFE scheme, the
setup algorithm outputs n encryption keys EK1, . . . ,EKn and a single MSK. Each encryptor i ∈ [n], chooses
its message zi and computes a ciphertext of zi using EKi. Here, the entire zi is private. The key generator
chooses a function f and computes a corresponding secret key SKf using its MSK. Here, f is public.
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In our notation, MIFE is captured by setting (nx, ny) = (n, 1), y = (f,⊥), xi = (xpub,i, xpri,i) = (⊥, zi).
We also set Aggx(x1, . . . , xn) = (xpri,1, . . . , xpri,nx) = (z1, . . . , zn). Finally, Aggy outputs ypub = f and upon
decryption this yields U((z1, . . . , zn), f) = f(z1, . . . , zn) as desired.

Multi-Client Functional Encryption (MCFE): A Multi-Client Functional Encryption scheme, denoted
by MCFE [GKL+13, GGG+14, CDSG+18b] can be viewed as a special case of MPFE with a centralized
setup. In an MCFE scheme, the setup algorithm outputs n encryption keys EK1, . . . ,EKn and a single MSK.
Each encryptor i ∈ [n], chooses its message zi and a public label labi and computes a ciphertext for (labi, zi)
using EKi. Here, labi is public but zi is private. The key generator chooses a function f and computes a
corresponding secret key SKf using its MSK. Here, f is public.

In our notation, set (nx, ny) = (n, 1), y = (f,⊥), xi = (xpub,i, xpri,i) = (labi, zi). The function
Aggx(x1, . . . , xn) checks that xpub,1 = . . . = xpub,n. If this verification passes, it outputs (xpri,1, . . . , xpri,nx) =
(z1, . . . , zn). Finally, Aggy outputs ypub = f and upon decryption this yields U ((z1, . . . , zn), f) = f(z1, . . . , zn)
as desired.

Distributed Multi-Client Functional Encryption (D-MCFE): The decentralized version of MCFE,
denoted by D-MCFE [CDSG+18a], can be viewed as a special case of MPFE with an interactive setup. This
primitive removes the need for a centralized authority by shifting the task of generating functional secret
keys to the clients themselves. In D-MCFE, during the setup phase, the users generate public parameters
and their individual master secret keys by running an interactive protocol. No further interaction is needed
among clients for subsequent generation of functional keys. When an evaluator wishes to obtain a functional
key for some function f , it requests each user for a partial decryption key corresponding to f . Ciphertexts
for inputs (labi, zi) are generated by each user independently as in MCFE. The decryptor, upon receiving
ciphertexts and partial decryption keys from all the parties can compute f(z1, . . . , zn) as in MCFE, so long as
all the labels match.

In our notation, set (nx, ny) = (n, n) and yi = (f,⊥), xi = (xpub,i, xpri,i) = (labi, zi),∀i ∈ [n]. As in MCFE,
Aggx(x1, . . . , xn) checks that xpub,1 = . . . = xpub,n. If this verification passes, it outputs (xpri,1, . . . , xpri,nx) =
(z1, . . . , zn). Next, Aggy first checks that ypub,i = f, ∀i ∈ [n], and if so, outputs the corresponding value
ypub,1 = f . Upon decryption, this yields f(z1, . . . , zn) as in MCFE. In this primitive, MSKi = EKi for all
i ∈ [n].

Multi-Authority Functional or Attribute-Based Encryption (MAFE or MA-ABE): A Multi-
Authority Functional Encryption, denoted by MAFE (or its special case Multi-Authority Attribute Based
Encryption, MA-ABE) [Cha07, LW11, BCG+17] can be viewed as an instance of MPFE with a local setup. In
MAFE, there are n key authorities who may independently generate their private and public keys, without
even being aware of the existence of other authorities. MAFE is a ciphertext-policy scheme, so an encryptor
encrypts a message z along with a policy f over the various authorities. Here, z is private but f is public.
Any authority i (say), should be able to generate a token for a user with a global identifier GID for attributes
labi. A user with tokens for attribute-indentifier pair (labi,GIDi from authority i ∈ [n], should be able to
decrypt the ciphertext to recover f(z, lab1, . . . , labn) as long as all the n identifiers are the same.

In our notation, we set (nx, ny) = (1, n), x = (f, z), yi = (ypub,i, ypri,i) = ((labi,GIDi),⊥). The
function Aggx simply outputs the pair (f, z). The aggregation function Aggy checks that GID1 = . . . =
GIDn. If this verification passes, it outputs (lab1, . . . , labn). Decryption computes U (f, z, (lab1, . . . , labn)) =
f(z, lab1, . . . , labn) as desired.

Decentralized Policy-Hiding Attribute Based Encryption (DABE): A decentralized policy-hiding
ABE, denoted by DABE [MJ18] proposed by Michalevsky and Joye can also be captured by an MPFE scheme
with local setup. In a DABE scheme, there are n key authorities, each of which run a local setup to generate
their private and public keys. They do so without communicating with each other, although they are required
to obtain some global parameters of the system (such as group generators and such), which are generated by
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a one-time trusted setup. This is a ciphertext-policy scheme, in which an encryptor can compute a ciphertext
under a general access structure, while the corresponding secret keys are issued by independent authorities as
in MAFE. However, in this system, the access policy embedded in the ciphertext is hidden.

In our notation, we set (nx, ny) = (1, n), x = (⊥, (f, z)), yi = (labi,⊥). The aggregation
function Aggy outputs (lab1, . . . , labn). The aggregation function Aggx returns (f ′, z) where f ′(z, ·) =
(f, z) iff f(lab1, . . . , labn) = 1 and ⊥ otherwise. The decryptor computes U(f ′, z, lab1, . . . , labn) =
f ′(z, lab1, . . . , labn) which checks if f(lab1, . . . , labn) = 1 and outputs (f, z) if and only if this is the case, as
desired.

Partially Hiding Functional/Predicate Encryption (PHFE and PHPE): Partially Hiding Func-
tional/Predicate Encryption (PHFE or PHPE) [GVW12, GVW15] can be seen as a special case of MPFE
with a centralized setup algorithm in the public-key setting. This is a single user scheme, in which the setup
outputs a PK and MSK. The encryptor, given the public key PK chooses a public label lab and a private input
z and computes a ciphertext for the pair (lab, z). The key generator, given the master secret key, computes a
secret key for some function f , which is public. The decryptor computes f(lab, z).

This scheme can be expressed as an MPFE scheme with (nx, ny) = (1, 1), x = (lab, z), y = (f,⊥). The
Aggx and Aggy functions are trivial in this setting, since it is a single user scheme, and simply output their
inputs. The decryptor computes U(f, lab, z) = f(lab, z) as desired.

Ad Hoc Multi-Input Functional Encryption (aMIFE): The primitive of adhoc multi-input functional
encryption (aMIFE) recently proposed by Agrawal et al. [ACF+20] can be instantiated as an MPFE scheme
with local setup. Adhoc MIFE enables multiple parties to generate their own private master keys as well
as corresponding public keys. To encrypt data, each party (say i) uses its private master key to compute a
ciphertext for any message of its choice (say zi), and to issue function specific keys, the party uses the same
master key to compute a partial function key corresponding to some function (say f). These ciphertexts and
partial keys are sent to the decryptor who can aggregate them and compute f(z1, . . . , zn) as long as all the
partial decryption keys correspond to the same function f .

In our notation, we set (nx, ny) = (n, n), xi = (⊥, zi), yi = (fi,⊥). The function Aggx outputs (z1, . . . , zn),
the function Aggy checks that all ypub,1 = fi = . . . = ypub,n = fn are equal to the same value f , which it
outputs. The decryptor computes U(f, z1, . . . , zn) = f(z1, . . . , zn) as desired.

Dynamic Decentralized Functional Encryption (DDFE): A dynamic decentralized FE scheme, denoted
by DDFE [CDSG+20], can be viewed as a special case of MPFE with a local setup in the dynamic setting.
In a DDFE scheme for functionality F and empty key ε, the setup outputs the public parameters PP, and
each party samples its own public and secret key pair PK,SK. Each encryptor on input a public key PK (and
the secret key SK if the DDFE scheme is secret key) and a message m, outputs a ciphertext CTPK. The key
generator chooses a key space object k and computes a corresponding decryption key DKPK,k using a user
master secret key SK. Here, key space object k is public. The decryption algorithm takes as input a list
of decryption keys (DKPKj ,kj )j and ciphertexts (CTPK′

i
)i, and outputs F ((PKj , kj)j , (PK′i,mi)i). Also, the

system enables learning the empty function on a possibly non-singleton list of ciphertexts as: F (ε, (PK′i,mi)i).
To formally capture DDFE, we require the generalized dynamic MPFE, which is discussed in

Section 3.1, which allows to specify (nx, ny) as well as (Aggx,Aggy) dynamically. To set the remaining
parameters in our notation, we let yj = ((F, kj),⊥), xi = (⊥,mi). The function Aggx outputs
((PK′1,m1), . . . , (PK′nx ,mnx)) for some nx ∈ N, and Aggy checks that F1 = · · · = Fny = F is the
same in all yj and outputs (F, (PK1, k1), . . . , (PKny , kny)) if so (⊥ otherwise) for some ny ∈ N. (Note
that since the aggregator functions in dynamic setting also take as input the corresponding public keys,
thus they have access to PK and PK′ to include as part of the output.) Upon decryption this yields
U
(
((PK′1,m1), . . . , (PK′nx ,mnx)), (F, (PK1, k1), . . . , (PKny , kny ))

)
= F ((PKj , kj)j , (PK′i,mi)i) as desired. And,

note that if we consider the aggregation functions to be described as TMs or an ensemble of non-uniform
functions Remark 3.2, then the key generator and does not need to specify the user indices during the key
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generation and encryption phase as desired in DDFE. Lastly, to enable learning the empty function ε, each user
during their local setup also samples a secret key for input yεj = ((F, ε),⊥) and keeps it part of the public key and
the ciphertext, and thus the decryption algorithm recovers the U

(
((PK′1,m1), . . . , (PK′nx ,mnx)), (F, ε, . . . , ε)

)
= F (ε, (PK′i,mi)i) as desired.

4.1 Feasibility of MPFE for General Circuits
In this section we discuss the feasibility of general MPFE. Since the framework of MPFE is very general and
supports all existing constructions in the literature (that we are aware of), feasibility varies widely depending
on the properties desired, such as whether the setup algorithm must be local, centralized or interactive,
whether and encryption keys must be public or private and such others. Since the case of centralized setup
has been most widely studied in the literature and it is evident that feasibility results for local and interactive
setup also apply for a centralized setup, we focus on these below.

Local Setup. In multi-party FE schemes, local setup is highly desirable, since it overcomes the key escrow
problem which is one of the main drawbacks of present day FE constructions. In this setting, each user i
runs the setup algorithm independently, and obtains her own public key PKi and master secret key MSKi.
No communication or co-ordination is required between the users. In the symmetric key setting, the user
encrypts her input using her master key MSKi, while in the public key setting, anyone may encrypt using the
public key(s) PKi.

Constructions of multi-party FE with local setup have been notoriously hard to build. For general circuits
and in the symmetric key setting, the primitive of adhoc multi-input functional encryption (aMIFE) recently
proposed by Agrawal et al. [ACF+20] comes close to a general feasibility result in our model. Although
there are important differences between aMIFE and MPFE, we show in Appendix A, that the construction of
aMIFE provided in [ACF+20] is general enough to provide a feasibility result for MPFE in the symmetric key
setting, with local setup.

Interactive Setup. A standard MIFE scheme can be modified to support distributed keys by replacing
the setup algorithm with an interactive protocol. This makes use of a function delayed, rerunnable two
round MPC protocol similar to the construction of aMIFE provided by [ACF+20]. Note that the limitation of
interactive setup is mitigated by the fact that it must only be run once. This transformation also works in
the public key setting. Please see Appendix A for details.

5 Multi-Authority ABE ◦ IPFE for LSSS Access Structures
In this section, extend the construction of Abdalla et al. [ACGU20] (ACGU20) to the multiparty setting. As
discussed in Section 1, we support ny = n for some fixed, polynomial n and Local mode of setup algorithm, so
that each key generator generates its key components locally and independently. The number of encryptors
nx = 1 and public, private input (φ,v). Each of the n key generators has public inputs (GIDi, xi,ui)
where xi ∈ {0, 1} and ui ∈ Z`q for i ∈ [n]. The ciphertext aggregation function remains trivial but the key
aggregation function checks if GID1 = GID2 = . . . = GIDn, u1 = u2 = . . . = un, and outputs (fx,u) if so,
where x = (x1, . . . , xn) and fx is a function that takes as input three arguments (φ,v,u) and outputs 〈u,v〉
if φ(x) = 1.

In other words, we build a multi-authority attribute-based inner product functional encryption (MA-AB-
IPFE) scheme for linear secret sharing schemes (LSSS) access structures. We rely on simple asumptions over
bilinear maps.
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5.1 Specializing the MPFE Syntax
Since our framework of MPFE described in Section 3 is general enough to capture a large family of
functionalities, using the general syntax as-is would result in a cumbersome definition in which multiple
parameters are non-functional. Hence, we specialize the general framework to the specific functionality of
interest here for ease of exposition.

Syntax. A MA-AB-IPFE scheme for predicate class C = {Cn : Xn → {0, 1}}n∈N and inner product message
space U = {U`}`∈N consists of the following PPT algorithms:

GSetup(1λ)→ PP. On input the security parameter λ, the setup algorithm outputs public parameters PP.

LSetup(PP, 1n, 1`, i)→ (PK,MSK). On input the public parameters PP, attribute length n, message space
index `, and authority’s index i ∈ [n], the authority setup algorithm outputs a pair of master public-secret
key (PK,MSK) for the i-th authority.

KeyGen(MSKj ,GID, b,u)→ SKj,GID,b,u. The key generation algorithm takes as input the authority master
secret key MSKj , global identifier GID, an attribute bit b ∈ {0, 1}, and key vector u ∈ U`. It outputs a
partial secret key SKj,GID,b,u.

Enc({PKi}i∈[n], C,v)→ CT. The encryption algorithm takes as input the list of public keys {PKi}i, predicate
circuit C, and a message vector v ∈ U`, and outputs a ciphertext CT.

Dec({SKi,GID,x,u}i∈[n],CT)→ m/⊥. On input a list of n partial secret keys {SKi,GID,x,u}i and a ciphertext
CT, the decryption algorithm either outputs a message m (corresponding to the inner product value) or
a special string ⊥ (to denote decryption failure).

Correctness. A MA-AB-IPFE scheme is said to be correct if for all λ, n, ` ∈ N, C ∈ Cn, u,v ∈ U`,
x ∈ Xn,GID, if C(x) = 1, the following holds:

Pr

Dec(SK,CT) = 〈u,v〉 :

PP← GSetup(1λ)
∀i ∈ [n] : (PKi,MSKi)← LSetup(PP, 1n, 1`, i)
∀j ∈ [n] : SKj,GID,xj ,u ← KeyGen({PKi}i,MSKj ,GID, xj ,u)
CT← Enc({PKi}i, C,v), SK = {SKi,GID,xi,u}i

 = 1.

Security. In terms of security, a MA-AB-IPFE provides powerful notion of encrypted message vector
indistinguishability where the adversary is allowed to corrupt the key generation authorities and also make key
queries for message vector distinguishing key vectors (as long as the attribute does not satisfy the encrypted
predicate). Below we provide the selective security variant of the corresponding property.9

Definition 5.1 (Selective MA-AB-IPFE security with static corruptions). A MA-AB-IPFE scheme is selectively
secure with static corruptions if for every stateful admissible PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

AO(key,·,·,·)({PKi}i∈[n]\S∗ ,CT) = b :

PP← GSetup(1λ)
(1n, 1`, S∗, C, (v0,v1), {PKi}i∈S∗)← A(1λ,PP)
∀i ∈ [n] \ S∗ : (PKi,MSKi)← LSetup(PP, 1n, 1`, i)
b← {0, 1},CT← Enc({PKi}i∈[n], C,vb)
key = {(PKi,MSKi)}i∈[n]\S∗

 ≤ 1
2 + negl(λ),

where the oracle O(key, ·, ·, ·) has the master key for honest authorities hardwired. The oracle on input a tuple
of a global identifier GID, an authority index j ∈ [n] \ S∗, and an attribute-key vector pair (b,u), responds

9In this work, we only focus on standard semantic security, but one could also amplify to its CCA counterpart by relying on
the generic CPA-to-CCA amplification techniques [KW19].
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with a partial secret key computed as SKj,GID,b,u ← KeyGen(MSKj ,GID, b,u). Note that the adversary is only
allowed to submit key queries for non-corrupt authorities (i.e., j /∈ S∗). Also, the adversary A is admissible
as long as every secret key query made by A to the key generation oracle O satisfies the condition that — (1)
either 〈u,v0〉 = 〈u,v1〉, or (2) C does not accept any input x such that xj = b for (b, j) ∈ QGID where QGID
contains the attribute bits queries for GID10.

5.2 Construction
Let Gen be a composite-order bilinear group generator. Also, let G and GT be the source and target groups,
respectively. Additionally, we rely on a hash function H : {0, 1}∗ → G that maps global identities GID to
elements of G and we later model it as a random oracle in the proof. Below we provide our MA-AB-IPFE
scheme based on composite-order bilinear maps for the predicates described as an access policy for a linear
secret sharing scheme.

GSetup(1λ)→ PP. The setup algorithm samples a bilinear group as follows

(p1, p2, p3,G,GT , e (·, ·))← Gen(1λ, 3).

It samples a random generator g1 ∈ G1, and sets the global public parameters as PP = (g1, N =
p1p2p3,G,GT , e (·, ·)).
(Notation. Here and throughout, we use the ‘bracket’ notation for representing group elements. Where
[1]1 := g1, and [1]T,1 := e (g1, g1).)

LSetup(PP, 1n, 1`, i)→ (PK,MSK). The algorithm samples two random vectors α,w ← Z`N , and sets the
authority public-secret key pair as PK = (PP,

[
α
]
T,1,

[
w
]
1) and MSK = (α,w). (Here and throughout,

note that
[
w
]
1 and similar terms can be computed as gw

1 .)

KeyGen(MSKj ,GID, b,u)→ SKj,GID,b,u. It parses the authority key as described above. If b = 0, it sets the
secret key as empty string. Otherwise, it first hashes the GID to create a masking term

[
µ
]
∈ G as[

µ
]

= H(GID). It then outputs the secret key as

SKj,GID,b,u =
[
〈α,u〉

]
1 ·
[
µ · 〈w,u〉

]
.

Note that since the vectors u,w,α are known to the algorithm in the clear, thus the above key term
can be computed efficiently.

Enc({PKi}i∈[n], (A, ρ),v)→ CT. The encryption algorithm first parses the keys PKi as (PP,
[
αi

]
T,1,

[
wi

]
1),

and the predicate contains an m1 × m2 access matrix A with function ρ mapping the rows to the
attribute positions. It samples a m2 × ` matrix S and (m2 − 1)× ` matrix T′ uniformly at random as
S← Zm2×`

N and T′ ← Z(m2−1)×`
N . It sets a m2 × ` matrix T, and arranges two m1 × ` matrices ∆ and

Γ as

T =
(

0>
T′
)
, ∆ =

 α>ρ(1)
...

α>ρ(m1)

 , Γ =

 w>ρ(1)
...

w>ρ(m1)

 .

That is, the matrix T contains all zeros in the first row and is random otherwise. It also samples a
random vector as r← Zm1

N , and computes the ciphertext CT = (C0, C1, C2, C3) as:

C0 =
[
s1 + v

]
T,1, C1 =

[
A · S + ∆� (r⊗ 1>)

]
T,1,

C2 =
[
r
]
1, C3 =

[
A ·T + Γ� (r⊗ 1>)

]
1.

10Note that in general this could be a non-falsifiable condition to check if S∗ is ω(log λ) and the predicate class contains
general non-monotonic functions.
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Here the vector s1 is the first column vector of matrix S> (that is, s1 = S> · e1 where e1 is the first
fundamental basis vector of Zm2

N ).

Dec({SKi,GID,xi,u}i∈[n],CT)→M. It parses the secret key and ciphertext as described above. Let (A, ρ) be
the access policy associated with the ciphertext, and u be the key vector associated with the partial
secret keys. (This could either be explicitly addded to the ciphertext and secret keys above, or passed
as an auxiliary input.)
The decryptor first computes the LSSS reconstruction vector z such that z> ·A = e>1 = (1, 0, . . . , 0).
The decryptor then arranges the key terms as

K =

 SKρ(1),GID,xρ(1),u
...

SKρ(m1),GID,xρ(m1),u


and recovers the inner product message value M by computing the discrete log of the following the
following: [

M
]
T,1 = 〈C0,u〉

(z> · C1 · u) ·
z> · e (K,C2)

e (H(GID), z> · C3 · u)
where the matrix vector operations involving group elements and exponents are performed by first raising
the exponent of each term (component-by-component) for performing multiplication in the exponent,
and then followed by multiplication of the resulting encodings to simulate addition being performed in
the exponent. Also, the operation e (K,C2) performs the pairing operation element-by-element for each
element of the vector.

5.3 Correctness and Security
In this section, we provide the proofs of correctness and security. Our security proof consists of a description
of a sequence of hybrid games, and prove indistinguishability of successive games.

Correctness. The proof of correctness follows from the correctness of the LSSS scheme, and underlying
algebraic structure. Below we briefly highlight the main points.

First, note that for an access policy (A, ρ), if an attribute vector x ∈ {0, 1}n satisfies it, then there exists an
LSSS reconstruction vector z as defined in decryption that satisfies the property that z>·A = e>1 = (1, 0, . . . , 0).
Now consider the partial secret keys associated with attribute vector x and key vector u for identifier GID,
SKi,GID,xi,u for i ∈ [n]. Observe that SKi,GID,xi,u is empty whenever xi = 0, otherwise it contains the group
element

[
〈αi,u〉

]
1 ·
[
µ · 〈wi,u〉

]
where

[
µ
]

= H(GID).
Now let us look at the term

[
M
]
T,1, the decryptor computes. It contains the following terms which can

be simplified as follows–

〈C0,u〉 = 〈
[
s1 + v

]
T,1,u〉 =

[
〈s1 + v,u〉

]
T,1,

z> · C1 · u = z> ·
[
A · S + ∆� (r⊗ 1>)

]
T,1 · u

=
[
z> ·A · S · u + z> ·

(
∆� (r⊗ 1>)

)
· u
]
T,1

=
[
e>1 · S · u + z> ·

(
∆� (r⊗ 1>)

)
· u
]
T,1

=
[
e>1 · S · u + z> · ((∆ · u)� r)

]
T,1
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z> · e (K,C2) = z> ·


e
(

SKρ(1),GID,xρ(1),u,
[
r1
]
1

)
...

e
(

SKρ(m1),GID,xρ(m1),u,
[
rm1

]
1

)


= z> ·

 e
([
〈αρ(1),u〉

]
1 ·
[
µ · 〈wρ(1),u〉

]
,
[
r1
]
1

)
...

e
([
〈αρ(m1),u〉

]
1 ·
[
µ · 〈wρ(m1),u〉

]
,
[
rm1

]
1

)


= z> ·
[

(∆ · u + µ · Γ · u)� r
]
T,1

=
[
z> · ((∆ · u)� r) + z> · ((µ · Γ · u)� r)

]
T,1

z> · C3 · u = z> ·
[
A ·T + Γ� (r⊗ 1>)

]
1 · u

=
[
e>1 ·T · u + z> · ((Γ · u)� r)

]
1

e
(
H(GID), z> · C3 · u

)
=
[
µ · e>1 ·T · u + µ · z> · ((Γ · u)� r)

]
T,1

Combining all these together, we get that

[
M
]
T,1 =

[
〈s1 + v,u〉

]
T,1[

e>1 · S · u + z> · ((∆ · u)� r)
]
T,1
·

[
z> · ((∆ · u)� r) + z> · ((µ · Γ · u)� r)

]
T,1[

µ · e>1 ·T · u + µ · z> · ((Γ · u)� r)
]
T,1

=
[
〈s1 + v,u〉 − e>1 · S · u− µ · e>1 ·T · u

]
T,1

=
[
〈v,u〉

]
T,1

where the last equality follows from the facts that e>1 · S = s>1 , and e>1 ·T = 0>. Therefore, whenever the
policy (A, ρ) is satisfied, then

[
M
]
T,1 gets simplified to

[
u>v

]
T,1 which can be recovered by computing the

discrete log. Thus, correctness follows.

Security. Below we provide a proof of security under standard assumptions over composite-order bilinear
groups.

Theorem 5.2. If the assumptions 2.4, 2.5, 2.6, and 2.7 hold over the bilinear group generator Gen, then the
scheme described above is a selectively secure MA-AB-IPFE for LSSS access structures as per Definition 5.1.

As discussed in Section 1.3, in addition of the type of key queries allowed under MA-ABE, we need to
answer key queries for attribute-key vector pairs (j,GID, b,u) such that 〈u,v0 − v1〉 = 0. At a high level, our
idea is to sample the authority secret keys αi,wi such that the reduction could honestly compute the secret
keys for all attribute-key vector pairs (j,GID, b,u) such that A accepts the list of attribute bits queried for a
given identifier GID and 〈u,v0〉 = 〈u,v1〉. On the other hand, to answer key queries for attribute-key vector
pairs (j,GID, b,u) such that A does not accept the list of attribute bits queried for a given identifier GID, we
switch such secret keys to their semi-functional counterparts.

Although this intuition seems to work at a high level, it does not work as described above. To that
end, we switch all the accepting secret keys to their semi-functional counterparts as well, but ensure that
the challenge ciphertext components that they interact with are only nominally semi-functional. Here the
last part is necessary because of two reasons: first, making the entire challenge ciphertext semi-functional
will affect decryption w.r.t. accepting keys which will be distinguishable for the adversary; second, it is
unclear how to sample the challenge ciphertext in which only one component is semi-functional while other
are regular sub-encryptions due to the fact that these different ciphertext components are significantly
correlated. We get around this barrier by ensuring that the challenge ciphertext is sampled as what we call a
“partial semi-functional ciphertext” (which has full-nominally semi-functional components along with standard
semi-functional components).
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Proof. We start by sketching the sequence of games where the first game corresponds to the original
MA-AB-IPFE security game. First, we switch the way we sample the honest authority’s public-secret keys
wherein instead of sampling the random vectors αi and wi for authority i directly, we sample two random
vectors α̃i and w̃i of same dimensions and implicitly set α>i = α̃>i F and w>i = w̃>F where F ∈ Z`×`N is a
random full rank matrix such that F(v0 − v1) = e1 where e1 is the first vector in the canonical basis of Z`N .

Next, we switch the way the random oracle queries are answered wherein we map identities GID to
random elements of Gp1 instead of G. This is followed by switching the challenge ciphertext to come from a
special ciphertext distribution which we refer to as a partial semi-functional ciphertext, where the intuition is
that only the projection of the `-dimension message vector onto a one-dimensional subspace is encrypted
under a semi-functional mode while the remaining (`− 1)-dimensional projection are encrypted under the
full-nominally semi-functional encryption mode. Basically, we split the challenge message vector such that
now we encrypt the vector β(v0−v1) as a semi-functional ciphertext (for random challenge bit β) and vector
v1 as a full-nominally semi-functional ciphertext and homomorphically combines both of them to create
the final challenge ciphertext. Finally, we switch the partial secret keys one-by-one to be semi-functional
irrespective of whether A accept the list of attribute bits queried for a given identifier GID or not. An
important property of the full-nominally semi-functional ciphertexts is that they can be decrypted by all types
of semi-functional keys, while having the capability to be jointly sampled with a semi-functional ciphertext
with correlated randomness.

The idea here is that since the adversary never receives any secret key for attribute-key vector pairs
(j,GID, b,u) where both A accepts the list of attribute bits queried for a given identifier GID and 〈u,v0−v1〉 6=
0, thus the reduction algorithm can perfectly simulate the above games using the dual system encryption
paradigm [Wat09] as used in [LW11]. We want to point out that as in [LW11], we will assume a one-use
restriction on the attributes throughout the proof, that is the row labeling function ρ of the challenge
ciphertext is injective.

Description of games
Game 0. This corresponds to the original MA-AB-IPFE security game. Let Q denote the total number of
key queries made by adversary.

Game 1. This is same as the previous game, except for each non-corrupt authority, i.e. i /∈ S∗, the
challenger:

— samples a uniformly random vectors α̃i, w̃i ← Z`N ,

— samples a random orthogonal matrix F ∈ Z`×`N subject to the constraint that F(v0 − v1) = e1, where
v0,v1 are the challenge message vectors and e1 = (1, 0, . . . , 0)> (i.e., the first canonical basis vector of
Z`N ), and

— sets αi = F>α̃i,wi = F>w̃i instead of sampling it uniformly at random.

Re-writing the keys and challenge ciphertext. With the above change in sampling the parameters,
we below re-write how all the keys and ciphertexts in the scheme can be rewrittten.

PKi = (PP,F> ·
[
α̃i

]
T,1,F

> ·
[
w̃i

]
1), SKi,GID,1,u =

[
〈α̃i,F · u〉

]
1 ·
[
µ · 〈w̃i,F · u〉

]
.

S̃← Zm2×`
N , T̃ =

(
0>

T̃
′
← Z(m2−1)×`

N

)
, ∆̃ =

 α̃>ρ(1)
...

α̃>ρ(m1)

 , Γ̃ =

 w̃>ρ(1)
...

w̃>ρ(m1)

 .

S = S̃ · F, T = T̃ · F, ∆ = ∆̃ · F, Γ = Γ̃ · F.
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C0 =
[
F>S̃

>
e1 + β(v1 − v0) + v0

]
T,1, C1 =

[
A · S̃ · F + ∆̃ · F� (r⊗ 1>)

]
T,1,

= F> ·
[
S̃
>

e1 − βe1 + F · v0
]
T,1, =

[
A · S̃ + ∆̃� (r⊗ 1>)

]
T,1 · F,

C2 =
[
r
]
1, C3 =

[
A · T̃ · F + Γ̃ · F� (r⊗ 1>)

]
1,

=
[
A · T̃ + Γ̃� (r⊗ 1>)

]
1 · F,

The above re-writing of the keys and ciphertext will be crucial later in the proof when dividing the type of
queries and moving the ciphertext to partial semi-functional.

Game 2. This is same as the previous game, except the challenger answers the random oracle queries as
follows:

— for fresh random oracle query, it samples a random vector µGID ← ZN and responding with
[
µGID

]
1 =

gµGID
1 . Therefore, the partial secret keys can be simplified as:

SKi,GID,1,u =
[
〈α̃i + µGID · w̃i,F · u〉

]
1.

Defining partial semi-functional ciphertexts and secret keys. Similar to [LW11], we define the
space of semi-functional ciphertexts and keys for our scheme. The main differences are that rather than
turning the entire ciphertext to a semi-functional ciphertext, we only switch one dimensional subspace out
of the ` dimensions of the ciphertext to be semi-functional and remaining `− 1 dimensional projection of
the ciphertext space are turned full-nominally semi-functional, and these components are then algebraically
manipulated given the vector space transformation matrix F by performing group operations on the encodings.
Looking ahead, a full-nominally semi-functional ciphertext is more general than a nominally semi-functional
ciphertext in that the latter can not be decrypted by one type of semi-functional keys whereas a full-nominally
semi-functional ciphertext can be decrypted by all types of semi-functional keys. The difference between a
regular and a full-nominally semi-functional ciphertext is only in that a regular ciphertext has no blinding
factors, whereas a full-nominally semi-functional ciphertext has blinding factors in all remaining subgroups
but they are structured such that decryption is unaffected. At a high level, the reason for defining a
full-nominally semi-functional ciphertext is that algebraical manipulation of a semi-functional ciphertext and
regular ciphertext is not possible due to lack of blinding factors in a regular ciphertext. Therefore, introducing
structured blinding factors in a regular ciphertext make it decryptable with respect to all semi-functional
keys but they also contain blinding factors thereby making algebraic manipulation possible.

For the remainder of the proof and descriptions of all types of semi-functional ciphertexts and keys, we
use the following notation. Let bad ⊂ [m1] denote the set of rows for which the corresponding attributes
belong to corrupted authorities. That is, bad = {i ∈ [m1] : ρ(i) ∈ S∗}. Also, let I∗ ∈ {0, 1}m1 be the vector
such that i-th component I∗i = 0 if i ∈ bad, otherwise I∗i = 1.
Partial semi-functional ciphertexts. The C0 and C1 components are sampled exactly as before. Here
we switch how the C2 and C3 components are sampled. The procedure is described in detail in Fig. 5.1.
Semi-functional keys. When we refer to the key for identity GID, we regard as the set of all keys SKi,GID,1,u
for the attributes i belonging to non-corrupt authorities requested by the attacker throughout the game.
Recall that the adversary is also allowed to make key queries for accepting attributes for a fixed GID given
that 〈u,v0 − v1〉 = 0. Now we sample all the secret keys as semi-functional keys irrespective of whether
〈u,v0 − v1〉 = 0 or not. One might think that this will be problematic since a semi-functional key for an
accepting attribute will no longer decrypt the semi-functional ciphertext from above. However, this is precisely
avoided by making the ciphertext to be full-nominally semi-functional, and ensuring that the accepting secret
keys only interact with the nominally semi-functional component of the ciphertext. Recall that regular keys
are sampled as

H(GID) =
[
µGID

]
1, SKi,GID,1,u =

[
〈α̃i,F · u〉

]
1 ·
[
〈µGID · w̃i,F · u〉

]
1. (5.2)
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Figure 5.1: Sampling partial semi-functional ciphertexts.

The challenger samples the following ciphertext matrices

C̃2 =
[
r
]
1, C̃3 =

[
A · T̃ + Γ̃� (r⊗ 1>)

]
1,

where r and T̃ are sampled as described previously. It then samples two random matrices T∗, T̂
∗
← Zm2×`

N ,
and computes the semi-functional term of C3 as

C̃∗3 =
[
A ·T∗

]
2 �

[
A · T̂

∗]
3 �

[
Γ̃� ((r� I∗)⊗ 1>)

]
{2,3}

where encodings in subgroups 2 and 3 are computed using a fixed generator of these subgroups sampled
at setup time. Finally, it sets the C2 and C3 components of the challenge ciphertext as

C2 = C̃2 �
[
r� I∗

]
{2,3}, C3 =

(
C̃3 � C̃∗3

)
· F. (5.1)

We say the ciphertext is full-nominally semi-functional for column j ∈ [`] if the first row of matrices T∗

and T̂
∗

has 0 at the j-th index (that is, T ∗1,j = T̂ ∗1,j = 0). In other words, this means that the secret
being shared in column j is 0.
And, we say that the ciphertext is full-nominally semi-functional it is full-nominally semi-functional for
all but the first column. That is, the first rows of matrices T∗ and T̂

∗
is the first basis vector in the

canonical basis of Z`N .

The important aspect of these keys are that they do not depend on the first component of vectors α̃i and
w̃i, that is α̃i,1 and w̃i,1 are not needed for generating SKi,GID,1,u whenever the key corresponds to accepting
attributes. This is because whenever 〈u,v0−v1〉 = 0 (that is, the condition which must be true for accepting
key queries), we get that F · u is orthogonal to the first basis vector in the canonical basis of Z`N . That is,
F · u is of the form (0, ∗, . . . , ∗)>.

Now we sample the secret keys one of two ways. We refer to these as type 1 and 2 semi-functional keys as
in [LW11]. A type-1 secret key contains blinding factors in the second subgroup, whereas type-2 secret key
contains blinding factors in third subgroup such that they do not a nominally semi-functional ciphertext
component does not get affected by type-1 keys.

A type-1 semi-functional secret key is computed as follows

H(GID) =
[
µGID

]
{1,2}, SKi,GID,1,u =

[
〈α̃i,F · u〉

]
1 ·
[
〈µGID · w̃i,F · u〉

]
{1,2}. (5.3)

Similarly, a type-2 semi-functional secret key is computed as follows

H(GID) =
[
µGID

]
{1,3}, SKi,GID,1,u =

[
〈α̃i,F · u〉

]
1 ·
[
〈µGID · w̃i,F · u〉

]
{1,3}. (5.4)

Game 3. This is the same as the previous game, except that the challenge ciphertext is partial semi-
functional as described in Fig. 5.1. That is, the challenger samples the first two components of the challenge
ciphertext C0 and C1 as before that is

C0 = F> ·
[
S̃
>

e1 − βe1 + F · v0
]
T,1, C1 =

[
A · S̃ + ∆̃� (r⊗ 1>)

]
T,1 · F

where β is the random challenge bit. Whereas the last two components C2 and C3 are sampled as in Eq. (5.1).

Note. The above Game 3 is same as Game 4.0.2 that we describe below.
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Game 4.q.1. This is same as Game 3, except the challenger answers the key queries as follows:

— for the first q − 1 key queries, on attribute-key vector pairs (j,GID, b,u), it computes the partial key as
a semi-functional key of ‘type-2’ as in Eq. (5.4).

— for the q-th key query, on attribute-key vector pair (j,GID, b,u), it computes the partial key as a
semi-functional key of ‘type-1’ as in Eq. (5.3).

— remaining key queries are answered exactly as in Game 3. That is, it computes the partial key honestly
as in Eq. (5.2).

Game 4.q.2. This is same as Game 4.q.1, except the challenger answers the key queries as follows:

— for the q-th key query, on attribute-key vector pair (j,GID, b,u), it computes the partial key as a
semi-functional key of ‘type-2’ as in Eq. (5.4). (That is, the q-th key is switched from type 1 to type 2
as well. All keys in this game are either a type-2 semi-functional key, or honestly sampled keys. Also,
note that all the accepting partial keys do not depend on the first component of the key vectors α̃i and
w̃i.)

Game 5. This is the same as Game 4.Q.2, except that the challenge ciphertext is a partial semi-functional
ciphertext where the C0 component encrypts a random vector along the direction v1 − v0. That is,

C0 = F> ·
[
S̃
>

e1 − κe′1 + F · v0
]
T,1

where κ is a random exponent, and e1, e′1 are first basis vectors in the canonical basis of Zm2
N and Z`N ,

respectively.
Note that in the last hybrid game, the challenger’s responses are independent of the challenge bit β, thus

to complete the proof we only need to show that each adjacent game is indistinguishable.

Indistinguishability of games
To complete the proof we need to show that adjacent games are indistinguishable. The high level strategy
behind the reductions is similar to [LW11] which is to rely on appropriate type of subgroup hiding assumption
coupled with the one-use restriction on the attributes so that information-theoretic security of the secret sharing
scheme could be used to move from nominally semi-functional ciphertexts to semi-functional ciphertexts.
However, due to the fact that we can not make all subspaces of the challenge ciphertext semi-functional,
thus we turn only the first subspace to be semi-functional while remaining subspaces are made nominally
semi-functional. The precise reductions are similar to those provided in [LW11], thus we only provide a high
level sketch below.

For any adversary A and game X, we denote by AdvAs (λ), the probability that A wins in game s.

Lemma 5.3. For any PPT adversary A, we have that AdvA0 (λ) − AdvA1 (λ) ≤ negl(λ) for some negligible
function negl(·).

Proof. This follows directly from the fact that, for any invertible matrix F ∈ Z`×`N , the following distributions
are identical.{

{αi,wi}i∈[n] : ∀i ∈ [n],αi,wi ← Z`N
}
≡
{
{F> · α̃i,F> · w̃i}i∈[n] : ∀i ∈ [n], α̃i, w̃i ← Z`N

}
.

Since N is a composite with large factors, thus with all but negligible probability F will be invertible as
otherwise we could factor N thereby breaking security of the composite-order bilinear maps. And, since F is
invertible with all but negligible probability, thus the lemma follows.
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Lemma 5.4. If assumption 2.4 holds over the group generator Gen, then for any PPT adversary A, we have
that AdvA1 (λ)− AdvA2 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is similar to that of [LW11, Lemma 7]. That is, the reduction algorithm
simply uses the challenge group element T , which lies either in G or G1, to answer all the random oracle
queries (made directly or indirectly via the partial key queries). If T ∈ G, then the reduction simulates Game
1, otherwise it simulates Game 2. Thus, the lemma follows.

Lemma 5.5. If assumption 2.4 holds over the group generator Gen, then for any PPT adversary A, we have
that AdvA2 (λ)− AdvA3 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is similar to that of [LW11, Lemma 8], except now the reduction algorithm
needs to generate a much larger ciphertext (` [LW11]-like ciphertexts but non-trivially correlated). Ideally, if
the correlations between the ` sub-ciphertexts were mild, and could be solved using reusability of correlated
components then the proof would be more straightforward. But since one of these ` sub-ciphertexts must
not be decryptable by the queried secret keys, while all other ciphertexts must be, thus the correlations are
significant.

However, despite the technical challenges, subgroup decision assumption is still sufficient for our purposes.
At a high level, the reduction algorithm simply uses the challenge group element T , which lies either in G or
G1, to sample the C2 and C3 components of the ciphertext corresponding to rows which are non-corrupt,
while for corrupt rows, only C3 depends on the challenge T . This portion of reduction can be carried out
similar to [LW11, Lemma 8] by sampling the vectors and matrices of appropriate dimensions directly over ZN
and implicitly setting certain exponents such as r. The main difference appears in the step that unlike [LW11,
Lemma 8], where the authors directly argued semi-functionality of the ciphertext due to the fact that all keys
are rejecting, we can not rely on the same strategy as we allow the adversary to make accepting queries as
well as long as 〈u,v0 − v1〉 = 0. But we note that by sampling the subspace transformation matrix F and
applying homomorphically on top of the challenge ciphertext, we could pinpoint a single subspace (which is
along the first canonical basis vector in our case) where we switch the ciphertext to be semi-functional from
the adversary’s perspective, while all other sub-ciphertext components (that is, in the subspace orthogonal to
the first canonical basis vector) are nominally semi-functional from the adversary’s perspective as well. In
a little more detail, the information-theoretic security argument for arguing that the secret shares are well
distributed is only applied for the first subspace, but not the rest.

Lemma 5.6. If assumption 2.5 holds over the group generator Gen, then for any PPT adversary A and
q ∈ {1, . . . , Q}, we have that AdvA4.(q−1).2(λ)− AdvA4.q.1(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is similar to that of [LW11, Lemma 9] but with changes similar to that
for Lemma 5.5. Here again we rely on the fact that neither the reduction or the attacker can distinguish the
type-1 semi-functional key from a regular key. This is because for all but the first subspace the ciphertext is
still nominally semi-functional both from the reduction and attacker’s perspective; whereas the first subspace
appears like a semi-functional ciphertext to A but for the challenger it is still nominally semi-functional.
Now as in the previous lemma, we only apply the information-theoretic secret sharing guarantee in the first
sub-ciphertext component.

Lemma 5.7. If assumption 2.6 holds over the group generator Gen, then for any PPT adversary A and
q ∈ {1, . . . , Q}, we have that AdvA4.q.1(λ)− AdvA4.q.2(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is identical to that of [LW11, Lemma 10].

Lemma 5.8. If assumption 2.7 holds over the group generator Gen, then for any PPT adversary A, we have
that AdvA4.Q.2(λ)− AdvA5 (λ) ≤ negl(λ) for some negligible function negl(·).
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Proof. The proof of this lemma is similar to that of [LW11, Lemma 11], except now the strategy is to switch
from encryption of bit β to a random element in the first subspace of the challenge ciphertext, while keeping
the remaining sub-ciphertext portions to be identically distributed. Since the reduction algorithm receives
the generators for all subgroups from the challenger, thus it could simulate the distribution of nominally
semi-functional ciphertext components honestly. And , it uses the remaining components of the bilinear
challenge to simulate the first sub-ciphertext component by using the strategy similar to in [LW11, Lemma
11]. This completes the proof.

6 Function-Hiding DDFE for Inner Products
In this section, we present our function-hiding decentralized dynamic inner product functional encryption
(IP-DDFE) scheme. As described in Section 1, we have the setup algorithm in the Local mode, so that each
party i can dynamically join the system by generating a public key PKi and a master secret key MSKi. For
encryption, party i sets (xpub, xpri) =

(
(UM , labM ),xi

)
where UM is the set of parties whose inputs will be

combined and labM is a label which imposes a constraint on which values can be aggregated together. For
key generation, party i sets (ypub, ypri) =

(
(UK , labK),yi

)
where UK , labK have the same roles as UM , labM ,

respectively. The function Aggx checks if the public inputs (UM , labM ) match for all parties and that all the
ciphertexts are provided for the set UM . If so, outputs (UM ,x) where x = (x1‖ . . . ‖xnx). The function Aggy
checks that all values UK and labK are the same for all parties. If so, it outputs the function fUK ,y=(y1‖...‖yny )
which takes as input (UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

As discussed in the introduction, we first obtain a function-hiding multi-client inner product functional
encryption (IP-MCFE) scheme, and then lift it to a function-hiding IP-DDFE scheme in a non-black box
manner. We first define necessary notions to describe our IP-MCFE and IP-DDFE scheme. As before, we will
specialize the MPFE syntax for ease of exposition.

6.1 Specializing the MPFE Syntax
Syntax of MCFE. Let F be a function family such that, for all f ∈ F , f :M1 × · · · ×Mn → Z. Let L be
a label space. An MCFE scheme for F and L consists of four algorithms.

Setup(1λ, 1n): It takes a security parameter 1λ and a number 1n of slots, and outputs a public parameter
PK, encryption keys {EKi}i∈[n], a master secret key MSK. The other algorithms implicitly take PK.

KeyGen(MSK, f): It takes MSK and f ∈ F , and outputs a secret key SK.

Enc(i,EKi, xi, lab): It takes MSK, an index i ∈ [n], xi ∈Mi, and a label lab and outputs a ciphertext CTi.

Dec(CT1, ...,CTn,SK): It takes CT1, ...,CTn and SK, and outputs a decryption value d ∈ Z or a symbol ⊥.

Correctness. An MCFE scheme is correct if it satisfies the following condition. For all λ, n ∈
N, (x1, ..., xn) ∈M1 × · · · ×Mn, f ∈ F , lab ∈ L, we have

Pr

d = f(x1, ..., xn) :

(PK, {EKi},MSK)← Setup(1λ, 1n)
CTi ← Enc(i,EKi, xi, lab)
SK← KeyGen(MSK, f)
d = Dec(CT1, ..., ,CTn,SK)

 = 1.

Security. We basically adopt the security definition for MCFE in [ABKW19] and extend it to function-hiding
security. We also introduce a selective vatiant because our final goal is IP-DDFE with selective security, and
selectively secure IP-MCFE is sufficient for the security analysis of our IP-DDFE scheme.
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Definition 6.1 (Function-hiding security of MCFE). An MCFE scheme is Leaky-xx-yy-function-hiding
(xx ∈ {sel, sta, adt}, yy ∈ {any, pos}) if for every stateful PPT adversary A, there exists a negligible function
negl(·) such that for all λ, n ∈ N, the following holds

Pr
[
β ← AQCor(),QEncβ(),QKeyGenβ()(PK) : β ← {0, 1}

(PK, {EKi},MSK)← Setup(1λ, 1n)

]
≤ 1

2 + negl(λ)

where QCor(i) outputs EKi, QEncβ(i, x0
i , x

1
i , lab) outputs Enc(i,EKi, xβi , lab), and QKeyGenβ(f0, f1) outputs

KeyGen(MSK, fβ). Let qc,i,lab be the numbers of queries of the forms of QEncβ(i, ∗, ∗, lab). Let HS be the set
of parties on which the adversary has not queried QCor at the end of the game, and CS = [n]\HS. Then, the
adversary’s queries must satisfy the following conditions.

• For i ∈ CS, the queries QEncβ(i, x0
i , x

1
i , lab) and QKeyGenβ(f0, f1) must satisfy x0

i = x1
i and

Leaky(i, f0) = Leaky(i, f1), respectively.11

• There are no sequences (x0
1, ..., x

0
n, f

0, lab) and (x1
1, ..., x

1
n, f

1, lab) that satisfy all the conditions:

– For all i ∈ [n], [QEncβ(i, x0
i , x

1
i , lab) is queried and i ∈ HS] or [x0

i = x1
i ∈Mi and i ∈ CS].

– QKeyGenβ(f0, f1) are queried.
– f0(x0

1, ..., x
0
n) 6= f1(x1

1, ..., x
1
n).

• When xx = sta: the adversary cannot query QCor after querying QEnc or QKeyGen even once.

• When xx = sel: the adversary must make all queries in one shot. That is, first it outputs
(CS, {i, x0

i , x
1
i , lab}, {f0, f1}) and obtains the response: ({EKi}i∈CS , {Enc(i,EKi, xβi , lab)}, {KeyGen(MSK, fβ)}).

• When yy = pos: for each lab ∈ L, either qc,i,lab > 0 for all i ∈ HS or qc,i,lab = 0 for all i ∈ HS.

Syntax of DDFE. We define the syntax of DDFE. Note that we use an identifier i ∈ ID to specify each
party while they use PK for identifier in the original definition [CDSG+20], since it allows more precise
indexing than the indexing by PK12. We assume that the correspondence between id i and public key PKi is
publicly known, or it could be supplied as an input to the local setup algorithm. We describe the syntax of
DDFE in the context of MPFE and change some expressions from the original definition. For instance, we use
MSK instead of SK for secret keys of each party, public/private inputs for Enc and KeyGen instead of using
empty keys, and so on.

Let ID,K,M be an ID space, a key space, and a message space, respectively. K,M consist of a public
part and a private part, that is, K = Kpri × Kpub,M = Mpri ×Mpub. Let f be a function such that
f :
⋃
i∈N(ID × K)i ×

⋃
i∈N(ID ×M)i → Z. A DDFE scheme for f consists of five algorithms.

GSetup(1λ): It takes a security parameter 1λ and outputs a public parameter PP. The other algorithms
implicitly take PP.

LSetup(PP): It takes PP and outputs local public parameter PKi and a master secret key MSKi. The following
three algorithms implicitly take PKi.

KeyGen(MSKi, k = (kpri, kpub)): It takes MSKi and k ∈ K, and outputs a secret key SKi.

Enc(MSKi,m = (mpri,mpub)): It takes MSKi and m ∈M, and outputs a ciphertext CTi.

Dec({SKi}i∈UK , {CTi}i∈UM ): It takes {SKi}i∈UK , {CTi}i∈UM and outputs a decryption value d ∈ Z or a
symbol ⊥ where UK ⊆ ID and UM ⊆ ID are any sets.

11The leakage function captures information that EKi reveals from SK.
12In [CDSG+20], some definitions have ambiguity that seems to stem from the indexing by pk. For instance, correctness of

DDFE in Definition 1 implicitly assumes that skpk is uniquely decided by pk, while the syntax does not require such a condition.
Another example is the IP-DDFE construction in [CDSG+20, § 7.2].
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Correctness. An DDFE scheme for f is correct if it satisfies the following condition. For all λ ∈ N, UK ⊆
ID, UM ⊆ ID, {i, ki}i∈UK ∈

⋃
i∈N(ID × K)i, {i,mi}i∈UM ∈

⋃
i∈N(ID ×M)i, we have

Pr

d = f({i, ki}i∈UK , {i,mi}i∈UM ) :

PP← GSetup(1λ)
PKi,MSKi ← LSetup(PP)
CTi ← Enc(MSKi,mi)
SKi ← KeyGen(MSKi, ki)
d = Dec({SKi}i∈UK , {CTi}i∈UM )

 = 1.

Note that we can consider the case where UK and UM are multisets as in the original definition in [CDSG+20].
However, we do not consider the case here since it induces ambiguity that can be also found in [CDSG+20]13.
We assume that N contains 0 here and (ID × K)0 = {i, ki}i∈∅ = ∅. That is, UK and UM can be an empty
set, which corresponds to the case where Dec does not take secret keys/ciphertexts as input.

Security. We naturally extend the security definition for DDFE in [CDSG+20] to the function-hiding setting
as follows.

Definition 6.2 (Function-hiding security of DDFE). An DDFE scheme is xx-yy-function-hiding (xx ∈
{sel, adt}, yy ∈ {sym, asym}) if for every stateful PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds

Pr
[
β ← AQHonestGen(),QCor(),QEncβ(),QKeyGenβ()(PP) : β ← {0, 1}

PP← GSetup(1λ)

]
≤ 1

2 + negl(λ).

Each oracle works as follows. For i ∈ ID, QHonestGen(i) runs (PKi,MSKi)← LSetup(PP) and returns PKi.
For i such that QHonestGen(i) was queried, the adversary can make the following queries: QCor(i) outputs
MSKi, QEncβ(i,m0,m1) outputs Enc(MSKi,mβ), and QKeyGenβ(i, k0, k1) outputs KeyGen(MSKi, kβ). Note
that kβ and mβ consist of the private elements kβpri,m

β
pri and the public elements kpub,mpub, respectively

(we always require that k0
pub = k1

pub = kpub and m0
pub = m1

pub = mpub as the public elements are not hidden
in SK or CT). Let S be the set of parties on which QHonestGen(i) is queried, HS be the set of parties on
which the adversary has not queried QCor at the end of the game, and CS = S\CS. Then, the adversary’s
queries must satisfy the following conditions.

• There are no sequences ({i, k0
i }i∈UK , {i,m0

i }i∈UM ) and ({i, k1
i }i∈UK , {i,m1

i }i∈UM ) that satisfy all the
conditions:

– For all i ∈ UK , [QKeyGenβ(i, k0
i , k

1
i ) is queried and i ∈ HS] or [k0

i = k1
i ∈ K and i ∈ CS].

– For all i ∈ UM , [QEncβ(i,m0
i ,m

1
i ) is queried and i ∈ HS] or [m0

i = m1
i ∈M and i ∈ CS].

– f({i, k0
i }i∈UK , {i,m0

i }i∈UM ) 6= f({i, k1
i }i∈UK , {i,m1

i }i∈UM ).

• When xx = sel: the adversary first generates a set S of honest users in one shot. Af-
ter that it makes the corruption, key generation, encryption queries in one shot to obtain
{MSKi}, {KeyGen(MSKi, kβ)}, {Enc(EKi,mβ)}.

• When yy = sym: for i ∈ CS, the queries QKeyGenβ(i, k0, k1) and QEncβ(i,m0,m1) must satisfy k0 = k1

and m0 = m1, respectively14.

Definition 6.3 (Inner Product Functional Encryption (IPFE)). Let Π = (p,G1,G2,GT , e, g1, g2) be bilinear
groups. IPFE for Π is a class of FE where M = GN

1 , and function f ∈ F is represented by [y]2 ∈ GN
2 where

y ∈ ZN
p and defined as f([x]1) = [〈x,y〉]T . We say IPFE is function-hiding if it has both message and function

privacy as per Section A.1.2.
13Concretely, when UK is a multiset, and i′ ∈ UK has multiplicity 2, how to treat ki′ ∈ {ki}i∈UK is unclear.
14The symmetric setting captures the case where MSKi can be used to not only encrypt/key generation but also

decryption/decoding of CTi/SKi.
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Definition 6.4 (IP-MCFE). Let B ∈ N be a bound of the infinity norm of vectors. IP-MCFE is a class of
MCFE where Mi = [−B,B]N, Z = Z, and L = {0, 1}∗. The function f is represented by y ∈ [−B,B]nN and
defined as f(x1, ...,xn) = 〈(x1||...||xn),y〉.

Definition 6.5 (IP-DDFE). Let B ∈ N be a bound of the infinity norm of vectors. IP-DDFE is a class of
DDFE where ID = {0, 1}∗, Kpri = Mpri = [−B,B]N, Kpub = Mpub = 2ID × L, Z = Z for label space
L = {0, 1}∗. The function f is defined as, for {ki = (yi,UK,i, labK,i)}i∈U ′

K
and {mi = (xi,UM,i, labM,i)}i∈U ′

M
,

f({i, ki}i∈U ′
K
, {i,mi}i∈U ′

M
) =

{∑
i∈U ′

K
〈xi,yi〉 the condition below is satisfied

⊥ otherwise

• U ′K = U ′M , and ∀i ∈ U ′K ,UK,i = UM,i = U ′K .

• ∃(labK , labM ) ∈ L2,∀i ∈ U ′K , labK,i = labK , labM,i = labM .

Definition 6.6 (One key-label restriction for IP-DDFE). We define an additional restriction for the adversary
in the security game for IP-DDFE. We say an IP-DDFE scheme is xx-yy-function-hiding under the one key-label
restriction if it satisfies Definition 6.2 where the adversary’s queries additionally satisfy the following condition:
QKeyGen with respect to user i ∈ ID and label labK ∈ L (the query of the form of QKeyGen(i, ∗, ∗, ∗, labK))
can be made only once for each pair (i, labK).

Definition 6.7 (All-or-nothing encryption (AoNE)). AoNE is a class of DDFE where ID = {0, 1}∗, Mpri =
{0, 1}L for some L ∈ N, Mpub = 2ID × L, K = ∅, Z = {0, 1}∗. The function f is defined as, for U ′K ∈ 2ID
and {mi = (xi,UM,i, labM,i)}i∈U ′

M
,

f({i}i∈U ′
K
, {i,mi}i∈U ′

M
) =

{
{xi}i∈U ′

M
the condition below is satisfied

⊥ otherwise

• ∀i ∈ U ′M ,U ′M = UM,i.

• ∃labM ∈ L,∀i ∈ U ′M , labM,i = labM .

This means that KeyGen is unnecessary, and Dec works without taking secret keys as input in AoNE (recall
that U ′K can be an empty set).

Chotard et al. showed that sel-sym-IND-secure AoNE can be generically constructed from identity-based
encryption [CDSG+20]15. We also use pseudorandom functions and non-interactive key exchange with quite
simple requirements, which can be realized by the original Diffie-Hellman key exchange. We formally define it
in Section 2.3.

6.2 Construction of Function-Hiding IP-MCFE
We first construct a function-hiding IP-MCFE scheme as a step to a function-hiding IP-DDFE scheme. Let
Π = (p,G1,G2,GT , e, g1, g2) be bilinear groups. Let iFE = (iSetup, iKeyGen, iEnc, iDec) be a function-hiding
IPFE scheme (recall that iKeyGen, iEnc take a group-element vector as input instead of a Zp-element vector
(see Definition 6.3)) and H : L → G1 be a hash function modeled as a random oracle. The construction of
function hiding IP-MCFE for vector length N is provided in Figure 6.1.

15In AoNE, there are no secret keys and thus the IND-security defined in [CDSG+20] is exactly the same as function-hiding
security in our paper.
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Setup(1λ, 1n): On input the security parameter 1λ, the number of slots 1n, the setup algorithm outputs (PK,EKi,MSK)
as follows.

{iMSKi}i∈[n] ← iSetup(1λ, 12N+2)
PK = Π, EKi = iMSKi, MSK = {EKi}i∈[n].

KeyGen(MSK, {yi}i∈[n]): The key generation algorithm takes as input the master secret key MSK, and vectors
{yi}i∈[n] and outputs SK as follows. It randomly chooses ri ∈ Zp so that

∑
i∈[n] ri = 0 and compute

ŷi = (yi, 0N, ri, 0), iSKi ← iKeyGen(iMSKi, ŷi), SK = {iSKi}i∈[n].

Enc(i,EKi,xi, lab): The encryption algorithm takes as input user index i ∈ [n], an encryption key EKi, an input
vector xi, a label lab and outputs CTi as follows.

[tlab]1 = H(lab), x̂i = (xi, 0N, tlab, 0), CTi = iCTi ← iEnc(iMSKi, [x̂i]1).

Dec(SK,CT1, ...,CTn): The decryption algorithm takes as input the secret key SK, ciphertexts CT1, ...,CTn and
outputs d as follows.

[d]T =
∏
i∈[n]

iDec(iSKi, iCTi).

Figure 6.1: Function-Hiding IP-MCFE

Correctness and Security. For correctly generated (SK,CT1, ...,CTn) for {yi,xi}, we have∏
i∈[n]

iDec(iSKi, iCTi) = [
∑
i∈[n]

〈x̂i, ŷi〉]T = [
∑
i∈[n]

〈xi,yi〉]T .

In our scheme, EKi has a power to decode both CTi and SKi since EKi is a part of MSK. This is captured
as the function Leaky below.

Theorem 6.8. If the SXDH assumption holds in G1 and iFE is function-hiding, then our IP-MCFE scheme
is Leaky-sel-pos-function-hiding in the random oracle model, where Leaky(i, {yi}i∈[n]) = yi.

Proof. Let HS ⊆ [n] be the set of uncorrupted parties and CS = [n]\HS. Let LS ⊂ L be a set of labels
queried by the adversary. Let qk be the maximum number of key generation queries. We prove the theorem via
a series of hybrids, which are defined as follows. Basically we denote a variable v used in the `-th encryption
query for label lab in slot i by v`lab,i but often omit ` and lab when we uniformly handle the variable in all
queries. We use similar omission for key generation query.

Gβ : The original game. Especially, the challenger sets x̂i = (xβi , 0N, tlab, 0), ŷi = (yβi , 0N, ri, 0) for the reply
to the encryption query and the key generation query, respectively. Note that when the adversary or
the encryption oracle evaluate H, it queries random oracle to obtain its function values.

Hβ0 : This hybrid is the same as Gβ except that the challenger sets x̂i = (xβi ,x0
i , tlab, 0) for the reply to

QEnc(i,x0
i ,x1

i , lab) with i ∈ HS. The indistinguishability between Gβ and Hβ0 directly follows from the
message privacy of iFE, since 〈x̂i, ŷi〉 in Gβ and that in Hβ0 are the same for all queries of i ∈ HS.

Hβj (j ∈ [qk]) : In this hybrid, the challenger changes ŷi in the reply to QKeyGen({y0
i }, {y1

i }) from Hβ0 . That
is, for i ∈ HS, it defines ŷi = (0N,y0

i , ri, 0) for the first j queries and ŷi = (yβi , 0N, ri, 0) for the last
qk − j queries. The indistinguishability between Hβj−1 and Hβj for j ∈ [qk] is proven in Lemma 6.9.
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Hβf : This hybrid is the same as Hβqk except that the challenger set x̂i = (0N,x0
i , tlab, 0) instead of (xβi ,x0

i , tlab, 0)
for all encryption queries with i ∈ HS. The indistinguishability between Hβqk and Hβf directly follows
from the message privacy of iFE, since 〈x̂i, ŷi〉 in Hβqk and that in Hβf are the same for all queries with
i ∈ HS. In this hybrid, the adversary’s advantage is 0 since its view is independent of β (recall that
x0
i = x1

i and y0
i = y1

i for all i ∈ CS).

Lemma 6.9. If the SXDH assumption holds in G1 and iFE is function-hiding, then Hβj−1 and Hβj are
indistinguishable for j ∈ [qk].

Proof. We introduce intermediate hybrids to prove the lemma as follows.

Hβj−1,1 : This hybrids is the same as Hβj−1 except that, for i ∈ HS, the challenger sets

x̂i = (xβi ,x
0
i , tlab, r

j
i tlab + 〈xβi ,y

j,β
i 〉), ŷi =


(0N,y0

i , ri, 0) (the first j − 1 queries)
(0N, 0N, 0, 1) (the j-th query)
(yβi , 0N, ri, 0) (the last qk − j queries)

where rji are the random elements chosen in the j-th key generation query. The indistinguishability
between Hβj−1 and Hβj−1,1 directly follows from the security of the function-hiding property of iFE, since
〈x̂i, ŷi〉 in Hβj−1 and that in Hβj−1,1 are the same for all queries with i ∈ HS.

Hβj−1,2 : This hybrids is the same as Hβj−1,1 except that, for all lab ∈ LS, and i ∈ HS, the challenger first
randomly choose t̂lab,i ∈ Zp so that

∑
i∈HS t̂lab,i = −tlab

∑
i∈CS r

j
i . Then it sets, for i ∈ HS,

x̂i = (xβi ,x
0
i , tlab, t̂lab,i + 〈xβi ,y

j,β
i 〉).

The indistinguishability between Hβj−1,1 and Hβj−1,2 can be proven under SXDH as follows. The random
self-reducibility of SXDH implies [{aµ, aµb}µ∈[`]]1 ≈c [{aµ,uµ}µ∈[`]]1 where aµ ← Zp,b = (b1, ..., bh)←
Zhp ,uµ = (uµ,1, ..., uµ,h)← Zhp , ` = |LS| and h = |HS| − 1. Without loss of generality, we can assume
HS = {1, ..., h + 1} and CS = {h + 2, ..., n}. We implicitly define tlab = aL(lab), rji = bi (for i ∈ [h]),
rjh+1 = −

∑
i∈[h] bi −

∑
i∈CS r

j
i , t̂lab,i = uL(lab),i, where L : LS → [`] is some bijective function. Then, we

can construct a reduction that chooses rji ← Zp for i ∈ CS and simulates vectors in queries as

x̂i =


(xβi ,x0

i , aL(lab), zβ,L(lab),i + 〈xβi ,y
j,β
i 〉) (i ∈ [h])

(xβi ,x0
i , aL(lab),−

∑
i′∈[h] zβ,L(lab),i′ − aL(lab)

∑
i′∈CS r

j
i′ + 〈xβi ,y

j,β
i 〉) (i = h+ 1)

(xβi , 0, aL(lab), 0) (i ∈ CS)

ŷi =


(0N,y0

i , ri, 0) (the first j − 1 queries for i ∈ HS)
(0N, 0N, 0, 1) (the j-th query for i ∈ HS)
(yβi , 0N, rji , 0) (the j-th query for i ∈ CS)
(yβi , 0N, ri, 0) (the last qk − j queries for i ∈ HS and all for i ∈ CS)

where z0,µ,i = aµbi and z1,µ,i = uµ,i.

Hβj−1,3 : This hybrids is the same as Hβj−1,2 except that, for all i ∈ HS, the challenger sets x̂i in encryption
queries as

x̂i = (xβi ,x
0
i , tlab, t̂lab,i + 〈x0

i ,y
j,0
i 〉).
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This change is information-theoretic, which can be proven as follows. Let (i,x`,0lab,i,x
`,1
lab,i, lab) be the `-th

encryption query of the form of (i, ∗, ∗, lab). Due to the query condition, we have

∆β
lab,i = x`,βlab,iy

j,β
i − x`,0lab,iy

j,0
i = x1,β

lab,iy
j,β
i − x1,0

lab,iy
j,0
i for all `.

Thus, we can define t̂lab,i = t̂′lab,i −∆β
lab,i and obtain

x̂i = (xβi ,x
0
i , tlab, t̂lab,i + 〈x`,βlab,i,y

j,β
i 〉) = (xβi ,x

0
i , tlab, t̂

′
lab,i + 〈x`,0lab,i,y

j,0
i 〉).

Observe that both {t̂lab,i}i∈HS and {t̂′lab,i}i∈HS are secret shares of −t̂lab
∑
i∈CS r

j
i since

∑
i∈HS ∆β

lab,i = 0
due to the query condition. Hence, they are identically distributed. The indistinguishability between
Hβj−1,3 and Hβj can be proven similarly to that between Hβj−1 and Hβj−1,2.

6.3 Construction of Function-Hiding IP-DDFE
We next construct our function-hiding IP-DDFE scheme. Intuitively, our IP-DDFE scheme instantiates our
IP-MCFE scheme in parallel per each party set via a pseudorandom function in a non-black box manner.
Nevertheless, in the security proof, we can delete the information of the challenge bit β in a hybrid sequence
similarly to the security proof of IP-MCFE.

Let iFE = (iSetup, iKeyGen, iEnc,Dec) be a function-hiding IPFE scheme with the length of the random tape
for iSetup(1λ, 12N+2) being p(λ,N), AoNE = (aGSetup, aLSetup, aEnc, aDec) be an all-or-nothing encryption
scheme, NIKE = (nSetup, nKeyGen, nSharedKey) be a non-interactive key exchange scheme, {PRFK

1 } : L → Zp,
{PRFK

2 } : 2ID → {0, 1}p(λ,N) be families of pseudorandom functions where ID denotes an identity space,
and H : 2ID × L → G1 is a hash function modeled as a random oracle. Let K1,K2 be key spaces of
PRF1,PRF2. We assume that the range of nSharedKey and the key space for PRF1 are the same, namely, K1.
Our construction for vector length N is provided in Figure 6.2.

Correctness and Security. Thanks to the correctness of AoNE, we have ˜iCTi = iCTi, ĩSKi = iSKi. For
all labK , {Ki,j,1},U , we have ∑

i∈U
ri =

∑
i∈U

∑
j∈U
i 6=j

(−1)j<iPRFKi,j,1
1 (labK) = 0

since Ki,j,1 = Kj,i,1. For all i ∈ U , iSKi and iCTi are generated under the same iMSKi since they are
generated using the same random tape PRFKi,2

2 (U). Thus, thanks to the correctness of iFE, we have∑
i∈U iDec(ĩSKi, ˜iCTi) = [

∑
i∈U 〈x̂i, ŷi〉]T = [

∑
i∈U 〈xi,yi〉]T .

We show security via the following theorem.

Theorem 6.10. If {PRFK
1 }, {PRFK

2 } are families of pseudorandom functions, NIKE is IND-secure, AoNE is
sel-sym-IND-secure, the SXDH assumption holds in G1, and iFE is function-hiding, then our IP-DDFE scheme
is sel-sym-function-hiding under the one key-label restriction in the random oracle model.

Proof. Let S be the set of parties generated by honest-party generation queries. Let HS ⊆ S be the set of
uncorrupted parties and CS = S\HS. Let LS ⊂ L be a set of labels queried by the adversary. We prove the
theorem via a series of hybrids, which are defined as follows.

Gβ : The original game. Especially, the challenger sets x̂i = (xβi , 0N, t, 0), ŷi = (yβi , 0N, ri, 0) for the reply to
the encryption query and the key generation query, respectively (the procedures in eq. 6.1 and 6.3).
Note that when the adversary or the encryption oracle evaluates H, it queries random oracle to obtain
its function values.
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GSetup(1λ): On input the security parameter 1λ, the setup algorithm outputs PK as follows.

Π = (p,G1,G2,GT , e, g1, g2)← Gen(1λ)

aPP← aGSetup(1λ), nPP← nSetup(1λ), PP = (Π, aPP, nPP).

LSetup(PP): On input PP, user i ∈ ID generates (PKi,MSKi) via the setup algorithm as follows.

(nPKi, nSKi)← nKeyGen(nPP), (aPKi, aMSKi)← aLSetup(aPP), Ki,2 ← K2

PKi = (nPKi, aPKi), MSKi = (nSKi, aMSKi,Ki,2).

KeyGen(MSKi, k): The key generation algorithm takes the master secret key MSKi, and an input k = (yi,UK , labK)
such that i ∈ UK and outputs SKi as follows.

rti = PRFKi,2
2 (UK), iMSKi = iSetup(1λ, 12N+2; rti), Ki,j,1 ← nSharedKey(nSKi, nPKj)

ri =
∑
j∈UK
i6=j

(−1)j<iPRFKi,j,1
1 (labK), ŷi = (yi, 0N, ri, 0), iSKi ← iKeyGen(iMSKi, ŷi) (6.1)

aCTi ← aEnc(aMSKi, (iSKi,UK , labK)), SKi = (aCTi,UK , labK). (6.2)

Enc(MSKi,m): The encryption algorithm takes as input the public parameters PK, the master secret key MSKi, and
an input m = (xi,UM , labM ) such that i ∈ UM and outputs CTi as follows.

rti = PRFKi,2
2 (UM ), iMSKi = iSetup(1λ, 12N+2; rti), [t]1 = H(UM , labM )

x̂i = (xi, 0N, t, 0), iCTi ← iEnc(iMSKi, [x̂i]1) (6.3)
aCTi ← aEnc(aMSKi, (iCTi,UM , labM )), CTi = (aCTi,UM , labM ). (6.4)

Dec({SKi}i∈UK , {CTi}i∈UM ): The decryption algorithm takes as input the public parameters PK, secret keys
{SKi}i∈UK , ciphertexts {CTi}i∈UM such that U = UK = UM and outputs d as follows. Perse SKi =
(aCTi,UK , labK) and CTi = (aCT′i,UM , labM ). Compute

ĩSKi = aDec({aCTi}i∈U ), ĩCTi = aDec({aCT′i}i∈U ), [d]T =
∏
i∈U

iDec(ĩSKi, ĩCTi).

Figure 6.2: Function Hiding IP-DDFE

Hβ1 : In this hybrid, the challenger uses random functions Ri,2 instead of PRFKi,2
2 for i ∈ HS in key generation

and encryption queries. The indistinguishability directly follows from the security of the pseudorandom
function.

Hβ2 : We say a key generation query on k̂ = (i,y0
i ,y1

i ,UK , labK) is incomplete if there exists i′ ∈ UK such that
i′ ∈ HS and the query of the form k̂ = (i′, ∗, ∗,UK , labK) is not made. In this hybrid, for all incomplete
key generation queries, aCTi is changed to the encryption of (0,UK , labK) (the procedure in eq. 6.2).
The indistinguishability directly follows from the security of AoNE.

Hβ3 : We say an encryption query on m̂ = (i,x0
i ,x1

i ,UM , labM ) is incomplete if there exists i′ ∈ UM such
that i′ ∈ HS and the query of the form m̂ = (i′, ∗, ∗,UM , labM ) is not made. In this hybrid, for all
incomplete encryption queries, aCTi is changed to the encryption of (0,UM , labM ) (the procedure in
eq. 6.4). The indistinguishability directly follows from the security of AoNE.

Hβf : In this hybrid, for all complete queries, the challenger sets x̂i = (0N,x0
i , t, 0), ŷi = (0N,y0

i , ri, 0) for the
reply to the encryption query and the key generation query on i ∈ HS, respectively (the procedures in
eq. 6.1 and 6.3). In this hybrid, the adversary’s advantage is 0 since its view is independent of β (recall
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that x0
i = x1

i and y0
i = y1

i for all i ∈ CS). The indistinguishability from Hβ3 is shown in Lemma 6.11.

Lemma 6.11. If {PRFK
1 } are families of pseudorandom functions, the SXDH assumption holds in G1, iFE is

function-hiding, and NIKE is IND-secure, then Hβ3 and Hβf are indistinguishable in the random oracle model.

Proof. We say U ∈ 2ID is a complete ID set if U is queried in either complete key generation queries or
complete encryption query. Let qu be the number of complete ID sets in the adversary’s queries. We always
put the complete ID sets in some order as U1, ...,Uqu , e.g., in ascending order with respect to the size of ID
set. To prove the lemma, we introduce hybrids Ĥβj for j ∈ [q′u] between Hβ3 and Hβf as follows, where q′u is the
upper bound of qu.

Ĥβj (j ∈ [q′u]) : This hybrid is the same as Hβ3 except that, for complete queries of the form m̂ =
(i,x0

i ,x1
i ,UM , labM ) and k̂ = (i,y0

i ,y1
i ,UK , labK) such that i ∈ HS, the challenger set

x̂i =
{

(0N,x0
i , t, 0) (UM ∈ {U1, ...,Uj})

(xβi , 0N, t, 0) (UM ∈ {Uj+1, ...,Uqu})
, ŷi =

{
(0N,y0

i , ri, 0) (UK ∈ {U1, ...,Uj})
(yβi , 0N, ri, 0) (UK ∈ {Uj+1, ...,Uqu})

respectively, where Uj = {⊥} for j > qu.

We can see that Ĥβq′u = Hβf . Thus, what we need to do is to prove Ĥβj−1 and Ĥβj are indistinguishable for
j ∈ [q′u], where we define Ĥβ0 = Hβ3 .

For the purpose, we define intermediate hybrids Ĥβj−1,κ for κ ∈ [qk] where qk is the maximum number of
key generation queries, and which is defined as follows.

Ĥβj−1,κ (κ ∈ [qk]) : Let {lab1
K,UK , ..., labvK,UK} denote a set of labels used in the complete key query of the

form (∗, ∗, ∗,UK , ∗). This hybrid is the same as Ĥβj−1 except that, for complete queries of the form
m̂ = (i,x0

i ,x1
i ,UM , labM ) and k̂ = (i,y0

i ,y1
i ,UK , lab`K,UK ) such that i ∈ HS, the challenger set

x̂i =


(0N,x0

i , t, 0) (UM ∈ {U1, ...,Uj−1})
(xβi ,x0

i , t, 0) (UM = Uj)
(xβi , 0N, t, 0) (UM ∈ {Uj+1, ...,Uqu})

ŷi =
{

(0N,y0
i , ri, 0) (UK ∈ {U1, ...,Uj−1} or (UK = Uj and ` ≤ κ))

(yβi , 0N, ri, 0) (UK ∈ {Uj+1, ...,Uqu} or (UK = Uj and ` > κ))

respectively, where Uj = {⊥} for j > qu.

We can prove Ĥβj−1 ≈c Ĥβj−1,0, Ĥβj−1,κ−1 ≈c Ĥβj−1,κ, Ĥβj−1,qk ≈c Ĥβj similarly to Lemma 6.9 where qk
is the maximum number of key generation queries. However, we need a more careful analysis to prove
Ĥβj−1,κ−1 ≈c Ĥβj−1,κ since we additionally utilize NIKE and PRF1 to prove them following the strategy in
Lemma 6.9.

In the following, we focus only on complete encryption queries of the form (∗, ∗, ∗,Uj , ∗) and complete key
generation queries of the form (∗, ∗, ∗,Uj , labκK,Uj ), since other queries are not changed between Ĥβj−1,κ−1 and
Ĥβj−1,κ. Let Uj ∩HS = {u1, ..., uw} and w′ be an upper bound of w. We then define intermediate hybrid Hβη
between Ĥβj−1,κ−1 and Ĥβj−1,κ.

Hβη (η ∈ [w′]) : This hybrid is the same as Ĥβj−1,κ−1 except that, for complete queries of the form m̂ =
(ui,x`,0labM ,ui ,x

`,1
labM ,ui ,Uj , labM ) and k̂ = (ui,y0

ui ,y
1
ui ,Uj , labκK,Uj ) such that i ∈ Uj ∩HS, the challenger
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set

x̂ui =
{

(x`,βlabM ,ui ,x
`,0
labM ,ui , t, 0) (i < w)

(x`,βlabM ,ui ,x
`,0
labM ,ui , t,

∑
i′∈[η] ∆β

labM ,ui′ ) (i = w)

ŷui =


(0N,y0

ui , rui , 0) (i ≤ η)
(yβui , 0

N, rui , 0) (η < i < w)
(yβui , 0

N, rui , 1) (i = w)

respectively, where (x`,0labM ,ui ,x
`,1
labM ,ui) are the vectors in the `-th encryption query of the form

(ui, ∗, ∗,Uj , labM ) and ∆β
labM ,ui = x1,β

labM ,uiy
β
ui − x1,0

labM ,uiy
0
ui .

Due to the query condition of the adversary, we have

∆β
labM ,ui = x`,βlabM ,uiy

β
ui − x`,0labM ,uiy

0
ui for all ` (6.5)∑

i∈[w′]

∆β
labM ,ui = 0 (6.6)

We can easily prove that Ĥβj−1,κ−1 ≈c Hβ0 and Hβw′ ≈c Ĥβj−1,κ by the function-hiding security of iFE and
eq. 6.6. Thus the remaining task is to prove Hβη−1 ≈c Hβη for η ∈ [w′]. To prove this, we first change the
way of choosing Kuη,uw,1 as Kuη,uw,1 ← K1 instead of Kuη,uw,1 ← nSharedKey(nSKuη , nPKuw), which directly
follows from IND-security of NIKE. We next change

ruη =
∑

i∈Uj∩HS
i 6=uη

(−1)i<uηPRFKuη,i,1
1 (labκK,Uj )

to
ruη =

∑
i∈Uj∩HS
i6∈{uη,uw}

(−1)i<uηPRFKuη,i,1
1 (labκK,Uj )− suη,uw

and
ruw =

∑
i∈Uj∩HS
i6=uw

(−1)i<uwPRFKuw,i,1
1 (labκK,Uj )

to
ruw =

∑
i∈Uj∩HS
i 6∈{uη,uw}

(−1)i<uwPRFKuw,i,1
1 (labκK,Uj ) + suη,uw

where suη,uw ← Zp. This indistinguishability directly follows from the security of pseudorandom function
PRF1. Then, we change encrypted vectors using the function-hiding security of iFE as follows:

x̂ui =
{

(x`,βlabM ,ui ,x
`,0
labM ,ui , t,−tsuη,uw) (i = η)

(x`,βlabM ,ui ,x
`,0
labM ,ui , t,

∑
i′∈[η−1] ∆β

labM ,ui′ + tsuη,uw) (i = w)

ŷui =
{

(yβui , 0
N, rui + suη,uw , 1) (i = η)

(yβui , 0
N, rui − suη,uw , 1) (i = w)

.

The remaining things are the similar to Lemma 6.9:

1. change tsuη,uw to a random element ŝuη,uw by the SXDH assumption;
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2. implicitly define ŝuη,uw = ŝ′uη,uw + ∆β
labM ,uη ;

3. change ŷuη = (yβuη , 0
N, ruη + suη,uw , 1) to ŷuη = (0N,y0

uη , ruη + suη,uw , 1) by using eq. 6.5 and function-
hiding security of iFE;

4. go to Hβη by rewinding changes of vectors by function-hiding security, the SXDH assumption, PRF, and
NIKE.

7 Distributed Ciphertext Policy ABE
In this section, we show how to distribute the recent construction of succinct ciphertext policy ABE by
Agrawal and Yamada [AY20]. As discussed in Section 1, the setup algorithm is run in the Local mode and
key generation is distributed amongst ny = n parties. As in [AY20], nx = 1 (hence Aggx is trivial) and
(xpub, xpri) = (C,m) where C is a circuit in NC1 and m is a hidden bit. For key generation, the ith party
produces a key for (ypub, ypri) = ((y,GID, yi),⊥). The aggregation function Aggy checks if all the values of
GID and y are the same and all the attribute vector bits yi are consistent with y and if so, it outputs a
function fy which takes as input a circuit C and message m and outputs m if C(y) = 1. Our construction is
secure based on “Learning With Errors” and relies on the generic bilinear group model as well as the random
oracle model. We show that as long as at least one authority is honest, the scheme remains secure.

7.1 Specializing the MPFE Syntax
In this section, we define the notion of a distributed ciphertext-policy attribute-based encryption. First, we
provide the syntax, and later describe the security definition.

Syntax. A distributed attribute-based encryption for predicate class C =
{
C` : {0, 1}` → {0, 1}

}
`∈N and

1-bit message space consists of the following PPT algorithms:

GSetup(1λ)→ PP. On input the security parameter λ, the setup algorithm outputs public parameters PP.

LSetup(PP, 1n, 1`)→ (PK,MSK). On input the public parameters PP, number of authorities n, and attribute
length `, the authority setup algorithm outputs a pair of master public-secret key (PK,MSK).

KeyGen(MSKi,GID,x)→ SKi,GID,x. The key generation algorithm takes as input an authority master secret
key MSKi, global identifier GID, and an attribute x ∈ {0, 1}`. It outputs a partial secret key SKi,GID,x.

Enc({PKi}i∈[n], C, µ)→ CT. The encryption algorithm takes as input the list of public keys {PKi}i, predicate
circuit C, and a message bit µ, and outputs a ciphertext CT.

Dec({SKi,GID,x}i∈[n],CT)→ µ/⊥. On input a list of n partial secret keys {SKi,GID,x}i and a ciphertext CT,
the decryption algorithm either outputs a message bit µ or a special string ⊥.

We require such an ABE scheme to satisfy the following properties.

Correctness. A distributed ABE scheme is said to be correct if for all λ, n, ` ∈ N, C ∈ C`, x ∈ {0, 1}`,
µ ∈ {0, 1}, if C(x) = 1 then the following holds:

Pr

Dec({SKi,GID,x}i,CT) = µ :

PP← GSetup(1λ)
∀i ∈ [n] : (PKi,MSKi)← LSetup(PP, 1n, 1`)
∀i ∈ [n] : SKi,GID,x ← KeyGen(MSKi,GID,x)
CT← Enc({PKi}i, C, µ)

 = 1.
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Security. For security, we consider standard semantic security but in presence of corrupt authorities. Here
we consider a much stronger adversary which can even choose the corrupt authorities’ keys on its own.

Definition 7.1 (Distributed ABE security in presence of corrupt authorities with unknown corrupt keys). A
distributed ABE scheme is secure with corrupt authorities if for every stateful admissible PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

A
O(key,·,·,·)(CT) = µ∗ :

PP← GSetup(1λ)
(1n, 1`, S∗)← A(1λ,PP)
∀i /∈ S∗ : (PKi,MSKi)← LSetup(PP, 1n, 1`)
key = {MSKi}i/∈S∗
(C∗, {PKi}i∈S∗)← AO(key,·,·,·)(PP, {PKi}i/∈S∗)
µ∗ ← {0, 1},CT← Enc({PKi}i∈[n], C

∗, µ∗)

 ≤
1
2 + negl(λ),

where the oracle O(key, ·, ·, ·) has key material hardwired, and on input a tuple of a global identifier GID,
an authority index j, and an attribute x, and responds with a partial secret key computed as SKj,GID,x ←
KeyGen(MSKj ,GID,x). Note that the adversary is only allowed to submit key queries for non-corrupt
authorities (i.e., j /∈ S∗). Also, the adversary A is admissible as long as every secret key query made by A to
the key generation oracle O satisfies the condition that — (1) either C∗(x) = 0, or (2) adversary does not
query at least one non-corrupt authority for the same global identifier, attribute tuple (GID,x).

Remark 7.2 (Comparing with decentralized ABE). The notion of distributed ABE differs from the notion
of decentralized ABE in the sense that in a distributed ABE scheme each authority controls essentially an
almost identical secret share of the master key, whereas in a decentralized (or multi-authority) ABE scheme
each authority only controls the master key component for the attributes under its control.

7.2 Preliminaries
In this section, we define some preliminaries that we require for our constructions. Some other relevant
preliminaries are provided in Section 2.

7.2.1 Attribute Based Encryption

Let R = {Rλ : Aλ ×Bλ → {0, 1}}λ be a relation where Aλ and Bλ denote “ciphertext attribute” and “key
attribute” spaces. An attribute-based encryption (ABE) scheme for R is defined by the following PPT
algorithms:

Setup(1λ)→ (PK,MSK): The setup algorithm takes as input the unary representation of the security
parameter λ and outputs a master public key PK and a master secret key MSK.

Enc(PK, X, µ)→ CT: The encryption algorithm takes as input a master public key PK, a ciphertext attribute
X ∈ Aλ, and a message bit µ. It outputs a ciphertext CT.

KeyGen(PK,MSK, Y )→ SKY : The key generation algorithm takes as input the master public key PK, the
master secret key MSK, and a key attribute Y ∈ Bλ. It outputs a private key SKY .

Dec(PK,CT, X,SKY , Y )→ µ or ⊥: We assume that the decryption algorithm is deterministic. The
decryption algorithm takes as input the master public key PK, a ciphertext CT, ciphertext attribute
X ∈ Aλ, a private key SKY , and private key attribute Y ∈ Bλ. It outputs the message µ or ⊥ which
represents that the ciphertext is not in a valid form.
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Definition 7.3 (Correctness). An ABE scheme for relation familyR is correct if for all λ ∈ N, X ∈ Aλ, Y ∈ Bλ
such that R(X,Y ) = 1, and for all messages µ ∈ msg,

Pr


(PK,MSK)← Setup(1λ),
SKY ← KeyGen(PK,MSK, Y ),
CT← Enc(PK, X, µ) :
Decrypt

(
PK,SKY , Y,CT, X

)
6= µ

 = negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 7.4 (Ada-IND security for ABE). For an ABE scheme ABE = {Setup,Enc,KeyGen,Decrypt} for
a relation family R = {Rλ : Aλ ×Bλ → {0, 1}}λ and a message space {msgλ}λ∈N and an adversary A, let us
define Ada-IND security game as follows.

1. Setup phase: On input 1λ, the challenger samples (PK,MSK)← Setup(1λ) and gives PK to A.

2. Query phase: During the game, A adaptively makes the following queries, in an arbitrary order. A
can make unbounded many key queries, but can make only single challenge query.

(a) Key Queries: A chooses an input Y ∈ Bλ. For each such query, the challenger replies with
SKY ← KeyGen(PK,MSK, Y ).

(b) Challenge Query: At some point, A submits a pair of equal length messages (µ0, µ1) ∈ (msg)2

and the target X? ∈ Aλ to the challenger. The challenger samples a random bit b← {0, 1} and
replies to A with CT← Enc(PK, X?, µb).

We require that R(X?, Y ) = 0 holds for any Y such that A makes a key query for Y in order to avoid
trivial attacks.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvAda-IND
ABE,A (1λ) of A in the above game as

AdvAda-IND
ABE,A (1λ) :=

∣∣Pr[ExpABE,A(1λ) = 1|b = 0]− Pr[ExpABE,A(1λ) = 1|b = 1]
∣∣ .

The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive security) if for any stateful
PPT adversary A, there exists a negligible function negl(·) such that AdvAda-IND

ABE,A (1λ) 6= negl(λ).

We can consider the following stronger version of the security where we require the ciphertext to be
pseudorandom.

Definition 7.5 (Ada-INDr security for ABE). We define Ada-INDr security game similarly to Ada-IND security
game except that the adversary A chooses single message µ instead of (µ0, µ1) at the challenge phase and the
challenger returns CT← Enc(PK, X?, µ) if b = 0 and a random ciphertext CT← CT from a ciphertext space
CT if b = 1. We define the advantage AdvAda-INDr

ABE,A (1λ) of the adversary A accordingly and say that the scheme
satisfies Ada-INDr security if the quantity is negligible.

We also consider (weaker) selective versions of the above notions, where A specifies its target X? at the
beginning of the game.

Definition 7.6 (Sel-IND security for ABE). We define Sel-IND security game as Ada-IND security game with
the exception that the adversary A has to choose the challenge ciphertext attribute X? before the setup phase
but key queries Y1, Y2, . . . and choice of (µ0, µ1) can still be adaptive. We define the advantage AdvSel-IND

ABE,A (1λ)
of the adversary A accordingly and say that the scheme satisfies Sel-INDr security (or simply selective security)
if the quantity is negligible.
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Definition 7.7 (Sel-INDr security for ABE). We define Sel-INDr security game as Ada-INDr security game
with the exception that the adversary A has to choose the challenge ciphertext attribute X? before the setup
phase but key queries Y1, Y2, . . . and choice of µ can still be adaptive. We define the advantage AdvSel-INDr

ABE,A (1λ)
of the adversary A accordingly and say that the scheme satisfies Sel-INDr security if the quantity is negligible.

In the following, we recall definitions of various ABEs by specifying the relation. We start with the
standard notions of ciphertext-policy attribute-based encryption (CP-ABE) and key-policy attribute-based
encryption (KP-ABE).
CP-ABE for circuits. We define CP-ABE for circuit class {Cλ}λ by specifying the relation. Here, Cλ is a
set of circuits with input length `(λ) and binary output. We define ACP

λ = Cλ and BCP
λ = {0, 1}`. Furthermore,

we define the relation RCP
λ as

RCP
λ (C,x) = ¬C(x).16

KP-ABE for circuits. To define KP-ABE for circuits, we simply swap key and ciphertext attributes in
CP-ABE for circuits. More formally, to define KP-ABE for circuits, we define AKP

λ = {0, 1}` and BKP
λ = Cλ.

We also define RKP
λ : AKP

λ ×BKP
λ → {0, 1} as

RKP
λ (x, C) = ¬C(x).

7.2.2 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout this
section, n, m, and q are integers such that n = poly(λ) and m ≥ ndlog qe. In the following, let SampZ(γ) be
a sampling algorithm for the truncated discrete Gaussian distribution over Z with parameter γ > 0 whose
support is restricted to z ∈ Z such that |z| ≤

√
nγ.

Learning with Errors. We the introduce then learning with errors (LWE) problem.

Definition 7.8 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers and
χ = χ(λ) be a distribution over Zq. We say that the LWE(n,m, q, χ) hardness assumption holds if for any
PPT adversary A we have

|Pr[A(A, s>A + x>)→ 1]− Pr[A(A,v>)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and A ← Zn×mq ,
s ← Znq , x ← χm, and v ← Zmq . We also say that LWE(n,m, q, χ) problem is subexponentially hard if the
above probability is bounded by 2−nε · negl(λ) for some constant 0 < ε < 1 for all PPT A.

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n,m, q, χ) problem
is as hard as solving worst case lattice problems such as gapSVP and SIVP with approximation factor
poly(n) · (q/γ) for some poly(n). Since the best known algorithms for 2k-approximation of gapSVP and SIVP
run in time 2Õ(n/k), it follows that the above LWE(n,m, q, χ) with noise-to-modulus ratio 2−nε is likely to be
(subexponentially) hard for some constant ε.
Trapdoors. Let us consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q , we let A−1

γ (V) be an output
distribution of SampZ(γ)m×m′ conditioned on A · A−1

γ (V) = V. A γ-trapdoor for A is a trapdoor that
enables one to sample from the distribution A−1

γ (V) in time poly(n,m,m′, log q) for any V. We slightly
overload notation and denote a γ-trapdoor for A by A−1

γ . We also define the special gadget matrix G ∈ Zn×mq

as the matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2dlog qe) with zero-columns. The following properties
had been established in a long sequence of works [GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 7.9 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.
16Here, we follow the standard convention in lattice-based cryptography where the decryption succeeds when C(x) = 0 rather

than C(x) = 1.
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1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .

2. Given A−1
τ , one can obtain [A‖B]−1

τ and [B‖A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
τ0

) where A ∈ Zn×mq for some
m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(

√
n log q logm).

Lattice Evaluation. The following is an abstraction of the evaluation procedure in previous LWE based
FHE and ABE schemes.

Lemma 7.10 (Fully Homomorphic Computation [GV15]). There exists a pair of deterministic algorithms
(EvalF,EvalFX) with the following properties.

• EvalF(B, F ) → HF . Here, B ∈ Zn×m`q and F : {0, 1}` → {0, 1} is a circuit.

• EvalFX(F,x,B)→ ĤF,x. Here, x ∈ {0, 1}` and F : {0, 1}` → {0, 1} is a circuit with depth d. We have

[B− x⊗G]ĤF,x = BHF − F (x)G mod q,

where we denote [x1G‖ · · · ‖xkG] by x⊗G. Furthermore, we have

‖HF ‖∞ ≤ m · 2O(d), ‖ĤF,x‖∞ ≤ m · 2O(d).

• The running time of (EvalF,EvalFX) is bounded by poly(n,m, log q, 2d).

The above algorithms are taken from [GV15], which is a variant of similar algorithms proposed by Boneh
et al. [BGG+14]. The algorithms in [BGG+14] work for any polynomial-sized circuit F , but ‖HF ‖∞ and
‖HF,x‖∞ become super-polynomial even if the depth of the circuit is shallow (i.e., logarithmic depth). On the
other hand, the above algorithms run in polynomial time only when F is of logarithmic depth, but ‖HF ‖∞
and ‖HF,x‖∞ can be polynomially bounded. The latter property is crucial for our purpose.

7.2.3 KP-ABE Scheme by Boneh et al. [BGG+14].

We will use a variant of the KP-ABE scheme proposed by Boneh et al. [BGG+14] as a building block of
our construction of CP-ABE. We call the scheme BGG+ and provide the description of the scheme in the
following. We focus on the case where the policies associated with secret keys are limited to circuits with
logarithmic depth rather than arbitrary polynomially bounded depth, so that we can use the evaluation
algorithm due to Gorbunov and Vinayagamurthy [GV15] (see Lemma 7.10). This allows us to bound the
noise growth during the decryption by a polynomial factor, which is crucial for our application.

The scheme supports the circuit class C`(λ),d(λ), which is a set of all circuits with input length `(λ) and
depth at most d(λ) with arbitrary `(λ) = poly(λ) and d(λ) = O(log λ).

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ), noise distribution
noise over Z, τ0, τ , and B = B(λ) as specified later. It then proceeds as follows.

1. Sample (A,A−1
τ0

)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .
2. Sample random matrix B = (B1, . . . ,B`)← (Zn×mq )` and a random vector u← Znq .
3. Output the master public key PK = (A,B,u) and the master secret key MSK = A−1

τ0
.

KeyGen(PK,MSK, F ): The key generation algorithm takes as input the master public key PK, the master
secret key MSK, and a circuit F ∈ Fλ and proceeds as follows.

1. Compute HF = EvalF(B, F ) and BF = BHF .
2. Compute [A‖BF ]−1

τ from A−1
τ0

and sample r ∈ Z2m as r← [A‖BF ]−1
τ (u).
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3. Output the secret key SKF := r.

Enc(PK,x, µ): The encryption algorithm takes as input the master public key PK, an attribute x ∈ {0, 1}`,
and a message µ ∈ {0, 1} and proceeds as follows.

1. Sample s← Znq , e1 ← noise, e2 ← noisem, and Si,b ← {−1, 1}m×m for i ∈ [`] and b ∈ {0, 1}. Then,
set ei,b := S>i,be2 for i ∈ [`] and b ∈ {0, 1}.

2. Compute

ψ1 := s>u + e1 + µdq/2e ∈ Zq, ψ>2 := s>A + e>2 ∈ Zmq ,
ψ>i,b := s>(B− xiG) + e>i,b ∈ Zmq for all i ∈ [`], b ∈ {0, 1}.

3. Output the ciphertext CTx := (ψ1, ψ2, {ψi,xi}i∈[`]), where xi is the i-th bit of x.

Decrypt(PK,SKx,x, F,CTF ): The decryption algorithm takes as input the master public key PK, a secret
key SKF for a circuit F , and a ciphertext CTx for an attribute x and proceeds as follows.

1. Parse CTx → (ψ1 ∈ Zq, ψ2 ∈ Zmq , {ψi,xi ∈ Zmq }i∈[`]), and SKF ∈ Z2m. If any of the component is
not in the corresponding domain or F (x) = 1, output ⊥.

2. Concatenate {ψi,xi}i∈[`] to form ψ>3 = (ψ>1,x1
, . . . , ψ>`,x`).

3. Compute
ψ′ := ψ1 − [ψ>2 ‖ψ>3 ]r.

4. Output 0 if ψ′ ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

Remark 7.11. We note that the encryption algorithm above computes redundant components {ψi,¬xi}i∈[`]
in the second step, which are discarded in the third step. However, due to this redundancy, the scheme
has the following special structure that will be useful for us. Namely, the first and the second steps of the
encryption algorithm can be executed without knowing x. Only the third step of the encryption algorithm
needs the information of x, where it chooses {ψi,xi}i∈[`] from {ψi,b}i∈[`],b∈{0,1} depending on each bit of x
and then output the former terms along with ψ1 and ψ2.

There, the encryption algorithm, who takes as input a circuit C that specifies the policy and does not
know the corresponding input x, executes the first two steps of the above encryption algorithm. This is
possible since these two steps do not need the knowledge of x.

Parameters and Security. We choose the parameters for the scheme as follows:

m = n1.1 log q, q = 2Θ(λ), χ = SampZ(3
√
n),

τ0 = n log q logm, τ = m3.1` · 2O(d) B = n2m2τ · 2O(d).

The parameter n will be chosen depending on whether we need Sel-INDr security or Ada-INDr security for the
scheme. If it suffices to have Sel-INDr security, we set n = λc for some constant c > 1. If we need Ada-INDr
security, we have to enlarge the parameter to be n = (`λ)c in order to compensate for the security loss caused
by the complexity leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we would have been able to set
q polynomially bounded as in [GV15]. The reason why we set q exponentially large is that we combine
the scheme with bilinear maps of order q to lift the ciphertext components to the exponent so that they
are “hidden” as in [AY20]. In order to use the security of the bilinear map, we set the group order q to be
exponentially large.

The following theorem summarizes the security and efficiency properties of the construction. There are
two parameter settings depending on whether we assume subexponential hardness of LWE or not.
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Theorem 7.12 (Adapted from [GV15, BGG+14]). Assuming hardness of LWE(n,m, q, χ) with χ =
SampZ(3

√
n) and q = O(2n1/ε) for some constant ε > 1, the above scheme satisfies Sel-INDr security.

Assuming subexponential hardness of LWE(n,m, q, χ) with the same parameters, the above scheme satisfies
Ada-INDr security with respect to the ciphertext space CT := Zm(`+1)+1

q

7.3 Construction
Here we provide our extension of [AY20] to distribute the setup and key generation process among non-
interacting a-priori fixed number of authorities. Below we follow the [AY20] scheme syntactically and describe
our modified construction. As in [AY20], we also work over asymmetric bilinear groups. Also, let G1,G2 and
GT be the source and target groups, respectively. Our construction additionally relies on a hash function
H : {0, 1}λ × {0, 1}` → G2 that is later modelled as a random oracle. Below we provide our ABE scheme
following the notation used in [AY20, Section 3] almost verbatim for presentation purposes. For completeness,
we recall the notation used later in Section 7.2.2 and Section 2.2.

Our construction can deal with any circuit class F = {Fλ}λ that is subclass of {C`(λ),d(λ)}λ with arbitrary
`(λ) ≤ poly(λ) and d(λ) = O(log λ), where C`(λ),d(λ) is a set of circuits with input length `(λ) and depth
at most d(λ). Also, all algorithms are provided the public parameters as an additional input. We do not
explicitly write for ease of exposition.

GSetup(1λ): On input 1λ, the setup algorithm samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2),
and sets the public parameters as PP = G.

LSetup(PP, 1N , 1`): On input the bilinear group description PP = G, number of authorities N , attribute
length `, the authority setup algorithm defines the parameters n = n(λ), m = m(λ), noise distribution
noise over Z, τ0, τ , and B = B(λ) as specified in Section 7.2.3. It then sets L := (2` + 1)m + 2 and
proceeds as follows.

1. Sample w← (Z∗q)L and compute [w]1.
2. Output PK = [w]1 and MSK = w.

KeyGen(MSKj ,GID,x): The key generation algorithm takes as input the authority master secret key
MSKj = w(j), global identifier GID, and an attribute x ∈ {0, 1}` with x1 = 1 and proceeds as follows.

1. Let 1 := (1, . . . , 1)> ∈ Zmq and 0 := (0, . . . , 0)> ∈ Zmq . Set

φ0 = 1 ∈ Zq, φ1 = 1 ∈ Zq, φ2 := 1 ∈ Zmq ,

φi,b :=
{

1 ∈ Zmq if b = xi

0 ∈ Zmq if b 6= xi
for i ∈ [`] and b ∈ {0, 1}. (7.1)

2. Vectorize (φ0, φ1, φ2, {φi,b}i,b) to form a vector d ∈ ZLq by concatenating each entry of the vectors
in a predetermined order.

3. Compute h = H(GID,x) ∈ G2.

4. Compute hd�w(j) ∈ GL2 using h ∈ G2 and w(j) in the master key.

5. Output SKj,GID,x = hd�w(j) .

Enc({PKi}i∈[N ], F, µ): The encryption algorithm takes as input a list of authority master public keys PKi
for i ∈ [N ], the circuit F , and a message µ ∈ {0, 1} and proceeds as follows.

1. Sample fresh BGG+ scheme:

(a) Sample (A,A−1
τ0

)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .
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(b) Sample random matrix B = (B1, . . . ,B`)← (Zn×mq )` and a random vector u← Znq .

2. Compute BGG+ function key for circuit F :

(a) Compute HF = EvalF(B, F ) and BF = BHF .
(b) Compute [A‖BF ]−1

τ from A−1
τ0

and sample r ∈ Z2m as r← [A‖BF ]−1
τ (u).

3. Compute BGG+ ciphertext for all possible inputs:

(a) Sample s ← Znq , e1 ← noise, e2 ← noisem, and Si,b ← {−1, 1}m×m for i ∈ [`] and b ∈ {0, 1}.
Then, set ei,b := S>i,be2 for i ∈ [`] and b ∈ {0, 1}.

(b) Compute

ψ0 := 1 ∈ Zq, ψ1 := s>u + e1 + µdq/2e ∈ Zq,
ψ>2 := s>A + e>2 ∈ Zmq ,
ψ>i,b := s>(Bi − bG) + e>i,b ∈ Zmq for i ∈ [`] and b ∈ {0, 1}. (7.2)

4. N -out-of-N secret share the BGG+ ciphertexts:

(a) Vectorize (ψ0, ψ1, ψ2, {ψi,b}i,b) to form a vector c ∈ ZLq by concatenating each entry of the
vectors in a predetermined order (that aligns with the one used in the key generation algorithm).

(b) Sample N − 1 uniformly random vectors c̃(j) ← ZLq for j ∈ [N − 1].
(c) Compute vector c̃(N) as c̃(N) = c +

∑
j∈[N−1] c̃

(j).
5. Encode the secret shared ciphertexts in exponent of bilinear group:

(a) Sample γ ← Z∗q .
(b) For every j ∈ [N ], compute [γc̃(j) �w(j)]1 ∈ GL1 from γ, c̃(j), and [w(j)]1 in PKj .

6. Output CTF =
(

CT0 = (A,B), {CT(j)
1 = [γc̃(j) �w(j)]1}j∈[N ],CT2 = r

)
.

Dec({SKj,GID,x}j∈[N ],x, F,CTF ): The decryption algorithm takes as input the N partial secret keys SKj,GID,x
for an attribute x and authority index j ∈ [N ], and the ciphertext CTF for a circuit F and proceeds as
follows.

1. Parse CTF → (CT0 = (A ∈ Zn×mq ,B ∈ Zn×m`q ), {CT(j)
1 ∈ GL1 }j ,CT2 ∈ Z2m) and SKx ∈ GL2 . If

any of the component is not in the corresponding domain or F (x) = 1, output ⊥.

2. Unmask and reconstruct the secret-shared BGG+ ciphertexts corresponding
to x by using each partial secret key:
Compute the partial unmasked ciphertexts [v(j)]T := CT(j)

1 � SKj,GID,x, and reconstruct them as
[v]T :=

∏
j∈[N ][v(j)]T . Next, de-vectorize [v]T to obtain

[v0]T ∈ GT , [v1]T ∈ GT , [v2]T ∈ Gm
T , [vi,b]T ∈ Gm

T , for i ∈ [`], b ∈ {0, 1}.

3. Evaluate circuit F on BGG+ ciphertexts in the exponent:
Compute ĤF,x = EvalF(F,x,B).

4. Perform BGG+ decryption in the exponent:
Form [v>x ]T = [v>1,x1

, . . . ,v>`,x` ]T and CT>2 = (r>1 ∈ Zmq , r>2 ∈ Zmq ). Then compute

[v′]T := [v1 − (v>2 r1 + v>x ĤF,xr2)]T

from [v1]T , [v2]T , [vx]T , r1, r2, and ĤF,x.
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5. Recover exponent via brute force if F (x) = 0:
Find η ∈ [−B,B] ∪ [−B + dq/2e, B + dq/2e] such that [v0]ηT = [v′]T by brute-force search. If there
is no such η, output ⊥. To speed up the operation, one can employ the baby-step giant-step
algorithm.

6. Output 0 if η ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

Correctness. The correctness of our scheme follows almost directly from the correctness of the [AY20]
CP-ABE scheme. The only difference being that in [AY20] the unmasking step directly reveals the BGG+

ciphertexts in the exponent, whereas in the above construction the unmasking step reveals the secret shares of
the BGG+ ciphertext, which we first combine to recover the BGG+ ciphertext and then decrypt as in [AY20].
More concretely, observe that for every j ∈ [N ],

CT(j)
1 � SKj,GID,x = hγ ·̃c

(j)�dx ,

where h = H(GID,x), and dx is as defined in key generation. Thus, we have that∏
j∈[N ]

CT(j)
1 � SKj,GID,x = h

γ·
∑

j∈[N]
(̃c

(j)�dx) = hγ·c�dx .

Given this, rest of the correctness proof is identical to that provided in [AY20].

Proof of Security
Here we prove security of our construction. Formally, we prove the following.

Theorem 7.13. If the underlying key-policy ABE scheme BGG+ satisfies semantic security with
pseudorandom ciphertexts, then our distributed ciphertext-policy ABE scheme is semantically secure
(Definition 7.1) in the generic group model.

The proof structure is similar to that of [AY20], except now the reduction algorithm needs to additionally
answer key queries for GID-attribute vector pairs (GID,x) for which F ∗(x) = 1 (where F ∗ is the challenge
circuit) for some non-corrupt/honest authorities as well. Recall that the security must hold even if the
attacker queries all but one honest authorities on such accepting input attribute vectors x. Despite such
additional key queries, it turns out the [AY20] proof could be extended to handle them. Intuitively, this is
because even given such partial accepting keys one could show that the adversary is not able to make any
“bad” zero-test queries as defined in [AY20]. Below we sketch the hybrid games along the lines of [AY20]. We
refer the reader to [AY20, Section 4] for more details.

Game 0. This corresponds to the distributed ABE security game as described in Definition 7.1. Let Qkq
denote the total number of queries made by the adversary, Qzt denote the number of zero-test queries, and
Qro denote the number of RO queries. Here the challenger simulates both the random oracle as well as generic
group oracle. (That is, it gives handles to the group elements each time, and when answering a RO query, it
again answers with a handle since hash H maps elements to G2.)

Game 1. This is same as the previous game, except the way in which the challenger answers/resolves each
call to the hash function/random oracle:

— on input (GID,x), the challenger chooses a random exponent δGID,x ← Zq, stores δGID,x for answering
future queries on same input, and responds with

[
δGID,x

]
1. (Intuitively, the challenger samples a random

exponent per input to simulate the randomness term δ in the [AY20] secret keys.)
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Game 2. This is same as the previous game, except the challenger samples the honest authority master
keys w(j) (for j /∈ S∗, where S∗ is the set of corrupt users), random exponents δGID,x (for all key queries
(GID,x), and RO queries too), ciphertext components A,B,u, γ, µ, c, and c̃(j) (for j ∈ [N ]) at the beginning
of the game. Since all these terms are independent of the challenge circuit F ∗, thus the game is well defined.
(This is similar to that done in Game 1 in [AY20, Section 4].)

Game 3. This is same as the previous game, except the challenger (partially) switches to the symbolic group
model and replaces the terms {w(j)}j /∈S∗ , {δGID,x}GID,x, γ, c and {c̃(j)}j with their respective formal variables
{W(j)}j /∈S∗ , {∆GID,x}GID,x, Γ, C and {C̃

(j)
}j . Let Wj = (W (j)

1 , . . . ,W
(j)
L ) and C̃

(j)
= (C̃(j)

1 , . . . , C̃
(j)
L ). As

a result, all handles given to adversary A refer to elements in the ring

T := Zq[{W (j)
i , 1/W (j)

i }j /∈S∗,i∈[L], {∆GID,x}GID,x,Γ, {C̃(j)
i }j∈[N ],i∈[L]],

where {1/W (j)
i }j,i are needed to represent the components in the secret keys. However, whenever it performs

a zero-test then it checks if the underlying ring element evaluates to 0 by substituting formal variables with
corresponding elements in Zq. (This is similar to that done in Game 2 in [AY20, Section 4]. However, the
only difference is that since the adversary corrupts some of the key authorities, thus it knows/chooses the key
vectors w(j) on its own for j ∈ S∗. Recall that [AY20] this was not the case.)

Note. As in [AY20], we extend the definition of sets ST,1 and ST,2 to our above distributed ABE construction.
Briefly, the difference being that now the number of products being unmatching positions increases by a large
amount due to cross terms between ciphertext and key components that correspond to different authorities.

Game 4. This is same as the previous game, except the challenger treates {Wj}j /∈S∗ , {∆GID,x}GID,x, and Γ
as formal variables rather than elements in Zq even when answering zero-test queries. (This is similar to that
done in Game 3 in [AY20, Section 4].)

Game 5. This is same as the previous game, except now the challenger aborts the game and enforces
the adversary to output a random bit when there exists i ∈ [L] and j /∈ S∗ such that c̃(j)i = 0, where
c̃(j) = (c̃(j)1 , . . . , c̃

(j)
L )> is sampled as in the previous game. (Note that this departs slightly from Game 4

in [AY20, Section 4]. This is due to the fact that [AY20] is a single-authority ABE system, whereas ours is a
distributed scheme.)

Game 6. This is same as the previous game, except now the challenger changes how it answers the zero-test
queries slightly. In particular, when adversary makes a zero-test query, then the challenger interprets it as a
ring element of the form

∑
Z∈ST,1 aZZ +

∑
Z∈ST,2 aZZ (where sets ST,1 and ST,2 are defined as appropriate

extensions of that in [AY20] as discussed after description of Game 3 above). And, if there exists a Z ∈ ST,1
such that its coefficient aZ 6= 0, then the challenger returns 0, otherwise it answers the query as before. (This
is similar to that done in Game 5 in [AY20, Section 4].)

Game 7. This is same as the previous game, except now the challenger answers all the zero-test queries
completely over the ring (defined over the formal variables). Namely, when adversary makes a zero-test
query for a handle corresponding to a ring element f ∈ T, then the challenger returns 0 if f is not already a
zero element over the ring T, that is f 6= 0 over T. In other words, the challenger returns 0 if there exists
a Z ∈ ST,1 ∪ ST,2 such that its coefficient aZ 6= 0. Note that {c̃(j)}j /∈S∗ is not used in this game, thus the
challenger does not have to sample them any more. (This is similar to that done in Game 6 in [AY20, Section
4].)
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Indistinguishability of games
We complete the proof by showing that adjacent games are indistinguishable. For any adversary A and game
X, we denote by AdvAs (λ), the probability that A wins in game S.

Lemma 7.14. For any adversary A, we have that AdvA0 (λ) = AdvA1 (λ).

Proof. This follows directly from the fact that H is modelled as a programmable random oracle.

Lemma 7.15. For any adversary A, we have that AdvA1 (λ) = AdvA2 (λ).

Proof. Since this is only a conceptual change where the challenger pre-computes ciphertext terms, the lemma
immediately follows.

Lemma 7.16. For any adversary A, we have that AdvA2 (λ) = AdvA3 (λ).

Proof. This lemma again follows from the fact that this game just constitutes a syntactic difference, where
the only difference is in how queries are answered. But since the terms are sampled identically in both games,
thus the distributions are identical. Therefore, the lemma follows.

Lemma 7.17. For any adversary A, we have that AdvA3 (λ)− AdvA4 (λ) ≤ Qzt(N · L+ 3)2/q.

Proof. The proof of this lemma is identical to that of [AY20, Lemma 4.4], and follows by an application
of Schwartz-Zippel lemma and union bound. The main difference is that the number of authority random
variables W grew from L to N · L, thus the degree of the polynomial on which Schwartz-Zippel is applied
gets raised by a factor of N − |S∗| ≤ N , where S∗ is the set of corrupt authorities.

Lemma 7.18. For any adversary A, we have that AdvA4 (λ)− AdvA5 (λ) ≤ N · L/q.

Proof. This is a statistical property, and follows from the combination of following two facts. First, the
challenger samples all but the last encoding vector c̃(j) uniformly at random. Thus, by a simple union bound
we get that the probability c̃(j)i 6= 0 for all i ∈ [L] and j ∈ [N − 1] is at most (N − 1)L/q. Now, the vector
c̃(N) contains the BGG+ ciphertext components which are either fixed to be 1 or well distributed over Zq
(assuming LWE).17 Therefore, the lemma follows by combining these.

Lemma 7.19. For any adversary A, we have that AdvA5 (λ) = AdvA6 (λ).

Proof. The proof of this lemma is similar to that of [AY20, Lemma 4.6], and intuitively follows from the fact
that all monomials in ST,1 are distinct (even if one substitutes ciphertext formal variables {C̃(j)

i }j,i with its
actual value {c̃(j)i }j,i and ignore the difference between the coefficients of the monomials), thus if aZ 6= 0 for
some Z ∈ ST,1, then that term will never get cancelled, thus not lead to a successful zero-test query. Hence,
the lemma follows.

Lemma 7.20. If the underlying key-policy ABE scheme BGG+ satisfies semantic security with pseudorandom
ciphertexts and log q = ω(log λ), then for every PPT adversary A, there exists a negligible function negl(·)
such that AdvA6 (λ)− AdvA7 (λ) ≤ negl(λ).

Proof. In [AY20], the authors proposed a hybrid based approach for proving the single-authority variant of
the above lemma. Here we provide a different case based analysis. Our proof structure could also be used
in [AY20] to potentially provide a simpler of the same.

The proof of this lemma is based on the ideas used in the proof of [AY20, Lemma 4.7], but there are a few
differences. Very briefly, the main difference is that here we could have more than one non-corrupt/honest
authorities, thus an adversary could potentially make key queries to all but one honest authorities on
GID-attribute pairs (GID,x) where F ∗(x) = 1. (Note that an adversary is allowed to query some of the

17This part is similar to the proof of [AY20, Lemma 4.5].
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honest authorities on accepting attributes, as long as it does not query all the honest authorities thereby
simply being able to decrypt the challenge ciphertext, since we want to disallow an adversary utilizing partial
secret keys for two different accepting attributes.)

First, observe that Games 6 and 7 differ only when A makes a zero-test query for a handle corresponding
to f ∈ T that can be represented as

f({W (j)
i }j /∈S∗,i∈[L], {∆GID,x}GID,x,Γ, {C̃(j)

i }j∈[N ],i∈[L]) =
∑

Z∈ST,2

aZZ (7.3)

and satisfies f 6= 0 over T, but

f({W (j)
i }j /∈S∗,i∈[L], {∆GID,x}GID,x,Γ, {c̃(j)i }j∈[N ],i∈[L]) = 0. (7.4)

That is, only substituting the formal variables corresponding to C̃(j)
i to their actual values makes the ring

element go to 0. Following [AY20], we call such a query bad. Now note that the set ST,2 contains the following
terms:

ST,2 =

ΓC̃(j)
i ∆GID,x :

(j,GID,x) ∈ Qkey, i ∈ [L], dx,i = 1
where dx = (dx,1, . . . , dx,L) and

Qkey denotes the set of key queries by A

⋃ {
ΓC̃(j)

i ∆GID,x : j ∈ S∗, i ∈ [L], (GID,x) ∈ Qro,
where Qro denotes the set of RO queries by A

}
Suppose A always queries RO on (GID,x) whenever it makes a key query to some honest authority on
(GID,x). This can be assumed without loss of generality. Now one could additionally split the above set ST,2
as per the GID-attribute pairs (GID,x) as:

S
(GID,x)
T,2 =

ΓC̃(j)
i ∆GID,x :

i ∈ [L], dx,i = 1, ∀j s.t. (j,GID,x) ∈ Qkey
where dx = (dx,1, . . . , dx,L) and

Qkey denotes the set of key queries by A

⋃ {
ΓC̃(j)

i ∆GID,x : j ∈ S∗, i ∈ [L]
}

First, note that any bad query f ∈ T can now be represented as

f({W (j)
i }j /∈S∗,i∈[L], {∆GID,x}GID,x,Γ, {C̃(j)

i }j∈[N ],i∈[L])

=
∑

(GID,x)∈Qro

∑
Z∈S(GID,x)

T,2

aZZ.

Now we further classify bad queries into “types”. We say that f is a Type-(GID,x) bad query if:∑
Z∈S(GID,x)

T,2

aZZ 6= 0 and
∑

Z∈S(GID,x)
T,2

aZZ({c̃(j)i }j∈[N ],i∈[L]) = 0,

where Z({c̃(j)i }j,i) denotes Z({W (j)
i }j,i, {∆GID,x}GID,x,Γ, {c̃(j)i }j,i) ∈ T above.

Next, we claim the following.

Claim 7.21. If f ∈ T is a “bad” query, then there must exist (GID,x) ∈ Qro such that f is a “Type-(GID,x)
bad” query.

Proof. The proof of this claim follows along the lines of indistinguishability proof of hybrids 5.3 and
5.4 in [AY20]. The idea is that if f is a bad query, then there must exist a (GID,x) ∈ Qro satisfying∑
Z∈S(GID,x)

T,2
aZZ 6= 0. Furthermore, we have that∑

Z∈S(GID,x)
T,2

aZZ({c̃(j)i }j∈[N ],i∈[L]) = −
∑

(GID′,x′)6=(GID,x)

∑
Z∈S(GID′,x′)

T,2

aZZ({c̃(j)i }j∈[N ],i∈[L]).
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However, the above is impossible unless the left hand side equals to 0 since any monomial in S
(GID,x)
T,2 never

appears in S
(GID′,x′)
T,2 for (GID′,x′) 6= (GID,x) even if we replace {C̃(j)

i } with {c̃(j)i } and ignore the difference
between the coefficients of the monomials. This is due to the fact that there is a δGID,x variable on the left
side that never appears on the right side. Thus, f must be Type-(GID,x) bad query.

To complete the proof of this lemma, we just need to show that adversaryA never makes any “Type-(GID,x)
bad” query. To argue this, we prove the following:

Claim 7.22. For every GID-attribute pair (GID,x) ∈ Qro, zero-test query number t ∈ [Qzt], if BGG+ satisfies
semantic security with pseudorandom ciphertexts and log q = ω(log λ), then the probability that adversary
A’s first bad query is the t-th zero-test query and it is a “Type-(GID,x) bad” query is at most negl′(λ) for
some negligible function negl′(·).

Proof. Now the GID-attribute pairs (GID,x) queried by A can be further divided into two categories — (1)
F ∗(x) = 0 (that is, attribute does not satisfy the predicate), or (2) there exists an index j /∈ S∗ such that A
does not make make a key generation query of the form (j,GID,x) (that is, it does not query at least one
honest authority for its key share for GID-attribute pair (GID,x)). (Refer to Definition 7.1 for admissible key
queries.)

First, we argue that in case (2) as per above categorization, the claim is correct. This follows from the
observation that if A makes its first bad query on t-th zero-test query and it is a “Type-(GID,x) bad” query,
and A did not make a key query on (GID,x) to some honest authority say j∗, then in that case the every
monomial Z ∈ S(GID,x)

T,2 does not depend on c̃(j∗). Now since c̃(j) are sampled uniformly at random with
the only constraint that

∑
j c̃(j) = c, thus the joint distributions of c̃(j) for j 6= j∗ (i.e., excluding c̃(j∗)) is

identical to that of a random distribution over ZLq . By using uniformity of c̃(j) for j 6= j∗, we can conclude
the argument that this event can happen only with probability at most 1/q since f is represented as a linear
combination of {ΓC̃(j)

i ∆GID,x}i,j 6=j∗ and all entries of {c̃(j)i }i∈[L],j 6=j∗ are chosen uniformly at random. This
completes the argument for case (2).

Otherwise, in case (1) as per above categorization, we have that F ∗(x) = 0. To argue negligible probability
of this event, we define an intermediate hybrid game as follows. (This part of the proof is similar to that
of [AY20, Lemma 4.7-4.8].) In the intermediate hybrid game, the challenger samples ci as in the original
scheme only for i ∈ [L] such that dx,i = 1, where dx = (dx,1, . . . , dx,L) and dx is as defined in the construction
for attribute x. The game is still well-defined since the only place in the game where we need the information
of c is to check that t-th zero-test query is a “Type-(GID,x) bad” query, and we only need ci for i ∈ [L]
such that dx,i = 1. Basically given these, the reduction can sample all the c̃(j)i terms appropriately. (Here
appropriately means that for j ∈ S∗, it samples all of them to be uniformly random, while for j /∈ S∗ it only
needs to simulate half of the c̃(j)i terms depending on x which are computable given half of the ci terms.)

We start by claiming that this intermediate hybrid is identically distributed to the previous game. This
follows from the fact that S(GID,x)

T,2 only contains terms ΓC̃(j)
i ∆GID,x for j /∈ S∗, i ∈ [L], dx,i = 1. Thus, since

ci is N -out-of-N secret shared into c̃(j)i , thus the challenger only needs to sample ci for i ∈ [L] such that
dx,i = 1 in both the original game as well as the intermediate hybrid game. This proves indistinguishability
of the intermediate hybrid game with the original game.

Next, once the challenger only needs to sample ci for i ∈ [L] such that dx,i = 1 and given that F ∗(x) = 0,
thus we could switch all these ci terms to be sampled uniformly at random instead by relying semantic
security (with pseudorandom ciphertexts) of BGG+. This reduction is identical to that of [AY20, Lemma 4.8].
Finally, once ci for i ∈ [L] such that dx,i = 1 are sampled uniformly at random, then as in the proof of case
(2) previously, we could show that a bad query happens with probability at most 1/q. This completes the
argument in case (1) too, and hence this completes the proof.

Finally, using the above claim with a simple union bound over the total number of zero-test queries and
key queries, we get that Games 6 and 7 are negligibly far apart. Since, the adversary’s advantage is Game 7
is clearly zero as it contains no information about the challenge bit, thus the theorem follows.
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8 New Primitives Predicted by MPFE
In this section, we define new primitives that can be seen as special cases of multi-party functional encryption
and have natural, compelling applications. We also provide a high level sketch of a generic construction of
our new reputation point based encryption described in Section 1.5 from a multi-authority ABE scheme.

Reputation Point Based Encryption: Below we sketch the constructions in two different setup modes
which leads to different trade-offs in the type of collusion security and aggregation functionality.

Centralized setup with bounded aggregation. In the centralized setup setting, the central authority on
input the upper bound, N , on the number of user key aggregations samples N pairs of MA-ABE authority
public-secret key pairs (PKi,MSKi), and sets the the master public and secret keys as the sequence of these N
keys that is (PKi)i, (MSKi)i. Now to generate a key for tag T and points v, the authority starts by sampling
a random label L and generates N MA-ABE partial decryption keys by running the MA-ABE key generation
algorithm with respect to each key MSKi with global identifier GID = T and partial attribute vector (T, L, v).
An encryptor simply hides the message under the policy P which on input a sequence (Ti, Li, vi)i checks
that all tags match the encrypted tag T , all labels are distinct, and the user points sum to a value larger
than the encrypted threshold w. Note that here we are using randomly sampled labels in each user’s key
for ensuring that a single user can not combine two components of its own key, while N distinct users can
always combine one key from their sequence of N MA-ABE keys with all but negligible probability. At a
high level, the above idea seems to work for any MA-ABE scheme but one needs to be careful about the
notion of security the underlying MA-ABE scheme must satisfy as now in this system we ask each authority
to possibly generate multiple keys for the same global identifier.

Decentralized setup with security in the erasure model. Note that one could try to make the above
construction fully decentralized by asking each user to locally sample its own public-secret key pair (PK,MSK)
for a MA-ABE scheme, and then the user locally generates a partial predicate key SKT,v for attribute (T, v).
Now each user must delete its master secret key MSK, and it outputs PK as its public key and SKT,v as its
decryption key. An encryptor simply takes as input the list of public keys of all users which it possibly wants
to encrypt to, and defines the corresponding policy circuit as follows — either the attribute string is not
specified, or it the specified tag matches the encrypted tag T , and the user points sum to a value larger than
the encrypted threshold w. To make this work, we need the MA-ABE scheme to support the concept of
empty key (or zero-keys) that is the partial decryption key for all zeros attribute is simply the empty string,
and the fact that an attacker never corrupts the master secret key of the underlying MA-ABE system for
any user (that is, the random coins of every user’s setup are erased). We leave further analysis of above
approaches for future work.

Other New Primitives for Future Work. Providing more constructions is beyond the scope of the
present work, so we outline syntax of some new primitives here and leave instantiation to future work.

1. Generalizing MIFE, MCFE and PHFE: In many cases it is useful to combine ciphertexts from multiple
users if a more complex policy is satisfied by their public labels: for instance, we may want to compute
on all ciphertexts that were generated during a specified time interval. Here, the labels may be set
as the timestamp at which a ciphertext was generated. The above example motivates defining the
notion of partially hiding multi-input FE, where the input of party Pi is the pair (labi,xi) where labi is
public and xi is private. Given encryptions of (labi,xi) for i ∈ [n] and a function key for f = (f1, f2), if
f1(lab1, . . . , labn) = 1, decryption must output f2(x1, . . . ,xn). Note that this notion generalizes MIFE,
MCFE as well as partially hiding FE [GVW12, AJL+19].

2. Generalizing Partial Key Combinations: We may permit more meaningful ways of combining keys
than those that have been studied before. For instance, in the context of an investigation, multiple
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key authorities such as hospital, police station and bank may wish to filter suspects in an encrypted
database based on different criteria, for which they issue different keys. Let us say that the input x
contains a list of user records. Then, each authority gives a key that takes an input list of records, tests
which records satisfy its criteria and erases the rest. Authority i provides a key for function fi, and
given ciphertext for x, decryption returns f1 ◦ . . . fn(x).
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Appendix

A Feasibility for MPFE for General Circuits
In this section we discuss the feasibility of general MPFE. Since the framework of MPFE is very general and
supports all existing constructions in the literature (that we are aware of), feasibility varies widely depending
on the properties desired, such as whether the setup algorithm must be local, centralized or interactive,
whether and encryption keys must be public or private and such others. Since the case of centralized setup
has been most widely studied in the literature and it is evident that feasibility results for local and interactive
setup also apply for a centralized setup, we focus on these below.

First, we provide some definitions needed for our constructions.
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A.1 Definitions
A.1.1 Multi-Input Functional Encryption

An n-input FE scheme [GGG+14] MIFE for a message space {Mλ}λ∈N and a functionality {Fλ}λ∈N, where
for each λ ∈ N, each f ∈ Fλ is a (description of a) function on (Mλ)n, is given by a set of algorithms with
the following syntax:

• MIFE.Setup(1λ, 1n): A PPT algorithm taking the security parameter λ and number of users n, and
outputting the master secret key MSK and encryption keys (EK1, . . . ,EKn).

• MIFE.KeyGen(MSK, f): A PT algorithm taking a master secret key MSK, a function f ∈ Fλ and
outputting a corresponding decryption key SKf .

• MIFE.Enc(EK,x): A PPT algorithm taking an encryption key EK and a message x ∈Mλ, and outputting
a ciphertext c.

• MIFE.Dec(SKf , (c1, . . . , cn)): A PT algorithm taking decryption key SKf and vector of ciphertexts
(c1, . . . , cn), and outputting a string y.

Correctness We say that MIFE is correct if for all λ,∈ N, x1 . . .xn ∈Mλ and f ∈ Fλ

Pr

y = f(x1, · · · ,xn) :

((EK1, . . . ,EKn),MSK)← MIFE.Setup(1λ)
ci ← MIFE.Enc(EKi,xi) ∀i ∈ [n]
SKf ← MIFE.KeyGen(MSK, f)
y ← MIFE.Dec(SKf , (c1, . . . , cn))

 = 1 .

We remark that our formulation of MIFE assumes that the senders (as in our application an encryptor is
referred to as a sender or source) are ordered.

Indistinguishability-Based Security. For an n-input FE scheme MIFE as above and adversary A =
(A0,A1,A2), consider the experiment in Figure A.1.

Experiment INDMIFE
A (1λ)

(I,∗ )← A0(1λ)
b← {0, 1}
((EK1, . . . ,EKn),MSK)
← MIFE.Setup(1λ)
∗ ← AOEnc(·,·,·),OKeygen(·)

1 (∗)
b′ ← AOEnc(·,·,·),OKeygen(·)

2 ((EKi)i∈I ,∗ )
Return (b = b′)

Oracle OEnc(i,x0,x1)
If x0,x1 ∈Mλ and |x0| = |x1|
cb ← MIFE.Enc(EKi,xb)
Return cb

Else Return ⊥

Oracle OKeygen(f)
If f ∈ Fλ

SKf ← MIFE.KeyGen(MSK, f)
Return SKf

Else return ⊥

Figure A.1: Experiment for IND-security of standard MIFE.

We call A legitimate if for all λ ∈ N, in all transcripts INDMIFE
A (1λ) it holds that for every key generation

query f there does not exist two sequences (y1,0, · · · , yn,0) and (y1,1, · · · , yn,1) such that

f(y1,0, · · · , yn,0) 6= f(y1,1, · · · , yn,1)

and for every j ∈ [n]
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• j ∈ I, i.e. j is corrupted (so there is no restriction on yj,0, yj,1 above), or

• there is an encryption query (j,x0,x1) such that yj,0 = x0 and yj,1 = x1.

We assume adversaries are legitimate unless otherwise stated. We call A passive if I = ∅. We call A selective
if A2 makes no queries. We say that MIFE is IND-secure if for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N,

Pr
[
INDMIFE

A (1λ) outputs 1
]
≤ 1/2 + negl(λ).

A.1.2 Functional Encryption

A functional encryption scheme, denoted as FE [BSW11], is a tuple of algorithms FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) for a message space {Mλ}λ∈N and a functionality {Fλ}κ∈N, where for each λ ∈ N, each
f ∈ Fλ is a (description of a) function on Mλ. The syntax is the same as for a 1-input MIFE scheme
where EK1 = MSK and I = ∅. The correctness requirement remains the same, as well the notion of
indistinguishability based security (which we refer to as “message privacy”).

Function Privacy. We additionally define the notion of function privacy as follows. For an FE scheme FE
as above and adversary A = (A0,A1,A2), consider the experiment in Figure A.2.

Experiment FPFE
A (1κ)

b← {0, 1}
MSK← FE.Setup(1λ)
b′ ← AOEnc(·),OKeygen(·,·)

2 (1λ)
Return (b = b′)

Oracle OEnc(x)
If x ∈Mκ

c← MIFE.Enc(MSK,x)
Return c

Else Return ⊥

Oracle OKeygen(f0, f1)
If f0, f1 ∈ Fλ

SKfb ← MIFE.KeyGen(MSK, fb)
Return SKfb

Else return ⊥

Figure A.2: Experiment for FP-security of FE.

We call A legitimate if for all λ ∈ N, in all transcripts FPFE
A (1κ) it holds that for every key generation

query f0, f1 there does not exist an encryption query x ∈Mκ such that f0(x) 6= f1(x). We assume adversaries
are legitimate unless otherwise stated. We say that FE is function-private FE if for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N,

Pr
[
FPFE
A (1λ) outputs 1

]
≤ 1/2 + negl(λ).

A.1.3 Two-Round MPC

A 2-round MPC protocol MPC for message-space {Mλ}λ∈N and functionality {Fλ}λ∈N where for each λ ∈ N
each f ∈ Fλ is a function on (Mλ)n for some n, consists of three algorithms with the following syntax:

• RunRoundOne(1λ, 1n, f, i, x): A PPT algorithm taking the security parameter λ, number of users n, a
(description of a) function f ∈ Fλ of arity n, an index i ∈ [n], an input x ∈Mλ, and outputting a first
protocol message ρ(1) and secret s.

• RunRoundTwo(s, (ρ(1)
1 , . . . , ρ

(1)
n )): A PPT algorithm taking a secret s and the first protocol message for

all n parties ρ(1)
1 , . . . , ρ

(1)
n , and outputting a second protocol message ρ(2).

60



• ComputeResult: A PT algorithm taking as input the n second-round protocol messages ρ(2)
1 , . . . , ρ

(2)
n

for each party and outputting a value y.

Correctness. We say that MPC is correct if for all λ, n,∈ N, x1 . . .xn ∈Mλ and f ∈ Fλ

Pr

y = f(x) :

(ρ(1)
i , si)← RunRoundOne(1λ, 1n, f, i,xi) ∀i ∈ [n]

ρ
(2)
i ← RunRoundTwo(si, (ρ(1)

1 , . . . , ρ
(1)
n )) ∀i ∈ [n]

y ← ComputeResult(ρ(2)
1 , . . . , ρ

(2)
n )

 = 1 .

Remark A.1. The above definition of two-round MPC is without setup (i.e., a CRS). We also consider the
case that there is an additional algorithm CRSGen taking 1λ and outputting a common reference string CRS
that is input to the remaining algorithms. We call this two-round MPC in the CRS model.

We call MPC input-rerunnable (resp. function-rerunnable) if it is input-delayed (resp. function-delayed)
and if RunRoundTwo can be executed multiple times with different input choices (resp. function choices)
while still preserving the security properties of the MPC protocol.

Security. Let MPC be a 2-round MPC protocol as above. Let Coins be the coin-space for the protocol.
For an adversary A = (A0,A1) and simulator SS, consider the experiments in Figure A.3. We say that
A is passive (aka. semi-honest) of I = ∅. We say that MPC is SIM-secure if for any PPT adversary A
there is a stateful PPT simulator SS = ( ˜CRSGen, Ẽxtract, S̃im) such that REALMPC

A (·) and IDEALMPC
A,SS(·)

are computationally indistinguishable. Note that simulation of the first-round protocol messages for the

Experiment REALMPC
A (1κ)

(Optional) crs← CRSGen(1λ)
(1n, I, f, (xi)i/∈I)← A0(1κ)

// f ∈ Fλ of arity n, xi ∈Mλ

((ρ(1)
i )i∈I , st)← A1(n, I, f)

For i /∈ I do:
ri ← Coins(1κ)
(ρ(1)
i , si)
← RunRoundOne(1κ, 1n, f, i, xi; ri)

For i /∈ I do:
ρ

(2)
i

← RunRoundTwo(si, (ρ(1)
1 , . . . , ρ

(1)
n ); ri)

α← A2(st, (ρ(1)
i , ρ

(2)
i )i/∈I)

Return α

Experiment IDEALMPC
A,SS(1κ)

(Optional) crs← ˜CRSGen(1λ)
(1n, I, f, (xi)i/∈I)← A0(1κ)

// f ∈ Fλ of arity n, xi ∈Mλ

((ρ(1)
i )i∈I , st)← A1(n, I, f)

xi ← Ẽxtract(ρ(1)
i ) ∀i ∈ I

(ρ(1)
i , ρ

(2)
i )i/∈I

← S̃im((xi)i∈I , f(x1, . . . , xn))
α← A2(st, (ρ(1)

i , ρ
(2)
i )i/∈I)

Return α

Figure A.3: Experiments for SIM-security of two-round MPC.

honest parties are independent of the inputs, so for convenience and ease of presentation we will partition the
algorithm S̃im into two algorithms: S̃im1 and S̃im2, defined as follows:

• S̃im1() 7→ (ρ(1)
i )i/∈I : Outputs the first-round protocol messages for the honest parties.

• S̃im2((xi)i∈I , y) 7→ (ρ(2)
i )i/∈I : On input the inputs of the corrupted parties along with the target output

value of the protocol, S̃im2 outputs the second-round protocol messages for the honest parties.

Input/Function-Rerunnability. For simplicity, the definition in Figure A.3 does not capture input/function-
rerunnability. It is straightforward to see how the definition can be extended. For example in the case of
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function-rerunnability (the situation is analogous for input-rerunnability where inputs and functions are
swapped), the changes to the definition are (1) A0 outputs a set of functions {fi} instead of a single function,
(2) in the real experiment RunRoundTwo is executed for each function, (3) in the ideal experiement S̃im2 is
called for each function, and (4) the complete set of second-round protocol messages for all functions is given
to A2.

A.2 Constructions
Local Setup. In multi-party FE schemes, local setup is highly desirable, since it overcomes the key escrow
problem which is one of the main drawbacks of present day FE constructions. In this setting, each user i
runs the setup algorithm independently, and obtains her own public key PKi and master secret key MSKi.
No communication or co-ordination is required between the users. In the symmetric key setting, the user
encrypts her input using her master key MSKi, while in the public key setting, anyone may encrypt using the
public key(s) PKi.

Constructions of multi-party FE with local setup have been notoriously hard to build. For general circuits
and in the symmetric key setting, the primitive of adhoc multi-input functional encryption (aMIFE) recently
proposed by Agrawal et al. [ACF+20] comes close to a general feasibility result in our model. Adhoc MIFE
enables multiple parties to run local, independent setup algorithms, and generate their own private master
keys as well as corresponding public keys. To encrypt data, each party (say i) uses its private master key to
compute a ciphertext for any message of its choice (say xi), and to issue function specific keys, the party
uses the same master key to compute a partial function key corresponding to some function (say f). These
ciphertexts and partial keys are sent to the decryptor who can aggregate them and compute f(x1, . . . , xn) as
long as all the partial decryption keys correspond to the same function f . The authors provide a construction
of aMIFE for circuits by using the standard notion of MIFE, a single input FE and a special purpose two
round MPC.

There are some important differences in the formulation of aMIFE and our MPFE:

1. In aMIFE, users each provide partial keys which may be combined when these keys refer to the same
function. In contrast, our notion allows different partial keys to refer to different functions which may
be combined in diverse ways as codified by the function Aggy.

2. The encryptors and key authorities are the same in aMIFE, and have the same master key MSK. This
is not general enough to capture even regular single user FE, where the key authority and encryptor
are different entities that may not share the master key, for instance in the public key setting. To
capture these notions, we defined our framework to allow for users and key authorities to have separate
encryption and master keys, where the encryption keys may be public.

Below, we provide an MPFE construction using aMIFE as a black-box – this transformation works in
the symmetric key setting. The more general construction supporting the public key setting requires an
interactive setup, and is discussed next. The construction for symmetric key MPFE with local setup using
aMIFE is as follows:

1. Setup in MPFE is run with mode = Local. Every party in the MPFE protocol, whether a key generator
or encryptor runs the aMIFE setup and obtains its own public and private key. If the party is a key
generator, it sets this as its MSK, if it is an encryptor, it sets it as EK.

2. Next, each party in MPFE, whether encryptor or key generator, computes an aMIFE ciphertext for its
input xi or yj . Thus, we obtain nx partial ciphertexts for inputs xi, i ∈ [nx] and ny partial keys for
inputs yj , where j ∈ [ny].

3. Each party, whether encryptor or key generator, also computes an aMIFE partial key for the function
U(Aggx(·),Aggy(·)).

4. The decryptor/aggregator receives the partial keys and ciphertexts and performs aMIFE decryption to
compute U(Aggx(x1, . . . , xnx),Aggy(y1, . . . , yny )).
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Correctness and security follow by those of aMIFE. The decryptor obtains aMIFE ciphertexts for xi where
i ∈ [nx] and yj where j ∈ [ny] along with nx + ny aMIFE partial keys for the function U(Aggx(·),Aggy(·)).
This enables the decryptor to recover U(Aggx(x1, . . . , xnx),Aggy(y1, . . . , yny) as desired. Security follows
directly from the security of aMIFE.

Interactive Setup. A standard MIFE scheme can be modified to support distributed keys by replacing
the setup algorithm with an interactive protocol. This makes use of a function delayed, rerunnable two
round MPC protocol similar to the construction of aMIFE provided by [ACF+20]. Note that the limitation of
interactive setup is mitigated by the fact that it must only be run once.

We provide a general feasibility result for the case of interactive setup below.

1. The MPFE setup protocol does the following:

(a) Invoke
(
MIFE.MSK,MIFE.EK1, . . . ,MIFE.EKnx+ny

)
← MIFE.Setup(1λ, 1nx+ny ).

(b) Using an N out of N secret sharing scheme, compute shares MIFE.MSKi of the MIFE.MSK and
output MIFE.MSKi to each key authority i for i ∈ [ny].

(c) Using MIFE.MSKi as input, run the first round of function-delayed, rerunnable two round MPC
protocol as MPC.RunRoundOne(1λ, 1ny , i,MIFE.MSKi) to obtain first protocol message ρ(1)

i and
secret si for each party i ∈ [ny].

(d) For each key authority i ∈ [ny], output PKi = ρ
(1)
i as the public key and MSKi =

(MIFE.EKnx+i,MIFE.MSKi, si) as the master secret key.
(e) For each encryptor j ∈ [nx], output the encryption key EKj = MIFE.EKj and PKj = MIFE.PK.

2. To encrypt, encryptor j for j ∈ [nx] computes a ciphertext MIFE.CTj = MIFE.Encrypt(EKj , xj) for any
message xj of its choice.

3. To generate a partial key for a given function fi, the ith key authority does the following:

(a) Compute a ciphertext MIFE.CTnx+i = MIFE.Encrypt(EKnx+i, fi).
(b) Define a function U ′, which upon inputs MIFE.MSK1, . . . ,MIFE.MSKny does the following: i) it com-

putes MIFE.MSK using share reconstruction. ii) it computes MIFE.SK = MIFE.KeyGen(MIFE.MSK,
U(Aggx(·),Aggy(·)).

(c) Compute MIFE.SKi,U ′ = MPC.RunRoundTwo(U ′, si, (ρ(1)
1 , . . . , ρ

(1)
n )) for i ∈ [ny] and outputs it18.

4. To decrypt, the decryptor computes MPC.ComputeResult to obtain
U ′(MIFE.MSK1, . . . ,MIFE.MSKny ) = MIFE.SKU ′ . It computes
MIFE.Decrypt

(
MIFE.CT1, . . . ,MIFE.CTnx+ny ,MIFE.SKU ′

)
and outputs it.

This construction is simpler than that of aMIFE since we permit interactive setup and allow the arity of
the function being computed to be fixed. Note that if the MIFE is public key, then so is the above MPFE,
since the symmetric/public key property of the above MPFE is inherited from the underlying MIFE. By
correctness of MPC, the decryptor recovers MIFE.SK for the function U(Aggx(·),Aggy(·)). The decryptor also
obtains ciphertexts MIFE.CT(x1), . . . ,MIFE.CT(xnx) and MIFE.CT(f1), . . . ,MIFE.CT(fny). By correctness
of MIFE, it therefore obtains U(Aggx(x1, . . . , xnx),Aggy(y1, . . . , yny ) as desired. Security follows as a special
case of aMIFE security, by leveraging security of MPC and MIFE.

18We note that all authorities need to agree on the choice of Aggx and Aggy for correctness of this step to hold. Also note
that the choice of Aggx and Aggy may be made during the partial key generation step, and is not required at setup.
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B Decentralized ABE ◦ IPFE with Policy Hiding
In this section, we extend the decentralized inner-product predicate encryption by Michalevsky and Joye [MJ18]
to provide an inner-product functional encryption capability. We observe that the primitive of decentralized
attribute based, inner product FE is a natural and meaningful composition of decentralized attribute based
encryption (DABE) and inner product functional encryption (IPFE), which is suggested by casting both
existing primitives as special cases of our model.

For the construction, our high-level idea is to exploit the underlying algebraic structure and use the linear
ciphertext and key homomorphism properties already satisfied by their construction, reminiscing the inner-
product functional encryption schemes from (linearly homomorphic) PKE in [ABDCP15, ALS16, BJK15].

Definition. In this section, we define the notion of decentralized attribute-based inner-product function
encryption. First, we recall the syntax, and later describe the security definition.

Syntax. A decentralized attribute-based inner-product function encryption for predicate class C =
{Cn : Xn → {0, 1}}n∈N and inner product message space U = {U`}`∈N consists of the following PPT algorithms:

GSetup(1λ)→ PP. On input the security parameter λ, the setup algorithm outputs public parameters PP.

LSetup(PP, 1n, 1`, i)→ (PK,MSK). On input the public parameters PP, attribute length n, message space
index `, and authority’s index i ∈ [n], the authority setup algorithm outputs a pair of master public-secret
key (PK,MSK).

KeyGen({PKi}i∈[n],MSKj ,GID,x,u)→ SKj,GID,x,u. The key generation algorithm takes as input the public
keys of all the authorities {PKi}i, an authority master secret key MSKj , global identifier GID, an
attribute x ∈ Xn, and key vector u ∈ U`. It outputs a partial secret key SKj,GID,x,u.

Enc({PKi}i∈[n], C,v)→ CT. The encryption algorithm takes as input the list of public keys {PKi}i, predicate
circuit C, and a message vector v ∈ U`, and outputs a ciphertext CT.

Dec({SKi,GID,x,u}i∈[n],CT)→ m/⊥. On input a list of n partial secret keys {SKi,GID,x,u}i and a ciphertext
CT, the decryption algorithm either outputs a message m (corresponding to the inner product value) or
a special string ⊥ (to denote decryption failure).

We require such an ABE scheme to satisfy the following properties.

Correctness. A decentralized attribute-based inner-product function encryption (AB-IPFE) scheme is
said to be correct if for all λ, n, ` ∈ N, C ∈ Cn, u,v ∈ U`, x ∈ Xn,GID, if C(x) = 1, the following holds:

Pr

Dec(SK,CT) = 〈u,v〉 :

PP← GSetup(1λ)
∀i ∈ [n] : (PKi,MSKi)← LSetup(PP, 1n, 1`, i)
∀j ∈ [n] : SKj,GID,x,u ← KeyGen({PKi}i,MSKj ,GID,x,u)
CT← Enc({PKi}i, C,v), SK = {SKi,GID,x,u}i

 = 1.

Security. For security, we consider a combination of semantic security for decentralized ABE systems in
presence of corrupt authorities and message vector indistinguishability for inner product functional encryption.
Below we provide the selective security variant of the corresponding property.19

19In this work, we only focus on standard semantic security, but one could also amplify to its CCA counterpart by relying on
recently developed generic techniques [KW19].
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Definition B.1 (Selective decentralized AB-IPFE security with 1-sided policy hiding in presence of corrupt
authorities). A decentralized AB-IPFE scheme is selectively secure with 1-sided policy hiding in presence of
corrupt authorities if for every stateful admissible PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds

Pr

AO(key,·,·,·)(params,CT) = b :

(1n, 1`, S∗, (C∗0 , C∗1 ), (v∗0,v∗1))← A(1λ),PP← GSetup(1λ)
∀i ∈ [n] : (PKi,MSKi)← LSetup(PP, 1n, 1`, i)
b← {0, 1},CT← Enc({PKi}i∈[n], C

∗
b ,v∗b)

key = {(PKi,MSKi)}i∈[n]
params =

(
{PKi}i∈[n], {MSKi}i∈S∗

)


≤ 1
2 + negl(λ),

where the oracle O(key, ·, ·, ·) has key material hardwired, and on input a tuple of a global identifier GID, an
authority index j, and an attribute-key vector pair (x,u), and responds with a partial secret key computed as
SKj,GID,x,u ← KeyGen({PKi}i,MSKj ,GID,x,u). Note that the adversary is only allowed to submit key queries
for non-corrupt authorities (i.e., j /∈ S∗). Also, the adversary A is admissible as long as every secret key
query made by A to the key generation oracle O satisfies the condition that — (1) either C∗0 (x) = C∗1 (x) = 0,
or (2) C∗0 = C∗1 and 〈u,v∗0〉 = 〈u,v∗1〉, or (3) C∗0 = C∗1 and adversary does not query at least one non-corrupt
authority for the same global identifier, attribute-key vector tuple (GID,x,u).

B.1 Construction
Let Gen be a bilinear group generator with asymmetric source groups of prime order p, and k be the parameter
used to select the computational hardness assumption as in [MJ18]. Also, let G1,G2 and GT be the source and
target groups, respectively. Similar to [MJ18], we rely on a hash function H : G2×{0, 1}λ×Znp ×Z`p → Gk+1

2
that is later modelled as a random oracle. Below we provide our decentralized inner-product FE scheme based
on bilinear maps. We are using a notation similar to that used in [MJ18, Section 3.2] for ease of exposition.

GSetup(1λ)→ PP. The setup algorithm samples a bilinear group Π as follows

Π = (p,G1,G2,GT , e (·, ·))← Gen(1λ).

It next samples random generators g1 ∈ G1, g2 ∈ G2. Additionally it chooses random matrices A,U as
A← Z(k+1)×k

p and U← Z(k+1)×(k+1)
p , and sets the public parameters as

PP =
(

Π, g1 =
[
1
]
1, g2 =

[
1
]
2,
[
A
]
1,
[
U>A

]
1

)
.

LSetup(PP, 1n, 1`, i)→ (PK,MSK). The algorithm samples random matrices Wi ← Z(k+1)×(k+1)
p and ∆i ←

Z(k+1)×`
p . It also samples a random exponent σi ← Zp, and sets the authority public-secret key pair as

PK =
(

PP,
[
W>

i A
]
1,
[
∆>i A

]
T
, yi =

[
σi
]
2

)
, MSK = (Wi,∆i, σi) .

KeyGen({PKi}i∈[n],MSKj ,GID,x,u)→ SKj,GID,x,u. It parses the authority public keys as described above,
and first computes a masking value µj ∈ Zk+1

p as

[
µj
]
2 =

j−1∏
i=1

H(
[
σiσj

]
2,GID,x,u)�

n∏
i=j+1

H(
[
σiσj

]
2,GID,x,u),

where the masking value is implicitly sampled. Next, it also implicitly samples h ∈ Zk+1
p as

[
h
]
2 =

H(g2,GID,x,u). Finally, it outputs the secret key as

SKj,GID,x,u =
([

∆ju− xjWjh + µj
]
2,x,u

)
.
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Enc({PKi}i∈[n],y,v)→ CT. The encryption algorithm first parses the keys PKi as defined during setup. It
samples a random exponent vector s← Zkp, and outputs the ciphertext CT as

CT =
(
C0 =

[
As
]
1,
{
Ci =

[
(yiU> + W>

i )As
]
1

}
i∈[n]

, Cm =
[∑n

i=1 ∆>i As + v
]
T

)
.

Dec({SKi,GID,x,u}i∈[n],CT)→ m. It parses the secret key and ciphertext as described above. The decryptor
first combines the partial keys to obtain key term K = �ni=1

[
∆iu− xiWih + µi

]
2. The algorithm then

recovers the inner product by computing the discrete log of the following

〈u, Cm〉
e〈C0,K〉 ·

∏
i∈[n] e〈Ci,

[
xih
]
2〉
,

where the operation 〈u, Cm〉 computes the encoded inner product by first raising u in the exponent of
each term (component-by-component), and then followed by multiplication of the resulting encodings
resulting in the inner product being computed in the exponent. Also, the operation e〈·, ·〉 carries the
same inner product operation where the pairing function e(·, ·) is being used for computing the product
terms instead.

B.2 Correctness and Security
In this section, we provide the correctness proof and a high level description of security games and prove
indistinguishability of successive games.

Correctness. The proof of correctness is along the lines of the Michalevsky-Joye [MJ18] scheme. Below we
briefly highlight the main points.

Consider n partial secret keys SKi,GID,x,u =
([

∆iu− xiWih + µi
]
2,x,u

)
for authority indices i ∈ [n]

and key vectors x,u. First, note that the key product term K can be simplified as follows:

K = �ni=1
[
∆iu− xiWih + µi

]
2

= �ni=1
[
∆iu− xiWih

]
2 (since

∑
i µi = 0)

=
[
∆u−

∑n
i=1 xiWih

]
2 (where ∆ =

∑
i ∆i)

Therefore, combining with the fact that C0 =
[
As
]
1 we get that

e〈C0,K〉 =
[
(u>∆> −

∑n
i=1 xih

>W>
i )As

]
T
.

Also, we can simplify the terms e〈Ci,
[
xih
]
2〉 and

∏
i e〈Ci,

[
xih
]
2〉 as

e〈Ci,
[
xih
]
2〉 =

[
(xiyih>U> + xih>W>

i )As
]
T
,∏

i∈[n]e〈Ci,
[
xih
]
2〉 =

[
((x>y)h>U> +

∑n
i=1 xih

>W>
i )As

]
T
.

Lastly, we also get that 〈u, Cm〉 =
[
u>∆>As + u>v

]
T

where ∆ =
∑
i ∆i. Combining all these terms as

done during decryption, we get that

〈u, Cm〉
e〈C0,K〉 ·

∏
i∈[n] e〈Ci,

[
xih
]
2〉

=
[
u>v− (x>y)h>U>As

]
T
.

Therefore, whenever 〈x,y〉 = x>y = 0, the above gets simplified to
[
u>v

]
T

which can be recovered by
computing the discrete log. Thus, correctness follows.
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Security. Below we briefly highlight the main ideas behind the security proof.

Theorem B.2. If the k-linear assumption (assumption 2.3) holds in both the source groups G1 and G2 over
the group generator Gen, then the scheme described above is a selectively secure decentralized AB-IPFE
with 1-sided policy hiding for inner product testing predicates as per Definition B.1 with at least two honest
authorities.

The proof structure is similar to that of [MJ18], except now we need additionally to answer key queries for
attribute-key vector pairs (x,u) such that 〈x,y∗〉 = 0 where y∗, (v∗0,v∗1) are the challenge key and message
vectors (respectively).20 At a high level, the idea is to sample the central secret key term ∆ such that the
reduction could honestly compute the secret keys for all attribute-key vector pairs (x,u) such that 〈x,y∗〉 = 0
and 〈u,v∗0〉 = 〈u,v∗1〉, while switching the secret keys to their semi-functional counterparts for attribute-key
vector pairs (x,u) where 〈x,y∗〉 6= 0.

For ease of exposition, we prove security in an alternate game where the challenger answers each key
query with the full (combined) key term K instead of providing partial key shares (i.e., per authority shares).
Similar approach was taken in [MJ18, Appendix B], where the idea was to use the fact that by programming
the masking terms µi’s appropriately, the security proof could be easily extended to the more general case
where the challenger responds with partial shares instead of the full key. Since the same idea can be used for
our scheme as well, thus we prove security in the simpler model and refer to [MJ18, Appendix B] for more
details.

Proof. We start by sketching the sequence of games where the first game corresponds to the original security
game. First, we switch the way we sample the master secret key wherein instead of sampling the random
master secret matrix ∆ directly21, we sample a random matrix Γ of same dimensions and implicitly set
∆ = ΓR where R ∈ Z`×`p is a random full rank matrix such that R(v∗0 −v∗1) = e1 where e1 is the first vector
in the canonical basis of Z`p. Next, we switch the way the random oracle queries are answered wherein we
sample encoding

[
h
]
2 from a random k-dimensional subspace. This is followed by switching all the secret key

queries for key vector pairs (x,u) to semi-functional whenever 〈x,y∗β〉 = 0. Next, we switch the ciphertext to
a partial semi-functional ciphertext. Here by a partial semi-functional ciphertext we mean that we split the
challenge message vector such that now we encrypt the vector β(v∗0 − v∗1) as a semi-functional ciphertext (for
random challenge bit β) and vector v∗1 as a normal (non-semi-functional) ciphertext and homomorphically
combines both of them to create the final ciphertext. The idea here is that since adversary never receives
any secret key for a key vector pair (x,u) where both 〈x,y∗β〉 = 0 and 〈u,v∗0 − v∗1〉 6= 0, thus the reduction
algorithm can perfectly simulate the above games using the dual system encryption paradigm [Wat09] as
used in [MJ18]. Below we provide a high level description of the security games.

Description of games
Game 0. This corresponds to the modified AB-IPFE security game, where the challenger answers key
queries will the combined secret keys instead of partial key shares. Let Q denote the total number of key
queries made by adversary.

Game 1. This is same as the previous game, except the challenger:

— samples a uniformly random matrix Γ← Z(k+1)×`
p ,

— samples a random orthogonal matrix R ∈ Z`×`p subject to the constraint that R(v∗0 − v∗1) = e1, where
v∗0,v∗1 are the challenge message vectors and e1 = (1, 0, . . . , 0)> (i.e., the first canonical basis vector of
Z`p), and

— sets ∆ = ΓR instead of sampling it uniformly at random.
20Note that in the case, the adversary submits two distinct key vectors y∗0 and y∗1 as its challenge, then it must be that
〈x,y∗0〉 = 〈x,y∗1〉 = 0. In this case, we can use the same proof strategy as [MJ18].

21Recall that we are using ∆ to denote the term
∑

i
∆i as in the correctness proof.
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Game 2. This is same as the previous game, except the challenger answers the random oracle queries as
follows:

— during setup, it samples a random matrix B ← Z(k+1)×k
p , and each fresh random oracle query is

answered by sampling a random vector r← Zkp and responding with
[
h
]
2 =

[
Br
]
2.

Game 3.q.1. This is same as Game 2, except the challenger samples random matrices A,B← Z(k+1)×k
p

along with vectors a⊥,b⊥ ∈ Zk+1
p such that A>a⊥ = B>b⊥ = 0, and a random exponent t̂← Zp, and the

key queries are answered as follows:

— for the first q − 1 key queries, on key vector pair (x,u), it checks whether 〈x,y∗β〉 = 0 or not. If it is
equal to 0, then it computes the key K honestly as

K =
[
∆u−

∑n
i=1 xiWih

]
2.

Otherwise, if the predicate is not satisfied, then it computes the key K as

K =
[
∆u + t̂〈u,v∗0 − v∗1〉a⊥ −

∑n
i=1 xiWih

]
2,

where h in both cases is computed as in Game 2, i.e. by picking a random r and computing
[
h
]
2 =

[
Br
]
2.

— for the q-th key query (x,u), it again checks whether 〈x,y∗β〉 = 0 or not. Now it computes the key K
(in both cases) as

K =
[
∆u−

∑n
i=1 xiWih

]
2,

except if the predicate is satisfied (that is, 〈x,y∗β〉 = 0), then it computes h as in Game 2, i.e. by picking
a random r and computing

[
h
]
2 =

[
Br
]
2; whereas if the predicate is not satisfied, then it computes h

by sampling random r← Zkp and r̂ ← Zp, and setting
[
h
]
2 =

[
Br + a⊥r̂

]
2.

— remaining Q− q key queries are answered exactly as in Game 2. That is, it computes the key K (in
both cases) as

K =
[
∆u−

∑n
i=1 xiWih

]
2,

where h is computed as
[
h
]
2 =

[
Br
]
2.

In the above game, the random oracle queries are also answered similarly wherein the challenger does not
sample the full secret key, but instead it just computes the hash vector h depending on the query counter
and the type of query.

Game 3.q.2. This is same as the previous game, except the way the challenger answers the q-th query:

— for the q-th key query (x,u), it checks whether 〈x,y∗β〉 = 0 or not. If it is equal to 0, then it computes
the key K honestly as

K =
[
∆u−

∑n
i=1 xiWih

]
2,

where h is computed as
[
h
]
2 =

[
Br
]
2. Otherwise, if the predicate is not satisfied, then it computes the

key K as
K =

[
∆u + t̂〈u,v∗0 − v∗1〉a⊥ −

∑n
i=1 xiWih

]
2,

where h is computed by sampling random r← Zkp and r̂ ← Zp, and setting
[
h
]
2 =

[
Br + a⊥r̂

]
2.

Game 3.q.3. This is same as the previous game, except when it answers the q-th query, then it computes h
as
[
h
]
2 =

[
Br
]
2 irrespective of whether the predicate is satisfied or not. (Note that Game 3.0.3 is same as

Game 2.)
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Game 4. This is the same as Game 3.Q.3, except that the challenge ciphertext is semi-functional. That is,
the challenger samples a random vector z← Zk+1

p and computes the challenge ciphertext as:

CT =
(
C0 =

[
z
]
1,
{
Ci =

[
(y∗β,iU> + W>

i )z
]
1

}
i∈[n]

, Cm =
[
∆>z + βv∗β

]
T

)
,

where β is the random challenge bit.

Game 5. This is the same as Game 4, except that the challenge ciphertext encrypts a message vector of the
form v∗0 + η(v∗1 − v∗0) instead of βv∗β = v∗0 + β(v∗1 − v∗0), where η is sampled uniformly at random. That is,

Cm =
[
∆>z + v∗0 + η(v∗1 − v∗0)

]
T
,

where η is a random exponent.

Indistinguishability of games
We complete the proof by showing that adjacent games are indistinguishable. For any adversary A and game
X, we denote by AdvAs (λ), the probability that A wins in game S.

Lemma B.3. For any (potentially unbounded) adversary A, we have that AdvA0 (λ) = AdvA1 (λ).

Proof. This follows directly from the fact that, for any invertible matrix R ∈ Z`×`p , the following distributions
are identical. {

∆ : ∆← Z(k+1)×`
p

}
≡
{

ΓR : Γ← Z(k+1)×`
p

}
.

Lemma B.4. If k-linear assumption (assumption 2.3) holds in G2 over the group generator Gen, then for
any PPT adversary A, we have that AdvA1 (λ)− AdvA2 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is identical to that of [MJ18, Lemma 1].

Lemma B.5. If k-linear assumption (assumption 2.3) holds in G2 over the group generator Gen, then for
any PPT adversary A and q ∈ {1, . . . , Q}, we have that AdvA3.(q−1).3(λ) − AdvA3.q.1(λ) ≤ negl(λ) for some
negligible function negl(·).

Proof. The proof of this lemma is identical to that of [MJ18, Lemma 2].

Lemma B.6. For any (potentially unbounded) adversary A and q ∈ {1, . . . , Q}, we have that AdvA3.q.1(λ)−
AdvA3.q.2(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is identical to that of [MJ18, Lemma 3].

Lemma B.7. If k-linear assumption (assumption 2.3) holds in G2 over the group generator Gen, then for any
PPT adversary A and q ∈ {1, . . . , Q}, we have that AdvA3.q.2(λ)− AdvA3.q.3(λ) ≤ negl(λ) for some negligible
function negl(·).

Proof. The proof of this lemma is identical to that of [MJ18, Lemma 4].

Lemma B.8. If k-linear assumption (assumption 2.3) holds in G1 over the group generator Gen, then for
any PPT adversary A, we have that AdvA3.Q.3(λ)− AdvA4 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is identical to that of [MJ18, Lemma 5].
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Lemma B.9. For any (potentially unbounded) adversary A, we have that AdvA4 (λ)− AdvA5 (λ) ≤ negl(λ) for
some negligible function negl(·).

Proof. The proof of this lemma is similar to that of [MJ18, Lemma 6], except now the secret matrix ∆
is set in a more intricate way. First, note that in game 4, we can rewrite the message component of the
ciphertext (i.e., Cm) as follows:

Cm =
[
∆>z + βvβ

]
T

=
[
R>Γ>z + β(v∗1 − v∗0) + v∗0

]
T

Since we sampled matrix R such that it is a random orthogonal (` × `) matrix with the constraint that
R(v∗0 − v∗1) = e1, thus we have that R>e1 = v∗0 − v∗1. So, we can write Cm as

Cm =
[
R>Γ>z− βR>e1 + v∗0

]
T

=
[
R>(Γ>z− βe1) + v∗0

]
T
.

Now the idea is to sample matrix ∆ as ∆ = ∆̂− (e>1 ⊗ a⊥)t̂ for a random matrix ∆̂ and random exponent t̂.
Here ⊗ denotes the tensoring operation.

With this modification, we can apply a proof strategy similar to that in [MJ18, Lemma 6], where we rely
on the fact that the public keys and public parameters can be sampled without the knowledge of t̂ (i.e., only
given the matrix ∆̂ and other public terms). Next, we can show that for every key query (x,u) we again do
not need t̂, and can only be answered using ∆̂. For this, consider two cases.

First, when 〈x,y∗β〉 = 0, then it must be the case that 〈u,v∗0−v∗1〉 = 0, therefore u ∈ Span({R>ei}i∈[n]\{1}).
This gives that ∆u = ΓRu ∈ Γ · Span({ei}i∈[n]\{1}), that is it does not depend on the first column of Γ
which depends on t̂.

Second, when 〈x,y∗β〉 6= 0, then we get that the first column entry of Ru corresponds to 〈u,v∗0 − v∗1〉, and
since the key term contains the term ∆u + t̂〈u,v∗0 − v∗1〉a⊥, therefore this gets simplified to ∆̂u. Thus, this
can also be computed without the knowledge of t̂.

Finally, we notice that setting z in the challenge ciphertext as As + b⊥ŝ (where s ← Zkp, ŝ ← Zp), we
obtain that Cm completely hides the challenge bit β. This completes the proof.

Lemma B.10. If the k-linear assumption (assumption 2.3) holds over the group generator Gen, then for any
PPT adversary A, we have that AdvA5 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. If y∗0 = y∗1, then the advantage AdvA5 (λ) = 0 since the challenge ciphertext is independent of the
challenge bit β. Whereas if y∗0 6= y∗1, then it must be the case that all the adversary’s key queries were for
rejecting attributes that is 〈x,y∗0〉 = 〈x,y∗1〉 = 0 for all vectors x queried by A. In the latter case, we have that
all the keys queried have been semi-functional functional above, and thus we can make the entire ciphertext
semi-functional as well by using a similar hybrid structure as above, and finally by using an argument similar
to that of [MJ18, Lemma 7], we can conclude that the challenge ciphertext encrypts a random vector y
instead of y∗β thereby completing the proof.
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