
PRINCEv2
More Security for (Almost) No Overhead

Dušan Božilov1,2, Maria Eichlseder3,4, Miroslav Knežević1, Baptiste Lambin4,
Gregor Leander4,5, Thorben Moos4, Ventzislav Nikov1,

Shahram Rasoolzadeh4, Yosuke Todo6,4, and Friedrich Wiemer4,5

1 NXP Semiconductors, Leuven, Belgium firstname.lastname@nxp.com
2 COSIC KU Leuven and imec, Leuven, Belgium dusan.bozilov@esat.kuleuven.be
3 Graz University of Technology, Graz, Austria maria.eichlseder@iaik.tugraz.at

4 Ruhr-Universität Bochum, Bochum, Germany firstname.lastname@rub.de
5 cryptosolutions, Essen, Germany friedrich,gregor@cryptosolutions.de

6 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan
yosuke.todo.xt@hco.ntt.co.jp

Abstract. In this work, we propose tweaks to the PRINCE block cipher
that help us to increase its security without changing the number of
rounds or round operations. We get substantially higher security for the
same complexity. From an implementation perspective, PRINCEv2 comes
at an extremely low overhead compared to PRINCE in all key categories,
such as area, latency and energy. We expect, as it is already the case
for PRINCE, that the new cipher PRINCEv2 will be deployed in various
settings.

Keywords: PRINCE · low latency · lightweight · block cipher

1 Introduction

During the last several years we have been witnessing a very rapid deployment
of secure microcontrollers in IoT, automotive and cloud infrastructures. Various
technology fields, including industrial automation, robotics as well as the 5th
generation mobile network urge for real-time operation and require low-latency
execution while preserving the highest levels of security. Low-power and low-
energy requirements are of equal importance, especially when considering the
IoT market where the majority of devices are in a low-power mode during most
of their lifetime. Those devices occasionally wake up, carry out a quick compu-
tation, the result of which they store or communicate securely and then go back
to sleep. A life most humans are craving to have.

Securing a microcontroller involves securing the following three groups of
assets:

– End-user data, including dynamic data such as personal information.
– Original equipment manufacturer (OEM) intellectual property, including

firmware and software.

– Silicon manufacturer intellectual property, including hardware, ROM code,
crypto libraries and various drivers.

Securing each of these assets is a complex problem and requires a multi-
layered approach. Starting with trust provisioning and then enabling secure
boot, secure debug access, secure firmware update, secure test and life-cycle
management is essential for creating a secure execution environment. One of the
crucial aspects of a secure execution environment is secure storage, a security
mechanism used for keeping confidentiality and integrity of valuable code and
data stored on the device. Our paper focuses on memory encryption, which is a
fundamental building block of secure storage.

Memory encryption has been used in the PC world for a long time already.
Some examples include IBM’s SecureBlue++, Intel’s SGX and AMD’s SEV
encryption and integrity mechanisms. Those mechanisms are used to protect
valuable assets against an attacker capable of monitoring and/or manipulating
the memory content. The attacker is assumed to be employing various software
tools running on the targeted platform as well as being able to manipulate the
integrity of any underlying hardware by using invasive methods such as probing,
voltage glitching, electromagnetic fault injection (EMFI), etc. While the device
must remain secure in the hands of such adversary, the level of protection dif-
fers depending on whether the memory is volatile or non-volatile or whether it
is internal or external to the system on chip (SoC). Securing the SoC-external
memory is especially challenging while, at the same time, the advances of CMOS
technology lead to increased production of FLASH-less microcontrollers. Add to
this the everlasting requirement to minimize power and energy consumption as
well as the never-ending race for higher performance and it will become clear
why designing an efficient memory encryption scheme is a serious challenge. We
are looking for a solution where a single clock cycle encryption is one cycle too
many.

PRINCE [BCG+12] is the first publicly known low-latency family of block ci-
phers that got scrutinized by the cryptographic community.7 As a result, PRINCE
has been deployed in a number of products including LPC55S of NXP Semicon-
ductors [NXP20], which is a family of highly constrained general purpose IoT
microcontrollers.

As pointed out in [KNR12,BCG+12], the ultimate goal of low-latency block
cipher design is to encrypt a block of data in a single clock cycle. The best
illustration of the importance of meeting this goal is to look at the comparison
of PRINCE and AES in the low-latency setting. When implemented fully unrolled,
PRINCE occupies 4 times less silicon area while, at the same time, reaching an 8
times higher clock frequency.

Although some design principles have been explored during the design of
PRINCE, there has been little work going on to determine the design choices that
lead to the lowest-latency and most energy-efficient cipher architecture. Several
parameters contribute to the efficiency of a given cipher design: area, latency,
throughput, power, and energy. Several other designs, including Midori [BBI+15],
7 see https://www.emsec.ruhr-uni-bochum.de/research/research_startseite/prince-challenge/

2

https://www.emsec.ruhr-uni-bochum.de/research/research_startseite/prince-challenge/

MANTIS [BJK+16] and QARMA [Ava17] have been particularly optimized for one
or more of these parameters.

This document describes the result of our efforts to increase the security mar-
gins of PRINCE without significantly increasing the latency, area, power or energy
consumption. We recall the PRINCE security claims as follows: an adversary who
has 2n chosen plaintext-ciphertext pairs (obtained under the same key) needs
at least 2126−n calls to the encryption function to recover the secret key. This
security level is sufficient for most of the aforementioned applications, yet we set
ourselves to explore design opportunities when facing the security requirements
NIST put forward in its lightweight crypto competition [NIS]. Therefore, the
targeted security level for PRINCEv2 is 112 bits [NIS18]; precisely, we claim that
there is no attack against PRINCEv2 with data complexity below 247 (chosen)
plaintext-ciphertext pairs (obtained under the same key) and time-complexity
below 2112. It has to be noted that the NIST lightweight crypto competition
does not focus on the design of low-latency block ciphers. Instead, it focuses on
Authenticated Encryption with Associated Data (AEAD) schemes which are, in
general, too slow or too big compared to dedicated block ciphers, thus failing to
meet the aforementioned design challenges.

One last design constraint we put in front of ourselves is to be able to im-
plement PRINCEv2 on top of the existing PRINCE architecture without adding a
significant area overhead nor increasing the latency.

Our Contribution

Starting with the last design constraint mentioned, we tried to minimize the
difference from PRINCEv2 to PRINCE. Besides minimizing the overhead of imple-
menting one on top of the other, this has the convenient benefit that a lot of the
security analysis that PRINCE received can then either directly be transferred to
PRINCEv2 or transferred with small modifications.

To achieve the requested higher security level, a different key schedule is
strictly necessary, as without a change there the generic bound of the FX con-
struction applies. Through a carefully crafted and analyzed key schedule we can
get a secure cipher meeting the NIST security requirements. Besides the change
in the key schedule, we only add a single XOR in the middle rounds. This mid-
dle round was unkeyed in PRINCE. From an aesthetic point of view, the new key
schedule has the drawback that the α-reflection property is slightly weakened.
That is, decryption is not simply encryption with a modified key as in PRINCE,
but requires slightly more effort.

Besides being beneficial from a security point of view, our minimal changes
result in only minimal performance changes in all the aforementioned dimensions.
This makes PRINCEv2, in the unrolled setting we aim at, nearly as efficient as
PRINCE, while achieving a higher security level, echoing the title of our work.

We want to emphasize that the problem we are trying to solve is quite general,
yet not an easy task. It touches the least understood part of block cipher design,
namely the design of the key-scheduling. For an existing cipher with a potentially
non-optimal key-scheduling (here PRINCE), this translates to the question on how

3

to increase security while minimizing the resulting overhead. For the interesting –
being deployed in several products – case of PRINCE, we came up with an elegant
yet simple and efficient solution to this problem. This simplicity is an advantage
concerning our objective. We venture to say that the smaller the change to the
original PRINCE design, the higher the value of our contribution.

Outline of the Paper

We specify the design of PRINCEv2 in Section 2, highlighting the differences
to PRINCE and explaining our choices in Section 3. As noted above, the main
changes are in the key schedule. By not using the FX construction for this new
design, we also follow the advice in [Din15].

In Section 4 we report on our findings when implementing PRINCEv2 and
compare with PRINCE, Midori, MANTIS and QARMA. As we will explain there,
those comparisons are naturally difficult as, for example, MANTIS and QARMA
provide a tweak, which PRINCEv2 does not.

We discuss the security analysis in Section 5. As PRINCE has attracted quite
some third party analysis, e.g. [CFG+14a,DZLY17,Mor17,RR16b], we can build
on significant previous work. Besides confirming our belief that PRINCEv2 indeed
provides the requested security level, as a side result, we derive some new insights
in PRINCE as well.

2 Specification

As discussed above, we aim to keep the changes to PRINCE minimal. To achieve
this, we use the same round function and only change the middle layer, key
schedule and the round constants compared to PRINCE. To be self-contained, we
quickly recall PRINCE’s general structure and the round function, before giving
the updated parts for PRINCEv2.

2.1 PRINCE

PRINCE is a family of block ciphers with block size of 64 and key size of 128 bits.
The encryption function iterates the round function R five times, then applies
the middle layer R′, followed by five applications of the inverse round function
R−1. The round function itself applies an S-box layer SB, followed by a linear
layer consisting of a MixColumns operation MC and a ShiftRows SR. The S-box
in PRINCE family, can be chosen from one of the 8 Affine equivalent classes given
in the proposal paper [BCG+12, Tab. 3]. The S-box used in the PRINCE proposal
that is given in Tab. 1(a), the ShiftRows permutation applied in SR in Tab. 1(b).
While the ShiftRows permutation is the same used in the AES, the MixColumns
operation is built from the following four 4× 4 matrices:

M1 =

(
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, M2 =

(
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)
, M3 =

(
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

)
, M4 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

)
,

4

Table 1. The S-box and ShiftRows permutation used in PRINCE and PRINCEv2. Note
that the S-box for PRINCE family can be chosen from 8 Affine equivalent classes and
the one given here is the one suggested in the PRINCE proposal paper.

(a) 4-bit S-box of SB

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

(b) Permutation of SR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

or in other words Mi is the 4× 4 identity matrix where the ith row is replaced
by the zero vector. From these Mi we build the matrices M̂ (0), M̂ (1) and M ′:

M̂ (0) =

(
M1 M2 M3 M4

M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

)
, M̂ (1) =

(
M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

M1 M2 M3 M4

)
, M ′ =

(
M̂(0) 0 0 0
0 M̂(1) 0 0
0 0 M̂(1) 0
0 0 0 M̂(0)

)
,

i.e.,M ′ is the 64×64 block diagonal matrix with blocks (M̂ (0), M̂ (1), M̂ (1), M̂ (0)).
Finally, the MC-layer multiplies the state with M ′ and is an involution.

The round function application is interleaved with additions of the round key
⊕ki and constant ⊕RCi , where

⊕ki(x) := x+ ki and ⊕RCi (x) = x+RCi .

Overall for PRINCE we thus have the structure shown in Fig. 1 (top), where

R = SR ◦ MC ◦ SB , R′PRINCE = SB−1 ◦ MC ◦ SB and R−1 = SB−1 ◦ MC ◦ SR−1 .

As we modify the PRINCE key schedule and round constants, we do not give more
details about them.

2.2 PRINCEv2

PRINCEv2 is also a family of block ciphers in the same way as PRINCE that the
applied S-box can be chosen from 8 Affine equivalent classes. For PRINCEv2, we
keep the forward round R and backward round R−1 with their operations SB,
MC, and SR. The structure for one full encryption is shown in Fig. 1 (bottom)
and in full detail in Figs. 9 and 10 in the appendix.

Middle Layer We change R′, which was a key-less operation, to

R′ = SB−1 ◦ ⊕RC11+k1 ◦ MC ◦ ⊕k0 ◦ SB .

Key Schedule Given the 128-bit master key k = (k0 ‖ k1), we define the ith
round key as

ki :=

{
k0 i ∈ {0, 2, 4, 6, 8, 10}
k1 i ∈ {1, 3, 5, 7, 9, 11}

,

that is, we alternate between the two parts of the master key k0 and k1.

5

x R R R R R

R′PRINCE

R−1R−1R−1R−1R−1y

RC0 RC1 RC2 RC3 RC4 RC5

RC6RC7RC8RC9RC10RC11

k1

x R R R R R

R′

R−1R−1R−1R−1R−1y

RC0 RC1 RC2 RC3 RC4 RC5

RC6RC7RC8RC9RC10RC11

k0

k1

Fig. 1. (Top) PRINCE core structure, leaving out the FX construction; (bot-
tom) PRINCEv2 structure. Note that values of RC7, RC9 and RC11 in PRINCEv2 are
different than the ones in PRINCE.

Round Constants The round constants are derived as for PRINCE, but instead of
adding the same α for every round constant in the second half of the encryption
process (i > 6), we alternate adding α and β as defined in Tab. 2.

2.3 Encryption vs. Decryption

While PRINCEv2 does not fulfil the α reflection property anymore, the choice of
round keys and constants allows to implement both encryption and decryption
with only a small area and delay overhead. This is shown in Fig. 10. In this
figure the extra control signal dec switches between encryption and decryption.
In particular, the Swap function is defined as

Swap(k0, k1, dec) =

{
k0, k1 if dec = 0

k1 ⊕ β, k0 ⊕ α if dec = 1
.

3 Design Rationale

The main objectives almost immediately results in clear design rationales. The
first design rationale is to leave the round function, and not less important the

6

Table 2. Round constants used in PRINCEv2.

Constants

RC0 = 0000000000000000 RC6 = 7ef84f78fd955cb1 = RC5 ⊕ α
RC1 = 13198a2e03707344 RC7 = 7aacf4538d971a60 = RC4 ⊕ β
RC2 = a4093822299f31d0 RC8 = c882d32f25323c54 = RC3 ⊕ α
RC3 = 082efa98ec4e6c89 RC9 = 9b8ded979cd838c7 = RC2 ⊕ β
RC4 = 452821e638d01377 RC10 = d3b5a399ca0c2399 = RC1 ⊕ α
RC5 = be5466cf34e90c6c RC11 = 3f84d5b5b5470917 = RC0 ⊕ β

α = c0ac29b7c97c50dd β = 3f84d5b5b5470917

number of rounds, (almost) unchanged, and only change the key-scheduling.
Note that the main reason for wanting to keep the number of round unchanged
is mainly because having more rounds will necessarily increase latency and cause
an overall loss in performances. As we are able to improve the security margin as
in PRINCE (see Section 5), we believe that this is the correct choice to make. Here,
the round-constants are thought of as part of the key-scheduling, even if it is
not presented this way in the original PRINCE paper. This rationale (leaving the
round function as is) both drastically simplified the design process and made it
much more challenging. The simplification is due to the choices being narrowed
down to a key-scheduling that has to be picked. More challenging, the analysis
has to be much more precise and careful, as clearly the security margin would
decrease. It is important to highlight that the security margin is relative to the
claimed security level, not in absolute terms.

The only compromise from the goal of leaving the round function unchanged
is the middle round. Some attacks that have been developed since the publica-
tion of PRINCE take explicit advantage of the symmetry and the key-less middle
rounds. To make those attacks, particularly meet-in-the-middle attacks and ac-
celerated exhaustive search procedures, less of a concern, it seems to be a good
trade-off to spend two (actually one as will be explained in the implementation
section) additional XOR on the critical path. It is noteworthy to mention that
the idea of the keyed middle round is previously used in the design of QARMA
block cipher.

For the key-scheduling, we were again highly restricted by the requirement
of limiting the overhead of implementing decryption on top of encryption. This
implies, as it did in PRINCE, that a complicated key-update is not a proper choice
but a simple, up to the constants, periodic key-scheduling is best.

We opted for one of the simplest possible options: iterated round-keys.
Originally, in PRINCE, the round keys derived from the 128-bit key (k0 ‖ k1)

correspond to

k0⊕k1 , k1 , k1 , k1 , k1 , k1 , k1⊕α , k1⊕α , k1⊕α , k1⊕α , k1⊕α , k′0⊕k1⊕α ,

where k′0 is the result of a simple and efficient bijective linear mapping from k0,
and α is a constant value.

7

In particular, the value of k0 is used only in the whitening keys, limiting the
security generically. The α-reflection property, that is the fact that decryption
is encryption with a modified key, follows as replacing k1 by k1 ⊕ α reverts the
order of the round keys (except for the outer whitening keys).

In PRINCEv2, using a master key (k0 ‖ k1), we decide to choose

k0 , k1 , k0 , k1 , k0 , k1 , k0 , k1⊕β , k0⊕α , k1⊕β , k0⊕α , k1⊕β , k0⊕α , k1⊕β ,

as the round keys where α and β are constant values. The constants are chosen
as digits of π = 3.1415 . . ., as they were done in PRINCE. The new constant β is
simply the next in line looking at the binary digits of π, see the appendix for a
sage code to reproduce the constants used. Besides, it is noteworthy to mention
that due to the key additions in the middle round of PRINCEv2, it has two more
round keys than the one for PRINCE.

Here, replacing k0 by k1 ⊕ β and k1 by k0 ⊕ α does ensure that the first
rounds (the first seven round keys) of the encryption circuit perform decryption
as required. However, when reaching the middle round (second key addition of
the middle round), an additional modification is required to ensure the second
half (the second seven round keys) works as well. For the second half of the
round keys, we need to XOR all of these round keys with the constant value
α ⊕ β. While replacing k0 by k1 ⊕ β and k1 by k0 ⊕ α, needs to implement
64 multiplexers in the critical path, modifying round keys of the second half
does not affect the latency. As we will show in Section 4, combining decryption
together with the encryption circuit does not significantly harm performance.

The only case where this would not be necessary is when α equals β. However,
this would introduce a set of weak-keys. Namely, if k1⊕k2 = α, then encryption
would equal decryption, that is, the whole cipher would be an involution.

Finally, let us explicitly state the claim we want our design to be tested
against:

Security Claim: We claim that there is no attack against PRINCEv2 with data
complexity below 250 bytes – 247 (chosen) plaintext-ciphertext pairs obtained
under the same key – and time-complexity below 2112. We do not claim any
security in the related-key setting and related-keys have to be avoided at the
protocol level.

This claim is backed up by the extensive security analysis. It is interesting to
see how the advance in the state of the art has made the analysis more precise
(e.g., for Boomerang-attacks using connectivity tables and for integral attacks
using the division property) and simpler (using mainly MILP-based tools). Those
improvements are an important tool to enable a cipher design with a very tight
security claim: For a cipher optimized for low-latency, a large security margin is
nothing but wasted performance.

Note that as PRINCE did not have any claim regarding security against side-
channel and fault attacks, we chose to not make such claims either. Moreover to
our knowledge, protecting a fully unrolled primitive against such attacks is not
a well-researched area so far.

8

4 Implementation

The primary objective of PRINCE and PRINCEv2 is to offer low-latency single-
cycle encryption and decryption. This objective requires a short critical path in
round-unrolled non-pipelined hardware implementations. In other words, the ci-
phers aim for a small logic depth in circuit representation. Furthermore, adding
decryption functionality to an encryption circuit should induce minimal area
and latency overhead. PRINCE achieves this goal in part due to the so-called α-
reflection property [BCG+12]. This property has been imitated by several other
low-latency constructions (e.g. MANTIS [BJK+16] and QARMA [Ava17]) and man-
dates that decryption with one key corresponds to encryption with a related
key. Due to the modified key schedule, PRINCEv2 does not fulfil the α-reflection
behaviour of PRINCE. Yet, it implements a modified version that keeps the de-
cryption overhead in hardware fairly small.

A secondary design goal is keeping its unrolled implementation cost-efficient,
including a small hardware footprint (little occupied chip area) and a low energy
consumption. In fact, the costs should be lower compared to unrolled implemen-
tations of other lightweight block ciphers. According to the original proposal,
unrolled PRINCE with decryption and encryption capability can be clocked at fre-
quencies up to 212.8MHz when synthesized in NanGate 45 nm, an open-source
standard cell library, and requires as little as 8260 Gate Equivalents (GE) of
area [BCG+12]. PRINCEv2 aims to achieve similar performance figures while pro-
viding stronger security guarantees overall. Staying close to the initial design of
PRINCE enables us to recycle and build upon the extensive security analysis it has
already received. Furthermore, it allows us to construct circuits that can perform
encryption and decryption in both the new PRINCEv2 and original PRINCE at low
overhead. This provides needed legacy support and backward compatibility for
a variety of applications and environments where PRINCE is already deployed.

In the following, we compare our novel PRINCEv2 design to the original
PRINCE concerning the minimum latency and minimum area achieved by unrolled
implementations. Since gate count and delay numbers depend on the particular
technology used, we provide synthesis results from 4 different commercial stan-
dard cell libraries of feature sizes between 90 nm and 28 nm. This redundancy
minimizes the influence of a single technology on the comparison’s interpreta-
tion. All 4 standard cell libraries contain multiple classes of gates, namely a high
threshold voltage (hvt) class, a standard threshold voltage (std) class and a low
threshold voltage (lvt) class. These distinct classes allow to fully explore the
latency-vs-leakage tradeoff. More specifically, when placing a tight constraint on
the latency of a circuit, primarily lvt cells are chosen due to their high speed. On
the other hand, when synthesizing without tight timing constraints, hvt cells will
be chosen due to the lower energy loss through leakage currents. Using manufac-
turable standard cell libraries from a commercial foundry instead of open-source
libraries for a design comparison is often preferable since the reported numbers
are more accurate in all key categories, such as area, latency and energy. They
are especially superior in power and energy estimation, as common open-source
libraries fail to provide industry quality characterization in that regard. How-

9

Table 3. Area, latency and energy characteristics of unrolled PRINCE and PRINCEv2
when constrained for minimum latency.

Techn. Mode Cipher Area [GE] Latency [ns] Energy [pJ]

90 nm LP*
ENC PRINCE 16244.25 4.101177 1.993172

PRINCEv2 17661.25 4.047311 2.230068

ENC/DEC PRINCE 17808.00 4.106262 2.213275
PRINCEv2 18888.75 4.151113 2.424250

65 nm LP*
ENC PRINCE 19877.75 2.866749 1.602513

PRINCEv2 18798.25 2.944367 1.492794

ENC/DEC PRINCE 19966.00 2.946442 1.594025
PRINCEv2 21171.25 2.930153 1.696559

40 nm LP*
ENC PRINCE 17177.00 2.521302 0.617719

PRINCEv2 16556.50 2.509131 0.592155

ENC/DEC PRINCE 17377.50 2.541220 0.630223
PRINCEv2 17799.50 2.583466 0.648450

28 nm HPC**
ENC PRINCE 38145.33 1.108886 1.258586

PRINCEv2 33470.33 1.103273 1.108789

ENC/DEC PRINCE 35297.67 1.119593 1.181171
PRINCEv2 38962.33 1.148693 1.299172

* LP = Low Power
** HPC = High Performance Computing

90nm LP 65nm LP 40nm LP 28nm HPC
0

1

2

3

4

5

−1.31%

+2.71%

−0.48%

−0.51%

+1.09%

−0.55%
+1.66%

+2.60%

Technology

M
in
im

um
la
te
nc
y
[n
s] PRINCE Enc

PRINCEv2 Enc

PRINCE Enc/Dec

PRINCEv2 Enc/Dec

Fig. 2. Minimum achievable latency of unrolled PRINCE and PRINCEv2 across different
technologies.

ever, to keep our results reproducible and make comparisons to existing works
easy we provide a comparison of all our unrolled PRINCE and PRINCEv2 circuits
to several other low-latency and low-energy constructions in NanGate 45 nm and
15 nm Open Cell Libraries (OCL) later in this section.

We consider the typical process and operating conditions in all our synthesis
results, i.e., the typical PVT (process, voltage, temperature) corner case, with a
nominal supply voltage and a working temperature of 25 ◦C. For synthesis, we

10

SB

MC

SB−1

β

k0

k1

(a) regular

SB

MC MC

SB−1

β

k0

k1

(b) optimized

Fig. 3. Simple latency optimization strategy in the middle round of PRINCEv2 that
removes one key addition from the critical path.

have used Synopsys Design Compiler Version O-2018.06-SP4 with three stages
of the compile_ultra command (two incremental). As a first step, we have
constrained our circuits for minimum latency. The results are given in Table 3
and visualized in Figure 2. We distinguish between circuits that can only encrypt
(ENC) and circuits that can decrypt as well (ENC/DEC).

Several interesting observations can be made. Firstly, all four distinct circuits
perform decidedly similar in terms of minimum latency. The difference falls in
the range of single-digit picoseconds in several cases. To gain a better overview,
Figure 2 provides the differences between corresponding PRINCE and PRINCEv2
circuits as percentages on top of the bar graphs. Interestingly, the encryption-
only version of PRINCEv2 outperforms PRINCE in terms of minimum latency in
three of four technologies. This may be counter-intuitive, as PRINCEv2 adds two
key additions to the middle round. However, as shown in Figure 3, those two
key additions can be merged into a single one regarding the critical path by
calculating and adding MC(K1) in parallel.

This optimization not only improves the minimum latency but also saves
area.8 One may expect the synthesis tool to perform such an optimization im-
plicitly by itself, as two key additions and a MC operation in the middle essentially
result in a sequence of four consecutive XORs per bit. Yet, our results suggest
that it is indeed required to perform the optimization algorithmically in the RTL
code. Additionally, it has to be noted that the original PRINCE design applies two
key additions (whitening and round key) to the input before the first Sbox stage.
PRINCEv2, on the other hand, applies only one. Hence, the difference between
the latency of PRINCE and PRINCEv2 in encryption-only mode comes down to
whether the synthesizer implements the additional key XOR at the input more

8 Area is saved by this optimization since slower cells with a lower drive strength can
be selected for the parallel calculations. Those cells have a smaller area footprint.

11

efficiently or the one in the middle round. More often than not, the middle round
key addition is more efficient latency-wise since the synthesizer has more freedom
to move that XOR stage around (e.g., to the input, output or intermediate signals
of the MC operation), while the two key XORs at the input have a fixed location
and cannot be optimized beyond instantiating a three-input XOR per bit, since
all inputs to the operation (key and plaintext) arrive at approximately the same
time. Original PRINCE also requires an additional key XOR at the output. Yet,
since the last round’s output arrives much later than the keys, the key parts will
be added to each other beforehand and only one of the XOR stages affects the
critical path.

At this point, we should stress that differences in synthesis results of such a
small magnitude may sometimes go beyond algorithmic considerations and can
not always be understood in detail without having insight into the proprietary
optimization algorithms used by EDA tools. Sometimes a latency optimization
with a big area penalty is deemed worth it by the synthesizer, sometimes not.
Thresholds for such decisions are unknown and therefore the outcome can not
always be predicted. One example for such a case in Table 3 is the difference
between the full variant of PRINCEv2 and its encryption-only version in 65 nm
LP technology. For unknown reasons, the full variant achieves a lower latency
than the encryption-only one, but at the price of a significantly increased area,
indicating costly latency optimizations. However, the majority of our reported
figures directly corresponds to the algorithmic differences in the analyzed ciphers
and modes.

Regarding the cipher variants with decryption capability, the situation is
slightly different compared to the encryption-only versions. The more complex
key-multiplexing in PRINCEv2 required to choose between encryption and de-
cryption, as apparent in Figure 10, induces additional delay. In the worst case,
this results in an overhead of 2.6%, but on average the overhead is about 1.2%.
Table 3 also reports area and energy numbers for the highly constrained circuits.
The energy values correspond to the average energy consumed by one evaluation
of the unrolled circuits at maximum clock frequency (corresponding to minimum
latency). While PRINCEv2 is often more area and energy-efficient than PRINCE in
encryption-only mode, PRINCEv2 with decryption capability consistently requires
the largest area and consumes the most energy. Yet, the margins are still very
thin. In summary, PRINCE’s most important property and main selling point,
namely high-speed single-cycle encryption, is well preserved by PRINCEv2. For
scenarios that require no decryption but only encryption, it may even be slightly
improved.

As a second step, we evaluate the minimum area that can be achieved by
the unrolled circuits. In this regard, we have executed the same synthesis scripts
as before, but without the tight timing constraints. Our results are reported in
Table 4 and depicted as a bar graph in Figure 4.

In contrast to the latency results, a consistent overhead for minimum area
can be observed for the PRINCEv2 circuits. This is expected, due to the additional
operations in the middle round and the more complex key-multiplexing to decide

12

Table 4. Area, latency and energy characteristics of unrolled PRINCE and PRINCEv2
when constrained for minimum area.

Techn. Mode Cipher Area [GE] Latency [ns] Energy [pJ]

90 nm LP*
ENC PRINCE 7937.50 12.859 908 0.569694

PRINCEv2 8111.25 12.856 450 0.574683

ENC/DEC PRINCE 8183.00 14.015 245 0.616671
PRINCEv2 8440.75 15.513 536 0.628298

65 nm LP*
ENC PRINCE 8316.00 11.434 771 0.433378

PRINCEv2 8385.25 11.504 968 0.430286

ENC/DEC PRINCE 8547.75 12.349 355 0.440872
PRINCEv2 8792.75 13.376 949 0.456154

40 nm LP*
ENC PRINCE 8563.75 10.144 847 0.212027

PRINCEv2 8608.50 10.063 908 0.207317

ENC/DEC PRINCE 8780.00 10.886 960 0.217739
PRINCEv2 9039.75 11.798 657 0.226534

28 nm HPC**
ENC PRINCE 8197.00 3.599 936 0.127798

PRINCEv2 8292.00 3.682 593 0.127786

ENC/DEC PRINCE 8426.33 4.260 999 0.131239
PRINCEv2 8844.67 4.323 993 0.134909

* LP = Low Power
** HPC = High Performance Computing

90nm LP 65nm LP 40nm LP 28nm HPC
0

2

4

6

8

10

+2.19% +0.83% +0.52%
+1.16%+3.15%

+2.87% +2.96% +4.96%

Technology

M
in
im

um
ar
ea

[k
G
E
] PRINCE Enc

PRINCEv2 Enc

PRINCE Enc/Dec

PRINCEv2 Enc/Dec

Fig. 4. Minimum achievable area of unrolled PRINCE and PRINCEv2 across different
technologies.

between encryption and decryption. Yet, the average overhead is less than 1.2%
for the encryption-only and less than 3.5% for the full versions. This is a rather
small price to pay for the additional security PRINCEv2 provides. When compar-
ing the low-latency and low-area implementations in Tables 3 and 4 respectively,
it can be seen that area increases 2 to 4 times from low-area to low-latency con-
straint. Latency scales down 3 to 4 times. Energy consumption increases between
4 and 10 times, due to a dependency on both factors (caused by leakage cur-

13

rents). These metrics should be carefully considered when choosing operating
frequency and target technology for a given application.

Finally, we compare PRINCE and PRINCEv2 to other lightweight block ciphers
proposed in the literature. Only a few cryptographic primitives have made low
latency a primary design objective. To the best of our knowledge, none of those
who have share all design goals and security claims with PRINCE or PRINCEv2.
Hence, the following comparison involves ciphers with different security and per-
formance claims and is only supposed to put their hardware efficiency in relation
to each other, without concluding the superiority of one or the other. In particu-
lar, we compare PRINCE and PRINCEv2 to the low-latency tweakable block ciphers
MANTIS [BJK+16] and QARMA [Ava17]. Yet, since both of those constructions are
tweakable, unlike all PRINCE versions, they can not easily achieve the same la-
tency and area as PRINCE and PRINCEv2. We also include Midori [BBI+15] in
the comparison, as the authors have partially aimed for a low logic depth as
well. However, Midori primarily targets energy efficiency in round-based imple-
mentations and has no claim to provide low latency in unrolled representation.
Additionally, we have developed a combination of PRINCE and PRINCEv2, which
we call PRINCE+v2. This combined cipher offers a control signal to select whether
the input should be processed according to the PRINCE or the PRINCEv2 speci-
fication. In environments where PRINCE is already deployed, this can be useful
for backward compatibility and legacy support. We have analyzed all 6 ciphers
in two modes each (ENC and ENC/DEC) in NanGate 45 nm and 15 nm Open
Cell Libraries and evaluate their area-vs-latency tradeoff. The result is depicted
in Figure 5 for NanGate 45 nm and in Figure 6 for 15 nm technology. The exact
performance figures used to create these graphs can be found in the Appendix
in Tables 5 and 6. The results in these two libraries demonstrate that PRINCE
and PRINCEv2 are the most suitable choices for high-speed encryption, as long
as a tweak input is not required. All PRINCE and PRINCEv2 variants outper-
form the other ciphers both in terms of minimum latency and minimum area.
PRINCEv2 in encryption-only mode is roughly 20 percent faster than Midori and
MANTIS, and 40 percent faster than QARMA. At the same time, its minimum area
is about 15 percent smaller than Midori, 30 percent smaller than MANTIS and
40 percent smaller than QARMA. The results are similar when comparing both en-
cryption and decryption implementations, except for Midori being significantly
larger and slower. This outcome is unsurprising since all compared ciphers ex-
cept Midori are reflection ciphers, i.e., they use a variant of the α-reflection
property introduced by PRINCE. Please note that for this reason the full version
of Midori64, including decryption, is barely visible in Figures 5 and 6 as it sim-
ply does not fit in the frame due to its much higher latency and area caused
by the extra multiplexers required in each round. Yet the full figures for that
implementation can be found in Tables 5 and 6 in the Appendix. We chose the
particular instances MANTIS7 and QARMA7-64-σ1 for the comparison as they are
supposed to offer a similar security level as PRINCE and PRINCEv2, while being
tweakable.

14

Table 5. Full comparison of unrolled block ciphers in NanGate 45 nm Open Cell Li-
brary.

PRINCE PRINCEv2

ENC ENC/DEC ENC ENC/DEC

Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE]

4.059997 9873.33 4.119023 10486.33 4.077636 10332.00 4.245165 10780.67
4.500000 8421.67 4.500000 8807.00 4.500000 8526.67 4.500000 9488.00
5.000000 7837.00 5.000000 8213.33 5.000000 8013.00 5.000000 8659.67
5.500000 7684.33 5.500000 7959.33 5.500000 7865.67 5.500000 8328.67
6.000000 7620.00 6.000000 7874.00 6.000000 7812.33 6.000000 8196.00
6.500000 7620.00 6.500000 7868.67 6.500000 7812.33 6.500000 8144.00
7.000000 7620.00 7.000000 7868.67 7.000000 7812.33 7.000000 8141.67

PRINCE+v2 Midori64

ENC ENC/DEC ENC ENC/DEC

Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE]

4.353092 11258.33 4.469554 12395.67 4.934847 10755.67 7.111567 25058.33
4.500000 9588.33 4.500000 10709.00 4.500000 - 4.500000 -
5.000000 8622.67 5.000000 9870.33 5.000000 10353.67 5.000000 -
5.500000 8276.00 5.500000 9356.00 5.500000 9223.67 5.500000 -
6.000000 8169.67 6.000000 9091.67 6.000000 8858.00 6.000000 -
6.500000 8156.33 6.500000 8990.33 6.500000 8792.33 6.500000 -
7.000000 8155.33 7.000000 8982.00 7.000000 8748.33 7.000000 -
7.500000 8155.33 7.500000 8969.33 7.500000 8748.33 7.500000 19733.00
8.000000 8155.33 8.000000 8969.33 8.000000 8748.33 8.000000 18381.00
9.000000 8155.33 9.000000 8969.33 9.000000 8748.33 9.000000 16241.67
10.000000 8155.33 10.000000 8969.33 10.000000 8748.33 10.000000 14877.67
11.000000 8155.33 11.000000 8969.33 11.000000 8748.33 11.000000 14476.33

MANTIS7 QARMA7-64-σ1

ENC ENC/DEC ENC ENC/DEC

Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE]

5.036228 14481.67 5.235198 14810.67 5.756122 17096.67 5.794558 18085.67
5.500000 12445.33 5.500000 12931.67 5.500000 - 5.500000 -
6.000000 11613.33 6.000000 12082.67 6.000000 14821.33 6.000000 15449.67
6.500000 11246.67 6.500000 11786.67 6.500000 13886.00 6.500000 14866.33
7.000000 11134.33 7.000000 11529.00 7.000000 13139.67 7.000000 14019.33
7.500000 11064.67 7.500000 11397.67 7.500000 12698.33 7.500000 13467.33
8.000000 11019.33 8.000000 11322.67 8.000000 12326.67 8.000000 13012.33
8.500000 11019.33 8.500000 11305.33 8.500000 12106.33 8.500000 12801.67
9.000000 11019.33 9.000000 11305.33 9.000000 12039.33 9.000000 12677.00
9.500000 11019.33 9.500000 11305.33 9.500000 12039.33 9.500000 12614.67
10.000000 11019.33 10.000000 11305.33 10.000000 12039.33 10.000000 12610.33
10.500000 11019.33 10.500000 11305.33 10.500000 12039.33 10.500000 12609.00

In the original proposal, the maximum achievable frequency in NanGate
45 nm of unrolled PRINCE was given as 212.8MHz [BCG+12]. Our unrolled
PRINCE can be clocked at 242.8MHz for the full variant and 246.3MHz for the
encryption-only version in the same technology, which corresponds to a 12.4% or
15.7% higher performance respectively. The minimum area was given as 8260GE
in the original proposal, while our implementations are as small as 7868.67GE

15

Table 6. Full comparison of unrolled block ciphers in NanGate 15 nm Open Cell Li-
brary.

PRINCE PRINCEv2

ENC ENC/DEC ENC ENC/DEC

Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE]

0.389144 13291.00 0.400530 13468.00 0.387146 13069.50 0.404112 14181.25
0.400000 12380.75 0.400000 - 0.400000 12331.75 0.400000 -
0.450000 9618.50 0.450000 10275.50 0.450000 9859.00 0.450000 11185.25
0.500000 8811.00 0.500000 9115.50 0.500000 8940.75 0.500000 9822.25
0.550000 8621.50 0.550000 8935.50 0.550000 8820.00 0.550000 9272.25
0.600000 8610.50 0.600000 8828.75 0.600000 8787.25 0.600000 9134.50
0.650000 8610.50 0.650000 8828.75 0.650000 8787.25 0.650000 9108.00
0.700000 8610.50 0.700000 8828.75 0.700000 8787.25 0.700000 9105.50
0.750000 8610.50 0.750000 8828.75 0.750000 8787.25 0.750000 9104.00

PRINCE+v2 Midori64

ENC ENC/DEC ENC ENC/DEC

Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE]

0.415065 14422.75 0.426661 16016.00 0.481522 13775.00 0.657338 30563.50
0.450000 11701.25 0.450000 14280.50 0.450000 - 0.450000 -
0.500000 9698.00 0.500000 11253.50 0.500000 11581.25 0.500000 -
0.550000 9234.00 0.550000 10193.00 0.550000 10427.00 0.550000 -
0.600000 9147.75 0.600000 9991.75 0.600000 9896.25 0.600000 -
0.650000 9163.00 0.650000 9967.25 0.650000 9831.00 0.650000 -
0.700000 9144.00 0.700000 9931.75 0.700000 9806.50 0.700000 28135.25
0.750000 9143.50 0.750000 9931.25 0.750000 9806.50 0.750000 22886.75
0.800000 9143.50 0.800000 9929.75 0.800000 9806.50 0.800000 20793.75
0.850000 9143.50 0.850000 9929.00 0.850000 9806.50 0.850000 18871.75
0.900000 9143.50 0.900000 9929.00 0.900000 9806.50 0.900000 17772.00
1.000000 9143.50 1.000000 9929.00 1.000000 9806.50 1.000000 16423.00
1.100000 9143.50 1.100000 9929.00 1.100000 9806.50 1.100000 15420.75
1.200000 9143.50 1.200000 9929.00 1.200000 9806.50 1.200000 15380.00
1.300000 9143.50 1.300000 9929.00 1.300000 9806.50 1.300000 15318.00

MANTIS7 QARMA7-64-σ1

ENC ENC/DEC ENC ENC/DEC

Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE] Lat. [ns] Area [GE]

0.492660 17542.75 0.504465 18193.75 0.542777 20736.25 0.552887 22130.75
0.500000 17142.75 0.500000 - 0.500000 - 0.500000 -
0.550000 14404.00 0.550000 15159.25 0.550000 20736.25 0.550000 -
0.600000 13650.00 0.600000 14464.50 0.600000 16413.25 0.600000 18195.25
0.650000 12469.00 0.650000 12804.75 0.650000 14864.25 0.650000 16299.75
0.700000 12378.25 0.700000 12681.50 0.700000 13862.00 0.700000 15111.25
0.750000 12285.75 0.750000 12626.75 0.750000 13794.00 0.750000 14542.25
0.800000 12275.00 0.800000 12580.00 0.800000 13531.25 0.800000 14292.25
0.850000 12275.00 0.850000 12565.00 0.850000 13359.00 0.850000 14130.25
0.900000 12275.00 0.900000 12561.25 0.900000 13304.00 0.900000 14009.75
0.950000 12275.00 0.950000 12561.25 0.950000 13304.00 0.950000 13988.75

for the full variant and 7620.00GE for the encryption-only version. That corre-
sponds to a 5.0% or 8.4% higher area efficiency respectively. We conclude that

16

4 5 6 7 8 9 10

8

10

12

14

16

18

Latency [ns]

A
re
a
[k
G
E
]

PRINCE Enc
PRINCE Enc/Dec
PRINCEv2 Enc
PRINCEv2 Enc/Dec
PRINCE+v2 Enc
PRINCE+v2 Enc/Dec
MANTIS7 Enc
MANTIS7 Enc/Dec
Midori64 Enc
Midori64 Enc/Dec
QARMA7-64 Enc
QARMA7-64 Enc/Dec

Fig. 5. Comparison of unrolled block ciphers in NanGate 45 nm Open Cell Library.

0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

20

22

Latency [ns]

A
re
a
[k
G
E
]

PRINCE Enc
PRINCE Enc/Dec
PRINCEv2 Enc
PRINCEv2 Enc/Dec
PRINCE+v2 Enc
PRINCE+v2 Enc/Dec
MANTIS7 Enc
MANTIS7 Enc/Dec
Midori64 Enc
Midori64 Enc/Dec
QARMA7-64 Enc
QARMA7-64 Enc/Dec

Fig. 6. Comparison of unrolled block ciphers in NanGate 15 nm Open Cell Library.

our base-implementation used for the construction of PRINCEv2 and PRINCE+v2
(and partially for MANTIS7) is well optimized.

Finally, we compare the energy consumption of the 6 ciphers. As detailed
before, open-source libraries are not suitable for power and energy estimation.
Thus, we have performed the energy comparison in the commercial 40 nm Low
Power CMOS technology. This particular technology proved to be the most
energy efficient, as apparent from Tables 3 and 4. The results have been estimated
at 50MHz and are depicted in Figure 7. Please note the y-axis limits on the bar
graph. The differences between the circuits are not as large as they may appear
at first sight. Yet, the results confirm once again that PRINCE and PRINCEv2 are
the most cost-efficient unrolled circuits.

17

PRINCEv2
Enc

PRINCE
Enc

PRINCE
Enc/Dec

PRINCEv2
Enc/Dec

PRINCE+v2
Enc

Midori64
Enc

PRINCE+v2
Enc/Dec

MANTIS7
Enc

MANTIS7
Enc/Dec

QARMA7
Enc

QARMA7
Enc/Dec

Midori64
Enc/Dec

0.2

0.25

0.3

0.35

0.4

E
ne

rg
y
[p
J]

Fig. 7. Average energy consumption of unrolled block ciphers clocked at 50MHz in a
commercial 40 nm Low Power CMOS technology.

5 Security Analysis

We analyzed the security of PRINCEv2 building on the previously published anal-
ysis of PRINCE. Most dedicated attacks on PRINCEv2 are comparable to PRINCE,
while PRINCEv2 offers significantly better resistance to generic attacks. We show
that several attacks successful against PRINCE, such as certain accelerated ex-
haustive search and meet-in-the-middle attacks, do not apply to PRINCEv2. Note
that we do not consider analyses of variants with modified operations or related-
key attacks, but we provide a discussion of the latter at the end of this section.

Since PRINCEv2 is designed to provide a higher security level, we also need to
consider attacks with higher complexity than for PRINCE. For several dedicated
attack strategies, we find attacks that cover 1 or 2 more rounds with significantly
higher time complexity T or data complexity D. This higher complexity is above
the bound D · T < 2126 claimed for PRINCE, but below the generic bounds of
D < 264, T < 2128 for PRINCEv2, and thus relevant to judge the security margin
of PRINCEv2. We note that the security claim for PRINCEv2 limits the attacker to
D < 247 and T < 2112, while most of the results we propose for round-reduced
PRINCEv2 require more data than permitted by this bound.

Additionally, we provide several new results, including a linear attack, a
6-round integral distinguisher based on the division property, a more precise
evaluation of boomerang attacks using recently published techniques, and a new
10-round Demirci-Selçuk meet-in-the-middle attack.

Table 7 provides an overview of the highlights of this section, including the
best attacks on PRINCEv2 and noteworthy new results. In summary, PRINCEv2
is at least as secure as PRINCE against various dedicated attacks and provides
better generic security.

Differential [ALL12,CFG+14a,CFG+14b,DP15a,DP15b,GR16a,GR16b]: The
truncated differential used in [GR16a,GR16b] applies the subspace trail tech-
nique and attacks at most 6 rounds of PRINCE, which is the same for PRINCEv2.

18

Table 7. Overview of the main analysis results on round-reduced PRINCEv2, where
12 is the full number of rounds. Time complexity is given in computation equivalents,
data complexity in known plaintexts (KP) or chosen plaintexts (CP). For most attacks
in this table except meet-in-the-middle (†), the attacks on PRINCE apply to PRINCEv2
with similar complexity and vice-versa; however, the complexity of the attacks listed
for PRINCEv2 is higher than permitted by the PRINCE security claim. For other results,
refer to details in Section 5.

Attack Target Complexity Reference

Version Rounds Time Data

Differential PRINCE 10 261 258 CP [CFG+14a]
PRINCEv2 11 292 259 CP New

Impossible differential PRINCE 7 254 256 CP [DZLY17]
PRINCEv2 9 e−α · 2128 α · 265 CP New

Integral PRINCE 7 257 260 CP [Mor17]
PRINCEv2 8 2107.4 236 CP New

Meet-in-the-middle PRINCE † 10 2122 2KP [RR16b]
PRINCEv2 † 10 2112 248 CP New

The inside-out differential in [ALL12] took advantage of the key-less mid-
dle round to attack at most 6 rounds of PRINCE and is thus not applicable to
PRINCEv2.

The most powerful differential attack against PRINCE was the one introduced
in [CFG+14a,CFG+14b] that covers 10 rounds using 257.94 chosen plaintexts,
260.62 computations and 261.52 blocks of memory. The distinguisher of this attack
covers 6-round and it appends 2 rounds before and 2 rounds after which needs
to guess 66 key bits. Using the same distinguisher and attack for PRINCEv2, we
need to guess 64 key bits. The complexities of both attacks are roughly the same.
The probability of the corresponding differentials are summarized in Table 8.

This attack can be extended by one round with the new key schedule at the
cost of significantly higher time complexity, as illustrated in Figure 8.

1. Query Ns structures of 232 chosen plaintexts P with columns P1, P3 fixed
within each structure. This yields Ns · 231 · (232 − 1) ≈ Ns · 263 candidate
pairs as in Figure 8.

2. For each of the Ns · 263 candidate pairs (P, P ′), we expect 1 candidate for
the 96-bit key (K1,K0,0,K0,2), which can be determined by a small number
of table lookups:
(a) We expect 1 key candidate for the key columns K1,0,K1,2 (?) that satis-

fies the pattern through SB, MC in rounds 1 and 11. This costs one lookup
in a precomputed table (∆X0, ∆Y0, X0 ⊕ Y0)→ X0 per pair.

(b) For any fixed difference ∆U , we also get 1 key candidate for the 4 nibbles
of K0 involved in round 2, which determines 4 nibbles of W in round 10
(•).

19

P

?
?
?
?

?
?
?
?

K1 ⊕ RC1

X

•
• •
•

K0 ⊕ RC2

δ1

δ2δ1

δ2

U
SB MC SR SB

?
?
?

?

?
?
?
?

•
•
•
•

K0 ⊕ RC10

•
•
•
•

•
•
•
•

W

?

??

?

K1 ⊕ RC9

δ′1

δ′2δ′1

δ′2

V
SB′ MC SR′ SB′

p

?
?
?
?

?

?

?
?
?
?

?

?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

Y

?
?
?
?

?
?
?
?

K1 ⊕ RC11

C
SR′MCSB′

Fig. 8. Differential attack on 11-round PRINCEv2 extending [CFG+14a] by one round.

(c) Due to the pattern for MC in round 10, there are only 28 × 28 possible
differences ∆W . The key bits found so far determine 16 bits of this
difference and thus on average fully determine ∆W .

(d) For any fixed difference ∆V , knowing K1,0,K1,2, we get on average 1
candidate for the value of the two active columns W0,W2. This deter-
mines the difference ∆Z and thus the key columns K1,1,K1,3 as well as
the rest of K0,0,K0,2.

3. Rank the obtained Ns · 263 candidates for the 96-bit key (K1,K0,0,K0,2).

Using Ns = 5/p/231 = 229 structures for the best differential (δ0, δ1, δ′0, δ′1) =
(1, 2, 1, 2) from Table 8, we expect about 5 right pairs, which should be easily
sufficient for distinguishing. The remaining 32 key bits (K0,1,K0,3) can be re-
covered by brute-force search. The overall complexity is Ns · 232 = 261 chosen
plaintexts and the time corresponding to Ns ·263 = 292 repetitions of a few table
lookups and arithmetic operations, which can be roughly approximated by one
encryption equivalent.

The attack can be slightly improved using multiple differentials from Table
8, but fewer structures. For example, we can use the 22 permutations of the best
differential with the same p and decrease Ns by a factor of 22, obtaining an
attack with the same expected number of valid pairs and key candidates, while
the data complexity is reduced to 259 and the time complexity is slightly lower
than before.

Linear: Even though there is no published linear analysis for PRINCE, we find
out that the activity patterns used in [CFG+14a] for differential analysis are
also useful for the linear one. This is because of the MC operation that uses
an involutive and self-transpose matrix, i.e. M ′T = M ′−1 = M ′. We compute
the average square correlation of all 6-round linear hulls which follow the given
activity patterns similarly as in [CFG+14a] for both PRINCE and PRINCEv2.
These values are summarized in Table 8.

20

Table 8. Differentials and linear hulls fitting to the 6-round activity patterns given in
[CFG+14a] for both PRINCE and PRINCEv2.

differential probability
(divided by 2−72 × 23)

(δ0, δ1) (δ
′
0, δ
′
1) PRINCE PRINCEv2

(1,2) (1,2) 6144 2560
(1,2) (1,8) 3328 1344
(1,2) (1,a) 1664 672
(1,2) (4,2) 1536 640
(1,2) (4,8) 1664 928
(1,2) (4,a) 832 336

(1,8) (1,8) 2112 784
(1,8) (1,a) 1056 392
(1,8) (4,2) 832 336
(1,8) (4,8) 1056 520
(1,8) (4,a) 528 196

(1,a) (1,a) 528 196
(1,a) (4,2) 416 168
(1,a) (4,8) 528 260
(1,a) (4,a) 264 98

(4,2) (4,2) 384 160
(4,2) (4,8) 416 232
(4,2) (4,a) 208 84

(4,8) (4,8) 656 388
(4,8) (4,a) 264 130

(4,a) (4,a) 132 49

average square linear correlation
(divided by 2−91 × 23)

(δ0, δ1) (δ
′
0, δ
′
1) PRINCE PRINCEv2

(4,2) (4,2) 3563313280 2701826048
(4,2) (4,8) 243931552 177559040
(4,2) (4,a) 215632256 165965824
(4,2) (5,2) 44716840 22956032
(4,2) (5,8) 23525008 14792960
(4,2) (5,a) 3662080 2491520

(4,8) (4,8) 16864144 11669888
(4,8) (4,a) 14706248 10906624
(4,8) (5,2) 3338620 1510400
(4,8) (5,8) 1723948 972992
(4,8) (5,a) 256192 163616

(4,a) (4,a) 13067272 10194944
(4,a) (5,2) 2613530 1409536
(4,a) (5,8) 1385768 908416
(4,a) (5,a) 219776 153088

(5,2) (5,2) 1221068 203976
(5,2) (5,8) 698555 133008
(5,2) (5,a) 54472 20960

(5,8) (5,8) 466562 87600
(5,8) (5,a) 27160 13544

(5,a) (5,a) 4024 2312

One can use these linear hulls to analyze 10-round PRINCE by guessing 66 key
bits and on PRINCEv2 with 64 key bits guesses (similar to differential attack).
Data complexity for both of these attacks are factor of 257 known plaintexts.

Impossible Differential [DZLY17]: The best previously known impossible dif-
ferential attack was discovered by Ding et al. [DZLY17], based on a 4-round
distinguisher and extended to an attack up to 7 rounds with 256 data, 253.8
time and 243 bytes of memory. At Eurocrypt’17, Sasaki and Todo proposed a
new way to search for impossible differentials [ST17] based on MILP, leading to
much more sophisticated distinguishers than previously known. We implemented
this algorithm and were able to find new impossible distinguishers over 5 rounds
which are given in Table 9. Note that there are two different configurations for
our distinguishers: either 1 + 2 + 2 which means one forward round, the two
middles rounds and 2 backward rounds, or 2 + 2 + 1, i.e., two forward rounds,
two middle rounds and one backward round.

21

Table 9. Impossible differential distinguishers for 5 rounds.

2 + 2 + 1 Rounds 1 + 2 + 2 Rounds

0010000000000000 6→ 0000000040000000 0400000000000000 6→ 0000000000004000
0000000000100000 6→ 0000000001000000 0010000000000000 6→ 0000000000000010
0000000000004000 6→ 0400000000000000 0000000040000000 6→ 0010000000000000
0000000000000010 6→ 0010000000000000 0000000001000000 6→ 0000000000100000

Due to the specific shape of these impossible differentials (only one active bit
in the input and output), we can take any one of them and use it to mount an
attack up to 9 rounds. Using [BNPS14], we were able to estimate that the result-
ing attack would need α ·265 data and memory, and 2128 ·e−α time, where α is a
parameter allowing for a trade-off between data/memory and time complexities
(the higher is α, the higher is the data/memory complexity and the lower is the
time complexity).

Integral and Higher-Order Differential [JNP+13,Mor17,PN15,RR16c]: The
longest known distinguisher of these types is a higher-order differential that is
introduced in [Mor17]. This distinguisher includes 5 nonlinear layers and needs
a data set of size 232. For key recovery, it is possible to append at most 3 rounds
to the end of distinguisher and attack 8 round PRINCEv2 by guessing 80 key bits.
The complexity of this attack is 2112 computations (equivalent to 2107.4 8-round
PRINCEv2 encryption), 236 chosen plaintexts and 236 blocks of memory.

A more recent technique to build integral distinguisher is to use the so-
called division property introduced by Todo at Eurocrypt’15 [Tod15]. This tech-
nique was later refined into bit-based division property at FSE’16 by Todo and
Morii [TM16] and some work was done to efficiently search for division prop-
erty using e.g. Mixed Integer Linear Programming (MILP) [XZBL16,ZR19]. We
implemented this algorithm to search for division property based distinguishers
and we ended up finding such a distinguisher over 6 rounds. This distinguisher
requires 262 chosen plaintexts and due to this high data complexity, we do not
expect it to be used to mount an attack over more than 8 rounds while also
having better complexities than the above-mentioned attack.

Boomerang [PDN15]: The boomerang attack is applied to PRINCE in [PDN15],
but there are some flaws on the estimation of the probability, e.g., the effect
of the boomerang switching [BK09] is not taken in consideration. The so-called
sandwich attack [DKS10,DKS14] is an experimental approach to estimate more
rigorously this probability. We estimated the probability for a boomerang dis-
tinguisher with 4-round plus the middle layer. The probability of this 6-round
distinguisher is about 2−34, but the 7-round distinguisher is clearly worse than
the classical differential attack because it involves 9 additional active S-boxes.

Accelerated Exhaustive Search [JNP+13,PDN15,RR16a,RR16b]: These attacks
on PRINCE either used the α-reflection and FX-construction property or the

22

key-less middle rounds of the cipher to accelerate the exhaustive search. For
PRINCEv2, these properties do not hold anymore and the only possible attack
of this type is the one used in [RR16b]. Using the technique of [RR16b] and by
starting from the middle of the cipher, attacking 4 round or more requires to
guess all the key bits. By starting from the plaintext/ciphertext side, attacking
6 rounds or more requires to guess all the key bits.

Meet-in-the-Middle [CNPV13a,CNPV13b,DP15a,DP15b,LJW13,RR16b]: Meet-
in-the-Middle attacks used in [LJW13,RR16b] took advantage of key-less middle
rounds and use super-sboxes in the middle of the cipher to attack at most 10
rounds. These attacks do not work on PRINCEv2 as effective as on PRINCE.

The sieve-in-the-middle attack, introduced in [CNPV13a,CNPV13b], is appli-
cable to 8 rounds of PRINCE which includes 6 rounds for the sieve-in-the-middle
and 2 rounds for the biclique part. Applying it to PRINCEv2, the sieve-in-the-
middle part will be more complicated. The super-sbox used there will be key-
dependent, which increases the time and memory complexity.

The meet-in-the-middle attack used in [DP15a,DP15b] reaches 10 rounds
of PRINCE. Applying the tool given in [Der19] by Patrick Derbez which uses
the same technique, we find out that it is possible to attack at most 6 rounds
of PRINCEv2 with the complexity of either 296 computations and 226 memory
blocks or 2112 computations and 26 memory blocks.

We also analyzed the security of PRINCEv2 against Demirci-Selçuk meet-in-
the-middle attacks using the same tool by Derbez. This attack can reach at
most 10 rounds using 248 chosen plaintexts, 2112 computations and 270 memory
blocks.

Time-Data-Memory Trade-Offs [Din15,JNP+13]: Excluding trivial Diffie-Hell-
man time-data-memory trade-offs, all of these attacks used FX-construction
property of the PRINCE and do not work on the PRINCEv2.

Biclique [ALL12,YPO15]: These attacks could accelerate an exhaustive search
maximally by a factor of 2, exploiting the FX-construction in PRINCE. Since
PRINCEv2 is not an FX-construction anymore and this attack does not improve
the exhaustive search generally, we expect this attack to be not applicable.

Collisions [FJM14]: The FX-construction of PRINCE allows a collision-based
attack, using 232 data, 296 off-line and 232 on-line computations, to recover the
key. But again, it does not apply to PRINCEv2.

Remarks about Related-Key Attacks: We emphasize that we never claim any
security under related-key attacks, but it is also important to understand the
impact on PRINCEv2 when attackers can use related-key attacks.

First of all, when both rotational and XOR-difference relations are allowed,
the trivial related-key distinguishing attack is possible by exploiting the con-
vertible property from encryption to decryption. Even if the relationship is re-
stricted to XOR-difference, attackers can still attack PRINCEv2 by using related-
key boomerang attacks. The related-key boomerang attack is applied to PRINCE

23

without whitening keys in [JNP+13]. Inducing differences with the key allows at-
tackers to construct iterative related-key differential characteristics whose num-
ber of active S-boxes is only one in each round. This iterative property is lost
in the middle round R′, but attackers can overcome R′ by using related-key
boomerang attack, where two iterative related-key differential characteristics
are connected. The new key schedule for PRINCEv2 is not designed to avoid this
related-key boomerang attack, and there are related-key boomerang character-
istics with 12 active S-boxes. Similarly to the single-key boomerang attack, eval-
uating the probability in detail requires to analyze the effect of the boomerang
switching. However, we can estimate the probability is roughly 2−12×2×2 = 2−48

from the number of active S-boxes, and it implies that PRINCEv2 is not secure
against the related-key attack.

Again, we never claim any security under related-key attacks, and we believe
that a related-key attack never happens in the environment that PRINCEv2 is
demanded.

6 Conclusion

The need for a secure and efficient low-latency block cipher which also has low-
power and low-energy requirements is ever increasing with the widespread of
multiple technologies using microcontrollers. While PRINCE family of block ci-
phers were specifically designed to tackle this problem, the recent lightweight
crypto competition for AEAD from the NIST set a specific security level that
PRINCE cannot reach. As a low-latency cipher would probably be deployed in
a larger environment using such an AEAD primitive, it makes sense to want
this low-latency cipher to reach the same security level. We show how to modify
PRINCE to reach the required security level set by the NIST while minimizing the
induced overhead, especially in a situation where PRINCE is already deployed.

We solve this problem by showing that a carefully built key-schedule is suf-
ficient to provide the required security goal while keeping (almost) all of the
remaining design untouched and propose PRINCEv2 family of block ciphers. As
proven by our various experiments, PRINCEv2 only has a very small overhead
compared to PRINCE, while still reaching the required higher security level. More-
over, the fact that the PRINCE and PRINCEv2 designs are very similar allows one
to implement both PRINCE and PRINCEv2 in the same environment (e.g., for
backward compatibility) with a very small overhead.

Finally, the similarities between PRINCE and PRINCEv2 allow us to reuse a
majority of the security analysis done by the community over the last 8 years
since PRINCE’s publication. By doing so and carefully analyzing how the mod-
ifications made influenced the previously known attacks on PRINCE, as well as
providing new cryptanalysis insights for both versions, we showed that PRINCEv2
meets its security requirements.

We thus believe that PRINCEv2 is a major improvement over PRINCE and we
expect it to be widely adopted in the near future. Moreover, our work shows that
one can improve the security level of some lightweight primitives with minimal

24

downsides. An open question is thus to see if similar improvements could be
made for other microcontroller-targeted ciphers such as Midori, MANTIS and
QARMA, which could lead to interesting future work.

We made the reference implementation publicly available on GitHub in:

https://github.com/rub-hgi/princev2

References

ALL12. Farzaneh Abed, Eik List, and Stefan Lucks. On the security of the core of
PRINCE against biclique and differential cryptanalysis. IACR Cryptology
ePrint Archive, 2012:712, 2012.

Ava17. Roberto Avanzi. The QARMA block cipher family. IACR Transactions on
Symmetric Cryptology, 2017(1):4–44, 2017.

BBI+15. Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology – ASIACRYPT 2015, volume 9453 of LNCS, pages
411–436. Springer, 2015.

BCG+12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE – A low-latency block cipher for pervasive computing ap-
plications – extended abstract. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology – ASIACRYPT 2012, volume 7658 of LNCS, pages
208–225. Springer, 2012.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, volume 9815 of LNCS, pages 123–153. Springer, 2016.

BK09. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryp-
tology – ASIACRYPT 2009, volume 5912 of LNCS, pages 1–18. Springer,
2009.

BNPS14. Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing
and improving impossible differential attacks: Applications to CLEFIA,
Camellia, LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology – ASIACRYPT 2014, volume 8873 of LNCS, pages
179–199. Springer, 2014.

CFG+14a. Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and
Jean-René Reinhard. Multiple differential cryptanalysis of round-reduced
PRINCE. In Carlos Cid and Christian Rechberger, editors, Fast Software
Encryption – FSE 2014, volume 8540 of LNCS, pages 591–610. Springer,
2014.

CFG+14b. Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and
Jean-René Reinhard. Multiple differential cryptanalysis of round-reduced
PRINCE (full version). IACR Cryptology ePrint Archive, 2014:89, 2014.

25

https://github.com/rub-hgi/princev2

CNPV13a. Anne Canteaut, María Naya-Plasencia, and Bastien Vayssière. Sieve-in-
the-middle: Improved MITM attacks. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, volume 8042 of LNCS,
pages 222–240. Springer, 2013.

CNPV13b. Anne Canteaut, María Naya-Plasencia, and Bastien Vayssière. Sieve-
in-the-middle: Improved MITM attacks (full version). IACR Cryptology
ePrint Archive, 2013:324, 2013.

Der19. Patrick Derbez. AES automatic tool. https: // seafile. cifex-dedibox.
ovh/ f/ 72be1bc96bf740d3a854/ , 2019.

Din15. Itai Dinur. Cryptanalytic time-memory-data tradeoffs for FX-constructions
with applications to PRINCE and PRIDE. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, volume
9056 of LNCS, pages 231–253. Springer, 2015.

DKS10. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume
6223 of LNCS, pages 393–410. Springer, 2010.

DKS14. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
J. Cryptology, 27(4):824–849, 2014.

DP15a. Patrick Derbez and Léo Perrin. Meet-in-the-middle attacks and struc-
tural analysis of round-reduced PRINCE. In Gregor Leander, editor, Fast
Software Encryption – FSE 2015, volume 9054 of LNCS, pages 190–216.
Springer, 2015.

DP15b. Patrick Derbez and Léo Perrin. Meet-in-the-middle attacks and struc-
tural analysis of round-reduced PRINCE. IACR Cryptology ePrint Archive,
2015:239, 2015.

DZLY17. Yao-Ling Ding, Jing-Yuan Zhao, Lei-Bo Li, and Hong-Bo Yu. Impos-
sible differential analysis on round-reduced PRINCE. J. Inf. Sci. Eng.,
33(4):1041–1053, 2017.

FJM14. Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user
collisions: Applications to discrete logarithm, Even-Mansour and PRINCE.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, volume 8873 of LNCS, pages 420–438. Springer, 2014.

GR16a. Lorenzo Grassi and Christian Rechberger. Practical low data-complexity
subspace-trail cryptanalysis of round-reduced PRINCE. In Orr Dunkel-
man and Somitra Kumar Sanadhya, editors, Progress in Cryptology – IN-
DOCRYPT 2016, volume 10095 of LNCS, pages 322–342, 2016.

GR16b. Lorenzo Grassi and Christian Rechberger. Practical low data-complexity
subspace-trail cryptanalysis of round-reduced PRINCE. IACR Cryptology
ePrint Archive, 2016:964, 2016.

JNP+13. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Lei Wang, and Shuang Wu.
Security analysis of PRINCE. In Shiho Moriai, editor, Fast Software En-
cryption – FSE 2013, volume 8424 of LNCS, pages 92–111. Springer, 2013.

KNR12. Miroslav Knežević, Ventzislav Nikov, and Peter Rombouts. Low-latency
encryption – is “lightweight = light + wait”? In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2012, volume 7428 of LNCS, pages 426–446. Springer, 2012.

LJW13. Leibo Li, Keting Jia, and Xiaoyun Wang. Improved meet-in-the-middle
attacks on AES-192 and PRINCE. IACR Cryptology ePrint Archive,
2013:573, 2013.

26

https://seafile.cifex-dedibox.ovh/f/72be1bc96bf740d3a854/
https://seafile.cifex-dedibox.ovh/f/72be1bc96bf740d3a854/

Mor17. Paweł Morawiecki. Practical attacks on the round-reduced PRINCE. IET
Information Security, 11(3):146–151, 2017.

NIS. NIST. Lightweight cryptography. https://csrc.nist.gov/projects/
lightweight-cryptography.

NIS18. NIST. Submission requirements and evaluation criteria for
the lightweight cryptography standardization process. https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/final-lwc-submission-requirements-august2018.pdf,
2018.

NXP20. NXP. AN12278 LPC55S00 Security Solutions for IoT. https://www.nxp.
com/docs/en/application-note/AN12278.pdf, 2020.

PDN15. Raluca Posteuca, Cristina-Loredana Duta, and Gabriel Negara. New ap-
proaches for round-reduced PRINCE cipher cryptanalysis. Proceedings of
the Romanian Academy, Series A, 16:253–264, 2015.

PN15. Raluca Posteuca and Gabriel Negara. Integral cryptanalysis of round-
reduced PRINCE cipher. Proceedings of the Romanian Academy, Series
A, 16:265–270, 2015.

RR16a. Shahram Rasoolzadeh and Håvard Raddum. Cryptanalysis of 6-round
PRINCE using 2 known plaintexts. IACR Cryptology ePrint Archive,
2016:132, 2016.

RR16b. Shahram Rasoolzadeh and Håvard Raddum. Cryptanalysis of PRINCE
with minimal data. In David Pointcheval, Abderrahmane Nitaj, and Taj-
jeeddine Rachidi, editors, Progress in Cryptology – AFRICACRYPT 2016,
volume 9646 of LNCS, pages 109–126. Springer, 2016.

RR16c. Shahram Rasoolzadeh and Håvard Raddum. Faster key recovery attack on
round-reduced PRINCE. In Andrey Bogdanov, editor, Lightweight Cryp-
tography for Security and Privacy – LightSec 2016, volume 10098 of LNCS,
pages 3–17. Springer, 2016.

ST17. Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects – revealing structural properties of sev-
eral ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, volume 10212 of LNCS,
pages 185–215, 2017.

TM16. Yosuke Todo and Masakatu Morii. Bit-based division property and applica-
tion to Simon family. In Thomas Peyrin, editor, Fast Software Encryption
– FSE 2016, volume 9783 of LNCS, pages 357–377. Springer, 2016.

Tod15. Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 287–314. Springer, 2015.

XZBL16. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division prop-
erty for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Tak-
agi, editors, Advances in Cryptology – ASIACRYPT 2016, volume 10031
of LNCS, pages 648–678, 2016.

YPO15. Zheng Yuan, Zhen Peng, and Haiwen Ou. Two kinds of biclique attacks
on lightweight block cipher PRINCE. IACR Cryptology ePrint Archive,
2015:1208, 2015.

ZR19. Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ci-
phers with a binary diffusion layer. IET Information Security, 13(2):87–95,
2019.

27

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://www.nxp.com/docs/en/application-note/AN12278.pdf
https://www.nxp.com/docs/en/application-note/AN12278.pdf

A Code

SageMath code to generate the round constants:

1 a = RealField(prec=2000)(pi)-3
2 for i in range(1, 9):
3 b = (floor(a*2^(64*i)) + 2^64) % 2^64
4 print("0x%016x" % (b))

The output is:

0 0x243f6a8885a308d3
1 0x13198a2e03707344
2 0xa4093822299f31d0
3 0x082efa98ec4e6c89
4 0x452821e638d01377
5 0xbe5466cf34e90c6c
6 0xc0ac29b7c97c50dd
7 0x3f84d5b5b5470917

The 0th constant is not used in PRINCE, so we skip it, too. The second last
constant (line 6) is α and thus we use the last one (line 7) as β.

B Test Vectors

Plaintext k0 k1 Ciphertext

0000000000000000 0000000000000000 0000000000000000 0125fc7359441690
ffffffffffffffff 0000000000000000 0000000000000000 832bd46f108e7857
0000000000000000 ffffffffffffffff 0000000000000000 ee873b2ec447944d
0000000000000000 0000000000000000 ffffffffffffffff 0ac6f9cd6e6f275d
0123456789abcdef 0123456789abcdef fedcba9876543210 603cd95fa72a8704

28

SB MC SR SB MC SR SB MC SR SB MC SR SB MC SR

SB MC SR−1−1 SB MC SR−1−1 SB MC SR−1−1 SB MC SR−1−1 SB MC SR−1−1

SB

MC

SB−1

P.T.

C.T.

k0

k1

RC1 RC2 RC3 RC4 RC5

β

β

RC10 RC9 RC8 RC7 RC6

Fig. 9. PRINCEv2 structure for encryption.

SB MC SR SB MC SR SB MC SR SB MC SR SB MC SR

SB MC SR−1−1 SB MC SR−1−1 SB MC SR−1−1 SB MC SR−1−1 SB MC SR−1−1

SB

MC

SB−1

P.T.

C.T.

k0
k1

dec

dec ·(α⊕ β)

Sw
ap

RC1 RC2 RC3 RC4 RC5

β RC10 RC9 RC8 RC7 RC6

β

Fig. 10. PRINCEv2 structure for encryption and decryption.

29

	PRINCEv2

