
Quarks: Quadruple-efficient transparent zkSNARKs

Srinath Setty
Microsoft Research

Jonathan Lee∗

Microsoft Research

Abstract

We introduce Xiphos and Kopis, new transparent zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKs) for R1CS. They do not require a
trusted setup, and their security relies on the standard SXDH problem. They achieve
non-interactivity in the random oracle model using the Fiat-Shamir transform. Un-
like prior transparent zkSNARKs, which support either a fast prover, short proofs,
or quick verification, our work is the first to simultaneously achieve all three proper-
ties (both asymptotically and concretely) and in addition an inexpensive setup phase,
thereby providing the first quadruple-efficient transparent zkSNARKs (Quarks).

Under both schemes, for an R1CS instance of size n and security parameter
λ, the prover incurs Oλ(n) costs to produce a proof of size Oλ(log n). In Xiphos,
verification time is Oλ(log n), and in Kopis it is Oλ(

√
n). In terms of concrete effi-

ciency, compared to prior state-of-the-art transparent zkSNARKs, Xiphos offers the
fastest verification; its proof sizes are competitive with those of SuperSonic [EURO-
CRYPT 2020], a prior transparent SNARK with the shortest proofs in the literature.
Xiphos’s prover is fast: its prover is ≈5× of Spartan [CRYPTO 2020], a prior trans-
parent zkSNARK with the fastest prover in the literature, and is 250× faster than
SuperSonic. Kopis, at the cost of increased verification time (which is still concretely
faster than SuperSonic), shortens Xiphos’s proof sizes further, thereby producing
proofs shorter than SuperSonic. Xiphos and Kopis incur 10–10,000× lower prepro-
cessing costs for the verifier in the setup phase depending on the baseline. Finally,
a byproduct of Kopis is Lakonia, a NIZK for R1CS with Oλ(log n)-sized proofs,
which provides an alternative to Bulletproofs [S&P 2018] with over an order of
magnitude faster proving and verification times.

1 Introduction
Zero-knowledge SNARKs (zkSNARKs) [21, 40] for NP is a primitive that enables a
prover to prove to a verifier the knowledge of a satisfying witness w to an NP statement
by producing a proof π such that the proof is both zero-knowledge [42] and succinct.
There are two forms of succinctness: the size of a proof and the time to verify a proof are
both sub-linear in the size of the NP statement. Because of these properties, zkSNARKs
is a core building block for various forms of delegation of computation for privacy
and/or scalability [2, 14, 24, 25, 34, 48, 50, 56, 59, 60]. Given significant interest,
constructing zkSNARKs is an active area of research, with a flurry of recent work to
improve asymptotic and concrete efficiency.

There are many approaches to construct zkSNARKs, starting with the works of
Kilian [47] and Micali [55]. These works rely on short PCPs [9–11, 15, 19, 20], which
remain too expensive to be used in practice. A seminal work in this area is GGPR [39],

∗Current affiliation: Nanotronics Imaging. Work done while at Microsoft Research.

1

which provides zkSNARKs for R1CS with near-optimal asymptotics and good constants.
A major problem with state-of-the-art zkSNARKs [16, 18, 43, 57] is the requirement
of a trusted setup, where a trusted entity (or a group of entities with at least one honest
entity) must choose a trapdoor to create public parameters. Furthermore, the trapdoor
must be kept secret to ensure soundness.

This problem was recently addressed by Spartan [58],1 a transparent zkSNARK
for R1CS. Unlike its predecessors, Spartan does not give up succinct verification [8,
17, 28] nor sacrifices generality by placing restrictions on the types of NP statements
supported [13, 66]. Furthermore, Spartan requires only a transparent setup (e.g., choosing
a set of random group elements or a collision-resistant hash function). To achieve succinct
verification, the verifier, in a preprocessing step, creates a computation commitment,
which is a succinct cryptographic commitment to the structure of an NP statement (e.g.,
the description of a circuit) without requiring secret trapdoors. The preprocessing step
incurs time that is at least linear in the size of the statement, but this cost is amortized over
all future verification of proofs for statements with the same structure, an amortization
property similar to prior zkSNARKs with trusted setup [39, 43]. Following Spartan,
Fractal [32] and SuperSonic [26] also employ computation commitments to achieve
succinct verification without a trusted setup. Achieving sub-linear verification costs via
computation commitments is also referred to as leveraging holography [31, 32].

1.1 Limitations of existing transparent zkSNARKs

Existing transparent zkSNARKs support either a fast prover, short proofs, or quick
verification, but not all three properties simultaneously. Also, existing schemes incur
high preprocessing costs to create computation commitments. Note that when we refer
to “fast”, “short”, ”quick”, or “high”, we refer to both asymptotic efficiency and concrete
efficiency (we make these terms more precise below).

(1) Trade-offs among a fast prover, short proofs, and quick verification.
• Spartan [58] offers the best asymptotics for the prover (Figure 1). Concretely, it

provides the fastest prover in the literature (Figure 2). Furthermore, Spartan relies
only on the well-studied DLOG problem. Unfortunately, the proofs are O(

√
n) group

elements and the verifier must perform O(
√

n) exponentiations, where n is the size
of the NP statement. For R1CS statements with 220 constraints, Spartan’s proofs are
≈142 KB and proof verification takes ≈135 ms.

• SuperSonic [26] offers the best asymptotics for the verifier and proof sizes (Figure 1),
relying on groups where the Strong RSA assumption [12, 38] and the recently intro-
duced Adaptive Root Assumption [23, 67] hold (e.g., ideal class groups of imaginary
quadratic fields). Concretely, for a 220-sized R1CS statement, the estimated proof
sizes are ≈48 KB.2 Unfortunately, the SuperSonic prover must perform O(n log n)
exponentiations in a class group, where each operation is ≈800× more expensive
than in a group where DLOG is hard.3 Thus, SuperSonic’s prover is slower than Spar-

1PCP-based SNARKs [47, 55] do not require a trusted setup, but they are too expensive to be used. Furthermore,
to the best of our knowledge, they require uniform circuits for sub-linear verification.

2SuperSonic’s authors estimate proof sizes of ≈12.3 KB [26, Table 3]. But, this assumes the use of a class
group of 1600 bits. Recently, Dobson, Galbraith, and Smith show that this choice only provides 55 bits of
security and that one should use class groups of ≈6,600 bits to achieve 128 bits of security [35, 36].

3We microbenchmark the cost of an exponentiation in a class group with random 128-bit size exponents

2

prover proof size assistant encoder verifier assumption

SpartanDL n G1
√

n G1 N/A n G1
√

n G1 DLOG
SuperSonic n log n GU log n GU N/A n GU log n GU sRSA + ARA
Fractal n log n F log2 n F N/A n log n F log2 n F CRHF

Spartan++ n G1
√

n G1 n G1 n F
√

n G1 DLOG
Kopis n G1 log n GT n G1 n F

√
n G2 SXDH

Xiphos n G1 log n GT n G1 n F log n GT SXDH

FIGURE 1—Asymptotic efficiency of Kopis and Xiphos. (G1,G2,GT) refers to groups in a bilinear
group. Spartan only requires a group where DLOG is hard, so G1 could be ristretto255. GU

refers to groups where sRSA and ARA hold. We depict the number of exponentations needed in
these groups. For F we depict the number of field multiplications.

prover (s) proof size (KB) assistant (s) encoder (s) verifier (ms)

SpartanDL 47 142 N/A 20 135
SuperSonic 63,700 48 N/A 17,900 2,570
Fractal 864 2,500 N/A 456 220

Spartan++ 45 131 24 1.6 97
Kopis 245 39 55 2.2 535
Xiphos 249 61 62 1.8 80

FIGURE 2—Concrete efficiency of Kopis and Xiphos. The reported costs for SuperSonic assume
the use of a CRS consisting of n elements of GU [27]. Using an Oλ(1)-sized CRS, as in the
original work [26], the encoder runs in time n log n GU asymptotically and both the prover and
encoder take ≈600,000 s longer for n = 220. The costs for all schemes were measured by
running their implementations on the same hardware platform (§9), with one exception. For
SuperSonic, we estimate its costs using the cost model provided by the authors augmented with
our microbenchmarks of class group operations using the ANTIC library [1].

tan’s prover, both asymptotically and concretely. Concretely, for n = 220, SuperSonic
is > 1, 700× slower than Spartan.

• Fractal [32] does not offer short proofs nor a fast prover. Concretely, for an R1CS
instance with 218 constraints, Fractal’s prover is ≈18× slower than Spartan, and it
produces proofs of size ≈2.3 MB and takes ≈205 ms to verify.

(2) High preprocessing costs. Besides the above limitations, the verifier in all three
prior schemes incurs Ω(n) cryptographic operations (see the “encoder” column in Fig-
ure 1) to create a computation commitment. This cost is unavoidable for R1CS instances
without structure: the verifier must at least preprocess the structure of the statement
before verifying a proof. But, it is desirable to make the preprocessing concretely fast.

Remark 1.1. Unlike other zkSNARKs discussed above, Fractal offers plausible post-
quantum security. Unfortunately, it does not offer short proofs. Proving is memory-
intensive and is concretely expensive (§9). Designing concretely-efficient post-quantum
transparent zkSNARKs remains an open problem.

Remark 1.2. In the above exposition (and in the rest of the paper), by “Spartan”, we refer

using the ANTIC [1] library, which offers fast class groups. Each class group exponentiation costs ≈38 ms.
Whereas, an exponentiation on ristretto255 [4, 45] with the curve25519-dalek library [3] takes ≈45µs.

3

asymptotic efficiency concrete efficiency (n = 220)
prover proof size verifier prover (s) proof size (KB) verifier (ms)

Ligero n log n F
√

n F n F ,
√

n H 69 20,000 31,000
Hyrax n G1

√
n G1 n F ,

√
n G1 486 58 7,700

Bulletproofs n G1 log n G1 n G1 804 1.5 30,957
Aurora n log n F log2 n F n F , log2 n H 485 1,600 108,000
STARK n log2 n F log2 n F n F , log2 n H ≥4,850 39,384 ≥432,000
SpartanDL n G1

√
n G1 n F ,

√
n G1 6 48 369

Spartan++ n G1
√

n G1 n F ,
√

n G1 6 40 347
Lakonia n G1 log n GT n F ,

√
n G2 29 12.6 555

FIGURE 3—Asymptotic and concrete efficiency of Lakonia and its baselines. Lakonia produces
shortest proofs except compared to Bulletproofs, but Bulletproofs incurs orders of magnitude
higher proving and verification costs. The costs for all schemes were measured by running their
implementations on the same hardware platform (§9), with two exceptions. For STARK, we
provide estimates based on our measurements of Aurora’s performance and prior performance
reports for STARK in the Aurora paper [17]. For Bulletproofs, we provide estimates based on
prior performance reports [28].

to a specific member of the Spartan family of zkSNARKs, called SpartanDL. The family
has two additional transparent zkSNARKs that can produce Oλ(log2 n)-sized proofs
with Oλ(log2 n) verification times, but they are not experimentally evaluated. From
our estimates, one of them, SpartanCL, incurs prover times analogous to SuperSonic,
and another one, SpartanRO, produces proofs as big as Fractal, so they suffer from the
limitations listed for SuperSonic and Fractal.

1.2 A new goal: Quadruple-efficient transparent zkSNARKs (Quarks)

To address the aforementioned problems with existing transparent zkSNARKs, we desire
zkSNARKs with the following asymptotic and concrete efficiency characteristics. We
refer to zkSNARKs that satisfy all the following four properties as Quarks.

1. A fast prover: The prover should run in time Oλ(n), with a small constant to achieve
concrete performance analogous to Spartan.

2. Short proofs: The proof length should be Oλ(log n), with a small constant to achieve
proof sizes similar to SuperSonic [26].

3. Quick verification: The verifier’s time to verify a proof should be Oλ(log n), with a
small constant to achieve verification times similar to SuperSonic [26].

4. Low preprocessing costs: The cost to the verifier to create a computation commit-
ment to an NP statement’s structure should be O(n), with small constants such that
the concrete cost is only a small constant factor slower than reading the statement.

2 Overview of our work and a summary of our contributions
In this work, we construct two transparent zkSNARKs, namely Xiphos and Kopis. Of
these, Xiphos is a Quark, and Kopis supports all but the quick verification property
(concrete verification costs of Kopis is still faster than SuperSonic’s at R1CS instance
sizes we experiment with). Nevertheless, Kopis supports shorter proofs than Xiphos

4

and SuperSonic. Figure 1 depicts the asymptotic efficiency of Xiphos and Kopis, and
compares it with prior transparent zkSNARKs. Similarly, Figure 2 depicts their concrete
efficiency for n = 220 R1CS constraints. The security of both schemes relies on the
standard SXDH problem [6], and both achieve non-interactivity in the random oracle
model using the Fiat-Shamir transform [37]. A byproduct of Kopis is Lakonia, which
does not employ computation commitments, so it incurs O(n) verification costs. However,
it produces Oλ(log n)-sized proofs analogous to Bulletproofs [28]. Figure 3 depicts the
asymptotic and concrete efficiency of Lakonia and compares it with its baselines.

Our starting point is Spartan [58], which offers a modular framework for construct-
ing transparent zkSNARKs. It employs a seminal interactive proof protocol, called
the sum-check protocol [54], in conjunction with an extractable polynomial commit-
ment scheme [26, 46, 66] for multilinear polynomials. To instantiate computation com-
mitments, Spartan requires a polynomial commitment scheme for sparse multilinear
polynomials. A key innovation in Spartan is a cryptographic compiler, called SPARK,
that transforms an existing extractable polynomial commitment for dense multilinear
polynomials to an extractable polynomial commitment scheme for sparse multilinear
polynomials—without introducing undesirable asymptotic or concrete overheads to the
prover or the verifier.

To realize Xiphos, Kopis, and Lakonia, this work makes the following contributions.

(1) Polynomial commitments with constant-sized commitments to shorten proofs.
Spartan employs the polynomial commitment scheme of Wahby et al. [66], which we call
Hyrax-PC, where the size of a commitment to a multilinear polynomial is

√
m elements

of a group G1 in which DLOG is hard, where m = 2ℓ and ℓ is the number of variables in
the committed polynomial.4 In the context of Spartan, m = O(n), where n is the size of
the NP statement. This constitutes a major reason for large proofs in Spartan.

To address this, we design a new polynomial commitment scheme for multilinear
polynomials, called Kopis-PC, in which a commitment is a single element of GT, where
(G1,G2,GT) are groups in a bilinear map in which the SXDH problem is hard, so a
polynomial commitment is of size Oλ(1). A single element of GT is a commitment
to a vector of

√
m G1 elements under Hyrax-PC. However, in Hyrax-PC, the verifier

locally computes an inner product between a vector of public scalars with a vector of√
m elements of G1 (representing a polynomial commitment under Hyrax-PC). Our

polynomial commitment scheme handles this by having the prover compute the desired
inner product and produce a proof of correct execution using the generalized inner-
product arguments of Bunz et al [27]. Kopis-PC can also be seen as an adaptation of the
bivariate polynomial commitment scheme of Bunz et al. [27] to the setting of multilinear
polynomials. This observation is however new.

Besides Kopis-PC, we also build on Dory-PC [49], a recent polynomial commitment
scheme that employs the same blueprint as Kopis-PC, but in addition exploits the tensor
structure in the public vector of scalars. Like Kopis-PC, Dory-PC also produces Oλ(1)-
sized commitments and Oλ(log m)-sized polynomial evaluation proofs. The constant
associated with Dory-PC’s evaluation proof sizes is ≈3× larger than in Kopis-PC. In
exchange, Dory-PC achieves Oλ(log m) costs to verify a polynomial evaluation proof

4Hyrax-PC can provide Oλ(1)-sized commitments, but it requires O(m) work for the verifier. In the context of
SNARKs, we require the verifier’s work in the polynomial commitment scheme to be sub-linear in m.

5

instead of Oλ(
√

m) under Kopis-PC.

(2) Sparse polynomial commitments with shorter proofs using Sparkle. Another
major component that contributes to proof sizes in Spartan is the SPARK compiler. Even
if we replace Hyrax-PC with one of the polynomial commitment schemes that produce
constant-sized commitments (Kopis-PC or Dory-PC) in SPARK, the proof sizes are still
O(log2 n). This is a result of using a O(log n)-depth layered circuit in conjunction with
a layered sum-check protocol [33, 41, 63] to prove grand product relations in SPARK.
We address this by designing a variant of SPARK, called Sparkle, which reduces proof
sizes to O(log n). In particular, using a combination of the sum-check protocol and
polynomial commitments with constant-sized commitments, we design a new special-
purpose SNARK for proving grand product relations. However, a naive replacement of
the layered sum-check protocol with the special-purpose SNARK increases constants
associated with the prover, which is undesirable. To achieve smaller constants for the
prover, Sparkle hybridizes the new SNARK with the layered sum-check approach in
SPARK, where a constant number of layers of the circuit are proved as before, but the
rest of the layers are proved using the special-purpose SNARK, there by achieving
O(log n)-sized proofs without incurring large constants for the prover.

(3) An untrusted assistant to accelerate the verifier’s preprocessing. Recall that
the verifier in Spartan (and other prior transparent zkSNARKs) must run an encoder
to preprocess the structure of an NP statement to create a computation commitment,
which in turn enables the verifier to achieve sub-linear verification costs. We introduce
the notion of an untrusted assistant for the encoder. An assistant is an algorithm that
can be executed by anyone including the prover. Specifically, both the assistant and the
encoder take as input the structure of an NP statement. Both transform the NP statement’s
structure into a set of polynomials, but only the assistant creates the necessary polynomial
commitments, so only the assistant incurs the high preprocessing costs. Furthermore,
the encoder checks that the polynomial commitments are correctly created by requiring
the assistant to produce a proof of correct evaluation of the underlying polynomials at a
random point in their domain, which the encoder checks by evaluating the polynomials
it holds (the random point is a public coin, so in the non-interactive version, it is
obtained using the Fiat-Shamir transform in the random oracle model). For multilinear
polynomials, since the cost of evaluating the necessary polynomials incurs O(n) time
and the cost of verifying proofs of evaluations is sub-linear in Oλ(n), the encoder incurs
O(n) costs with a small constant rather than Oλ(n).

(4) An optimized implementation. We implement Kopis, Xiphos, and Lakonia in
Rust by extending libSpartan [5], a high-speed Rust implementation of Spartan built
atop ristretto255 [3, 4, 45]. This is about 5,000 lines of Rust. Since our polynomial
commitment schemes require a pairing-friendly elliptic curve, we use bls12-381 and
employ its implementation from the relic toolkit. We implement all of our techniques
along with a host of optimizations. For example, instead of producing proofs of correct
evaluations of multiple committed polynomials independently, our implementation re-
duces multiple polynomial evaluation proofs into a single one, which lowers verification
costs and proof sizes substantially. Another notable optimization is to the zero-knowledge
transformation used by Spartan (§8). Many of these optimizations improve Spartan’s

6

performance and proof sizes (we refer to the improved version of Spartan as Spartan++).

(5) A detailed experimental evaluation. We experimentally evaluate our schemes and
compare them with state-of-the-art zkSNARK schemes. We find that Xiphos offers the
fastest verification; its proof sizes are competitive with those of SuperSonic, which offers
the shortest proofs in the literature. Our evaluation also demonstrates that Xiphos’s prover
is fast: its prover is ≈250× faster than SuperSonic and is within ≈5× of Spartan, which
offers the fastest prover in the literature.5 Kopis, at the cost of increased verification time
(which is still concretely faster than SuperSonic), shortens Xiphos’s proof sizes further,
thereby producing proofs shorter than SuperSonic. Xiphos and Kopis incur 10–10,000×
lower preprocessing costs for the verifier depending on the baseline. Finally, Lakonia
shortens Kopis’s proofs further, thereby providing an alternative to Bulletproofs [28]
with at least an order of magnitude faster proving and verification costs.

2.1 Roadmap for the rest of the paper

Section 3 describes the basic building blocks we rely on. Section 4 describes Kopis-PC.
Section 5 provides a stand-alone description of the special-purpose SNARK for proving
grand product relations. Section 6 improves Spartan’s SPARK compiler using the special-
purpose SNARK. Section 7 describes the use of an untrusted assistant to accelerate
the verifier’s preprocessing costs. Section 8 describes our improved zero-knowledge
transformation. Finally, Section 9 presents an experimental evaluation of Xiphos, Kopis,
and Lakonia, and compares them with their baselines.

3 Preliminaries
We adopt preliminaries from Spartan [58], with additional definitions. We use F to
denote a finite field and λ to denote the security parameter. negl(λ) denotes a negligible
function in λ. “PPT algorithms” refer to probabilistic polynomial time algorithms.

3.1 Problem instances in R1CS

Recall that for any problem instance x, if x is in an NP language L, there exists a
witness w and a deterministic algorithm Sat such that: SatL(x, w) = 1 if x ∈ L, and 0
otherwise.

Alternatively, the set of tuples of the form ⟨x, w⟩ form a set of NP relations. The
subset of those for which SatL(x, w) = 1 are called satisfiable instances, which we
denote as:RL = {⟨x, w⟩ : SatL(x, w) = 1}.

As an NP-complete language, we focus on the rank-1 constraint satisfiability (R1CS),
a popular target for compiler toolchains that accept programs expressed in high-level
languages [57, 61, 62, 65]. R1CS is implicit in the QAPs of GGPR [39], but it is used
with (and without) QAPs in subsequent works [17, 53, 61].

Definition 3.1 (R1CS instance and structure). An R1CS instance is a tuple (F , A, B, C, m, n, io),
where io denotes the public input and output of the instance, A, B, C ∈ Fm×m, where

5Most of the slowdown of Xiphos relative to Spartan can be attributed to the difference in speed between the
cost of an exponentiation in ristretto255 (used by Spartan) and bls12-381 (used by our schemes). With
a faster implementation of curve arithmetic on bls12-381, we believe this gap can be reduced substantially.
See Section 9.1 for details.

7

m ≥ |io|+ 1 and there are at most n non-zero entries in each matrix. The io-independent
part of the instance constitutes the structure of an R1CS instance.

Note that matrices A, B, C are defined to be square matrices for conceptual simplicity.
Furthermore, WLOG, we assume that n = O(m) throughout the paper.

Below, we use the notation z = (x, y, z), where each of x, y, z is a vector over F , to
mean that z is a vector that concatenates the three vectors in a natural way.

Definition 3.2 (R1CS). An R1CS instance (F , A, B, C, io, m, n) is said to be satisfiable
if there exists a witness w ∈ Fm−|io|−1 such that (A · z) ◦ (B · z) = (C · z), where
z = (io, 1, w), · is the matrix-vector product, and ◦ is the Hadamard (entry-wise) product.

Definition 3.3. For an R1CS instance x = (F , A, B, C, io, m, n) and a purported witness
w ∈ Fm−|io|−1, we define:

SatR1CS(x, w) =

{
1 (A · (io, 1, w) ◦ (B · (io, 1, w)) = (C · (io, 1, w))
0 otherwise

The set of satisfiable R1CS instances can be denoted as:

RR1CS = {⟨(F , A, B, C, io, m, n), w⟩ : SatR1CS((F , A, B, C, io, m, n), w) = 1}

Definition 3.4. For a given R1CS instance x = (F , A, B, C, io, m, n), the NP statement
that x is satisfiable (i.e., ⟨x, ·⟩ ∈ RR1CS) is of size O(n).

3.2 Succinct interactive arguments of knowledge

Let ⟨P ,V⟩ denote a pair of PPT interactive algorithms and Setup denote an algorithm
that outputs public parameters pp given as input the security parameter λ.

Definition 3.5. A protocol between a pair of PPT algorithms ⟨P ,V⟩ is called a public-
coin succinct interactive argument of knowledge for a language L if:

• Completeness. For any problem instance x ∈ L, there exists a witness w such that
for all r ∈ {0, 1}∗, Pr{⟨P(pp, w),V(pp, r)⟩(x) = 1} ≥ 1− negl(λ).

• Soundness. For any non-satisfiable problem instance x, any PPT prover P∗, and
for all w, r ∈ {0, 1}∗, Pr{⟨P∗(pp, w),V(pp, r)⟩(x) = 1} ≤ negl(λ).

• Knowledge soundness. For any PPT adversary A, there exists a PPT extractor E
such that ∀x ∈ L,∀w, r ∈ {0, 1}∗, if Pr{⟨A(pp, w),V(pp, r)⟩(x) = 1} ≥ negl(λ),
then Pr{SatL(x, EA(pp,x)) = 1} ≥ negl(λ).

• Succinctness. The total communication between P and V is sub-linear in the size
of the NP statement x ∈ L.

• Public coin. V’s messages are chosen uniformly at random.

We denote the transcript of the interaction of two PPTs P ,V with random tapes
zP , zV on x by tr⟨P(zP),V(zV)⟩(x)

8

Definition 3.6. A public-coin succinct interactive argument of knowledge is publicly
verifiable if there is a polynomial time algorithm Accept of the transcript t such that
Accept(tr⟨P(zP),V(zV)⟩(x),x) = ⟨P(zP),V(zV)⟩(x).

We adapt the following definitions from [66]:

Definition 3.7 (Witness-extended emulation [44]). An interactive argument (Setup,P ,V)
for L has witness-extended emulation if for all deterministic polynomial time programs
P∗ there exists an expected polynomial time emulator E such that for all non-uniform
polynomial time adversaries A and all zV ∈ {0, 1}∗, the following probabilities differ by
at most negl(λ): Pr{pp← Setup(1λ) ; (x, zP)← A(pp) ; t← tr⟨P∗(zP),V(zV)⟩(x) :
A(t,x) = 1} and Pr{pp ← Setup(1λ) ; (x, zP) ← A(pp) ; (t, w) ← EP∗(zP)(x) :
A(t,x) = 1 ∧ (Accept(t) = 1⇒ SatL(x, w) = 1)}.

Definition 3.8. An interactive argument (Setup,P ,V) for L is computational zero-
knowledge if for every PPT interactive machine V∗, there exists a PPT algorithm S called
the simulator, running in time polynomial in the length of its first input such that for
every problem instance x ∈ L, w ∈ Rx, and z ∈ {0, 1}∗, the following holds when the
distinguishing gap is considered as a function of |x|:

View(⟨P(w),V∗(z)⟩(x)) ≈c S(x, z),

where View(⟨P(w),V∗(z)⟩(x)) denotes the distribution of the transcript of interaction
between P and V∗, and ≈c denotes that the two quantities are computationally indistin-
guishable. If the statistical distance between the two distributions is negligible then the
interactive argument is said to be statistical zero-knowledge. If the simulator is allowed
to abort with probability at most 1/2, but the distribution of its output conditioned on
not aborting is identically distributed to View(⟨P(w),V∗(z)⟩(x)), then the interactive
argument is called perfect zero-knowledge.

3.3 Polynomials and low-degree extensions

We recall a few basic facts about polynomials:

• A polynomial G over F is an expression consisting of a sum of monomials where
each monomial is the product of a constant (from F) and powers of one or more
variables (which take values from F); all arithmetic is performed over F .

• The degree of a monomial is the sum of the exponents of variables in the monomial;
the degree of a polynomial G is the maximum degree of any monomial in G. Fur-
thermore, the degree of a polynomial G in a particular variable xi is the maximum
exponent that xi takes in any of the monomials in G.

• A multivariate polynomial is a polynomial with more than one variable; otherwise it
is called a univariate polynomial.

Definition 3.9 (Multilinear polynomial). A multivariate polynomial is called a multilin-
ear polynomial if the degree of the polynomial in each variable is at most one.

Definition 3.10 (Low-degree polynomial). A multivariate polynomial G over a finite
field F is called low-degree polynomial if the degree of G in each variable is exponentially
smaller than |F |.

9

Low-degree extensions (LDEs). Suppose g : {0, 1}ℓ → F is a function that maps ℓ-bit
elements into an element of F . A polynomial extension of g is a low-degree ℓ-variate
polynomial g̃(·) such that g̃(x) = g(x) for all x ∈ {0, 1}ℓ.

A multilinear polynomial extension (or simply, a multilinear extension, or MLE) is a
low-degree polynomial extension where the extension is a multilinear polynomial (i.e.,
the degree of each variable in g̃(·) is at most one). Given a function Z : {0, 1}ℓ → F , the
multilinear extension of Z(·) is the unique multilinear polynomial Z̃ : F ℓ → F . It can be
computed as follows.

Z̃(x1, . . . , xℓ) =
∑

e∈{0,1}ℓ

Z(e) · ẽq(x, e)

= ⟨(Z(0), . . . , Z(2ℓ − 1)), (ẽq(x, 0), . . . , ẽq(x, 2ℓ − 1)⟩

Note that ẽq(x, e) =
∏ℓ

i=1(ei · xi + (1 − ei) · (1 − xi)), which is the MLE of the
following function:

eq(x, e) =

{
1 if x = e
0 otherwise

For any r ∈ F ℓ, Z̃(r) can be computed in O(2ℓ) operations in F [63, 64].

Dense representation for multilinear polynomials. Since the MLE of a function is
unique, it offers the following method to represent any multilinear polynomial. Given
a multilinear polynomial G(·) : F ℓ → F , it can be represented uniquely by the list
of evaluations of G(·) over the Boolean hypercube {0, 1}ℓ (i.e., a function that maps
{0, 1}ℓ → F). We denote such a representation of G as DenseRepr(G).

Lemma 3.1. If for any x ∈ {0, 1}ℓ, G(x) = 0 then DenseRepr(G) does not have to
include an entry for x.

Proof. Recall the closed-form expression for evaluating G(·) at (r1, . . . , rℓ) ∈ F ℓ:
G(r1, . . . , rℓ) =

∑
x∈{0,1}ℓ G(x) ·

∏ℓ
i=1 (ri · xi + (1− ri) · (1− xi)). Observe that if for

any x ∈ {0, 1}ℓ, G(x) = 0, x does not contribute to G(r) for any r ∈ F ℓ.

Definition 3.11. A multilinear polynomial G : F ℓ → F is a sparse multilinear poly-
nomial if |DenseRepr(G)| is sub-linear in O(2ℓ). Otherwise, it is a dense multilinear
polynomial.

As an example, suppose G : F 2s → F . Suppose |DenseRepr(G)| = O(2s), then G(·)
is a sparse multilinear polynomial because O(2s) is sublinear in O(22s).

3.4 Commitment schemes

We adopt our definitions in this subsection and the next from Bünz et al. [26] where they
generalize the definition of Kate et al. [46] to allow interactive evaluation proofs. We
also borrow their notation: in a list of arguments or returned tuples, variables before the
semicolon are public and the ones after are secret; when there is no secret information,
semicolon is omitted.

A commitment scheme for some space of messages X is a tuple of three protocols
(Setup, Commit, Open):

10

• pp← Setup(1λ): produces public parameters pp.

• (C; S)← Commit(pp; x): takes as input some x ∈ X ; produces a public commitment
C and a secret opening hint S.

• b ← Open(pp, C, x,S): verifies the opening of commitment C to x ∈ X with the
opening hint S; outputs b ∈ {0, 1}.

Definition 3.12. A tuple of three protocols (Setup, Commit, Open) is a binding commit-
ment scheme for X if:

Binding. For any PPT adversary A,

Pr

 pp← Setup(1λ); (C,G0,G1,S0,S1) = A(pp);
b0 ← Open(pp, C,G0,S0); b1 ← Open(pp, C,G1,S1):

b0 = b1 ̸= 0 ∧ G0 ̸= G1

 ≤ negl(λ)

Definition 3.13. A commitment scheme (Setup, Commit, Open) provides hiding commit-
ments if for all PPT adversaries A = (A0,A1):∣∣∣∣∣∣∣∣∣∣∣∣

1− 2 · Pr

b = b̄ :
pp← Setup(1λ);

(G0,G1, st) = A0(pp);
b←R {0, 1};

(C,S)← Commit(pp; Gb);
b̄← A1(st, C)

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

If the above holds for all algorithms, then the commitment is statistically hiding.

3.5 Polynomial commitments for multilinear polynomials

Suppose that (SetupF , CommitF , OpenF) is a commitment scheme for X = F . WLOG,
when algorithms below accept as input a multilinear polynomial, they use the dense
representation of multilinear polynomials (§3.3).

Definition 3.14. A tuple of four protocols (Setup, Commit, Open, Eval) is a polynomial
commitment scheme for ℓ-variate multilinear polynomials over F if (Setup, Commit, Open)
is a commitment scheme for ℓ-variate multilinear polynomials over F , and:

• pp← Setup(1λ), ppF ← SetupF (1λ). Both V and P hold a commitment CG to G.

• V selects a public coin r ∈R F ℓ; P then supplies a commitment Cv to a scalar v ∈ F .

• b ← Eval(pp, ppF , CG , r, Cv; G,SG ,Sv) is an interactive public-coin protocol be-
tween a PPT prover P and verifier V . P additionally knows a ℓ-variate multilinear
polynomial G ∈ F [X1, . . . , Xℓ] and its secret opening hint SG , and the scalar v ∈ F

and its secret opening hint Sv. P attempts to convince V that G(r) = v. At the end of
the protocol, V outputs b ∈ {0, 1}.

Definition 3.15. A polynomial commitment scheme for ℓ-variable multilinear polyno-
mials over F is extractable if:

11

• Completeness. For any ℓ-variate multilinear polynomial G ∈ F [X1, . . . , Xℓ],

Pr

 pp← Setup(1λ); ppF ← SetupF (1λ)
(CG ,SG)← Commit(pp; G); (Cv,Sv)← CommitF (ppF ; v):

Eval(pp, ppF , CG , r, Cv, ; G,SG ,Sv) = 1 ∧ v = G(r)

 ≥ 1− negl(λ)

• Knowledge soundness. Eval is a public-coin succinct interactive argument of knowl-
edge with witness-extended emulation (Definition 3.7) for the following NP relation
given pp← Setup(1λ), ppF ← SetupF (1λ), and r ∈ F ℓ chosen after CG is fixed:

REval(pp, ppF) =

 ⟨(CG , Cv), (G,SG ,Sv)⟩ :
G ∈ F [X1, . . . , Xℓ] is multilinear ∧ v ∈ F ∧ G(r) = v
∧Open(pp; CG ,G,SG) = 1 ∧ OpenF (ppF ; Cv, v,Sv) = 1

Definition 3.16. An extractable polynomial commitment scheme (Setup, Commit, Open, Eval)
with hiding commitments (Definition 3.13) is zero-knowledge if Eval is a public-coin
succinct interactive argument of knowledge with witness-extended emulation (Defi-
nition 3.7) and zero-knowledge (Definition 3.8) for the following NP relation given
pp← Setup(1λ), ppF ← SetupF (1λ), and r ∈ F ℓ chosen after CG is fixed:

REval(pp, ppF) =
{

⟨(CG , Cv), (G,SG , v,Sv)⟩ : G ∈ F [X1, . . . , Xℓ] is multilinear ∧
G(r) = v ∧ Open(pp; CG ,G,SG) = 1 ∧ OpenF (ppF ; Cv, v,Sv) = 1

}

Remark 3.1. Note that in this definition, r is not chosen by the adversary. This weakening
is required for the extractability of prior polynomial commitments [27, 49, 66] and Kopis-
PC (§4). In our and prior [58, 66] use of these polynomial commitment schemes, V
selects points of evaluation at random. However, for a multilinear polynomial G, if the
evaluation point is not chosen after the commitment is fixed, one can employ a simple
reduction to transform the evaluation claim to a claim about an evaluation at a random
point r′ where r′ is chosen after the polynomial commitment is fixed.

3.6 Inner product proofs (IPPs)

Suppose that (SetupF , CommitF , OpenF) denotes a commitment scheme for X = F .

Definition 3.17. A tuple of four protocols IPP = (Setup, Commit, Open, Eval) is an inner
product proof system for s-length vectors over F if (IPP.Setup, IPP.Commit, IPP.Open) is a
commitment scheme for s-length vectors over F , and:

• b← Eval(pp, ppF , CZ , V , Cy; Z,SZ ,Sy) is an interactive public-coin protocol between
a PPT prover P and verifier V . pp refers to an output of IPP.Setup(1λ) and ppF refers
to an output of SetupF (1λ). Both V and P hold a commitment CZ to a vector Z ∈ F s,
a commitment Cy to a scalar y ∈ F , and V ∈ F s. P additionally knows a a vector
Z ∈ F s and its secret opening hint SZ , and the scalar y ∈ F and its secret opening
hint Sy. P attempts to convince V that y = ⟨Z, V⟩. At the end of the protocol, V
outputs b ∈ {0, 1}.

Definition 3.18. An inner product proof system for s-length vectors satisfies:

12

• Completeness. For any s-length vector Z ∈ F s,

Pr

 pp← Setup(1λ); ppF ← SetupF (1λ)
(CZ ,SZ)← Commit(pp; Z); (Cy,Sy)← CommitF (ppF ; y):

Eval(pp, ppF , CZ , V , Cy, ; Z,SZ ,Sy) = 1 ∧ y = ⟨Z, V⟩

 ≥ 1− negl(λ)

• Knowledge soundness. Eval is a public-coin succinct interactive argument of knowl-
edge with witness-extended emulation (Definition 3.7) for the following NP relation
given pp← Setup(1λ) and ppF ← SetupF (1λ):

REval(pp, ppF) =

 ⟨(CZ , V , Cy), (Z,SZ ,Sy)⟩ :
Z ∈ F s ∧ y ∈ F ∧ y = ⟨Z, V⟩∧

Open(pp; CZ , Z,SZ) = 1 ∧ OpenF (ppF ; Cy, y,Sy) = 1

Definition 3.19. An inner product proof system for s-length vectors (Setup, Commit, Open, Eval)
with hiding commitments (Definition 3.13) is zero-knowledge if Eval is a public-coin
succinct interactive argument of knowledge with witness-extended emulation (Defi-
nition 3.7) and zero-knowledge (Definition 3.8) for the following NP relation given
pp← Setup(1λ) and ppF ← SetupF (1λ):

REval(pp, ppF) =
{
⟨(CZ , V , Cy), (Z,SZ , y,Sy)⟩ : Z ∈ F s ∧ ⟨Z, V⟩ = y∧

Open(pp; CZ , Z,SZ) = 1 ∧ OpenF (ppF ; Cy, y,Sy) = 1

}

3.7 Bilinear inner product proofs (BIPPs)

Definition 3.20. A tuple of four protocols BIPP = (Setup, Commit, Open, Eval) is a bilinear
inner product proof system for s-length vectors over G1 if (BIPP.Setup, BIPP.Commit, BIPP.Open)
is a commitment scheme for s-length vectors over G1, and:

• b← Eval(pp, CZ , V , y; Z,SZ) is an interactive public-coin protocol between a PPT
prover P and verifier V . pp refers to an output of BIPP.Setup(1λ). Both V and P hold
a commitment CZ to a vector Z ∈ Gs

1, a y ∈ G1, and V ∈ F s. P additionally knows
a a vector Z ∈ Gs

1 and its secret opening hint SZ . P attempts to convince V that
y = ⟨Z, V⟩. At the end of the protocol, V outputs b ∈ {0, 1}.

Definition 3.21. A bilinear inner product proof system for s-length vectors satisfies:
• Completeness. For any s-length vector Z ∈ Gs

1,

Pr

 pp← Setup(1λ);
(CZ ,SZ)← Commit(pp; Z);

Eval(pp, CZ , V , y; Z,SZ) = 1 ∧ y = ⟨Z, V⟩

 ≥ 1− negl(λ)

• Knowledge soundness. Eval is a public-coin succinct interactive argument of knowl-
edge with witness-extended emulation (Definition 3.7) for the following NP relation
given pp← Setup(1λ):

REval(pp) =

 ⟨(CZ , V , y), (Z,SZ)⟩ :
Z ∈ Gs

1 ∧ y ∈ G1 ∧ y = ⟨Z, V⟩∧
Open(pp; CZ , Z,SZ) = 1

13

1: // reduces the claim
∑

x∈{0,1}s G(x)
?
= T to G(r) ?

= e
2: function SumCheckReduce(µ, ℓ, T , r)
3: (r1, r2, . . . , rµ)← r
4: e← T
5: for i = 1, 2, . . . ,µ do
6: Gi(·)← ReceiveFromProver() // an honest PSC returns {Gi(0),Gi(1), . . .Gi(ℓ)}
7: if Gi(0) + Gi(1) ̸= e then
8: return 0
9: SendToProver(ri)

10: e← Gi(ri) // evaluate Gi(ri) using its point-value form received from the prover
return e

FIGURE 4—The sum-check protocol. VSC checks if a µ-variate polynomial G(·) sums to T over the Boolean
hypercube {0, 1}µ with the assistance of a prover PSC . The degree of G(·) in each variable is at most ℓ.

3.8 The sum-check protocol

The sum-check protocol is a seminal interactive proof protocol (an interactive argument
where soundness holds unconditionally), which we now elaborate.

Suppose that there is a ℓ-variate low-degree polynomial, G : F ℓ → F where the
degree of G in each variable is ≤ d. The sum-check protocol enables a prover PSC to
prove to a verifier VSC claims of the following form, which we call sum-check instances:

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xℓ∈{0,1}

G(x1, x2, . . . , xℓ)

Of course, given G, VSC can deterministically evaluate the above sum and verify
whether that the sum is T—without requiring any assistance from PSC. But, VSC re-
quires computation exponential in ℓ. With the sum-check protocol, VSC requires far less
computation at the cost of a probabilistic soundness guarantee.

In the sum-check protocol, VSC interacts with PSC over a sequence of ℓ rounds where
in each round VSC sends a random challenge (i.e., a public coin) and P responds with
a message of size O(d). At the end of this interaction, VSC outputs b ∈ {0, 1}. The
principal cost to VSC is to evaluate G at a random point in its domain r ∈ F ℓ. We denote
the sum-check protocol as b← ⟨PSC,VSC(r)⟩(G, ℓ, d, T). For any ℓ-variate polynomial
G with degree at most d in each variable, the following properties hold.

• Completeness. If T =
∑

x∈{0,1}ℓ G(x), then for a correct PSC and for all r ∈ {0, 1}∗,
Pr{⟨PSC(G),VSC(r)⟩(ℓ, d, T) = 1} = 1.

• Soundness. If T ̸=
∑

x∈{0,1}ℓ G(x), then for any P⋆
SC and for all r ∈ {0, 1}∗,

Prr{⟨P⋆
SC(G),VSC(r)⟩(ℓ, d, T) = 1} ≤ d · ℓ/|F |.

• Succinctness. The communication between PSC and VSC is O(d · ℓ) elements of F .

An alternate formulation. The sum-check protocol is a mechanism to reduce a claim
of the form

∑
x∈{0,1}m G(x) ?

= T to the claim G(r) ?
= e. In most cases, VSC uses an auxil-

iary protocol to verify the latter claim, so this formulation makes it easy to describe end-
to-end protocols. We denote this reduction protocol with e← ⟨PSC(G),VSC(r)⟩(ℓ, d, T).
Figure 4 depicts the sum-check protocol from this perspective.

14

4 A new commitment scheme for multilinear polynomials
This section describes Kopis-PC, a new polynomial commitment scheme for multilinear
polynomials without requiring a trusted setup.

Our scheme can be seen as an extension and generalization of the polynomial
commitment scheme of Wahby et al. for multilinear polynomials [66]. Specifically,
instead of only relying on singly-homomorphic commitments of Pedersen, our scheme
augments the scheme of Wahby et al. [66] with doubly-homomorphic commitments of
Abe et al. [7]. Whereas the scheme of Wahby et al. [66] requires only a group where
DLOG is hard, our scheme requires a blinear group where SXDH is hard. In exchange,
we obtain a substantial improvement in polynomial commitment sizes: for an ℓ-variate
multilinear polynomial, the commitment size drops from Oλ(2ℓ/2) to Oλ(1). Polynomial
evaluation proof sizes increase by a small constant factor (≈6): instead of O(ℓ) elements
of a group where DLOG is hard, our scheme produces O(ℓ) elements of a target group
in a bilinear group where SXDH is hard. Nevertheless, in the context of Spartan, we
obtain an exponential improvement since it often involves the following three steps:
(1) the prover sends one or more polynomial commitments; (2) the prover uses the
sum-check protocol to prove certain sum-check instances; and (3) the prover produces
polynomial evaluation proofs. For an n-sized R1CS instance, the proof size contribution
from steps (1) and (3) drops from Oλ(

√
n) to Oλ(log n).

Our scheme can also be seen as an adaptation of the polynomial commitment scheme
for bivariate polynomials in the work of Bunz et al. [27] to the setting of multilinear
polynomials. While this may appear straightforward in hindsight, our observation is new.
For example, Bunz et al. [27] describe two schemes for bivariate polynomials, but it
appears that only one of them can be adapted to multilinear polynomials.

4.1 Details of Kopis-PC

Suppose that Z̃ is an ℓ-variate multilinear polynomial over F . Recall that Z̃ can be repre-
sented uniquely using a table of its evaluations over the Boolean hypercube {0, 1}ℓ (§3.3).
Conveniently, we denote such a table of evaluations as Z. We will abuse notation and
treat Z as a function that maps ℓ-bit strings to elements of F : Z : {0, 1}ℓ → F . Naturally,
∀x ∈ {0, 1}ℓ, Z̃(x) = Z(x). Furthermore, recall from Section 3.3 that for r ∈ F ℓ,

Z̃(r) =
∑

i∈{0,1}ℓ

ẽq(i, r) · Z(i)

WLOG, suppose that ℓ is even. Furthermore, let s = ℓ/2 and r = (rx, ry), where
rx, ry ∈ F s and (rx, ry) denotes a concatenation of two vectors in an obvious fashion. We
can rewrite the above equation as follows.

Z̃(rx, ry) =
∑

(i,j)∈({0,1}s,{0,1}s)

Z(i, j) · ẽq(i, rx) · ẽq(j, ry)

=
∑

i∈{0,1}s

ẽq(i, rx) ·
∑

j∈{0,1}s

Z(i, j) · ẽq(j, ry)

It is also convenient to treat Z as an s× s matrix with L(i) = eq(i, rx) and R(j) = eq(j, ry)
as vectors of evaluations for all i, j ∈ {0, 1}s. With such a formulation, the following
holds: Z̃(r) = (L · Z) · R.

15

Scheme. We assume that there exists an inner product proof system IPP and a bilinear
inner product proof system BIPP. Wahby et al. [66] provide an adaptation of Bullet-
proofs’ inner product argument [28] that serves as our IPP. Bunz et al. [27] provide a
generalization of Bulletproofs’ inner product argument that serves as our BIPP.

Kopis-PC is identical to the polynomial commitment scheme of Wahby et al. [66]
except that they do not use BIPP, so the verifier must compute a weighted sum of group
elements locally after receiving O(2ℓ/2)-sized commitment. In Kopis-PC, the verifier
receives an Oλ(1)-sized commitment. Furthermore, BIPP enables the verifier in Kopis-PC
to verifiably offload the necessary computation of weighted sum to the prover. Using
proofs analogous to the ones in prior work [27, 49, 66], it is straightforward to show that
the scheme below is a polynomial commitment scheme for multilinear polynomials. The
Eval depicted below is not a zero-knowledge interactive argument, but it can be extended
via standard techniques [49].

• pp← Setup(1λ, ℓ):

1. s← 2ℓ/2

2. ppout ← BIPP.Setup(1λ, s)

3. ppin ← IPP.Setup(1λ, s)

4. Output (ppout, ppin)

• (CG ;SG)← Commit(pp,G):
1. Let Z denote a matrix representation of evaluations of G over {0, 1}ℓ

2. (C0, . . . , Cs−1; S0, . . . ,Ss−1)← ∀i ∈ {0, . . . , s− 1} :: IPP.Commit(pp.ppin, Z(i)),
where Z(i) is the ith row of Z with s elements.

3. (CG ; Sout)← BIPP.Commit(pp.ppout, (C0, . . . , Cs−1))

4. SG ← (C0, . . . , Cs−1,S0, . . . ,Ss−1,Sout)

5. Output (CG ,SG)

• b← Eval(pp, ppF , CG , r, Cv; G,SG ,Sv)

1. V ,P: (rx, ry)← r, where r = (rx, ry) and rx, ry ∈ F ℓ/2

2. V ,P: L = ∀i :: eq(i, rx), so L ∈ F s where s = 2ℓ/2.

3. P: yout ← ⟨(SG .C0, . . . ,SG .Cs−1), L⟩
4. P → V: yout

5. V ,P: bout ← BIPP.Eval(pp.ppout, ppG1 , CG , L, yout; (SG .C0, . . . ,SG .Cs−1))

6. V: Abort with b = 0 if bout = 0

7. V ,P: R = ∀j :: eq(j, ry), so R ∈ F s where s = 2ℓ/2.

8. V ,P: bin ← IPP.Eval(pp.ppin, ppF , yout, R, Cv; L · Z, ⟨L, (S.S0, . . . ,S.Ss−1)⟩,Sv)

9. V: Abort with b = 0 if bin = 0

10. V: Output b = 1

Analysis of costs. The following table summarizes costs under Kopis-PC and compares
with the scheme of Wahby et al. [66], denoted with Hyrax-PC. We also include costs for
Dory-PC [49], which follows the same blueprint as Kopis-PC, except that it leverages the

16

tensor structure in L and R vectors (which are of size
√

n, where n = 2ℓ for an ℓ-variate
multilinear polynomial) to avoid materializing them, thereby enabling it to achieve
Oλ(log n) verification costs instead of Oλ(

√
n) costs under Kopis-PC and Hyrax-PC.

scheme Commit |C| PEval |πEval| VEval assumption

Hyrax-PC [66] n G1
√

n G1 n F log n G1
√

n G1 DLOG
Dory-PC [49] n G1 1 GT n F log n GT log n GT SXDH
Kopis-PC n G1 1 GT n F log n GT

√
n G2 SXDH

5 A new transparent SNARK for proving grand product relations
This section describes a new transparent SNARK, which may be of independent interest,
for proving grand product relations:

RGP = {(P ∈ F , V ∈ Fm) : P =
∏

i

Vi}

Spartan [58] employs a O(log m)-depth layered circuit [63] for computing such grand
products. The layered circuit takes as input a vector V and outputs T . In each layer, the
circuit computes the Hadamard product between the left and right halves of the vector
output by the previous layer. To construct a SNARK for grand product relations, Spartan
applies the sum-check protocol in a layered fashion [33, 41, 63] in conjunction with a
polynomial commitment scheme [66] to commit to the input represented as multilinear
polynomial. A principal downside of this approach is that it requires O(log m) invocations
of the sum-check protocol, and it produces Oλ(log2 m)-sized proofs—ignoring the size
of the commitments and proofs for polynomial commitments. In Spartan [58], which
employs the polynomial commitment scheme of Wahby et al. [66], the latter incurs
Oλ(
√

m) costs and dominates proof sizes both asymptotically and concretely.
We improve these proof sizes to Oλ(log m)—including the size of the commitment

and polynomial evaluation proofs—by leveraging the constant-sized polynomial com-
mitments and logarithmic polynomial evaluation proofs provided by Kopis-PC and
Dory-PC. Specifically, we design a new sum-check instance for grand product relations:
a polynomial G that sums to 0 over a certain Boolean hypercube if and only if a given
(P ∈ F , V ∈ Fm) ∈ RGP. Given such a sum-check instance, our approach to convert
it to an interactive argument (and then into a SNARK in the random oracle model) is
the same as in prior work [26, 58]: use the sum-check protocol reduce the sum-check
instance into a set of polynomial evaluations, and then use a polynomial commitment
scheme to prove the correct evaluations of the polynomials.

Details. Let m = |V|. WLOG, assume that m is a power of 2, and let s = log m.
Let V denote a table of evaluations of a log m-variate multilinear polynomial v(x) over
{0, 1}log m in a natural fashion.

Lemma 5.1. P =
∏

x∈{0,1}log m v(x) if and only if there exists a multilinear polynomial f
in log m + 1 variables such that f (1, . . . , 1, 0) = P, and ∀x ∈ {0, 1}log m, the following
hold: f (0, x) = v(x), f (1, x) = f (x, 0) · f (x, 1)

Proof. To prove the forward implication, define f to be the MLE of its evaluations on the
Boolean hypercube: f (1, . . . , 1) = 0 and for all ℓ ∈ 0, . . . , log m and x ∈ {0, 1}log m−ℓ,

17

f (1ℓ, 0, x) =
∏

y∈{0,1}ℓ v(x, y). Then taking ℓ = 0 we have ∀x ∈ {0, 1}log m : f (0, x) =
v(x), and taking ℓ = log m we have f (1, . . . , 1, 0) =

∏
x∈{0,1}log m a(x) = P. For ℓ > 0:

f (1ℓ, 0, x) =
∏

y∈{0,1}ℓ

v(x, y) =
∏

y∈{0,1}ℓ−1

v(x, 0, y) ·
∏

y∈{0,1}ℓ−1

v(x, 1, y)

= f (1ℓ−1, 0, x, 0) · f (1ℓ−1, 0, x, 1)

so f (1, x) = f (x, 0) · f (x, 1) for all x ∈ {0, 1}log m\{1, . . . , 1}. In this last case, we have:
f (1, . . . , 1) = 0 = f (1, . . . , 0) · f (1, . . . , 1). So a suitable f exists.

To prove the reverse implication, for any f satisfying these conditions, we have by
induction on 0 ≤ ℓ ≤ log m: ∀x ∈ {0, 1}log m−ℓ : f (1ℓ, 0, x) =

∏
y∈{0,1}ℓ f (0, x, y). Then

taking ℓ = log m implies that: P = f (1, . . . , 1, 0) =
∏

x∈{0,1}log m v(x)

A sum-check instance for grand products. To check that ∀x ∈ {0, 1}log m f (1, x) =
f (x, 0) · f (x, 1), we use a prior idea [22, 29, 58]. Let g be the MLE of the function
f (1, x)− f (x, 0)f (x, 1)). In particular,

g(t) =
∑

x∈{0,1}log m

ẽq(t, x) · (f (1, x)− f (x, 0) · f (x, 1))

By the Schwartz–Zippel lemma, except for a soundness error of log m/|F | (which is
negligible in λ if |F | is exponential in λ), g(τ) = 0 for τ uniformly random in F log m if
and only if g ≡ 0, which implies that f (1, x)− f (x, 0) · f (x, 1) = 0 for all x ∈ {0, 1}log m.
Set G(x) = ẽq(τ , x)(f (1, x)− f (x, 0) · f (x, 1)), where V picks a random τ . Similarly, to
prove that v(x) = f (0, x) for all x ∈ {0, 1}ℓ it suffices to prove that v(γ) = f (0, γ) for a
public coin γ ∈ F ℓ.

Thus, to prove the existence of f and hence the grand product relationship, it suffices
to prove, for some verifier selected random τ , γ ∈R F ℓ, that:

• 0 =
∑

x∈{0,1}log m ẽq(x, τ) · (f (1, x)− f (x, 0) · f (x, 1))
• f (0, γ) = v(γ)
• f (1, . . . , 1, 0) = P.

SNARKs from combining the sum-check protocol with polynomial commit-
ments. As in Spartan [58] and the compiler of Bunz et al. [26], to build an interactive
argument for grand products, P sends to V commitments to polynomials v, f . P and V
run the sum-check reduction to reduce the first claim in the list above to an evaluation of
G at some point r, and P uses Eval to convince V of the correctness of commitments to
f (0, r), f (1, r), f (r, 0), f (r, 1) and f (1, . . . , 1, 0). This interactive argument is compiled to
a SNARK by the Fiat-Shamir transform [37] in the random-oracle model.

6 Sparkle compiler: More efficient sparse polynomial commitments
Spartan provides a compiler, called SPARK, to compile an existing polynomial commit-
ment scheme for dense multilinear polynomials to ones that efficiently handle sparse
multilinear polynomials. We now describe a modification of SPARK, which we call
Sparkle, that reduces polynomial evaluation proof sizes—without substantially increas-
ing the prover’s costs.

18

To evaluate a sparse multilinear polynomial whose dense representation is of size
m (§3.3), SPARK employs O(m)-sized circuit with O(log m) depth. SPARK-derived
polynomial commitment schemes implement Eval using a layered sum-check proto-
col [33, 41, 63] in conjunction with a polynomial commitment scheme [66]. The layered
sum-check protocol alone produces O(log2 m)-sized proofs for sparse polynomial eval-
uations. Inspecting [58, §7.2.1], The only portion of SPARK’s circuit that requires a
non-constant depth, is the evaluation of an element of a universal multiset hash function
family, requiring the computation of a grand product over elements in a multisetM,
where for each in e ∈M, e ∈ F :

Hγ(M) =
∏

e∈M
(e− γ)

Of course, we can employ our special-purpose SNARK for proving grand product
relations (§5) instead of using the layered sum-check protocol with O(log m)-depth
circuit, bringing proof sizes from Oλ(log2 m) to Oλ(log m).

dense PC choice setup PEval |C| communication VEval

With SPARK:
Hyrax-PC [66] public Oλ(m) Oλ(

√
m) Oλ(log2 m) Oλ(

√
m)

vSQL-VPD [70] private Oλ(m) Oλ(1) Oλ(log2 m) Oλ(log2 m)
Virgo-VPD [69] public Oλ(m log m) Oλ(1) Oλ(log2 m) Oλ(log2 m)
Kopis-PC public Oλ(m) Oλ(1) Oλ(log2 m) Oλ(

√
m)

Dory-PC [49] public Oλ(m) Oλ(1) Oλ(log2 m) Oλ(log m)

With Sparkle:
vSQL-VPD [70] private Oλ(m) Oλ(1) Oλ(log m) Oλ(log m)
Kopis-PC public Oλ(m) Oλ(1) Oλ(log m) Oλ(

√
m)

Dory-PC [49] public Oλ(m) Oλ(1) Oλ(log m) Oλ(log m)

FIGURE 5—Costs of sparse polynomial commitments with different choices for dense PC. Here, m is
number of entries in the dense representation of the multilinear polynomial. Applying Sparkle to Hyrax-PC or
Virgo-VPD does not improve proof sizes given their commitment sizes and proof sizes respectively.

Unfortunately, the special-purpose SNARK requires the prover to compute commit-
ments to polynomials that encode the intermediate state of the grand product computation.
Whereas, with layered circuit approach, most of the commitments that are required are
created as part of creating a computation commitment in a preprocessing step. Further-
more, the layered sum-check requires no cryptographic operations since claims about
the outputs of each layer i are reduced to claims about outputs of the previous layer of i.
Thus, if we naively apply the special-purpose SNARK, the prover’s costs increase by
≥ 10× compared to a prover that uses the layered sum-check approach.

To address this problem, we observe that in Spartan, grand products are computed
over vectors of size ≈16n, where n is the size of the R1CS instance. Furthermore, we
devise a hybrid scheme where we use a constant-depth layered circuit (in conjunction
with a layered sum-check) to reduce the grand product instance size to≈n (instead of 16n)
i.e., we apply a depth-4 layered sum-check before employing the special-purpose SNARK
for grand product relations. The result is that the prover’s costs increase by ≈20%,
which is reasonable, while providing asymptotic and concrete proof size improvements.

19

Figure 5 depicts the asymptotic improvements of Sparkle-derived sparse polynomial
commitment schemes compared to SPARK-derived schemes.

7 Accelerating the encoder with an untrusted assistant
Prior work [26, 32, 58] employs a preprocessing phase where the verifier creates a
commitment to the structure of an R1CS instance. For example, in Spartan, given the
structure of an R1CS instance, (F , A, B, C, m, n), and some public parameters pp, the
verifier creates commitments to three sparse multilinear polynomials: Ã, B̃, C̃. Using
SPARK (or Sparkle), this requires O(1) commitments to dense multilinear polynomials in
O(log n) variables. Since V relies on the correctness of the commitments, in prior work,
V computes them directly. For example, in Spartan, V incurs O(n) group exponentiations.
A similar cost is incurred under both SuperSonic and Fractal to create such commitments.
The linear cost is unavoidable, but we introduce a mechanism that enables the verifier to
employ an untrusted assistant, which can be run by anyone including the prover. In the
context of Spartan, this reduces reduces the cost of creating a computation commitment
to be O(n) multiplications over F (V also incurs exponentiations that are sub-linear in
O(n)). The improvement is substantial in practice (§9). This technique is general and
applies to other schemes including SuperSonic and Fractal.

Details. Suppose that we have an extractable polynomial commitment scheme for
multilinear polynomials PC. V holds pp, ppF , which are public parameters for PC and
a commitment scheme for F . To assist V in computing a commitment CG to a dense
multilinear polynomial G, we have an untrusted assistant compute a commitment C with
some opening hint S. The assistant A and V then engage in an interactive protocol to
convince V that C was computed correctly. Given C, G an ℓ-variate multilinear polynomial
shared between A and V:

1. A → V: (Cv ; Sv)← CommitF (ppF ; v)

2. V → A: r ←$ F ℓ

3. A,V: bpoly = PC.Eval(pp, ppF , C, r, Cv ; G,S,Sv)

4. V: v← G(r)
5. A,V: beval = OpenF (ppF , Cv, v,Sv)

6. V: Output b = bpoly ∧ beval

Lemma 7.1. The above protocol is a public-coin succinct interactive argument of
knowledge for the language: {⟨(CG ,G), (SG)⟩ : Open(pp, CG ,G,SG) = 1}, assuming the
|F | is exponential in the security parameter λ.

Proof. Completeness, succinctness, and public coin follow from the same properties
of PC.Eval and OpenF . Since PC is extractable, there is some multilinear G′ underlying
C such that Cv is a commitment to G′(r). Since the commitment to v ∈ F is binding,
G′(r) = v = G(r). So G and G′ are equal at a randomly chosen r, and so by the Schwartz-
Zippel lemma G = G′, except for a soundness error of O(log m/|F |) ≈ negl(λ).

20

8 A more efficient zero-knowledge transformation
Like Spartan [58], Xiphos, Kopis, and Lakonia require a zero-knowledge sum-check
protocol: given a commitment CF to a ℓ-variate polynomial F(x) of degree d in each vari-
able, and a commitment Cy to y ∈ F , we reduce a claim of the form y =

∑
x∈{0,1}ℓ F(x)

to another commitment Cy′ to y′ ∈ F and a claim that y′ = F(r), where r ∈ F ℓ.
Recall that the non-hiding sum-check proceeds as follows (§3.8). After i rounds, P

and V share some r1, . . . , ri ∈ F , and some target scalar s ∈ F which is initialized to y.
They then follow the following round of the protocol:

1. P → V: fi(X) =
∑

x∈{0,1}ℓ−i−1 F(r1, . . . , ri, X, x)

2. V: Check that fi(0) + fi(1) = s

3. V → P: ri+1 ←$ F .

4. P ,V: s = fi(ri+1)

y′ is the value of s at the last round. Additionally, P must prove to V that F(r) = s,
which is performed with an auxiliary protocol (e.g., polynomial commitments).

In Spartan, the sum-check protocol is made zero-knowledge with techniques from
Hyrax [65]. The core observation is that V only computes linear functions of the polyno-
mials that P sends. So P can send linearly homomorphic commitments to the evaluations
(or coefficients) of these polynomials, and V can manipulate the commitments to obtain
Cy′ with some known Sy′ . Unfortunately, this requires that P send ℓ commitments to
vectors of O(d) scalars, and later prove knowledge of their openings. For k sum-checks
this contributes O(kℓ+d) group elements to the proof and exponentiations to verification,
which is concretely expensive.

We take a different approach, conceptually closer to the zero-knowledge sum-check
of from Chiesa et al. [30] and follow-up adaptations [68, 69]. This allows us to re-
place these O(kℓ+ d) costs with an O(kd + ℓ) costs, which is concretely smaller. The
idea in this case is that P will choose a suitably random polynomial G and send an
extractable commitment CG to it to the verifier, along with a claimed value in z ∈ F

for
∑

x∈{0,1}ℓ F(x) + G(x). A non-hiding sum-check will then be performed on F + G
to obtain a claim z′ = F(r) + G(r); analysis of the randomness of G will show that
the transcript of this sum-check is independent of F. P and V will then use Eval and a
standard sigma protocol to prove the consistency of commitments Cy, Cy′ , commitments
to evaluations of G, and z, z′.

Definition 8.1. We call a multilinear polynomial in ℓ variables of form:

g(X) = b0

ℓ∏
i=1

(1− Xi) +

ℓ∑
i=1

bi(2Xi − 1)
ℓ∏

j=1,j ̸=i

(1− Xj)

a low-weight polynomial.

Lemma 8.1. Low-weight polynomials are exactly ℓ-variable multilinear polynomials
whose support on {0, 1}ℓ is contained in {(0, . . . , 0), e1, . . . , eℓ}

21

Proof. For g a low-weight polynomial as above, g(0, . . . , 0) = b0 −
∑ℓ

i=1 bi and for all
i ∈ {1, . . . , ℓ} and g(ei) = bi; for all other points on the Boolean hypercube at least 2 of
the Xi are 1 and so every term vanishes. Conversely, let f be a multilinear polynomial
whose support on the Boolean hypercube is contained in {(0, . . . , 0), e1, . . . , eℓ}. Then
let bi = f (ei) and b0 = f (0, . . . , 0) +

∑
i f (ei), and define g as above. Then g and f are

now two multilinear polynomials that agree on {0, 1}ℓ and so g = f .

Lemma 8.2. For a low-weight polynomial g, the polynomial in the first variable obtained
by summing over the hypercube:

∑
x∈{0,1}ℓ−1 g(X, x) = (b0 − b1) + (2b1 − b0)X, which

is independent of b2, . . . , bi.

Lemma 8.3. When a variable of a low-weight polynomial is bound, the resulting
polynomial is still low-weight:

g(r, X) = [b0(1− r) + (2r − 1)b1]

ℓ−1∏
i=1

(1− Xi)

+

ℓ−1∑
i=1

[bi+1(1− r)] (2Xi − 1)
ℓ−1∏

j=1,j ̸=i

(1− Xj)

Lemma 8.4. Let g be a uniformly random low-weight polynomial, and for some r ∈ F ℓ

define for i ∈ 0 . . . ℓ− 1:

gi(X) =
∑

x∈{0,1}ℓ−i−1

g(r1, . . . , ri, X, x).

Then if ∀i : ri ̸= 1, the gi are a sequence of independent, uniformly random linear
polynomials, subject to the constraint ∀i > 0 : gi−1(ri) = gi(0) + gi(1).

Proof. That gi−1(ri) = gi(0) + gi(1) is clear from the definition of the gi.
Since g is uniformly random, we have b ←$ F ℓ+1. So g0 is uniformly random as

b0, b1 are uniformly random and independent. Note that g0, . . . , gi−1 are independent of
bi+1, whilst gi has a contribution bi+1

∏
j≤i(1− rj)(2X− 1). Since gi(0) + gi(1) is fixed,

gi has one degree of freedom, and so if ∀j ≤ i : rj ̸= 1 we have gi uniformly random and
independent of bj for j ≤ i.

In particular, the Prover samples d random low-weight polynomials g1, . . . , gd uni-
formly at random, and writing Xj = (Xj

1, . . . , Xj
ℓ), sets:

G(X) =
∑

i∈1...d

gj(Xj).

The commitment to G will be a vector of hiding, blinding commitments to the multilinear
polynomials gi.

Corollary 8.1. For ordF (ri) > d, and gj sampled uniformly at random, the polynomials
Gi(X) =

∑
x∈{0,1}ℓ−i−1 G(r[1 . . . i], X, x) are independent, uniformly random polynomi-

als of degree d subject to the condition that: ∀i > 0 : Gi−1(ri) = Gi(0) + Gi(1).

22

Proof. Since ordF (ri) > d, we have rj
i ̸= 1 for any j ≤ d. So by the previous lemma,

gj(Xj) contributes an independent, uniformly random linear combination of in 1, Xj to
Gi, subject to the constraint that gj

i−1(r
j
i) = gi(0) + gi(1). Since the gj are independent,

Gi has independent, uniformly random coefficients in Xj for all j > 0 and satisfies
Gi−1(ri) = Gi(0)+Gi(1). So the Gi are independent and uniformly random polynomials
of degree d subject to this condition.

It remains to relate the claims that z =
∑

x∈{0,1} F(x) + G(x), z′ = F(r) + G(r) to
commitments Cy, Cy′ , CF, CG. In this protocol, we make use of 2−1 and assume that F is
not of characteristic 2.

Recall that the commitments to elements of F are Pedersen commitments with
generators ppF = (PG, PH), i.e. that CommitF (x) = (ppF ; xPG + rPH ; r) for r ←$ F .

ZK-sumcheck-reduce(Cy)

P witness: y =
∑

x∈{0,1}ℓ F(x), opening hint for Cy.

P: ∀i ∈ 1 . . . ℓ : gi ←$ { low-weight polynomials in ℓ variables}

z← y +
∑

i

∑
x∈{0,1}ℓ

gi(x)

P: (Cgi ; Sgi)← Commit(pp; gi) for i ∈ 1, . . . , ℓ

P → V: {Cgi : i ∈ [1, . . . , ℓ]}, z

P ,V: (r, z′)← Sumcheck-reduce(z).

P: (Chi ; Shi)← CommitF (ppF ; gi(ri)) for i ∈ 1, . . . , ℓ

P → V: {Chi : i ∈ [1, . . . , ℓ]}

P ,V: C∑
gi =

∑
i

Cgi ,

CE(
∑

gi) = 2−ℓ(zPG − Cy),

Assert(Eval(pp, ppF ; C∑
gi , CE(

∑
gi)), (2−1, . . . , 2−1))

∀i : Assert(Eval(pp, ppF ; Cgi , Chi , ri))

P ,V: Cy′ ← z′PG −
∑

i Chi

V: Return (r, Cy′)

Theorem 8.1. The above protocol is complete, computationally sound, and zero-knowledge
with respect to F, y.

Proof. Completeness is immediate; P uses F(X) +
∑

gi(Xi) in the Sumcheck-reduce,
and can open Cy′ to y′ = z′ −

∑
i hi = F(r).

We will show computational soundness assuming that Eval and the Pedersen com-
mitments to elements of F are sound. From the soundness of Eval, the second set of

23

checks imply that Chi are commitments to evaluations of gi at ri. Since Pedersen com-
mitments are linearly homomorphic, their sum is a commitment to G(r). So if Cy′ is
a commitment to F(r) then z′ must equal F(r) + G(r). Sumcheck-reduce ensures that
if z′ = F(r) + G(r) with non-negligible probability and F, G are of low degree, then
z =

∑
x∈{0,1} F(x) + G(x) Note that for any multilinear polynomial p in ℓ variables and

i > 0: ∑
x∈{0,1}ℓ

p(xi) =
∑

x∈{0,1}ℓ

p(x) = 2ℓp(2−1, . . . , 2−1)).

So since Eval is sound, the first check on C∑
gi proves that CE(

∑
gi) is a commitment to∑

x∈{0,1} G(x). Then since Pedersen commitments are linearly homomorphic, Cy must
be a commitment to

∑
x∈{0,1} F(x).

So this protocol reduces a claim that Cy is a commitment to the sum of F on the cube
to a claim that Cy′ is a commitment to F(r).

To see zero-knowledge with respect to F, y, we will show that P’s messages are
independent of F and y. Initially, Prover sends

z = y +
∑

i=1...ℓ

∑
x∈{0,1}ℓ

gi(x),

which is plainly independent of F. The remaining messages from P to V outside of the
interior, non-hiding sumcheck are all independent hiding commitments. So it suffices to
show that the P → V messages in a non-hiding sumcheck on F + G are independent of
F given the randomness of G and conditional on z.

The remaining messages in the sum-check are a series of ℓ− 1 degree-d polynomials
pi(X) such that p0(0)+p0(1) = z and for all i > 0, pi(0)+pi(1) = pi−1(ri) For a prover
following the protocol, we have pi(X) = Fi(X) + Gi, where by Corollary 8.1 the Gi are
uniformly random and independent, subject to Gi−1(ri) = Gi(0) + Gi(1). Since the pi

must obey this constraint, they are independent of F.

Implementation Any extractable polynomial commitment scheme can be used as a
black box for the low-weight polynomials. However, as each is a linear function of the
ℓ+ 1 values bi, it is concretely efficient to commit to them with Pedersen commitments
to their vectors b. These commitments have the necessary linearity properties, and Eval
is implemented with a linear-time (i.e. O(ℓ)) naive inner-product proof.

9 Experimental evaluation
This section experimentally evaluates our implementations of Kopis, Xiphos, and Lako-
nia, and compares them with a set of baselines.

Metrics and methodology. Our evaluation metrics are: (1) the prover’s costs to pro-
duce a proof; (2) the verifier’s costs to preprocess the structure of an R1CS instance; (3)
the verifier’s costs to verify a proof; and (4) the size of a proof. We measure CPU costs
using a real-time clock; we measure proof sizes by serializing proof data structures to
byte strings. For our schemes, we employ cargo bench to measure performance, and
for baselines, we use the profilers provided with their open source code.

24

We run our experiments on an Azure Standard F16s_v2 virtual machine (16 vCPUs,
32 GB memory) with Ubuntu 20.10. We report results from a single-threaded configura-
tion since not all our baselines leverage multiple cores. As with prior work [17, 32, 58],
we vary the size of the R1CS instance by varying the number of constraints and variables
m and maintain the ratio n/m to approximately 1.

Baselines. For Kopis and Xiphos, the baselines are: (1) Spartan [58], (2) Fractal [32],
and (3) SuperSonic [26]. For Spartan, we use its open-source implementation [5]; we also
report its performance with our optimizations such as batched polynomial evaluations,
which we refer to as Spartan++. For Fractal, we use its open-source implementations
from libiop [52], configured to provide provable security.

Finally, since there does not exist a prior implementation of SuperSonic, we estimate
its performance using the authors’ cost models and microbenchmarks. We microbench-
mark the cost of an exponentiation in a class group with random 128-bit size exponents
using the ANTIC library [1], which offers a fast class group implementation. We find
that each class group exponentiation costs ≈38 ms. In our estimates of SuperSonic, we
ignore the costs of scalar arithmetic (in their information-theoretic proof system) and
count only the costs incurred by their polynomial commitment scheme (this is optimistic
for SuperSonic and pessimistic to our schemes). Furthermore, our estimates assume
standard optimizations such as the Pippenger’s algorithm for multiexponentiation.

For Lakonia, the baselines are: (1) Ligero [8], (2) Hyrax [66], and (3) Aurora [17].
For Ligero and Aurora, we use their open-source implementations from libiop [52],
configured to provide provable security, and for Hyrax, we use its reference implementa-
tion [51].6 Additional baselines for Lakonia include STARK [13] and Bulletproofs [28].
Given the lack of a standard implementation, we report their performance from prior
measurements in Figure 3.

9.1 Performance results of Kopis and Xiphos

Prover. Figure 6 depicts the prover’s costs under Kopis, Xiphos, and their baselines.
At 220 constraints, Xiphos and Kopis are ≈5× more expensive than Spartan, which
features the fastest prover in the literature. Most of this slowdown can be attributed to
the difference in speed between the cost of an exponentiation on ristretto2555 (used
by Spartan) and on G1 of bls12-381 (used by our schemes); this is ≈5×. Furthermore,
Spartan’s underlying library for curve arithmetic [3] features an advanced implemen-
tation that leverages avx2 instructions to achieve up to 2× higher speed. With a faster
implementation of curve arithmetic on bls12-381, we believe this gap can be reduced
substantially. Compared to SuperSonic (which offers the shortest proofs in the literature),
Kopis and Xiphos are up to 250× faster. Finally, compared to Fractal, Kopis and Xiphos
are ≈3× faster at 218 constraints (we could not run Fractal beyond 218 constraints as it
runs out of memory).

Proof sizes. Figure 7 depicts the proof sizes under Kopis, Xiphos, and their baselines. It
is easy to see that Xiphos offers proof sizes competitive with SuperSonic.7 Furthermore,

6To compare Lakonia with Hyrax, as before [58], we transform R1CS instances to arithmetic circuits where
the circuit evaluates constraints in the R1CS instance, and outputs a vector of zeros if the constraints are
satisfied. For an arbitrary R1CS instance, the circuit has no structure, so Hyrax incurs linear verification costs.

7Xiphos’s and Kopis’s proof sizes are missing an optimization that reduces proof sizes by an additional 15%.

25

210 211 212 213 214 215 216 217 218 219 220

SuperSonic 86 163 311 599 1160 2240 4360 8500 16600 32500 63800
Fractal 0.8 1.5 2.9 5.9 12 25 51 104 216 – –
Spartan 0.1 0.2 0.3 0.6 1 1.9 3.5 6.8 12 24 47

Spartan++ 0.08 0.15 0.26 0.5 0.9 1.8 3.3 6.5 12 24 45
Kopis 1.2 1.6 2.7 4.2 7.3 12 21 36 69 123 245
Xiphos 1.5 2.5 3.2 5.7 8.2 14.5 23 43 74 132 249

FIGURE 6—Prover’s performance (in seconds) for varying R1CS instance sizes under different schemes.
Fractal’s prover runs out of memory at 218 constraints and beyond.

Kopis offers the shortest proofs, both concretely and asymptotically. Proof sizes under
our schemes are orders of magnitude shorter than those produced by Fractal. Although
Spartan produces proofs shorter than Xiphos at small instance sizes, Xiphos’s superior
asymptotics are visible around 213 constraints. Finally, Spartan++ features modest
improvements in proof sizes over Spartan.

210 211 212 213 214 215 216 217 218 219 220

SuperSonic 31 33 34 36 38 40 41 43 45 47 49
Fractal 1M 1.2M 1.4M 1.5M 1.7M 1.8M 2M 2.1M 2.3M – –
Spartan 32 37 41.7 48 54 63 72 85 98 120 142

Spartan++ 27 31 36 41 47 55 64 76 89 110 131
Kopis 25 26 27 29 30 32 33 34 36 37 39
Xiphos 40 44 45 48 49 51 53 55 57 59 61

FIGURE 7—Proof sizes in KBs. Entries with “M” suffix are in MBs.

Verifier. Figure 8 depicts verifier’s costs to verify a proof under Kopis, Xiphos, and their
baselines. As we can see, Xiphos offers a verifier that is faster than SuperSonic—despite
sharing the same asymptotics. Xiphos overtakes Spartan at roughly 218 constraints
despite Spartan using an advanced implementation of curve arithmetic—because of
Xiphos’s better asymptotics. Kopis is slower than Xiphos and Spartan, but is concretely
faster than SuperSonic at all instance sizes we measured. Finally, Spartan++ features
modest improvements in verification times over Spartan.

210 211 212 213 214 215 216 217 218 219 220

SuperSonic 1.4s 1.5s 1.6s 1.7s 1.9s 2s 2.1s 2.2s 2.3s 2.5s 2.6s
Fractal 148 120 163 168 141 184 188 165 205 – –
Spartan 14 17 20 24 29 36 47 58 77 99 135

Spartan++ 8 9 11 14 18 22 30 38 53 68 97
Kopis 71 79 98 108 135 156 203 238 318 384 535
Xiphos 64 66 67 70 70 74 74 77 78 80 80

FIGURE 8—Verifier’s performance (in ms) under different schemes. Entries with “s” are in seconds.

Verifier’s preprocessing (encoder). Figure 9 depicts the verifier’s preprocessing costs
to create a computation commitment to the structure of an R1CS instance. For Kopis,
Xiphos, and Spartan++, we depict the costs of an untrusted assistant in addition to

26

reporting the cost of an encoder. It is easy to see that the use of an untrusted assistant
improves preprocessing costs substantially under Xiphos, Kopis, and Spartan++, with
speedups of 10–10,000× depending on the baseline. Furthermore, the assistant under
Xiphos (and Kopis) is substantially cheaper than the encoders of SuperSonic and Fractal,
and is ≈3× of the encoder under Spartan.

210 211 212 213 214 215 216 217 218 219 220

SuperSonic 35 64 117 216 400 747 1.4k 2.6k 4.9k 9.4k 17.9k
Fractal 0.3 0.6 1.2 2.5 5.4 11.5 24 51 107 227 –
Spartan 0.06 0.1 0.2 0.3 0.6 1.1 2.2 3.3 6.5 9.9 20

Spartan++ (A) 0.06 0.1 0.2 0.3 0.6 1.1 2.4 3.7 7.4 12 24
Spartan++ (E) 0.005 0.007 0.01 0.016 0.03 0.05 0.13 0.23 0.44 0.8 1.6
Kopis (A) 0.6 0.8 1.3 1.6 2.9 3.8 6.9 9.9 18.4 28 55
Kopis (E) 0.04 0.05 0.07 0.09 0.12 0.17 0.3 0.4 0.7 1.2 2.2
Xiphos (A) 1 2 2 3 4 7 9 16 22 40 62
Xiphos (E) 0.04 0.04 0.05 0.05 0.06 0.09 0.17 0.28 0.5 0.9 1.8

FIGURE 9—Encoder’s performance (in seconds) for varying R1CS instance sizes under different schemes.
Entries with suffix “k” are in thousands. For Kopis, Xiphos, and Spartan++, we depict two rows each. Rows
with “A” denote the cost of the untrusted assistant and rows with “E” denote the cost of the encoder with
advice from an untrusted assistant.

9.2 Performance of Lakonia

Lakonia and its baselines do not require the verifier to incur any preprocessing costs, so
we focus on reporting the prover’s costs, the verifier’s costs, and proof sizes.

Prover. Figure 10 depicts the performance of the prover under Lakonia and its baselines.
Lakonia is faster than all its baselines except the NIZK variant of Spartan (for 213

constraints and beyond). The slowdown relative to Spartan is analogous to slowdown of
Kopis and Xiphos relative to Spartan. Nevertheless, at 220 constraints, Lakonia is ≈2.3×
faster than Ligero, and ≈16× faster than Aurora and Hyrax.

210 211 212 213 214 215 216 217 218 219 220

Ligero 0.1 0.2 0.4 0.8 1.6 2 4 8 17 35 69
Hyrax 1 1.7 2.8 5 9 18 36 61 117 244 486
Aurora 0.5 0.8 1.6 3.2 6.5 13.3 27 56 116 236 485
Spartan 0.02 0.03 0.05 0.09 0.16 0.27 0.6 0.9 1.7 3 6

Spartan++ 0.01 0.02 0.04 0.07 0.14 0.25 0.5 0.8 1.7 3 6
Lakonia 0.2 0.3 0.5 0.6 1.1 1.6 3 5 9 15 29

FIGURE 10—Prover’s performance (in seconds) for varying R1CS instance sizes under different schemes.

Proof sizes. Figure 11 depicts proof sizes under Lakonia and its baselines. Bulletproofs
(not depicted) offers the shortest proof sizes: ≈1.5 KB for 220 constraints. As reported
earlier (Figure 3), Bulletproofs incurs orders of magnitude higher proving and verification
costs than Lakonia. Besides Bulletproofs, Lakonia offers the shortest proof sizes, which
are substantially shorter than most baseline proof systems. Thus, we believe Lakonia
offers a new point in the design space of concretely-efficient proof systems.

27

210 211 212 213 214 215 216 217 218 219 220

Ligero 546 628 1M 1.2M 2M 3M 5M 5M 10M 10M 20M
Hyrax 14 16 17 20 21 26 28 37 38 56 58
Aurora 447 510 610 717 810 931 1M 1.1M 1.3M 1.5M 1.6M
Spartan 9 10 12 13 15 16 21 22 30 31 48

Spartan++ 6 6 7 8 10 10 15 15 23 24 40
Lakonia 8 8 9 9 10 10 11 11 12 12 12.6

FIGURE 11—Proof sizes in KBs for Lakonia and its baselines. Entries with “M” are in megabytes.

Verifier. Figure 12 depicts the costs of the verifier under Lakonia and its baselines.
Despite sharing the same asymptotics, Lakonia’s verifier is orders of magnitude faster
than all its baselines. The only exception is Spartan where, at 220 constraints, Lakonia is
≈50% slower than Spartan.

210 211 212 213 214 215 216 217 218 219 220

Ligero 49 96 172 357 680 976 1.9s 3.7s 7.3s 15s 31s
Hyrax 195 229 262 317 388 502 510 1.2s 1.9s 3.5s 7.7s
Aurora 186 316 574 933 1.8s 3.5s 6.7s 13s 27s 54s 108s
Spartan 7 8 10 12 16 22 33 55 98 194 369

Spartan++ 3 4 5 6 9 15 25 44 87 166 347
Lakonia 29 32 38 44 56 70 100 133 203 320 555

FIGURE 12—Verifier’s performance (in ms) under different schemes. Entries with “s” are in seconds.

28

References
[1] Antic – algebraic number theory in c. https://github.com/wbhart/antic.
[2] Ethereum Roadmap. ZK-Rollups.
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/.

[3] A pure-Rust implementation of group operations on Ristretto and Curve25519.
https://github.com/dalek-cryptography/curve25519-dalek.

[4] The Ristretto group. https://ristretto.group/.
[5] Spartan: High-speed zkSNARKs without trusted setup.
https://github.com/Microsoft/Spartan.

[6] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving
signatures and commitments to group elements. In CRYPTO, pages 209–236, 2010.

[7] M. Abe, J. Groth, M. Kohlweiss, M. Ohkubo, and M. Tibouchi. Efficient fully
structure-preserving signatures and shrinking commitments. Journal of Cryptology,
32(3):973–1025, July 2019.

[8] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In CCS, 2017.

[9] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45(3), May 1998.

[10] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.
J. ACM, 45(1):70–122, Jan. 1998.

[11] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. In STOC, 1991.

[12] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In EUROCRYPT, pages 480–494, 1997.

[13] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. ePrint Report 2018/046, 2018.

[14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from Bitcoin. In S&P, 2014.

[15] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the concrete efficiency of
probabilistically-checkable proofs. In STOC, pages 585–594, 2013.

[16] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In CRYPTO, Aug. 2013.

[17] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora:
Transparent succinct arguments for R1CS. In EUROCRYPT, 2019.

[18] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In USENIX Security, 2014.

[19] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Short PCPs verifiable in
polylogarithmic time. In Computational Complexity, 2005.

[20] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM J. Comput.,
38(2):551–607, May 2008.

[21] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky. Succinct non-interactive
arguments via linear interactive proofs. In TCC, 2013.

[22] A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable computation using multiple
provers. ePrint Report 2014/846, 2014.

[23] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions. Cryptology
ePrint Archive, Report 2018/712, 2018.

[24] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. Zexe: Enabling
decentralized private computation. ePrint Report 2018/962, 2018.

[25] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying

29

https://github.com/wbhart/antic
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://github.com/dalek-cryptography/curve25519-dalek
https://ristretto.group/
https://github.com/Microsoft/Spartan

computations with state. In SOSP, 2013.
[26] B. Bunz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. ePrint

Report 2019/1229, 2019.
[27] B. Bunz, M. Maller, P. Mishra, and N. Vesely. Proofs for inner pairing products and

applications. Cryptology ePrint Archive, Report 2019/1177, 2019.
[28] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short

proofs for confidential transactions and more. In S&P, 2018.
[29] M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: modular design and composition of

succinct zero-knowledge proofs. ePrint Report 2019/142, 2019.
[30] A. Chiesa, M. A. Forbes, and N. Spooner. A zero knowledge sumcheck and its applications.

CoRR, abs/1704.02086, 2017.
[31] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. Marlin: Preprocessing

zkSNARKs with universal and updatable SRS. ePrint Report 2019/1047, 2019.
[32] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent recursive proofs

from holography. ePrint Report 2019/1076, 2019.
[33] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming

interactive proofs. In ITCS, 2012.
[34] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno. Cinderella: Turning shabby

X.509 certificates into elegant anonymous credentials with the magic of verifiable
computation. In S&P, 2016.

[35] S. Dobson, S. D. Galbraith, and B. Smith. Trustless construction of groups of unknown
order with hyperelliptic curves.
https://www.math.auckland.ac.nz/~sgal018/ANTS/posters/Dobson-Galbraith-
Smith.pdf, 2020.

[36] S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown order with
hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196, 2020.

[37] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1986.

[38] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO, pages 16–30, 1997.

[39] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In EUROCRYPT, 2013.

[40] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108, 2011.

[41] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs
for muggles. In STOC, 2008.

[42] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. In STOC, 1985.

[43] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, 2016.
[44] J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In

EUROCRYPT, 2008.
[45] M. Hamburg. Decaf: Eliminating cofactors through point compression. In CRYPTO, 2015.
[46] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and

their applications. In ASIACRYPT, pages 177–194, 2010.
[47] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In

STOC, 1992.
[48] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of

cryptography and privacy-preserving smart contracts. In S&P, 2016.
[49] J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial

commitments. Cryptology ePrint Archive, Report 2020/xxx, 2020.

30

https://www.math.auckland.ac.nz/~sgal018/ANTS/posters/Dobson-Galbraith-Smith.pdf
https://www.math.auckland.ac.nz/~sgal018/ANTS/posters/Dobson-Galbraith-Smith.pdf

[50] J. Lee, K. Nikitin, and S. Setty. Replicated state machines without replicated execution. In
S&P, 2020.

[51] libfennel. Hyrax reference implementation. https://github.com/hyraxZK/fennel.
[52] libiop. A C++ library for IOP-based zkSNARK.

https://github.com/scipr-lab/libiop.
[53] libsnark. A C++ library for zkSNARK proofs.

https://github.com/scipr-lab/libsnark.
[54] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof

systems. In FOCS, Oct. 1990.
[55] S. Micali. CS proofs. In FOCS, 1994.
[56] A. Ozdemir, R. S. Wahby, and D. Boneh. Scaling verifiable computation using efficient set

accumulators. Cryptology ePrint Archive, Report 2019/1494, 2019.
[57] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable

computation. In S&P, May 2013.
[58] S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. ePrint

Report 2019/550, 2019.
[59] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution of concurrent services

in zero-knowledge. In OSDI, Oct. 2018.
[60] S. Setty, S. Angel, and J. Lee. Verifiable state machines: Proofs that untrusted services

operate correctly. ACM SIGOPS Operating Systems Review, 54(1):40–46, Aug. 2020.
[61] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving the conflict

between generality and plausibility in verified computation. In EuroSys, Apr. 2013.
[62] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based

verified computation a few steps closer to practicality. In USENIX Security, Aug. 2012.
[63] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, 2013.
[64] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for verifiable

computation. In S&P, 2013.
[65] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM and control

flow in verifiable outsourced computation. In NDSS, 2015.
[66] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-efficient zkSNARKs

without trusted setup. In S&P, 2018.
[67] B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT, pages 379–407, 2019.
[68] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-knowledge

proofs with optimal prover computation. ePrint Report 2019/317, 2019.
[69] J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and its

applications to zero knowledge proof. In S&P, 2020.
[70] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vSQL: Verifying

arbitrary SQL queries over dynamic outsourced databases. In S&P, 2017.

31

https://github.com/hyraxZK/fennel
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libsnark

	1 Introduction
	1.1 Limitations of existing transparent zkSNARKs
	1.2 A new goal: Quadruple-efficient transparent zkSNARKs (Quarks)

	2 Overview of our work and a summary of our contributions
	2.1 Roadmap for the rest of the paper

	3 Preliminaries
	3.1 Problem instances in R1CS
	3.2 Succinct interactive arguments of knowledge
	3.3 Polynomials and low-degree extensions
	3.4 Commitment schemes
	3.5 Polynomial commitments for multilinear polynomials
	3.6 Inner product proofs (IPPs)
	3.7 Bilinear inner product proofs (BIPPs)
	3.8 The sum-check protocol

	4 A new commitment scheme for multilinear polynomials
	4.1 Details of Kopis-PC

	5 A new transparent SNARK for proving grand product relations
	6 Sparkle compiler: More efficient sparse polynomial commitments
	7 Accelerating the encoder with an untrusted assistant
	8 A more efficient zero-knowledge transformation
	9 Experimental evaluation
	9.1 Performance results of Kopis and Xiphos
	9.2 Performance of Lakonia

