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Abstract. We introduce new tightly-secure authenticated key exchange (AKE) protocols that are
extremely efficient, yet have only a constant security loss and can be instantiated in the random
oracle model both from the standard DDH assumption and a subgroup assumption over RSA
groups. These protocols can be deployed with optimal parameters, independent of the number of
users or sessions, without the need to compensate a security loss with increased parameters and
thus decreased computational efficiency.
We use the standard “Single-Bit-Guess” AKE security (with forward secrecy and state corruption)
requiring all challenge keys to be simultaneously pseudo-random. In contrast, most previous papers
on tightly secure AKE protocols (Bader et al., TCC 2015; Gjøsteen and Jager, CRYPTO 2018;
Liu et al., ASIACRYPT 2020) concentrated on a non-standard “Multi-Bit-Guess” AKE security
which is known not to compose tightly with symmetric primitives to build a secure communication
channel.
Our key technical contribution is a new generic approach to construct tightly-secure AKE protocols
based on non-committing key encapsulation mechanisms. The resulting DDH-based protocols are
considerably more efficient than all previous constructions.
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1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive with immense practical
importance. The goal is to securely establish a session key between two parties in a network where an
adversary can read, send, modify or delete messages and may also corrupt selected parties and sessions.
Tightness of AKE. When proving a cryptographic scheme secure, one commonly describes a security
reduction which transforms an adversary A that breaks the cryptographic scheme into an adversary B
that solves some underlying complexity assumption. For instance, if A has advantage ε in breaking the
scheme and B solves the problem with advantage ε′ = ε/L, then L is called the reduction’s security loss.
If L is constant (and in particular independent of the number of A’s oracle queries) and additionally
the running times of A and B are roughly identical, then we say the reduction is tight. Especially
when choosing protocol-specific system parameters, the tightness of a security proof plays an important
role. In the security model for AKE the attacker can actively control all messages sent between the
involved parties and is additionally allowed to reveal secret information such as a long-term secret key
(by corrupting a party), or a session key. The adversary breaks security if it is able to distinguish non-
revealed session keys from random.
Multi-Challenge Security definitions. The standard and well established security notion in the
context of multiple challenges [3,18,20,10] is “Single-Bit Guess” (SBG) security. The blueprint of a SBG
security experiment is as follows. First, the experiment picks a secret random bit b ∈ {0, 1}. Next, the
adversary is allowed to make multiple (up to, say, T ) challenge queries. On each challenge query, the
experiment returns a “real key” if b = 0, and an independent “random key” if b = 1. The adversary wins
if it can guess the challenge bit b with a probability better than 1/2.

In AKE protocols, challenge queries are usually called test queries and non-revealed session keys
can be accessed by making multiple calls to a Test oracle. If b = 0, a query to Test returns the real
challenge key; if b = 1, a query to Test returns an independent random challenge key. This notation
of multi-challenge SBG security for AKE was first formalized in 2019 by Cohn-Gordon et al. [10]. By
conditioning on bit b, SBG security is known to be tightly equivalent to (single-bit) “Real-Or-Random”
(ROR) security, where the adversary has to distinguish a real game (where all challenge keys output by
Test are real) from a random game (where all challenge keys are random). Using the above equivalence,
SBG security precisely captures the intuition that all challenge keys are simultaneously pseudo-random.

Surprisingly, in the first publication on tightly secure AKE protocols in 2015, Bader et al. [1] defined
a different and non-standard “Multi-Bit-Guess” (MBG) AKE security notion. In MBG security, the
experiment picks multiple independent challenge bits b1, . . . , bT and, on the i-th Test query, it returns
a real challenge key if bi = 0 and a random challenge key if bi = 1. That is, each of the T challenge
keys depends on an independent challenge bit bi . The adversary wins if it can guess correctly one of the
T challenge bits bi∗ with a probability better than 1/2. We are not aware of any meaningful multi-bit
ROR security game that is tightly equivalent to MBG security.3 This makes it difficult to provide a good
intuition of what MBG security tries to model.
Choosing a Meaningful Security Model for AKE. SBG and MBG security are asymptotically
equivalent but only imply each other with a security loss of T , the total number of Test queries. Hence,
when considering tightness, one has to carefully choose a meaningful security model.

First off, as already pointed out, SBG security is the standard and well established security notion
in the context of multiple challenges [3,18,20,10]. Cohn-Gordon et al. [10, Section 3] already pointed
out that, in the AKE setting, SBG security tightly composes with symmetric primitives, whereas MBG
security doesn’t. Let us elaborate. AKE is not intended to be used as a stand-alone primitive. Rather,
it is naturally composed with symmetric primitives to establish a secure channel [7,25], for example to
encrypt (e.g., using AES) a message with the session key. Since SBG security is tightly equivalent to
ROR security, it offers precisely the right security interface to switch all challenge keys at once from real
to random. This step allows to infer the privacy of the encrypted messages from the security properties
3 If one tries to apply a similar conditioning argument as in the single-bit case, MBG can be shown equivalent
to a ROR-type security experiment where in the real game (bi∗ = 0) the i∗-th challenge key output by Test
is real and in the random game (bi∗ = 1) it is random. However, the remaining T − 1 keys still depends on the
random bits bi (i 6= i∗): the i-th challenge key is real if bi = 0 and it is random if bi = 1. Hence, about one
half of the challenge keys is expected to be real (the ones with bi = 0) whereas the other half is random, and
the adversary does not have any information on them.
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of the symmetric primitive. MBG security, on the other hand, does not have a meaningful ROR-style
security, which makes it difficult to argue about the privacy of the encrypted messages without relying
on a hybrid argument. In summary, in the context of tightness of AKE protocols, SBG security is a
meaningful notion whereas MBG isn’t.
Previous Results. Previous work on tight AKE protocols by Gjøsteen and Jager [21] and Liu at al. [33]
exclusively concentrated on the MBG model by Bader et al. [1]. We now give a brief overview of existing
AKE protocols in the context of tight SBG security.
– At CRYPTO 2019, Cohn-Gordon et al. [10] presented highly efficient two message AKE protocols

with implicit authentication, in the style of HMQV [27] and similar protocols. Their schemes achieve
a loss of O(N ) in the SBG security model with weak forward secrecy, where N is the number of users.
They also extend the impossibility results from [2] to show that a loss of O(N ) is unavoidable for
many natural protocols (including HMQV [27], NAXOS [29], Kudla-Paterson [28], KEA+ [30], and
more) with respect to typical cryptographic security proofs (so-called simple reductions). Further-
more, since their protocol does not feature explicit authentication, a well-known impossibility result
applies [27,6,35] and their protocol cannot achieve full forward security.

– Diemert and Jager [16] and independently Davis and Günther [15] considered the three message
TLS 1.3 handshake AKE protocol with explicit authentication. Its design follows the standard
“1×KEM+2×SIG” (aka. signed Diffie-Hellman) AKE approach [9,14,21,16,15,33]. TLS 1.3, when in-
stantiated with standardized signatures (e.g., RSA-PSS, RSA-PKCS #1 v1.5, ECDSA, or EdDSA),
has rather non-tight SBG security with full forward security. But when instantiated with tightly
secure signatures in the multi-user setting with adaptive corruptions [1], then SBG security of TLS
1.3 actually becomes tight. Since the TLS 1.3 protocol contains two signatures, the inefficiency of
currently known tightly secure signature schemes [1,21] makes the resulting TLS instantiation very
impractical.

1.1 The Difficulty of Constructing Tightly Secure AKE

Security models for authenticated key exchange are extremely complex, as they consider very strong
adversaries that may modify, drop, or inject messages. Furthermore, usually an adversary may adaptively
corrupt users’ long-term secrets via Corrupt-queries, session keys via Reveal-queries, and sometimes
even ephemeral states of sessions via Rev-State-queries. Security is formalized with multiple Test
queries, where the adversary specifies a session, receives back a real key or a random key, and has to
distinguish these. This complexity makes achieving tight security challenging, particularly because all
the following difficulties must be tackled simultaneously.
The “commitment problem”. As explained in more detail in [21], this problem is the reason why
nearly all security proofs of classical key exchange protocols have a quadratic security loss. Essentially,
the problem is that most AKE protocols have security proofs where a reduction can only extract a
solution to a computationally hard problem if an instance of the problem is embedded into the protocol
messages of the Tested sessions, but at the same time the reduction is not able to answer Reveal
queries for such sessions. The standard way to resolve this is to let the reduction guess the Tested
session, and to embed an instance of a computationally hard problem only there. However, this incurs a
significant security loss. A tight reduction has to be able to respond to both Test and Reveal queries
for every session.
The problem of long-term key reveals. A Corrupt query in typical AKE security models enables
the adversary to obtain the long-term key of certain users. If we want to avoid a security loss that results
from guessing corrupted and non-corrupted parties, then we must be able to construct a reduction that
“knows” valid-looking long-term keys for all users throughout the security experiment. However, this is
a major difficulty, for instance, in protocols where the long-term keys are key pairs for a digital signature
scheme. The difficulty is that in the security proof we would have to describe a reduction that is able to
extract a solution to a computationally hard problem from a forged signature, even though it “knows” the
signing key and thus is able to compute a valid signature itself. Hence, in order to obtain a tightly-secure
AKE protocol, one needs to devise a way such that a reduction always knows all secret keys, yet is able
to argue that an adversary is, e.g., not able to forge signatures.

In order to resolve this issue, previous works [1,21] constructed signature schemes based on non-
interactive OR-proof systems, which enable a reduction to “know” one out of two signing keys. It is
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argued that the adversary will forge a signature with respect to the other, unknown key with sufficiently
high probability. However, these signature schemes are much less efficient than classical ones, and thus
impose a performance penalty on the protocols.
The problem of ephemeral state reveals. Yet another difficulty arises when the security model
allows ephemeral state reveals. Previous works on tightly-secure AKE did not consider this very strong
security notion at all, therefore we face (and solve) this problem for the first time. From a high-level
perspective, the issue is similar to the long-term key reveal problem, except that ephemeral states are
considered. In order to achieve tightness, the reduction must be able to output valid-looking states for
all sessions. Note that this includes even Tested sessions, where ephemeral states may be revealed when
parties are not corrupted.

1.2 Main Contributions

Summarizing the previous paragraphs, we can formulate the following natural questions related to tightly
secure AKE:
Q1: Do there exist implicitly authenticated two-message AKEs with tight SBG security, state reveals,

and weak forward security?
Q2: Do there exist explicitly authenticated two-message AKEs with tight SBG security, state reveals,

and full forward security, with one single signature?
In this work, we answer the two questions to the positive. Following [4,10], we consider SBG secu-
rity, allowing adaptive corruptions of long-term secrets, adaptive reveals of session keys, and multiple
adaptive Test queries. Our model also captures (weak and full) forward security (FS), and prevents
key-compromise impersonation and reflection attacks. In comparison to prior work on tightly-secure key
exchange [1,21,10,16,15], we consider a model which additionally allows to reveal some internal state
information.
Our DDH-Based AKE Protocols. Our two protocols instantiated from DDH are given in Figure
1. AKEwFS,DDH is an implicitly-authenticated two-message protocol AKEwFS,DDH in the sense of [27]. It
requires the exchange of only five group elements in total, and thus is the first efficient implicitly-
authenticated protocol with weak FS that achieves full tightness.

Our second protocol AKEFS,DDH achieves full FS. Instead of using the standard “1×KEM+2×SIG”
approach, it replaces one of the signatures with a more efficient MAC and an additional KEM ciphertext,
which yields a “2×KEM+1×SIG+1×MAC” construction. When instantiated at “128-bit security” with
the most efficient tightly-secure signatures of [21],4 the communication complexity is 448 bytes, again
with ephemeral state reveals. In comparison, the previously most efficient tightly and fully forward-secure
protocol with SBG security TLS∗ (which is TLS 1.3 instantiated with the tightly-secure signature of [21])
requires three messages, the transmission of 704 bytes and does not allow state reveals. See Figure 2 for
a comparison of our protocols with previous works. Note that the communication bottleneck in all full
FS protocols is the number of signatures. For completeness the figure also list previous protocols with
tight MBG security [21,33].
Generic constructions of AKE from NCKE. Our main technical tool is a new approach to achieve
a tight reduction for authenticated key exchange protocols. Our starting point is an extension of (receiver)
non-committing encryption (NCE) [8,34] to non-committing key encapsulation (NCKE) in the multi-user
setting with corruptions. We construct an NCKE scheme in the random oracle model from any smooth
projective hash proof system (HPS) [11]. If the HPS’ subset membership problem (SMP) is hard in the
multi-instance setting, then the NCKE scheme is also tightly secure in our multi-user setting. We provide
two such HPS, one from the DDH assumption, and another one from a subgroup assumption over groups
of unknown order. The construction allows us to address the commitment problem described above.

We give a generic construction of an implicitly authenticated two-message AKE protocol AKEwFS
with weak forward security from any NCKE scheme, whose security is tightly based on the multi-user
security of the underlying NCKE scheme. Furthermore, we give a generic construction of an explicitly
authenticated two-message AKE protocol AKEFS with perfect forward security by adding a tightly-secure
signature scheme and a message authentication code (MAC) to our first construction, see Figure 3.
4 The signatures of [21] consist of 2 group elements, 4 elements in Zp and 2 hashes in {0, 1}κ. At “128-bit
security” this corresponds to 256 bytes per signature.
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Fig. 1. The two message protocols AKEwFS,DDH (without the gray boxes) and AKEFS,DDH (including the gray boxes),
where K is the resulting session key. We define context := (A,B,X , vk , gs

1, gs
2, gt

1, gt
2, σ, π ). H,HA,HB,HX and

F are hash functions.

Protocol Comm.
(G, {0, 1}κ, Sig) Bytes #Msg. Assumption Auth. Model State

Reveal
Security

Loss

Protocols with full forward security

TLS∗ [16,15] (2, 4, 2) 704 3 Strong-DH + DDH expl. SBG no O(1)
GJ [21] (2, 1, 2) 608 3 DDH expl. MBG no O(1)
LLGW [33] (3, 0, 2) 608 2 DDH expl. MBG no O(1)
AKEFS,DDH (Fig. 1) (5, 1, 1) 448 2 DDH expl. SBG yes O(1)

Protocols with weak forward security

HMQV [27] (2, 0, 0) 64 2 CDH impl. SBG yes O(TN 2`2)
CCGJJ [10] (2, 0, 0) 64 2 Strong-DH impl. SBG no O(N )
CCGJJTwin [10] (3, 0, 0) 96 2 CDH impl. SBG no O(N )
AKEwFS,DDH (Fig. 1) (5, 0, 0) 160 2 DDH impl. SBG yes O(1)

Fig. 2. Comparison of AKE protocols over a group G, where N refers to the number of parties, ` to the number
of sessions per party and T is the number of test queries. TLS∗ refers to the TLS 1.3 handshake, instantiated with
the tightly-secure signatures of [21]. The column Comm. counts the communication complexity of the protocols
in terms of the number of group elements, hashes, and signatures. The column Model lists the AKE security
model and distinguishes between multi-bit guessing (MBG) and the single-bit-guessing (SBG) security.

Thus, we require only a single signature which is particularly useful for tightly-secure key exchange,
because known constructions of suitable tightly-secure signature schemes [1,21,24] have relatively large
signatures and replacing one signature with a MAC significantly improves the computational efficiency
and communication complexity of the protocol.5

All these generic constructions leverage NCKE in order to resolve the technical difficulties in con-
structing tightly-secure AKE protocols described before.
Handling Ephemeral State Reveals. Our protocols are secure against ephemeral state reveals. We
construct the first tightly-secure protocols to achieve this. Note that this requires us to deal with the
situation that the reduction must “know” valid ephemeral states for all sessions, even tested sessions. To
this end, we encrypt the state information with a symmetric long-term key. An adversary now needs to
query both long-term secret key and ephemeral state to reveal the secret state information, similarly to
the approach used in the NAXOS protocol [29]. While the idea of achieving security against ephemeral
state reveals by relying on the security of long-term keys was used before [29,5,37,19], the approach to
simply encrypt the state is new. It avoids the expensive re-computation of protocol messages required
in prior generic approaches, which makes it particularly efficient. Also, previous work did not focus on
tightness and it is unclear if a tight proof can be achieved in an even stronger security model which
requires to reveal the randomness.

Our approach does not work generically, e.g., it cannot be applied to the protocols in [21,10], so we
have to design our protocols such that they are compatible. This is due to the fact that in both works,
5 [32] showed how to generically avoid signatures in forward-secure AKE protocols, but at the cost of additional
messages.
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HPS
m-SMP

KEM
N -NCKE

AKEwFS
IND-wFS-St

SIG
N -SUF-CMA

AKEFS
IND-FS-St

Section 3 Section 5

+

Section 6

Fig. 3. Overview of our transformations, where N is the maximum number of users in the NCKE security game
and in the SUF-CMA security game. The subset membership problem of HPS is m-fold for m = N · q, where q is
the maximum number of challenge queries in the NCKE security game.

the state is a secret DH exponent which is implicitly determined by rerandomizing the CDH (or DDH)
challenge and then is embedded in multiple sessions. Thus, the reduction is able to extract the solution
independently of which session is the test session, but it also does not know any of the secret exponents,
which the adversary could reveal for non-test sessions.

1.3 Related Work and Open Problems

Concurrent and independent work of Liu et al. [33] also proposed a tightly secure 2-message AKE with
full forward security. Compared to our protocols, they do not consider state reveal attacks and their
proofs only hold in the MBG security model. Their AKE construction LLGW follows the well known
1×KEM+2×SIG approach, meaning that even neglecting the issues with the MBG security model, it is
still considerably less efficient than ours (c.f. Fig. 2). The main novelty of [33] is the new KEM security
notion of (multi-bit) “IND-mCPA with adaptive reveals” that gives them the handle to prove tight
MBG security. It is a natural question whether this KEM security notion can be adapted to a single-bit
notion such that the resulting AKE protocol achieves tight SBG (rather than MBG) security. This is in
particular interesting since IND-mCPA KEMs with adaptive reveals can be instantiated in the standard
model, whereas our NCKE notion seem to inherently rely on random oracles. More concretely this raises
the question whether (variants of) [33] can also be proved in the SBG model, without relying on random
oracles.

2 Preliminaries

For an integer n, [n] denotes the set {1, ...,n}. For a set S , s $← S denotes that s is sampled uniformly
and independently at random from S . y ← A(x1, x2, ...) denotes that on input x1, x2, ... the probabilistic
algorithm A returns y. AO denotes that algorithm A has access to oracleO. We will use code-based games
as introduced in [36]. An adversary is a probabilistic algorithm. Pr[GA ⇒ 1] denotes the probability that
the final output GA of game G running adversary A is 1.

3 Multi-Receiver Non-Committing Key Encapsulation

In this section, we introduce Multi-Receiver Non-Committing Key Encapsulation (NCKE). We will use
this concept to resolve the “commitment problem” described in the introduction, which often makes
proofs for multi-party protocols with adaptive corruptions non-tight, as for example AKE protocols.
Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of three algorithms. The
key generation algorithm Gen outputs a key pair (pk, sk), where pk is the public key and sk the secret
key. The encapsulation algorithm inputs a public key pk and outputs a ciphertext c and a key K from
the key space K, where c is called an encapsulation of K . The deterministic decapsulation algorithm
inputs the secret key sk and a ciphertext c and outputs K .

By µ we denote the collision probability of the key generation algorithm. In particular,

Pr[(pk, sk)← Gen, (pk′, sk′)← Gen : pk = pk′] ≤ 2−µ .

We denote the min-entropy of the encapsulation algorithm Encaps by γ(pk) := − log maxc∈C Pr[c =
Encaps(pk)]. We say KEM is γ-spread if for all (pk, sk)← Gen : γ(pk) ≥ γ. This implies that for all c ∈ C:

Pr[c = Encaps(pk)] ≤ 2−γ .
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Security. Following [34], we introduce a security definition of Multi-Receiver Non-Committing Key
Encapsulation (NCKE) for a key encapsulation mechanism KEM in the random oracle model, i. e., the
KEM algorithms have access to a random oracle H : {0, 1}∗ → {0, 1}κ, indicated by EncapsH . Our
definition is relative to a simulator Sim = (SimGen,SimEncaps,SimHash). The simulated key generation
algorithm SimGen generates a key pair (pk, sk). The simulated encapsulation algorithm SimEncaps takes
both the public and private key and outputs a ciphertext c. The simulated hash algorithm SimHash inputs
the key pair as well as three sets (used for bookkeeping) and deterministically computes a simulated hash
value.

We define the two games NCKEreal and NCKEsim in Figure 4 where we consider N receivers each
holding a key pair (pkn, skn). In the NCKEreal game, the original Encaps algorithm is used. We give
each user an individual hash function Hn such that keys are computed independently. (In general, this
can be implemented by using the user’s public key and identity as input to the hash function as well,
where collisions have to be considered.) In the NCKEsim game, the SimEncaps algorithm is used to
compute the ciphertexts. Keys are chosen uniformly at random. The adversary may also adaptively
corrupt some receivers. We require that ciphertexts of corrupted receivers always decapsulate to the key
output by Encaps, which is modeled by the SimHash algorithm. Therefore, if the receiver is corrupted,
the algorithm takes sets CK, D and H, where the first one stores all challenge ciphertexts and keys
output to the adversary, the second one stores all decapsulation queries and the third one stores all hash
queries which have been issued so far. Thus, the SimHash algorithm can answer future queries based on
everything that is known to the adversary. If the receiver is not corrupted, set C is used instead of CK.
This set stores only challenge ciphertexts and thus a hash value is computed independently of previous
challenge keys.

The goal of an adversary A is to distinguish between the real KEM algorithms used in game NCKEreal
and the simulated algorithms used in game NCKEsim. This is captured in Definition 1. Note that the
non-committing property is due to the SimHash algorithm. In particular, the SimHash algorithm ensures
that a (uniformly random) challenge key can be explained by the corresponding ciphertext generated by
SimEncaps as soon as the receiver is corrupted.

Definition 1 (N -Receiver Non-Committing Key Encapsulation). We define games NCKEreal
and NCKEsim as in Figure 4, where N is the number of users. The simulator Sim = (SimGen,SimEncaps,
SimHash) is defined relative to KEM and is used in NCKEsim. The advantage of an adversary A against
KEM and Sim is defined as

AdvN-NCKE
KEM,Sim(A) :=

∣∣∣Pr[NCKEAreal ⇒ 1]− Pr[NCKEAsim ⇒ 1]
∣∣∣ .

When we write NCKE, we mean NCKE-CCA, where the adversary is allowed to access a decapsulation or-
acle. Sometimes we will explicitly write NCKE-CCA to differentiate from NCKE-CPA, where the adversary
cannot issue decapsulation queries.

We stress that compared to the standard definition of non-committing encryption in the random
oracle model (e.g., [34]), Definition 1 is for KEMs (rather than encryption), only considers receiver
corruptions (rather than sender and receiver corruptions), and considers multiple receivers (rather than
one single receiver).
Instantiations from Hash Proof Systems.We recall the definition of hash proof systems by Cramer
and Shoup [11] and properties defined in [26].
Smooth Projective Hashing. Let Y and Z be sets and X ⊂ Y a language. Let Λsk : Y → Z be a
hash function indexed with sk ∈ SK, where SK is a set. A hash function Λsk is projective if there exists a
projection µ : SK → PK such that µ(sk) ∈ PK defines the action of Λsk over X . In particular, for every
c ∈ X , Z = Λsk(c) is uniquely determined by µ(sk) and c. However, there is no guarantee for c ∈ Y \ X
and it may not be possible to compute Λsk(c) from µ(sk) and C . A projective hash function is k-entropic
if for all c ∈ Y \ X it holds that H∞(Λsk(c) | pk) ≥ k, where pk = µ(sk) for sk $← SK.
Hash Proof System. A hash proof system HPS = (Par,Priv,Pub) consists of three algorithms. The
randomized algorithm Par generates parametrized instances of par = (group,Z,Y,X ,PK,SK, Λ(·) : Y →
Z, µ : SK → PK), where group may contain additional structural parameters. The deterministic public
evaluation algorithm Pub inputs the projection key pk = µ(sk), c ∈ X and a witness r of the fact that
c ∈ X and returns Z = Λsk(c). The deterministic private evaluation algorithm Priv takes sk ∈ SK and
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NCKEreal and NCKEsim

00 for n ∈ [N ]
01 (pkn , skn)← Gen
02 (pkn , skn)← SimGen
03 opened[n] := false
04 CKn := ∅, Cn := ∅, Dn := ∅, Hn := ∅
05 b′ ← AEncaps,Decaps,Open,H1,...,HN (pk1, ..., pkN )
06 return b′

Hn(M ) �n ∈ [N ]
07 if ∃h s. t. (M , h) ∈ Hn return h
08 h $← {0, 1}κ

09 if opened[n]
10 h ← SimHash(pkn , skn , CKn ,Dn ,Hn ,M )
11 else
12 h ← SimHash(pkn , skn , Cn ,Dn ,Hn ,M )
13 Hn := Hn ∪ {(M , h)}
14 return h

Encaps(n ∈ [N ])
15 (c,K)← EncapsHn (pkn)
16 c ← SimEncaps(pkn , skn)
17 K $← K
18 CKn := CKn ∪ {(c,K)}
19 Cn := Cn ∪ {(c,⊥)}
20 return (c,K)

Decaps(n ∈ [N ], c)
21 if ∃K s. t. (c,K) ∈ CKn
22 return ⊥
23 K := DecapsHn (skn , c)
24 Dn := Dn ∪ {c}
25 return K

Open(n ∈ [N ])
26 opened[n] := true
27 return skn

Fig. 4. Real and simulated game for N -receiver non-committing key encapsulation in the random oracle model.

returns Λsk(c) without knowing a witness. Furthermore, we assume that µ is efficiently computable and
that there are efficient algorithms for sampling c ∈ X uniformly together with a witness r , sampling
c ∈ Y uniformly and checking membership in Y.
(m-fold) Subset Membership Problem. We define the m-fold subset membership problem for HPS
which requires to distinguish m ciphertexts uniformly drawn from X from m ciphertexts uniformly drawn
from Y \ X . The advantage of an adversary A is defined as

Advm−SM
HPS (A) := |Pr[A(Y,X , c1, ..., cm)⇒ 1]− Pr[A(Y,X , c′1, ..., c′m)⇒ 1]| ,

where c1, ..., cm
$← X and c′1, ..., c′m $← Y \ X .

N -Receiver NCKE from HPS. We use a k-entropic hash proof system HPS = (Par,Pub,Priv) with
m-fold subset membership problem and a random oracle H : {0, 1}∗ → {0, 1}κ in order to construct a
key encapsulation algorithm KEM and a simulator Sim as shown in Figures 5 and 6. The encapsulation
algorithm Encaps samples an element c from X and a witness r . It runs the public evaluation algorithm
and computes the key K as H(c,Pub(pk, c, r)). The decapsulation algorithm Decaps uses the result of
the private evaluation algorithm Priv as input to H to compute K . Instead of sampling an element from
X , the SimEncaps algorithm samples an element c uniformly at random from Y \ X and only returns c.
The SimHash algorithm takes as input three sets E ,D,H, where E ∈ {C, CK}, and the value M = (c,Z )
chosen by the adversary. If there exists a key K such that (c,K ) ∈ E (note that for E = C this will never
be true) and the adversary’s input to H satisfies Priv(sk, c) = Z , then the output value h is set to K .

Gen(par)
00 sk $← SK
01 pk := µ(sk)
02 return (pk, sk)

EncapsH(pk)
03 c $← X with witness r
04 K := H(c,Pub(pk, c, r))
05 return (c,K)

DecapsH(sk, c)
06 K := H(c,Priv(sk, c))
07 return K

Fig. 5. Key encapsulation mechanism KEM = (Gen,Encaps,Decaps).

SimEncaps(pk, sk)
00 c $← Y \ X
01 return c

SimHash(pk, sk, E ,D,H,M )
02 (c,Z) := M
03 if ∃K s. t. (c,K) ∈ E and Priv(sk, c) = Z
04 h := K
05 else
06 h $← {0, 1}κ
07 return h

Fig. 6. Simulator Sim = (SimGen, SimEncaps, SimHash) for KEM, where SimGen = Gen. List E is either CK or C.
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Theorem 1 (k-entropic HPS with (N · qE)-fold SMP ⇒ N -NCKE). For any N-NCKE adversary
A against KEM and Sim that issues at most qE queries to Encaps, qD queries to Decaps and at most
qH queries to each random oracle Hn for n ∈ [N ], there exists an adversary B against the (N · qE)-fold
subset membership problem of HPS such that

AdvN-NCKE
KEM,Sim(A) ≤ Adv(N ·qE)-SM

HPS (B) + N · qE · qH
2k + N · qE · qD

|Y \ X |
,

where HPS is k-entropic, Y is the set of all ciphertexts and X is the set of valid ciphertexts.

Proof. Let A be an adversary against KEM and Sim in the NCKE games. Consider the sequence of games
in Figure 7.
Game G0. This is the original NCKEreal game, hence

Pr[GA0 ⇒ 1] = Pr[NCKEAreal ⇒ 1] .

Game G1. In game G1, the Encaps oracle is modified in a way that it uses the private evaluation
algorithm to compute K in line 22. It holds that Pub(pk, c, r) = Priv(sk, c). Thus, this does not change
the adversary’s view and

Pr[GA1 ⇒ 1] = Pr[GA0 ⇒ 1] .

Game G2. The Encaps oracle now chooses the ciphertext from Y \ X in line 17. We claim that∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ Adv(N ·qE)-SM

HPS (B) . (1)

In Figure 8, we construct adversary B against the (N · qE)-fold subset membership problem. B inputs
sets Y,X and ciphertexts cn,k , where n ∈ [N ], k ∈ [qE ]. If B’s input values are elements from X , then
B perfectly simulates G1. Otherwise, if the input elements are from Y \ X , B simulates G2. This yields
Equation 1.
Game G3. In game G3, we raise flag BAD in line 19 and abort if the Encaps oracle chooses a ciphertext
that was issued to the Decaps oracle before. As a challenge ciphertext is chosen uniformly at random
from Y \X , the probability that BAD is raised for one specific challenge ciphertext is at most qD/|Y \X |.
Union bound over all challenge ciphertexts yields

∣∣Pr[GA3 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ ≤ Pr[BAD] ≤ N · qE · qD

|Y \ X |
.

Game G4. In game G4, we use internal hash functions H′n to compute K in line 23. These are not directly
accessible to the adversary and independent of the random oracle as long as the secret key has not been
opened. However, if the adversary opens the secret key of user n, then it can simply compute the value
Z = Priv(skn, c) for any challenge ciphertext c of that user. This is why we have to patch the random
oracle and output H′n(c,Z ) whenever A issues such a query (lines 09 and 10).

The only possibility for A to notice the difference is when it queries Hn on (c,Z = Priv(skn, c)) before
skn is opened, where c is a ciphertext output by Encaps. Here, we use the fact that HPS is k-entropic
and show that ∣∣Pr[GA4 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ N · qE · qH
2k .

Using a hybrid argument, we modify the computation of K using function H′n independent of the random
oracle as long as the adversary does not see the corresponding skn. Therefore, we parameterize the hybrids
with j, where j ∈ [N · qE ] denotes that K is replaced in the first j challenge ciphertexts.

In the following, we consider two consecutive hybrids, where the only difference is that the compu-
tation of K in the j-th query is modified. Let pkn∗ be the public key of the corresponding user and
(c∗,K∗) the challenge ciphertext. In hybrid Hj−1, the adversary observes (c∗,K∗ = Hn∗(c∗,Z∗)), where
c∗ ∈ Y \ X and Z∗ = Priv(skn∗ , c∗). In hybrid Hj , the key K is computed with H′n∗ independent of Hn∗

assuming that the adversary has not opened skn∗ . Thus, in order to notice the difference, the adversary
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GAMES G0-G5
00 for n ∈ [N ]
01 skn

$← SK
02 pkn := µ(skn)
03 opened[n] := false
04 CKn := ∅
05 b′ ← AEncaps,Decaps,Open,H1,...,HN (pk1, ..., pkN )
06 return b′

Hn(c,Z) �n ∈ [N ]
07 if ∃h s. t. (c,Z , h) ∈ Hn return h
08 h $← {0, 1}κ �G0-G3
09 if opened[n] and ∃K s. t. (c,K) ∈ CKn

and Priv(skn , c) = Z �G4-G5
10 h := H ′n(c,Z) �G4
11 h := K �G5
12 else �G4-G5
13 h $← {0, 1}n �G4-G5
14 Hn := Hn ∪ {(c,Z , h)}
15 return h

Encaps(n ∈ [N ])
16 c $← X with withness r �G0-G1
17 c $← Y \ X �G2-G5
18 if c ∈ Dn �G3-G5
19 BAD := true �G3-G5
20 abort �G3-G5
21 K := Hn(c,Pub(pk, c, r)) �G0
22 K := Hn(c,Priv(sk, c)) �G1-G3
23 K := H′n(c,Priv(sk, c)) �G4
24 if ∃K ′ s. t. (c,K ′) ∈ CKn �G5
25 K := K ′ �G5
26 else �G5
27 K $← {0, 1}κ �G5
28 CKn := CKn ∪ {(c,K)}
29 return (c,K)

Decaps(n ∈ [N ], c)
30 if ∃K s. t. (c,K) ∈ CKn
31 return ⊥
32 K := Hn(c,Priv(skn , c))
33 Dn := Dn ∪ {c}
34 return K

Open(n ∈ [N ])
35 opened[n] := true
36 return skn

Fig. 7. Games G0-G5 for the proof of Theorem 1. H′n in line 23 is used as an internal hash function which is not
directly accessible to the adversary.

B(Y,X , (cn,k)n∈[N],k∈[qE ])
00 for n ∈ [N ]
01 skn

$← SK
02 pkn := µ(skn)
03 opened[n] := false
04 CKn := ∅
05 cnt[n] := 0
06 b′ ← AEncaps,Decaps,Open,H1,...,HN (pk1, ..., pkN )
07 return b′

Encaps(n ∈ [N ],m)
08 j := cnt[n]++
09 c := cn,j
10 K := Hn(c,Priv(skn , c))
11 return (c,K)

Fig. 8. Adversary B against the (N · qE)-fold subset membership problem for the proof of Theorem 1, where Hn
for n ∈ [N ], Decaps and Open are defined as in G1 of Fig. 7.

must query Hn∗ on (c∗,Z∗). As for every c ∈ Y \ X , we have that H∞(Priv(skn∗ , c∗) | pkn∗) ≥ k, we can
bound the probability of this event by the number of random oracle queries:∣∣Pr[HAj ⇒ 1]− Pr[HAj−1 ⇒ 1]

∣∣ ≤ qH
2k .

Note that a query (n∗, c) to Decaps, where c 6= c∗, will not reveal any additional information because
the output of Hn∗ will be different anyway.
Game G5. In game G5, the Encaps oracle chooses key K uniformly at random in line 27. If the same
ciphertext as in a previous challenge is generated, the key from that challenge will be used again to
maintain consistency (see lines 24 and 25). In addition to that, the random oracle has to be modified
again so that it now outputs the same K as chosen before in case a secret key has already been opened and
Z is computed correctly (see line 11). The adversary’s view does not change as Hn(c,Priv(skn, c)) = K
for every (c,K ) ∈ CKn if skn is opened. If skn is not opened, K is independent of Hn in both games G4
and G5. Hence,

Pr[GA5 ⇒ 1] = Pr[GA4 ⇒ 1] .
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Finally, observe that the last game G5 is the original NCKEsim game. Hence,

Pr[GA5 ⇒ 1] = Pr[NCKEAsim ⇒ 1] .

Collecting all probabilities yields the bound stated in Theorem 1. ut

We will give two concrete instantiations, one based on the DDH assumption (Section 7.1) and one
based on the higher residuosity assumption (Appendix A).

4 Security Model for Two-Message Authenticated Key Exchange

A two-message key exchange protocol AKE = (GenAKE, InitI,DerR,DerI) consists of four algorithms which
are executed interactively by two parties as shown in Figure 9. We denote the party which initiates the
session by Pi and the party which responds to the session by Pr . The key generation algorithm GenAKE
outputs a key pair (pk, sk) for one party. The initialization algorithm InitI inputs the initiator’s long-term
secret key ski and the responder’s long-term public key pkr and outputs a message I and a state st.
The responder’s derivation algorithm DerR takes as input the responder’s long-term secret key skr , the
initiator’s long-term public key pki and a message I . It computes a message R and a session key K .
The initiator’s derivation algorithm DerI inputs the initiator’s long-term secret key ski , the responder’s
long-term public key pkr , a message R and a state st. It outputs a session key K .

Party Pi (pki , ski) Party Pr (pkr , skr)

(I , st)← InitI(ski , pkr)

(R,K)← DerR(skr , pki , I )

K := DerI(ski , pkr ,R, st)

I

R

st

Fig. 9. Running a key exchange protocol between two parties.

Note that in contrast to the initiating party Pi , the responding party Pr will not be required to save
any (secret) state information besides the session key K . The session key can be derived immediately
after receiving the initiator’s message.

Following [23], we define a game-based security model for authenticated key exchange using pseu-
docode. Our models for two different levels of security are given in Figure 10. We consider N parties
P1, ...,PN with long-term key pairs (pkn, skn), n ∈ [N ]. Each session between two parties has a unique
identification number sID and variables which are defined relative to sID:
– init[sID] ∈ [N ] denotes the initiator of the session.
– resp[sID] ∈ [N ] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator or the responder com-

putes the session key.
– I [sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the state information that is stored by the initiator.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles SessionI and SessionR,
where the first one starts a session of type “In” and the second one of type “Re”. Following [27,29], these
oracles also take the intended peer’s identity as input. In order to complete the initiator’s session, the
oracle DerI has to be queried. Furthermore, the adversary has access to oracles Corrupt,Reveal
and Rev-State to obtain secret information. As the responder can directly compute the key in a two-
message protocol, we only require the initiator to store a state. The state contains information that is
needed to compute the session key when the response is received, so it will consist of public and private
information. We do not require to reveal the full randomness as in the eCK model [29]. A Rev-State
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GAMES IND-wFS-Stb and IND-FS-Stb

00 cnt := 0 �session counter
01 S := ∅ �set of test sessions
02 for n ∈ [N ]
03 (pkn , skn)← GenAKE
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return 0 �session not fresh
08 if Valid(sID∗) = false
09 return 0 �no valid attack
10 return b′

SessionR((i, r) ∈ [N ]2, I )
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 peerCorrupted[sID] := corrupted[i]
16 (R,K)← DerR(skr , pki , I )
17 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
18 return (sID,R)

Test(sID)
19 if sID ∈ S return ⊥ �already tested
20 if sKey[sID] = ⊥ return ⊥
21 S := S ∪ {sID}
22 K∗0 := sKey[sID]
23 K∗1 $← K
24 return K∗b

SessionI((i, r) ∈ [N ]2)
25 cnt ++
26 sID := cnt
27 (init[sID], resp[sID]) := (i, r)
28 type[sID] := “In”
29 (I , st)← InitI(ski , pkr)
30 (I [sID], state[sID]) := (I , st)
31 return (sID, I )

DerI(sID,R)
32 if state[sID] = ⊥
33 return ⊥ �not initialized
34 if sKey[sID] 6= ⊥
35 return ⊥ �no re-use
36 (i, r) := (init[sID], resp[sID])
37 st := state[sID]
38 peerCorrupted[sID] := corrupted[r ]
39 K := DerI(ski , pkr ,R, st)
40 (R[sID], sKey[sID]) := (R,K)
41 return ε

Reveal(sID)
42 revealed[sID] := true
43 return sKey[sID]

Rev-State(sID)
44 if type[sID] 6= “In” return ⊥
45 revState[sID] := true
46 return state[sID]

Corrupt(n ∈ [N ])
47 corrupted[n] := true
48 return skn

Fig. 10. Games IND-wFS-Stb and IND-FS-Stb for AKE, where b ∈ {0, 1}. A has access to oracles O := {SessionI,
SessionR,DerI,Reveal,Rev-State,Corrupt,Test}. Helper procedures Fresh and Valid are defined in Fig-
ure 11. If there exists any test session which is neither fresh nor valid, the game will return 0.

query may be issued at any time. We use the following boolean values to keep track of which queries the
adversary made:
– corrupted[n] denotes whether the long-term secret key of party Pn was given to the adversary.
– revealed[sID] denotes whether the session key was given to the adversary.
– revState[sID] denotes whether the state information of that session was given to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted at the time the session

key is computed, which is important for forward security.
The adversary can forward messages between sessions or modify them. By that, we can define the
relationship between two sessions:
– Matching Session: Two sessions sID, sID′ match if the same parties are involved (init[sID] =

init[sID′] and resp[sID] = resp[sID′]), the messages sent and received are the same (I [sID] = I [sID′]
and R[sID] = R[sID′]) and they are of different types (type[sID] 6= type[sID′]).

– Partially Matching Session: A session sID′ of type “In” is partially matching to session sID of
type “Re” if the initial messages are the same (I [sID] = I [sID′]).

Finally, the adversary is given access to oracle Test which will return either the session key of the
specified session or a uniformly random key. In our security models, we allow multiple test queries. We
store test sessions in a set S. In general, the adversary can disclose the complete interaction between
two parties by querying the long-term secret keys, the state information and the session key. However,
for each test session, we require that the adversary does not issue queries such that the session key can
be trivially computed. We define the properties of freshness and validity which all test sessions have to
satisfy:
– Freshness: A (test) session is called fresh if the session key was not revealed. Furthermore, if there

exists a matching session, we require that this session’s key is not revealed and that this session is
not also a test session.
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Fresh(sID∗)
00 (i∗, r∗) := (init[sID∗], resp[sID∗])
01 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I [sID],R[sID]) = (I [sID∗],R[sID∗])

∧ type[sID] 6= type[sID∗]} �matching sessions
02 if revealed[sID∗] or (∃sID ∈M(sID∗) : revealed[sID] = true)
03 return false �A trivially learned the test session’s key
04 if ∃sID ∈M(sID∗) s. t. sID ∈ S
05 return false �A also tested a matching session
06 return true

Valid(sID∗)
07 (i∗, r∗) := (init[sID∗], resp[sID∗])
08 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I [sID],R[sID]) = (I [sID∗],R[sID∗])

∧ type[sID] 6= type[sID∗]} �matching sessions
09 P(sID∗) := {sID | I [sID] = I [sID∗] ∧ type[sID] = “In” ∧ type[sID] 6= type[sID∗]} �partially matching sessions
10 for attack ∈ Table 1 Table 2
11 if attack = true return true
12 return false

Fig. 11. Helper procedures Fresh and Valid for games IND-wFS-St and IND-FS-St defined in Figure 10. Proce-
dure Fresh checks if the adversary performed some trivial attack. In procedure Valid, each attack is evaluated
by the set of variables shown in Table 1 (IND-wFS-St) or Table 2 (IND-FS-St) and checks if an allowed attack
was performed. If the values of the variables are set as in the corresponding row, the attack was performed, i. e.
attack = true, and thus the session is valid.

– Validity: A (test) session is called valid if it is fresh and the adversary performed any attack which is
defined in the security model. We capture this with attack tables (cf. Tables 1 and 2). A description
of how to read the tables is given below.

Attack Tables. All attacks are defined using variables to indicate which queries the adversary may (not)
make. We consider three dimensions covering all possible combinations of reveal queries the adversary
can make:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the responder’s side (type[sID∗] =“Re”),
– all combinations of long-term secret key and state reveals (corrupted and revState variables), also

taking into account when a corruption happened (peerCorrupted),
– whether the adversary acted passively (matching session), partially active (partially matching session)

or actively (no matching session).

This yields a full table of 24 attacks (cf. Table 3 in Appendix B), in particular capturing key com-
promise impersonation (KCI) and maximal exposure (MEX) attacks. An attack was performed if the
variables are set to the corresponding values in the table. However, when considering two-message proto-
cols, where the responder’s side does not have a state, and we only consider weak forward security, some
of the attacks are redundant. Thus, we obtain distilled tables. We exclude trivial attacks, e.g., the generic
attack on two-message AKE protocols with state-reveals described in [31]. Therefore, the adversary is
not allowed to obtain the state of a partially matching session. Also note that by definition, a partially
matching session for a two-message protocol can only be of type “Re”. Table 1 is the distilled table used
for the IND-wFS-St security game and Table 2 is used for the IND-FS-St security game. A more detailed
justification on how the distilled tables are obtained by pointing out trivial attacks is given in Appendix
B. Note that the numbering of attacks in the distilled tables is inherited from the full table.

However, if the protocol does not use appropriate randomness, it should not be considered secure in
our model. Thus, if the adversary is able to create more than one (partially) matching session to a test
session, it may also run a trivial attack. We model this in row (0) of Tables 1 and 2.
Example. If the test session is an initiating session (type[sID∗] =“In”), the state was not revealed
(revState[sID∗] = false) and there is a matching session (|M(sID∗)| = 1), then row (1∨2) will eval-
uate to true. In this scenario, the adversary is allowed to query both long-term secret keys.

For all test sessions, at least one attack has to evaluate to true. Then, the adversary wins if it
distinguishes the session keys from uniformly random keys which it obtains through queries to the Test
oracle.
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(0) multiple partially matching sessions – – – – – – – > 1
(1∨2) (long-term, long-term) – – – F F 1 – –
(7∨8) (state, long-term) F – – – – 1 – –
(10) (long-term, long-term) – – “Re” F n/a 0 F 1
(16) (state, long-term) F – “Re” F n/a 0 – 1
(19) (state, state) F F “In” – n/a 0 n/a 0
(21) (long-term, state) – F “In” F n/a 0 n/a 0
(24) (state, long-term) F – “Re” F n/a 0 n/a 0

Table 1. Distilled table of attacks for wFS adversaries against two-message protocols. This table is obtained
from Table 3 in Section B by using that responders do not have a state and that we are considering weak forward
security. The numbering of attacks is inherited from Table 3. An attack is regarded as an AND conjunction of
variables with specified values as shown in the each line, where “–” means that this variable can take arbitrary
value. F means “false” and “n/a” indicates that there is no state which can be revealed as no (partially) matching
session exists.
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(0) multiple partially matching sessions – – – – – – – – > 1
(1∨2) (long-term, long-term) – – – – F F 1 – –
(7∨8) (state, long-term) F – – – – – 1 – –
(10) (long-term, long-term) – – F “Re” F n/a 0 F 1
(16) (state, long-term) F – – “Re” F n/a 0 – 1
(17) (long-term, long-term) – – F “In” F n/a 0 n/a 0
(18) (long-term, long-term) – – F “Re” F n/a 0 n/a 0
(23) (state, long-term) F – F “In” – n/a 0 n/a 0

Table 2. Distilled table of attacks for full FS adversaries against two-message protocols. This table is obtained
from Table 3 in Section B by removing redundant rows and using that responders do not have a state. The
numbering of attacks is inherited from Table 3. An attack is regarded as an AND conjunction of variables with
specified values as shown in the each line, where “–” means that this variable can take arbitrary value. F means
“false” and “n/a” indicates that there is no state which can be revealed as no (partially) matching session exists.

Definition 2 (Key Indistinguishability of AKE). We define games IND-wFS-Stb and IND-FS-Stb
for b ∈ {0, 1} as in Figures 10 and 11. The advantage of an adversary A against AKE in these games is
defined as

AdvIND-wFS-St
AKE (A) :=

∣∣∣Pr[IND-wFS-StA1 ⇒ 1]− Pr[IND-wFS-StA0 ⇒ 1]
∣∣∣ and

AdvIND-FS-St
AKE (A) :=

∣∣∣Pr[IND-FS-StA1 ⇒ 1]− Pr[IND-FS-StA0 ⇒ 1]
∣∣∣ .

When proving the security of a protocol, the success probability for each attack strategy listed in the
corresponding table will have to be analyzed, thus showing that independently of which queries the
adversary makes, it cannot distinguish the session key from a uniformly random key.
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4.1 Relation to other Definitions

In this section, we will refer to the most widely used security definitions for authenticated key exchange
protocols. In the first place, these include the CK model [9] and the stronger definition used for the
HMQV protocol (CK+) in [27], the eCK model [29] and the strengthened version of [14], the definitions
given in [25] and [1] which are both extensions of the BR model [4], and the definition of IND-AA security
in [23]. In [13,12], Cremers showed that the CK, CK+ und eCK model are incomparable. Thus, we will
not do a formal comparison of security models, but only point out similarities and differences between
our definition and the definitions listed above.
Party Corruption. We allow the adversary to corrupt a party which means that it will obtain that
party’s long-term secret key as in the eCK model and the models given in [25,1,23]. In contrast, a corrupt
query in the CK and CK+ model will reveal all information in the memory of that party, i. e. long-term
secrets and session-specific information.
State-Reveals. Our model only allows state-reveal queries on initiating sessions because the initiator
has to wait for the response to compute the session key. Thus, the state contains all that information
that is needed to derive the session key as soon as the responder’s message is received. The responder can
directly compute the session key and does not have to store other information. The eCK model explicitly
defines the state as the randomness that is used in the protocol. In the CK model, it is not clear which
information is included in the state, but it is left to be specified by the AKE protocol itself. Other models
such as [25], its extension given in [1] and the one used in [10] do not allow state-reveals at all.

Here, we want to emphasize that in particular all previous work on tight AKE does not consider state
reveals and we are the first ones to address this problem.
(Weak) Forward Security. Following Krawczyk [27], we specify two levels of forward security. IND-
wFS-St models weak forward security, whereas IND-FS-St models full forward security. The first one
is intended for 2-message protocols with implicit authentication, as those cannot achieve full forward
security [27]. The second one is intended for protocols with explicit authentication. With those definitions,
we capture the same properties as the most common security models given in [9,27,29,25,1], where some
of them only define either weak or full forward security depending on whether they consider implicitly
or explicitly authenticated protocols.
Matching Sessions and Partnering. As most security models, ours use the concept of matching
sessions to define a relation between two sessions. Following Cremer and Feltz [14], we additionally
use the term of origin (or partially matching) sessions, which refers to a relaxation of the definition of
matching sessions. The concept of origin sessions is used for full forward security, in particular we need
this to handle the no-match attack described by Li and Schäge [31], where two sessions compute the same
session key but do not have matching conversations. Recent works such as [21,10] take up the approach
of origin sessions and oracle partnering based on session keys as additional requirement.
On registering corrupt keys. Some security models for AKE allow the adversary also to register
adversarially-generated keys, this holds in particular for previous works considering tightly-secure key
exchange [1,21,10]. Technically this makes the security model strictly stronger, as one can easily construct
contrived protocols that are insecure with adversarially-registered keys, but secure without.

However, in the actual security proofs in [1,21,10], adversarially-registered keys are treated no differ-
ently than corrupted keys. We chose to keep model, security proofs and notation as simple as possible
(it is already complex enough, anyway), and thus omitted this query. However, it is straightforward to
extend our model with it, and the proofs need not to be changed. Whenever the adversary registers a
new key, it would immediately be marked as “corrupted” (just like in [1,21,10]). Apart from that, no
additional changes to the proofs are required, since the proofs deal with all corrupted keys in the same
way, regardless of their distribution or whether they are generated by the experiment or an external
entity. We also do not require a proof of knowledge of the corrensponding secret key for the registration,
or a proof that the registered public key is valid in any sense.
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5 AKE with Weak Forward Security

In this section, we show how to build an implicitly authenticated AKE protocol using the concept of
non-committing key encapsulation.

In particular, from two key encapsulation mechanisms KEMCPA = (GenCPA,EncapsCPA, DecapsCPA)
and KEMCCA = (GenCCA,EncapsCCA,DecapsCCA), we construct a two-message authenticated key exchange
protocol AKEwFS = (GenAKE, InitI,DerR,DerI) as shown in Figures 12 and 13. W.l.o.g. KEMCPA, KEMCCA,
AKEwFS have identical key space K. Each party holds a long-term key pair (pk, sk) for KEMCCA and a
symmetric key k to encrypt the secret state information which has to be stored by the initiating party.
State encryption protects against state attacks and is implemented using a symmetric encryption scheme
defined as Ek(st′) := (IV ,G(k, IV )⊕ st′) for a random nonce IV . Here G : {0, 1}∗ → {0, 1}d is a random
oracle and d is an integer denoting the maximum bit length of the unencrypted state st′. The protocol
uses an additional cryptographic hash function H : {0, 1}∗ → K to output the session key.

Party Pi (pki , (ski , ki)) Party Pr (pkr , skr)

(p̃k, s̃k)← GenCPA

(cr ,Kr)← EncapsCCA(pkr)
Kr := DecapsCCA(skr , cr)
(c̃, K̃)← EncapsCPA(p̃k)

(ci ,Ki)← EncapsCCA(pki)

K̃ := DecapsCPA(s̃k, c̃) context := (pki , pkr , p̃k, ci , cr , c̃)
Ki := DecapsCCA(ski , ci) K := H(context,Ki ,Kr , K̃)

context := (pki , pkr , p̃k, ci , cr , c̃)
K := H(context,Ki ,Kr , K̃)

I := (p̃k, cr)

R := (c̃, ci)

st

Fig. 12. Visualization: Running protocol AKEwFS between two parties.

The initiating party generates an ephemeral key pair for KEMCPA, then runs the EncapsCCA algorithm
on the peer’s public key to output a ciphertext cr and a key Kr and sends the ephemeral public key and
cr to the intended receiver. All values are stored temporarily and encrypted as described above, as they
will later be needed to compute the session key. The responding party uses its secret key skr to compute
key Kr from cr . Next, it runs the EncapsCPA algorithm on the received ephemeral public key to compute
a ciphertext c̃ and a key K̃ and then the EncapsCCA algorithm on the initiator’s public key to output ci
and Ki . It sends both ciphertexts to the initiating party and computes the session key evaluating the
hash function H on all public context and the three shared keys Kr , Ki and K̃ . The initiator retrieves
the secret state information and computes Ki and K̃ from ci and c̃. Now, it can also establish the session
key.

Theorem 2 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA ROM⇒ AKEwFS IND-wFS-St). For any IND-
wFS-St adversary A against AKEwFS with N parties that establishes at most S sessions and issues at
most T queries to the test oracle Test, qG queries to random oracle G and at most qH queries to random
oracle H, there exists an N-NCKE-CCA adversary B against KEMCCA and SimCCA and an S-NCKE-CPA
adversary C against KEMCPA and SimCPA such that

AdvIND-wFS-St
AKEwFS

(A) ≤ 2 ·
(

AdvN-NCKE-CCA
KEMCCA,SimCCA

(B) + AdvS-NCKE-CPA
KEMCPA,SimCPA

(C)
)

+ T ·
(
qG
2κ + qH

|K|

)
+ N 2 ·

(
1

2µCCA
+ 1

2κ

)
+ S2 ·

(
1

2µCPA
+ 1

2γCCA
+ 1

2γCPA
+ 1

2κ

)
+ 2S · qG

22κ ,

where SimCCA and SimCPA are the simulators from the NCKE experiments, µCCA and µCPA are the colli-
sion probability of the key generation algorithms GenCCA and GenCPA, γCCA and γCPA are the spreadness
parameters of the encapsulation algorithms EncapsCCA and EncapsCPA and κ is a security parameter. The
running times of B and C consist essentially of the time required to execute the security experiment with
the adversary once, plus a minor number of additional operations (including bookkeeping, lookups etc.).
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GenAKE
00 (pk, sk)← GenCCA
01 k $← {0, 1}κ
02 return (pk′, sk′) := (pk, (sk, k))

InitI((ski , ki), pkr)
03 (p̃k, s̃k)← GenCPA
04 (cr ,Kr)← EncapsCCA(pkr)
05 IV $← {0, 1}κ

06 st′ := (p̃k, s̃k, cr ,Kr)
07 st := (IV ,G(ki , IV )⊕ st′)
08 return ((p̃k, cr), st)

DerR((skr , kr), pki , (p̃k, cr))
09 Kr := DecapsCCA(skr , cr)
10 (c̃, K̃)← EncapsCPA(p̃k)
11 (ci ,Ki)← EncapsCCA(pki)
12 context := (pki , pkr , p̃k, ci , cr , c̃)
13 K := H(context,Ki ,Kr , K̃)
14 return ((c̃, ci),K)

DerI((ski , ki), pkr , (c̃, ci), st)
15 (IV , ψ) := st
16 (p̃k, s̃k, cr ,Kr) := G(ki , IV )⊕ ψ
17 K̃ := DecapsCPA(s̃k, c̃)
18 Ki := DecapsCCA(ski , ci)
19 context := (pki , pkr , p̃k, ci , cr , c̃)
20 K := H(context,Ki ,Kr , K̃)
21 return K

Fig. 13. Authenticated key exchange protocol AKEwFS from KEMCPA and KEMCCA. Lines written in purple color
are only used to encrypt the state.

Proof. Let A be an adversary against IND-wFS-St security of AKEwFS, where N is the number of parties,
S is the maximum number of sessions that A establishes and T is the maximum number of test queries.
Consider the sequence of games in Figures 14 and 15.
Games G0,b . These are the original IND-wFS-Stb games. In order to exclude collisions, we implicitly
assume that all key pairs, long-term keys as well as ephemeral keys generated by GenCCA and GenCPA,
and all ciphertexts output by the EncapsH

CCA and EncapsH̃
CPA algorithms are distinct. (If such a collision

happens at any time in the game, we would abort. However, for sake of readability we do not explicitly
write that in the code of games G0,b .)

We consider this in our bound. Therefore, let µCCA and µCPA be the collision probabilities of the
key generation algorithms GenCCA and GenCPA and let γCCA and γCPA be the spreadness parameters of
KEMCCA and KEMCPA. Then by union bound and the birthday bound, the upper bound for key collisions
is N 2/2µCCA + S2/2µCPA and for ciphertext collisions S2/2γCCA + S2/2γCPA , as we have N parties, at most S
sessions with at most one ephemeral key pair and at most two ciphertexts. We also assume that values
kn and IV are distinct, which adds the additional term N 2/2κ + S2/2κ, where κ is the bit length of kn
and IV .

We additionally store the state of a session sID in plaintext in variable state′[sID] (line 59, Fig. 14)
which is directly accessed in DerI, instead of decrypting the state. This is only conceptual. For book-
keeping, we introduce the two sets C and CK from the NCKE-CCA game in lines 35, 36 (Fig. 15) and 51,
52 (Fig. 14). In total, we have

|Pr[IND-wFS-StA1 ⇒ 1]− Pr[IND-wFS-StA0 ⇒ 1]| ≤
∣∣Pr[GA0,1 ⇒ 1]− Pr[GA0,0 ⇒ 1]

∣∣
+ N 2 ·

(
2−µCCA + 2−κ

)
+ S2 ·

(
2−µCPA + 2−γCCA + 2−γCPA + 2−κ

)
. (2)

In the following, we want to use the property of receiver non-committing key encapsulation of KEMCCA.
Therefore, we use the simulator SimCCA = (SimGenCCA,SimEncapsCCA,SimHashCCA) which is defined
relative to KEMCCA.
Games G1,b . In games G1,b , we use the SimGenCCA algorithm to generate long-term key pairs (pkn, skn)
in line 04 (Fig. 14). SessionI uses the SimEncapsCCA algorithm to compute cr in line 49 and draws a
random key Kr in line 50. To maintain consistency, challenges are saved in line 52 and Kr is retrieved in
SessionR (line 28, Fig. 15) when the same cr is issued. The same is done for ciphertexts ci and keys Ki
in SessionR: SimEncapsCCA is used to generate ci (line 33, Fig. 15), Ki is drawn uniform at random (line
34) and both are saved and retrieved (line 36, Fig. 15 and line 73, Fig. 14). Furthermore, the SimHashCCA
algorithm is used in random oracles Hn, where n ∈ [N ]. In case party n is corrupted, i. e. skn is known
to A, we call SimHashCCA with set CKn, otherwise with set Cn.

For b ∈ {0, 1}, we construct adversaries Bb against N -NCKE-CCA security of KEMCCA in Figure 16.
Bb inputs long-term public keys pk1, ..., pkN and has access to oracles Encaps,Decaps and Open as
well as random oracles H′n, where n ∈ [N ]. Bb generates N symmetric keys kn which are part of the
long-term secret key and forwards its input public keys to A.
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GAMES G0,b -G4,b
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (pkn , skn)← GenCCA �G0
04 (pkn , skn)← SimGenCCA �G1-4
05 kn

$← {0, 1}κ
06 (pk′n , sk′n) := (pkn , (skn , kn))
07 b′ ← AO(pk′1, ..., pk′N )
08 for sID∗ ∈ S
09 if Fresh(sID∗) = false return 0
10 if Valid(sID∗) = false return 0
11 return b′

SessionR((i, r) ∈ [N ]2, I )
12 cnt ++
13 sID := cnt
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 (p̃k, cr) := I
17 (c̃, K̃)← EncapsH̃sID

CPA (p̃k) �G0-2

� simulate (c̃, K̃) when p̃k comes from SessionI:
18 if ∃sID′ s. t. state′[sID′] = (p̃k, · , · , · ) �G3-4

19 ( · , s̃k, · , · ) := state′[sID′] �G3-4

20 c̃ ← SimEncapsCPA(p̃k, s̃k) �G3-4

21 K̃ $← K �G3-4

22 C̃sID′ := C̃sID′ ∪ {(c̃,⊥)} �G3-4

23 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)} �G3-4
24 else �G3-4

25 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G3-4

26 Kr := DecapsHr
CCA(skr , cr) �G0

� retrieve Kr when cr used before:
27 if ∃K ′r s. t. (cr ,K ′r) ∈ CKr �G1-4
28 Kr := K ′r �G1-4
29 else �G1-4
30 Kr := DecapsHr

CCA(skr , cr) �G1-4
31 Dr := Dr ∪ {cr} �G1-4
32 (ci ,Ki)← EncapsHi

CCA(pki) �G0
� simulate (ci ,Ki):

33 ci ← SimEncapsCCA(pki , ski) �G1-4
34 Ki

$← K �G1-4
35 Ci := Ci ∪ {(ci ,⊥)}
36 CKi := CKi ∪ {(ci ,Ki)}
37 context := (pki , pkr , p̃k, ci , cr , c̃)
38 K := H(context,Ki ,Kr , K̃)
39 R := (c̃, ci)
40 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
41 return (sID,R)

SessionI((i, r) ∈ [N ]2)
42 cnt ++
43 sID := cnt
44 (init[sID], resp[sID]) := (i, r)
45 type[sID] := “In”
46 (p̃k, s̃k)← GenCPA �G0-2

47 (p̃k, s̃k)← SimGenCPA �G3-4
48 (cr ,Kr)← EncapsHr

CCA(pkr) �G0
� simulate (cr ,Kr):

49 cr ← SimEncapsCCA(pkr , skr) �G1-4
50 Kr

$← K �G1-4
51 Cr := Cr ∪ {(cr ,⊥)}
52 CKr := CKr ∪ {(cr ,Kr)}
53 I := (p̃k, cr)
54 IV $← {0, 1}κ

55 st′ := (p̃k, s̃k, cr ,Kr)
56 st := (IV ,G(ki , IV )⊕ st′) �G0-1
57 st := (IV ,⊥) �G2-4
58 (I [sID]) := (I , st)
59 state′[sID] := st′
60 return (sID, I )

DerI(sID,R)
61 if state[sID] = ⊥ or sKey[sID] 6= ⊥
62 return ⊥
63 (i, r) := (init[sID], resp[sID])
64 (p̃k, s̃k, cr ,Kr) := state′[sID]
65 (c̃, ci) := R
66 K̃ := DecapsH̃sID

CPA (s̃k, c̃) �G0-2

� retrieve K̃ when c̃ used before:
67 if ∃K̃ ′ s. t. (c̃, K̃ ′) ∈ C̃KsID �G3-4

68 K̃ := K̃ ′ �G3-4
69 else �G3-4

70 K̃ := DecapsH̃sID
CPA (s̃k, c̃) �G3-4

71 Ki := DecapsHi
CCA(ski , ci) �G0

� retrieve Ki when ci used before:
72 if ∃K ′i s. t. (ci ,K ′i ) ∈ CKi �G1-4
73 Ki := K ′i �G1-4
74 else �G1-4
75 Ki := DecapsHi

CCA(ski , ci) �G1-4
76 Di := Di ∪ {ci} �G1-4

77 context := (pki , pkr , p̃k, ci , cr , c̃)
78 K := H(context,Ki ,Kr , K̃)
79 (R[sID], sKey[sID]) := (R,K)
80 return ε

H(x)
81 if ∃K s. t. (x,K) ∈ H return K
82 K $← K
83 H := H ∪ {(x,K)}
84 return K

Fig. 14. Games G0,b -G4,b for the proof of Theorem 2. A has access to oracles O := {SessionI,SessionR,DerI,

Reveal,Rev-State,Corrupt,Test,G,H,H1, ...,HN , H̃1, ..., H̃S}. Reveal and Corrupt are defined as in the
original IND-wFS-St game (Fig. 10). Rev-State, Test, H̃sID for sID ∈ [S ] and Hn for n ∈ [N ] are defined in
Fig. 15.

If A queries SessionI, Bb generates an ephemeral key pair (p̃k, s̃k). Next, Bb calls Encaps on party r
in line 35. As described before, challenges are saved and retrieved when ciphertexts match. If they do not
match which means that cr issued to SessionR is new, Decaps is queried to receive the corresponding
key Kr in line 19. Next, Bb calls the Encaps oracle on party i (line 20) and in DerI key Ki is retrieved
(line 50) or Decaps is queried (line 52).

If A queries Corrupt on party n, Bb queries Open to obtain skn and outputs both skn and kn.
Queries to a random oracle Hn are forwarded to H′n.

If Bb is in the NCKE-CCAreal game, it perfectly simulates G0,b . Otherwise, if Bb is in the NCKE-CCAsim
game, it perfectly simulates G1,b . We have
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Rev-State(sID)
00 if revState[sID] = true
01 return state[sID]
02 if type[sID] 6= “In” return ⊥
03 revState[sID] := true
04 (IV ,⊥) := state[sID] �G2-4
05 i := init[sID] �G2-4
06 if corrupted[i] �G2-4
07 state[sID] := (IV ,G(ki , IV )⊕ state′[sID]) �G2-4
08 elseif ∃y s. t. (ki , IV , y) ∈ G �G2-4
09 BAD := true �G2-4
10 abort �G2-4
11 else �G2-4
12 ψ $← {0, 1}d �G2-4
13 state[sID] := (IV , ψ) �G2-4
14 return state[sID]

G(k, IV )
15 if ∃k, IV s. t. (k, IV , y) ∈ G
16 return y
17 y $← {0, 1}d �G0-1
18 if ∃i s. t. k = ki and ∃(sID, ψ)

s. t. state[sID] = (IV , ψ) ∧
revState[sID] = true �G2-4

19 y := ψ ⊕ state′[sID] �G2-4
20 else �G2-4
21 y $← {0, 1}d �G2-4
22 G := G ∪ {(k, IV , y)}
23 return y

Hn(M ) �n ∈ [N ]
24 if ∃h s. t. (M , h) ∈ Hn return h
25 h $← {0, 1}κ �G0
26 if corrupted[n] �G1-4
27 h ← SimHashCCA(pkn , skn , CKn ,Dn ,Hn ,M ) �G1-4
28 else �G1-4
29 h ← SimHashCCA(pkn , skn , Cn ,Dn ,Hn ,M ) �G1-4
30 Hn := Hn ∪ {(M , h)}
31 return h

H̃sID(M ) �sID ∈ [S ]
32 if ∃h s. t. (M , h) ∈ H̃sID return h
33 h $← {0, 1}κ �G0-2
34 if type[sID] = “In” �G3-4

35 (p̃k, s̃k, · , · , · ) := state′[sID] �G3-4
36 i := init[sID] �G3-4
37 if revState[sID] and corrupted[i] �G3-4

38 h ← SimHashCPA(p̃k, s̃k, C̃KsID, H̃sID,M ) �G3-4
39 else �G3-4

40 h ← SimHashCPA(p̃k, s̃k, C̃sID, H̃sID,M ) �G3-4
41 else �G3-4
42 h $← {0, 1}κ �G3-4

43 H̃sID := H̃sID ∪ {(M , h)}
44 return h

Test(sID)
45 if sID ∈ S return ⊥
46 S := S ∪ {sID}
47 if sKey[sID] = ⊥ return ⊥
48 K∗0 := sKey[sID] �G0-3
49 K∗0 $← K �G4
50 K∗1 $← K
51 return K∗b

Fig. 15. Oracles Rev-State, G, Hn for n ∈ [N ], H̃sID for sID ∈ [S ] and Test for games G0,b -G4,b in Figure 14.

∣∣Pr[GA1,b ⇒ 1]− Pr[GA0,b ⇒ 1]
∣∣ =

∣∣∣Pr[NCKE-CCABb
sim ⇒ 1]− Pr[NCKE-CCABb

real ⇒ 1]
∣∣∣

= AdvN-NCKE-CCA
KEMCCA,SimCCA

(Bb) (3)

Instead of using the algorithms GenCPA and EncapsCPA, we now also want to use the simulator SimCPA =
(SimGenCPA,SimEncapsCPA,SimHashCPA) for the ephemeral keys and ciphertexts. However, we first intro-
duce an intermediate game which moves the encryption of the state to the Rev-State oracle. We do
this to prepare the reduction to NCKE-CPA security, where s̃k will not be available and thus the state
cannot be computed in the first place. This means we first delay the computation of the state as long as
possible in games G2,b and then in games G3,b the simulator will finally be used.
Games G2,b . Here, we move the encryption of the state from SessionI (line 56, Fig. 14) to theRev-State
oracle. When Rev-State is queried, we check if the initiator i is corrupted in line 06 and honestly
compute the state because then the adversary can simply make the same computation. Next, we check
if the adversary already made a query to G, where (ki , IV ) are as in the corresponding session. If this is
the case, we raise flag BAD in line 09 and abort. Otherwise, we choose a random string ψ in line 12 and
return this value. Line 00 ensures that answers will be consistent when Rev-State is queried twice on
the same sID. However, we have to patch G for the case that A issues a query with the correct symmetric
key ki such that the random value ψ decrypts correctly. Note that if BAD is not raised, the adversary’s
view is the same in games G2,b and G1,b . As BAD implies that G is queried on any correct pair (ki , IV )
although IV ∈ {0, 1}κ is unknown and ki ∈ {0, 1}κ is also unknown because otherwise the state would
have been computed honestly in line 07, we have∣∣Pr[G2,b ⇒ 1]− Pr[G1,b ⇒ 1]

∣∣ ≤ Pr[BAD] ≤ S · qG
22κ .

Games G3,b . In games G3,b , SessionI uses the SimGenCPA algorithm to generate ephemeral key pairs
(p̃k, s̃k) in line 47 (Fig. 14). In lines 19-23 (Fig. 15), we first recover the ephemeral secret key s̃k from

20



Bb
Encaps,Decaps,Open,H′1,...,H

′
N (pk1, ..., pkN )

00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 kn

$← {0, 1}κ
04 (pk′n , sk′n) := (pkn , (⊥, kn))
05 b′ ← AO(pk′1, ..., pk′N )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false return 0
08 if Valid(sID∗) = false return 0
09 return b′

SessionR((i, r) ∈ [N ]2, I )
10 cnt ++
11 sID := cnt
12 (init[sID], resp[sID]) := (i, r)
13 type[sID] := “Re”
14 (p̃k, cr) := I
15 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
16 if ∃K ′r s. t. (cr ,K ′r) ∈ CKr
17 Kr := K ′r
18 else
19 Kr := Decaps(r , cr)
20 (ci ,Ki)← Encaps(i)
21 CKi := CKi ∪ {(ci ,Ki)}
22 context := (pki , pkr , p̃k, ci , cr , c̃)
23 K := H(context,Ki ,Kr , K̃)
24 R := (c̃, ci)
25 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
26 return (sID,R)

Corrupt(n ∈ [N ])
27 corrupted[n] := true
28 skn := Open(n)
29 sk′n := (skn , kn)
30 return sk′n

SessionI((i, r) ∈ [N ]2)
31 cnt ++
32 sID := cnt
33 (init[sID], resp[sID], type[sID]) := (i, r , “In”)
34 (p̃k, s̃k)← GenCPA
35 (cr ,Kr)← Encaps(r)
36 CKr := CKr ∪ {(cr ,Kr)}
37 I := (p̃k, cr)
38 IV $← {0, 1}κ

39 st′ := (p̃k, s̃k, cr ,Kr)
40 st := (IV ,G(ki , IV )⊕ st′)
41 (I [sID], state[sID], state′[sID]) := (I , st, st′)
42 return (sID, I )

DerI(sID,R)
43 if state[sID] = ⊥ or sKey[sID] 6= ⊥
44 return ⊥
45 (i, r) := (init[sID], resp[sID])
46 (p̃k, s̃k, cr ,Kr) := state′[sID]
47 (c̃, ci) := R
48 K̃ := DecapsH̃sID

CPA (s̃k, c̃)
49 if ∃K ′i s. t. (ci ,K ′i ) ∈ CKi
50 Ki := K ′i
51 else
52 Ki := Decaps(i, ci)
53 context := (pki , pkr , p̃k, ci , cr , c̃)
54 K := H(context,Ki ,Kr , K̃)
55 (R[sID], sKey[sID]) := (R,K)
56 return ε

Hn(M ) �n ∈ [N ]
57 if ∃h s. t. (M , h) ∈ Hn return h
58 h ← H′n(M )
59 Hn := Hn ∪ {(M , h)}
60 return h

Fig. 16. Adversaries Bb against N -NCKE-CCA for the proof of Eqn. (3). A has access to ora-
cles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,G,H, H̃1, ...H̃S ,H1, ...,HN}, where
Reveal,Rev-State,Test,H and H̃sID for sID ∈ [S ] are defined as in Figure 14 resp. 15. Lines written in
blue color highlight how the adversary simulates G0,b and interpolates to G1,b .

the state of the corresponding initiating session if the ephemeral public key specified in I was output by
SessionI, i. e., it was not chosen by the adversary. Next, the SimEncapsCPA algorithm is used to compute
c̃ and we draw a random key K̃ . To maintain consistency, we save challenges to restore K̃ later in line
68 (Fig. 14) if the same c̃ is queried to DerI. Furthermore, we use the SimHashCPA algorithm in random
oracles H̃sID, but only for those sessions that choose their own ephemeral key pair (p̃k, s̃k) in SessionI as
explained above. In particular, we first check if sID is a session of type “In” in line 34 (Fig. 15). In case
the state of that session is revealed and the initiator is corrupted, we call SimHashCPA with set C̃KsID,
otherwise with set C̃sID.

For b ∈ {0, 1}, we construct adversaries Cb against S-NCKE-CPA security of KEMCPA in Figures 17
and 18. Cb inputs S ephemeral public keys p̃k1, ..., p̃kS and has access to oracles Encaps, Open and
random oracles H̃′s, where s ∈ [S ].

If A queries SessionI, Cb computes (cr ,Kr) and sets p̃k to p̃ksID in line 38 (Fig. 17). Note that it
cannot assign s̃k here and thus cannot define st′ in line 45 because s̃ksID is unknown. Thus, it cannot
compute the state, but will only draw IV . When A issues a query to Rev-State, Cb checks if the initiator
is corrupted, calls Open to obtain the corresponding ephemeral secret key s̃k (line 23, Fig. 18) and will
then compute and output the complete state. If the initiator is not corrupted and Cb does not abort, ψ
is chosen uniformly at random. If the adversary queries G on (ki , IV ), we patch the random oracle by
calling Open in line 02 (Fig. 18) and computing the correct value for st′, thus determining output value
y.
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CEncaps,Open,̃H′1,...,̃H
′
S

b (p̃k1, ..., p̃kS)
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (pkn , skn)← GenCCA
04 kn

$← {0, 1}κ
05 (pk′n , sk′n) := (pkn , (skn , kn))
06 b′ ← AO(pk′1, ..., pk′N )
07 for sID∗ ∈ S
08 if Fresh(sID∗) = false return 0
09 if Valid(sID∗) = false return 0
10 return b′

SessionR((i, r) ∈ [N ]2, I )
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 (p̃k, cr) := I
16 if ∃sID′ s. t. p̃k = p̃ksID′

17 (c̃, K̃)← Encaps(sID′)
18 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)}
19 else
20 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
21 if ∃K ′r s. t. (cr ,K ′r) ∈ CKr
22 Kr := K ′r
23 else
24 Kr := DecapsHr

CCA(skr , cr)
25 Dr := Dr ∪ {cr}
26 ci ← SimEncapsCCA(pki , ski)
27 Ki

$← K
28 Ci := Ci ∪ {(ci ,⊥)}
29 CKi := CKi ∪ {(ci ,Ki)}
30 context := (pki , pkr , p̃k, ci , cr , c̃)
31 K := H(context,Ki ,Kr , K̃)
32 R := (c̃, ci)
33 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
34 return (sID,R)

SessionI((i, r) ∈ [N ]2)
35 cnt ++
36 sID := cnt
37 (init[sID], resp[sID], type[sID]) := (i, r , “In”)
38 (p̃k, s̃k) := (p̃ksID,⊥) �s̃ksID unknown
39 cr ← SimEncapsCCA(pkr , skr)
40 Kr

$← K
41 Cr := Cr ∪ {(cr ,⊥)}
42 CKr := CKr ∪ {(cr ,Kr)}
43 I := (p̃k, cr)
44 IV $← {0, 1}κ

45 st′ := (p̃k,⊥, cr ,Kr)
46 st := (IV ,⊥)
47 (I [sID], state[sID], state′[sID]) := (I , st, st′)
48 return (sID, I )

DerI(sID,R)
49 if state[sID] = ⊥ or sKey[sID] 6= ⊥
50 return ⊥
51 (i, r) := (init[sID], resp[sID])
52 (p̃k, · , cr ,Kr) := state′[sID]
53 (c̃, ci) := R
54 if ∃K̃ ′ s. t. (c̃, K̃ ′) ∈ C̃KsID

55 K̃ := K̃ ′
56 else
57 s̃k := Open(sID)
58 K̃ := DecapsH̃sID

CPA (s̃k, c̃)
59 if ∃K ′i s. t. (ci ,K ′i ) ∈ CKi
60 Ki := K ′i
61 else
62 Ki := DecapsHi

CCA(ski , ci)
63 Di := Di ∪ {ci}
64 context := (pki , pkr , p̃k, ci , cr , c̃)
65 K := H(context,Ki ,Kr , K̃)
66 (R[sID], sKey[sID]) := (R,K)
67 return ε

Fig. 17. Adversaries Cb against S-NCKE-CPA for the proof of Eqn. (4). A has access to oracles O :=
{SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,G,H,H1, ...,HN , H̃1, ..., H̃S}, where Reveal,

Corrupt,Test,H and Hn for n ∈ [N ] are defined as in Figure 14 resp. 15. Rev-State, G and H̃sID for sID ∈ [S ]
are defined in Figure 18. Lines written in blue color highlight how the adversary simulates G2,b and interpolates
to G3,b .

If A queries SessionR, Cb checks whether there exists another session sID′ with the same p̃k and if
it does, Cb queries its Encaps oracle on sID′ in line 17 (Fig. 17). At that point note why we can only
embed the challenge in those sessions with a p̃k output by SessionI. An active adversary may query
SessionR on any p̃k that it has chosen himself. Thus, Cb might not be able to query the challenge oracle
Encaps on that p̃k.

As described before, we save challenges relative to sID′ in line 18 to restore them later again when
DerI is called in line 55. If the adversary queries DerI on a new value c̃, Cb calls Open to obtain s̃k and
compute K̃ . Next, Cb computes Ki from ci , retrieves Kr from the state and finally calculates the session
key K .

Queries to a random oracle H̃sID are forwarded to the corresponding oracle H̃′sID whenever a session
is of type “In”.

If Cb is in the NCKE-CPAreal game, it perfectly simulates G2,b . Otherwise, if Cb is in the NCKE-CPAsim
game, it perfectly simulates G3,b . We have

∣∣Pr[GA3,b ⇒ 1]− Pr[GA2,b ⇒ 1]
∣∣ =

∣∣∣Pr[NCKE-CPACb
sim ⇒ 1]− Pr[NCKE-CPACb

real ⇒ 1]
∣∣∣

= AdvS-NCKE-CPA
KEMCPA,SimCPA

(Cb) . (4)
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G(k, IV )
00 if ∃k, IV s. t. (k, IV , y) ∈ G return y
01 if ∃i s. t. k = ki and
∃(sID, ψ) s. t. state[sID] = (IV , ψ)
∧ revState[sID] = true

02 s̃k := Open(sID)
03 state′[sID] := (p̃k, s̃k, cr ,Kr)
04 y := ψ ⊕ state′[sID]
05 else
06 y $← {0, 1}d

07 G := G ∪ {(k, IV , y)}
08 return y

H̃sID(M ) �sID ∈ [S ]
09 if ∃h s. t. (M , h) ∈ H̃sID return h
10 if type[sID] = “In”
11 h ← H̃′sID(M )
12 else
13 h $← {0, 1}κ

14 H̃sID := H̃sID ∪ {(M , h)}
15 return h

Rev-State(sID)
16 if revState[sID] = true
17 return state[sID]
18 if type[sID] 6= “In” return ⊥
19 revState[sID] := true
20 (IV ,⊥) := state[sID]
21 i := init[sID]
22 if corrupted[i]
23 s̃k := Open(sID)
24 state′[sID] := (p̃k, s̃k, cr ,Kr)
25 state[sID] := (IV ,G(IV , ki)⊕ state′[sID])
26 elseif ∃y s. t. (ki , IV , y) ∈ G
27 BAD := true
28 abort
29 else
30 ψ $← {0, 1}d

31 state[sID] := (IV , ψ)
32 return state[sID]

Fig. 18. Oracles G, H̃sID for sID ∈ [S ] and Rev-State for adversaries Cb against S-NCKE-CPA in Figure 17.

Games G4,b . In games G4,b , we change the output for K∗0 in the Test oracle to a random key in line
49. Now games G4,0 and G4,1 are equal as well as games G4,1 and G3,1 , hence∣∣Pr[GA3,1 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣ =
∣∣Pr[GA4,1 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣
=
∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣ . (5)

It remains to bound
∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣. Therefore, we will now consider the different attacks
for IND-wFS-St as described in Table 1. Depending on which queries the adversary makes, each test
session must belong to at least one of the attacks or the game will return 0 anyway. For the analysis,
we consider the worst case scenario where the adversary queries as much information as it is allowed to
obtain.

When referring to a particular test session sID∗, we will denote all values used with an asterisk, i. e.
context∗ = (pki∗ , pkr∗ , p̃k

∗
, ci∗ , cr∗ , c̃∗) and IV ∗, ki∗ ,Ki∗ , Kr∗ , K̃∗. As we assumed in the beginning that

ciphertexts and long-term as well as ephemeral key pairs are all different, it is not possible to recreate a
particular session. In particular, this means that there is no partially matching session and attack (0) of
Table 1 will return false.

Now the only possibility to learn any test key K∗0 is through random oracle queries. Let QUERY be
the event that (context,Ki ,Kr , K̃ ) of any test session is queried to H and QUERY∗ be the event that
(context∗,Ki∗ ,Kr∗ , K̃∗) of a specific test session is queried to H. We have∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣ ≤ Pr[QUERY] ≤ T · Pr[QUERY∗] ,

where the last inequality uses union bound over the number of test sessions T .
We will now focus on the event QUERY∗ and iterate over the attacks in Table 1. An overview on

the argumentation is given in Figure 19.

Attack Security relies on ...

(1 ∨ 2), (10) IV ∗ unknown ⇒ s̃k
∗
unknown ⇒ K̃∗ unknown

(7 ∨ 8), (16) ski∗ unknown ⇒ Ki∗ unknown
(19) skr∗ and ki∗ unknown ⇒ Kr∗ unknown
(21) skr∗ and IV ∗ unknown ⇒ Kr∗ unknown
(24) ski∗ unknown ⇒ Ki∗ unknown

Fig. 19. Overview of attacks for the proof of Theorem 2.
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Attack (1 ∨ 2), (10). If (1 ∨ 2) ⇒ true, the test session has a matching session and both long-term
secret keys (ski∗ , ki∗) and (skr∗ , kr∗) are revealed. Hence, A can compute Ki∗ and Kr∗ . However, A is
not allowed to query the test session’s state or the state of the matching session, depending on the type
of the test session. Thus, A has no information about s̃k

∗
. As there is a matching session for this test

session, p̃k
∗
was generated by SessionI, which means that K̃∗ is chosen uniformly at random and thus

independent of p̃k
∗
and c̃∗.

If (10)⇒ true, the test session has a partially matching and is of type “Re”. Here, A is not allowed
to query the state of the partially matching session. Except for that, everything remains the same as
explained above. Hence,

Pr[QUERY∗ | (1 ∨ 2)⇒ true] = Pr[QUERY∗ | (10)⇒ true] ≤ qH
|K|

.

Attack (7∨ 8), (16). If (7∨ 8)⇒ true, the test session has a matching session and the state (IV ∗, ψ∗)
is revealed. Furthermore, A can obtain (skr∗ , kr∗) and thus Kr∗ . As secret key ski∗ is unknown to A,
Ki∗ which is chosen uniformly at random from the key space of KEMCCA is also unknown to A. K̃∗ is
also chosen uniformly at random and unknown as long as A does not obtain s̃k

∗
through queries to G or

guesses K̃∗ correctly. However, to bound event QUERY∗, we will only make use of the fact that Ki∗ is
a uniformly random key.

If (16) ⇒ true, the test session has a partially matching session and is of type “Re”. Here, A can
reveal the state of the partially matching session (IV , ψ). The rest remains the same. It follows that

Pr[QUERY∗ | (7 ∨ 8)⇒ true] = Pr[QUERY∗ | (16)⇒ true] ≤ qH
|K|

.

Attack (19). If (19)⇒ true, the test session has no matching session and the type of this test session
is “In”. A is allowed to obtain the initiator’s state (IV ∗, ψ∗) and can choose (c̃∗, K̃∗) and (ci∗ ,Ki∗) itself.
Kr∗ is unknown to A, unless it obtains it through queries to G. Therefore, A can either guess ki∗ and
query G or it can query H directly. Hence,

Pr[QUERY∗ | (19)⇒ true] ≤ qG
2κ + qH

|K|
.

Attack (21). If (21)⇒ true, the test session has no matching session and the type of this test session
is “In”. A is allowed to obtain the initiator’s long-term secret key (ski∗ , ki∗) and can choose (c̃∗, K̃∗) and
(ci∗ ,Ki∗) itself. However, K∗r is unknown to A and as it is chosen uniformly at random from the key
space of KEMCCA, (context∗,Ki∗ ,Kr∗ , K̃∗) is queried to H with probability at most qH/|K|. This yields

Pr[QUERY∗ | (21)⇒ true] ≤ qH
|K|

.

Attack (24). If (24)⇒ true, the test session has no matching session and the type of the test session
is “Re”, which means that A can reveal the responder’s long-term secret key (skr∗ , kr∗). Here, A can
choose (p̃k

∗
, s̃k
∗
) and (cr∗ ,Kr∗) itself and thus is able to compute K̃∗. As (ski∗ , ki∗) is unknown, so is

Ki∗ and we have

Pr[QUERY∗ | (24)⇒ true] ≤ qH
|K|

.

Taking the maximum over the conditional probabilities, it follows that∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]
∣∣ ≤ T · Pr[QUERY∗] ≤ T ·

(
qG
2κ + qH

|K|

)
. (6)

Finally, folding both adversaries B0 and B1 into one adversary B and C0 and C1 into one adversary C
yields

AdvN-NCKE-CCA
KEMCCA,SimCCA

(B0) + AdvN-NCKE-CCA
KEMCCA,SimCCA

(B1) = 2 ·AdvN-NCKE-CCA
KEMCCA,SimCCA

(B) and
AdvS-NCKE-CPA

KEMCPA,SimCPA
(C0) + AdvS-NCKE-CPA

KEMCPA,SimCPA
(C1) = 2 ·AdvS-NCKE-CPA

KEMCPA,SimCPA
(C) .
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The proof of Theorem 2 follows by collecting the probabilities from Eqns. (2)-(6). ut

Note that the non-committing property is essential to embed random KEM keys in each session and
thus to achieve tightness. This way, we only need to make a case distinction at the end and can argue
that for all test sessions at least one KEM key is independent of the adversary’s view no matter which
queries it has made (provided it did not make a trivial attack). Relying on a weaker assumption requires
to make a case distinction earlier in the proof and may involve guessing as in some cases it is not clear
which KEM key will be revealed (through corruption and/or reveal or state reveal) at a later point in
time.

6 AKE with Full Forward Security

We show how to build an explicitly authenticated AKE protocol using the concept of non-committing
key encapsulation. As we also need a signature scheme, we will first give the relevant definitions.

6.1 Digital Signatures

A digital signature scheme SIG = (GenSIG,Sign,Vrfy) consists of three algorithms. The key generation
algorithm GenSIG outputs a key pair (vk, sigk), where vk is the verification key and sigk the signing key.
The signing algorithm Sign inputs a signing key sigk and a message m and outputs a signature σ. The
deterministic verification algorithm Vrfy inputs the verification key vk, a message m and a signature σ
and outputs 1 if σ is a valid signature for m, otherwise it outputs 0.

In Figure 20, we define the security game N user Strong UnForgeability under Chosen Message
Attacks with corruptions (N -SUF-CMA). The definition is similar to the one given in [1], except that we
require strong unforgeability, i. e. the adversary may also find a new signature for a message it queried
to the Sign oracle before. The advantage of an adversary A is defined as

AdvN-SUF-CMA
SIG (A) := Pr[N -SUF-CMAA ⇒ 1] .

GAME N -SUF-CMA
00 Scorr := ∅
01 for n ∈ [N ]
02 (vkn , sigkn)← GenSIG
03 Sn := ∅
04 (n∗,m∗, σ∗)← ASign,Corrupt(vk1, · · · , vkN )
05 if Vrfy(vkn∗ ,m∗, σ∗) = 1 and n∗ 6∈ Scorr

and (m∗, σ∗) 6∈ Sn∗

06 return 1
07 else
08 return 0

Sign(n ∈ [N ],m)
09 σ ← Sign(sigkn ,m)
10 Sn := Sn ∪ {(m, σ)}
11 return σ

Corrupt(n ∈ [N ])
12 Scorr := Scorr ∪ {n}
13 return sigkn

Fig. 20. Game N -SUF-CMA for SIG.

6.2 Transformation using NCKE and a Signature Scheme

From two key encapsulation mechanisms KEMCPA = (GenCPA,EncapsCPA,DecapsCPA) and KEMCCA =
(GenCCA,EncapsCCA,DecapsCCA) with key spaceK and a digital signature scheme SIG = (GenSIG,Sign,Vrfy),
we construct a two-message authenticated key exchange protocol AKEFS = (GenAKE, InitI,DerR,DerI)
with key space K as shown in Figures 21 and 22. Each party has a key pair (vk, sigk) for SIG, a key
pair (pk, sk) for KEMCCA and a symmetric key k to encrypt the secret state information which has to be
stored by the initiating party (cf. Section 5). The protocol uses additional cryptographic hash functions
F : {0, 1}∗ → {0, 1}κ to compute value π and H : {0, 1}∗ → K to output the session key.

The initiating party computes an ephemeral key pair for KEMCPA, runs the EncapsCCA algorithm
on the intended receiver’s public key pkr to obtain a ciphertext cr and a key Kr and signs both the
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Party Pi ((vki , pki), (sigki , ski , ki)) Party Pr ((vkr , pkr), (sigkr , skr , kr))

(p̃k, s̃k)← GenCPA

(cr ,Kr)← EncapsCCA(pkr)
σ ← Sign(sigki , (p̃k, cr))

if Vrfy(vki , (p̃k, cr), σ) = 1 :
(c̃, K̃)← EncapsCPA(p̃k)
Kr := DecapsCCA(skr , cr)
π := F(Kr , p̃k, cr , c̃, σ)

if F(Kr , p̃k, cr , c̃, σ) = π : K := H(context, K̃)
K̃ := DecapsCPA(s̃k, c̃)
K := H(context, K̃)

I := (p̃k, cr , σ)

R := (c̃, π)

st

Fig. 21. Visualization: Running AKEFS between two parties, where K is the resulting session key and context :=
(vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)

GenAKE
00 (vk, sigk)← GenSIG
01 (pk, sk)← GenCCA
02 k $← {0, 1}κ
03 return (pk′, sk′) :=

((vk, pk), (sigk, sk, k))

InitI((sigki , ski , ki), (vkr , pkr))
04 (p̃k, s̃k)← GenCPA
05 (cr ,Kr)← EncapsCCA(pkr)
06 σ ← Sign(sigki , (p̃k, cr))
07 IV $← {0, 1}κ

08 st′ := (p̃k, s̃k, cr ,Kr , σ)
09 st := (IV ,G(ki , IV )⊕ st′)
10 I := (p̃k, cr , σ)
11 return (I , st)

DerR((sigkr , skr , kr), (vki , pki), (p̃k, cr , σ))
12 if Vrfy(vki , (p̃k, cr), σ) 6= 1
13 return ⊥
14 (c̃, K̃)← EncapsCPA(p̃k)
15 Kr := DecapsCCA(skr , cr)
16 π := F(Kr , p̃k, cr , c̃, σ)
17 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
18 K := H(context, K̃)
19 R := (c̃, π)
20 return (R,K)

DerI((sigki , ski , ki), (vkr , pkr), (c̃, π), st)
21 (IV , ψ) := st
22 (p̃k, s̃k, cr ,Kr , σ) := G(ki , IV )⊕ ψ
23 if F(Kr , p̃k, cr , c̃, σ) 6= π
24 return ⊥
25 K̃ := DecapsCPA(s̃k, c̃)
26 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
27 K := H(context, K̃)
28 return K

Fig. 22. Authenticated key exchange protocol AKEFS from KEMCPA, KEMCCA and SIG. Lines written in purple
color are only used to encrypt the state.

ephemeral public key and cr , which are sent to the receiver along with the signature. The receiver
verifies the signature and then runs the EncapsCPA algorithm on the ephemeral public key to output a
ciphertext c̃ and a key K̃ . It computes Kr using its secret key skr . It then tags the received message
together with c̃ and Kr by evaluating hash function F and sends the output together with c̃ to the
initiator. The initiator retrieves Kr from the secret state and also evaluates F. If the output is the same,
it computes K̃ using the ephemeral secret key. The session key is computed evaluating hash function H
on all public context and key K̃ .

Theorem 3 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA + SIG N -SUF-CMA ROM⇒ AKEFS IND-FS-St).
For any IND-FS-St adversary A against AKEFS with N parties that establishes at most S sessions and
issues at most T queries to test oracle Test, at most qH, qG and qF queries to random oracles H, G and
F, there exists an N-SUF-CMA adversary B against SIG, an S-NCKE-CPA adversary C against KEMCPA
and SimCPA and an N-NCKE-CCA adversary D against KEMCCA and SimCCA such that

AdvIND-FS-St
AKEFS

(A) ≤ 2 ·
(

AdvN-SUF-CMA
SIG (B) + AdvS-NCKE-CPA

KEMCPA,SimCPA
(C) + AdvN-NCKE-CCA

KEMCCA,SimCCA
(D)
)

+ T ·
(
qG
2κ + qH

|K|

)
+ N 2 ·

(
1

2µSIG
+ 1

2µCCA
+ 1

2κ

)
+ S2 ·

(
1

2µCPA
+ 1

2γCCA
+ 1

2γCPA
+ 1

2κ

)
+ 2S · qG

22κ ,
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where SimCPA and SimCCA are the simulators from the NCKE-CPA and NCKE-CCA experiment, µSIG,
µCPA, µCCA are collision probabilities of the key generation algorithms GenSIG, GenCPA and GenCCA and
γCPA, γCCA are the spreadness parameters of the encapsulation algorithms. The running times of B, C
and D consist essentially of the time required to execute the security experiment with the adversary once,
plus a minor number of additional operations (including bookkeeping, lookups etc.).

Proof. Let A be an adversary against IND-FS-St security of AKEFS, where N is the number of parties, S
is the maximum number of sessions that A establishes and T is the maximum number of test sessions.
Consider the sequence of games in Figures 23 and 24.

GAMES G0,b -G5,b
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (vkn , sigkn)← GenSIG
04 (pkn , skn)← GenCCA �G0-1
05 (pkn , skn)← SimGenCCA �G2-5
06 kn

$← {0, 1}κ
07 (pk′n , sk′n) := ((vkn , pkn), (sigkn , skn , kn))
08 b′ ← AO(pk′1, ..., pk′N )
09 for sID∗ ∈ S
10 if Fresh(sID∗) = false return 0
11 if Valid(sID∗) = false return 0
12 return b′

SessionR((i, r) ∈ [N ]2, I )
13 cnt ++
14 sID := cnt
15 (init[sID], resp[sID]) := (i, r)
16 type[sID] := “Re”
17 peerCorrupted[sID] := corrupted[i]
18 (p̃k, cr , σ) := I
19 if Vrfy(vki , (p̃k, cr), σ) 6= 1
20 return ⊥
21 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I [sID′]) = (i, “In”, I ) �G1-5
22 BREAKSIG := true �G1-5
23 abort �G1-5

24 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G0-3

25 if ∃sID′ s. t. state′[sID′] = (p̃k, · , · , · , · ) �G4-5

26 ( · , s̃k, · , · , · ) := state′[sID′] �G4-5

27 c̃ ← SimEncapsCPA(p̃k, s̃k) �G4-5

28 K̃ $← K �G4-5

29 C̃sID′ := C̃sID′ ∪ {(c̃,⊥)} �G4-5

30 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)} �G4-5
31 else �G4-5

32 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G4-5

33 Kr := DecapsHr
CCA(skr , cr) �G0-1

34 if ∃K ′r s. t. (cr ,K ′r) ∈ CKr �G2-5
35 Kr := K ′r �G2-5
36 else �G2-5
37 Kr := DecapsHr

CCA(skr , cr) �G2-5
38 Dr := Dr ∪ {cr} �G2-5

39 π := F(Kr , p̃k, cr , c̃, σ)
40 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
41 K := H(context, K̃)
42 R := (c̃, π)
43 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
44 return (sID,R)

SessionI((i, r) ∈ [N ]2)
45 cnt ++
46 sID := cnt
47 (init[sID], resp[sID]) := (i, r)
48 type[sID] := “In”
49 (p̃k, s̃k)← GenCPA �G0-3

50 (p̃k, s̃k)← SimGenCPA �G4-5
51 (cr ,Kr)← EncapsHr

CCA(pkr) �G0-1
52 cr ← SimEncapsCCA(pkr , skr) �G2-5
53 Kr

$← K �G2-5
54 Cr := Cr ∪ {(cr ,⊥)}
55 CKr := CKr ∪ {(cr ,Kr)}
56 σ ← Sign(sigki , (p̃k, cr))
57 I := (p̃k, cr , σ)
58 IV $← {0, 1}κ

59 st′ := (p̃k, s̃k, cr ,Kr , σ)
60 st := (IV ,G(ki , IV )⊕ st′) �G0-2
61 st := (IV ,⊥) �G3-5
62 (I [sID], state[sID]) := (I , st)
63 state′[sID] := st′
64 return (sID, I )

DerI(sID,R)
65 if state[sID] = ⊥ or sKey[sID] 6= ⊥
66 return ⊥
67 (i, r) := (init[sID], resp[sID])
68 peerCorrupted[sID] := corrupted[r ]
69 (c̃, π) := R
70 (p̃k, s̃k, cr ,Kr , σ) := state′[sID]
71 if F(Kr , p̃k, cr , c̃, σ) 6= π
72 return ⊥
73 K̃ := DecapsH̃sID

CPA (s̃k, c̃) �G0-3

74 if ∃K̃ ′ s. t. (c̃, K̃ ′) ∈ C̃KsID �G4-5

75 K̃ := K̃ ′ �G4-5
76 else �G4-5

77 K̃ := DecapsH̃sID
CPA (s̃k, c̃) �G4-5

78 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
79 K := H(context, K̃)
80 (R[sID], sKey[sID]) := (R,K)
81 return ε

H(x)
82 if ∃K s. t. (x,K) ∈ H
83 return K
84 K $← K
85 H := H ∪ {(x,K)}
86 return K

Fig. 23. Games G0,b -G5,b for the proof of Theorem 3. A has access to oracles O := {SessionI,SessionR,DerI,

Reveal,Rev-State,Corrupt,Test,F,G,H,H1, ...,HN , H̃1, ..., H̃S}, where Corrupt and Reveal are defined as
in the original IND-FS-St game (Fig. 10) and oracles Rev-State, F,G, Hn for n ∈ [N ], H̃sID for sID ∈ [S ] and
Test are defined in Figure 24.
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Rev-State(sID)
00 if revState[sID] = true
01 return state[sID]
02 if type[sID] 6= “In” return ⊥
03 revState[sID] := true
04 i := init[sID] �G3-5
05 (IV ,⊥) := state[sID] �G3-5
06 if corrupted[i] �G3-5
07 state[sID] := (IV ,G(ki , IV )⊕ state′[sID]) �G3-5
08 elseif ∃y s. t. (ki , IV , y) ∈ G �G3-5
09 BAD := true �G3-5
10 abort �G3-5
11 else �G3-5
12 ψ $← {0, 1}d �G3-5
13 state[sID] := (IV , ψ) �G3-5
14 return state[sID]

F(x)
15 if ∃h s. t. (x, h) ∈ F return h
16 h $← {0, 1}κ
17 F := F ∪ {(x, h)}
18 return h

G(k, IV )
19 if ∃k, IV s. t. (k, IV , y) ∈ G
20 return y
21 y $← {0, 1}d �G0-2
22 if ∃i s. t. k = ki and ∃(sID, ψ) s. t. state[sID] = (IV , ψ)
∧ revState[sID] = true �G3-5

23 y := ψ ⊕ state′[sID] �G3-5
24 else �G3-5
25 y $← {0, 1}d �G3-5
26 G := G ∪ {(k, IV , y)}
27 return y

Hn(M ) �n ∈ [N ]
28 if ∃h s. t. (M , h) ∈ Hn return h
29 h $← {0, 1}κ �G0-1
30 if corrupted[n] �G2-5
31 h ← SimHashCCA(pkn , skn , CKn ,Dn ,Hn ,M ) �G2-5
32 else �G2-5
33 h ← SimHashCCA(pkn , skn , Cn ,Dn ,Hn ,M ) �G2-5
34 Hn := Hn ∪ {(M , h)}
35 return h

H̃sID(M ) �sID ∈ [S ]
36 if ∃h s. t. (M , h) ∈ H̃sID return h
37 h $← {0, 1}κ �G0-3
38 if type[sID] = “In” �G4-5

39 (p̃k, s̃k, · , · , · ) := state′[sID] �G4-5
40 i := init[sID] �G4-5
41 if revState[sID] and corrupted[i] �G4-5

42 h ← SimHashCPA(p̃k, s̃k, C̃KsID, H̃sID,M ) �G4-5
43 else �G4-5

44 h ← SimHashCPA(p̃k, s̃k, C̃sID, H̃sID,M ) �G4-5
45 else �G4-5
46 h $← {0, 1}κ �G4-5

47 H̃sID := H̃sID ∪ {(M , h)}
48 return h

Test(sID)
49 if sID ∈ S return ⊥
50 S := S ∪ {sID}
51 if sKey[sID] = ⊥ return ⊥
52 K∗0 := sKey[sID] �G0-4
53 K∗0 $← K �G5
54 K∗1 $← K
55 return K∗b

Fig. 24. Oracles Rev-State, F, G, Hn for n ∈ [N ], H̃sID and Test for sID ∈ [S ] for games G0,b -G5,b in Fig. 23.

Games G0,b . These are the original IND-FS-Stb games. Similar to Equation (2) in the proof of Theorem
2, we assume all key pairs, N long-term keys generated by GenSIG and GenCCA as well as ephemeral keys
(at most S) generated by GenCPA, and all ciphertexts (at most S) output by the EncapsCPA and EncapsCCA
algorithms to be distinct. We also assume that values kn, n ∈ [N ], and IV (at most S) are distinct. This
yields∣∣∣Pr[IND-FS-StA1 ⇒ 1]− Pr[IND-FS-StA0 ⇒ 1]

∣∣∣ ≤ ∣∣Pr[GA0,1 ⇒ 1]− Pr[GA0,0 ⇒ 1]
∣∣

+N 2 (2−µSIG + 2−µCCA + 2−κ
)

+ S2 (2−µCPA + 2−γCCA + 2−γCPA + 2−κ
)
, (7)

where µSIG, µCPA, µCCA are collision probabilities of the key generation algorithms GenSIG, GenCPA and
GenCCA and γCPA, γCCA are the spreadness parameters of EncapsCPA and EncapsCCA.
Games G1,b . In games G1,b , we raise flag BREAKSIG in line 22 (Fig. 24) and abort when A has not
queried Corrupt to obtain sigki yet and has not only forwarded a message and a signature output by
SessionI. Note that if the game aborts, the signature must be valid because this is checked before in
line 19. Due to the difference lemma [36],∣∣Pr[GA1,b ⇒ 1]− Pr[GA0,b ⇒ 1]

∣∣ ≤ Pr[BREAKSIG] . (8)

To bound Pr[BREAKSIG], we construct adversaries Bb for b ∈ {0, 1} against N -SUF-CMA security of SIG
in Figure 25.
Bb inputs N verification keys (vk1, ..., vkN ) and has access to signing oracle Sign and corruption

oracle Corrupt′. It then generates N key pairs for KEMCCA and N symmetric keys kn which are part
of the long-term secret key. It forwards the public keys to adversary A. Whenever A queries SessionI

on a pair (i, r), Bb queries Sign on user i in line 37 to obtain a signature σ to message (p̃k, cr). It then
outputs (p̃k, cr , σ) to A.
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Bb
Sign,Corrupt′ (vk1, ..., vkN )

00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (pkn , skn)← GenCCA
04 kn

$← {0, 1}κ
05 (pk′n , sk′n) := ((vkn , pkn), (⊥, skn , kn))
06 b′ ← AO(pk′1, ..., pk′N )
07 for sID∗ ∈ S
08 if Fresh(sID∗) = false return 0
09 if Valid(sID∗) = false return 0
10 return ⊥

SessionR((i, r) ∈ [N ]2, I )
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 peerCorrupted[sID] := corrupted[i]
16 (p̃k, cr , σ) := I
17 if Vrfy(vki , (p̃k, cr), σ) 6= 1
18 return ⊥
19 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I [sID′]) = (i, “In”, I )
20 return FORGE := (i, (p̃k, cr), σ)
21 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
22 Kr := DecapsHr

CCA(skr , cr)
23 π := F(Kr , p̃k, cr , c̃, σ)
24 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
25 K := H(context, K̃)
26 R := (c̃, π)
27 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
28 return (sID,R)

SessionI((i, r) ∈ [N ]2)
29 cnt ++
30 sID := cnt
31 (init[sID], resp[sID]) := (i, r)
32 type[sID] := “In”
33 (p̃k, s̃k)← GenCPA
34 (cr ,Kr)← EncapsHr

CCA(pkr)
35 Cr := Cr ∪ {(cr ,⊥)}
36 CKr := CKr ∪ {(cr ,Kr)}
37 σ ← Sign(i, (p̃k, cr))
38 I := (p̃k, cr , σ)
39 IV $← {0, 1}κ

40 st′ := (p̃k, s̃k, cr ,Kr , σ)
41 st := (IV ,G(ki , IV )⊕ st′)
42 (I [sID], state[sID]) := (I , st)
43 state′[sID] := st′
44 return (sID, I )

Corrupt(n ∈ [N ])
45 corrupted[n] := true
46 sigkn := Corrupt′(n)
47 return sk′n := (sigkn , skn , kn)

Fig. 25. Adversaries Bb against N -SUF-CMA for the proof of Eqn. (9). A has access to oracles
O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,F,G,H,H1, ...,HN , H̃1, ..., H̃S}, where
DerI, Reveal, Rev-State,Test,F,G,H, Hn for n ∈ [N ] and H̃sID for sID ∈ [S ] are defined as in games
G0,b in Figure 23 resp. 24. Lines written in blue color highlight how the adversary simulates G0,b and how event
BREAKSIG leads to a forgery.

To answer a Corrupt query on user n, Bb queries its own oracle Corrupt′ to obtain signing key
sigkn in line 46 and outputs secret keys sigkn, skn and kn to A.

Recall that flag BREAKSIG is raised when A has not queried Corrupt to obtain sigki , but computes a
valid signature which was not output by SessionI. If A queries SessionR on pair (i, r) and I = (p̃k, cr , σ)
such that this is the case, Bb wins the N -SUF-CMA game by returning (i, (p̃k, cr), σ). It follows that

Pr[BREAKSIG] = AdvN-SUF-CMA
SIG (Bb) . (9)

Games G2,b . In games G2,b , we use the SimGenCCA algorithm to generate long-term key pairs (pkn, skn)
in line 05 (Fig. 23). Next, SessionI uses the SimEncapsCCA algorithm to compute ciphertext cr in line
52 and draws a random key Kr in line 50. Kr is then retrieved in line 35 (Fig. 24) when the same cr
is issued to SessionR. Furthermore, the SimHashCCA algorithm is used in all random oracles Hn, where
n ∈ [N ]. In case party n is corrupted, i. e. skn is known to the adversary A, we call SimHashCCA with set
CKn, otherwise with set Cn.

For b ∈ {0, 1}, we construct adversaries Cb against N -NCKE-CCA security of KEMCCA in Figure 26,
similar to adversaries Bb in Figure 16, only that here we have only ciphertexts generated by initiating
sessions and that signatures are simulated as well. If Cb is in the NCKE-CCAreal game, it perfectly simu-
lates G1,b . Otherwise, if Cb is in the NCKE-CCAsim game, it perfectly simulates G2,b . We have

∣∣Pr[GA2,b ⇒ 1]− Pr[GA1,b ⇒ 1]
∣∣ =

∣∣∣Pr[NCKE-CCACb
sim ⇒ 1]− Pr[NCKE-CCACb

real ⇒ 1]
∣∣∣

= AdvN-NCKE-CCA
KEM,Sim (Cb) (10)
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Cb
Encaps,Decaps,Open,H′1,...,H

′
N (pk1, ..., pkN )

00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (vkn , sigkn)← GenSIG
04 kn

$← {0, 1}κ
05 (pk′n , sk′n) := ((vkn , pkn), (sigkn ,⊥, kn))
06 b′ ← AO(pk′1, ..., pk′N )
07 for sID∗ ∈ S
08 if Fresh(sID∗) = false return 0
09 if Valid(sID∗) = false return 0
10 return b′

SessionR((i, r) ∈ [N ]2, I )
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 peerCorrupted[sID] := corrupted[i]
16 (p̃k, cr , σ) := I
17 if Vrfy(vki , (p̃k, cr), σ) 6= 1
18 return ⊥
19 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I [sID′]) = (i, “In”, (p̃k, cr , · ))
20 BREAKSIG := true
21 abort
22 if ∃K ′r s. t. (cr ,K ′r) ∈ CKr
23 Kr := K ′r
24 else
25 Kr := Decaps(r , cr)
26 π := F(Kr , p̃k, cr , c̃, σ)
27 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
28 K := H(context, K̃)
29 R := (c̃, π)
30 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
31 return (sID,R)

SessionI((i, r) ∈ [N ]2)
32 cnt ++
33 sID := cnt
34 (init[sID], resp[sID]) := (i, r)
35 type[sID] := “In”
36 (p̃k, s̃k)← GenCPA
37 (cr ,Kr)← Encaps(r)
38 CKr := CKr ∪ {(cr ,Kr)}
39 σ ← Sign(sigki , (p̃k, cr))
40 I := (p̃k, cr , σ)
41 IV $← {0, 1}κ

42 st′ := (p̃k, s̃k, cr ,Kr , σ)
43 st := (IV ,G(ki , IV )⊕ st′)
44 (I [sID], state[sID]) := (I , st)
45 state′[sID] := st′
46 return (sID, I )

Corrupt(n ∈ [N ])
47 corrupted[n] := true
48 skn := Open(n)
49 return sk′n := (sigkn , skn , kn)

Hn(M ) �n ∈ [N ]
50 if ∃h s. t. (M , h) ∈ Hn return h
51 h ← H′n(M )
52 Hn := Hn ∪ {(M , h)}
53 return h

Fig. 26. Adversaries Cb against N -NCKE-CCA for the proof of Eqn. (10). A has access to oracles
O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,F,G,H,H1, ...,HN , H̃1, ..., H̃S}, where
DerI, Reveal, Rev-State,Test,F,G,H and H̃sID for sID ∈ [S ] are defined as in games G1,b in Figure 23
resp. 24. Lines written in blue color highlight how the adversary simulates G1,b and interpolates to G2,b .

We make the same preparations as in the proof of Theorem 2, before switching to the algorithms of the
simulator SimCPA = (SimGenCPA,SimEncapsCPA,SimHashCPA) in games G4,b . In particular, we introduce
an intermediate game which delays the computation and encryption of the state.

Games G3,b . We move the encryption of the state to the Rev-State oracle and choose only IV when
SessionI is called. Then, when Rev-State is queried and the initiator i is corrupted, we honestly
compute the state in line 07 (Fig. 23). If the adversary already made a query to G, where (ki , IV ) are as
in the corresponding session, we raise flag BAD in line 09 and abort in line 10. Otherwise, we choose a
random string ψ in line 12 and patch the random oracle G for the case that A issues a query with the
correct symmetric key ki and IV . If BAD is not raised, the adversary’s view does not change. We have

∣∣Pr[G3,b ⇒ 1]− Pr[G2,b ⇒ 1]
∣∣ ≤ Pr[BAD] ≤ S · qG

22κ .

Games G4,b . Following the previous proofs, we now use the SimGenCPA algorithm to generate ephemeral
key pairs (p̃k, s̃k), the SimEncapsCPA algorithm to compute ciphertext c̃ and choose a uniformly random
key K̃ whenever the ephemeral public key p̃k was output by SessionI. Random oracles H̃sID will then
use the SimHashCPA algorithm.

In Figure 27, we construct adversaries Db for b ∈ {0, 1} against S-NCKE-CPA which are similar
to adversaries Cb defined in Figure 17. Here, Db generates N key pairs with GenSIG and simulates the
signatures.
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If Db is in the NCKE-CPAreal game, it perfectly simulates G3,b . Otherwise, if Db is in the NCKE-CPAsim
game, it perfectly simulates G4,b . We have∣∣Pr[GA4,b ⇒ 1]− Pr[GA3,b ⇒ 1]

∣∣ =
∣∣∣Pr[NCKE-CPADb

sim ⇒ 1]− Pr[NCKE-CPADb
real ⇒ 1]

∣∣∣
= AdvS-NCKE-CPA

KEMCPA,SimCPA
(Db) . (11)

Games G5,b . In games G5,b , we change the output for K∗0 in the Test oracle to a random key in line
53 (Fig. 23). Now games G5,0 and G5,1 are equal as well as games G5,1 and G4,1 , hence∣∣Pr[GA4,1 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣ =
∣∣Pr[GA5,1 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣
=
∣∣Pr[GA5,0 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣ . (12)

It remains to bound |Pr[GA5,0 ⇒ 1]−Pr[GA4,0 ⇒ 1]|. Therefore, we will now consider the different attacks
for IND-FS-St as described in Table 2. Depending on which queries the adversary makes, each test session
must belong to at least one of the attacks or the game will return 0 anyway.

Again, we will assume that the adversary queries as much information as possible. Variables of
a particular test session sID∗ are denoted by context∗ = (vki∗ , pki∗ , vkr∗ , pkr∗ , p̃k

∗
, cr∗ , c̃∗, σ∗, π∗) and

IV ∗, ki∗ , K̃∗. As we assumed in the beginning that ciphertexts and long-term as well as ephemeral key
pairs are all different, it is not possible to recreate a particular session. In particular, this means that
there is no partially matching session and row (0) will return false.

Now the only possibility to learn any test key K∗0 is through random oracle queries. Let QUERY

be the event that (context, K̃ ) of any test session is queried to H and QUERY∗ be the event that
(context∗, K̃∗) of a specific test session is queried to H. We have∣∣Pr[GA5,0 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣ ≤ Pr[QUERY] .

Union bound over the maximum number of test sessions T yields

Pr[QUERY] ≤ T · Pr[QUERY∗] .

We will now focus on the event QUERY∗ and iterate over the attacks in Table 2. An overview is given
in Figure 28.
Attack (1 ∨ 2), (10). If (1 ∨ 2) ⇒ true, the test session has a matching session and both long-term
secret keys (sigki∗ , ski∗ , ki∗) and (sigkr∗ , skr∗ , kr∗) are revealed. However, A is not allowed to query the
test session’s state or the state of the matching session, depending on the type of the test session. Thus,
A has no information about s̃k

∗
. As there is a matching session for this test session, p̃k

∗
was generated

by SessionI, which means that K̃∗ is chosen uniformly at random and thus independent of p̃k
∗
and c̃∗.

Hence, the probability that A queries H on (context∗, K̃∗) is qH/|K|.
If (10)⇒ true, the test session has a partially matching session and it is of type “Re”. A is allowed

to obtain both long-term secret keys as the test session is completed. A is not allowed to query the state
of the partially matching session. This yields the same scenario as described above. It follows that

Pr[QUERY∗ | (1 ∨ 2)⇒ true] = Pr[QUERY∗ | (10)⇒ true] ≤ qH
|K|

.

Attack (7∨8), (16). If (7∨8)⇒ true, the test session has a matching session and the state (IV ∗, ψ∗) is
revealed. Furthermore, A can obtain (sigkr∗ , skr∗ , kr∗). As the initiator is not corrupted, s̃k

∗
is unknown

to A, unless it issues a query to G on a correct value ki∗ . The probability that this happens is upper
bounded by qG/2κ. Another way to learn the session key is to query H directly, where A succeeds with
probability qH/|K|, as K̃∗ is chosen uniformly at random.

If (16)⇒ true, the test session has a partially matching session and it is of type “Re”. A can reveal
the state (IV , ψ) of the partially matching session, the rest remains unchanged to before. Thus,

Pr[QUERY∗ | (7 ∨ 8)⇒ true] = Pr[QUERY∗ | (16)⇒ true] ≤ qG
2κ + qH

|K|
.
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DEncaps,Open,̃H′1,...,̃H
′
S

b (p̃k1, ..., p̃kS)
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (vkn , sigkn)← GenSIG
04 (pkn , skn)← SimGenCCA
05 kn

$← {0, 1}κ
06 (pk′n , sk′n) := ((vkn , pkn), (sigkn , skn , kn))
07 b′ ← AO(pk′1, ..., pk′N )
08 for sID∗ ∈ S
09 if Fresh(sID∗) = false return 0
10 if Valid(sID∗) = false return 0
11 return b′

SessionR((i, r) ∈ [N ]2, I )
12 cnt ++
13 sID := cnt
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 peerCorrupted[sID] := corrupted[i]
17 (p̃k, cr , σ) := I
18 if Vrfy(vki , (p̃k, cr), σ) 6= 1
19 return ⊥
20 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I [sID′]) = (i, “In”, (p̃k, cr , · ))
21 BREAKSIG := true
22 abort
23 if ∃sID′ s. t. p̃k = p̃ksID′

24 (c̃, K̃)← Encaps(sID′)
25 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)}
26 else
27 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
28 if ∃K ′r s. t. (cr ,K ′r) ∈ CKr
29 Kr := K ′r
30 else
31 Kr := DecapsHr

CCA(skr , cr)
32 Dr := Dr ∪ {cr}
33 π := F(Kr , p̃k, cr , c̃, σ)
34 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
35 K := H(context, K̃)
36 R := (c̃, π)
37 (I [sID],R[sID], sKey[sID]) := (I ,R,K)
38 return (sID,R)

Rev-State(sID)
39 if revState[sID] = true
40 return state[sID]
41 if type[sID] 6= “In” return ⊥
42 revState[sID] := true
43 i := init[sID]
44 (IV ,⊥) := state[sID]
45 if corrupted[i]
46 s̃k := Open(sID)
47 state′[sID] := (p̃k, s̃k, cr ,Kr , σi)
48 state[sID] := (IV ,G(IV , ki)⊕ state′[sID])
49 elseif ∃y s. t. (ki , IV , y) ∈ G
50 BAD := true
51 abort
52 else
53 ψ $← {0, 1}d

54 state[sID] := (IV , ψ)
55 return state[sID]

SessionI((i, r) ∈ [N ]2)
56 cnt ++
57 sID := cnt
58 (init[sID], resp[sID]) := (i, r)
59 type[sID] := “In”
60 (p̃k, s̃k) := (p̃ksID,⊥) �s̃ksID unknown
61 cr ← SimEncapsCCA(pkr , skr)
62 Kr

$← K
63 Cr := Cr ∪ {(cr ,⊥)}
64 CKr := CKr ∪ {(cr ,Kr)}
65 σ ← Sign(sigki , (p̃k, cr))
66 I := (p̃k, cr , σ)
67 IV $← {0, 1}κ

68 st′ := (p̃k,⊥, cr ,Kr , σ)
69 st := (IV ,⊥)
70 (I [sID], state[sID]) := (I , st)
71 state′[sID] := I , st, st′
72 return (sID, I )

DerI(sID,R)
73 if state[sID] = ⊥ or sKey[sID] 6= ⊥
74 return ⊥
75 (i, r) := (init[sID], resp[sID])
76 peerCorrupted[sID] := corrupted[r ]
77 (c̃, π) := R
78 (p̃k, · , cr ,Kr , σ) := state′[sID]
79 if F(Kr , p̃k, cr , c̃, σ) 6= π
80 return ⊥
81 if ∃K̃ ′ s. t. (c̃, K̃ ′) ∈ C̃KsID

82 K̃ := K̃ ′
83 else
84 s̃k := Open(sID)
85 K̃ := DecapsH̃sID

CPA (s̃k, c̃)
86 context := (vki , pki , vkr , pkr , p̃k, cr , c̃, σ, π)
87 K := H(context, K̃)
88 (R[sID], sKey[sID]) := (R,K)
89 return ε

G(k, IV )
90 if ∃k, IV s. t. (k, IV , y) ∈ G return y
91 if ∃i s. t. k = ki and ∃(sID, ψ) s. t.

state[sID] = (IV , ψ) ∧
revState[sID] = true

92 s̃k := Open(sID)
93 state′[sID] := (p̃k, s̃k, cr ,Kr , σ)
94 y := ψ ⊕ state′[sID]
95 else
96 y $← {0, 1}d

97 G := G ∪ {(k, IV , y)}
98 return y

H̃sID(M ) �sID ∈ [S ]
99 if ∃h s. t. (M , h) ∈ H̃sID return h

100 if type[sID] = “In”
101 h ← H̃′sID(M )
102 else
103 h $← {0, 1}κ

104 H̃sID := H̃sID ∪ {(M , h)}
105 return h

Fig. 27. Adversaries Db against S-NCKE-CPA for the proof of Eqn. (11). A has access to oracles
O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,F,G,H,H1, ...,HN , H̃1, ..., H̃S}, where
Reveal,Corrupt,Test, F, H and Hn for n ∈ [N ] are defined as in games G3,b in Figure 23 resp. 24. Lines
written in blue color highlight how the adversary simulates G3,b and interpolates to G4,b .
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Attack Security relies on ...

(1 ∨ 2), (10) IV ∗ unknown ⇒ s̃k
∗
unknown ⇒ K̃∗ unknown

(7 ∨ 8), (16) ki∗ unknown ⇒ s̃k
∗
unknown ⇒ K̃∗ unknown

(17), (23) skr∗ unknown before session completed ⇒ π∗ cannot be computed
(18) sigki∗ unknown before session completed ⇒ σ∗ cannot be forged

Fig. 28. Overview of attacks for the proof of Theorem 3.

Attack (17), (23). If (17) ⇒ true, the test session has no matching session and it is of type “In”. A
is allowed to obtain the initiator’s long-term secret key (sigki∗ , ski∗ , ki∗) and can choose (c̃∗, K̃∗) itself,
but the responder’s long-term secret key (sigkr∗ , skr∗ , kr∗) will only be available after the session key is
established. Thus, A does not know Kr∗ , which is a uniformly random key. A can only complete the
session if it manages to compute π by querying F on Kr∗ , where the probability for that is upper bounded
by qF/|K|.

If (23) ⇒ true, instead of obtaining the initiator’s long-term secret key, A is allowed to obtain the
initiator’s state (IV ∗, ψ∗). The rest remains the same. A can only complete the session if it manages to
forge π, for which it has to query F on the correct key Kr∗ . Thus,

Pr[QUERY∗ | (17)⇒ true] = Pr[QUERY∗ | (23)⇒ true] ≤ qF
|K|

.

Attack (18). If (18) ⇒ true, the test session has no matching session and it is of type “Re”, which
means that A can reveal the responder’s long-term secret key (sigkr∗ , skr∗ , kr∗). Here, A has two possi-
bilities. First, it can choose (p̃k

∗
, s̃k
∗
) and (cr∗ ,Kr∗) itself. However, the initiator’s long-term secret key

(sigki∗ , ski∗ , ki∗) will only be available after the session key is established and A has to forge σi∗ to call
SessionR in the first place. As the game aborts if that happens, the session key will never be computed.

Pr[QUERY∗ | (18)⇒ true] = 0 .

Taking the maximum over the conditional probabilities and assuming that qH ≈ qF, it follows that∣∣Pr[GA5,0 ⇒ 1]− Pr[GA4,0 ⇒ 1]
∣∣ ≤ Pr[QUERY] ≤ T · Pr[QUERY∗]

≤ T ·
(
qG
2κ + qH

|K|

)
(13)

The proof of Theorem 3 follows by collecting the probabilities from Equations (7)-(13) and by folding
adversaries B0 and B1, C0 and C1 as well as D0 and D1 into single adversaries B, C and D. ut

7 Concrete Instantiation of AKE Protocols

7.1 NCKE from the DDH Assumption

Let us first describe the hash proof system we will use. Therefore, let GGen be a group generation
algorithm which takes the security parameter 1κ as input and returns (G, p, g1), where g1 is a generator
of the cyclic group G with prime order p. Define group = (G, p, g1, g2), where g2 = gw

1 for w $← Zp. Define
Y = Z2

p and X = {(gr
1 , gr

2 ) : r ∈ Zp}. A value r is a witness that (c1, c2) ∈ X . Define SK = Z2
p, PK = Zp

and Z = Zp. For sk = (x1, x2) ∈ Z2
p, define µ(sk) = X = gx1

1 gx2
2 . This defines the output of the parameter

generation algorithm Par.
For (c1, c2) ∈ Y define Λsk(c1, c2) := Z = (cx1

1 cx2
2 ). This defines the private evaluation algorithm

Priv(sk, (c1, c2)). Given pk = µ(sk) = X , (c1, c2) ∈ X and a witness r ∈ Zp such that (c1, c2) = (gr
1 , gr

2 ),
the public evaluation algorithm Pub(pk, (c1, c2), r) computes Z = Λsk(c1, c2) as Z = X r .

We define KEMDDH = (GenDDH,EncapsDDH,DecapsDDH) with global parameters par := (G, p, g1, g2) as
shown in Figure 29.

33



GenDDH(par)
00 (x1, x2) $← Z2

p
01 X := gx1

1 gx2
2

02 return (pk := X ,
sk := (x1, x2))

EncapsH
DDH(pk,m)

03 r $← Zp
04 (c1, c2) := (gr

1 , gr
2)

05 K := H(c1, c2,X r)
06 return ((c1, c2),K)

DecapsH
DDH(sk, (c1, c2))

07 K := H(c1, c2, cx1
1 cx2

2 )
08 return K

Fig. 29. Key encapsulation mechanism KEMDDH = (GenDDH,EncapsDDH,DecapsDDH).

Definition 3 (m-fold DDH Problem). Let GGen be a PPT algorithm that on input 1κ outputs a cyclic
group G of prime order 2k−1 ≤ p ≤ 2k with generator g1. Furthermore let g2 = gω1 for ω $← Zp. The
m-DDH problem requires to distinguish m DDH tuples from m uniformly random tuples:

Advm-DDH
GGen (A) :=

∣∣∣Pr[A(G, p, g1, g2, (gri
1 , g

ri
2 )i∈[m])⇒ 1]− Pr[A(G, p, g1, g2, (gri

1 , g
r′i
2 )i∈[m])⇒ 1]

∣∣∣ ,
where probability is taken over (G, p, g)← GGen, ri , r ′i $← Zp for i ∈ [m], as well as the coin tosses of A.

Lemma 1 (Random self-reducibility of DDH [17]). For any adversary C against the m-fold DDH
problem, there exists an adversary B against the DDH problem with roughly the same running time such
that

Advm-DDH
GGen (C) ≤ AdvDDH

GGen(B) + 1
p − 1 .

The following theorem establishes that the construction given in Figure 29 is anN -receiver non-committing
encapsulation mechanism under the DDH assumption.

Theorem 4. Under the DDH assumption and in the random oracle model, KEMDDH is an N-receiver
non-committing key encapsulation mechanism. In particular, for any N-NCKE-CCA adversary A against
KEMDDH and SimDDH that issues at most qE queries per user to Encaps, qD queries to Decaps and
at most qH queries to each random oracle Hn, n ∈ [N ], there exists an adversary B against DDH with
roughly the same running time such that

AdvN-NCKE-CCA
KEMDDH,SimDDH

(A) ≤ AdvDDH
GGen(B) + N · qE · (qH + qD + 1)

p + 1
p − 1 ,

where SimDDH is the simulator defined relative to KEMDDH.

Proof. We apply Theorem 1 and analyze the entropy of the underlying HPS. The key space Z is Zp. For
sk = (x1, x2) $← Z2

p, pk = µ(sk) = gx1
1 gx2

2 and Z = Priv(sk, (c1, c2)) = cx1
1 cx2

2 , where (c1, c2) = (gr
1 , gr′

2 )
and (r , r ′) $← Z2

p, we have (
logg1 pk
logg1 Z

)
= M

(
x1
x2

)
, where M =

(
1 w
r wr ′

)
.

If r 6= r ′, then detM = w(r ′ − r) 6= 0, which implies that pk and Z are random and independent
group elements as long as x1, x2 are unknown. Thus, for all Z ′ ∈ Z, holds that Pr[Z = Z ′] = 1/p . In
Definition 3, all values ri and r ′i are drawn uniformly at random from Zp. The probability that ri = r ′i
for any i ∈ [N · qE ] is upper bounded by N · qE/p. Furthermore, the probability that a specific challenge
ciphertext is issued to Decaps before it is output by Encaps is at most qD/p. It follows that

AdvN-NCKE-CCA
KEM,Sim (A) ≤ Advm-DDH

GGen (B) + N · qE

p + N · qE · qH
p + N · qE · qD

p .

Now Theorem 4 follows directly from Lemma 1. ut

7.2 Concrete Instantiation of AKE Protocols

We instantiate protocols AKEwFS (Section 5) and AKEFS (Section 6.2) with KEMDDH (Section 7.1) for
both KEMCPA and KEMCCA. We will not give a concrete instantiation of the signature scheme used in
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AKEFS at this point. The resulting protocols AKEwFS,DDH and AKEFS,DDH are shown in Figure 1 in the
introduction.

Note that for AKEwFS,DDH we can improve efficiency by sending only one ciphertext for both p̃k and
pki in the second message, as KEMDDH is a multi-recipient KEM. We establish Theorem 5 and give a
proof sketch.

Theorem 5 (IND-wFS-St security of AKEwFS,DDH). Under the DDH assumption, AKEwFS,DDH is IND-
wFS-St secure in the random oracle model. In particular, for any IND-wFS-St adversary A against
AKEwFS,DDH with N parties that establishes at most S sessions and issues at most T queries to the
test oracle Test, qG queries to random oracle G, qH̃, qHn queries to each random oracle H̃sID and Hn
and at most qH queries to random oracle H, there exists an adversary B against DDH with roughly the
same running time such that

AdvIND-wFS-St
AKEwFS,DDH

(A) ≤ 2 ·AdvDDH
GGen(B) + T · qG + qH

2κ + (N + S)2 · 1
p + N 2 · 1

2κ

+ S2 ·
(

2
p + 1

2κ

)
+ 2S ·

(
qG
22κ +

qH̃ + qHn + 1
p

)
+ 2

p − 1 ,

where κ is a security parameter.

Due to the improved construction, we cannot apply Theorem 2 directly, but we give a proof sketch
from the DDH assumption and show that the same technique as in the proofs of Theorems 2 and 4 can
be used.

Proof. We proceed similar and consider collisions first. We assume that all key pairs generated by GenDDH
are different. Note that we also have to consider collisions between long-term and ephemeral public keys.
It holds that

Pr[x1, x2, x ′1, x ′2 $← Zp : gx1
1 gx2

2 = gx′1
1 gx′2

2 ] = 1/p .

Union bound yields (N + S)2/p, as we have N long-term public keys and at most S ephemeral public
keys. For ciphertexts (c1, c2) ∈ C output by the encapsulation algorithm EncapsDDH, it holds that

Pr[r $← Zp : (c1, c2) = (gr
1 , gr

2 )] = 1/p ,

which yields an upper bound for collisions of S2/p, as there are at most S sessions with one ciphertext.
We also assume that values IV are different in all sessions and keys kn are different for all parties.

We use the secret keys to compute keys Ki , Kr and K̃ . Next, we replace all ciphertexts by uniformly
random group elements at the same time, reducing to the S-fold DDH assumption and use the random
self-reducibility property. In addition to that, we ensure that all ciphertexts are indeed invalid by adding
S/p which is the probability that exponents are the same for any ciphertext.

Instead of the corresponding random oracles, we use internal hash functions H̃′sID and H′n for sID ∈ [S ]
and n ∈ [N ] to compute keys Ki , Kr and K̃ , but patch the random oracles if the secret key is known
to the adversary. As there are at most S challenge keys computed with a long-term key pair and at
most S challenge keys computed with an ephemeral key pair, the difference can be upper bounded by
S · qHn/p + S · qH̃/p using a hybrid argument. Now we can replace Ki , Kr and K̃ by uniformly random
keys.

The rest of the proof is equal to the proof of Theorem 2. The size of the key space of KEMDDH is 2κ
and the bound follows by collecting all probabilities. ut

For protocol AKEFS,DDH, we apply Theorem 3 to show IND-FS-St security. The collision probabilities
for KEMDDH are already shown in the previous proof. Additionally, we need a strongly unforgeable
signature scheme.

Theorem 6 (IND-FS-St security of AKEFS,DDH). For an N-SUF-CMA secure signature scheme SIG and
under the DDH assumption, AKEFS,DDH is IND-FS-St secure in the random oracle model. In particular,
for any IND-FS-St adversary A against AKEFS,DDH with N parties that establishes at most S sessions and
issues at most T queries to the test oracle Test, qG queries to random oracle G, qF queries to random
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oracle F, qH̃, qHn queries to each random oracle H̃sID and Hn and at most qH queries to random oracle
H, there exists an adversary B against DDH and an adversary C against N-SUF-CMA such that

AdvIND-FS-St
AKEFS,DDH

(A) ≤ 4 ·AdvDDH
GGen(B) + 2 ·AdvN-SUF-CMA

SIG (C) + T · qF + qG + qH
2κ + N 2 ·

(
1

2µSIG
+ 1

p + 1
2κ

)
+ S2 ·

(2qH̃ + 6
p + 1

2κ

)
+ 2NS · qHn + 2

p + 2S · qG
22κ + 4

p − 1 ,

where µSIG is the collision probability of the key generation algorithm GenSIG and κ is a security parameter.

The signature scheme can be instantiated with the tight scheme based on the DDH and CDH as-
sumption proposed by Gjøsteen and Jager in [21], which is also used in their authenticated key exchange
protocol.
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A NCKE from the Higher Residuosity Assumption

We show how to construct an NCKE scheme using the hash proof system based on the higher residuosity
(HR) problem described in [22]. Therefore, we will first recall some definitions.
Quadratic Residues. An n-bit integer N = PQ, where P,Q are two distinct n/2-bit odd primes is
called an RSA modulus. We assume that N is a Blum integer, i. e., both P and Q are congruent 3 modulo
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4. By φ(N ) we denote Euler’s totient function, i. e. φ(N ) = (P−1)(Q−1). By JN we denote the subgroup
of all elements from Z∗N with Jacobi symbol 1 and by QRN the group of quadratic residues modulo N ,
which is a subgroup of JN with order (P − 1)(Q − 1)/4.
Signed Quadratic Residues. For x ∈ ZN , let |x| denote the absolute value of x, where x is represented
as a signed integer in the set {−(N − 1)/2, ..., (N − 1)/2}. The signed group G+, where G is a subgroup
of Z∗N , is defined as G+ := {|x| : x ∈ G}. For g, h ∈ G+ and integer x, we define g ◦ h := |g · h mod N |
and gx := |gx mod N |. Our focus will be on the group of signed quadratic residues QR+

N .

Lemma 2. [22] Let N be a Blum integer. Then:
(i) (QR+

N , ◦) is a group of order φ(N )/4.
(ii) QR+

N = J+
N . In particular, QR+

N is efficiently recognizable (given only N).
(iii) If QRN is cyclic, so is QR+

N .

RSA Instance Generator. Let 0 ≤ δ ≤ 1/4 be a constant and n(κ) be a function. Let RSAgen be an
algorithm that generates elements (N ,P,Q,S) such that N = PQ is an n-bit Blum integer. The prime
factors of φ(N )/4 are pairwise distinct and at least δn-bit integers. Furthermore, S > 1 is a divisor of
φ(N )/4 with 1 < gcd(S , (P − 1)/2) < (P − 1)/2 and 1 < gcd(S , (Q − 1)/2) < (Q − 1)/2.
Statistical Distance. The statistical distance between two random variables X and Y having a com-
mon domain X is defined as ∆[X ,Y ] = 1

2
∑

x∈X |Pr[X = x]−Pr[Y = x]|. The min-entropy of a random
variable X is defined as H∞(X) = − log(maxx∈X Pr[X = x]).

Now we describe our HPS. Define group = (N , g), where (N ,P,Q,S) ← RSAgen(1κ) and g is a uni-
form generator of G+

S . Define Y = QR+
N and X = G+

S = {gr : r ∈ ZS}. A value r is a witness that
c ∈ X . It is possible to sample an almost uniform element from X together with a witness by first picking
r ∈ [N/4] and defining c = gr ∈ G+

S . We will determine the statistical distance below in Equation (14).
Membership in Y can be efficiently checked by Lemma 2. Define SK = [N/4], PK = G+

S and Z = QR+
N .

For sk = x ∈ [N/4], define µ(sk) = X = gx ∈ G+
S . This defines the output of the parameter generation

algorithm Par.
For c ∈ Y define Λsk(c) := Z = cx . This defines the private evaluation algorithm Priv(sk, c). Given

pk = µ(sk) = X , c ∈ X and a witness r ∈ Z such that c = gr , the public evaluation algorithm
Pub(pk, c, r) computes Z = Λsk(c) as Z = X r .

We want to analyze the statistical distance between the two distributions defined by sampling from
X1 = [φ(N )/4] and sampling from X2 = [N/4]. As φ(N )/4 = ST and N/4 = ST + (P + Q − 1)/4, we
can write the statistical distance as

∆[X1,X2] = (P + Q − 1)/4
N/4 = 1

P + 1
Q −

1
PQ ≤

1
P + 1

Q = O(2−n/2) , (14)

where the last equation holds because P and Q are both n/2-bit primes.

Definition 4 (m-fold Higher Residuosity Problem). Let (N ,P,Q,S) be generated by RSAgen. The
higher residuosity (HR) problem requires to distinguish m random elements from G+

S from m random
elements from QR+

N . The advantage of an adversary A against the HR problem is defined as

Advm-HR
RSAgen(A) := |Pr[A(N , g, c1, ..., cm)⇒ 1]− Pr[A(N , g, c′1, ..., c′m)⇒ 1]| ,

where the probability is taken over (N ,P,Q,S) ← RSAgen, c1, ..., cm
$← G+

S and c′1, ..., c′m $← QR+
N as

well as the coin tosses of A.

Next, we want to show that the m-fold HR problem tightly reduces to the (1-)HR problem using random
self-reducibility.

Lemma 3 (Random self-reducibility of HR). For any adversary A against the m-fold HR problem,
there exists an adversary B against the HR problem with roughly the same running time such that

Advm-HR
RSAgen(A) ≤ AdvHR

RSAgen(B) + m ·O(2−δn(κ)) + O(2−n/2) .
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B(N , g, c)
00 for i ∈ [m]
01 ai

$← [N/4]
02 ci := cai

03 b′ ← A(N , g, c1, ..., cm)
04 return b′

Fig. 30. Adversary B against the HR problem for the proof of Lemma 3.

Proof. Let A be an adversary against the m-HR problem. We construct adversary B against the (1-)HR
problem as shown in Figure 30.
B inputs (N , g, c), where g is a generator of G+

S and c is either a random element from G+
S or from

QR+
N . It samples m random elements ai from [N/4], computes ci as cai and runs adversary A on input

(N , g, c1, ..., cm).
First, note that |G+

S | = S and |QR+
N | = ST , where S and T have only prime factors that are distinct

and greater than 2−δn(κ). Thus, c is a generator of G+
S or QR+

N with high probability 1−O(2−δn(κ)).
Second, if c is a generator of G+

S resp. QR+
N , then ci := cai , where ai

$← [φ(N )/4] and i ∈ [m], are
m random and independent elements in the corresponding group. As B does not know φ(N ), it samples
exponents ai from [N/4]. As shown above, the statistical distance between these (c1, ..., cm) and the
input of A in the original m-HR experiment is bounded by m ·O(2−δn(κ)).

This yields the bound stated in Lemma 3. ut

GenHR(par)
00 x $← [N/4]
01 X := gx

02 return (pk := X ,
sk := x)

EncapsH
HR(pk)

03 r $← [N/4]
04 c := gr

05 K := H(c,X r)
06 return (c,K)

DecapsH
HR(sk, c)

07 K := H(c, cx)
08 return K

Fig. 31. Key encapsulation mechanism KEMHR = (GenHR,EncapsHR,DecapsHR).

Theorem 7. Under the HR assumption and in the random oracle model, KEMHR is an N-receiver non-
committing key encapsulation mechanism. In particular, for any N-NCKE-CCA adversary A against
KEMHR and SimHR that issues at most qE queries per user to Encaps, qD queries to Decaps and at
most qH queries to each random oracle Hn, n ∈ [N ], there exists an adversary B against HR with roughly
the same running time such that

AdvN-NCKE-CCA
KEMHR,SimHR

(A) ≤ AdvHR
RSAgen(B) + (N · qE)(qH + qD + 1) ·O(2−δn(κ)) + O(2−n/2) .

Proof. As shown in [22], HPS is δn(κ)-entropic. Furthermore, the m-fold subset membership problem is
hard in HPS by definition of the m-HR assumption. Thus, Theorem 1 yields

AdvN-NCKE-CCA
KEMHR,SimHR

(A) ≤ Advm-HR
RSAgen(B) + (N · qE · qH) · 2−δn(κ) + (N · qE · qD) · 2−δn(κ) .

Applying Lemma 3 yields the bound stated in Theorem 7. ut

B Full Attack Tables for our AKE Model

In the following, we want to give the complete tables of possible attacks in the FS and wFS security model.
Note that these tables contains a large number of redundant rows. We do this to justify completeness
and point out the security properties. In the next step, we will distill the tables for the special case of
two-message protocols, thus reducing complexity. We also point out trivial attacks.
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B.1 Overview of Allowed Attacks for Full Forward Security

We begin with the complete table of possible attacks for full forward security, which is given in Table 3.
The variables used are explained in Section 4. The structure is as follows:
– Attack (0) covers that it is considered a valid attack when a session is recreated due to insufficient

randomness. Therefore, if there is more than one partially matching session to a test session, the
adversary may also run a trivial attack.

– Attacks (1)-(8) capture all attacks, where a matching session exists.
– Attacks (9)-(16) capture all attacks, where a partially matching session exists, but no full matching

session.
– Attacks (17)-(24) capture all attacks, where neither a partially nor a full matching session exists.

We cover all possible combinations of long-term key corruptions and state reveals, also taking into
account when a corruption may happen (modeled by variable peerCorrupted). Thereby, the allowed
attacks include forward security, KCI security, and security against maximal exposure:
Forward Security is covered, for instance, by attacks (17) and (18), which enable an active adversary

(i.e., |M(sID∗)| = 0) to obtain the long-term secret of one or both parties. The peer’s long-term
secret key will be available after the session key has been computed.

Key Compromise Impersonation is covered by attacks (21)-(24), where the adversary obtains at
least the long-term secret of one party.

Maximal Exposure Attacks are covered by the fact that all combinations of long-term secret and
state reveals are allowed, except for those that lead to trivial attacks (e.g., reveal of long-term key
and state of the same party). In particular, we allow the adversary to obtain both states in attacks
(19) and (20).

Distilled Table for Two-Message Protocols. We consider the full table and give a distilled
version in Table 2 in Section 4. The simplifications are due to the following reasons:
– Attacks (1) and (2) can be merged by setting the type to arbitrary.
– Attacks (3) and (4) can be removed as the responder does not have a state and thus this is already

captured by attacks (7) and (8).
– Attacks (5) and (6) can be removed for the same reason, they are already captured by attacks (1)

and (2).
– Attacks (7) and (8) can be merged by setting the type to arbitrary and allowing to reveal both states

as only the initiator’s state contains meaningful information.
– Attacks (9), (11), (13) and (15) can be removed as by definition, a partially matching session can

never be of type “In”.
– Attacks (12) and (14) can be removed as the responder does not have a state and thus these attacks

are already captured by attacks (16) and (10).
– Attacks (19) and (22) can be removed as the responder does not have a state and thus this is already

captured by attacks (23) and (18).
– Attack (20) can be removed as the adversary can compute the state on his own and thus this is

already captured by attack (22).
– Attacks (21) and (24) equal attacks (17) and (18) and can be removed as the adversary can compute

the state on his own.

B.2 Overview of Allowed Attacks for Weak Forward Security

Compared to full forward security, weak forward security only provides security against a passive adver-
sary (i.e., it must hold that |M(sID∗)| = 1) when both secret keys are revealed. This is the strongest
form of forward security that implicitly authenticated protocols can achieve. Our model covers this in
attacks (1) and (2).
Distilled Table for wFS and Two-Message Protocols. We use Table 3 and distill it such that
it considers weak forward security for two-message protocols. The result is given in Table 1 in Section 4.
Column peerCorrupted has been removed as we no longer consider the time when a corruption happens.
We justify the removal of trivial attacks as follows:
– Attacks (9), (11), (13) and (15) can be removed as by definition, a partial matching session can never

be of type “In”.
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(0) multiple partially matching sessions – – – – – – – – > 1
(1) (long-term, long-term) – – – “In” F F 1 – –
(2) (long-term, long-term) – – – “Re” F F 1 – –
(3) (state, state) F F – “In” – – 1 – –
(4) (state, state) F F – “Re” – – 1 – –
(5) (long-term, state) – F – “In” F – 1 – –
(6) (long-term, state) – F – “Re” – F 1 – –
(7) (state, long-term) F – – “In” – F 1 – –
(8) (state, long-term) F – – “Re” F – 1 – –
(9) (long-term, long-term) – – F “In” F n/a 0 F 1
(10) (long-term, long-term) – – F “Re” F n/a 0 F 1
(11) (state, state) F F – “In” – n/a 0 – 1
(12) (state, state) F F – “Re” – n/a 0 – 1
(13) (long-term, state) – F – “In” F n/a 0 – 1
(14) (long-term, state) – F F “Re” – n/a 0 F 1
(15) (state, long-term) F – F “In” – n/a 0 F 1
(16) (state, long-term) F – – “Re” F n/a 0 – 1
(17) (long-term, long-term) – – F “In” F n/a 0 n/a 0
(18) (long-term, long-term) – – F “Re” F n/a 0 n/a 0
(19) (state, state) F F – “In” – n/a 0 n/a 0
(20) (state, state) F F – “Re” – n/a 0 n/a 0
(21) (long-term, state) – F – “In” F n/a 0 n/a 0
(22) (long-term, state) – F F “Re” – n/a 0 n/a 0
(23) (state, long-term) F – F “In” – n/a 0 n/a 0
(24) (state, long-term) F – – “Re” F n/a 0 n/a 0

Table 3. Full table of attacks for full and weak FS adversaries. For two-message protocols, a partial matching
session can only be of type “Re” and we can exclude attacks highlighted in green color. Furthermore, for weak
FS adversaries we exclude trivial attacks which are highlighted in blue color. An attack is regarded as an AND
conjunction of variables with specified values as shown in the each line, where “–” means that this variable
can take arbitrary value. “F” means “false”, “n/a” indicates that there is no state which can be revealed as no
(partially) matching session exists.

– Attacks (17) and (23) have to be removed as the adversary can trivially win by obtaining the re-
sponder’s long-term secret and computing the last message.

– Attacks (18) and (22) have to be removed as the active adversary can trivially win by impersonating
the initiator and choosing its own state for the first message.

Furthermore, we do some optimizations:
– Attacks (1) and (2) can be merged by setting the type to arbitrary.
– Attacks (3) and (4) can be removed as the responder does not have a state and thus this is already

captured by attacks (7) and (8).
– Attacks (5) and (6) can be removed for the same reason, they are already captured by attacks (1)

and (2).
– Attacks (7) and (8) can be merged by setting the type to arbitrary and allowing to reveal both states

as only the initiator’s state contains meaningful information.
– Attacks (12) and (14) can be removed as the responder does not have a state and thus these attacks

are already captured by attacks (16) and (10).
– Attack (20) can be removed as the the responder does not have a state and thus this is already

captured by attack (24).
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