
Compact Authenticated Key Exchange in the
Quantum Random Oracle Model

Haiyang Xue1,2,3 ?, Man Ho Au2, Rupeng Yang2, Bei Liang4, Haodong Jiang5

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

haiyangxc@gmail.com
2 Department of Computer Science, The University of Hong Kong, Hong Kong

allen.au@gmail.com, orbbyrp@gmail.com
3 Data Assurance and Communications Security Research Center,

Chinese Academy of Sciences, Beijing, China
4 Chalmers University of Technology, Gothenburg, Sweden

lbei@chalmers.se
5 State Key Laboratory of Mathematical Engineering and Advanced Computing,

Zhengzhou, Henan, China
hdjiang13@gmail.com

Abstract. We propose a generic construction of two-message authenticated key
exchange (AKE) in the quantum random oracle model (QROM). It can be seen
as a QROM-secure version of X3LH-AKE [Xue et al. ASIACRYPT 2018], a
generic AKE based on double-key PKE. We prove that, with some modification,
the security of X3LH-AKE in QROM can be reduced to the one-way securi-
ty of double-key PKE. In addition to answering several open problems on the
QROM security of prior works, such as SIAKE [Xu et al. ASIACRYPT 2019],
FSXY-AKE and 2Kyber-AKE, we propose a new construction, CSIAKE, based
on commutative supersingular isogenies.
Our frame enjoys the following desirable features. First of all, it supports PKEs
with non-perfect correctness. Secondly, the security reduction is relatively tight.
In addition, the basic building block is weak and compact. Finally, the resulting
AKE achieves the security in CK+ model as strong as in X3LH-AKE, and the
transformation overhead is low.

1 Introduction

Authenticated Key exchange. Since the introduction of authenticated key exchange
(AKE), there has been a series of works, which are mainly specified in the following di-
rections, security models, provably-secure instantiations based on classical or quantum-
resistant assumptions. Among these constructions, some are explicitly authenticated
(which generally use additional primitives, i.e., signature or MAC), while some are im-
plicitly authenticated.

Recently, one of the most important and appealing directions is to construct strongly
secure AKE against quantum attacks. Although one could achieve this goal by combin-
ing quantum-secure PKE/KEM with quantum-resistant signatures [32], the resulting
explicitly authenticated schemes incur considerable overhead. An alternative approach
is to construct implicit AKE from quantum-secure PKE/KEM based on established
generic frameworks. For example, the framework of [16] yields to AKEs from IND-CCA
secure KEMs and pseudo-random functions (PRFs) in the standard model.

Recognizing the inefficiency of [16], Fujioka et al. [17] generically construct AKE
(denoted as FSXY-AKE hereafter) relying on the random oracle. Particularly, FSXY-
AKE requires an adaptively secure (OW-CCA) KEM, and a parallel execution of one

? This work was done while the author was in the Department of Computing, The Hong Kong
Polytechnic University.

OW-CCA secure KEM and one passively-secure KEM, all of which are implied by OW-
CPA secure PKE in the classical random oracle model (ROM) [16, Sec. 4]. There have
been several instantiations of FSXY-AKE. Among them, those based on Module-LWE
assumption [6] and supersingular isogeny [30] are the most attractive ones.

Another noteworthy framework is due to Xue et al. [37] (denoted as X3LH-AKE here-
after). Abstracted from many well-known ad-hoc implicit AKEs, X3LH-AKE generical-
ly devises AKE from a new primitive called adaptively secure double-key (2-key) KEM
which could be obtained from a passively secure 2-key PKE [37, Sec. 6.2]. Observing that
in FSXY the responder returns two independent ciphertexts under initiator’s static and
ephemeral public keys, Xue et al. [37] made use of a 2-key PKE to incorporate two in-
dividual encryptions to a single encryption under two public keys. They also formalized
the security requirement for the underlying 2-key PKE, namely [OW-CPA,OW-CPA].
More precisely, in the [OW-CPA, ·] (resp. [·,OW-CPA]) game, the adversary attempts to
invert the ciphertext of a random message which is encrypted under a pair of public
keys, where the first (resp. second) public key is generated honestly by the challenger,
while the second (resp. first) public key is chosen by adversary.

FSXY-AKE could be taken as a special case of X3LH-AKE where 2-key PKE is
the combination of two independent PKEs. The prominent advantage of X3LH-AKE
is that there are several compact constructions of 2-key PKE except for the direct
combination of two PKEs. Thus, following their framework, several compact AKEs are
given, such as 2Kyber-AKE [37] based on Module-LWE assumption and SIAKE [38]
based on supersingular isogeny. As shown in Table 1, SIAKE is more compact than that
presented in [30] by following FSXY-AKE.

The Quantum ROM. Since quantum computers could execute all the off-line primi-
tives, including hash functions, Boneh et al. [5] introduced the quantum ROM (QROM),
in which the adversary has the capability to query random oracle with arbitrary super-
positions. It is widely believed that proofs in the quantum ROM rather than classical
ROM fulfill the security requirements against quantum adversaries.

Motivation. Although X3LH-AKE (SIAKE, 2Kyber-AKE) and FSXY-AKE lead to
efficient and quantum-resistant AKEs, their security analysis are conducted in the clas-
sical ROM, leaving the studies of their securities in QROM as open problems, which
motivate us to focus on in this paper.

Hövelmanns et al. [21] proposed a modified FSXY-AKE (denoted as HKSU-AKE
hereafter) by eliminating intermediate hash and proved its QROM security. Since the 2-
key system of FSXY-AKE consists of two independent 1-key KEMs/PKEs, the challenge
falls down on the Fujisaki-Okamoto (FO, i.e., CPA PKE to CCA KEM) transformation.
Thus, several recent progresses and techniques [20,23,34,2] on QROM security of FO
could be used. Hövelmanns et al. [21] also re-examines the puncture technique in [34] by
considering decryption error and applies it to FSXY-AKE. The drawback of puncture
trick is that the underlying 1-key PKE should be IND-CPA secure (cf. OW-CPA secure
PKE is sufficient in the original FSXY-AKE).

However, HKSU’s technique can not be applied to X3LH-AKE and its compact in-
stantiations, i.e., SIAKE and 2Kyber-AKE, due to the following reasons. First, compact
instantiations of 2-key PKE, such as that used in SIAKE, provide only one-wayness
rather than IND security. Secondly, HKSU’s proof (and several others for QROM se-
curity of FO) is built indispensably on the so-called injective mapping with encryption
under fixed public key in order to decouple the decapsulation-like oracle with secret key.
However, in X3LH-AKE (specifically, when 2-key PKE is not the direct combination
of two PKEs), the adversary could query decapsulation-like oracle under many public
keys. Worse still, the adversary has the capability to choose part of the challenge public
key.

Thus, the main motivation of this work is to prove the security of X3LH-AKE (and
thus SIAKE, FSXY, and 2Kyber-AKE) in QROM and reduce their securities to a weak-

2

er (i.e., one-wayness) primitive, thus supplementing the state-of-the-art of quantum-
resistant AKEs.

1.1 Our Contributions

We prove that, with a slight modification, X3LH-AKE converts any [OW-CPA, OW-CPA]
secure 2-key PKE into a CK+ secure AKE in QROM. Our results imply that several
prior schemes, including SIAKE [38], 2Kyber-AKE [37] and FSXY [17], can be adapted
to achieve QROM security. We also propose a new AKE, namely, CSIAKE, based on
commutative supersingular isogenies [15].

To the best of our knowledge, SIAKE, CSIAKE and 2Kyber-AKE represent the most
efficient QROM-secure AKEs under their corresponding assumptions. Fig. 1 and Table
1 summarize ours and existing transformations.

– We prove that X3LH (with a slight modification) indeed transforms 2-key PKE
into an adaptively secure AKE in QROM. Our transformation is practical, not only
because it relies on a weak building block, i.e., [OW-CPA, OW-CPA] secure 2-key
PKE, which supports more compact instantiations, but also because it is as efficient
as X3LH.

– Our result answers several open problems on the securities of previous AKEs in
QROM, such as SIAKE, 2Kyber-AKE and FSXY. For FSXY, the security require-
ment of underlying PKE is the same as FSXY, i.e., OW-CPA, contrary to the results
in [21] which require IND-CPA. Furthermore, our reduction is relatively tighter than
that in HKSU [21].

– Our result also provides an alternative approach to design new post-quantum AKEs
in QROM. With such guide, CSIAKE, a new construction based on commutative
supersingular isogenies [15] is given.

– Our last contribution is the proof technique, namely, domain separation and injective
mapping with encryption under many public keys. We believe that this technique,
which is of independent interest, is useful for multi-user security of FO in QROM.

AKEs AssumptionsQROM Tool’s Security Comm. (Bytes) Computation

FSXY [17,6]

M-LWE

OW-CPA 5920

X3LH [37] [OW-CPA,OW-CPA] 5302

HKSU [21] X IND-CPA 5920

Ours X [OW-CPA,OW-CPA] 5302

FSXY [17,30]

SIDH

OW-CPA 2352 6+6 Isog.

SIAKE [38] [OW-CPA,OW-CPA] 1788 6+5 Isog.

HKSU [21] X IND-CPA 2352 6+6 Isog.

Ours X [OW-CPA,OW-CPA] 1788 6+5 Isog.

HKSU [21]
CSIDH

X IND-CPA 2688 6+6 Isog.

Ours X [OW-CPA,OW-CPA] 2028 6+5 Isog.

Table 1. Comparison of AKEs. The parameters for M-LWE and SIDH(-p751) are chosen to
have the same security as AES-256, while that for CSIDH(-5280), recommended by [11], has
the same security as AES-128. We do not count the computation under M-LWE assumption
since it is not a bottleneck. “x+ y Isog.” in the computation column means that the initiator
(resp. responder) has to perform x (resp. y) isogeny computation.

3

CK+AKE

[OW-CPA, OW-CPA]
2-key PKE

IND-CCA
KEM

CSIDH
OW-CPA
PKE

IND-CPA
PKE

SIAKE 2Kyber Kyber · · · SIKE

This work
Sec. 3,4

[37]
X3LH [17]

FSXY13

FSXY12
[16]

HKSU20
[21]

SXY18
[34]

NoErr

trivial

JZC+18
[23]

Sec.5
Sec.5

[37] [38]

[6] [22]

Fig. 1. Illustration of existing works from probabilistic PKE and our contributions. “NoErr”
indicates the work does not consider decryption error. The dotted (resp. dashed and solid) lines
indicate works in the classical ROM (resp. QROM or standard) model. The thick solid lines
are our contributions.

1.2 Technique Overview

We first review the frame of X3LH-AKE in detail and discuss the challenges that arise
when proving its security in QROM. Then, we present our solution. We conclude with
a discussion on the applicability of our framework.

Review of X3LH-AKE and Challenges.

The core idea of X3LH-AKE from 2-key PKE6 is illustrated in the following figure. A
2-key PKE accommodates two keys in a single encryption, and its encryption algorithm
Enc takes as input the public keys pk1, pk2, plaintext m and randomness r, and outputs
ciphertext C = Enc(pk1, pk2,m; r).

Alice (pkA, skA) Bob (pkB , skB)

pk2A, CA = Enc1(pkB ,mA)

CB = Enc(pkA, pk2A,mB ; rB)

Initiator Alice, with static public key pkA, first generates an ephemeral key pk2A and
sends it to Bob. Bob returns a 2-key encryption CB to Alice. The process is somewhat
symmetric in the sense that in the first move, Alice sends to Bob a 1-key encryption

6 In [37], it is a two-step process: firstly from passively secure 2-key PKE to adaptively secure
2-key KEM, and then to X3LH-AKE.

4

under Bob’s public key, say CA = Enc1(pkB ,mA). The final session key is extracted
from KA (encapsulated in CA) and KB (encapsulated in CB) together with the session
identifier.

The [OW-CPA,OW-CPA] security of underlying 2-key PKE is defined by [OW-CPA, ·]
and [·,OW-CPA] games. In [OW-CPA, ·] game, the adversary aims to recover m, where
pk1 is chosen by challenger and pk2 is chosen by adversary; while in the [·,OW-CPA]
game, pk1 (resp. pk2) is chosen by the adversary (resp. challenger).

The AKE adversary in CK+ game could send any message he wants, and make
SessionKeyReveal query on any non-test session to obtain the corresponding session key.
For example, on receiving an ephemeral public key from the initiator, the adversary
may reply a 2-key ciphertext and query SessionKeyReveal to extract the corresponding
session key. Furthermore, in the test session, the adversary may choose the ephemeral
public key and try to guess the session key after receiving a challenge ciphertext.

To fill up the gap between CK+ secure AKE and [OW-CPA,OW-CPA] secure 2-key
PKE, two issues should be resolved in both classical ROM and QROM. First of all, how
to answer the SessionKeyReveal queries without the first secret key. Secondly, how to
decouple the challenge session key K∗ from the challenge ciphertext C∗ and claim its
randomness. To simplify the analysis, in the following we just consider the authentication
of the initiator.

Classical ROM. With the help of hash list, two issues above could be solved by setting
rB = G(mB) and KB = h(pk2A,mB). For any SessionKeyReveal query on a session in
which pk1 is the owner’s static key, pk′2 is the ephemeral public key and C ′ is chosen by
adversary, the simulator returns a session key by setting the encapsulated key either as
h′ = h(pk′2,m

′) or a random value, depending on whether there exists some (pk′2,m
′, h′)

in the hash list such that Enc(pk1, pk
′
2,m

′, G(m′)) = C ′. Secondly, if the plaintext m∗

of C∗ is in the hash list, we could solve the [OW-CPA, ·] problem; otherwise, we could
claim the randomness of K∗. This is how the original X3LH [37] does.

Quantum ROM. Although searching hash list operates very well in classical ROM, it
is not easy to employ this trick in QROM. For FO transform (i.e., 1-key PKE to KEM),
two techniques have been proposed to address similar problems. At first, encryption is
embedded into the random oracle in order to render the Decapsulation oracle simulatable
without knowledge of the secret key. Secondly, the challenge key is decoupled from the
challenge ciphertext by a query extraction argument (One Way-to-Hiding lemma).

If we limit 2-key PKE as a parallel execution of two independent PKEs, these two
techniques in FO could be directly applied, as HKSU [21] does. However, several compact
2-key PKEs in SIAKE [38], 2Kyber [37] and CSIAKE in Sec.5 do not satisfy the premise.
On the other hand, if we restrict AKE adversaries’s capability (e.g., both the static
and ephemeral public keys in the test session are honestly generated and fixed, and
SessionKeyReveal can only be queried on this fixed public key.), these techniques may
also be applicable. However, a realistic adversary not only might query SessionKeyReveal
on many public keys, but also might choose one of the challenge public keys (i.e., the
ephemeral public key in test session).

Thus, the compact structure of 2-key PKE brings in new challenges. We propose our
techniques step by step to achieve above two main targets.

Preparation for answering the SessionKeyReveal query without secret key. In
FO transform that turns 1-key PKE (KeyGen,Enc1,Dec1) into CCA KEM, randomness
used in Enc1 is replaced by G(m) and the encapsulated key is set as h(m). Introduced in
[5] and utilized by many recent works [23,34,2,7,21,28], injective mapping with encryp-
tion is a useful technique to answer decapsalution oracle without the knowledge of secret
key. As illustrated in Fig. 2, if Enc1(pk, ·;G(·)) is an injective mapping (with the assump-
tion of perfect correctness), h(m) could be modeled as hq◦Enc1(pk,m;G(m)) where hq is
a private oracle. Then, the decapsulation oracle could be simulated by using hq without
the help of secret key, since we have h(Dec1(sk, C)) = hq ◦ Enc1 ◦ Dec1(sk, C) = hq(C).

5

For KEM Fixed pk

m ∈M C

h(m)

h

Enc1(pk,m;G(m))

hq

For AKE pk1 ∈ D1

pk1, pk2,m pk2 ∈ D2 pk1, pk2, C

m ∈M

h(pk1, pk2,m)

h

If pk1 ∈ L1 ∧ pk2 ∈ L2

Enc(pk1, pk2,m;G(m))

h1
q

I(pk1, pk2,m)

If pk1 6∈ L1 ∨ pk2 6∈ L2

h2
q

Fig. 2. The injective mapping by Enc1 under fixed public key and the injective mapping by Enc
under many public keys. pk is a fixed public key. L1 (resp. L2) is the list of honestly generated
first public keys (resp. second public keys). I is the identical map.

Note that in the above analysis, public key should be fixed. However, in the scenario
of X3LH-AKE, the adversary could query SessionKeyReveal on many public keys. To
apply the injective mapping with encryption, public keys should be embedded in h to
specify under which public keys Enc is applied, i.e., K = h(pk1, pk2,m). However, the
adversary could query quantum random oracle h with any pk1 and pk2 it wants, which
means Enc(pk1, pk2,m;G(m)) may not be injective, i.e., several messages may map to
one ciphertext. One may come up with an idea of checking the validity of public key,
however, the validity of public key is itself a much bigger challenge [27] (e.g., lattice and
supersingular isogeny).

Our observation is that the SessionKeyReveal query applies to many but bounded
public keys, i.e., those honestly generated static public keys and ephemeral public keys.
Thus, although maintaining hash lists is not an easy task in QROM, the list of bounded
public keys could be prepared at the very beginning. Concretely, let N be the number
of users and l the number of sessions between two users. Let L1 := {(pk1,i, sk1,i)1≤i≤N}
be the list of honest static public-secret keys, and L2 := {(pkj2,i, sk

j
2,i)1≤i≤N,1≤j≤Nl}

be the list prepared for the ephemeral public-secret keys, where pkj2,i is used by Ui as
ephemeral public key in its j-th session.

With L1 and L2, the domain of h, i.e., D1×D2×M could be separated as L1×L2×M
and its complement. With such a domain separation, our technique, i.e., injective map-
ping with encryption under many public keys, is illustrated in Fig. 2. h(pk1, pk2,m)
is defined according to the domain separation. Concretely, if pk1 ∈ L1 ∧ pk2 ∈ L2,
h(pk1, pk2,m) = h1

q(pk1, pk2,Enc(pk1, pk2,m;G(m))); otherwise let h(pk1, pk2,m) =
h2
q(pk1, pk2,m), where h1

q, h
2
q are private oracles. Such defined function h(pk1, pk2,

m) is still an injective mapping when there is no decryption error. With this replace-
ment, we could answer SessionKeyReveal query on (pk1 ∈ L1, pk2 ∈ L2, C, · · ·) by using
h1
q(pk1, pk2, C) as the key encapsulated in C, i.e., without the knowledge of secret key.

Decoupling Session Key with Challenge Ciphertext. The One Way to Hiding
(OW2H) lemma [36] and its variants play essential roles to decouple encapsulated key
from challenge ciphertext in FO. Informally, OW2H lemma states that: if a quantum

6

distinguisher, issuing queries to quantum random oracle O1 or O2 which only differ on a
set S, could distinguish them from each other, then there exists a one-wayness attacker
to find some element in S. When applying OW2H, the way of how to use the OW2H
relates to the security requirement of underlying primitive, and the choice of S is effected
by the capability and aim of the adversary.

The Method of Applying OW2H. So far, there are two effective methods of applying
OW2H, one is the puncture technique [34,21], and another is the unified oracle trick [23],
which yield different security requirements of underlying primitives. With puncture tech-
nique that removes 0 from the message space, once applying OW2H to G on m∗, chal-
lenge ciphertext C∗ can be replaced with an encryption of 0, if the underlying PKE
is IND-CPA secure, thereby decoupling C∗ with K∗. Whereas, unified oracle trick is to
take G, h as an unified oracle G× h, and apply OW2H lemma to G× h on m∗. Finding
out any element in S would render to solving the OW-CPA problem; otherwise, K∗ has
been decoupled from C∗.

Several instantiations of 2-key PKE in X3LH (such as those of SIAKE and CSIAKE
in Sec. 5) only provide one-wayness, thus, we use the unified oracle trick and take G,
h as G× h. To this end, we replace G(mB) with G(pk2A,mB) in the protocol. Looking
ahead, after the guess of the static public key in test session, say pk∗1 , any query (pk2,m)
to G could be handled as a query with (pk∗1 , pk2,m).

The Choice of S. For the 1-key encryption and fixed pk, S could be a set consisting of
a single point, i.e., the challenge message. However, in X3LH-AKE, one of the challenge
public key, i.e., ephemeral public key pk∗2 in test session is chosen by the adversary. S
should be carefully chosen to make sure that, on the one hand, it is large enough such
that pk∗2 is covered, but on the other hand, it is not too large such that the answer for
SessionKeyReveal will not be affected.

Let L2after ⊂ L2 be the list of ephemeral public keys that are prepared for those
sessions after the test one. S = {pk∗1} × D2 \ L2after × {m∗B}, where m∗B is the challenge
message, exactly is the set satisfying all requirements. 1) If ephemeral public key has high
entropy, with overwhelming probability it holds that pk∗2 ∈ D2\L2after, which satisfies the
first requirement. 2) Since m∗B is randomly chosen by simulator, any SessionKeyReveal
query before the test session meets m∗B with negligible probability. Furthermore, by the
definition of L2after, any ephemeral public key in SessionKeyReveal query after test session
will be in L2after.Thus, the second requirement is satisfied.

Putting them together and the applicability of our framework. According to
above analysis, the X3LH is modified by embedding both static and ephemeral public
keys into h and embedding ephemeral public key into G. The cost of adding public keys
into the hash function is negligible, while the gain is QROM security. To explain the
practicality of this framework, we give several intuitions on the constructions of 2-key
PKE. To illustrate the idea, we use the classical ElGamal encryption as an example.
Let g be a common parameter and (g1, h1), (g2, h2) be the public keys of two ElGamal
PKEs. A 2-key PKE of message m := m1||m2 can be generated under these two keys
using randomness r1, r2 in following three approaches.

Types Intuition Schemes
Type 1 [gr1 , hr11 ⊕m1, h

r1
2 ⊕m2] SIAKE [38],CSIAKE Sec. 5

Type 2 [gr11 , g
r2
2 , h

r1
1 h

r2
2 ⊕m] 2Kyber [37]

Type 3 [gr11 , h
r1
1 ⊕m1]||[gr22 , h

r2
2 ⊕m2] FSXY [17]

Additional information about these instantiations, SIAKE, CSIAKE, 2Kyber and
FSXY, are given in Sec. 5. We stress that the IND-like security of Type 1 scheme,
i.e., (C)SIAKE, can not be reduced to standard assumption. Compared with [21], our
transformation offers better concrete efficiency in two aspects. Firstly, the size of a 2-
key PKE ciphertext is usually smaller than double sizes of a standard PKE ciphertext.

7

Secondly, in our transformation only one-wayness is required while theirs needs IND-CPA
security.

1.3 Related Works and Open Problem

1-key PKE-to-KEM. Several works [20,23,24,34,2,7,40,28] have re-examined the FO
transform in QROM. They utilized the injective mapping or additional hash to avoid
recording queries and also proposed different variants of OW2H lemma. Please refer to
Appendix A for more details. Zhandry [40] showed a possibility for lazy-sampling and
recording queries. As he commented, his proof might be looser than those using OW2H.

Hashing with public key. The technique of hashing with public key has been used to
analyze the multi-user security of Schnorr signature [3]. Recently, several submissions for
the NIST Post-Quantum Cryptography Standardization, including Kyber [6], have also
employed such technique. The Kyber proposed heuristic analysis from the perspective
of multi-target attacks utilizing decryption failure. The necessity of putting public key
into hashing is still heavily debated [10]. Our analysis in this work shows that hashing
with public key seems necessary to prove the multi-user security of FO in QROM.

HKSU in QROM. Hövelmanns et al. [21] proposed a modular framework FOAKE, i.e.,
HKSU, from IND-CPA secure 1-key PKE in QROM. We note that when applying to
FSXY, our framework in this paper needs one more re-encryption than HKSU. We take
it as a compromise in order to include more compact instantiations. Firstly, there exist
more compact constructions of 2-key PKE except for two parallel executions of 1-key
PKEs. For example, based on (commutative) supersingular isogeny, the initiator and
responder in HKSU need 6 and 6 isogeny computation respectively, while those in ours
need 6 and 5. (A same computation comparison of SIAKE and FSXY has been given
in [38].) Secondly, our framework relies on the one-wayness, which is weaker than indis-
tinguishability that is relied by HKSU [21]. Furthermore, our technique has relatively
tighter reduction for the factors N and l, where N is the number of users, l is the number
of sessions between two users. In [21], they represent the number of sessions that the
adversary established, which is bounded by N2l, as an entirety “S” in their notation.
For decryption error, ours is N and theirs is N4l2; for the underlying scheme, ours is
N2l and theirs is N4l2; and for the entropy of public keys, ours is N2l while theirs is
N6l3.

Open Problem. However, in both [21] and our work, the reductions are not tight in a
strict sense, since the reduction loss depends on N , l, q (the number of possible queries
to random oracles), and a square root. Thus, one open problem is: does there exist
tighter reductions for compact AKEs in QROM?

The reduction loss related to N and l already exists in classical ROM. Two excep-
tions are [8][19]. However, their models are weak, and constructions rely on stronger
tools which introduce high overhead. Cohn-Gordon et al. [12] only eliminates l in their
reduction. In QROM, Jiang et al. [25] found out that the square-root advantage loss in
the OW2H is unavoidable, if the one-wayness attacker runs the distinguisher only once
and involves no rewinding. Although, recently, double-sided OW2H lemma [7] and a new
rewinding technique [28] have been proposed to reduce q and the square-root advantage
loss, the reduction algorithm needs to know both O1 and O2, which can not be satisfied
when the underlying probabilistic scheme is one-way secure.

2 Preliminary

In this section, we recall the definition of double-key PKE and the CK+ security model.
At last, preliminary knowledge of quantum random oracle model is given.

8

2.1 Double-Key PKE and Security

We revisit the definition of 2-key PKE [37]. A 2-key PKE 2PKE=(KGen1, KGen2, Enc,
Dec) is a quadruple of PPT algorithms together with two public key space Dpk1 , Dpk2 ,
a plaintext space M, a randomness space R and a ciphertext space C. We want to
highlight that the set membership problem of Dpk1 and Dpk2 is generally hard. Let D1

(resp. D2) be some extension of Dpk1 (resp. Dpk2) such that the set membership problem
of D1 (resp. D2)is easy.

– KGen1: on input security parameter, output public-secret key (pk1, sk1).

– KGen2: on input security parameter, output public-secret key (pk2, sk2).

– Enc(pk1, pk2,m; r) : on input public keys pk1, pk2, plaintextm ∈M, and randomness
r ∈ R, output the ciphertext C ∈ C. Sometimes, we eliminate the randomness r and
denote it as Enc(pk1, pk2,m) for simplicity.

– Dec(sk1, sk2, C) : on input secret keys sk1, sk2 and cipheretext C ∈ C, output a
plaintext m.

Correctness and Decryption failure. The decryption failure is defined as δ2 :=
E (maxm∈M Pr [Dec(sk1, sk2,Enc(pk1, pk2,m; r)) 6= m]), where the probability is taken
over the randomness used in Enc and the expectation is taken over (pk1, sk1)← KGen1
and (pk2, sk2)← KGen2.

Entropy of second public key. For any pk′2 ∈ D2, Pr[pk2 = pk′2|(pk2, sk2) ←
KGen2] ≤ εpk2.
One-way Security. We recall the definition of [OW-CPA,OW-CPA] security of 2-key
PKE in [37]. To define [OW-CPA,OW-CPA] security for 2PKE, two adversaries, i.e.,
A = (A1,A2) attacking pk1 and B = (B1,B2) attacking pk2, are taken into account.
The [OW-CPA, ·] and [·,OW-CPA] security games are shown in Fig. 3 from left to right
respectively7.

Game [OW-CPA, ·]

1 : (pk1, sk1)← KGen1

2 : (state; pk∗2)← A1(pk1)

3 : m←M, c∗ ← Enc(pk1, pk
∗
2 ,m)

4 : m′ ← A2(state, c∗)

5 : return m′
?
= m

Game [·,OW-CPA]

1 : (pk2, sk2)← KGen2

2 : (state; pk∗1)← B1(pk2)

3 : m←M, c∗ ← Enc(pk∗1 , pk2,m)

4 : m′ ← B2(state, c∗)

5 : return m′
?
= m

Fig. 3. The one-way security games for 2-key PKE.

The advantage of A winning in the game [OW-CPA, ·] is

Adv
[OW-CPA,·]
2PKE (A) = Pr

[
[OW-CPA, ·]A ⇒ 1

]
.

We say that 2PKE is [OW-CPA, ·] secure, if for any PPT adversary A, the advantage

Adv
[OW-CPA,·]
2PKE (A) is negligible. The advantage Adv

[·,OW-CPA]
2PKE (B) and [·,OW-CPA] security

can be defined in the same manner. If 2PKE is [OW-CPA, ·] and [·,OW-CPA] secure, we
call it is [OW-CPA,OW-CPA] secure.

7 In the original definition [37, Sec. 6.2], a list of honestly generated public-secret keys is given
to adversary. When the public key has high entropy, the definition with this list is equivalent
to that without the list.

9

1-key PKE Let PKE = (KeyGen1, Enc1,Dec1) be a 1-key PKE with randomness space
R1, message spaceM1 and ciphertext space C1. It can be taken as a special 2-key PKE
where KGen2 does nothing (such as (−,−)← KGen2), KGen1, Enc, and Dec do as what
KeyGen1,Enc1, and Dec1 do. The decryption failure for the underlying 1-key PKE is the
same as that for this 2-key PKE. The OW-CPA advantage AdvOW-CPA

PKE of PKE is exactly

the [OW-CPA, ·] advantage Adv[OW-CPA,·] for the specified 2-key PKE.

2.2 CK+ Security Model

Here, we recall the CK+ model introduced by [16,17], which is a modified CK model
[13] integrated with the weak PFS security, resistant to KCI and MEX attacks. Please
refer to Appendix B for a brief discussion on security models.

Ui denotes a party indexed by i, who is modeled as probabilistic polynomial time
(PPT) interactive Turing machines. We assume that each party Ui owns a static pair of
secret-public keys (sski, spki), where spki is linked to Ui’s identity such that the other
parties can verify the authentic binding between them. We do not require the well-
formedness of static public key, in particular, a corrupted party can adaptively register
any static public key of its choice.
Session. Each party can be activated to run an instance called a session. A party can be
activated to initiate the session by an incoming message of the form (Π, I, UA, UB) or
respond to an incoming message of the form (Π,R, UB , UA, XA), where Π is a pro-
tocol identifier, I and R are role identifiers corresponding to initiator and respon-
der. Activated with (Π, I, UA, UB), UA is called the session initiator. Activated with
(Π,R, UB , UA, XA), UB is called the session responder.

According to the specification of AKE, the party creates session specified randomness
which is generally called ephemeral secret key, computes and maintains a session state,
generates outgoing messages, and completes the session by outputting a session key and
erasing the session state. Here we require that the session state at least contains the
ephemeral secret key.

A session may also be aborted without generating a session key. The initiator UA
creates a session state and outputs XA, then may receive an incoming message of the
forms (Π, I, UA, UB , XA, XB) from the responder UB , then may compute the session key
SK. On the contrary, the responder UB outputs XB , and may compute the session key
SK. We state that a session is completed if its owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If UA is the ini-
tiator, the session identifier is sid = (Π, I, UA, UB , XA) or sid = (Π, I, UA, UB , XA, XB),
which denotes UA as an owner and UB as a peer. If UB is the responder, the session is
identified by sid = (Π,R, UB , UA, XA, XB), which denotes UB as an owner and UA as
a peer. The matching session of (Π, I, UA, UB , XA, XB) is (Π,R, UB , UA, XA, XB) and
vice versa.
Adversary. Adversary A is modeled as following to capture real attacks, including the
control of communication and access to some secret information.

– Send(message): A sends messages in one of the following forms: (Π, I, UA, UB),
(Π,R, UB , UA, XA), or (Π, I, UA, UB , XA, XB), and obtains the response.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session key SK
for sid.

– SessionStateReveal(sid): A obtains the session state of the owner of sid if the session
is not completed. The session state should be specified by the concrete protocols.
We require it returns the ephemeral secret keys and some intermediate computation
results except for immediately erased information.

– Corrupt(Ui): this query allows the adversary to learn the static secret key of user Ui.
Atter this query Ui is said to be corrupted.

Freshness. Let sid∗ = (Π, I, UA, UB , XA, XB) or (Π,R, UB , UA, XA, XB) be a complet-

ed session between UA and UB . If the matching session of sid∗ exists, denote it by sid∗.

10

We say session sid∗ is fresh if A does not query: 1) SessionStateReveal(sid∗), Session-

KeyReveal(sid∗), SessionStateReveal(sid∗), or SessionKeyReveal(sid∗) when sid∗ exists; 2)

SessionStateReveal(sid∗) or SessionKeyReveal(sid∗) when sid∗ does not exist.
Security Experiment. (Quantum) adversary A could make a sequence of queries de-
scribed above. During the experiment, A makes the query of Test(sid∗). Test(sid∗) select
random bit b ∈ {0, 1}, and return the session key held by sid∗ if b = 0; and return a
random key if b = 1. The experiment continues until A returns b′. The advantage of
adversary A is defined as Advck+

Π (A) = Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0] .

Definition 1. We state that a AKE protocol Π is secure in the CK+ model if the
following conditions hold:
(Correctness:) if two honest parties complete matching sessions, then they both compute
the same session key except with negligible probability.
(Soundness:) for any PPT adversary A, Advck+

Π (A) is negligible for the test session
sid∗, for any one of the cases listed in the following and Table 2. Note that in these cases
except 5, when it is allowed, the ephemeral secret key or static secret key of sid∗ or sid∗

is given to A directly once it is determined (for case 5, once the the test session ends).

1. the static secret key of the owner of sid∗ is given to A, if sid∗ does not exist.
2. the ephemeral secret key of owner of sid∗ is given to A, if sid∗ does not exist.
3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are

given to A, if sid∗ exists.
4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid∗ are given to A,

if sid∗ exists.
5. the static secret key of the owner of sid∗ and the static secret key of the peer of sid∗

are given to A, if sid∗ exists.
6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗ are given

to A, if sid∗ exists.

Event Case sid∗ owner sid∗ sskA eskA eskB sskB Security

E1 1 UA No
√

× - × KCI
E2 2 UA No ×

√
- × MEX

E3 2 UB No × -
√

× MEX
E4 1 UB No × - ×

√
KCI

E5 5 UA or UB exists
√

× ×
√

wPFS
E6 4 UA or UB exists ×

√ √
× MEX

E7-1 3 UA exists
√

×
√

× MEX
E7-2 3 B exists ×

√
×

√
MEX

E8-1 6 UA exists ×
√

×
√

MEX
E8-2 6 B exists

√
×

√
× MEX

Table 2. The Cases of AKE Adversary in CK+ model. sid∗ is the matching session of sid∗,
if it exists. “exists” means that there exists sid∗, “No” means do not. sskA(sskB) means the
static secret key of UA(UB). eskA(eskB) is the ephemeral secret key of UA(UB) in sid∗ or sid∗

if there exists. “
√

” means the secret key may be revealed to adversary, “×” means the secret
key is not revealed. “-” means the secret key does not exist.

2.3 The Quantum Random Oracle Model

Boneh et al. [5] introduced the quantum random oracle (QRO) model. Zhandary [39]
proved that any 2q-wise independent random function can be used to simulate the QRO
allowing at most q queries. The one way-to-hiding (OW2H) lemma, initially proposed

11

by Unruh [36], is a useful tool for security analysis in QROM. Recently, Ambainis et al.
[2] introduced the semi-classical OW2H, which is very generic and flexible. The OW2H
lemma is revisited in Theorem 3 of [2] (say as revisited OW2H lemma) and it is implied
by semi-classical OW2H. Such revisited OW2H lemma is more suitable for this work.
The difference is that [2] considers the query depth d, while we use the number of queries
q.

Lemma 1 (OW2H, Probabilities [2]). Let S ⊆ X be random. Let O1,O2 : X → Y
be random functions satisfying ∀x 6∈ S,O1(x) = O2(x). Let z be a random bitstring.
(S,O1,O2, z may have arbitrary joint distribution.) Let UA be an oracle algorithm with
query number q. Let BO1 be an oracle algorithm that on input z does the following:
pick i← 1, · · · , q, run AO1(z) until (just before) the i-th query, measure all query input
registers in the computational basis, and output the set T of measurement outcomes. Let

Pleft := Pr[b = 1 : b← AO1(z)], Pright := Pr[b = 1 : b← AO2(z)],

Pguess := Pr[S ∩ T 6= ∅ : T ← BO1(z)].

Then we have |Pleft − Pright| ≤ 2q
√
Pguess and |

√
Pleft −

√
Pright| ≤ 2q

√
Pguess.

Lemma 2 ([34]). Let H : {0, 1}l×X → Y and H ′ : X → Y be two independent random
oracles, where l is an integer. For any unbounded time quantum adversary A with at
most qH times queries to H, we have∣∣∣Pr[AH,H(s,·)()→ 1|s← {0, 1}l]− Pr[AH,H

′
()→ 1]

∣∣∣ ≤ qH · 2−l+1
2 .

Let X be a finite set, and F : X → {0, 1} be a quantum accessible oracle. Let Bλx
be

a Bernoulli distribution that depends on x ∈ X, that is, for each x, Pr[F (x) = 1] = λx.
Let λ be the upper bound of λx for every x ∈ X.

Lemma 3 (Generic Distinguishing Problem, [21]). Let X be a finite set, and
λ ∈ [0, 1]. Then for any unbounded quantum algorithm A issuing at most q quantum
queries,

∣∣Pr[AF ()→ 1|F (x)← Bλx
]− Pr[AF ()→ 1|F (x) = 0]

∣∣ ≤ 8(q + 1)2λ.

3 Authenticated Key Exchange in QROM

Let 2PKE = (KGen1,KGen2,Enc,Dec) be a [OW-CPA, OW-CPA] secure 2-key PKE with
public key space Dpk1 and Dpk2 , randomness space R = {0, 1}r, message space M =
{0, 1}n and ciphertext space C. Let PKE = (KeyGen1,Enc1,Dec1) be a OW-CPA secure
1-key PKE with randomness space R1 = {0, 1}r1 , message space {0, 1}n1 and ciphertext
space C1. We further require that KeyGen1 works the same as KGen1. This is not a strong
requirement, whereas as shown in Sec.5 it is inherent.

Let D1 (resp. D2) be extension set of Dpk1 (resp. Dpk2) such that its set membership
problem is easy. Let uI be the space of user’s id. Let

f : {0, 1}2n → {0, 1}n, f1 : {0, 1}2n → {0, 1}n1 ,

G : D2 × {0, 1}n → {0, 1}r, G1 : D1 × {0, 1}n1 → {0, 1}r1

h : D1 ×D2 × {0, 1}n → {0, 1}n, h1 : D1 × {0, 1}n1 → {0, 1}n,
h′ : D1 ×D2 × {0, 1}n × C → {0, 1}n, h′1 : D1 × {0, 1}n × C1 → {0, 1}n,
H : {0, 1}2n × C1 × C × uI2 → {0, 1}n

be hash functions.

Setup: Each user’s static public-secret key pair is generated using KGen1. Let sP , s
′
P ←

{0, 1}n be the static secret information for user UP .

Protocol and Specifications: With the setup, the protocol AKEQRO between UA and
UB is presented in Figure 4. The session state owned by UA consists of r2A, rA. The
session state owned by B consists of rB .

12

User UA User UB

(pkA, skA)← KGen1

sA, s
′
A ← {0, 1}n

(pkB , skB)← KGen1

sB , s
′
B ← {0, 1}n

r2A ← {0, 1}∗

(pk2A, sk2A)← KGen2(r2A)

rA ← {0, 1}n,mA = f1(s′A, rA)

RA = G1(pkB ,mA)

CA = Enc1(pkB ,mA;RA)

K1 = h1(pkB ,mA)

CA, pk2A

rB ← {0, 1}n,mB = f(s′B , rB)

RB = G(pk2A,mB)

CB = Enc(pkA, pk2A,mB ;RB)

K = h(pkA, pk2A,mB)

CB

m′B = Dec(skA, sk2A, CB)

R′B = G(pk2A,m
′
B)

if CB 6= Enc(pkA, pk2A,m
′
B ;R′B)

or m′B = ⊥,
K′ = h′(pkA, pk2A, sA, CB)

else K′ = h(pkA, pk2A,m
′
B)

m′A = Dec1(skB , CA)

R′A = G1(pkB ,m
′
A)

if CA 6= Enc1(pkB ,m
′
A;R′A)

or m′A = ⊥,
K′1 = h′1(pkB , sB , CA)

else K′1 = h1(pkB ,m
′
A)

SK = H(K′,K1, CA, CB , UA, UB) SK = H(K,K′1, CA, CB , UA, UB)

Fig. 4. AKEQRO in the QROM.

Theorem 1. Assume 2PKE is [OW-CPA, OW-CPA] secure with decryption error δ2 and
PKE is OW-CPA secure with decryption error δ1. N users are involved and there are
at most l sessions between two users. For any quantum adversary A against AKEQRO

with at most q AKE queries, and qh (resp. qG, qG1 , qf , qf1 , qh1 , qh′ , qh′1 , qH) quantum
queries to RO h (resp. G, G1 f , f1, h1, h′, h′1, H), there exist [OW-CPA, OW-CPA]
solvers D or C, or OW-CPA solver B, such that,

Advck+
AKEQRO

(A) ≤ 4N2l(qG + qh + 2q)

√
Adv

[OW-CPA,·]
2PKE (D)

+2N2l · (2q + qH + qf + 4)2
−n+1

2 + 2N · (qh′ + qh′1 + l2)2
−n+1

2

+16N(qG + 2q)2δ2 + 16N(qG1 + 2q)2δ1 + 2N2lεpk2,

Advck+
AKEQRO

(A) ≤ 4N2l(qG1
+ qh1

+ 2q)
√

AdvOW-CPA
PKE (B)

+2N2l · (2q + qH + qf1 + 4)2
−n+1

2 + 2N · (qh′ + qh′1)2
−n+1

2

+16N(qG + 2q)2δ2 + 16N(qG1 + 2q)2δ1,

Advck+
AKEQRO

(A) ≤ 4N2l(qG + qh + 2q)

√
Adv

[·,OW-CPA]
2PKE (C) + 2N2l · (q + qH)2

−n+1
2

+2N · (2q + qh′ + qf)2
−n+1

2 .

Proof of Theorem 1 (Sketch). Here, we give a sketch of the proof to illustrate the
core idea. For detailed proof please refer to sec. 4.

13

First of all, we assume the adversary does not make any SessionKeyReveal or Session-
StateReveal query. As in the definition, the adversary falls into one of the cases from E1

to E8-2 in table 2. Take event E3 as example, where the adversary sends pk∗2A in the test
session and he/she knows rB but does not know skA, sA, s

′
A and skB , sB , s

′
B used in this

session. From the argument for case E3, we can easily extend the proof to other cases.
By Lemma 2 which says that quantum random oracle could be used as a pseudorandom
function, m∗B = f(s′B , rB), i.e., the message, is randomly chosen. The OW2H lemma and
[OW-CPA, ·] security would guarantee the randomness of K∗ and session key.

Now we consider the case that adversary may make the SessionKeyReveal queries as
well. For E5 the analysis is still the same. However, for other cases like E3, the simulator
does not hold the static-secret key skA of UA. If the adversary makes SessionKeyReveal
queries that involve UA, the simulator fails to compute the encapsulated key and session
key. In the classical ROM, it is easy to overcome this obstacle by searching the hash
lists and taking pk2A as input of h, which is how X3LH-AKE handles [37].

Whereas, to simulate SessionKeyReveal queries in QROM, we should embed the en-
cryption under many public keys into h. Thus, both static and ephemeral public keys
should be included as the inputs of h, which makes new issues arise, in particular, that
public keys may not be honestly generated and the encryption may not be injective.
Nevertheless, with solutions highlighted in our technique overview, we could build two
lists of (honestly generated) static public keys and ephemeral public keys at the very
beginning. Then, we could apply encryption-then-hash and decouple the static secret
key of test session with the SessionKeyReveal oracle. Afterwards, with a careful choice
of S, the OW2H lemma can be applied to argue the randomness of the session key in
test session.

Concretely, for E3, the security is argued with a sequence of games as shown in
Table 3. At first, we generate two lists L1, L2 of honest static keys and ephemeral
keys for all users and their sessions at the very beginning. Then both G and G1 are
simulated such that there is no decryption failure under all the static and ephemer-
al public keys in L1, L2. The session key for the invalid ciphertext (that involves UA,
the owner of test session) is computed with private oracles of ciphertext. Then, oracle
query to h with an input (pk1, pk2,m) is conceptually replaced by the encryption-then-
hash hq(pk1, pk2,Enc(pk1, pk2,m;G(pk2,m))) when pk1 × pk2 ∈ L1 × L2. We do the
encryption-then-hash for h1(pk1,m1) with another private random oracle. Conceptual-
ly, the encapsulated key in valid ciphertext is computed with the private oracles. By
integrating the decapsulation for both the valid and invalid ciphertexts, we could avoid
using static secret key of UA when answering SessionKeyReveal. In the Game 6, G and
G1 are switched back. After randomizing plaintext m∗B in Game 7, we could replace
G × h with a new oracle that differs with G × h on a set S. The set S should be care-
fully chosen such that the randomness and encapsulated key in test session are altered
and the answer for SessionKeyReveal on any other session remains. Then, we can apply
OW2H lemma and argue the distinguisher with a square root of the advantage to solve
the one-wayness game of underlying 2-key PKE. Finally, since the quantum random
oracle is a pseudorandom function, the session key in test session is pseudorandom as
well. For all other cases the analyses are similar.

4 Formal Security Proof

To prove Theorem 1, we should handle every case in Table 2. The reduction algorithm
reduces the advantage of CK+ adversary to that of attacking [OW-CPA, ·], [·,OW-CPA]
of 2PKE or OW-CPA of PKE depending on which case we cope with. For cases E3, E4,
E6, E7-1 and E8-2, their sequences of games proceed similarly. For cases E1, E2, E7-2

and E8-1 the game sequences proceed similarly. And for case E5 (wPFS), the sequence
of games is much simpler.

14

Games

I h (for encapsulated key) Kof valid C R∗B
II h1 (for encapsulated key) Justification m∗B/K∗

III G/G1 (for randomness) K of invalid C SK∗ (session key)

Games 0-1

I h(pk1, pk2,m) h(pkA, pk
j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) − − − − − f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h′(pkA, pk
j
2,A

, sA,C)/h′1(pkA, sA,C) H(K∗, · · ·)

Game 2

I h(pk1, pk2,m) h(pkA, pk
j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) Lemma 4 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1,m1) h′(pkA, pk
j
2,A

, sA,C)/h′1(pkA, sA,C) H(K∗, · · ·)

Game 3

I h(pk1, pk2,m) h(pkA, pk
j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) Lemma 5 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1,m1) h′q(pkA, pk
j
2,A

, C)/h′1q(pkA,C) H(K∗, · · ·)

Game 4

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Conceptual f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1,m1) h′q(pkA, pk
j
2,A

, C)/h′1q(pkA,C) H(K∗, · · ·)

Game 5

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Conceptual f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · ·)

Game 6

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Lemma 4 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · ·)

Game 7

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Lemma 6 fr(rB) /h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · ·)

Game 8
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) R∗B ← R

II h3
q or h4

q Lemma 7/OW2H fr(rB)/ K∗ ← {0, 1}n

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · ·)

Game 9
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) R∗B ← R

II h3
q or h4

q Lemma 2 fr(rB)/K∗ ← {0, 1}n

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) SK∗ ← {0, 1}n

Table 3. Overview of games for the proof of Theorem 1 w.r.t case E3. Some details are not
shown in this table, such as building lists, the guess of test session, the abort events, and some
replacements of random oracles. Please refer to the Games for details. “valid C” and “invalid
C” are those ciphertexts received by UA, the owner of test session. m∗B , R∗B , K∗ indicate the
message, randomness, encapsulated key corresponding to the ciphertext in test session. SK∗ is
the session key of test session.

15

Here we take E3 for example and show the game sequence of proof in detail, which
is illustrated in Table 3. For all the other cases, we will highlight the differences of proof
with E3’s proof. Let Advi be |Pr[A ⇒ 1|b = 1 in Game i]−Pr[A ⇒ 1|b = 0 in Game i]|.

Game 0. This is the original CK+ game as defined in Section 2.2.

In this game, A could query Send, Corrupt, SessionKeyReveal and SessionStateRe-
veal oracles whenever he wants. Note that A is also given access to quantum ROs for
f, f1, G,G1, h, h1, h

′, h′1 and H. At some point, A chooses a test session, and he may send
messages or passively keep track of messages of test session belonging to one of the cases
in Table 2. As said before, we take E3 as an example. Then A receives the test session
key SK∗ or a totally random key depending on b = 1 or 0. After more queries to Send
etc. oracles and quantum ROs, A finally outputs a bit b′. Let Advck+

AKEQRO
(A) = Adv0.

Game 1. In this game, the challenger prepares honestly generated static keys and
ephemeral keys for all users at the very beginning of the CK+ game, in the state of
on-the-fly in Game 0.

Concretely, let L1 := {(pk1,i, sk1,i)1≤i≤N} be the list prepared for honest static

public-secret keys. Let L2 := {(pkj2,i, sk
j
2,i)1≤i≤N,1≤j≤2Nl} be the list prepared for the

ephemeral public-secret keys. Specially, (pk1,i, sk1,i) is the static public-secret keys pre-

pared for Ui and pkj2,i is used by Ui as ephemeral public key in its j-th session when it’s

initiator8.

Since this is only a conceptual change, we have Adv0 = Adv1.

Game 2. In this game, we impose a requirement that no decryption failure for both Enc
and Enc1 will occur with respect to public key pairs from L1 × L2. The random oracle
G (resp. G1) is replaced with G̃ (resp. G̃1) that only samples good randomness (which
will be defined later) for all public keys in L1 × L2 (resp. L1).

For any fixed public key pairs (pk1,i, sk1,i) ∈ L1, (pkj2,i, sk
j
2,i) ∈ L2, pk2 ∈ D2, and

m ∈ {0, 1}n, define Rbad(i, j; pk2,m) as{
{r ∈ R|Dec(sk1,i, sk

j
2,i,Enc(pk1,i, pk

j
2,i,m; r)) 6= m} if pk2 = pkj2,i

∅ o.w.

For fixed L1 and L2, let Rbad(L1, L2; pk2,m) := ∪i∈[1,N],j∈[1,2Nl]Rbad(i, j; pk2,m) be
the set of bad randomness for the encryption Enc, and let Rgood(L1, L2; pk2,m) :=
R \Rbad(L1, L2; pk2,m) be the set of good randomness accordingly.

For a fixed public key pk1, and m1 ∈ {0, 1}n1 , define R1bad(pk1,m1) as{
{r1 ∈ R1|Dec1(sk1,i,Enc1(pk1,i,m1; r1)) 6= m1} if ∃i s.t. pk1 = pk1,i

∅ o.w.

For a fixed L1 and m1, denote R1bad(pk1,m1) as the set of bad randomness for Enc1

and R1good(pk1,m1) = R1 \ R1bad(pk1,m1) as the set of good randomness.

Concretely, we choose internal 2(qG + qG1 + 2q)-wise independent random functions
gq and g1q. On receiving pk2 ×m ∈ D2 × {0, 1}n, G̃ samples and outputs an element
from set Rgood(L1, L2; pk2,m) using randomness gq(pk2,m). On input pk1×m1 ∈ D1×
{0, 1}n1 , G̃1 samples and outputs an element from set R1good(pk1,m1) using randomness
g1q(pk1,m1).

Lemma 4. Adv1 − Adv2 ≤ 16(qG + 2q)2δ2 + 16(qG1 + 2q)2δ1.

8 Note that this does not mean the prepared keys are used in the real game, as the adversary
may arbitrarily register an invalid public key for Ui, then (pk1,i, sk1,i) is not used. This also
may happen for ephemeral keys, since the adversary may make Send queries. Fortunately,
we do not need to answer the SessionKeyReveal query on those sessions.

16

Note that from Game 2 to 6, since the set of good randomness should be identified,
simulating G̃ and G̃1 requires unbounded power, which implies that the simulator is an
unbounded algorithm. It makes sense because the differences between these games are
analyzed in the information-theoretical perspective.

Game 3. In this game, we guess the owner of test session, denoted by UA, and change
the way to compute encapsulated keys for invalid ciphertexts received by UA. Assume
that pkA is the static public key, and (skA, sA, s

′
A) are the static secret keys of UA.

When UA is an initiator. UA receives an invalid ciphertext CjA and uses pkj2,A as an

ephemeral public key in this session, h′(pkA, pk
j
2,A, sA, C

j
A) is replaced by

h′q(pkA, pk
j
2,A, C

j
A); (1)

and when UA is a responder and receives an invalid ciphertext CjA, h′1(pkA, sA, C
j
A) is

replaced by

h′1q(pkA, C
j
A), (2)

where h′q : D1×D2×C → {0, 1}n and h′1q : D1×C1 → {0, 1}n are internal hash functions.

Lemma 5. Adv2 ≤ N · Adv3 + 2N(2Nl + qh′ + qh′1)2
−n+1

2 .

Game 4. We change the way to answer queries to h (resp. h1), and also change the
way to compute K (resp. K1) from the valid ciphertext received by UA. This game is to
make preparation for getting rid of the usage of secret key skA during SessionKeyReveal
queries that involve UA.

Firstly, h (resp. h1) is answered using two internal random oracles according to the
domain separation:

h(pk1, pk2,m) =

{
h1
q(pk1, pk2,Enc(pk1, pk2,m; G̃(pk2,m))) if pk1 × pk2 ∈ L1 × L2

h2
q(pk1, pk2,m) o.w.

h1(pk1,m1) =

{
h3
q(pk1,Enc1(pk1,m1; G̃1(m1))) if pk1 ∈ L1

h4
q(pk1,m1) o.w.

where h1
q : D1×D2×C → {0, 1}n, h3

q : D1×C1 → {0, 1}n, h2
q : D1×D2×{0, 1}n → {0, 1}n,

and h4
q : D1 × {0, 1}n1 → {0, 1}n are internal oracles. Note that since G̃ and G̃1 output

good randomness, both the derandomized Enc in h1
q and Enc1 in h3

q are injective functions
on messages. Thus h and h1 are still uniformly random. This is only a conceptual change.

Secondly, when UA, as an initiator, receives a valid ciphertext CjA and uses pkj2,A as

ephemeral public key, K = h(pkA, pk
j
2,A,Dec(skA, sk

j
2,A, C

j
A)) is replaced by

h1
q(pkA, pk

j
2,A, C

j
A). (3)

When UA is a responder and receives a valid ciphertext CjA, h1(pkA,Dec1(skA, C
j
A)) is

replaced by

h3
q(pkA, C

j
A). (4)

This is also a conceptual replacement. And by checking the cases one by one, the
replacements for encapsulated keys of valid ciphertexts are consistent with the replace-
ments of h and h1. The view of A in Game 3 and Game 4 is identical even for unbounded
(quantum) adversary. Thus, Adv3 = Adv4.

Game 5. Now we are ready to get rid of using the secret key skA during SessionKeyReveal
queries. We incorporate the ways to decapsulate K for both valid and invalid ciphertexts
received by UA. For an invalid ciphertext sent to UA, the encapsulated keyK is computed

17

the same as for a valid ciphertext. Concretely, Equ.(1) of Game 3 is replaced by Equ.(3),
and Equ.(2) is replaced by Equ.(4).

Since h1
q and h3

q are internal oracles, the adversary can only access to h1
q and h3

q by

querying h. As G̃ and G̃1 only sample good randomness, the ciphertexts on which A
could query to h1

q and h3
q are all valid. However, the ciphertexts on which A queries to

h′q, h
′
1q are all invalid. That is, the domain consisting of all the ciphertexts on which A

could query to h1
q (resp. h3

q) disjoints with that of h′q (resp. h′1q). Switching the internal
oracles when receiving invalid ciphertexts dose not change the view of an unbounded
(quantum) adversary. Thus, Adv4 = Adv5.

Game 6. We switch back to G (resp. G1) from G̃ (resp. G̃1). The argument is similar
to that in Game 2. Adv5 − Adv6 ≤ 16(qG + 2q)2δ2 + 16(qG1 + 2q)2δ1.

Note that in Game 6 and the subsequent games, the secret key skA is not used any
more. We are ready to decouple K∗ from the challenge ciphertext in the test session.

Game 7. Let L2after be {(pkj2,A, sk
j
2,A)Nl+1≤j≤2Nl}, a subset of L2. After the test session,

all the ephemeral public keys used by UA will be chosen from L2after. If any public key
in L2after is equal to pk∗2A, abort. Secondly, we guess the responder of test session and
denote it as UB , and also guess which session between UA and UB is the test session at
the very beginning. If the guess fails, just abort. Thirdly, we change the generation of
mB as mB := fr(rB) with an internal random oracle fr, which is identical to mB ←M.
Particularly, in the test session m∗B ← M. Finally, if there exists a message used by
A (to interacts with UA) before the test session, which is equal to m∗B , the game also
aborts.

Lemma 6. Adv6 −Nl · Adv7 ≤ 2Nl · (q + qf)2
−n+1

2 + 2Nl · εpk2 +Nl22−n+1.

Now, random oracles G and h can be regarded as a single oracle G × h. As shown
in [23], if G and h have the same domain, we can use G× h to simulate both G and h.
Here, we could easily construct a G′ that can simulate G with the same domain as h.
For example, G′(pkA, pk2,m) = G(pk2,m). Then, a query (pk2,m) to G can be directly
converted to another query (pkA, pk2,m) to G′ for fixed pkA. Therefore, we can use
G′ × h to simulate both G and h. For simplicity, in the context, we stick to using G× h
instead of G′ × h. We take {pkA} ×D2 ×M as the domain of G. The same holds for G̈
and ḧ.

Game 8. Define set S := {pkA} × D2 \ L2after × {m∗B}. Let ḧ (resp. G̈) be a function
such that the function values on S (resp. D2 \ L2after × {m∗B}) are totally random, and

ḧ = h (resp. G̈ = G) everywhere else. In this game, G× h is replaced by G̈× ḧ.
A equivalent description of this game is that: G× h is still the same, but now their

values on S that we provide to A in the CK+ games are totally random. Specially, the
randomess R∗B = G(pk∗2A,m

∗
B) for C∗B and encapsulated key K∗ = h(pkA, pk

∗
2A,m

∗
B)

are replaced by random strings.

Lemma 7. Adv7 − Adv8 ≤ 2(qG + qh + 2q)

√
Adv

[OW-CPA,·]
2PKE (D).

The formal proof for Lemma 7 is provided in the subsection below. We give a sketch of
proof here. S is carefully chosen such that any SessionKeyReveal query on the non-test
session will not need the outcome of G×h on S. Thus, even G×h is replaced by G̈× ḧ,
h1
q and h3

q still can be used to answer the SessionKeyReveal queries. By applying OW2H
lemma, the upper bound is a square root of the probability that one could measure
some query to find some value in S. And finding out a value in S in could solve the
onewayness of the underlying 2PKE.

Game 9. We change the session key SK∗ to a totally random key. With a similar

argument in Game 7 , by Lemma 2, Adv8 − Adv9 ≤ 2(q + qH)2
−n+1

2 , since K∗ is totally

18

random from the view of A. Note that in this game, SK∗ is random no mater b = 1 or
not. Thus Adv8 = 0.

To sum up, we give the upper bound of AKE adversary for the case E3 as the first
in-equation in Theorem 1.

For case E4, the proof of the game sequences is almost the same as for E3, except
that in Game 7 the AKE adversary A does not know rB for E4, while he does not
know s′B for E3 instead. For case E2, the difference with proof of case E3 lies in that
the role of UA and UB is exchanged, and the challenge ciphertext is under 1-key public
key encryption in E2, while in case E3 it is under 2-key PKE instead. For case E1, the
proof of its game sequences is almost the same as for E2, except that in E1 the AKE
adversary A does not know rA, while he does not know s′A in E2 instead.

For cases E6, E7−1, E7−2, E8−1, E8−2, the proof is almost the same as for E3, E1,
E4, E2, E3 respectively.

For case E5, the proof is much simpler since we only need to deal with the weak
perfect forward security, which means no decapsulation oracle is needed, and the injective
mapping with encryption under many public keys technique can be left out. ut

4.1 Proof of Lemmas

4.1.1 Proof of Lemma 4: Adv1 − Adv2 ≤ 16(qG + 2q)2δ2 + 16(qG1
+ 2q)2δ1.

We first define an internal Game 1-1 in which only G is replaced.
By the definition of Rbad(i, j; pk2,m) in Game 2, when pk2 ∈ L2, there exists i∗, j∗

such that Rbad(i, j; pk2,m) is non-empty only when i = i∗ and j = j∗; when pk2 6∈ L2,
Rbad(i, j; pk2,m) is always empty.

Define δ(i, j; pk2,m) = |Rbad(i,j;pk2,m)|
|R| and δ(i, j) = maxm∈{0,1}n δ(i, j; pk2,m). By

the definition of correctness, E (δ(i, j)) = δ2 or 0, depending on pk2 ∈ L2 or not, where
the expectation is taken over (pk1,i, sk1,i) ← KGen1, (pkj2,i, sk

j
2,i) ← KGen2. Thus, ∃

i∗, j∗, such that

δ(L1, L2, pk2,m) :=
|Rbad(L1, L2; pk2,m)|

|R|
≤

∑
i∈[1,N],j∈[1,2Nl]

|Rbad(i, j; pk2,m)|
|R|

=
|Rbad(i

∗, j∗; pk2,m)|
|R|

= δ(i∗, j∗; pk2,m).

Let δ(L1, L2) := maxpk2∈L2

m∈{0,1}n δ(L1, L2; pk2,m). By taking the expectation on δ(L1, L2)

over the generation of L1 and L2, ∃j∗, such that

E (δ(L1, L2)) = E

(
pk2∈L2
max

m∈{0,1}n
(δ(L1, L2; pk2,m))

)
≤ E (δ(i∗, j∗)) = δ2,

where the expectation in line 2 is taken over (pk1,i∗ , sk1,i∗)← KGen1 and (pkj
∗

2,i∗ , sk
j∗

2,i∗)←
KGen2.

To give the upper bound of Adv1−Adv1−1, we utilize the distinguisher between Game
1 and Game 2 for b = 1 and b = 0 together with Lemma 3 to construct an unbounded
quantum adversary B|F 〉 to solve the generic distinguishing problem.
B, on input randomly chosen L1, L2, simulates the game as in Game 1. Let λ(pk2,m) =

δ(L1, L2; pk2,m). Let F (pk2,m) be bernoulli-distributed Bλ(pk2,m) or always 0 with re-
spect to the generic distinguishing problem. Define G as

G(pk2,m) =

{
Sample(Rgood(L1, L2; pk2,m); gq(m)) if F (pk2,m) = 0

Sample(Rbad(L1, L2; pk2,m); gq(m)) o.w.

where Sample(S; r) outputs an element from a set S with randomness r.

19

When F (pk2,m) is bernoulli-distributed according to Bλ(pk2,m), G is as in Game
1; when it is always 0, G is the same as in Game 1-1. At last, B just returns what A
guesses.

For both b = 1 and 0, B|F 〉(L1, L2) perfectly simulates Game 1-1 or Game 1 for A
corresponding to F is always 0 or bernoulli-distributed. By further applying Lemma 3
with λ = δ(L1, L2), we have

|Pr[b′ = 1|b = 1 (resp.0) in Game 1]− Pr[b′ = 1|b = 1 (resp.0) in Game 1-1]|
= Pr[B|F 〉(L1, L2)→ 1|F ← Bλ(pk2,m)]− Pr[B|F 〉(L1, L2)→ 1|F ≡ 0]

≤ 8 · (qG + 2q)2δ(L1, L2).

By taking the expectation over L1 and L2, we have Adv1 − Adv1−1 ≤ 16 · (qG + 2q)2δ2.

Now, we consider the replacement of G1. Define δ(pk1,m1) = |R1bad(pk1,m1)|
|R1| . Then,

δ1 = E(maxpk1,m(δ(pk1,m1))).
By constructing a similar unbounded quantum adversary B|F 〉, where F (pk1,m1) is

bernoulli-distrubution Bδ(pk1,m1) or always 0, with the similar analysis for the switch of
G1, we have Adv1−1 − Adv2 ≤ 16(qG1

+ 2q)2δ1.

4.1.2 Proof of Lemma 5: Adv2 ≤ N · Adv3 + 2N(2Nl + qh′ + qh′1)2
−n+1

2 .
Let Game 2-1 be an internal game in which we guess whom is the owner of test

session, i.e., UA. If the guess is wrong, abort. Obviously, Adv2 = N · Adv2−1.
To argue the difference between Adv2−1 and Adv3, there are two cases that should be

handled, namely, either UA is an initiator or a responder. Here, we prove the case when
UA is an initiator. Note that sA is totally random for A. By Lemma 2, we construct an
algorithm T to distinguish which oracle it is given access to, h′q(·, ·, ·) or h′(·, ·, sA, ·). To
this end, T simulates the AKE game. It first guesses the owner of test session, generates
the static public-secret keys for every user except UA. For user UA, T only honestly
generates (pkA, skA) but without knowing sA. For an invalid ciphertext CjA sent to

initiator UA who uses pkj2,A as ephemeral public key, T makes query to the challenge

random oracle h′(·, ·, sA, ·) or h′q(·, ·, ·) with tuple pkA, pk
j
2,A, CjA depending on σ = 1 or

0, to set the encapsulated key K. After receiving b′ from A, T returns b′ as the guess of
σ.

If the challenge oracle T queried is h′(·, ·, sA, ·), it is Game 2-1. If the oracle T queried
is h′q(·, ·, ·), it is Game 3. The number of T ’s queries to h′q is less than Nl+qh′ . By Lemma

2, for both b = 1 and 0, Pr[b′ = 1|σ = 1]−Pr[b′ = 1|σ = 0] ≤ (Nl+qh′)2
−n+1

2 . To further
consider the similar replacement of h′1 when UA is a responder, we have Adv2−1−Adv3 ≤
2(Nl+qh′)2

−n+1
2 +2(Nl+qh′1)2

−n+1
2 . Thus, Adv2 ≤ N ·Adv3 +2N(2Nl+qh′+qh′1)2

−n+1
2 .
ut

4.1.3 Proof of Lemma 6:

Adv6 −Nl · Adv7 ≤ 2Nl · (q + qf)2
−n+1

2 + 2Nl · εpk2 +Nl22−n+1.

Define an intermediate Game 6-1, in which it aborts when there exists a public key
in L2after equal to the ephemeral public key used by adversary in test session. Obviously
Adv6 − Adv6−1 ≤ Nl · εpk2.

Define an intermediate Game 6-2, in which the simulator guesses who is the responder
(here assume it is UB) of test session and which session is the test session. If the guess
succeeds, go on as Game 6-1, otherwise abort. The probability of successful guess is
exactly 1/Nl. Thus, Adv6−1 = Nl · Adv6−2.

Define an intermediate Game 6-3, in which the message used by UB is randomly
chosen. Note that s′B is totally random for A. By Lemma 2, we construct an algorithm
T to distinguish oracle fr from oracle f(s′B , ·). Given quantum accessible random oracle

20

f , T is given access to f(s′B , ·) if σ = 1; otherwise T is given access to fr. T finally
outputs a guess σ′ for σ. To this end, T simulates the AKE game. T honestly sets the
static public/secret keys of every user except UB . For user UB , T honestly sets the static
secret key but leaves s′B as empty. For any session that involves UB , T queries oracle
f(s′B , ·) or fr(·) with rB . After receiving b′ from A as the guess of b, T returns b′ as the
guess of σ. If T queried f(s′B , ·), the AKE game is Game 6-2. If T queried fr(·), the
AKE game is Game 6-3. By Lemma 2, for both b = 1 and 0, Pr[b′ = 1|σ = 1]− Pr[b′ =

1|σ = 0] ≤ (q + qf)2
−n+1

2 . Thus Adv6−2 − Adv6−3 ≤ 2(q + qf)2
−n+1

2 .
Furthermore, since now m∗B is randomly chosen, the probability that it is equal to

any message used by A (to interacts with UA) before the test session, is less than l×2−n.

To sum up, Adv6 −Nl · Adv7 ≤ 2Nl(q + qf)2
−n+1

2 +Nl · εpk2 +Nl2 × 2−n+1.

4.1.4 Proof of Lemma 7: Adv7 − Adv8 ≤ 2(qG + qh + 2q)

√
Adv

[OW-CPA,·]
2PKE (D).

Let h̃1
q be the function, which aborts on set S = {pkA}×D2 \L2after ×{m∗B}, and is

equal to h1
q everywhere else. Since any SessionKeyReveal query on non-test session does

not need h1
q on S, h̃1

q and h3
q could be used to answer the SessionKeyReveal query that

involves UA in both Game 7 and Game 8.
Define SG×h as the following: on input z = (L1, L2, pkA,Enc(pkA, ·,m∗B ;G(·,m∗B)),

h(pkA, ·,m∗B), h̃1
q, h

3
q), where Enc(pkA, ·,m∗B ;G(·,m∗B)), h(pkA, ·,m∗B) can be seen as two

one-time oracles, generate the static public-secret key pairs for UP as in Game 7. Set pkA
as the static public key of UA. For any SessionKeyReveal query that involves UA, utilize h̃1

q

and h3
q to compute the encapsulated key and session key. When A sends pk∗2A in test ses-

sion, S computes C∗B := Enc(pkA, pk
∗
2A,m

∗
B ;G(pk∗2A,m

∗
B)), and K∗ := h(pkA, pk

∗
2A,m

∗
B)

with pk∗2A and z. S chooses b← {0, 1}. If b = 0, set SK∗ = H(K∗,K1, CA, C
∗
B , UA, UB),

else SK∗ = H(K,K1, CA, C
∗
B , UA, UB), where K1 is extracted from CA using skB and

K ← {0, 1}n. S then returns what A outputs.
Thus, on input z, SG×h could simulate Game 7 perfectly. By replacing G × h with

G̈× ḧ, on the same input, SG̈×ḧ could also simulate Game 8 perfectly. Thus,

Adv7 =|Pr[SG×h ⇒ 1|b = 1]− Pr[SG×h ⇒ 1|b = 0]|;

Adv8 =|Pr[SG̈×ḧ ⇒ 1|b = 1]− Pr[SG̈×ḧ ⇒ 1|b = 0]|.

Let BG̈×ḧ be an oracle algorithm that: with the input z does as following: randomly

choose k ← {1, · · · , qG+qh}, run SG̈×ḧ(z) until (exactly before the starting of) the k-th
query, measure all queried input registers in the computational basis, and output the
measurement as outcomes.

For b = 0 and 1, applying the OW2H (Lemma 1) by setting X = D1 × D2 ×M,
Y = {0, 1}r+n, S = {pkA} × D2 \ L2after × {m∗B}, O1 = G̈ × ḧ, O2 = G × h, and

z = (L1, L2, pkA,Enc(pkA, ·,m∗B ;G(·,m∗B)), h(pkA, ·,m∗B), h̃1
q, h

3
q), we have

|Pr[SG̈×ḧ(z)⇒ 1]− Pr[SG×h(z)⇒ 1]| ≤ 2(qG + qh + 2q)

√
Pr[s ∈ S|s← BG̈×ḧ(z)].

To bound the probability Pr[s ∈ S|s ← BG̈×ḧ(z)], we construct an adversary D
against the [OW-CPA, ·]-security.

– Select k ← {1, · · · , qG + qh}.
– Given the pkA from the [OW-CPA, ·] challenger, generate a list of static keys and

include an additional pair (pkA,−) to get L1, and generate a list of ephemeral keys,
L2.

– D randomly guesses which users are the initiator UA and responder UB in the test
session, and which session is the test session.

21

– Pick 2qG (2qG1
, 2qh, 2qh1

, 2qh′ , 2qh′1 , 2qf , 2qf1 ,2qH , 2qh1
q
, 2qh2

q
, 2qh3

q
, 2qh4

q
)-wise

independent function uniformly to simulate the random oracle G̈ (G1, ḧ, h1, h′, h′1,
f , f1, H, h1

q, h
2
q, h

3
q, h

4
q).

– For any SessionKeyReveal query that does not involve UA, the challenger uses static
secret key to extract encapsulated and session key. For any SessionKeyReveal query
that involves UA, it answers using hiq, for 1 ≤ i ≤ 4.

– On receiving pk∗2A and CA in test session, forward pk∗2A to [OW-CPA, ·] game. On
receiving challenge ciphertext C∗ under pkA and pk∗2A, choose K ← K and return
SK∗ = H(K,K1 = h1(pkB ,Dec1(skB , CA)), CA, C

∗, UA, UB).

– Measure the argument of the k-th query to G̈× ḧ and output m.

Since D simulates perfectly, Pr[s ∈ S|s← BG̈×ḧ(z)] = Adv
[OW-CPA,·]
2PKE (D).

By summing the equations, Adv7 − Adv8 ≤ 4(qG + qh + 2q)

√
Adv

[OW-CPA,·]
2PKE (D). ut

5 Prior AKEs and New Construction

In this section, we first give a new instantiation, CSIAKE, based on commutative su-
persingular isogeny. Then, we integrate several prior works to AKEQRO, thus answering
open problems on their securities in QROM.

5.1 CSIAKE from Commutative Supersingular Isogenies

Castryck et al. [15] proposed a commutative supersingular isogeny Diffie-Hellman (C-
SIDH) key exchange. Although the concrete choice of security parameters for CSIDH
is heavily debated [9,33,4,11], CSIDH is considered as a candidate of quantum-resistant
primitive. We propose 2-key and 1-key PKEs based on CSIDH in Fig.5. By integrating
them to AKEQRO, we get a CSIDH-based AKE in QROM, CSIAKE.

Let p = 4× l1 · · · ln− 1 be a large prime, where each li is a small distinct odd prime.
p and the supersingular elliptic curve E0 : y2 = x3 + x over Fp with endomorphism ring
O = Z[π] are public parameters. The CSIDH key exchange works as following: Alice
randomly chooses (eA1, · · · , eAn) from a range [−m,m]. These integers represent the
ideal class [a] = [leA1

1 · · · leAn
n] ∈ cl(O). Alice computes [a]E0. Bob chooses his own secret

[b] and computes [b]E0. They both could compute the common curve [a][b]E0 = [b][a]E0

in the form y2 = x3 +sx2 +x. The share secret is the Montgomery coefficient of common
curve, i.e., s.

KGen1 Enc(pk1, pk2,m1||m2); Dec(sk1, sk2, C)

(e11, · · · , e1n)← [−m,m]n (f1, · · · , fn)← [−m,m]n (c1, c2, c3)← C

sk1 = [a1] = [le111 · · · le1nn] c1 = [b]E0 = [lf11 · · · lfnn]E0 m1 = c2 ⊕ h(Coef([a1]c1))
pk1 = [a1]E0 c2 = h(Coef([b]pk1))⊕m1 m2 = c3 ⊕ h(Coef([a2]c1))

c3 = h(Coef([b]pk2))⊕m2

KGen2 Enc1(pk1,m1) Dec1(sk1, C)

(e21, · · · , e2n)← [−m,m]n (f1, · · · , fn)← [−m,m]n (c1, c2)← C

sk2 = [a2] = [le211 · · · le2nn] c1 = [b]E0 = [lf11 · · · lfnn]E0 m1 = c2 ⊕ h (Coef([a1]c1))
pk2 = [a2]E0 c2 = h(Coef([b]pk1))⊕m1

Fig. 5. 2PKE = (KGen1,KGen2,Enc,Dec) and PKE = (KGen1,Enc1,Dec1) based on CSIDH.
Coef(·) is Montgomery coefficient of the input curve. h : {0, 1}∗ → {0, 1}n is a random pair-
wise independent hash function.

22

Lemma 8. Based on the Commutative Supersingular Decisional Diffie-Hellman (CSI-
DDH) assumption, 2PKE in Fig. 5 is [OW-CPA,OW-CPA] secure and PKE is OW-CPA
secure.

The CSI-DDH problem is, given (E0, [a]E0, [b]E0, E
′), to decide E′ = [a][b]E0 or E′ =

[c]E0 for some random secret [c]. Please refer to Appendix C for the definition of CSI-
DDH and a formal proof of Lemma 8. We note that, similar to 2-key PKE in SIAKE
(in next subsection), we can not reduce its IND-like security to a standard assumption,
since c3 contains information about randomness.

A recent work [11] points out that the parameters recommended in [15] do not
achieve the concrete quantum security as claimed, and also suggest CSIDH-5280 to
have the same security as AES-128. We utilize CSIDH-5280 to make a comparison. With
CSIDH-5280 [11], the total communication of CSIAKE is 2028 bytes. On the contrary,
when integrating CSIDH-5280 to HKSU-AKE [21], the QROM version of FSXY, the
communication is 2688 bytes. Since there is no decryption error, the re-encryption only
needs to check the correctness of the first cihpertext. Thus, the initiator and responder
in HKSU need 6 and 6 isogeny computation, while those in CSIAKE need 6 and 5,
respectively.

5.2 Previous Instantiations of X3LH-AKE

5.2.1 SIAKE from Supersingular Isogenies. Inspired by X3LH-AKE, Xu et al.
[38] proposed SIAKE, a two round supersingular isogeny based protocol. By augmenting
SIAKE to AKEQRO, we conclude that SIAKE is secure in QROM, which answers their
open problem [38].

Here is a brief recall of some notations. Let p = `e11 `
e2
2 ·f±1 be a large prime. Assume

E0 be a supersingular elliptic curve defined over Fp2 with order |E0(Fp2)| = (`e11 `
e2
2 ·f)2.

Let E0[m] be a group ofm-torsion points form ∈ {`e11 , `
e2
2 }. Assume E0[`e11] =< P1, Q1 >

and E0[`e22] =< P2, Q2 >. Define {t, s} = {1, 2}, g = (E0;P1, Q1, P2, Q2) and e =
(`1, `2, e1, e2). Let a ∈ Z`e11 and b ∈ Z`e22 . Then, with computations for ga, gb, (gb)a,

(ga)b, as defined in [18] and Appendix D, SIDH key exchange is: Alice computes ga with
a, while Bob computes gb with b. The shared key is j = (gb)a = (ga)b.

From the above notations, Fig. 6 shows the [OW-CPA,OW-CPA] secure 2-key PKE
and OW-CPA secure PKE in the supersingular-isogeny setting. Similar with a comparison
in [38], the initiator and responder in HKSU need 6 and 6 isogeny computation while
those in SIAKE need 6 and 5, respectively.

KGen1 Enc(pk1, pk2,m1||m2); Dec(sk1, sk2, C)

a1 ← Z`
es
s

b← Z`
et
t

, c1 = gb (c1, c2, c3)← C

pk1 = ga1 c2 = h((ga1)b)⊕m1 m1 = c2 ⊕ h (ca11)

sk1 = a1 c3 = h((ga2)b)⊕m2 m2 = c3 ⊕ h (ca21)

KGen2 Enc1(pk1,m1) Dec1(sk1, C)

a2 ← Z`
es
s

b← Z`
et
t

, c1 = gb (c1, c2)← C

pk2 = ga2 ,sk2 = a2 c2 = h((ga1)b)⊕m1, m1 = c2 ⊕ h (ca11)

Fig. 6. 2PKE = (KGen1,KGen2,Enc,Dec) and PKE = (KGen1,Enc1,Dec1). h : {0, 1}∗ → {0, 1}n
is a random pair-wise independent hash function.

5.2.2 FSXY-AKE As pointed out by [37], FSXY [17] can be regarded as a non-
compact instantiation of 2-key PKE with the parallel execution of two PKEs in Fig. 7.
The IND/OW-CPA security of PKE implies the [OW-CPA,OW-CPA] security of resulting
2-key PKE [37].

23

By integrating such a result to AKEQRO, we re-answer the open problem on (modified)
FSXY-AKE’s security in QROM behind [21]. In our answer, the underlying security
requirement of PKE is the same with FSXY, say OW-CPA, while [21] requires IND-CPA.
Our reduction is relatively tighter for the factors of N and l where N is the number of
users, l is the number of sessions between two users, in terms of decryption error (N vs.
N4l2 in [21]), underlying scheme (N2l vs. N4l2) and the entropy of public keys (N2l vs.
N6l3). In [21], they define “S” as the number of sessions the adversary could established,
which is bounded by N2l. We note that, when applying to FSXY, our framework has a
drawback that it needs one more re-encryption than HKSU.

Since the parallel execution of two IND/OW-CPA secure PKEs is a [OW-CPA, OW-CPA]
secure 2-key PKE, several NIST post-quantum proposals [31] in the third round, such
as Kyber [6], SIKE [22] etc. could be applied modularly.

KGen1 KGen2 Enc(pk1, pk2,m1||m2) Dec(sk2, sk1, c1||c2)

(pk1, sk1)← KGen1; (pk2, sk2)← KGen1 c1 = Enc1(pk1,m1; r1) m1 = Dec1(sk1, c1)
c2 = Enc1(pk2,m2; r2) m2 = Dec1(sk2, c2)

Fig. 7. 2-key PKE from 1-key scheme. Let PKE := (KGen1,Enc1,Dec1) be a 1-key PKE

5.2.3 2Kyber-AKE Xue et al. [37] proposed a 2-key PKE based on Module-LWE,
namely 2Kyber. By combining 2Kyber with Kyber [6], and updating them to AKEQRO,
we will get a compact Module-LWE-based AKE in QROM.

6 Conclusion

In this work, we propose a generic construction of two-pass AKE in the quantum random
oracle model. Our work not only answers several open problems on the QROM security
of prior works, but also introduces new construction.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems. In
FOCS 2014, pp. 474-483.

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semiclassical ora-
cles. Cryptology ePrint Archive, Report 2018/904

3. Bernstein D. J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive, Report
2015/996

4. Bernstein, D. J. Re: [pqc-forum] https://groups.google.com/a/list.nist.gov/forum/
#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random
oracles in a quantum world. In ASIACRYPT 2011, pp. 41-69.

6. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe, P.,
Stehlé D.: CRYSTALS - Kyber: a CCA-secure Module-lattice-based KEM. In 2018 S&P,
pp. 353-367.

7. Bindel, N., Hamburg, M., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in
the quantum random oracle model, In TCC 2019, pp. 61-90.

8. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key
exchange. In TCC 2015, pp. 629-658.

9. Bernstein, D. J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the CSIDH:
optimizing quantum evaluation of isogenies. In EUROCRYPT 2019, pp. 409-441.

10. Bernstein, D. J., Hamburg M., Re: [pqc-forum] NIST pqc-forum mailing list, 2018, https:
//groups.google.com/a/list.nist.gov/g/pqc-forum/c/SrFO_vK3xbI/m/utjUZ9hJDwAJ

24

https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/SrFO_vK3xbI/m/utjUZ9hJDwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/SrFO_vK3xbI/m/utjUZ9hJDwAJ

11. Bonnetain, X., Schrottenloher, A.: Quantum Security Analysis of CSIDH. In EUROCRYPT
2020, pp. 493-522.

12. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly Efficient Key
Exchange Protocols with Optimal Tightness. In, CRYPTO 2019, pp. 767-797

13. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In EUROCRYPT 2001, pp. 453-474.

14. Cremers, C.J.F.: Formally and Practically Relating the CK, CK-HMQV, and eCK Security
Models for Authenticated Key Exchange. Cryptology ePrint Archive, Report 2009/253

15. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient post-
quantum commutative group action. In ASIACRYPT 2018, pp. 395C427.

16. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly Secure Authenticated Key
Exchange from Factoring Codes and Lattices. In PKC 2012, pp. 467-484.

17. Fujioka A., Suzuki K., Xagawa K., Yoneyama K.: Practical and post-quantum authenti-
cated key exchange from one-way secure key encapsulation mechanism. In AsiaCCS 2013,
pp. 83-94.

18. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular Isogeny Diffie-Hellman
Authenticated Key Exchange. In ICISC 2018, pp. 177-195.

19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated
key exchange. In CRYPTO 2018, pp. 95C125.

20. Hofheinz, D., Hövelmanns, K., and Kiltz, E.: A Modular Analysis of the Fujisaki-Okamoto
Transformation. In TCC 2017, pp. 341-371.

21. Hövelmanns, K., Kiltz, E., Schäge, S. and Unruh, D.: Generic Authenticated Key Exchange
in the Quantum Random Oracle Model. In PKC 2020, pp. 389C422.

22. Jao, D., Azarderakhsh, R., Campagna, M., et al.: SIKE candidate for NIST.
23. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-Secure Key Encapsulation

Mechanism in the Quantum Random Oracle Model, Revisited. In CRYPTO 2018, pp.
96-125. ePrint 2017/1096 (cited version 201907)

24. Jiang, H., Zhang, Z., Ma, Z.: Key Encapsulation Mechanism with Explicit Rejection in the
Quantum Random Oracle Model, In PKC 2019, pp. 618-645.

25. Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based reductions for
key encapsulation mechanism in the quantum random oracle model. Cryptology ePrint
Archive, Report 2019/494

26. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In CRYPTO
2005, pp. 546-566.

27. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Failure is not
an option: Standardization issues for post-quantum key agreement, 2015.

28. Kuchta, V., Sakzad, A., Stehl, D, Steinfeld, R., Sun, S.: Measure-Rewind-Measure: Tighter
Quantum Random Oracle Model Proofs for One-Way to Hiding and CCA Security. In
EUROCRYPT 2020, pp. 703-728.

29. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Ex-
change. In ProvSec 2007, pp. 1-16.

30. Longa, P.: A Note on Post-Quantum Authenticated Key Exchange from Supersingular
Isogenies. Cryptology ePrint Archive, Report 2018/267.

31. NIST Post-Quantum Cryptography Standardization, https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography

32. Peikert, C.: Lattice Cryptography for the Internet. In PQCrypto 2014, pp. 197-219.
33. Peikert, C.: He gives C-sieves on the CSIDH, In EUROCRYPT 2020, pp. 463-492.
34. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-Secure Key-Encapsulation Mechanism in

the Quantum Random Oracle Model. In EUROCRYPT (3) 2018, pp. 520-551
35. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP trans-

forms. In TCC 2016-B, pp. 192-216
36. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM, 62(6):No.49,

2015. A preliminary version appeared in EUROCRYPT 2014.
37. Xue, H., Li, B., Lu, X., Liang, B., He, J.: Understanding and Constructing AKE via Double-

Key Key Encapsulation Mechanism. In ASIACRYPT 2018, pp. 158-189.
38. Xu, X., Xue, H., Wang, K., Au, M., Tian, S.: Strongly Secure Authenticated Key Exchange

from Supersingular Isogenies. In ASIACRYPT 2019, pp. 278-308.
39. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In

CRYPTO 2012, pp. 758-775
40. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentia-

bility. In CRYPTO 2019, pp. 239-268.

25

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Appendix A: Existing proofs for FO transform in QROM

Properties and requirements of existing transformations from probabilistic PKE to CCA
secure KEM are summarized in Table 4.

In QROM (and also classical ROM), the main challenges include how to simulate
the decapsulation oracle without secret key, and how to argue the randomness of encap-
sulated key in the challenge ciphertext.

To simulate the decapsulation oracle without secret key in QROM, the additional
hash [1,20] has high overhead and reduction loss, while injective map and private RO
have low overhead and tight reduction. Boneh et al. [5] firstly introduced the technique
of modeling h(m) with hq ◦ f(m) to provide decapsulation oracle, where hq is a pri-
vate RO and f is an injective function. Inspired by [5], Saito et al. [34] and Jiang
et al. [23] independently assumed Enc(pk, ·;G(·)) is injective and modeled h(m) as
hq ◦ Enc(pk,m;G(m)). Thus, K = h(m) encapsulated in C = Enc(pk,m;G(m)) can
be computed as hq(C). We call this technique as injective mapping with encryption
under fixed public key and illustrate it in Fig. 2.

With this decapsulation oracle using injective mapping with encryption under fixed
public key, several techniques are used to argue the randomness of encapsulated key in
challenge ciphertext. Saito et al. [34] introduced the “puncture” technique which relies
on the IND-CPA security. Jiang et al. [23] applied their extended OW2H lemma to G×h
as an unified oracle, thereby reducing the security to a weaker primitive, OW-CPA secure
PKE. Additional result include explicit rejection [24]. Recently, Hövelmanns et al. [21]
extended the “puncture” analysis of [34] by considering decryption error.

Schemes Inj. map. prob. PKE Additional Hash Security Bound DecError

[35,20] - IND/OW-CPA len.-pre q3/2 4
√
ε X

[34] X IND-CPA × q
√
ε ×

[21] X IND-CPA × q
√
ε X

[23] X OW-CPA × q
√
ε X

[2] X IND-CPA × √
qε X

[7] X IND-CPA × √
qε X

[28] X IND-CPA × q2ε X

Table 4. Comparison of proof for FO type probabilistic PKE-to-KEM transform in the QROM. Inj. map.
indicates the injective mapping with encryption under fixed public key. len.-pre means additional hash should
be length preserving. q is the number of random oracle queries. ε is the advantage against OW/IND-CPA security
of PKE.

Ambainis et al. [2] proposed an improved OW2H lemma, namely, the semi-classical
OW2H, which implies the extended OW2H in [23] and gives better security bounds in
several PKEs. Bindel, et al. [7] proposed a double-sided OW2H lemma and reduced q
factor from reduction loss. Recently, Kuchta et al. [28] by pass the square-root advantage
loss using an updated double-sided OW2H lemma with the rewinding technique.

After the propose of OW2H lemma, as mentioned above, several variants are pro-
posed. We summarize them in Table 5. S is the set that two oracles O1 and O2 differ.
The ‘Must know’ column shows the oracles available to the one-wayness attacker. 1S
refers to the indicator function of S. The one-wayness attacker outputs an element in
S with probability ε. The lemma shows an upper bound of the difference between AO1

and AO1 as function of ε or q, the number of queries to oracle.

26

OW2H Variants |S| Must know Bound

Original [36,2] Arbitrary O1 or O2 q
√
ε

Semi-classical [2] Arbitrary (O1 or O2) and 1S
√
qε

Double-side [7] 1 O1 and O2
√
ε

Double-side-Revisited [28] Arbitrary O1 and O2 qε

Table 5. Comparison of OW2H lemmas.

Appendix B: Discussions on Security Models: CK, CKHMQV ,
eCK and CK+

To achieve a stronger security after the CK model [13] was introduced, CKHMQV [26],
eCK [29], and CK+ [16] models are being proposed. Due to subtle but crucial differ-
ences between them, these models are incomparable. Cremers [14] formally analyzed the
relation of CK [13], eCK [29], and CKHMQV [26]. We give a brief discussion here. For
formal details, please refer to [14] and [16].
Matching session: A session s could be defined with sA (the owner of s), sB (intended
peer), sR (the role performed by sA), ssend/srecv (the message send/received by sA),
and/or ssid (the session identifier, only used in CK model). In CK model, two sessions
s and s′ match if sA = s′B , sB = s′A and ssid = s′sid. In CKHMQV , if sA = s′B , sB = s′A,
ssend = s′recv, and srecv = s′send. s and s′ match. For eCK, s and s′ are matching sessions
if they match in CKHMQV and sR 6= s′R. CK+ claims to reformulate CKHMQV , but
uses the definition of matching session in eCK. The subtle differences are crucial since
the role-symmetric AKE that is secure in one model may be insecure in other model
[14].
Session State Reveal vs Ephemeral Key Reveal: The CK model [13] allows the
session state reveal by adversary, but leaves the AKE protocol to specify the contents of
the session state. Depending on the content of the session state reveal, a weaker AKE
may be proved secure [29]. Thus, eCK replaces session state reveal with the ephemeral
key reveal, which is equivalent to specify the content of session state as ephemeral secret
key. However, if more session state is allowed to be revealed, the eCK secure scheme
may be insecure [14].
How and when the ephemeral/static secret key related to test session is
given to adversary. In CK model, the compromise of static secret key of the test
session’s owner is not allowed before the test session expire, thus not detecting key
compromise impersonation (KCI) attack. To capture KCI, CKHMQV , eCK and CK+

allow the compromise of the static secret key of the owner before test session ends.
CKHMQV , eCK and CK+ also consider the weak version of perfect forward security
(wPFS), i.e., the corruption of executor or peer is allowed after the end of test session
only if the matching session exists. The exposure of ephemeral/static secret key related to
test session in eCK is modeled by adaptive queries to long-term key reveal/ephemeral
key reveal. In CK+ (and CKHMQV), the exposure is not modeled by such queries.
The ephemeral secret key is given to adversary directly after it is generated (thus they
actually allow adaptive queries to ephemeral key reveal); the exposure of static secret
key is modeled as giving to the adversary directly when it is allowed.
Our Choice: We use CK+ model here with more strict definition. We require the session
state reveal at least includes ephemeral secret key. The freshness still forbid the session
state reveal on the test session and its matching session, while the exposure of static
or ephemeral secret key related to test session is allowed to capture KCI, wPFS and
maximal exposure attack (MEX). To capture KCI, static secret key of the owner of test
session is given to the adversary directly after it is determined; for wPFS, the static
secret keys of the owner and its peer in test session is given to adversary at the end of
test session; for maximal exposure attack (MEX), the ephemeral secret key is given to
adversary after it is determined.

27

Appendix C: CSI-DDH and the proof of Lemma 8

Definition 2 (CSI-DDH Problem9). Let EA = [a]E0, EB = [b]E0, EC = [c]E0 be
randomly chosen. b ← {0, 1}. If b = 0, E′ = EC , otherwise E′ = [a][b]E0 Given (E0,
EA, EB, E′), the problem is to output b′ as a guess of b.

Let AdvcsiddhB = Pr[b = b′] − 1/2 be the advantage of solving CSI-DDH problem. The
CSI-DDH assumption claims, for any PPT adversary B, AdvcsiddhB is negligible.

We reduce the [OW-CPA, ·] security to CSI-DDH assumption. It is analogous for the
[·,OW-CPA] security and the OW-CPA security of 1-key PKE. In Game i (i ≥ 1), we
denote success guess as Succi
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3.
Game 1: In this game we modify [OW-CPA, ·] challenge game by requiring that the
adversary wins the game if m′1 = m1. We denote this event as Succ1. Note that in
Game 0, the adversary wins only if both m′1 = m1 and m′2 = m2. Thus, we have
Pr[Succ0] ≤ Pr[Succ1].
Game 2: In this game, we modify the computation of challenge ciphertext. Specifically,
[b]pk1 is replaced by a random [c]E0. We construct an algorithm B to solve the CSI-
DDH problem given an instance (E0, [a]E0, [a]E0, E

′), if there exists an algorithm A to
distinguish Game 1 and Game 2.

B(E0, EA, EB , E
′)

01 pk1 ← EA

02 pk∗2 , state← A(pk1)
03 m1 ← {0, 1}n
04 c∗1 = EB , c∗2 = h(Coef(E′))⊕m1, c∗3 ← {0, 1}n
05 m′1||m′2 ← A(state, (c∗1, c

∗
2, c
∗
3))

06 If m′1 = m1, b′ = 1, else b′ ← {0, 1}.

If (E0, EA, EB , E
′) is an CSI-DDH tuple, B perfectly simulates Game 1, else B per-

fectly simulates Game 2. In the CSI-DDH challenge, we have

AdvcsiddhB = Pr[b = b′]− 1/2

= 1/2(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

= 1/2(Pr[b′ = 1|Game 1]− Pr[b′ = 1|Game 2])

= 1/2(Pr[Succ1]− Pr[Succ2]).

Game 3: In this game, we modify the computation of the challenge ciphertext. Specif-
ically, h(Coef([c]E0)) is replaced by a random string h∗. Now c∗2 is a completely ran-
dom string in {0, 1}n. Thus, the advantage to compute m1 is Pr[Succ3] = 1/2n. Note
that, since h is a pairwise independent hash function, by the leftover hash lemma,
|Pr[Succ2]− Pr[Succ3]| is negligible.

To sum them up, we have that Pr[Succ0] ≤ 2AdvcsiddhB + 1/2n + negl.

Appendix D: SIDH and Crypto-friendly Description.

We recall briefly the SIDH protocol using the same notation as [22]. Let p be a large
prime with a form p = `e11 `

e2
2 · f ± 1, where `1 and `2 are two small primes, and f is an

integer cofactor. Then we can construct a supersingular elliptic curve E0 defined over
Fp2 with order |E0(Fp2)| = (`e11 `

e2
2 ·f)2. Let Zm be the ring of residue classes modulo m.

9 It is defined as a generalized form for n-way by using cryptographic invariant maps in:
Dan Boneh, Darren Glass, Daniel Krashen, Kristin Lauter, Shahed Sharif, Alice Silverberg,
Mehdi Tibouchi, Mark Zhandry: Multiparty Non-Interactive Key Exchange and More From
Isogenies on Elliptic Curves. In MATHCRYPT 2018,

28

The subgroup E0[m] of m-torsion points is isomorphic to Zm × Zm for m ∈ {`e11 , `
e2
2 }.

Let P1, Q1 be two points that generate E0[`e11] and P2, Q2 be two points that generate
E0[`e22]. The public parameters are (E0;P1, Q1;P2, Q2; `1, `2, e1, e2).

E0 EA = E0/〈RA〉

EB = E0/〈RB〉 EAB = E0/〈RA, RB〉

φA

φB φAB

φBA

Fig. 8. SIDH

The SIDH, as depicted in Figure 8, works as follows. Alice chooses her secret key
ka from Z`e11 and computes the isogeny φA : E0 → EA whose kernel is the subgroup

〈RA〉 = 〈P1 + [ka]Q1〉. She then sends to Bob her public key which is EA together with
the two points φA(P2), φA(Q2). Similarly, Bob chooses his secret key kb from Z`e22 and

computes the isogeny φB : E0 → EB with kernel subgroup 〈RB〉 = 〈P2 + [kb]Q2〉. He
sends to Alice his public key which is EB together with the two points φB(P1), φB(Q1).
To get the shared secret, Alice computes the isogeny φBA : EB → EBA with kernel
subgroup generated by φB(P1)+[ka]φB(Q1). Similarly, Bob computes the isogeny φAB :
EA → EAB with kernel subgroup generated by φA(P2)+[kb]φA(Q2). Since the composed
isogeny φAB ◦ φA has the same kernel 〈RA, RB〉 as φBA ◦ φB , Alice and Bob can share
the same j-invariant j(EAB) = j(EBA).

It will be helpful to have a crypto-friendly description of SIDH for the presentation
of our AKEs. We follow the treatment of Fujioka et al. [18]. In what follows we assume
{t, s} = {1, 2}, and denote the public parameters by g = (E0;P1, Q1, P2, Q2) and e =
(`1, `2, e1, e2). We define the sets of supersingular curves and those with an auxiliary
basis as

SSECp = {supersingular elliptic curves E over Fp2 with E(Fp2) ' (Z`e11 `
e2
2 f)2};

SSECA = {(E;P ′t , Q
′
t)|E ∈ SSECp, (P

′
t , Q

′
t) is basis of E[`ett]};

SSECB = {(E;P ′s, Q
′
s)|E ∈ SSECp, (P

′
s, Q

′
s) is basis of E[`ess]}.

Let a = ka and b = kb, then we define,

ga = (EA;φA(Pt), φA(Qt)) ∈ SSECA,

where RA = Ps + [ka]Qs, φA : E0 → EA = E0/〈RA〉;
gb = (EB ;φB(Ps), φB(Qs)) ∈ SSECB ,

where RB = Pt + [kb]Qt, φB : E0 → EB = E0/〈RB〉;
(gb)a = j(EBA), where RBA = φB(Ps) + [ka]φB(Qs), φBA : EB → EBA = EB/〈RBA〉;
(ga)b = j(EAB), where RAB = φA(Pt) + [kb]φA(Qt), φAB : EA → EAB = EA/〈RAB〉.

Using this notation, the SIDH looks almost exactly like the classical Diffie-Hellman.
That is, the public parameters are g and e. Alice chooses a secret key a and sends ga to
Bob, while Bob chooses a secret key b and sends gb to Alice. The shared key is, as we
expect, j = (gb)a = (ga)b.

The SI-DDH problem is, given e and (g, gb, j′), to decide j is a random j-invariant or
(gb)a. The SI-DDH assumption claims that for any PPT adversary the SI-DDH prblem
is still hard.

29

	Compact Authenticated Key Exchange in the Quantum Random Oracle Model
	Introduction
	Preliminary
	Authenticated Key Exchange in QROM
	Formal Security Proof
	Prior AKEs and New Construction
	Conclusion

