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Abstract. Several quantum-resistant authenticated key exchange protocols (AKEs)
have been proposed from supersingular isogenies. SIAKE [Xu et al. ASIACRYPT
2019] is one of the most efficient schemes for achieving strong security. However, its
security analyses are conducted in the classical random oracle model, thereby leaving
security in the quantum random oracle model (QROM) as an open problem. In this
paper, we prove that SIAKE is also secure in the QROM with a slight modification by
adding public keys in hash functions. Our approach provides a new AKE based on
communicative supersingular isogeny. Our technique could be extended to show that
a modified X3LH [Xue et al. ASIACRYPT 2018], a generic AKE based on double-key
PKE, is QROM secure under the one-way assumption of double-key PKE.

Keywords: supersingular isogeny, AKE, quantum random oracle model

Version Note. This is an updated version of previous eprint [43] with the title “Compact
Authenticated Key Exchange in the Quantum Random Oracle Model”.

1 Introduction

Since the introduction of authenticated key exchange (AKE), there has been a series of
works on security models and constructions from classical assumptions. Recently, one of
the most important and appealing directions is to construct AKE against quantum attacks.
Among them, those based on lattice [6] and supersingular isogeny [16,24] are the most
attractive ones. We focus on AKE from supersingular isogeny in this paper.

Isogeny-based AKE can be traced back to Galbraith [20], Fujioka et al. [19], and LeGrow
et al. [32]. However, they either achieve weak security or require considerable overhead (e.g.
[32] relies on inefficient isogeny-based signatures). The following works seek to design an
efficient scheme that also provides a strong security guarantee. Protocols gave by Longa
[34, sec. 4, AKE-SIDH-SIKE] and Xu et al. [45] are the most prominent ones. Both of them
instantiate generic frameworks, i.e., the framework is given by Fujioka et al. [18] and that
of Xue et al. [44] respectively.

Fujioka et al. [18] generically construct CK+ secure AKE (denoted as FSXY hereafter)
by relaxing their work [17] in the standard model to the random oracle model. Particularly,
FSXY consists of a one-way chosen-ciphertext (OW-CCA) secure KEM under the responder’s
static public key and parallel execution of OW-CCA secure KEM and passively-secure KEM
under initiator’s static and ephemeral public keys respectively. We could build FSXY from
one-way chosen-plaintext (OW-CPA) secure PKE, since OW-CCA KEM is implied by OW-
CPA PKE in the random oracle model (ROM) [17, Sec. 4].

Another noteworthy framework is due by Xue et al. [44] (denoted as X3LH hereafter).
Abstracted from many well-known ad-hoc AKEs, X3LH devises AKE from a new primitive



called adaptively secure double-key (2-key) KEM, which could be obtained from a passively
secure 2-key PKE [44, Sec. 6.2] under the assumption of the random oracle. Their
observation is that, in FSXY, two independent ciphertexts under the initiator’s static and
ephemeral public keys could be incorporated into single encryption under these two public
keys, and this incorporation may yield communication and computation advantage. They
also formalized the security requirement of the 2-key PKE as [OW-CPA, OW-CPA]. More
precisely, in the [OW-CPA, ·] (resp. [·,OW-CPA]) game, the adversary attempts to invert the
ciphertext of a random message which is encrypted under a pair of public keys, where the
first (resp. second) public key is generated by the challenger, while the second (resp. first)
public key is chosen by the adversary.

The advantage of X3LH is that 2-key PKE may allow computational and bandwidth
saving alongside the parallel use of two standard PKEs. These savings are significant in
the supersingular isogeny setting. Thus, following X3LH, Xu et al.’s protocol [45] (denoted
as SIAKE) is much more compact than Longa’s instantiation [34] of FSXY (denoted as
FSXY-SI). Looking ahead, a concrete comparison is shown in Table 1.

To better understand SIAKE and FSXY-SI, let’s intuitively explain constructions of 2-
key PKE using classical ElGamal. Let g be a group generators and h1 = gx1 , h2 = gx2 be
the public keys of two ElGamal schemes. A 2-key PKE of message m := m1||m2 can be
generated in two approaches, where H is a pair-wise independent hash function.

Types Intuitions Schemes

Type 1 [ gr1 ,H(hr11 )⊕m1 ] || [ gr2 ,H(hr22 )⊕m2 ] FSXY-SI [18,34]

Type 2 [ c1 = gr1 , c2 = H(hr11 )⊕m1, c3 = H(hr12 )⊕m2 ] SIAKE [45]

Updating mathematical structure to supersingular isogeny key exchange (SIDH) [16],
SIAKE and FSXY-SI follow Type 2 and Type 1 approach respectively. It is obvious that
SIAKE benefits from randomness reuse.

Nevertheless, we should carefully handle this update. Compared with classical ElGamal,
isogeny-based encryption has two essential differences. 1) The validation of SIDH’s public
key is itself a hard problem [41]; 2) The gap assumption4 does not hold in the SIDH setting,
due to the adaptive attack [21] given by Galbraith, Petit, Shani, and Ti. SIAKE and FSXY-
SI circumvent these issues by upgrading the passively-secure PKE to chosen-ciphertext
secure KEM in the random oracle model.

The Quantum ROM. Since the quantum computer could execute all the off-line
primitives, including hash functions, Boneh et al. [5] introduced the quantum ROM
(QROM), in which the adversary can query random oracle with arbitrary superpositions.
It is widely believed that proofs in the quantum ROM rather than classical ROM fulfill the
security requirements against quantum adversaries.

Motivation. Although SIAKE and FSXY-SI lead to efficient AKEs from supersingular
isogenies, analyses of their securities are conducted in the classical ROM, thereby leaving
security in QROM as an open problem, which motivates us to investigate in this paper.

Hövelmanns et al. [23] made the first try on this problem. They proposed a modified
FSXY (denoted as HKSU hereafter) and proved its QROM-security. They re-examined the
puncture technique of [38] (which is recent progress on QROM security of Fujisaki-Okamoto)
and applied it to FSXY. A shortcoming of their technique is that the underlying 1-key PKE
should be IND-CPA secure (cf. OW-CPA secure PKE is sufficient in the original FSXY.)

Although HKSU’s technique works well for FSXY-SI, it can not be applied to SIAKE,
due to the following reasons.

4 In the classical group, the gap assumption states the computational Diffie-Hellman is still hard
even giving a (limited) oracle on decisional Diffie-Hellman problem.
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Firstly, 2-key PKE of SIAKE only achieves one-wayness even under supersingular isogeny
DDH (SI-DDH) assumption. Recall that SIAKE’s 2-key ciphertext is analogous to Type 2’s
ciphertext. The infeasibility of IND security comes from that, in the security game, h2

is chosen by the adversary. Specifically, assuming (c∗1, c
∗
2, c
∗
3) is the challenge ciphertext, to

prove IND security, we may embed DDH challenge into g, h1, c
∗
1 and c∗2. However, simulating

c∗3 is challenging since neither logg h2 nor logg c
∗
1 is known. Some kind of gap assumption

and random oracle may help to fix this. Unfortunately, as said before, the gap assumption
does not hold for supersingular isogeny.

Secondly, HKSU’s proof is built indispensably on the so-called injective mapping with
encryption under a fixed public key to decouple the decapsulation-like oracle from the
secret key. However, in SIAKE, the adversary may query decapsulation-like oracle under
many pairs of public keys and could maliciously choose the second public key (without the
awareness of any user). This highly influences the applicability of injective mapping with
encryption since now the “injective” property may not hold.

Thus, to support the state-of-the-art scheme, more investigations should be conducted
on the security of SIAKE in QROM, which is also an open problem raised in [45]. In this
paper, we are motivated to address this.

1.1 Our Contributions

– We prove that, with a slight modification, SIAKE is secure under the SI-DDH assumption
in the QROM. Actually, we give a more general result: modified SIAKE is an adaptively
secure AKE in QROM if the underlying 2-key PKE is [OW-CPA, OW-CPA] secure with
perfect correctness.

– This also provides an approach to design isogeny-based AKEs in QROM, i.e., we only
need to focus on instantiating 2-key PKE. With this guide, CSIAKE, a new construction
based on commutative supersingular isogeny DDH (CSI-DDH) [15], is given.

– By further taking decryption failure into account, we extend the result to show that
modified X3LH transforms any [OW-CPA, OW-CPA] secure 2-key PKE into adaptively
secure AKE in QROM. This re-answer the open problem on QROM security of
FSXY. Our answer builds on the OW-CPA security of underlying PKE, as the original
FSXY required, contrary to HKSU [23] which needs IND-CPA.

– Our proof technique, namely, domain separation and injective mapping with encryption
under many public keys, is of independent interest. We believe this method is helpful
for multi-user security of Fujisaki-Okamoto transformation in QROM.

See Fig. 1 and Table 1 for a summary of our contributions and a comparison with
previous works.

CSI-DDH
[OW-CPA, OW-CPA]

2-key PKE

SI-DDH
OW-CPA

PKE
CK+ AKE

IND-CPA
PKE

X3LH [44]

FSXY [18,34]

HKS
U [23]

Sec. 5.1

SIAK
E [45]

X3LH[44]

Sec. 3 & 5.2

Fig. 1. Illustration of previous and our works. The dotted (resp. dashed) lines indicate works in
the classical ROM (resp. QROM). The dashed blue lines indicate our work.
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AKEs Assumption ROM Model Arbitrary Reg. Bytes Isogenies

Gal [20] SI-CDH c CK no 660 3+3

FTTY [19] SI-DDH c CK no 660 3+3

FSXY-SI [18,34] SI-DDH c CK+ yes 1384 6+6

SIAKE [45] SI-DDH c CK+ yes 1054 6+5

HKSU[23] SI-DDH q CK+ yes 1384 6+6

Ours SI-DDH q CK+ yes 1054 6+5

[28,31] Strong-CSIDH c CCGJJ yes 1320 4+4

HKSU[23] CSI-DDH q CK+ yes 2688 6+6

Ours CSI-DDH q CK+ yes 2028 6+5

Table 1. Comparison of isogeny-based AKEs. In the ROM column, “q” and “c” indicate the
quantum and classical ROM respectively. “Arbitrary Reg.” indicates arbitrary key registration.
The communication in column “Bytes” are computed for 128 bits security with SIKEp403 [24] and
CSIDHp-5280 [11]. “Isogenies” indicates the computation of isogenies and “x+ y” means that the
initiator (resp. responder) runs x (resp. y) isogenies. Strong-CSIDH is an analog of non-standard
strong DH assumption for commutative supersingular isogeny.

1.2 Technique Overview

We first review SIAKE in detail and discuss challenges in proving its security in QROM.
Then, our solution follows.

Review of SIAKE. SIAKE starts from an [OW-CPA, OW-CPA] secure 2-key PKE (with
perfect correctness). Specifically, using the crypto-friendly notion of isogeny (refer to Sec.
2.2), g is the public parameter, (ga1 , a1) and (ga2 , a2) are two public-secret key pairs, the
ciphertext of m1||m2 with randomness b is

Enc(ga1 , ga2 ,m1||m2; b) := gb,H((ga1)b)⊕m1,H((ga2)b)⊕m2,

where H is a pair-wise independent hash function. It could be taken as the randomness-reuse
of two standard one-key encryptions in SIKE [24]. SIAKE achieves CK+ secure AKE via a
two-step process: firstly from passively secure 2-key PKE to adaptively secure 2-key KEM,
and then to AKE. Given hash functions G, h and H, SIAKE could be integrated as below,
where Enc1 is a normal one key encryption, i.e., SIKE [24].

Alice (pkA, skA) Bob (pkB , skB)

pk2A, CA = Enc1
(
pkB ,mA;G(mA)

)
KA = h(mA) CB = Enc

(
pkA, pk2A,mB ;G(mB)

)
KB = h(pk2A,mB)

K = H(sid,KA,KB) K = H(sid,KA,KB)

Recall that, a CK+ secure AKE guarantees that no PPT adversary can distinguish
the session key of test-session from a random string, even if it could send any message,
make SessionKeyReveal queries on any non-test-session to obtain a session key, query
SessionStateReveal to gain the internal state, and corrupt some users to get their secret
keys.

Security of underlying 2-key PKE could be separated as [OW-CPA, ·] and [·,OW-CPA]
games. In the first (resp. second) game, the adversary attempts to invert the ciphertext of a
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random message where the first (resp. second) public key is generated by challenger, while
the second (resp. first) public key is chosen by the adversary.

Roughly speaking, in SIAKE, [·,OW-CPA] is used to provide weak perfect forward
security for AKE, and [OW-CPA, ·] security is appropriately utilized to handle all the other
attacks. To fill up the gap between AKE and 2-key PKE, two issues should be resolved.

Issue I: Answer SessionKeyReveal query (which is a decapsulation-like query) without the
static secret key (i.e., the first secret key of 2-key PKE).

Issue II: Decouple the session key K∗ of test-session from its challenge ciphertext C∗

(which is the encryption of a message m∗).

In classical ROM, hash lists could effectively handle these issues. Concretely, we could
answer the SessionKeyReveal queries by searching the hash lists and could decouple the
test-session key from its challenge ciphertext when the hash lists do not contain m∗. In case
hash lists contain m∗, we could transfer it into solving the [OW-CPA, ·] problem.

However, maintaining hash lists is not an easy task in QROM. For 1-key PKE, several
recent works [39,22,25,38,2,8,47,30] develop new techniques to circumvent recording hash
lists when re-exam QROM security of Fujisaki-Okamoto, which replaces randomness with
the hash of the message, i.e., G(m), and sets the encapsulated key as K = h(m).
Unfortunately, applying them to SIAKE is challenging. In the following, we analyze the
challenges and give our solution.

Challenges and Our Solution. To simplify the presentation, we only analyze the
authentication of Alice. Let C∗ = Enc(pk∗1 , pk

∗
2 ,m

∗
B ;G(mB)) be the 2-key ciphertext of

test-session, where pk∗1 is Alice’s static key and pk∗2 (may be chosen by adversary) is the
ephemeral key. Furthermore, we abuse the notion of (Enc1,Dec1) as the encryption and
decryption of standard PKE or SIKE [24].

Issue I: Answering SessionKeyReveal without Secret Key. In Fujisaki-Okamoto, there is
a similar problem of answering the decapsulation oracle without knowing the secret key.
To solve it, Targhi and Unruh [39] appended a length-preserving hash of plaintext to the
ciphertext. Although it could be directly applied to SIAKE, it incurs a considerable overhead
which we want to avoid.

Another elegant technique is the injective mapping with encryption [5,38,25,2], which
is to replace h with the composition of a private QRO hq and an injective map f . As
illustrated in Fig. 2, f is taken to be m 7→ Enc1(pk,m;G(m)). By such replacement, we
could directly return hq(C) as the key encapsulated in ciphertext C, since h(Dec1(sk, C)) =
hq ◦Enc1

(
pk,Dec1(sk, C);G (Dec1(sk, C))

)
= hq(C), where pk, sk are the public and secret

keys.
Note that to apply the injective mapping with encryption, the public key should be

known at the beginning. However, in SIAKE, an adversary could query SessionKeyReveal
on many public key pairs of 2-key encryption. This technique can not be straightly applied
to the scenario of SIAKE, since under which public key pairs the function Enc is applied
is unknown, needless to say, the required injective property. We could narrow the gap by
embedding a public key pair into h to specify Enc’s public keys, i.e., setting the encapsulated
key as K = h(pk1, pk2,m). In spit of this, the proof is still challenging, since now adversary
could query h with any pk1 and pk2 of its choice, which still contradict with the requirement
that Enc(pk1, pk2,m;G(m)) should be injective.

Our solution. One may come up with the idea of checking the validity of public keys in
h(pk1, pk2,m). However, as said before, public key validation is itself a hard problem in
SIDH [41]. Our observation is that, in AKE, SessionKeyReveal queries are applied to many
but bounded public keys, i.e., those honestly generated static and ephemeral public keys.
Thus, although maintaining hash lists is not an easy task in QROM, preparing lists of these
public keys is feasible.
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let N be the number of AKE users and l be the up-bound number of sessions between
two users. Let {(pk1,i, sk1,i)1≤i≤N} be the list of prepared static public-secret keys where
the pair with index i is for user Ui, and let L1 be that only contains public keys. Let
{(pkj2,i, sk

j
2,i)1≤i≤N,1≤j≤Nl} be the list of ephemeral public-secret keys, where pkj2,i is

prepared as the ephemeral public key for Ui’s j-th session, and let L2 be that only contains
public keys. Note that not all the prepared keys are used in the real game. For example,
the adversary may register an invalid public key for Ui, in which case (pk1,i, sk1,i) is not
used. Fortunately, we do not need to answer SessionKeyReveal queries on those sessions.

For KEM Fixed pk

m ∈M C

h(m)

h

Enc1(pk,m;G(m))

hq

For AKE pk1 ∈ D1

pk1, pk2,m pk2 ∈ D2 pk1, pk2, C

m ∈M

h(pk1, pk2,m)

h

If pk1 ∈ L1 ∧ pk2 ∈ L2

Enc(pk1, pk2,m;G(m))

h1
q

I(pk1, pk2,m)

If pk1 6∈ L1 ∨ pk2 6∈ L2

h2
q

Fig. 2. The injective mapping by Enc1 under fixed public key and the injective mapping by Enc
under many public keys. pk is a fixed public key. I is the identity map.

With prepared L1, L2, domain of h, i.e., D1×D2×M could be divided as L1×L2×M
and its complement. With such a domain separation, our technique, i.e., injective mapping
with encryption under many public keys, is illustrated in Fig. 2. Namely, h(pk1, pk2,m) is
defined according to the domain separation as

h(pk1, pk2,m) =

{
h1
q(pk1, pk2,Enc(pk1, pk2,m;G(m))) if pk1 × pk2 ∈ L1 × L2

h2
q(pk1, pk2,m) otherwise,

where h1
q, h

2
q are private random oracles. Now, we could answer SessionKeyReveal queries

on (pk1 ∈ L1, pk2 ∈ L2, C, · · · ) by using h1
q(pk1, pk2, C) as the key encapsulated in C,

obviously, without the knowledge of secret key.

Issue II: Decoupling Session Key from Challenge Ciphertext. Further investigation should
be done on this issue, since 1) we start from one-way security of 2-key PKE; 2) an adversary
could choose the second public key of C∗, i.e., pk∗2 .

The One Way to Hiding (OW2H) lemma [40] plays an essential role to decouple
encapsulated key from challenge ciphertext. Informally, the OW2H lemma states that: if a
quantum distinguisher, issuing queries to QRO O1 or O2 which only differ on a set S, could
distinguish them from each other, then there exists a one-wayness attacker to find some
element in S.
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In the QROM evaluation of Fujisaki-Okamoto, the puncture technique, combining
OW2H on a set S containing a single point, is usually applied to decouple key from challenge
ciphertext (e.g. [38] and HKSU [23]). The puncture technique requires the underlying
encryption to be IND-CPA, which SIAKE does not provide. Furthermore, in the scenario
of SIAKE, S could not be a set of single point since the adversary could arbitrarily choose
pk∗2 .

We handle this by using the unified oracle trick and a well-chosen S.

The Unified Oracle Trick. Introduced in [39] and later utilized by [25], the unified oracle
trick, treats queries to G, h as a unified G × h, provides a possibility to reduce security
to the one-wayness of underlying encryption. We adopt this technique and replace G(mB)
in SIAKE with G(pk2A,mB). Looking ahead, after guessing the test-session, say pk∗1 , any
query (pk2,m) to G could be handled as a query with (pk∗1 , pk2,m) which makes G and h
share the same domain.

The Choice of S. In Fujisaki-Okamoto transformation, S (the set of different elements
between O1 and O2) is a set of a single point, i.e., the challenge message. In the scenario
of SIAKE, since ephemeral public key pk∗2 may be generated by the adversary, S should be
carefully chosen to make sure that 1) it is large enough such that pk∗2 is covered; 2) it is
not too large such that answering SessionKeyReveal query in Issue I is not affected.

Let L2after ⊂ L2 be the list of ephemeral public keys utilized after the test-session. We
could do this by doubling the size of L2. Then, we set S = {pk∗1} × D2 \ L2after × {m∗B},
which is exactly the set satisfying all requirements. 1) If the ephemeral public key has high
entropy, it holds that pk∗2 ∈ D2 \ L2after with overwhelming probability, which satisfies the
first requirement. 2) Since m∗B is randomly chosen by simulator, any SessionKeyReveal query
before the test-session meets m∗B with negligible probability. Furthermore, by the definition
of L2after, ephemeral public keys of SessionKeyReveal queries after the test-session will be in
L2after (and L2). Thus, the second requirement is satisfied.

Putting All Together. Finally, we modify SIAKE by embedding both static and ephemeral
public keys into h and adding ephemeral public key into G. The cost of this modification
is negligible, while the gain is QROM security.

1.3 Extending and Generalization.

Following the approach of SIAKE and our modification, we propose a new QROM secure
AKE from commutative supersingular isogeny Diffie-Hellman (CSIDH) [15]. Actually, we
only need to instantiate 2-key PKE based on CSIDH. Compared with HKSU, our scheme
has a significant bandwidth advantage, since a 2-key PKE ciphertext in this setting is only
5.3% longer than an ordinary PKE ciphertext.

Note that the above analysis works for any [OW-CPA, OW-CPA] secure 2-key PKE with
perfect correctness. The result could be generalized to the QROM security of X3LH by
further considering decryption failure.

1.4 Related Works

AKEs from Supersingular Isogeny. Galbraith [20], Fujioka et al. [19] directly construct
AKEs from supersingular isogeny. Their schemes only achieve weak security (e.g., CK,
Honest key registration). Longa [34] showed how to adapt FSXY (which achieves CK+

security with arbitrary key registration) to supersingular isogeny. Xu et al. [45] proposed
a more efficient construction, SIAKE, by following X3LH [44]. Very recently, De Kock et
al. [28] and Kawashima et al. [31] proposed two AKEs from commutative supersingular
isogenies (CSI). They focus on tight reduction but rely on a non-standard strong Diffie-
Hellman assumption in the CSI set. All these works conduct their security in the classical
ROM. (Fujioka et al.’s scheme [19] is the only exception, however, its proof is insufficient.)
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HKSU in QROM. Hövelmanns et al. [23] proposed a modular HKSU framework (a
modification of FSXY) from IND-CPA secure PKE in QROM. Based on (commutative)
supersingular isogeny, our scheme has better computation and communication performance
than HKSU (refer to Table 1). One may think [OW-CPA, OW-CPA] secure 2-key PKE is not
a standard primitive, such as IND-CPA secure PKE. However, 2-key PKE could be built
from standard primitives and assumptions (e.g. DDH in supersingular isogeny setting). By
instantiating our modified X3LH with two parallel PKEs, we re-answer the QROM security
of FSXY. We note that our solution needs one more re-encryption than HKSU, while we
start from the same security as FSXY, i.e., OW-CPA.
Fujisaki-Okamoto in QROM. Several works [22,25,38,2,8,47,30] have re-examined
Fujisaki-Okamoto transformation in QROM. They utilized injective mapping with encryp-
tion or additional hash to avoid recording hash queries and also proposed different variants
of the OW2H lemma. Please refer to Appendix A for more details. Zhandry [47] showed a
possibility for lazy sampling and recording queries. However, as he said, his proof might be
looser than those using OW2H.
Hashing with Public Key. The technique of hashing with the public key has been used to
analyze the multi-user security of Schnorr signature [3]. Recently, several submissions for the
NIST Post-Quantum Cryptography Standardization (e.g., Kyber [6]) have also employed
such a technique. Kyber proposed heuristic analysis from the perspective of multi-target
attacks. The necessity of putting the public key into hashing is still heavily debated [10].
Our analysis in this work shows that hashing with the public key seems necessary to prove
the multi-user security of Fujisaki-Okamoto in QROM.

2 Preliminary

2.1 2-Key PKE

Recall [44] that 2-key PKE 2PKE is a quadruple of PPT algorithms (KGen1,KGen2,
Enc,Dec) with public key space Dpk1 × Dpk2 , plaintext space M, randomness space R
and ciphertext space C. Let D1 (resp. D2) be some superset of Dpk1 (resp. Dpk2) such that
the membership problem of D1 (resp. D2)is easy.

– KGen1: on input security parameter, output public-secret key (pk1, sk1).
– KGen2: on input security parameter, output public-secret key (pk2, sk2).
– Enc(pk1, pk2,m; r) : on input public keys pk1, pk2, plaintext m ∈ M, and randomness
r ∈ R, output the ciphertext C ∈ C. Sometimes, we eliminate the randomness r and
denote it as Enc(pk1, pk2,m) for simplicity.

– Dec(sk1, sk2, C) : on input sk1, sk2 and cipheretext C, output a plaintext m.

Correctness and Decryption failure. The decryption failure is defined as

δ := E

(
max
m∈M

Pr [Dec (sk1, sk2,Enc(pk1, pk2,m)) 6= m]

)
,

where the expectation is taken over (pk1, sk1) ← KGen1 and (pk2, sk2) ← KGen2. The
scheme is said to be perfectly correct, if δ = 0.

Entropy of second public key. For any pk′2 ∈ D2, Pr[pk2 = pk′2|(pk2, sk2)← KGen2] ≤
εpk2.

One-way Security. [OW-CPA,OW-CPA] security [44] is defined against two adversaries,
A = (A1,A2) attacking pk1 and B = (B1,B2) attacking pk2. The [OW-CPA, ·] and
[·,OW-CPA] games are shown in Fig. 3. The advantage A wins in game [OW-CPA, ·] is

defined as Adv
[OW-CPA,·]
2PKE (A) = Pr

[
[OW-CPA, ·]A ⇒ 1

]
. We say 2PKE is [OW-CPA, ·] secure,

if for any PPT adversary A, Adv
[OW-CPA,·]
2PKE (A) is negligible. The advantage Adv

[·,OW-CPA]
2PKE (B)
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Game [OW-CPA, ·]

1 : (pk1, sk1)← KGen1

2 : (state; pk∗2)← A1(pk1)

3 : m←M, c∗ ← Enc(pk1, pk
∗
2 ,m)

4 : m′ ← A2(state, c∗)

5 : return m′
?
= m

Game [·,OW-CPA]

1 : (pk2, sk2)← KGen2

2 : (state; pk∗1)← B1(pk2)

3 : m←M, c∗ ← Enc(pk∗1 , pk2,m)

4 : m′ ← B2(state, c∗)

5 : return m′
?
= m

Fig. 3. The one-way security games for 2-key PKE.

and [·,OW-CPA] security can be defined in the same manner. 2PKE is [OW-CPA,OW-CPA]
secure if it is both both [OW-CPA, ·] and [·,OW-CPA] secure.

1-key PKE. Let PKE = (KGen1, Enc1,Dec1) be a 1-key PKE with randomness space R1,
message space M1 and ciphertext space C1. It can be taken as a special 2-key PKE where
KGen2 does nothing (e.g. (−,−)← KGen2).

2.2 Supersingular Isogeny with crypto-friendly notion and isogeny-based
2-key PKE

We briefly recall the SIDH protocol [16] with crypto-friendly notions from [19], and present
the isogeny-based 2-key PKE of [45].

Let p be a large prime with a form p = `e11 `
e2
2 · f ± 1, where `1 and `2 are two small

primes, and f is an integer cofactor. Then we can construct a supersingular elliptic curve
E0 defined over Fp2 with order |E0(Fp2)| = (`e11 `

e2
2 · f)2. Let Zm be the ring of residue

classes modulo m. The subgroup E0[m] of m-torsion points is isomorphic to Zm × Zm for
m ∈ {`e11 , `

e2
2 }. Let P1, Q1 be two points that generate E0[`e11 ] and P2, Q2 be two points

that generate E0[`e22 ].
We present the crypto-friendly notions following the treatment of Fujioka et al. [19]. We

assume {t, s} = {1, 2}, and denote the public parameters by g = (E0;P1, Q1, P2, Q2) and
e = (`1, `2, e1, e2). We define the sets of supersingular curves and those with an auxiliary
basis as

SSECp = {supersingular elliptic curves E over Fp2 with E(Fp2) ' (Z`e11 `
e2
2 f )2};

SSECA = {(E;P ′t , Q
′
t)|E ∈ SSECp, (P

′
t , Q

′
t) is basis of E[`ett ]};

SSECB = {(E;P ′s, Q
′
s)|E ∈ SSECp, (P

′
s, Q

′
s) is basis of E[`ess ]}.

Let a = ka be element from Z`ess , and b = kb be element from Z`ett . Define isogenies
φA : E0 → EA = E0/〈Ps+[ka]Qs〉, φB : E0 → EB = E0/〈Pt+[kb]Qt〉, φBA : EB → EBA =
EB/〈φB(Ps) + [ka]φB(Qs)〉, and φAB : EA → EAB = EA/〈φA(Pt) + [kb]φA(Qt)〉. Then, we
define

ga = (EA;φA(Pt), φA(Qt)) ∈ SSECA, (g
b)a = j(EBA),

gb = (EB ;φB(Ps), φB(Qs)) ∈ SSECB , (g
a)b = j(EAB).

With notions defined above, SIDH key exchange is: Alice computes ga with random a, while
Bob computes gb with random b. They could compute the shared key as j = (gb)a = (ga)b.

Definition 1 (SI-DDH). SI-DDH assumption says given e and (g, ga, gb), any PPT
adversary could not efficiently distinguish (gb)a from a random j-invariant.

Isogeny-based (2-key) PKE. Let H be a pair-wise independent hash function. Fig. 4 presents
the [OW-CPA,OW-CPA] secure 2-key PKE 2PKEsidh [45] and OW-CPA secure PKE from [24]
under SI-DDH assumption. Note that the two encryption schemes are both perfectly correct.
The entropy of public key is εpk2 = 1/`ess .
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KGen1 Enc1(pk1,m1) Dec1(sk1, C)

a1 ← Z`
es
s

b← Z`
et
t

, c1 = gb (c1, c2)← C

pk1 = ga1 , sk1 = a1 c2 = H((ga1)b)⊕m1 m1 = c2 ⊕ H (ca11 )

KGen2 Enc(pk1, pk2,m1||m2) Dec(sk1, sk2, C)

a2 ← Z`
es
s

b← Z`
et
t

, c1 = gb (c1, c2, c3)← C

pk2 = ga2 , sk2 = a2 c2 = H((ga1)b)⊕m1 m1 = c2 ⊕ H (ca11 )

c3 = H((ga2)b)⊕m2 m2 = c3 ⊕ H (ca21 )

Fig. 4. Isogeny-based PKE PKE = (KGen1,Enc1,Dec1) and isogeny-based 2-key PKE scheme
2PKEsidh = (KGen1,KGen2,Enc,Dec).

2.3 CK+ Security Model

Here, we recall the CK+ model introduced by [17,18], which is a modified CK model [13]
integrated with the weak perfect forward security (wPFS), resistant to key compromise
impersonation (KCI) and (maximal exposure (MEX) attacks. We focus on the two-pass
protocol in this definition. Please refer to Appendix B for a discussion on security models.

Ui denotes a party indexed by i, which is modeled as probabilistic polynomial time
(PPT) interactive Turing machines. We assume that each party Ui owns a static pair of
secret-public keys (sski, spki), where spki is linked to Ui’s identity such that the other
parties can verify the authentic binding between them. We do not require the well-
formedness of the static public key, in particular, a corrupted party can adaptively register
any static public key of its choice.

Session. Each party can be activated to run an instance called a session. A party can
be activated to initiate the session by an incoming message of the form (Π, I, UA, UB) or
respond to an incoming message of the form (Π,R, UB , UA, XA), where Π is a protocol
identifier, I and R are role identifiers corresponding to initiator and responder, and XA

is the communication message. Activated with (Π, I, UA, UB), UA is called the session
initiator. Activated with (Π,R, UB , UA, XA), UB who will responds with XB is the session
responder.

According to the specification of AKE, the party creates session specified randomness
which is generally called ephemeral secret key, computes and maintains a session state,
generates outgoing messages, and completes the session by outputting a session key and
erasing the session state. Here we require that the session state at least contains the
ephemeral secret key.

A session may also be aborted without generating a session key. The initiator UA
creates a session state and outputs XA, and may receive an incoming message of the forms
(Π, I, UA, UB , XA, XB) from the responder UB , and may compute the session key SK. On
the contrary, the responder UB outputs XB , and may compute the session key SK. We
state that a session is completed if its owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If UA is the
initiator, the session identifier is sid = (Π, I, UA, UB , XA) or sid = (Π, I, UA, UB , XA, XB),
which denotes UA as an owner and UB as a peer. If UB is the responder, the session is
identified by sid = (Π,R, UB , UA, XA, XB), which denotes UB as an owner and UA as a
peer. The matching session of (Π, I, UA, UB , XA, XB) is (Π,R, UB , UA, XA, XB) and vice
versa.

Adversary. Adversary A is modeled as following to capture real attacks, including the
control of communication and access to some secret information.

– Send(message): A sends messages in one of the following forms: (Π, I, UA, UB),
(Π,R, UB , UA, XA), or (Π, I, UA, UB , XA, XB), and obtains the response.

10



– SessionKeyReveal(sid): if the session sid is completed, A obtains the session key SK for
sid.

– SessionStateReveal(sid): A obtains the session state of the owner of sid if the session
is not completed. The session state should be specified by the concrete protocols. We
require it returns the ephemeral secret keys and some intermediate computation results
except for immediately erased information.

– Corrupt(Ui): this query allows the adversary to learn the static secret key of user Ui.
After this query, Ui is said to be corrupted.

Freshness. Let sid∗ = (Π, I, UA, UB , XA, XB) or (Π,R, UB , UA, XA, XB) be a completed
session between UA and UB . If the matching session of sid∗ exists, denote it by
sid∗. We say session sid∗ is fresh if A does not query: 1) SessionStateReveal(sid∗),

SessionKeyReveal(sid∗), SessionStateReveal(sid∗), or SessionKeyReveal(sid∗) when sid∗ exists;

2) SessionStateReveal(sid∗) or SessionKeyReveal(sid∗) when sid∗ does not exist.

Security Experiment. (Quantum) adversaryA could make a sequence of queries described
above. During the experiment, A makes the query of Test(sid∗), where sid∗ must be a fresh
session. Test(sid∗) selects a random bit b ∈ {0, 1}, and returns the session key held by sid∗ if
b = 0; and returns a random key if b = 1. The experiment continues until A returns b′. The
advantage of adversary A is defined as Advck+

Π (A) = Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0] .

Definition 2. We state that a AKE protocol Π is secure in the CK+ model if the following
conditions hold:
Correctness: if two honest parties complete matching sessions, then they both compute the
same session key except with negligible probability.
Soundness: for any PPT adversary A, Advck+

Π (A) is negligible for any one of the cases
listed in the following and Table 2. Note that in these cases except 5, when it is allowed, the
ephemeral secret key or static secret key of the owner of sid∗ or sid∗ is given to A directly
once it is determined. For case 5, the leakage of static secret key happens after the test
session ends.

1. the static secret key of the owner of sid∗ is given to A, if sid∗ does not exist.

2. the ephemeral secret key of owner of sid∗ is given to A, if sid∗ does not exist.

3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given
to A, if sid∗ exists.

4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid∗ are given to A, if
sid∗ exists.

5. the static secret key of the owner of sid∗ and the static secret key of the peer of sid∗ are
given to A, if sid∗ exists.

6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗ are given to
A, if sid∗ exists.

2.4 The Quantum Random Oracle Model

Boneh et al. [5] introduced the quantum random oracle (QRO) model. Zhandary [46] proved
that any 2q-wise independent random function can be used to simulate the QRO allowing
at most q queries. The one way-to-hiding (OW2H) lemma, initially proposed by Unruh [40],
is a useful tool for security analysis in QROM. Recently, Ambainis et al. [2] introduced the
semi-classical OW2H, which is very generic and flexible. The OW2H lemma is revisited
in Theorem 3 of [2] (say as revisited OW2H lemma) and it is implied by semi-classical
OW2H. Such revisited OW2H lemma is more suitable for this work. The difference is that
[2] considers the query depth d, while we use the number of queries q.
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Event Case sid∗ owner sid∗ sskA eskA eskB sskB Security

E1 1 UA No
√

× - × KCI
E2 2 UA No ×

√
- × MEX

E3 2 UB No × -
√

× MEX
E4 1 UB No × - ×

√
KCI

E5 5 UA or UB exists
√

× ×
√

wPFS
E6 4 UA or UB exists ×

√ √
× MEX

E7-1 3 UA exists
√

×
√

× MEX
E7-2 3 UB exists ×

√
×

√
MEX

E8-1 6 UA exists ×
√

×
√

MEX
E8-2 6 UB exists

√
×

√
× MEX

Table 2. The cases of AKE adversary in Definition 2. Column sid∗ indicates the matching session
of sid∗ exists or not. sskA(resp. sskB) means the static secret key of UA(resp. UB). eskA(resp.
eskB) is the ephemeral secret key of UA(resp. UB) in sid∗ or sid∗. “

√
” means the secret key is

revealed to adversary, while “×” means not.

Lemma 1 (OW2H, Probabilities [2]). Let S ⊆ X be random. Let O1,O2 : X → Y
be random functions satisfying ∀x 6∈ S,O1(x) = O2(x). Let z be a random bitstring.
(S,O1,O2, z may have arbitrary joint distribution.) Let UA be an oracle algorithm with
query number q. Let BO1 be an oracle algorithm that on input z does the following: pick
i← 1, · · · , q, run AO1(z) until (just before) the i-th query, measure all query input registers
in the computational basis, and output the set T of measurement outcomes. Let

Pleft := Pr[b = 1 : b← AO1(z)], Pright := Pr[b = 1 : b← AO2(z)],

Pguess := Pr[S ∩ T 6= ∅ : T ← BO1(z)].

Then we have |Pleft − Pright| ≤ 2q
√
Pguess and |

√
Pleft −

√
Pright| ≤ 2q

√
Pguess.

Lemma 2 ([38]). Let H : {0, 1}l × X → Y and H ′ : X → Y be two independent random
oracles, where l is an integer. For any unbounded time quantum adversary A with at most
qH queries to H, we have∣∣∣Pr[AH,H(s,·)()→ 1|s← {0, 1}l]− Pr[AH,H

′
()→ 1]

∣∣∣ ≤ qH · 2−l+1
2 .

3 Authenticated Key Exchange from Isogeny in QROM

In this section, we propose a modified SIAKE from supersingular isogeny, which is secure in
QROM.

Let 2PKEsidh = (KGen1,KGen2,Enc,Dec) be the 2-key PKE based on SI-DDH, as Fig.
4, with public key space Dpk1 and Dpk2 , randomness space R = {0, 1}r, message space
M = {0, 1}n and ciphertext space C. Let PKE = (KGen1,Enc1,Dec1) be the PKE as Fig. 4,
with randomness space R1 = {0, 1}r1 , message space {0, 1}n1 and ciphertext space C1.

Let D1 (resp. D2) be a superset of Dpk1 (resp. Dpk2) such that its set membership
problem is easy. Let U be the space of user’s id. Define the following hash functions,

f : {0, 1}2n → {0, 1}n, f1 : {0, 1}2n → {0, 1}n1 ,

G : D2 × {0, 1}n → {0, 1}r, G1 : D1 × {0, 1}n1 → {0, 1}r1

h : D1 ×D2 × {0, 1}n → {0, 1}n, h1 : D1 × {0, 1}n1 → {0, 1}n,
h′ : D1 ×D2 × {0, 1}n × C → {0, 1}n, h′1 : D1 × {0, 1}n × C1 → {0, 1}n,
H : {0, 1}2n × C1 × C × U2 → {0, 1}n.
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User UA User UB

(pkA, skA)← KGen1

sA, s
′
A ← {0, 1}n

(pkB , skB)← KGen1

sB , s
′
B ← {0, 1}n

r2A ← {0, 1}∗

(pk2A, sk2A)← KGen2(r2A)

rA ← {0, 1}n,mA = f1(s′A, rA)

RA = G1(pkB ,mA)

CA = Enc1(pkB ,mA;RA)

K1 = h1(pkB ,mA)

CA, pk2A

rB ← {0, 1}n,mB = f(s′B , rB)

RB = G(pk2A,mB)

CB = Enc(pkA, pk2A,mB ;RB)

K = h(pkA, pk2A,mB)

CB

m′B = Dec(skA, sk2A, CB)

R′B = G(pk2A,m
′
B)

if CB 6= Enc(pkA, pk2A,m
′
B ;R′B)

or m′B = ⊥,
K′ = h′(pkA, pk2A, sA, CB)

else K′ = h(pkA, pk2A,m
′
B)

m′A = Dec1(skB , CA)

R′A = G1(pkB ,m
′
A)

if CA 6= Enc1(pkB ,m
′
A;R′A)

or m′A = ⊥,
K′1 = h′1(pkB , sB , CA)

else K′1 = h1(pkB ,m
′
A)

SK = H(K′,K1, CA, CB , UA, UB) SK = H(K,K′1, CA, CB , UA, UB)

Fig. 5. Modified SIAKE in the QROM.

Setup: Each user’s static public-secret key pair is generated by KGen1. Furthermore, let
sP , s

′
P ← {0, 1}n be static secret information for user UP .

Modified SIAKE and Specifications: With the setup, the modified SIAKE between UA
and UB is presented in Figure 5. The session state owned by UA consists of r2A, rA. The
session state owned by B consists of rB . The main modifications are adding public keys
into hash functions h and G.

Theorem 1. Assume 2PKEsidh is [OW-CPA, OW-CPA] secure and PKE is OW-PA secure,
which both hold under the SI-DDH assumption. The modified SIAKE is CK+ secure in
the QROM. Concretely, assume N users are involved and there are at most l sessions
between two users, for any quantum adversary A against modified SIAKE with at most
q SessionStateReveal or SessionKeyReveal queries, and qh (resp. qG, qG1 , qf , qf1 , qh1 ,
qh′ , qh′1 , qH) quantum queries to RO h (resp. G, G1 f , f1, h1, h′, h′1, H), there exist
[OW-CPA, OW-CPA] solvers D or C, or OW-CPA solver B, such that,

Advck+
SIAKE(A) ≤ 4N2l(qG + qh + 2q)

√
Adv

[OW-CPA,·]
2PKEsidh

(D) + 2N2l/`ess

+2N2l · (2q + qH + qf + 4)2
−n+1

2 + 2N · (qh′ + qh′1 + l2)2
−n+1

2 ,

Advck+
SIAKE(A) ≤ 4N2l(qG + qh + 2q)

√
Adv

[·,OW-CPA]
2PKEsidh

(C) + 2N2l · (q + qH)2
−n+1

2

+2N · (2q + qh′ + qf )2
−n+1

2 ,

Advck+
SIAKE(A) ≤ 4N2l(qG1

+ qh1
+ 2q)

√
AdvOW-CPA

PKE (B)

+2N2l · (2q + qH + qf1 + 4)2
−n+1

2 + 2N · (qh′ + qh′1)2
−n+1

2 .
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Proof of Theorem 1 (Sketch). Here, we give a sketch of the proof to illustrate the core
idea. For details please refer to Section 4.

First of all, we assume the adversary does not make any SessionKeyReveal query. As in
the definition, the adversary falls into one of the cases from E1 to E8-2 in table 2. Take
event E3 as an example, where the adversary sends pk∗2A in the test-session and he/she
knows rB but does not know skA, sA, s

′
A and skB , sB , s

′
B used in this session. By Lemma

2 which says that quantum random oracle could be used as a pseudorandom function,
m∗B = f(s′B , rB), i.e., the message, is randomly chosen. The OW2H lemma and [OW-CPA, ·]
security would guarantee the randomness of K∗ and the final session key. We can easily
extend the argument for the case E3 other cases.

Now we consider the case that the adversary makes the SessionKeyReveal queries as well.
For E5 the analysis is still the same. However, for other cases like E3, the simulator does
not hold the static secret key skA of UA. If the adversary makes SessionKeyReveal queries
that involve UA, the simulator fails to compute the encapsulated key and the final session
key. In the classical ROM, it is easy to overcome this obstacle by searching the hash lists
and taking pk2A as input of h, which is how SIAKE (and X3LH) handles.

Whereas to simulate SessionKeyReveal queries in QROM, we should embed the
encryption under many public keys into h. Thus, both static and ephemeral public keys
should be included as the inputs of h, which makes new issues arise, in particular, that public
keys may not be honestly generated and the encryption may not be injective. Nevertheless,
with solutions highlighted in our technique overview, we could build two lists of (honestly
generated) static public keys and ephemeral public keys at the very beginning. Then, we
could apply encryption-then-hash and decouple the static secret key of the test-session with
the SessionKeyReveal oracle. Afterward, with a careful choice of S, the OW2H lemma can
be applied to argue the randomness of the session key in the test-session.

Concretely, for E3, the security is argued with a sequence of games as shown in
Table 3. At first, we generate two lists L1, L2 of honest static keys for all (honest)
users and their sessions. The session key for the invalid ciphertext (that involves UA, the
owner of the test-session) is computed with private oracles of ciphertext. Then, oracle
query to h with an input (pk1, pk2,m) is conceptually replaced by the encryption-then-
hash hq(pk1, pk2,Enc(pk1, pk2,m;G(pk2,m))) when pk1 × pk2 ∈ L1 × L2. We do the
encryption-then-hash for h1(pk1,m1) with another private random oracle. Conceptually, the
encapsulated key in the valid ciphertext is computed with the private oracles. By integrating
the decapsulation for both the valid and invalid ciphertexts, we could avoid using the static
secret key of UA when answering SessionKeyReveal. After randomizing plaintext m∗B in
Game 5, we could replace G× h with a new oracle that differs from G× h on a set S. The
set S should be carefully chosen such that the randomness and encapsulated key in the
test-session are altered and the answer for SessionKeyReveal on any other session remains.
Then, we can apply the OW2H lemma and argue the distinguisher with a square root of
the advantage to solve the one-wayness game of the underlying 2-key PKE. Finally, since
the quantum random oracle is a pseudorandom function, the session key in the test-session
is pseudorandom as well.

The analyses could be extended to all the other cases.

4 Formal Security Proof

To prove Theorem 1, we should handle every case from Table 2. The reduction algorithm
reduces the advantage of CK+ adversary to that of attacking [OW-CPA, ·], [·,OW-CPA] of
2PKEsidh or OW-CPA of PKE depending on which case we cope with. For cases E3, E4, E6,
E7-1 and E8-2, the security relies on [OW-CPA, ·] of 2PKEsidh, and the sequences of games
proceed similarly. For cases E1, E2, E7-2 and E8-1, the security relies on OW-CPA of PKE.
And case E5 (which is wPFS security) relies on [·,OW-CPA] of 2PKEsidh.
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Games
I h (for encapsulated key) Kof valid C R∗B
II h1 (for encapsulated key) Justification m∗B/K∗

III G/G1 (for randomness) K of invalid C SK∗ (session key)

Games 0-1
I h(pk1, pk2,m) h(pkA, pk

j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) − − − − − f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h′(pkA, pk
j
2,A

, sA,C)/h′1(pkA, sA,C) H(K∗, · · · )

Game 2
I h(pk1, pk2,m) h(pkA, pk

j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) Lemma 3 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h′q(pkA, pk
j
2,A

, C)/h′1q(pkA,C) H(K∗, · · · )

Game 3
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Conceptual f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h′q(pkA, pk
j
2,A

, C)/h′1q(pkA,C) H(K∗, · · · )

Game 4
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Conceptual f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 5
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Lemma 4 fr(rB) /h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 6
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) R∗B ← R

II h3
q or h4

q Lemma 5/OW2H fr(rB)/ K∗ ← {0, 1}n

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 7
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) R∗B ← R

II h3
q or h4

q Lemma 2 fr(rB)/K∗ ← {0, 1}n

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) SK∗ ← {0, 1}n

Table 3. Overview of games for the proof of Theorem 1 w.r.t case E3. Some details are not
shown in this table, such as building lists, the guess of test-session, the abort events, and some
replacements of random oracles. Please refer to the Games for details. “valid C” and “invalid C”
are those ciphertexts received by UA, the owner of test-session. m∗B , R∗B , K∗ indicate the message,
randomness, encapsulated key corresponding to the ciphertext in test-session. SK∗ is the session
key of test-session.

Here, taking E3 as example, we show the game sequence of proof in detail, which is
illustrated in Table 3. For all the other cases, we will highlight the differences with taht for
E3.

In the following, we let Advi be |Pr[A ⇒ 1|b = 1 in Game i] − Pr[A ⇒ 1|b =
0 in Game i]|.

Game 0. This is the original CK+ game as defined in Section 2.3.

In this game, A could query Send, Corrupt, SessionKeyReveal and SessionStateReveal
oracles whenever it wants. Note that A is also given access to quantum ROs for
f, f1, G,G1, h, h1, h

′, h′1 and H. At some point, A chooses a test-session, and he may send
messages or passively keep track of messages of test-session belonging to one of the cases
in Table 2. As said before, we take E3 as an example. Then A receives the test-session key
SK∗ or a totally random key depending on b = 1 or 0. After more queries to Send and other
allowed oracles and quantum ROs, A finally outputs a bit b′. Let Advck+

SIAKE(A) = Adv0.

Game 1. In this game, we prepare honestly generated static keys and ephemeral keys for
all users at the very beginning of the CK+ game, in the state of on-the-fly in Game 0. As
shown in Table 4, let {(pk1,i, sk1,i)1≤i≤N} be the list of honest static public-secret keys,

and L1 be that of the public keys. Let {(pkj2,i, sk
j
2,i)1≤i≤N,1≤j≤2Nl} be the list of ephemeral

public-secret keys, and L2 be that of the public keys. Specially, (pk1,i, sk1,i) is the static
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public-secret keys prepared for Ui and pkj2,i is used by Ui as ephemeral public key in its
j-th session when it’s initiator.

We would like to highlight that this does not mean the prepared keys are always used
in the real game For example, the adversary may arbitrarily register an invalid public key
for Ui, then the pair (pk1,i, sk1,i) is not used. This also may happen for ephemeral keys,
since the adversary may make Send queries. Fortunately, we do not need to answer the
SessionKeyReveal query in these cases.

Since this is only a conceptual change, we have Adv0 = Adv1.

For user L1 : Static Public Keys L2 : Ephemeral Public Keys

U1 pk1,1 pk12,1, · · · , pk2Nl
2,1

: : :

Ui pk1,i pk12,i, · · · , pk2Nl
2,i

: : :

UN pk1,N pk12,N , · · · , pk2Nl
2,N

Table 4. Prepared static keys and ephemeral keys.

Game 2. In this game, we guess the owner of the test-session, denote it by UA, and change
the way to compute encapsulated keys for invalid ciphertexts received by UA. Assume that
pkA is the static public key, and (skA, sA, s

′
A) are the static secret keys of UA. When UA as

an initiator uses pkj2,A as an ephemeral public key and receives an invalid ciphertext CjA,

the encapsulated key in CjA, i.e., h′(pkA, pk
j
2,A, sA, C

j
A) is replaced by

h′q(pkA, pk
j
2,A, C

j
A); (1)

and when UA as a responder and receives an invalid ciphertext CjA, the encapsulated key,

i.e., h′1(pkA, sA, C
j
A) is replaced by

h′1q(pkA, C
j
A), (2)

where h′q : D1 ×D2 × C → {0, 1}n and h′1q : D1 × C1 → {0, 1}n are internal hash functions.

Lemma 3. Adv1 ≤ N · Adv2 + 2N(2Nl + qh′ + qh′1)2
−n+1

2 .

Game 3. We change the way to answer queries to h (resp. h1), and also change the way
to compute K (resp. K1) from the valid ciphertext received by UA. This game is to make
preparation for getting rid of the usage of skA during SessionKeyReveal queries that involve
UA.

Firstly, h (resp. h1) is answered using two internal random oracles according to the
domain separation:

h(pk1, pk2,m) =

{
h1
q(pk1, pk2,Enc(pk1, pk2,m; G̃(pk2,m))) if pk1 × pk2 ∈ L1 × L2

h2
q(pk1, pk2,m) o.w.

h1(pk1,m1) =

{
h3
q(pk1,Enc1(pk1,m1; G̃1(m1))) if pk1 ∈ L1

h4
q(pk1,m1) o.w.

where h1
q : D1×D2×C → {0, 1}n, h3

q : D1×C1 → {0, 1}n, h2
q : D1×D2×{0, 1}n → {0, 1}n,

and h4
q : D1 × {0, 1}n1 → {0, 1}n are internal oracles. Because of the perfect correctness of

2PKEsidh and PKE, both the derandomized Enc in h1
q and Enc1 in h3

q are injective functions
on messages. Thus h and h1 are still uniformly random. This is only a conceptual change.

16



Secondly, when UA, as an initiator, uses pkj2,A as ephemeral public key and receives a

valid ciphertext CjA, then K = h(pkA, pk
j
2,A,Dec(skA, sk

j
2,A, C

j
A)) is replaced by

h1
q(pkA, pk

j
2,A, C

j
A). (3)

When UA is a responder and receives a valid ciphertext CjA, h1(pkA,Dec1(skA, C
j
A)) is

replaced by
h3
q(pkA, C

j
A). (4)

This is also a conceptual replacement. By checking the cases one by one, the replacements
for encapsulated keys of valid ciphertexts are consistent with the replacements of h and h1.
The view of A in Game 2 and Game 3 is identical even for unbounded (quantum) adversary.
Thus, Adv2 = Adv3.

Game 4. Now we are ready to get rid of using the secret key skA to answer SessionKeyReveal
queries. We incorporate the ways to decapsulate K for both valid and invalid ciphertexts
received by UA. For an invalid ciphertext sent to UA, the encapsulated key K is computed
the same as for a valid ciphertext. Concretely, Equ.(1) of Game 2 is replaced by Equ.(3),
and Equ.(2) is replaced by Equ.(4).

Since h1
q and h3

q are internal oracles, the adversary can only access to h1
q and h3

q by
querying h. The ciphertexts on which A could query to h1

q and h3
q are all valid. However,

the ciphertexts on which A queries to h′q, h
′
1q are all invalid. That is, the domain consisting

of all the ciphertexts on which A could query to h1
q (resp. h3

q) is disjoint with that of
h′q (resp. h′1q). Switching the internal oracles when receiving invalid ciphertexts does not
change the view of an unbounded (quantum) adversary. Thus, Adv3 = Adv4.

Note that in Game 4 and the subsequent games, the secret key skA is not used anymore.
We are ready to decouple K∗ from the challenge ciphertext in the test-session.
Game 5. Let L2after ⊂ L2 be {pkj2,A}Nl+1≤j≤2Nl. After the test-session, all the ephemeral
public keys used by UA will be chosen from L2after. If any public key in L2after is equal to
pk∗2A, abort. Secondly, we guess the responder of test-session and denote it as UB , and also
guess which session between UA and UB is the test-session at the very beginning. If the
guess fails, just abort. Thirdly, we change the generation of mB as mB := fr(rB) with an
internal random oracle fr, which is identical to mB ←M. Particularly, in the test-session
m∗B ← M. Finally, if there exists a message used by A (to interacts with UA) before the
test-session, which is equal to m∗B , the game also aborts.

Lemma 4. Adv4 −Nl · Adv5 ≤ 2Nl · (q + qf )2
−n+1

2 + 2Nl/`ess +Nl22−n+1.

Now, random oracles G and h can be regarded as a single oracle G × h. As shown in
[25], if G and h have the same domain, we can use G× h to simulate them. Here, we could
easily construct a G′ that can simulate G with the same domain as h,i.e., G′(pkA, pk2,m) =
G(pk2,m). Then, a query (pk2,m) to G can be directly converted to a query (pkA, pk2,m)
to G′ for fixed pkA. Therefore, we can use G′× h to simulate both G and h. For simplicity,
in the context, we stick to using G× h instead of G′ × h. We take {pkA} ×D2 ×M as the
domain of G. Looking ahead, the same holds for G̈ and ḧ defined in Game 6.

Game 6. Define set S := {pkA} × D2 \ L2after × {m∗B}. Let ḧ (resp. G̈) be a function such

that the function values on S (resp. D2 \ L2after × {m∗B}) are totally random, and ḧ = h

(resp. G̈ = G) everywhere else. In this game, G× h is replaced by G̈× ḧ.
A equivalent description of this game is that: G×h is still the same, but now their values

on S that we provide to A in the CK+ games are totally random. Specially, the randomess
R∗B = G(pk∗2A,m

∗
B) for C∗B and encapsulated key K∗ = h(pkA, pk

∗
2A,m

∗
B) are replaced by

random strings.

Lemma 5. Adv5 − Adv6 ≤ 2(qG + qh + 2q)
√

Adv
[OW-CPA,·]
2PKEsidh

(D).
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Game 7. We change the session key SK∗ to a totally random key. With a similar argument

on the third modification of Game 5, by Lemma 2, Adv6 − Adv7 ≤ 2(q + qH)2
−n+1

2 , since
K∗ is totally random from the view of A. Now, SK∗ is always random and Adv7 = 0.

To sum up, we give the upper bound of AKE adversary for the case E3 as the first
in-equation in Theorem 1.

For case E4, the proof of the game sequences is almost the same as for E3, except that
in Game 5 the AKE adversary A does not know rB for E4, while he does not know s′B
for E3 instead. For case E2, the difference with proof of E3 lies in that the role of UA and
UB is exchanged, and the challenge ciphertext is under 1-key public key encryption in E2,
while in case E3 it is under 2-key PKE instead. For case E1, the proof of its game sequences
is almost the same as for E2, except that in E1 the AKE adversary A does not know rA,
while he does not know s′A in E2 instead.

For cases E6, E7−1, E7−2, E8−1, E8−2, the proof is almost the same as for E3, E1, E4,
E2, E3 respectively.

For case E5, the proof is much simpler since we only need to deal with the weak perfect
forward security, which means no decapsulation oracle is needed, and the injective mapping
with encryption under many public keys technique can be left out. ut

4.1 Proof of Lemmas

4.1.1 Proof of Lemma 3: Adv1 ≤ N · Adv2 + 2N(2Nl + qh′ + qh′1)2
−n+1

2 .
Let Game 1-1 be an internal game in which we guess whom is the owner of test-session,

i.e., UA. If the guess is wrong, abort. Obviously, Adv1 = N · Adv1−1.
To argue the difference between Adv1−1 and Adv2, there are two cases that should be

handled, namely, either UA is an initiator or a responder. Here, we prove the case when
UA is an initiator. Note that sA is totally random for A. By Lemma 2, we construct an
algorithm T to distinguish which oracle it is given access to, h′q(·, ·, ·) or h′(·, ·, sA, ·). To
this end, T simulates the AKE game. It first guesses the owner of test-session, generates the
static public-secret keys for every user except UA. For user UA, T only honestly generates
(pkA, skA) but without knowing sA. For an invalid ciphertext CjA sent to initiator UA
who uses pkj2,A as ephemeral public key, T makes query to the challenge random oracle

h′(·, ·, sA, ·) or h′q(·, ·, ·) with tuple pkA, pk
j
2,A, CjA depending on σ = 1 or 0, to set the

encapsulated key K. After receiving b′ from A, T returns b′ as the guess of σ.
If the challenge oracle T queried is h′(·, ·, sA, ·), it is Game 1-1. If the oracle T queried

is h′q(·, ·, ·), it is Game 2. The number of T ’s queries to h′q is less than Nl+ qh′ . By Lemma

2, for both b = 1 and 0, Pr[b′ = 1|σ = 1]− Pr[b′ = 1|σ = 0] ≤ (Nl + qh′)2
−n+1

2 . To further
consider the similar replacement of h′1 when UA is a responder, we have Adv1−1 − Adv2 ≤
2(Nl+qh′)2

−n+1
2 +2(Nl+qh′1)2

−n+1
2 . Thus, Adv1 ≤ N ·Adv2+2N(2Nl+qh′+qh′1)2

−n+1
2 . ut

4.1.2 Proof of Lemma 4:

Adv4 −Nl · Adv5 ≤ 2Nl · (q + qf )2
−n+1

2 + 2Nl/`ess +Nl22−n+1.

Define an intermediate Game 4-1, in which it aborts when there exists a public key
in L2after equal to the ephemeral public key used by adversary in test-session. Obviously
Adv4 − Adv4−1 ≤ Nl/`ess .

Define an intermediate Game 4-2, in which the simulator guesses who is the responder
(here assume it is UB) of test-session and which session is the test-session. If the guess
succeeds, go on as Game 4-1, otherwise abort. The probability of successful guess is exactly
1/Nl. Thus, Adv4−1 = Nl · Adv4−2.

Define an intermediate Game 4-3, in which the message used by UB is randomly chosen.
Note that s′B is totally random for A. By Lemma 2, we construct an algorithm T to
distinguish oracle fr from oracle f(s′B , ·). Given quantum accessible random oracle f , T is
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given access to f(s′B , ·) if σ = 1; otherwise T is given access to fr. T finally outputs a guess
σ′ for σ. To this end, T simulates the AKE game. T honestly sets the static public/secret
keys of every user except UB . For user UB , T honestly sets the static secret key but leaves
s′B as empty. For any session that involves UB , T queries oracle f(s′B , ·) or fr(·) with rB .
After receiving b′ from A as the guess of b, T returns b′ as the guess of σ. If T queried
f(s′B , ·), the AKE game is Game 6-2. If T queried fr(·), the AKE game is Game 4-3. By

Lemma 2, for both b = 1 and 0, Pr[b′ = 1|σ = 1]− Pr[b′ = 1|σ = 0] ≤ (q + qf )2
−n+1

2 . Thus

Adv4−2 − Adv4−3 ≤ 2(q + qf )2
−n+1

2 .
Furthermore, since now m∗B is randomly chosen, the probability that it is equal to any

message used by A (to interacts with UA) before the test-session, is less than l × 2−n.

To sum up, Adv4 −Nl · Adv5 ≤ 2Nl(q + qf )2
−n+1

2 +Nl/`ess +Nl2 × 2−n+1. ut

4.1.3 Proof of Lemma 5: Adv5 − Adv6 ≤ 2(qG + qh + 2q)
√

Adv
[OW-CPA,·]
2PKEsidh

(D).

Let h̃1
q be the function, which aborts on set S = {pkA} × D2 \ L2after × {m∗B}, and is

equal to h1
q everywhere else. Since any SessionKeyReveal query on non-test-session does not

need h1
q on S, h̃1

q and h3
q could be used to answer the SessionKeyReveal query that involves

UA in both Game 5 and Game 6.
Define SG×h as the following: on input

z = (L1, L2, pkA,Enc(pkA, ·,m∗B ;G(·,m∗B)), h(pkA, ·,m∗B), h̃1
q, h

3
q),

where Enc(pkA, ·,m∗B ;G(·,m∗B)), h(pkA, ·,m∗B) can be seen as two one-time oracles, generate
the static public-secret key pairs for UP as in Game 5. Set pkA as the static public key
of UA. For any SessionKeyReveal query that involves UA, utilize h̃1

q and h3
q to compute

the encapsulated key and session key. When A sends pk∗2A in test-session, S computes
C∗B := Enc(pkA, pk

∗
2A,m

∗
B ;G(pk∗2A,m

∗
B)), and K∗ := h(pkA, pk

∗
2A,m

∗
B) with pk∗2A and

z. S chooses b ← {0, 1}. If b = 0, set SK∗ = H(K∗,K1, CA, C
∗
B , UA, UB), else SK∗ =

H(K,K1, CA, C
∗
B , UA, UB), where K1 is extracted from CA using skB and K ← {0, 1}n. S

then returns what A outputs.
Thus, on input z, SG×h could simulate Game 5 perfectly. By replacing G×h with G̈× ḧ,

on the same input, SG̈×ḧ could also simulate Game 6 perfectly. Thus,

Adv7 =|Pr[SG×h ⇒ 1|b = 1]− Pr[SG×h ⇒ 1|b = 0]|;

Adv8 =|Pr[SG̈×ḧ ⇒ 1|b = 1]− Pr[SG̈×ḧ ⇒ 1|b = 0]|.

Let BG̈×ḧ be an oracle algorithm that: with the input z does as following: randomly

choose k ← {1, · · · , qG + qh}, run SG̈×ḧ(z) until (exactly before the starting of) the k-
th query, measure all queried input registers in the computational basis, and output the
measurement as outcomes.

For b = 0 and 1, applying the OW2H (Lemma 1) by setting X = D1 × D2 × M,
Y = {0, 1}r+n, S = {pkA} × D2 \ L2after × {m∗B}, O1 = G̈ × ḧ, O2 = G × h, and z =

(L1, L2, pkA,Enc(pkA, ·,m∗B ;G(·,m∗B)), h(pkA, ·,m∗B), h̃1
q, h

3
q), we have

|Pr[SG̈×ḧ(z)⇒ 1]− Pr[SG×h(z)⇒ 1]| ≤ 2(qG + qh + 2q)

√
Pr[s ∈ S|s← BG̈×ḧ(z)].

To bound the probability Pr[s ∈ S|s← BG̈×ḧ(z)], we construct an adversary D against
the [OW-CPA, ·]-security.

– Select k ← {1, · · · , qG + qh}.
– Given the pkA from the [OW-CPA, ·] challenger, generate a list of static keys and include

an additional pair (pkA,−) to get L1, and generate a list of ephemeral keys, L2.
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– D randomly guesses which users are the initiator UA and responder UB in the test-
session, and which session is the test-session.

– Pick 2qG (2qG1
, 2qh, 2qh1

, 2qh′ , 2qh′1 , 2qf , 2qf1 ,2qH , 2qh1
q
, 2qh2

q
, 2qh3

q
, 2qh4

q
)-wise

independent function uniformly to simulate the random oracle G̈ (G1, ḧ, h1, h′, h′1,
f , f1, H, h1

q, h
2
q, h

3
q, h

4
q).

– For any SessionKeyReveal query that does not involve UA, the challenger uses static
secret key to extract encapsulated and session key. For any SessionKeyReveal query that
involves UA, it answers using hiq, for 1 ≤ i ≤ 4.

– On receiving pk∗2A and CA in test-session, forward pk∗2A to [OW-CPA, ·] game. On
receiving challenge ciphertext C∗ under pkA and pk∗2A, choose K ← K and return
SK∗ = H(K,K1 = h1(pkB ,Dec1(skB , CA)), CA, C

∗, UA, UB).
– Measure the argument of the k-th query to G̈× ḧ and output m.

Since D simulates perfectly, Pr[s ∈ S|s← BG̈×ḧ(z)] = Adv
[OW-CPA,·]
2PKEsidh

(D).

By summing the equations, Adv5 − Adv6 ≤ 4(qG + qh + 2q)
√

Adv
[OW-CPA,·]
2PKEsidh

(D). ut

5 New Construction and Extension

We first give a new instantiation based on commutative supersingular isogeny, then extend
the proof for modified SIAKE to that for modified X3LH.

5.1 CSIAKE from Commutative Supersingular Isogenies

Castryck et al. [15] proposed a commutative supersingular isogeny Diffie-Hellman (CSIDH)
key exchange. Although concrete parameters for CSIDH is heavily debated [9,37,4,11], it is
considered as a candidate of quantum-resistant primitive.

Let p = 4× l1 · · · ln − 1 be a large prime, where each li is a small distinct odd prime. p
and the supersingular elliptic curve E0 : y2 = x3 + x over Fp with endomorphism ring O =
Z[π] are public parameters. The CSIDH key exchange works as following: Alice randomly
chooses (eA1, · · · , eAn) from a range [−m,m]. These integers represent the ideal class [a] =
[leA1

1 · · · leAn
n ] ∈ cl(O). Alice computes [a]E0. Bob chooses his own secret [b] and computes

[b]E0. They both could compute the common curve [a][b]E0 = [b][a]E0 in the form y2 =
x3 + sx2 + x. The share secret is the Montgomery coefficient of common curve, i.e., s.

We propose a 2-key PKE 2PKEcsidh and an one-key PKEcsidh from CSIDH in Fig.6.

KGen1 Enc1(pk1,m1) Dec1(sk1, C)

(e11, · · · , e1n)← [−m,m]n (f1, · · · , fn)← [−m,m]n (c1, c2)← C

sk1 = [a1] = [le111 · · · le1nn ] c1 = [b]E0 = [lf11 · · · lfnn ]E0 m1 = c2 ⊕ H (Coef([a1]c1))
pk1 = [a1]E0 c2 = H(Coef([b]pk1))⊕m1

KGen2 Enc(pk1, pk2,m1||m2) Dec(sk1, sk2, C)

(e21, · · · , e2n)← [−m,m]n (f1, · · · , fn)← [−m,m]n (c1, c2, c3)← C

sk2 = [a2] = [le211 · · · le2nn ] c1 = [b]E0 = [lf11 · · · lfnn ]E0 m1 = c2 ⊕ H(Coef([a1]c1))
pk2 = [a2]E0 c2 = H(Coef([b]pk1))⊕m1 m2 = c3 ⊕ H(Coef([a2]c1))

c3 = H(Coef([b]pk2))⊕m2

Fig. 6. 2PKEcsidh = (KGen1,KGen2,Enc,Dec) and PKEcsidh = (KGen1,Enc1,Dec1) based on CSIDH.
Coef(·) is Montgomery coefficient of the input curve. H : {0, 1}∗ → {0, 1}n is a random pair-wise
independent hash function.
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Definition 3 (CSI-DDH Assumption5). Let EA = [a]E0, EB = [b]E0, EC = [c]E0

be randomly chosen. b ← {0, 1}. If b = 0, E′ = EC , otherwise E′ = [a][b]E0. Given
(E0, EA, EB , E

′), problem solver A outputs b′ as the guess of b. Define AdvcsiddhA (E0, EA, EB , E
′) =

Pr[b = b′]−1/2. The CSI-DDH assumption states that for any PPT adversary A, AdvcsiddhA
is negligible.

Lemma 6. Based on CSI-DDH assumption, 2PKEcsidh is [OW-CPA,OW-CPA] secure and
PKEcsidh is OW-CPA secure.

Please refer to Appendix C for a formal proof of Lemma 6.
Replacing 2PKEsidh and PKE of SIAKE with 2PKEcsidh and PKEcsidh respectively, we

would get a secure CSIDH-based AKE, CSIAKE, in the QROM. Using CSIDH-5280
recommended by [11], the total communication of CSIAKE is 2028 Bytes, while HKSU [23]
needs 2688 Bytes. The initiator and responder in HKSU need to compute 6 and 6 isogenies,
while in CSIAKE they compute 6 and 5 isogenies respectively.

5.2 Extension to A Modified X3LH

We remark that, in the proof of Theorem 1, we do not use any other specific properties
of 2PKEsidh except [OW-CPA,OW-CPA] security and perfect correctness. Thus, we could
extend the scheme in Fig. 5 to build AKE from general 2-key PKE and one-key PKE, if
the decryption failure is taken into account.

Let 2PKE = (KGen1,KGen2,Enc,Dec) be an [OW-CPA, OW-CPA] secure 2-key PKE
with decryption error δ2. Let PKE = (KGen1,Enc1,Dec1) be an OW-CPA secure PKE with
decryption error δ1. We could abuse the same notions and scheme of Fig. 5 to get a modified
secure X3LH in QROM. Compared with the original X3LH, the modifications are mainly
putting public keys in two hash functions for randomness and encapsulated key.

Theorem 2. Assume the public key entropy of 2PKE is εpk2, N users are involved and
there are at most l sessions between two users. For any quantum adversary A against the
modified X3LH with at most q SessionStateReveal or SessionKeyReveal queries, and qh (resp.
qG, qG1 , qf , qf1 , qh1 , qh′ , qh′1 , qH) quantum queries to RO h (resp. G, G1 f , f1, h1, h′, h′1,
H), there exist [OW-CPA, OW-CPA] solvers D or C, or OW-CPA solver B, such that,

Advck+
X3LH(A) ≤ 4N2l(qG + qh + 2q)

√
Adv

[OW-CPA,·]
2PKE (D)

+2N2l · (2q + qH + qf + 4)2
−n+1

2 + 2N · (qh′ + qh′1 + l2)2
−n+1

2

+16N(qG + 2q)2δ2 + 16N(qG1
+ 2q)2δ1 + 2N2lεpk2,

Advck+
X3LH(A) ≤ 4N2l(qG + qh + 2q)

√
Adv

[·,OW-CPA]
2PKE (C) + 2N2l · (q + qH)2

−n+1
2

+2N · (2q + qh′ + qf )2
−n+1

2 ,

Advck+
X3LH(A) ≤ 4N2l(qG1 + qh1 + 2q)

√
AdvOW-CPA

PKE (B)

+2N2l · (2q + qH + qf1 + 4)2
−n+1

2 + 2N · (qh′ + qh′1)2
−n+1

2

+16N(qG + 2q)2δ2 + 16N(qG1
+ 2q)2δ1.

We present a sketch of the proof. Please refer Appendix D for details. We also only
handle case E3 here. All the other cases could be similarly extended.

The decryption failure would bring obstacle to the argument of Game 3 in Table 3.
Specifically, since 2PKE and PKE are not perfect correct, the derandomized Enc in h1

q and
Enc1 in h3

q may not be injective. We borrow the technique used by [23], which rules out

5 It is defined as a generalized form by using cryptographic invariant maps in [7]
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the “bad randomness” conducing to decryption failure. Informally, we add a Game 1.5
after Game 1, in which G and G1 are replaced by random oracles that only sample good
randomness. After Game 4, we switch them back to G and G1 in Game 4.5. This would
guarantee the injective property required by Game 3.

The advantage of adversary introduced by the replacement of G and G1 could be
bounded by the Generic Distinguishing Problem given in Appendix D. Please refer
Appendix D for a detailed analysis. We would like to highlight that: since the set of good
randomness should be identified, simulating replaced random oracles of G and G1 requires
unbounded power, which implies that the simulator is an unbounded algorithm. It still
makes sense because the differences between these games (i.e., Game 1.5, Game 2, Game
3, Game 4, and Game 4.5) are analyzed from the information-theoretical perspective.

The QROM security of FSXY. As pointed out by [44] and illustrated in Fig. 7, 2-key PKE
of FSXY can be regarded as parallel execution of two PKEs. Integrating such a result to
X3LH, we re-answer the open problem on (modified) FSXY’s security in QROM after [23].
In our answer, the security requirement of underlying PKE is the same with FSXY, says
OW-CPA, while [23] requires IND-CPA. We also note that, when applying to FSXY, our
framework needs one more re-encryption than HKSU.

KGen1 KGen2 Enc(pk1, pk2,m1||m2) Dec(sk2, sk1, c1||c2)

(pk1, sk1)← KGen1; (pk2, sk2)← KGen1 c1 = Enc1(pk1,m1; r1) m1 = Dec1(sk1, c1)
c2 = Enc1(pk2,m2; r2) m2 = Dec1(sk2, c2)

Fig. 7. 2-key PKE 2PKE = (KGen1,KGen2,Enc,Dec) from 1-key PKE PKE := (KGen1,Enc1,Dec1).

6 Conclusion

In this work, we show that, with a slight modification, SIAKE is secure in the quantum
random oracle model. Our work also proves the QROM security of modified X3LH, which
introduces new construction from commutative supersingular isogenies.
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Appendix A FO transformation in QROM

Properties and requirements of existing transformations from probabilistic PKE to CCA
secure KEM are summarized in Table 5.

In QROM (and also classical ROM), the main challenges include how to simulate
the decapsulation oracle without a secret key, and how to argue the randomness of the
encapsulated key in the challenge ciphertext.

To simulate the decapsulation oracle without a secret key in QROM, the additional hash
[1,22] has high overhead and reduction loss, while injective map and private RO have low
overhead and tight reduction. Boneh et al. [5] firstly introduced the technique of modeling
h(m) with hq ◦ f(m) to provide decapsulation oracle, where hq is a private RO and f is
an injective function. Inspired by [5], Saito et al. [38] and Jiang et al. [25] independently
assumed Enc(pk, ·;G(·)) is injective and modeled h(m) as hq ◦ Enc(pk,m;G(m)). Thus,
K = h(m) encapsulated in C can be computed as hq(C). We call this technique as injective
mapping with encryption under fixed public key and illustrate it in Fig. 2.

With this decapsulation oracle using injective mapping with encryption under a fixed
public key, several techniques are used to argue the randomness of the encapsulated key in
challenge ciphertext. Saito et al. [38] introduced the “puncture” technique which relies on
the IND-CPA security. Jiang et al. [25] applied their extended OW2H lemma to G× h as a
unified oracle, thereby reducing the security to a weaker assumption, OW-CPA secure PKE.
Recently, Hövelmanns et al. [23] extended the “puncture” analysis of [38] by considering
decryption error.

Schemes Inj. map. prob. PKE Additional Hash Security Bound DecError

[39,22] - IND/OW-CPA len.-pre q3/2 4
√
ε X

[38] X IND-CPA × q
√
ε ×

[23] X IND-CPA × q
√
ε X

[25] X OW-CPA × q
√
ε X

[2] X IND-CPA × √
qε X

[8] X IND-CPA × √
qε X

[30] X IND-CPA × q2ε X

Table 5. Comparison of proof for FO type probabilistic PKE-to-KEM transform in the QROM. Inj. map.
indicates the injective mapping with encryption under fixed public key. len.-pre means additional hash should be
length preserving. q is the number of random oracle queries. ε is the advantage against OW/IND-CPA security of
PKE.

Ambainis et al. [2] proposed an improved OW2H lemma, namely, the semi-classical
OW2H, which implies the extended OW2H in [25] and gives better security bounds in
several PKEs. Bindel, et al. [8] proposed a double-sided OW2H lemma and reduced the q
factor from reduction loss. Recently, Kuchta et al. [30] bypass the square-root advantage
loss using an updated double-sided OW2H lemma with the rewinding technique.

After the proposal of the OW2H lemma, as mentioned above, several variants are
proposed. We summarize them in Table 6. S is the set that two oracles O1 and O2 differ.
The ‘Must know’ column shows the oracles available to the one-wayness attacker. 1S refers
to the indicator function of S. The one-wayness attacker outputs an element in S with
probability ε. The lemma shows an upper bound of the difference between AO1 and AO1

as a function of ε or q, the number of queries to oracle.
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OW2H Variants |S| Must know Bound

Original [40,2] Arbitrary O1 or O2 q
√
ε

Semi-classical [2] Arbitrary (O1 or O2) and 1S
√
qε

Double-side [8] 1 O1 and O2
√
ε

Double-side-Revisited [30] Arbitrary O1 and O2 qε

Table 6. Comparison of OW2H lemmas.

Appendix B Discussions on Security Models: CK, CKHMQV ,
eCK and CK+

To achieve a stronger security after the CK model [13] was introduced, CKHMQV [27], eCK
[33], and CK+ [17] models are being proposed. Due to subtle but crucial differences between
them, these models are incomparable. Cremers [14] formally analyzed the relation of CK
[13], eCK [33], and CKHMQV [27]. We give a brief discussion here. For formal details, please
refer to [14] and [42].

Matching session: A session s could be defined with sA (the owner of s), sB (intended peer),
sR (the role performed by sA), ssend/srecv (the message send/received by sA), and/or ssid
(the session identifier, only used in CK model). In CK model, two sessions s and s′ match
if sA = s′B , sB = s′A and ssid = s′sid. In CKHMQV , if sA = s′B , sB = s′A, ssend = s′recv,
and srecv = s′send. s and s′ match. For eCK, s and s′ are matching sessions if they match
in CKHMQV and sR 6= s′R. CK+ claims to reformulate CKHMQV , but uses the definition
of the matching session in eCK. The subtle differences are crucial since the role-symmetric
AKE that is secure in one model may be insecure in another model [14].

Session state reveal vs ephemeral key reveal: The CK model [13] allows the session state
reveal by an adversary, but leaves the AKE protocol to specify the contents of the session
state. Depending on the content of the session state reveal, a weaker AKE may be proved
secure [33]. Thus, eCK replaces session state reveal with the ephemeral key reveal, which
is equivalent to specifying the content of the session state as the ephemeral secret key.
However, if more session state is allowed to be revealed, the eCK secure scheme may be
insecure [14].

How and when the ephemeral/static secret key related to test session is given to the
adversary. In the CK model, the compromise of the static secret key of the test session’s
owner is not allowed before the test session expires, thus not detecting key compromise
impersonation (KCI) attack. To capture KCI, CKHMQV , eCK and CK+ allow the
compromise of the static secret key of the owner before the test session ends. CKHMQV ,
eCK and CK+ also consider the weak version of perfect forward security (wPFS), i.e., the
corruption of executor or peer is allowed after the end of the test session only if the matching
session exists. The exposure of ephemeral/static secret key related to test session in eCK is
modeled by adaptive queries to long-term key reveal/ephemeral key reveal. In CK+ (and
CKHMQV ), the exposure is not modeled by such queries. The ephemeral secret key is given
to the adversary directly after it is generated (thus they actually allow adaptive queries
to ephemeral key reveal); the exposure of the static secret key is modeled as given to the
adversary directly when it is allowed.

Our Choice: We use the CK+ model here with a more strict definition. We require the
session state reveal at least include ephemeral secret key. The freshness still forbid the
session state to reveal on the test session and its matching session, while the exposure of
static or ephemeral secret key related to test session is allowed to capture KCI, wPFS and
maximal exposure attack (MEX). To capture KCI, the static secret key of the owner of the
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test session is given to the adversary directly after it is determined; for wPFS, the static
secret keys of the owner and its peer in the test session are given to the adversary at the
end of the test session; for maximal exposure attack (MEX), the ephemeral secret key is
given to the adversary after it is determined.

Appendix C The proof for Lemma 6

We only prove the [OW-CPA, ·] security of 2PKEcsidh under CSI-DDH assumption. It is
analogous for its [·,OW-CPA] security and the OW-CPA security of 1-key PKE.

The proves proceeds with a sequence of games. In Game i (i ≥ 1), we denote the event
of adversary’s success as Succi
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. Thus, we have

Pr[Succ1] = Adv
[OW-CPA,·]
2PKEcsidh

(A).
Game 1: In this game we modify [OW-CPA, ·] challenge game, and state that the adversary
wins only whenm′1 = m1. We denote this event as Succ1. Note that in Game 0, the adversary
wins only if both m′1 = m1 and m′2 = m2. Thus, we have Pr[Succ0] ≤ Pr[Succ1].
Game 2: In this game, we modify the generation of challenge ciphertext. Specifically, [b]pk1

is replaced by a random [c]E0. We construct an algorithm B to solve the CSI-DDH problem
given an instance (E0, [a]E0, [a]E0, E

′), if there exists an algorithm A to distinguish Game
1 and Game 2.

B(E0, EA, EB , E
′)

1 pk1 ← EA

2 pk∗2 , state← A(pk1)
3 m1 ← {0, 1}n
4 c∗1 = EB , c∗2 = h(Coef(E′))⊕m1, c∗3 ← {0, 1}n
5 m′1||m′2 ← A(state, (c∗1, c

∗
2, c
∗
3))

6 If m′1 = m1, b′ = 1, else b′ ← {0, 1}.

It is easy to check that if (E0, EA, EB , E
′) is a CSI-DDH tuple, B perfectly simulates

Game 1, else B perfectly simulates Game 2. Thus, we have

AdvcsiddhB = Pr[b = b′]− 1/2

= 1/2(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

= 1/2(Pr[b′ = 1|Game 1]− Pr[b′ = 1|Game 2])

= 1/2(Pr[Succ1]− Pr[Succ2]).

Game 3: In this game, we modify the computation of the challenge ciphertext. Specifically,
H(Coef([c]E0)) is replaced by a random string H∗. Now c∗2 is a completely random string in
{0, 1}n. Thus, the advantage to compute m1 is Pr[Succ3] = 1/2n. Note that, since H is a
pair-wise independent hash function, by the leftover hash lemma, ε = |Pr[Succ2]−Pr[Succ3]|
is negligible.

To sum up, we have that Pr[Succ0] ≤ 2AdvcsiddhB + 1/2n + ε.

Appendix D Security proof for Modified X3LH

The proof for Theorem 2 proceeds almost the same as that for Theorem 1. The deference is
that we should take decryption failure into account, which will need the following lemma.

Lemma 7 (Generic Distinguishing Problem, [23]). Let X be a finite set, and F : X →
{0, 1} be a quantum accessible oracle. Let Bλx be a Bernoulli distribution that depends on
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x ∈ X, that is, for each x, Pr[F (x) = 1] = λx. Let λ be the upper bound of λx for every
x ∈ X. For any unbounded quantum algorithm A issuing at most q quantum queries,∣∣Pr[AF ()→ 1|F (x)← Bλx

]− Pr[AF ()→ 1|F (x) = 0]
∣∣ ≤ 8(q + 1)2λ.

Games

I h (for encapsulated key) Kof valid C R∗B
II h1 (for encapsulated key) Justification m∗B/K∗

III G/G1 (for randomness) K of invalid C SK∗ (session key)

Games 0-1

I h(pk1, pk2,m) h(pkA, pk
j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) − − − − − f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h′(pkA, pk
j
2,A

, sA,C)/h′1(pkA, sA,C) H(K∗, · · · )

Game 1.5

I h(pk1, pk2,m) h(pkA, pk
j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) Lemma 8 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1,m1) h′(pkA, pk
j
2,A

, sA,C)/h′1(pkA, sA,C) H(K∗, · · · )

Game 2

I h(pk1, pk2,m) h(pkA, pk
j
2,A

,m)/h1(pkA,m1) G(pk∗2A,m∗B)

II h1(pk1,m1) Lemma 3 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1,m1) h′q(pkA, pk
j
2,A

, C)/h′1q(pkA,C) H(K∗, · · · )

Game 3

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Conceptual f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1,m1) h′q(pkA, pk
j
2,A

, C)/h′1q(pkA,C) H(K∗, · · · )

Game 4

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Conceptual f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G̃(pk2,m)/G̃1(pk1m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 4.5

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Lemma 8 f(s′B, rB)/h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 5

I h1
q or h2

q h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) G(pk∗2A,m∗B)

II h3
q or h4

q Lemma 4 fr(rB) /h(pkA, pk∗2A,m∗B)

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 6
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) R∗B ← R

II h3
q or h4

q Lemma 5/OW2H fr(rB)/ K∗ ← {0, 1}n

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) H(K∗, · · · )

Game 7
I h1

q or h2
q h1

q(pkA, pk
j
2,A

, C)/h3
q(pkA,C) R∗B ← R

II h3
q or h4

q Lemma 2 fr(rB)/K∗ ← {0, 1}n

III G(pk2,m)/G1(pk1,m1) h1
q(pkA, pk

j
2,A

, C)/h3
q(pkA,C) SK∗ ← {0, 1}n

Table 7. Overview of games for the proof of Theorem 2 w.r.t case E3. Some details are not
shown in this table, such as building lists, the guess of test session, the abort events, and some
replacements of random oracles. Please refer to the Games for details. “valid C” and “invalid C”
are those ciphertexts received by UA, the owner of test session. m∗B , R∗B , K∗ indicate the message,
randomness, encapsulated key corresponding to the ciphertext in test session. SK∗ is the session
key of test session.

We also only present case E3. All the other cases could be similarly extended. The game
sequence is illustrated in Table 7, which is essentially adding Game 1.5 between Game 1
and 2 of Table 3 and adding Game 4.5 between Game 4 and 5 Table 3. Game 1.5 and
Game 4.5 are used to eliminate and switch back “bad randomness” (which would introduce
decryption failure), respectively. All the other games run as the same as those in Table 3.
Thus, we only present Games 1.5 and 4.5.
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Game 1.5. In this game, we impose a requirement that no decryption failure for Enc (resp.
Enc1) will occur with respect to public key pairs from L1×L2 (resp. L1). The random oracle
G (resp. G1) is replaced with G̃ (resp. G̃1) that only samples good randomness (which will
be defined later) for all public keys in L1×L2 (resp. L1). We say that two key-pairs belongs
to L1 × L2 only when they share the same user index.

For any fixed public key pairs
[
(pk1,i, sk1,i), (pk

j
2,i, sk

j
2,i)
]
∈ L1 × L2, pk2 ∈ D2, and

m ∈ {0, 1}n, define Rbad(i, j; pk2,m) as{
{r ∈ R|Dec(sk1,i, sk

j
2,i,Enc(pk1,i, pk

j
2,i,m; r)) 6= m} if pk2 = pkj2,i

∅ o.w.

For fixed L1 and L2, let Rbad(L1, L2; pk2,m) := ∪i∈[1,N ],j∈[1,2Nl]Rbad(i, j; pk2,m) be the
set of bad randomness for the encryption Enc, and let the set of good randomness be
Rgood(L1, L2; pk2,m) := R \Rbad(L1, L2; pk2,m).

For a fixed public key pk1, and m1 ∈ {0, 1}n1 , define R1bad(pk1,m1) as{
{r1 ∈ R1|Dec1(sk1,i,Enc1(pk1,i,m1; r1)) 6= m1} if ∃i s.t. pk1 = pk1,i

∅ o.w.

For a fixed L1 and m1, denote R1bad(pk1,m1) as the set of bad randomness for Enc1 and
R1good(pk1,m1) = R1 \ R1bad(pk1,m1) as the set of good randomness.

Concretely, we choose internal 2(qG + qG1 + 2q)-wise independent random functions gq
and g1q. On receiving pk2 ×m ∈ D2 × {0, 1}n, G̃ samples and outputs an element from set

Rgood(L1, L2; pk2,m) using randomness gq(pk2,m). On input pk1×m1 ∈ D1×{0, 1}n1 , G̃1

samples and outputs an element from set R1good(pk1,m1) using randomness g1q(pk1,m1).
Note that from game 1.5 to 4.5, since the set of good randomness should be identified,

simulating G̃ and G̃1 requires unbounded power, which implies that the simulator is an
unbounded algorithm. It still makes sense because the differences between these games are
analyzed from the information-theoretical perspective.

Lemma 8. Adv1 − Adv1.5 ≤ 16(qG + 2q)2δ2 + 16(qG1
+ 2q)2δ1.

Game 4.5. We switch back to G (resp. G1) from G̃ (resp. G̃1). The argument is similar to
that in Game 1.5. And we have Adv4 − Adv4.5 ≤ 16(qG + 2q)2δ2 + 16(qG1 + 2q)2δ1.

Proof of Lemma 8: We first define an internal Game 1-1 in which only G is replaced.
By the definition of Rbad(i, j; pk2,m) in Game 1.5, when pk2 ∈ L2, there exists i∗, j∗

such that Rbad(i, j; pk2,m) is non-empty only when i = i∗ and j = j∗; when pk2 6∈ L2,
Rbad(i, j; pk2,m) is always empty.

Define δ(i, j; pk2,m) = |Rbad(i,j;pk2,m)|
|R| and δ(i, j) = maxm∈{0,1}n δ(i, j; pk2,m). By the

definition of correctness, E (δ(i, j)) = δ2 or 0, depending on pk2 ∈ L2 or not, where the
expectation is taken over (pk1,i, sk1,i)← KGen1, (pkj2,i, sk

j
2,i)← KGen2. Thus, ∃ i∗, j∗, such

that

δ(L1, L2, pk2,m) :=
|Rbad(L1, L2; pk2,m)|

|R|
≤

∑
i∈[1,N ],j∈[1,2Nl]

|Rbad(i, j; pk2,m)|
|R|

=
|Rbad(i

∗, j∗; pk2,m)|
|R|

= δ(i∗, j∗; pk2,m).

Let δ(L1, L2) := maxpk2∈L2

m∈{0,1}n δ(L1, L2; pk2,m). By taking the expectation on δ(L1, L2)

over the generation of L1 and L2, ∃j∗, such that

E (δ(L1, L2)) = E

(
pk2∈L2
max

m∈{0,1}n
(δ(L1, L2; pk2,m))

)
≤ E (δ(i∗, j∗)) = δ2,
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where the last expectation is taken over (pk1,i∗ , sk1,i∗) ← KGen1 and (pkj
∗

2,i∗ , sk
j∗

2,i∗) ←
KGen2.

To give the upper bound of Adv1 − Adv1−1, we utilize the distinguisher between Game
1 and Game 1.5 for b = 1 and b = 0 together with Lemma 7 to construct an unbounded
quantum adversary B|F 〉 to solve the generic distinguishing problem.
B, on input randomly chosen L1, L2, simulates the game as in Game 1. Let λ(pk2,m) =

δ(L1, L2; pk2,m). Let F (pk2,m) be bernoulli-distributed Bλ(pk2,m) or always 0 with respect
to the generic distinguishing problem. Define G as

G(pk2,m) =

{
Sample(Rgood(L1, L2; pk2,m); gq(m)) if F (pk2,m) = 0

Sample(Rbad(L1, L2; pk2,m); gq(m)) o.w.

where Sample(S; r) outputs an element from a set S with randomness r.
When F (pk2,m) is bernoulli-distributed according to Bλ(pk2,m), G is as in Game 1;

when it is always 0, G is the same as in Game 1-1. At last, B just returns what A guesses.
For both b = 1 and 0, B|F 〉(L1, L2) perfectly simulates Game 1-1 or Game 1 for A

corresponding to F is always 0 or bernoulli-distributed. By further applying Lemma 7 with
λ = δ(L1, L2), we have

|Pr[b′ = 1|b = 1 (resp.0) in Game 1]− Pr[b′ = 1|b = 1 (resp.0) in Game 1-1]|
= Pr[B|F 〉(L1, L2)→ 1|F ← Bλ(pk2,m)]− Pr[B|F 〉(L1, L2)→ 1|F ≡ 0]

≤ 8 · (qG + 2q)2δ(L1, L2).

By taking the expectation over L1 and L2, we have Adv1 − Adv1−1 ≤ 16 · (qG + 2q)2δ2.

Now, we consider the replacement of G1. Define δ(pk1,m1) = |R1bad(pk1,m1)|
|R1| . Then,

δ1 = E(maxpk1,m(δ(pk1,m1))).
By constructing a similar unbounded quantum adversary B|F 〉, where F (pk1,m1) is

bernoulli-distrubution Bδ(pk1,m1) or always 0, with the similar analysis for the switch of G1,
we have Adv1−1 − Adv1.5 ≤ 16(qG1

+ 2q)2δ1.
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