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Abstract. Multi-input functional encryption (MIFE) is a generalization of functional encryption
and allows decryptor to learn only function values f(z1,...,2»n) from ciphertexts of z1, ..., Tn.
We present the first MIFE schemes for quadratic functions (MQFE) from pairings. We first
observe that public-key MQFE can be obtained from inner product functional encryption in a
relatively simple manner whereas obtaining secret-key MQFE from standard assumptions is com-
pletely nontrivial. The main contribution of this paper is to construct the first secret-key MQFE
scheme that achieves indistinguishability-based selective security against unbounded collusion
under the standard bilateral matrix Diffie-Hellman assumption. All previous MIFE schemes
either support only inner products (linear functions) or rely on non-standard cryptographic as-
sumptions such as indistinguishability obfuscation or multi-linear maps. Thus, our schemes are
the first MIFE for functionality beyond linear functions from polynomial hardness of standard
assumptions.
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1 Introduction

Multi-Input Functional Encryption. Functional encryption (FE) [13,31] is a novel cryptographic
paradigm that has an essentially different feature from traditional encryption schemes. Concretely, FE
allows us to obtain computation results from encrypted data without revealing any other information
about the underlying data. This is in contrast to the traditional encryption schemes, where only owners
of legitimate keys can learn entire underlying data from ciphertexts whereas others can learn nothing.
An FE scheme that supports a function class F allows an owner of a master secret to issue a secret
key SK for a function f € F. Decryption of a ciphertext CT for a message x with SK yields f(x) and
nothing else. Functional encryption is quite useful for securely delegating computation since it allows
a sever to learn only function values from encrypted data.

Multi-input functional encryption (MIFE) [24] is a natural generalization of FE, which can handle
functions that take multiple inputs. That is, an owner of SK for f can learn only f(z1,...,z,) from
CTq,...,CT, of messages x1, ..., x,. MIFE schemes can be basically classified into two categories with
respect to their function classes.

General functionalities: The first consists of MIFE schemes for general circuits or Turing machines,
e.g., [7,9,14,15,24,25]. Although they are powerful enough to handle all functions computable in
polynomial time, they are built on non-standard cryptographic assumptions such as indistinguisha-
bility obfuscation (iO) [22] or multi-linear maps [21] and thus prohibitively inefficient. Very recently,
iO was constructed from sub-exponential hardness of four well-founded assumptions [26]. Note that,
however, we refer to polynomial hardness of a well-founded problem as a standard assumption in
this paper.

Specific functionalities: The second covers MIFE schemes for specific functions such as inner prod-
ucts and order revealing, e.g., [1,2,4,6,12,16,19,29,32]. They are aimed at obtaining more practical
features, namely, efficiency and concrete security, with sacrificing the generality. Therefore, most
of them have efficient constructions, and their security is based on standard assumptions, except
the order-revealing encryption by Boneh et al. [12], which relies on multi-linear maps.

Recent works proposed extensions of MIFE that do not require a trusted third party for secret-key
generation [7,17].

Functional Encryption for Specific Functionalities. This paper is categorized to the latter since
we are interested in the specific functionality, namely, quadratic functions. We recall related works
on FE for the latter category in a bit more detail. Abdalla et al. first presented FE schemes for
inner products (linear functions) based on DDH and LWE [3], which is called inner product functional
encryption (IPFE). An IPFE scheme from DCR is proposed later by Agrawal et al. [8]. Then, Abdalla et
al. presented a multi-input IPFE (MIPFE) scheme based on pairings [6]. Abdalla et al. also constructed
MIPFE schemes based on DDH or k-Lin without pairings, LWE, and DCR. by introducing a generic
conversion from IPFE to MIPFE [4]. As another line of works, several FE schemes for quadratic
functions have been constructed from pairings [10,23,30]. Note that FE for quadratic functions are
trivially constructible from IPFE by encrypting all quadratic terms in advance, although the ciphertext
size inherently becomes O(n?) where n is the number of elements to be encrypted. Thus, FE for
quadratic functions normally refers to that with the ciphertext size being O(n).

Since the first introduction of MIPFE scheme [6], no MIFE schemes for functionality beyond lin-
ear functions based on standard cryptographic assumptions have been proposed until now. Although
(MI)FE for linear functions is expected to be applied for statistical analysis as it can provide weighted
means, linear functions are insufficient for evaluating important values for statistics such as variance
and standard deviation. This motivates the fundamental question:

Can we construct an (efficient) MIFE scheme for more than linear functions from standard
cryptographic assumptions?



Alternatively, considering the fact that MIFE for inner products is constructible without pairings, the
following question naturally comes to mind:

Can we construct an MIFE scheme for quadratic functions from pairings?

1.1 Our Results

We answer these questions affirmatively, that is, we construct the first MIFE schemes for quadratic
functions, or multi-input quadratic functional encryption (MQFE) schemes, from pairings [20]. Our
first observation is that public-key MQFE can be generically obtained from public-key IPFE, which
can be constructed even without pairings, in a relatively simple manner as the case of public-key
MIPFE [6].

The main result of this paper is to construct a secret-key MQFE scheme from the bilateral matrix
Diffie-Hellmen assumption, in which users need a master secret key for encryption. Recall that public-
key MIFE does not imply secret-key MIFE. Roughly speaking, a user who has CT; for x; and SK for
f of a public-key scheme is allowed to learn f(z1,z2,...,2,) for all (z9,...,x,) since this is inherent
leakage, while it is not the case in secret-key MIFE. Hence, just including a public key of a public-key
MIFE scheme in a master secret key does not necessarily result in a secret-key MIFE scheme due to
the leakage. Our secret-key scheme has indistinguishability-based selective security against unbounded
collusion. Roughly speaking, the security implies that an adversary that has any numbers of ciphertexts
and secret keys can learn only decryption values for all decryptable combinations and nothing else.
Our scheme has no limits on the numbers of encryption slots and elements per slot while they are
fixed at the setup. The ciphertext size of our scheme is O(m?n), and the secret-key size is O(m?n?),
where m is the number of elements per slot and n is the number of encryption slots.! Furthermore,
our scheme is far more efficient than MIFE schemes for general functions since ours basically uses only
efficient IPFE as a building block in a direct manner.

Our secret-key MQFE scheme is built on two newly introduced primitives that we call predicated
IPFE and multi-input mixed-group IPFE. Both of them need to have the function-hiding property
to construct our MQFE scheme, and we construct them from a (multi-input) function-hiding IPFE
scheme based on pairings [4,11,19] in a generic way. In a function-hiding scheme, secret keys hide
underlying functions as well as ciphertexts hide plaintexts.

Multi-Input Quadratic Functional Encryption. Informally, a function class J,,, for n-input
MQFE is defined as follows. Each function f € F,, , is represented by a vector ¢ € Z(m™)®  For inputs
X1,...,Xn € Z™, f is defined as

f(X1, .oy xp) = {(c,x ® %)
where x = (x1]| - - - ||x,,) and ® denotes the Kronecker product. In an MQFE scheme for &, , a user
can encrypt x; € Z™ to CT; for slot i € [n], a key issuer can generate a secret key SK for ¢ € Z(m”)Q,
and decryption of CTy,...,CT,, with SK reveals only (c,x ® x).

An important fact on MQFE is that the relation between linear and quadratic functions in the
multi-input case is essentially different from that in the single-input case. As mentioned above, FE
for quadratic functions aims short ciphertexts because it is trivially implied by IPFE if there are no
ciphertext-size requirements. On the other hand, an MQFE scheme cannot be trivially constructed
from MIPFE scheme even if there are no ciphertext-size requirements. This is because the method
of encrypting all quadratic terms in advance cannot deal with the quadratic terms derived from two
different users. In other words, MQFE enables us to perform some sort of computation that is uncom-
putable with MIPFE such as computing variance over multiple data sources encrypted by different
users. We remark that although the ciphertext size of our scheme is not optimal, i.e., O(m), our result
is by no means trivial as discussed.

As the case of MIFE for general functions or inner products, we can also consider the security model
where an adversary can choose users to be corrupted, which is called multi-client setting [1,2,16,24,29].

! Precisely, sizes of ciphertexts and secret keys refer to the number of group elements.



Our secret-key scheme is not easily applicable to the multi-client setting. The intuitive reason is that the
function-hiding IPFE, which is the main building block of our scheme, works only when encryption keys
are hidden (uncorrupted). Constructing a multi-client functional encryption for quadratic functions is
an interesting open problem, and we leave it for a future direction.

1.2 Technical Overview

Public-Key MQFE. For simplicity, we consider the two-input case in this paragraph. We also assume

that quadratic functions are represented by matrices C € Z2™*2™ where f(x1,%2) = (x{ ||x5 )C <§1) .
2

In a public-key scheme, an adversary that has CT; for x;, CTy for x5, and SK for C = (g;g;g)

can learn (X{ ||x5 )C (il) and (%] ||x4)C (§1> for all X1, X2 since it can encrypt Xi, Xa. By setting
2 2

Xs = 0 and X; = 0, the adversary can learn x{ C 1x; and xJ Ca 2Xa, respectively. By setting X2 = e;
and x; = e; for all i € [m]| where ey, ..., e, are linearly independent vectors, the adversary can learn
%] (Cy2 +C2TJ) and (Cy 2 +C;:1)X2, respectively. This is because the adversary can compute X; Cq,1X;

and i;C2,2§2 by itself. Furthermore, Dec(CTy,CTo,SK) = (x{ ||x4 )C (2;) is computable from the

inherent leakage as follows:
XICL1X1 + X;—CQ’QXQ =+ XI(CLQ + C;’l)(cl,Q + C;1)+(C1,2 + C;—’l)X;—

where (Cy2+Cj ;)" € QM*™ denotes the Moore-Penrose inverse of Cy,2 4+ Cj ;. It is not hard to see
that the inherent leakage can be computed by IPFE since they are linear functions over a single input.
Thus, public-key 2-input MQFE can be constructed from public-key IPFE. This construction can be
easily extended to the general multi-input case, which is presented in Appx. A.

Secret-Key MQFE. Our secret-key MQFE scheme is inspired by the secret-key FE scheme for
quadratic functions (or quadratic functional encryption (QFE) scheme) from pairings by Lin [30].
First of all, we briefly recall the public-key IPFE scheme from DDH by Abdalla et al. [3] (ABDP). Let
m be a vector length in the scheme. For a matrix M = (m; ;); ; and a generator gy of a cyclic group
of order p, we denote (g,""); ; by [M];. The ABDP scheme works as follows:

Setup(1*): w « Zy', PK:=[w], MSK :=w.
Enc(PK,x € Z™): s < Zp, CT := ([s], [x + sw]).
KeyGen(MSK, c € Z™): SK := —c'w.
Dec(CT,SK): —cTwls] +c'[x + sw] = [(c,x)].

Lin’s idea for constructing QFE is to use function-hiding IPFE, which is inherently secret-key
FE [11], to compress the size of ABDP ciphertexts for quadratic terms. Recall that the function-hiding
property requires that secret keys hide its function (or vector in IPFE). Let iFE = (iSetup, iEnc, iKeyGen,
iDec) be a function-hiding IPFE scheme based on pairings. Note that all known function-hiding IPFE
schemes based on pairings output a decryption value as an exponent of the target-group generator
[11,18,28,30,33]. Informally, her secret-key QFE scheme works as follows:

Setup(1): W = (w1,..., W), W = (W1, ..., W) « L, iIMSK' < iSetup(1*)
MSK := (iMSK', w, w).
Enc(MSK,x € Z™): s < Z,, iCT' + iEnc(MSK’, 5), iMSK « iSetup(1?*)
iCT; < iEnc(iMSK, (z;, w;)),iSK; < iKeyGen(iMSK, (z;, sw;)).
CT := (iCT', {iCT;,iSK; }icpm))-
KeyGen(MSK, ¢ = {c; ;}ijeim) € zm’):
SK :=iSK’ + iKeyGen(MSK’', —c T (w @ W)).



Dec(CT, SK): iDec(iCT’,iSK") + >_ijelm) Ci.jiDec(iCT4,iSK;) = [(c,x ® x)]r.

In decryption, her scheme first generates an ABDP ciphertext and an ABDP secret key for quadratic
terms in the target group G of bilinear groups from ciphertexts and secret keys of iFE. Then, it de-
crypts the ABDP ciphertext in the same way as the ABDP scheme. That is, we have iDec(iCT;,iSK;) =
[;2; 4+ sw;w;] 7, which can be seen as the (7, j)-th element of the ABDP ciphertext [x @ x + sw @ W],
and iDec(iCT',iSK’) = [~scT (W@ W)]r, where —c (w®W) is an ABDP secret key for c. The function-
hiding property of iFE guarantees that iSK hides x;. Since w ® w only appears on the exponent of
group elements, we can argue that it is computationally indistinguishable from random in Z;' in the
security proof.

MIPFE instead of IPFE. Our first attempt is to modify Lin’s scheme so that it generates ciphertexts
of secret-key MIPFE scheme from DDH by Abdalla et al. [4] (ACFGU) in G instead of the ABDP
ciphertext (recall that the ACFGU scheme does not use pairings). That is, the decryption algorithm
similarly generates ACFGU ciphertexts for all quadratic terms over all inputs and then decrypt it
similarly to the ACFGU scheme. The reason for using MIPFE instead of IPFE is to deal with multiple
independent randomnesses derived from different users, which inherently come in when generating the
IPFE ciphertext elements for quadratic terms. We also remark that the reason for decomposing the
ACFGU ciphertext into ciphertexts and secret keys of function-hiding IPFE is to allow decryptors to
generate ACFGU ciphertext elements for quadratic terms derived from two different users. This is in
contrast to Lin’s QFE scheme, which uses function-hiding IPFE to compress the ciphertext size.
The n-input ACFGU scheme is described as follows:

Setup(1*): MSK := w1,..., Wy, uy,... Uy, < Z7"
Enc(MSK,i,x; € Z™): s; < Zp, CT; := ([s4], [x; + siw; + wy]).
KeyGen(MSK, (cy,...,c,) € Z™"): SK:= (— Zie[n] (ci,uy), {*CiTWz‘}ie[n])-
Dec(CTy,...,CT,,SK):
Dty (—ed wilsi] + el [xi + siwi + wi]) = [3c (e wi)] = [ (e xi).

Then, the candidate MQFE construction gFE = (qSetup, gEnc, gKeyGen, gDec) will be defined as follows
(for simplicity, we assume m = 1 in what follows):

qSetup(11): iIMSK,iMSK’ <= iSetup(1), w;, w;, u;, U; + Z,
qMSK = (IMSK, iMSK/7 {wi,@i,ui,ﬂi}ie[n]).
qEnc(qMSK, i, z; € Z): s;,5; < Zy,
iCT} < iEnc(iMSK', 5;), iSK} + iKeyGen(iMSK', 5;)
iCT; < iEnc(iMSK, (z;, s;w;, u;)), iISK; < iKeyGen(iMSK, (z;, 5;w;, u;))
qCT, := (iCT,iSK},iCT;,iSK;).
qKeyGen(MSK, c={c; ;}ijefn): aSK:=([=22; jep Cijwitiy]r, {—cijwiw;ti jern))-
qDec(qCT4,...,qCT,,,qSK):
— Zi,je[n] ci,jwi@jiDec(iCT;, ISK;) =+ Ei,je[n} CZ'J'iDeC(iCTi7 ISKJ)

i el Citits)r = [(¢, x @ x)]r

Observe that {iCT;,iSK; }ic[n) yield {[ziz; + sisjw,w, +uiﬂj]T}i7j€[n] in decryption, which can be seen
as ciphertexts of the n2-input ACFGU scheme.

However, this scheme is not secure, that is, it leaks unnecessary information to decryptors more
than expected. The problem is that the candidate scheme allows two types of mixed-up attacks where
an adversary can simultaneously use two different ciphertexts with the same index for decryption:

1. For iCT%7 iS Kf in qCT}, qCT?7 respectively, iDec(iCT%, iSK?) is a valid ACFGU ciphertext and usable
for the ACFGU decryption with qSK.

2. Let iy # 4. For {iCT} ,iSK! }, {iCT} ,iSK} },iCT?, inqCT} ,qCT;,,qCT;,, respectively, iDec(iCT} ,iSK} ),
iDec(iCT?Q, iSKgl) and iDec(iCT}27 iSK%Q) are valid ACFGU ciphertexts and usable for the ACFGU

decryption with qSK together.



Preventing Attack 1. Recall that Lin’s QFE scheme does not allow Attack 1 since the encryption
algorithm generate new iMSK for each ciphertext. On the other hand, our candidate uses the same
iMSK for all ciphertexts so that decryptors can generate ACFGU ciphertext elements for quadratic
terms from two different users. To prevent this attack, we need a function-hiding IPFE scheme where
iCT is decryptable with iSK if and only if they come from either different slots or the same qCT,.
For that purpose, we introduce predicated IPFE (PIPFE), which can be seen as a combination of
inner product encryption [27] and IPFE. Informally, a ciphertext pCT and a secret key pSK of a
PIPFE scheme are associated with two vectors {x1,x2} and {y1,y2}, respectively. Decryption of pCT
with pSK reveals (xa,y2) iff (x1,y1) = 0. Although PIPFE can be captured as a class of IPFE with
fine-grained access control [5], they did not consider the function-hiding property. Thus, our PIPFE
scheme is the first instantiation of function-hiding IPFE with fine-grained access control, which is of
independent interest.?

PIPFE yields the expected decryption mechanism by setting x; = (02(1‘—1)’ 1,L,02("_i)), y1 =
(026=D 1, —1,02("=9) where L + Z, in each encryption. Let (i1, L1) (resp. (i2, L2)) be a pair of a slot
index and random element of x; (resp. y1). It is easy to see that (x1,y1) = 0iff iy # iz or L1 = Lo. Since
L is chosen from an exponentially large space, L1 # Lo with overwhelming probability if they are chosen
independently. We construct a function-hiding PIPFE scheme pFE from a function-hiding IPFE scheme
iFE in a generic way. The construction is very simple, that is, pCT is iCT for (ax;||x2) and pSK is iSK
for (by1||y2) where a,b < Z,. We define pDec(pCT, pSK) = iDec(iCT,iSK) = [ab(x1,y1) + (x2,¥2)]|T,
where (x2,y2) is computable iff (x1,y1) = 0.

Preventing Attack 2. A cumbersome point of Attack 2 is the fact that iDec(iCT},iSK},) and
iDec(iCT%z, iSK}l) is necessary
for decryption with qCTgl,qCTi. However, they leak inappropriate information if both of them are
used in decryption simultaneously. Thus, we cannot solve the problem by prohibiting some sort of iFE
decryption like the case of Attack 1.

Our solution is to bind ACFGU ciphertexts generated from the iFE decryption with common random
elements. That is, iCT; in qCT, is changed to encryption of (z;, s;w;, u;, t;v;), and iSK; is changed to
a secret key of (x;,5;w;, r;u;,v;) where v;,v; are new elements in gqMSK and r;,¢; are the common
random elements for binding ACFGU ciphertexts, which is chosen by qEnc. Then, decryption with
{iCT4,iSK; }icn) yields {[zix; +s:55wiw; +7juithj +1;0:05]1 }4 jen)- According to the change of iCT, iSK,
the first element of an ACFGU secret key should be modified as qSKy = [= 3, ;¢ cij(rjuit; +

t;v;0;)]7. By this construction, we cannot simultaneously use iDec(iCT}17 iSK}l), iDec(iCT%27 iSK%z) and

iSK}Q) are necessary for decryption with qCTgl,qCT1 and iDec(iCT?

199 i)

iDec(iCTi, iSK}l) for ACFGU decryption. Intuitively, gSK; must involve ¢}, and ¢7 (randomnesses used
in iCT%2 and iCT?z, respectively) to decrypt the ACFGU ciphertexts generated from iDec(iCT} iSKzll),

i1
iDec(iCT}z, iSng) and iDec(iCT? iSK}l) together, but in fact gSK; can involve only one of ¢} and ¢ .

Q9
How to Generate the Modified Secret Key. The last challenge is how to generate the mod-
ified secret key. It is obvious that qKeyGen cannot generate the modified key since it contains ran-
dom elements 7;,t; used in ciphertexts. We solve the problem by employing an additional function-
hiding MIPFE scheme, denoted by miFE, into the candidate scheme. That is, gEnc additionally gen-
erates an MIPFE ciphertext miCT; for (r;,¢;), and qKeyGen generates an MIPFE secret key miSK
for {(Zje[n] Cj,i“jﬂiazje[n] Ci,jViVj) Yiem]- Then, a decryptor can generate the secret-key element
- Ei,je[n] ¢ j(rjuitt; + t;v;v;) from miCTy, ..., miCT,, miSK without knowing unnecessary informa-
tion. This technique similar to Gay’s technique in [23], which uses (partially) function-hiding IPFE
to generate a “decryption key” consisting of both elements inherently derived from a ciphertext and
a secret key. Note that our actual scheme needs multi-input mixed-group IPFE instead of MIPFE so
that the security proof go through, although they are similar primitives.

This is a rough sketch of our MQFE scheme. We need a further modification to make the scheme
satisfy the formal security definition, since we cannot argue that {w;w;}; je[n) is distributed pseudo-

2 To be precise, secret keys of our PIPFE scheme hide y» but do not yi, and we call this property partially
function-hiding.



randomly. This is because qSK contains them as not the exponent of group elements but Z, elements
in the candidate. The modification is simple; we use {wj ;}; je[n instead of {w;w;}; jecjn). We also need
hidden spaces of IPFEs that are used only for the security proof as in [30]. These modifications make
the ciphertext size be O(m?n). We give an overview of the security proof for very simple case in Sec. 5
besides the full proof in Sec. 6.

2 Preliminaries

2.1 Notations

For a natural number m,n € N, [m] denotes a set {1,...,m}, and [m,n] denotes a set {m,...,n}. For
matrices My, ..., M, with the same number of rows, (Mj]]|---||M,,) denotes their matrix concatena-
tion. For vectors vi,..., vy, (v1,...,v,) denotes the vector concatenation as row vectors regardless of
whether each v; is a row or column vector. For instance, for vy € Z7'*!, vy € 2™, (vi,vy) = (v]][va).
We use ® for the Kronecker product. We denotes an n-dimensional unit vector (0°=1,1,0"~1) by e; n-
For families of distributions X := {X)}reny and Y := {Y)}ren, we denote X =, Y as computational
indistinguishability.

2.2 Basic Tools and Assumptions

Definition 2.1 (Bilinear Groups). A description of bilinear groups G:=(p,G1, Gs, G, g1, g2, €)
consist of a prime p, cyclic groups G1, G2, G of order p, generators g; and gs of G; and G5 respectively,
and a bilinear map e : G; X G2 — G, which has two properties.

- (Bilinearity): Vhi € Gy1,he € Go,a,b € Zp, 6( (11, hg) = e(hl, hg)ab.
— (Non-degeneracy): For generators g; and gs, g7 := e(g1,92) is a generator of Gr.
Non-d F d i fG

A bilinear group generator Ggg (1) takes a security parameter 1* and outputs a description of bilinear
groups G with a 2()\)-bit prime p.

Definition 2.2 (D, ;,-MDDH Assumption [20]). For j > k, let D; ;, be a matrix distribution over
matrices in Z%Xk, which outputs a full-rank matrix with overwhelming probability. Let G be bilinear
groups. We can assume that, wlog, the first £ rows of a matrix chosen from D;; form an invertible
matrix. We consider the following distribution: A < D;, z « Z’;, ko := Az, k; « Z%, P g =
(G, [A];, [kgli). We say that the D, ,-MDDH assumption holds with respect to G if, for any PPT
adversary A,

Adv, MR () = nax | Pr[l <= A(Pio)] — Pr[l < A(P;1)]| < negl()).
€1,

In what follows, we denote Dy, by Dy. Note that the well-known k-Lin assumption can be captured
as the D,-MDDH assumption.

Bilateral Variant. Let G, A, kg be the same as above and Ps := (G, [A]1, [A]2, kg1, [ksl2). We
say the bilateral D; ,-MDDH assumption holds with respect to Ggg if Py and P; are computationally
indistinguishable as above. The bilateral D; ,-MDDH assumption generically holds in bilinear groups
if k > 2. Note that the following two properties are applicable to the bilateral case similarly.

Uniform Distribution. Let U;; be a uniform distribution over Zng. Then, the following holds
with tight reductions: Dy-MDDH = U;,-MDDH = U; ;-MDDH.

Random Self-Reducibility. We can obtain arbitrarily many instances of the D;;-MDDH prob-
lem from a single instance. For any n € N, we define the following distribution: A < D, Z +
Zyxn, Ko = AZ, Ky < ZJ*", P, 5 := (G,[A];,[Kgl;). The n-fold D;,-MDDH assumption is simi-
larly defined to the D; ;-MDDH assumption. Then, the n-fold D; ,-MDDH assumption is implied by
the D; ,--MDDH assumption with security loss of min{n,j — k}.



2.3 Multi-Input Functional Encryption

There are several definitions for MIFE such as the public-key setting, secret-key setting, and multi-
client setting [24]. We focus on the case where encryption keys are hidden from an adversary, which
is called secret-key MIFE. In what follows, we omit the term “secret-key” since we only consider the
secret-key variant. The definition of public-key MIFE is presented in Def. A.1.

Definition 2.3 (Multi-Input Functional Encryption). Let F be a function family such that, for
all fedF, f: Xy x - xX,, = Z. An MIFE scheme for &, MIFE, consists of four algorithms.

Setup(lk): It takes a security parameter 1* and outputs a public parameter PP and a master secret
key MSK. The other three algorithms implicitly takes PP as input.

Enc(MSK, i, x;): It takes MSK, an index i € [n], and z; € X; and outputs a ciphertext CT;.

KeyGen(MSK, f): Tt takes MSK, and f € F, and outputs a secret key SK.

Dec(CTy,...,CT,,SK): It takes CTy,...,CT, and SK, and outputs a decryption value d € Z or a
symbol L.

When n = 1, we call it just a functional encryption (FE) scheme and omit the second argument of
Enc.

Correctness. MIFE is correct if it satisfies the following condition. For all A € N, (zq,...,z,) €
Xy x - xX,, feF, wehave

PP, MSK ¢« Setup(1*)
CT; « Enc(MSK, i, x;)
SK « KeyGen(MSK, f)
d := Dec(CT,...,,CT,,SK)

Pr|d= f(z1,...,2n)

Security. We define two indistinguishability-based security definitions for MIFE, namely, message-
hiding and function-hiding. For a stateful PPT adversary A and A € N| let

{1, xz,o, $g71}ie[n],j€[qcni] A ‘A(lk)

PP, MSK « Setup(1*),

CT! « Enc(MSK,4,277)

B = AKeYCen(MSK-) (PP {CT7}ic ) jelacr.])

PRI =Pr |8 =1

Let gsk be a number of queries to KeyGen. We say A is admissible if, in case of gc7,1,...,9cT,n,gsk > 1,
A’s queries satisfy ff(xI"0, ..., 2d0) = fe(aI0t, L adnot) for all (Gi,...,4n) € [gcTa] X -+ X [geTn)

and ¢ € [gsk]. MIFE is message-hiding if, for all admissible PPT adversaries A, the following advantage
of A is negligible in A: Adv){'TT (A) == [P HO(0) — RS (V).

Next, we define a function-hiding property. Let P%!EhE’B (M) be defined the same as Pﬁ[;i’ﬁ (A\) except
that A’s oracle is Osk(3,-) instead of KeyGen(MSK,-), where Osk(f,-) takes (f°, f!) and outputs
KeyGen(MSK, £#). This time, A is admissible if, in case of qcT 1, - - -, gcT.n, gsk > 1, A’s queries satisfy
FEO(LI0 e 0y = pEN (It ety for all (ji,. .., n) € [gcT 1] X -+ X [gcT,n] and £ € [gsk].
Then, MIFE is function-hiding if, for all admissible PPT adversaries A, the following advantage of A
is negligible in A: Advq'fi- () := [PR'EE0(N) = PIEE (V).

Remark 2.1. These security definitions are the so-called selective security, where an adversary declares
the challenge messages before it gets PP. We do not use the term “selective” in security definitions
since we only consider the selective security throughout the paper.

Remark 2.2. In this paper, we assume that gct; > 1 for all i € [n]. Note that this condition can
be easily removed by simply utilizing symmetric key encryption (SKE) [6,19]. Roughly speaking, by
encrypting all ciphertexts and secret keys with an SKE scheme and attaching the secret shares of the
secret key of the SKE scheme to ciphertexts of the MIFE scheme, we can reduce the indistinguishability
in the case where gct = 0 for some i € [n] to the security of the SKE scheme. Furthermore, without
loss of generality, we can assume that gct1 = -+ = gcT.0(= qcT)-



We next define quadratic functions. Our scheme computes the functions on the exponent of a group
element where the discrete log (DL) problem is hard. Thus, we need to bound norms of vectors used
in the scheme so that the decryption algorithm can compute DL of function values. Note that this
restriction is common in all previous FE schemes for inner products or quadratic functions based on
cyclic groups. We formally define the functionality as follows.

Definition 2.4 (Bounded-Norm Multi-Input Quadratic functions over Z). A function family
SrivannF x,c for bounded-norm multi-input quadratic functions consist of functions f : (X™)" — Z where
X={i|i€Z,l]i| <X} Each f € ?%%FX ¢ is specified by ¢ = {c,0}yveimn] € Zm* st |ef|oe < C

and ¢, = 0 if y > v. Let =, be the u- th element of x = (X1,...,Xp) € (X™)™. Then, f specified by
c is defined as

f(X1, .o, xp) = Z CupTpy.

v €[mn]

3 Predicated Inner Product Functional Encryption

In this section, we define a new primitive called predicated inner product functional encryption and
show how to construct it. We use it as a building block of our MQFE scheme.

3.1 Definitions

Definition 3.1 (Inner Products over Bilinear Groups). Let G = (p,G1,G2,Gr,91,92,€) be
bilinear groups. A function family 3"15 g for inner products over bilinear groups consists of functions

f: G — Gp. Each f € F  is specified by [y]o where y € Z7" and defined as f([x]1) := [(x,¥)]r.

Definition 3.2 (Predicated Inner Products over Bilinear Groups). A function family ?P'P
for predicated inner products over bilinear groups consists of functions f : Zg x GP" — GrU{L}. Each
fe 9’5]27@ is specified by y; € Zg and [ys]z where yo € Z7" and defined as

f(x1,[x2]1) == {[f%m)h i Zz’ﬁi ; 8 .

We refer to FE for 3"“3 ¢ and ?S'm g as IPFE and predicated IPFE, respectively.
Then, we define partially function-hiding security of FE for ?S'm o- Intuitively, partially function-
hiding security guarantees that secret keys hide ys (but do not y1)

Partially Function-Hiding Security. Let pFE = (pSetup, pEnc, pKeyGen, pDec) be a FE scheme
for 5% - For a stateful PPT adversary A and A € N, let

{7, x3°T1, 1 Hegen) < ALY
pPP, pMSK <+ pSetup(l)‘_), _

pCT’ « pEnc(pMSK, (xl,[ 5 5] ))
ﬁ/ ‘AOSK B )(pPP {pCT }jG[QcT])

PO () ==Pr |8/ =1

where Osk takes (y1,[y9)2, [y3]2) and outputs pKeyGen(MSK, (y1, [yg]g)) Let gsk be a number of
queries to Osk. We say A is admissible if A’s queries satisfy (x20, y5°) = (x', y51) when (xI,y4) =0
for all j € [gct] and ¢ € [gsk]. pFE is partially function-hiding if, for all admissible PPT adversaries A,

the following advantage of A is negligible in \: AdquF,FE)fh( )= |P51FEfE( ) — P;Fiﬂf()\ﬂ
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3.2 Predicated IPFE from IPFE

We construct a partially function-hiding FE scheme for 95]5;,@ from a function-hiding FE scheme for
3"}; +am+1,c 0 & generic way. Note that k is a parameter for the MDDH assumption. A function-hiding

FE scheme for 9"75 ¢ based on MDDH is easily obtained from a function-hiding inner product FE
scheme described in [32, Appx. A], which is obtained by applying Lin’s technique to the IPFE scheme
by Abdalla et al. [6,30]. This is since the scheme works even if input vectors for Enc and KeyGen consist
of group elements, and Dec first obtains decryption values on the exponent of a target-group generator
and then computes its discrete log.

Construction. Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for S"'kF;HmH’G.

Then, our partially function-hiding FE scheme pFE = (pSetup, pEnc, pKeyGen, pDec) for ?P'P G s con-
structed as follows.

pSetup(1*): Tt outputs (pPP, pMSK) := (iPP,iMSK) « iSetup(1*).
pEnc(MSK, (x1, [x2];)): It outputs pCT as follows:

2z Ly, X := (2@ x1,%,0™,0) € Zy "+

iCT « iEnc(iMSK, [x]1), pCT := (x1,iCT).
pKeyGen(pMSK, (y1, [y2],)): It outputs SK as follows:

a<+ Zzlf, y:=(a®yi,y2,07",0) € ngﬁmﬂ
iSK « iKeyGen(iMSK| [y]2), pSK := (y1,iSK).

pDec(pCT, pSK): If (x1,y1) # 0, it outputs L. Otherwise, outputs iDec(iCT,iSK).

Correctness. Since (z ® x1,a®y1) = (z,a) - (X1,y1), iDec(iCT,iSK) outputs [(x,¥)]r = [{Xx2,¥2)]T
if (x1,y1) = 0. This follows from the correctness of iFE.

3.3 Security of Our Predicated Inner Product FE Scheme
For security, we have the following theorem.

Theorem 3.1. IfiFE is function-hiding, and the MDDH assumption holds in G, then pFE is partially
function-hiding. More precisely, for all PPT adversaries A, there exist PPT adversaries By, Bo such
that

Advzﬁifh(A) < get(BAdVIES ¢, (M) + 2Adv MPPH ().

Proof. We prove Theorem 3.1 via a series of hybrid games H, 1,...,H, 5 for ¢ € [gct]. We show that
Go ~c Hiqp =c -+ ~¢ His ¢ Ho1 =c -+ = Hyr a =c Gi, where Gg for § € {0,1} is the original
security game (described in Fig 1). Each hybrid is defined as follows.

H,1: This game is the same as Gy except that
— for j € [gct], X7 to be encrypted is set as

(z' @x,|0m,x}1]0) ifj<u

x! = ( Okd X2 ’Om ) lf] = (31)

(20 @xI,x3°,0m,0)  ifj>.

— Osk sets y := (a® y1,y8,\y%, (z',a) - (x1,y1) \) for all queries.

11



Gg

{1, <5, ' e taen) < A1)

(pPP, pMSK) := (iPP,iMSK) « iSetup(1*)
77— Z’;, x! = (2’ ®x{,xg’ﬂ,0m,0) € Z’;d+2m+1
iCT? < iEnc(iMSK, [x7]1), pCT? := (xJ,iCT?)
ﬂl — ‘AOSMB")(pPPv {pCTj }]'E[(ICT])

Osk(B,-)

Input: (y1, [y8]z, [y3]2)

a <+ Zlg, y=(a® yl,yg,Om,O) IS Zﬁ‘“’zm*l
iSK <« iKeyGen(iMSK, [y]2), pSK := (y1,iSK)
Output: pSK

Fig1. Partially function-hiding security game for pFE.

H,2: This game is the same as H, 1 except that Osk samples ¢ <— Z, and sets y := (a®y1, y9, y%,~
(x4,y1)) for each query.

H,3: This game is the same as H, » except that x, := (0%¢,| 0™, x45" | 1).

H,.4: This game is the same as H, 3 except that Osk sets y := (a®y1,y3,y3,| (z",a) |- (x{,y1)) for all
queries.
H,5 (v € [gct — 1]): This game is the same as H, 4 except that

UL om0,
— Ok sets y := (a® yl,yg,y%,@) for all queries.
Thanks to Lemmata 3.1 to 3.5, Theorem 3.1 holds. O

Next, we prove the indistinguishability of each pair of hybrid games. Let P(A, G) be the probability

that A outputs 1 in a security game G with the security parameter being A, i.e., P(A, Gg) = P;Fi’ff()\).

Lemma 3.1. Let Hyos = Go. For all PPT ad.versaries A and ¢ € [qct], there exists a PPT adversary
B such that |P(A,H,_15) — P(A,H,1)| < Advig% (V).

Proof. Recall that the differences between H,_; 5 and H, ; are
— xt = (2t @x5,x5°,0m,0) — x* == (0, x5°,0m, 1);

_ ._{(3-@}’1;}’(2),07”,0) ife=1

—ry:=(a® 9, y%, (z*, a) - (x! .
(a@yrylyl0) ife>1 y = (a®y1,y3,¥s, (2", a) - (x{,¥1))

For j € [gct] and £ € [gsk], let x7°0 and y*© be x7 and y* defined in H,_; 5, respectively. Similarly,
let x7! and y“! be x7 and y! defined in H, 1, respectively. Then, it is not hard to see that we have
(x70 yt0) = (x71 y&1) for all j € [gcr] and £ € [gsk]. Thus, we can reduce the indistinguishability
between H,_; 5 and H, ; to the function-hiding property of iFE. Note that since x7 is independent of

yf, yg’o, yg’l, the adaptiveness of secret-key queries does not become a matter in the reduction. This
concludes the proof. O

Lemma 3.2. For all PPT adversaries A and v € [gcT], there exists a PPT adversary B such that
IP(A,H,.1) — P(A,H,2)| < Advy = PP ().

Proof. We describe the reduction B.

1. B obtains a Uy, x-MDDH instance (G, [A]2, [kgl2), where A € ZgSKXk, ko = Az, ki  Z*.
2. When A outputs {x}, [x}°],, [X%’lh}je[qd], B sets (pPP, pMSK) := (iPP,iMSK) < iSetup and gives
pPP, {pCT’ := (x],iEnc(iMSK, [x7]1))} jelger) tO A, where x7 is set as Eq. (3.1).

12



3. For the (-th query to Osk on (y*, [yé’o]g, [yg’l]g), B replies pSK by setting y* := (a’ @y}, yg’o, yg’l,

kpo- (x4, y%)), where a’ is the -th row of A and kg is the /-th entry of kg.
4. B outputs A’s output as it is.

It is not hard to see that A’s view corresponds to H,; if 8 = 0 and H, 2 otherwise. Note that
Ugg,k,-MDDH is tightly reduced to Dy-MDDH. O

Lemma 3.3. For all PPT adversaries A and v € [qcT], there exists a PPT adversary B such that
IP(A,H,2) — P(A,H, 3)| < AdvEG (N).

Proof. Let x7* be x7 defined in H, 5, i.e., as in Eq. (3.1), and x’! be x’ defined in H, 3, i.e., the same
as in Eq. (3.1) except that x* := (0%, Om,xg’l, 1). Let us define that

Y 4
yE,O = (a£ ®yf7YZ’Ovy271at€ ' <XL1’y€>)

0o e, 0 yho Ly
yé,l = (aZ ®Y€,YQ aYZlvtE : <XL1aY€> + (<X; ' Yo > - <X; 7y21>))'

Then, it is not hard to see that we have (x70, y40) = (x31 y&1) for all j € [gct] and £ € [gsk]. Thus,
we can reduce the indistinguishability between the 0-side and 1-side to the function-hiding property
of iFE. Here, we have the two cases:

(x4, y%) = 0: The game condition imposes (x5, y5°) — (x5*, y5') = 0 on A.
(x4, y!%) # 0: Since t; is distributed randomly in Z,, the terms t;- (x4, y%) and t;-(x, y£) 4+ ((x5°, y5°) —
(x5t y§’1>) are also distributed randomly.

Hence, y*° and y%! are identically distributed in both cases, which means that the 0-side corresponds
to H, 2 and the 1-side corresponds to H, 3. O

Lemma 3.4. For all PPT adversaries A and v € [gcT], there exists a PPT adversary B such that
IP(A,H,5) — P(A,H,.4)| < Advy = PP (),

We omit the proof since Lemma 3.4 can be proven similarly to Lemma 3.2.

Lemma 3.5. Let Hy; 5 = Gi. For all PPT adversaries A and ¢ € [qcT], there exists a PPT adversary
B such that |P(A,H,.1) — P(A,H,5)| < Adviz (N).

We omit the proof since Lemma 3.5 can be proven similarly to Lemma 3.1.

4 Multi-Input Mixed-Group Inner Product Functional Encryption

In this section, we define a new primitive called multi-input mixed-group inner product functional
encryption and show how to construct it. We use it as a building block of our MQFE scheme.

4.1 Definitions

Definition 4.1 (Multi-Input Inner Products over Bilinear Groups). Let G = (p, G1, G2, Gr, 91,

92, €) be bilinear groups. A function family 3’,'\7"1"2’@ for multi-input inner products over bilinear groups

consists of functions f : (G*)" — Gr. Each f € FMP . is specified by [y1]2, ..., [yn]2 where y; € Zy

)n7

and defined as f([x]1,...,[x]n) := [Zie[n] (xi, yi)lr.

Definition 4.2 (Multi-Input Mixed-Group Inner Products over Bilinear Groups). Let G =
(p, G1,G2,Gr, g1, ga, €) be bilinear groups. A function family FMCP . for multi-input mixed-group

mi,ma,n,
inner products over bilinear groups consists of functions f : (G7"* x G5**)" — Gr. Each f € FMEIP nG

is specified by ([y1,1]2, [y12]1,---,[Yn1l2, [Yn2]1) where yi1 € Zp't and y; 2 € Zp'* and defined as
f((x1a1s [x12l2), - oo (Knilhs [Xn2]2)) == [(x,y)]r where x := (x1,1,X12,...,Xn,1,Xn,2) and y :=

(yl,la Yi,2,--5¥n,1, yn72)-

We refer to MIFE for 3"7'\7"1'727@ and 3"7'\,"1?";271176 as MIPFE and multi-input mixed-group IPFE, respec-
tively.
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4.2 Multi-Input Mixed-Group IPFE from MIPFE

Let H’LSZG be a function class defined the same as 7, 1P G in Def. 3.1 except that G; and G5 are switched,
that is, each f : GJ* — Gr is specified by [y];. We Construct a function-hiding MIFE scheme for

?ijf;m n.c from a function-hiding MIFE scheme for gMI my +m2 +k+1.n,c and function-hiding FE scheme

for 3" »+k+1,G 11 a generic way. Note that k is a parameter for the MDDH assumption. A function-

hiding MIFE scheme for ff%ln ¢ based on MDDH is easily obtained from a function-hiding multi-input
IPFE schemes in [4,19,32]. This is since these schemes in the literetures work even if input vectors for
Enc and KeyGen consist of group elements, and Dec first obtains decryption values on the exponent of
a target-group generator and then computes its discrete log.

Constructlon Let miFE = (miSetup, miEnc, miKeyGen, miDec) be a function-hiding MIFE scheme

for FM! 1+'lng+k+1 .G and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for S"m h+1,G

GIP

1,ma2,n,G is con-

Then, our function-hiding MIFE scheme gFE = (gSetup, gEnc, gKeyGen, gDec) for M
structed as follows.

gSetup(1?): It outputs gPP, gMSK as follows:
miPP, miMSK«miSetup(1*), (iPPy,iMSK}),..., (iPP,,iMSK,,)«iSetup(1*)
gPP := (miPP,iPPq,... iPP,), gMSK := (miMSK,iMSKj,...,iMSK,).
gEnc(MSK, i, ([x1];, [Xi,2],)): It outputs CT; as follows:
Z(—ZI;, §¢,1::(xi71, 0m27Z,0) (S Z$1+m2+k+1, )A(/LQZ:(XL% —Z70) € Z;n2+k+1
mICTZ — mIEI’lC(mI'\/lSK,Z7 I}Ei,l]l)7 ICT7 — IEHC(IMSKZ, [ii,2]2)
gKeyGen(MSK, {[yi1]y, [yi,2]; }iem)): It outputs SK as follows:

k o k+1
aHZpa yi,l-*(yi,170m27a7 O) € Z;nl+m2+ +

, Yi2=(yi2,a,0) € Z;nﬁkﬂ

Y :=F11:---,¥n1), MiSK < miKeyGen(miMSK, [¥]2)

gDec(gCT4,...,gCT,,,gSK): It outputs

miDec(miCTy, ..., miCT,,, miSK) ] iDec(iCT;,iSK;).

1€[n]

Correctness. Due to the correctness of miFE and iFE, gDec outputs

Do (Fins Yo + Kz yi2)) | = | D (ki yia) + (xi2,¥02)
ZG[TL] T ZG[TL] T
4.3 Security of Our Multi-Input Mixed-Group IPFE scheme
For security, we have the following theorem.

Theorem 4.1. If miFE and iFE are function-hiding, and the bilateral MDDH assumption holds in G,
then gFE s function-hiding. More precisely, for all PPT adversaries A, there exist PPT adversaries
B1,Bo, B3 such that

AdvE 5 (M<(4gct + DAdVRT G (M) + n(dger + 1AV 6 (A) + 4ngerAdviy P+ MPPR()).
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Gs

{i, (B0, [x29)2), (<, [x0a)2) Yie ) gelaer) = A(LY)

miPP, miMSK < miSetup(1%), (iPP1,iMSK3), ..., (iPP,,iMSK,) « iSetup(1*)

gPP = (miPP,iPPy,...,iPP,), gMSK (miMSK, iMSK, ... ,iMSK,)

z; <_Zk ~£1::(]/80m27Z370) = (357 jo)

m.CTg + miEnc(miMSK, i, [%] 1), .CTJ + iEnc(iMSK;, [% ,]2), gCT/ := (miCT?,iCT?)
B+ -AOSK(B’.)(gPPv {gCTz}ie [n],j€lact])

OSK(B? )

Input: {([y?,l]y [Y?,z]l)a ([yz'l,ﬂga [yil,Qh)}ie[n]

a<« Z';, Vi1 = (yf,l,Omz,a7 0), ¥i,2 := (yiz,a, 0)

y = (?1,17 .. -7?7@1), miSK «+ leeyGen(mlMSK, [?]2), ISKZ — |KeyGen(|MSKl, [S’iiyzh)
gSK = (miSK7 {iSKi}ie[n])-

Output: gSK

Fig 2. Function-hiding security game for gFE.

Proof. We prove Theorem 4.1 via a series of hybrid games Hy , 1,...,Hi 5, H2 for ¢ € [gct]. We show
that GO e H171,1 e R H17175 e H17271 e R Hly‘ICT,5 e H2 . Gl, where GB for ﬂ € {0, 1} is
the original security game (described in Fig 2). Each hybrid is defined as follows.

Hi,.1: This game is the same as GO except that

— for (4, ) € [n] x [gcT], X] 1, %] 5 to be encrypted are set as
(Xz:?v ng 7Zga0) OWL2 0 lf] <l
%= (0 gma [0 1)) K= i =1 (4.1)
7, b ) )
(X{j?,0m27zg,0) X 2,—z 0) if 7>
— Osk sets yi1 = (y21.|yia | a,| (zi,a) ), ¥i2: = (y{q,a,| —(zi,a) + (xgjg,y?;) ) for all queries.

Hi,.2: This game is the same as Hy , 1 except that Osk samples t; < Z, and sets y; 1 := (y?,17 y?727 a7),

Vi2 le,a + X’ 2,y12 )) for each query.

Hy . 3: This game is the same as Hy , 5 except that Osk sets ¥51 := (¥ 1,y 0, a, s —|—<x§”g, y22> ), Yio =

(y92,a,—t; +M) for each query.
Hi,.4: This game is the same as Hy , 3 except that Osk sets ¥1 := (¥ 1, ¥, a,| (2 +< i, 27yz D))
Vi2 = (ygza a,| —(z},a) |) for all queries.

Hi,5: This game is the same as Hy , 4 except that

- xi)1 = (x:(l), 12, z;,0)), ii,2 = (Om2,) for all i € [n];

— Osk sets ¥i1 := (¥ 1,500, a, @), Vi = (y{s,a, @) for all queries.
Hy: This game is the same as Hy 4., 5 except that

— izl = xiixié ,zl,O) = (0™, —zz,O) for all (¢,7) € [n] X [gcT];

— Osk sets yi1 = ( yi{l,yi{2 ,a,0), ¥i2:=( y}72 ,a,0) for all queries.

Thanks to Lemmata 4.1 to 4.7, Theorem 4.1 holds. a

Next, we prove the indistinguishability of each pair of hybrid games. Let P(A, G) be the probability

that A outputs 1 in G with the security parameter being A, i.e., P(A, Gg) = Piﬂﬁ;ﬁ()\).
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Lemma 4.1. Let Hy 95 = Go. For all PPT adversaries A and ¢ € [qct], there exist PPT adversary
B1, By such that |P(A,Hi,_15) — P(A,Hi,1)| < AdVETE () + nAdvigs g (A).

Proof. Recall that the differences between H;,_; 5 and Hy, 1 are

_ XL-1 = ( 2(1)70m27zz70) ~g71 = (ngg,omg’ok’l);
= Xpp = (x5, —2,0) — X = (072,08, 1);
oy (yil70m7a70) ife=1
— Yipi=14 "k .
l (y?,h y?,27 a, 0) ife>1
- §i72 = (}’912,37 0) - §i72 = (y?,27a7 _<Z§aa> + <X;:27Yg),2>)'

=

— Vi1 = (y01, 5008, (2, a));

For all i € [ ] JE [ch] e [QSK] let §j’0 and yf’f be iz , and y?, defined in Hy,_1 5, respectively. Let

xl L and ¥ yl ! be X Xj, and y yZ 1 defined in Hy , 1, respectively. Then, it is not hard to see that we have

~7,0 ~£,0 ~j,1 j:0

(x zlez 1> = < zl’yz 1> Hence, for all (ji,...,jn) € [gcT]™, ¢ € [QSK]a we have Zie[n]< 5173’1 1> =
Dici) (X7 1, Vi 1y and can reduce the indistinguishability between x;
in Hy, 1 to the function-hiding property of miFE.

, and yfﬁl in Hy ,—1,5 and those

Similarly, for all i€eln ] j € [qcﬂ le [qSK] let x x S and y yl2 be x XZ2 and y!, defined in Hy,_1 5,
respectively. Let X x and y B ! be X X! 2 andy y o defined in H1 .1, respectively. Then, we have (x Zg, Vi 2)

<~Z’;,§52> Thus, we can reduce the indistinguishability between x§72 and y yL2 in Hy,—15 and those

in H17L,1 to the function-hiding property of iFE. Note that the function-hiding property of iFE in the

multi-instance setting is easily reduced to that in the single-instance setting via hybrid argument. This

concludes the proof. a

Lemma 4.2. For all PPT adversaries A and ¢ € [qct], there exists a PPT adversary B against n-fold

bilateral Ugg, -MDDH such that |P(A,Hy 1) — P(A, Hy, )| < Adv sk MPPH y)

Proof. We describe the reduction B.

1. B obtains an n-fold bilateral Uy, r-MDDH instance (G, [A]1, [Kgl1, [A]2, [Kgl2), where A € ZgSKXk,
Z<—Z’”" Ko = AZ, K; « Zjs<xn.

2. When A outputs {7, ([x ”]1, [x gg] ), ([x]1]1, [x05)2) Ve Jelqer]s B computes gPP, gMSK as in Fig 2
and gives gPP, {miCT/,iCT/ }le[n]je[ch] to A, ‘where miCT? « miEnc(miMSK, i, [/ 1) iCT «
iEnc(iMSK;, [x]. 2] ) with x xZ 15X} 5 being set as in Eq. (4.1).

3. For the ¢-th query to Osk on {([yiyl]y[ym]l),([yi’l]y[yl”%]l)}ie[n], B replies gSK := (miSK,
{iSKi }ien)) as follows:

~ 2,0 . 0,0 ~0 . 0
yf,l = (Yi717yZ',27aé7k5,f,i)v yf,2 = (y?ﬁz,aé, _kﬁ,&i < 227}’1 2>)
¥ = (¥11:-- Yh1), miSK « miKeyGen(miMSK, [y‘]2)
iSK; « iKeyGen(iMSK;, [y 5]1)
where a‘ is the (-th row of A and kg 4 is the (£,7)-th entry of Kg.
4. B outputs A’s output as it is.

It is not hard to see that A’s view corresponds to H; , ; if 5 = 0 and H; , » otherwise. Note that n-fold
bilateral Ug, x~-MDDH reduced to bilateral D;-MDDH with the security loss of n. O
Lemma 4.3. For all PPT adversaries A and ¢ € [qcT], we have P(A,Hy,2) = P(A,Hy ,3).

Proof. We implicitly define t;, := t; , + (x ig,y12> where t; , < Z, for all i € [n],£ € [qSK]. This

does not change the distribution of ¢; ;. Then, it is easy to see that Osk sets y{ | := (yf ?, yZ 5. a, tio+

(x ig,yZ 5)), ?f’Q = (yf:g,aé, ft;)e) in Hy, 2, which are identically distributed to Yi,1>Yi,2 in Hy, 3.
Thus A’s views in both hybrids are identical. a
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Lemma 4.4. For all PPT adversaries A and v € [qct], there exists a PPT adversary B such that
IP(A, Hy,5) — P(A, Hy, )| < nAdviy st MPPH

We omit the proof since Lemma 4.4 can be proven similarly to Lemma 4.2.
Lemma 4.5. For all PPT adversaries A and ¢ € [gct], there exist PPT adversary By, Bo such that
IP(A,Hy4) — P(A Hius)| < AVETE (V) + nAdvES ¢ (V).

We omit the proof since Lemma 4.5 can be proven similarly to Lemma 4.1.
Lemma 4.6. For all PPT adversaries A, there exist PPT adversary By, Bo such that |P(A, Hi 4g,5) —

Ha)| < Adv' 5 (A) + nAdviE ¢ (N).

Proof. For all i € [n],j G lgcT], £ € [QSK] let x 9 and - 1 be X/ 4 and yi, defined in Hy g 5,
respectively. Let % ;1 andy yZ 1 ! be x XZ ;andy yl 1 deﬁned in Hy, respectively. Due to the admissibility of A
against gFE, its querics satisfy that Y,y (0, ¥%) + (29, y29)) = 3 (L, y i) + (3, y53)
for all (ji,...,jn) € lact]", € € [gsk]. Thus, we have 3 ;. (~i?,§f?) = Zze[n](ﬁ,y”) and can
reduce the indistinguishability between Xj ; and %1 in Hy 45 and those in Hy to the function-hiding

property of miFE. ‘
Similarly, for all ¢ € [n],j € [gct], ¢ € [gsk], let X x 9 and y”O be X, and ¥, defined in Hy 4 5,

respectively. Let ii; and ?f; be >~<z2 and %2 defined in H, respectively. Then, we have (x;’ 2,yf§ ) =
<~z . §521> Thus, we can reduce the indistinguishability between )7:52 and y{, in Hy g, 5 and those in

Hs to the function-hiding property of iFE. This concludes the proof. O
Lemma 4.7. For all A, there exist By, Ba, By such that |P(A, Hs) — P(A, Gy)| < QqCT(Adv,B'1 SO +
nAAVIEE ¢ (V) + nAdvay s PP ),

We omit the proof since Lemma 4.7 is proven similarly to Lemmata 4.1 to 4.5.

5 Warm-up: Toy MQFE Scheme

Since our MQFE scheme, presented in Sec. 6, is highly complicated, and its security analysis is quite
hard to follow, we first present a toy scheme, which will help to understand the idea of our full MQFE
scheme. The toy scheme is a MIFE scheme for ??AQQ X.c from the SXDH assumption, that is, it has
two slots and one element per slot. The SXDH assumptlon is captured as the D; assumption where
Dy, consists of all matrices with the form of (a,1)" € Zg. Note that the toy scheme is obtained by not
only just setting the full scheme as m = 1,n = 2, but also given simplification that is applicable only
when m = 1 and the number of ciphertext queries is 2 per slot. Concretely, we omit the elements that
corresponds to U; and v; in the full scheme and some free spaces for security proof.

Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for F5§ ¢ (Def. 3.2), iFE = (iSetup,
iEnc, iKeyGen, iDec) be an FE scheme for S"';G (Def.3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec) be an
FE scheme for FY'? . (Def. 4.2). The toy scheme qFE = (qSetup, gEnc, gKeyGen, qDec) is constructed
from pFE, iFE, and gFE Precisely, since gFE cannot be instantiated from SXDH, the toy scheme needs
an additional assumption such as XDLIN (bilateral 2-Lin). G is fixed by qSetup.

5.1 Construction
gSetup(1*): It outputs qPP, qMSK as follows:
G ¢+ 98c(1Y), w11, w12, Wa 1, Wa 0, U1, Uz, V1, Vs < Zp
pPP, pMSK<«pSetup(1?), iPP,iMSK«iSetup(1*), gPP, gMSK+«gSetup(1*)
PP := (G, pPP,iPP,gPP)
aqMSK := ({ws j }i jef2), {ti, Vi }icj2), PMSK, iIMSK, gMSK).
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qEnc(gMSK;, i, ;): First, it samples vectors as follows:
s, 8,1, t, L < Zy
l = ei/g X (I,L) e Z;, TI: ei/g [029] (L, *1) & Z?)

b= (2,0, swi i, swa, ui, t, 0,0) € Z3
b:= (xiaoa gei/Za Ty Ui, 070) € Z18)

d:=(s,0) €22 d:=(50) € Z2
f:=(r,t,0,0) €Z}, h:=0
Then, it outputs qCT, as follows:

pCT, + pEnc(pMSK, (1, [b]1)), pSK; « pKeyGen(pMSK, (I, [b]2))
iCT, « iEnc(iMSK, [d]1), iSK; + iKeyGen(iMSK, [d],)

gCT,; < gEnc(gMSK, i, ([f]1, [h]2))

qCT, := (pCT,, pSK,,iCT,,iSK;, gCT,)

qKeyGen(qMSK, ¢ = {cu v} vejz): It outputs qSK as follows:

f; = Z Ci,puUps Z Cu,ivu, 0,0 ] € Zf)
HE(2] He(2]

hi =0

gSK < gKeyGen(gMSK, {[5]27 [Ei]l}ie[2])

0i,0 1= Ci,gWi0

qSK := (c, gSK, {Uz‘,e}i,ee[z})-
qDec(qCT,,qCT,,qSK): It computes

[ZI]T = H pDeC(pCTlnpSK,u)c“,V

n,ve(2]
(2] == H iDec(iCTy, iSK;)7%°
4,0€[2]
[23]7 := gDec(gCT,,gCT,, gSK)
[2]T = [21 — 22 — 23]7-

Then, it searches for z within the range of z < [4CX?|.

Correctness. Let si,gi,ri,ti7li,i7bi,gi for ¢ € [2] be random elements used to generate qCT,.
Observe that (1;,17) = 0 for all 4, I € [2], and thus pDec(pCT,, pSK;) = (b;, bs). Due to the correctness
of pFE,iFE, gEF, we have

2 = g Cup (Tp@y + 805, Wy + Tty + t,v,)
wv€E(2]

22 = E , Cp,vSvSpuWy,p
wv€(2]

23 = E Cup(Tptly +t,0,).
wvE(2]

Hence, we have 2 =3 1o CupZpuu.
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Gs

{i,x7%, x2" Y ie o e < AQY) ‘ ‘
qPP, qMSK « qSetup(1*) qCT? « qEnc(qMSK, i, x7"?)
¢ < A(aPP, {qCT7 }ic(2) jef2)

qSK « gKeyGen(qMSK, ¢)

B’ + A(qSK)

Fig 3. Toy security game for qFE.
5.2 Multi-input IPFE Scheme for Security Analysis

Before going to the security analysis of our MQFE scheme, we introduce a message-hiding MIPFE
scheme (the MIFE scheme for ?7'\7"1"'2’@, denoted by miFE = (miSetup, miEnc, miKeyGen, miDec)) that
we use for the security proof. The scheme is obtained by applying the conversion by Abdalla et
al. [4, Sec. 4.1], which converts a single-input IPFE scheme into a multi-input one, to the single-
input IPFE scheme by Abdalla et al. [3, Sec. 5]. The resulting scheme satisfies the message-hiding
security under the DDH assumption. Note that although Abdalla et al. considered the conversion in
the adaptive setting, it is not hard to see that the conversion works in the selective setting. The original
scheme in [3] uses a pairing-free group for the construction, but it is easy to see that their scheme can
be similarly built on pairing groups where the SXDH assumption holds. We use the scheme built on
the pairing groups in the security proof of our toy MQFE scheme. The scheme is described as follows.

miSetup(1*): It outputs miPP, miMSK as follows:

G+ Sga(1Y), Wi,..., Wy « Z0", ay,... 0, 20
miPP := (G, [w1]1,...,[Wn]1), mMSK := (w1,..., Wy, ug,...,u,).

miEnc(miMSK;, i,x;): It outputs miCT; as follows:
S < Zp, mlCT, = [Ci]l = ([8]17 [SW,‘ +u; + Xi]l)-
miKeyGen(miMSK, y1,...,yn): It outputs miSK as follows:

m|SK0: — Z (yi,ui>, miSKi::(—yiTwi,yi), m|SK:(m|SK0,{m|SK1}Ze[n])

1€[n]

miDec(miCTy,...,miCT,, miSK): It computes d where [d]; = [>_, . {c;, miSK;) + miSK];.

i€[n]

5.3 Security Analysis for Simple Case

In this section, we consider the security analysis for the simple case where an adversary makes two
ciphertext queries per slot and one secret key query. The reason for considering two ciphertext queries
is that the ways of changing the first and second ciphertexts in hybrid games are different. In the
general case, the second and subsequent ciphertexts are changed similarly in the hybrid sequence.
Thus, the two-ciphertexts case suffices for understanding the basic strategy for security analysis. In a
high-level view, the security proof of our MQFE scheme is similar to that of the MIPFE schemes by
Abdalla et al. [4] in which the first ciphertexts of each slot are changed from the 0-side to the 1-side
by the information-theoretical property of the one-time pad and the rest of ciphertexts is changed by
the security of an IPFE scheme (in our case, the IPFE scheme corresponds to the MIPFE scheme in
Sec.5.2). Since the formal security proof for our MQFE scheme is given in Sec. 6, we present a security
proof for the simple case in an informal way.

We want to prove Go ~, G1 where Gg is the message-hiding security game (described in Fig 3). In
Gg, the vectors in the ciphertexts and the secret key that the adversary obtains are defined as Fig 4.
We introduce a series of hybrid games, Hy,...,H;s, and prove Gy ~, Hy =, -+ - =, Hi5 =, G;. In each
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qCT} qCT,

bl .= (av}’B7 0, stwi,1, S1wa,1, u1, t1, 0,0) | bl := (x% , 0, s3w12, s3wa,2, Uz, t3, 0, 0)

bl = (z ”3,0 517 0, 71, v1,0,0) | bs:=(zb” ,0, 0, 55, T3, v2,0,0)

di := (s1,0), di := (51,0) d; := (s3, ), 3= (33,0)

i = (r1,t1,0, 0) hl:=0 f3 := (r3,t3,0,0), h3:=0

qCT? qCT?

b?:= (z f 0, s?ws 1, Stwa,1, u1, t3, 0,0) | b3 = (azg 0, s3w1,2, s3wa 2, Uz, t3, 0, 0)

b?:= (2?0, 3, 0, r v,0,0) | b3:= (xgﬁ 0, 0, 32, 13 10,0)

d? := (s3,0), d? := (32,0) d? := (s3,0), d? := (53,0)

f2 .= (+,1,0,0), h? ::0 £ := (r3,t3,0,0), h%:=0

qSK

f = (ZHE[Q] CLpUps 2;16[2] €10, 0,0) fr = (Zu€[2] €2,ptps Zu6[2] €120, 0,0)

711 =0 712 =0

Fig4. Vectors in Gg.

qaCT; qCT}
b:=( x}‘o, , stwi1, stwa 1, ui, t1, 0, ) | bi=(xy°, , ShW1.2, ShWa.a, Uz, b, | tavr | | tavn +ay O:L’ﬁ 0 )
b:=([0] o &, 0, r{,[:],o, ) | b= (al? o, 0, 2, rd v, O, 0
d:=(s},0), d := (5},0) d:= (s},0), d := (55,0)
= (ri,t},|t1v1 ,0), h:=0 f.= (r%,t%,W,O), h:=0
qCT} qCT?
b:=( xf’o, sSwi 1, sTwan, u, 13, , 0) b:=( zz ,  s3wia, shwaa, us, 83, |31 |, v oxg 0 )
l;::(x?‘o. 32, 0, b —(z , 0, 0, 32, 73, v, O, 0 )
d:=(s1,0), d:= (3},0) d:=(s3,0), d = (33,0)

f:= (13,3, t3v1,0), h:=0

£:= (3.8 Bu ]0), hi=0
q

fi = (Z#e[z] Cl-,uu/m’«) £ = (Zue[z] chliuN#? a)
h1:=0 ha =0
Fig5. Vectors in Hj.
qCT; qCTy
b:=( a:i’o, xi’l, stwi,1, sjwa1, u1, t, 0, + a:i Oxi 0 ) | b:=( a:% 1:2 , Shw1 2, S3Wwa0, U2, 13, , +a:1 Ox; 0 )
b:=( 0, o0 3, 0 100, 1 ) | bi=(23% 0, 0, 3, 7w, O 0 )
d *(51»0) d *(51» ) d:= (92a0) d *(Séuo)
5t L0y, himo £i= (r}tb[#1].0), hi=0
qCT;
= (22° 22 stw g, sPwa, ui, 83, , 0) b:= ( 220 22, s3wi 9, s3wa e, us, 13, , 5|+ x%22°)
b:=(z¥° 0, &, 0, 73,0, 1, 0) b:=( x”, 0, 0, 52, 3 v, O, 0 )
d:= (s1,0), d := (31,0) d:= (s3,0), d := (33,0)
= (rf,tf,,o), h:=0 f:= (r%,tz,, 0), h:=0
gqSK
E = (X2 CLulu, €2,102,€1,1,C2,1) fQ = (X ,epg) C2.nUn, C2,2V2,C1,2,C2,2)
h1:=0 ho :=0

Fig6. Vectors in Ha.

hybrid game, the vectors for generating the ciphertexts and the secret keys are changed from Gy, which
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R/ V3 < Zyp
b= (0,1 +[a1"a}" ) P e e R e
b:=(—,0, 1 ) b:=(—, 0, 0 )
d := (s},0), d:= (5},0) d := (s},0), d:= (53,0)
f:=(r1, 1,01 +’$} fopt — e 10‘50)7 h:=0 | f:=(r3,t3,0; +‘$} Loyt _35}093;0‘»0)7 h:=0
qCT? qCT3
¥} <« Z, V3 < Zy
b= (8 +[al e —al%1%] 0) bom (a3 + [0 — 1020 i + el a2 )
b:=(—, 1, 0) b:=(—, 0, 0 )
d:= (8170) d - (8170) d:= (3570)7 d:= (gg?o)
= (rf, 1, 07 +’13} e ‘7 0), h:=0 | f:=(r3, 3,03 +‘ ayteyt — 2yl ‘» 0), h:=0
qSK
fi .= C1,pUp, C2,1V2,C1,1,C2,1) fr:= (> €2, Uy, C2,202,C1,2, C2,2)
! pne(2] - nel2]
h1:=0 ho :=0
Fig 7. Vectors in Hs.
qCT! qCT%
E::( ,0, | tioy [+ btz b =(— +x}1w§1—m}0x;0,+xilxél)
b:= ( 7707 1 ) b:= ( T 7 0 )
d := (s1,0), d := (51,0) d := (s3, ), d := (53,0)
fo=(rith [ tior [+ o) et — 27 %0,0), hi=0 | £:= (r3, th,| thor |+ ) 2yt — 21 %25°,0), h:=0
qCT? qCT3
bim (— [t |+l el — 2110, 0) bi= (— o |+ al'ed" — o} %030, [ o |+ 2} a3 )
b::(f, 1, 0) b:=(—, 0, 0 )
d:=(s2,0), d := (3},0) d:= (s3,0), d := (53,0)
fo= (r}, 83, tor |+ oy apt — 27 %0,0), hi=0 | £:= (13,83, t3or |+ ) 2dt — 21%23°,0), h:=0
qSK
f1 1= (3, cpo ClLuUp, €212, €11, C2,1) £ 1= (X, 1cp2) C2nln, C2,202, €12, C2,2)
h1 =0 hz =0

Fig 8. Vectors in Hy.

is shown in Fig 5 to 19. We frame the parts that are changed from the previous game by a box and
sometimes denote the parts that are not changed by —.

Go ~. Hi. We can justify this indistinguishability by the (partially) function-hiding property of pFE
and gFE. For all 4,4,1,J € [2], we can see that <bf,l~)f> in G and that in H; are equal unless ¢ = I
and j # J. Recall that (15 ,T‘I’ ) # 0 with overwhelming probability if ¢ = I and j # J, since L is chosen
from the exponentially large space, Z,. Hence, the indistinguishability of {b, B} between Gg and Hj is
implied by the partially function-hiding property of pFE.

Similarly, for all i, j € [2], (f7,f;) in Gy and that in H; are equal, which implies, for all Ji,J2 € [2],
216[2](<f]1 )+ hJ*h;) in Gy and that in H; are equal. Thus, the indistinguishability of {f, f} between
Go and Hj is 1mphed by the function-hiding property of gFE.

H; =. Hy. We can justify this indistinguishability by the SXDH assumption, which implies (G, [t],
[Ult]l) . (G, [th, [Vh) where G + SBG(l)\);t = {ti},'”je[g],{’ = {Ui}H]E[Q] — Z%,Ul — Zp.
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T
qCT, qCTz
1,0 11 .1 1 1
b:=(z;", ", sjwi1, sjwe, u1, tr, 0,@) b= (— ol + a7 el — 21020 @
~ o L =
b:=( 0, oo rhulofo)) bi=(—, 0,
- _ el
d:= (s},0), d:= (31,0) 4= (50, 4= 60
fi= (it ot + 2l ey —27%0°,0), =0 £i= (ry, b3, 000 + 2y wyt — a7y, 0), b= 0
qCT? qCT3
2,0 21 2 2 2 11,11 1,010 0.2,
b= (2", ", stwi, stwe,r, wi, 8, 2o +ay @ —2e”,0) | b= (— ol + oyt ay _‘T}OIgOv@)
= 2,0 -2 2 =
b:= (21", 0, 51, 0, 7”177 1, 0) | b:=(—, 0, 0)
2 2 3 ~2
d':(l 0), d *(817 0) d = (s3,0), d:= (53,0)
(letlaj’/l/{+x1 1I117I1 Oxl 0) h:=0 f:= (T‘% 27/t2’(+x1 121721 x%ozgﬁo70)7 h:=0
qSK
fui= (X ez Clntns| 2pueqa) CuUn |y €115 C2,1) fo 1= (e 2t | ey Cu2Vn | €125 C2,2)
hi1:=0 hy :=0
Fig9. Vectors in Hs.
qCT! qCT}
E_(I} O art, stwi, stwa, ui, t1,0,0) : L ssFwi o+ riug + 27020 |+ 2t tayt — 210200, 0)
b:=( 6%, 0, ri,v1,0,0) E::( , 0, 0)
=610 = ([, de= G0
210 0), hi=0 1 1,1 1,0 o
- 2°2,°,0), h: fi=(r3, 5,21 2y — 21 0y°,0), hi=0
aCT3
JsTBwig +riun + 2720 | Fapteyt — 210200, 0) | b= (—,| s35twi 0 + riug + 220220 [+ 2l a2t — 210220 0)
1, 0) | b:=( 0, 0)
: ) : .. d:= (s3 d:= (33,0)
f—(h aptep! — ’iU.L}U.,U%hI: f 2 1 g1%22°0), h:=0
qSK
fl = (3 o) Clasthyns e o) Cual Vs €115 C2,1) fz = (D) 2ot X pe(z) Cun2Vpns €1,2,C2,2)
hy =1} 2“,6[2] C1ulp h =0

Fig10. Vectors in Hg.

Additional sampling for qMSK

‘ﬁ,l,ﬂg%zp‘

P
, Swi1, sjwa, u1, t1, 0,0) b::(—,w1,2++x20 oo tayt — a1 Pay®,0)
. L1 1 ~
b: "1, 51, 0, 71,v1,0,0) b:i=(—, 0, 0)
d: d':(gl,()) d:
f:= (rl,tl,xilxll 27°27°,0), h:=0

+T% 1x}1 —x}’ox}’o, 0) | b :(—,wl,g ++x20 20-}-7% 1x§1 —x} %50 0)
0) | b:=(—, 0, 0)
di= (3[5). d:= 3.0
), hi=1 fi= (13,15, 2 2l — 21%23°,0), h:=0

fl = (Z”E 2] Clopsthyss Z“’E[Q] Cp1Vp» €115 02’1) fr = (ZME[Z] C2,uUp,s ZLLE[Z] Cp,2Vp;s C1,2, 02,2)
hy = ZNE[Q] C1,uUp hz :=0

Fig11. Vectors in Hy.

Hs = H3. These hybrid games are information-theoretically equivalent. This can be confirmed by
setting

_'_xll L1 _ 10,10 (i =
¥ = 1 Ti 1T where 07 < Z,.
4 17,1 1,0 JO . i p
i aytalt %)t (i=
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Additional sampling for gMSK
ﬁl, ﬁz < Zp

qCT! qCT,

i1+ Zp 83— Zp
b::(:r}’o,xi’l,s%wm,s%wg,l,ul,t%,0,0) b:=(—,55wi 2+ ii2 + ,0)
b:=( 0, xi’l, 1, 0, 71,v1,0,0) | p- =(—, 0, 0)
d:= (s1,31), d:= (51,0) d = (s},5}), d = (3,0)
fi=(ri,th, 2 2! —2%21°,0), hi=0 fi=(rd, 83,27 2d — 21%25°,0), h:=0
qCT? qCT3

2«17, 83 « 7,

b:=(— ,81w11+U1+ ,0) b:=(— ,Sgw12+u2+ ,0)
b:=(—, 1, 0) b:=(—, 0, 0)
d:=(s1,4), d:=(0,1) d:= (s3,8), d = (3,0)

f:= (0,62, 27 ]! —xi 021°,0), h:=1 £:=(rd, 63, 7 a2t — 27%22°,0), h:=0
aSK

£1 = (E;},G[Q] Clyuumzue[g] Cu,1Uu, 1,1, C2,1) fr = (Z#e[z] C2,uUps ZMG[Q] Cp,2Vp; C1,2,C2,2)
hi = ZHE[Q] 1 iy hy =0

Fig12. Vectors in Hs.

Hs ~. Hy. We can justify this indistinguishability by the SXDH assumption, and the indistinguisha-
bility can be shown similarly to that between H; and Hs.

Hy ~. H5. We can justify this indistinguishability by the (partially) function-hiding property of pFE
and gFE, similarly to the case of Gy ~, Hj.

Gs ~. Hg. We can justify this indistinguishability by the (partially) function-hiding property of pFE,
iFE, and gFE, similarly to the case of Gg ~. H;. Note that here we also need to consider iFE since
{d,d} is also changed, but it is easy to see that, for all i,j, I, J € [2], (d7,d/) in Hs and that in Hg
are equal.

Hg ~. H;. We can justify this indistinguishability by the SXDH assumption, which implies (G, [s];,
[51s]1) ~c (G, [s]1, [8]1) and (G, [u]1, [rfu]1) ~c (G, [u]y, [it)) where G + Sgc(1),s = {s{}; jef2), 8 =
{85}1]6[2] < Zé,gf < Zp, u = {ui}i€[2];ﬁ = {uz}2€[2] < Zi,r% — Zp.

H; ~. Hg. We can justify this indistinguishability by the message-hiding property of miFE. First, we
prove that, for all j € [2], we have

1103520 — 510219) + ey o020 - o1 0f?) .
=cra(ay 156? Papley) sl ?190%1 - w} fagth).
Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy
Z e xf( i),0 f(9) 0 _ Z cio! 27 @ 11,5(9)71 (5.2)
i,0€[2] i,0€[2]
Z Cl,axf(l)’omg(QLO Z Cz, g(Z 1 g(e) (53)
4,0€[2] 1,0€[2]

where

~
—
~
N2
Il
—_—
[N}
—
S
Il
N =
NI
Q
—
~
S~—
Il
—_——
. =
—~
~. -~
I
N =
N
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qCT;

b.:(z?O’xl ,S1w11,8%w2,1,u1, t, 0,0) b:=(— S25111712 + T1uz +:13? 135;1:0)
b:=( 0, =", 3, 0, rf,v,0,0) g;:(f, 0, 0)
di= (s} [s151), d:= 30) d = (sb[ 5132 ], d = (51,0)

f:= (ri,th, 2y eyt =2 %0°,0), hi=0 £i= (rd, o0 el — 220210,0), hi=0
qCT? qCT3

b 7(751 ,wl ,51w11,51w21,u1,t1,++x11x1 ,0) | b:=(—, 5251w12 +| 7 ug +x11x2 ,0)
b.:( 0, 0, 53, 0, ri v, 1, 0) b:= (— 0)

d:= (2,22 ), d:= (0,1) d:— (53,) d 7(32,0)
f _(O tl:‘r} 11‘1171‘1 ‘rloao) h:=1 f:= (r%,t%,xi l‘rgl ‘Tl xzovo) h:=0
qSK

£ 1= (e C2.mttns Dz €2V €1,2,€22)
hz =0

f; = (Zug 5 cl,uumZpe[Q] Cu,1Upu, C1,1,C2,1)
hi:=|r? Zu€[2] C1,uUp
Fig 13. Vectors in Hy.

Note that Eq. (5.2) represents the restriction f(z2%, 23%) = f(z7',23"), and Eq. (5.3) represents the
restriction f(21%,23%) = f(z1', 23"). Eq. (5.2) — Eq (5.3) implies Eq. (5.1) by reflecting the fact that
c2,1 = 0, which is defined in Def. 2.4.

Thanks to the message-hiding property of 2-slot miFE and Eq. (5.1), we have
,miCT2°, miSK} ~, {miPP, miCT}"", miCT4!, miCT2", miSK}

{miPP, miCT}? miCT}?

where

miPP = (G, [w1,1]1, w1 2]1)

m|CT15 ([s]l [slwll—i—ul—i—xﬂw xlﬂxlﬁ])
m|CTJ b — ([52]1 [52w1 o + g + 7] 2,6 J B _ %”81‘%’5]1)

message vectors
miSK =

( Z C1,plly, —C1,1W1,1, —C12W1 2, €1,1,C1,2).
——

He(2] key vector

Roughly speaking, [b]; in qCT?,qCT3,qCT3 is simulatable from miCT%’ﬁ,miCTé’ﬁ, miCTg’ﬁ, respec-

tively, and [h1]; in qSK is simulatable from miSK, and the case of 8 = 0 corresponds to Hy and g =1

corresponds to Hg.

H8 . Hg.

H6 e H7~

Hg =, Hip. We can justify this indistinguishability by the (partially) function-hiding property of pFE,

iFE, and gFE, similarly to the case of G5 =, Hg. At this point, all ciphertexts for slot 1 are changed

from encryption of 0-side to that of 1-side.

Hio =~ Hi1. As stated above, Gy to Hyg are hybrid games for processing the ciphertexts for slot 1.

Next, we apply a similar procedure to slot 2. Hy; in the process for slot 2 corresponds to H; in the

process for slot 1. That is, Gig =, H11 can be proven similarly to Gy ~. H7.

Hy1 =, Hi>. This indistinguishability can be prove similarly to the case of H;y . Hg, but we need an

additional tweak in this case. First, we prove that, for all j € [2], we have

We can justify this indistinguishability by the SXDH assumption similarly to the case of

co (@3 0e]? — 2y w]?) + con (303" — 230, °) + () 2y — a0y ”) (5.4)
= (a3 o]t —ay alt) e (y eyt —wytayt) (el — ey ). .
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qCT? qCT3
b:=( mi’o, mi’l, siwi 1, s1w2,1, u1, t1, 0, 0) b:=( :ré 0 :ré ! shwn o, shwa g, uz, t3, @, 0)
b:=( 0, a1, 3, 0, r},0,00) &q@ﬂo,(x 3, 73,02, 0, 0)
d:=(s},[0]), d:= (3},0) d:=(s5,[0)), d:= (55,0)
fo=(ri,th, a7 e)t — 27%27°,0), h:=0 f:=(ri, ts, a0 eyt — 27%25°,0), h:=0
qCT? o qCT?

321’ , , 31w1 1, 81w2 1, u1, 15 bi( xg 07 mg 17 Sngz’ S§w2727 us, 2, @7 0)
b=( 0, E’ ’ ”1’@ bi=(z3° 0, 0, 3, 73 v, 0,0
d:= (317@) d:= ’@) d:= (827@)1?2_1 (52710()) 2,0
£i= (12,12, 2" 1:&1 210210 ), h::@ f:=(r3, t3, 07 25" —27%22°,0), h:=0
gSK
jfil = (Zue[z] CluUp, Zue[z] Cp,1Vp, C1,15 C2,1) f2 = (Zue[z] C2,pUp, Zug[z] Cu,2Up, €1,2, C2,2)
h1:= ho :=0

Fig14. Vectors in Hig.

Additional sampling for gMSK

‘ul,aQ — 7,
qCT; qCT}
éi — Zp é; ~— Zp
bim( ‘slw21+u1+zgnzlo+zll 11 10 1.0‘_’0) ~A:( - ,0,0)
b= ( 0, 0) | b=([0]} 0,83, 3, v2, 0, 0)
d: , d:=(31,0) d = (s3,| 8 ), d = (53,0)
f: — a0 el eyt — 22020 ), hi=0 | fi= (rd, th ey eyt — a2y ey eyt — 25020 ), hi=0
qC qCT3
i« 7, 8 7,
b—(—‘€1w11+ul+J§0nf0+xﬁlazfl—rﬁoz?0‘0) b :=( | 8wa s +idin + 220230 +ay oyt — 10;‘0‘0)
0, 0) | b:=([0}0,0,[0][0] v, (1] 0)
5=mm d = (s2, d:..
£im (el s} — ol [l et~} s} kim0 | £ (0 al el — ol a3 [ah ap’ — apab? ], =[]
qSK _
f1 1= (3 e o) Clutin, 3 e(2) Cuad U, €11, €2,1) 52 = (e C2mtas X ey Cn2Vns €1,2,C2,2)
h1:=0 ho = Z“E[QJ c1 iy
Fig15. Vectors in Hij.
Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy
f(),0,_f(0),0 _ f@@),1, f(6),1
E Cipx; Ty = E Ci o] Ty (5.5)
i,0€[2] 1,0€[2]
9(#),0_9(0),0 _ 9(i),1_g(0),1
E Ciox; Xy = E Cioxy Ty (5.6)
i,0€[2] i,0€[2]
where
£00) 1 (i=1) (i) 1 (i=1)
i) = ) g(i) = ) .
2 (i=2)’ 1 (i=2)

Note that Eq. (5 5) represents the restrlctlon

restriction f(z1°, z5°) = flzy', z3"). Ba. (5

c2,1 = 0, which is defined in Def. 2.4.

5) -

f(xp', z3"), and Eq. (5.6) represents the

( 6) 1mphes Eq. (5.4) by reflecting the fact that

flay
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Additional sampling for gMSK
ill, Uy Zp

qaCT; .
5« 17, q1CT2
,_ 2,1 1,1 S2 Zp
U L
oy 3o b.:(77070)
d: (81751)71(1 .171(817(1)0 1,0 1,1, 1,1 1,0_1,0 d:= (53, 5), d = (53,0)
fo=(rl th 2 eyt — a0’y ey eyt — ) | g (ri, t3, e eyt — 270220 ad el — 220220, hi=0
bz 0 1 1 Lo, Xyl Ty 2 Ty
qCT?2
o qCT3
S Lo 3«17
b p
b= S i |2y @} 0) b:(*52w22+w2+m’0)
b'*(*y 0, 0) bom( 1 0)
d:(% )d—(ShO) d7(27)d (017)
fo= (], 8,2y et — 27 eyt — 2y 00 G 1,1 2_1 1,0,2,0 1,1 1,1 1,0 1,0
h:=0 S P 2 o= (0,63, ay" — 2wy wytayt — 2y 0y”), hi=1
qSK
fi o= (e Gl 2opez) GV €11, C2,1) 2 = (Xpserz C2nttn Dpery w2V, €12, €2,2)
h1:=0 hy = Z,Le[]cl wiip| +ero(ei eyt — ap%zy® — (et el — a2 0))
Fig16. Vectors in Hio.
Additional sampling for gMSK
’l‘;’L1,’l’1‘,2%Zp
qCT% qCTL
5« 7, 2
b= 51w21+u1+x2 zrto 2Ly
2 b:=(—,0,0)
b:=(—, 0, 0) 5 :(7707 0)
d:= (S%xul) d _(glvo) d = (sl :17 a 0
f:= (r% t 33} 13711 x} Py I; 13311*33;’0371’0) o (812)312)711 1_1(827 1)0 1,0 1,1 1,1 1,0,1,0
bz 0 ’ o fi=(ra,t5, 00 @y — 27 25", 3y Ty — Ty Ty ), h =0
qCT?
Ey aCT;
i3 =2
Z
b= (—,8w2 + s + 22", 0) %2 B 21 2.1
b (— 0 0) ~::(—52w22+uQ+12 zy, 0)
d:(z 7)& ( 70) b::(iv 1, 0)
S T di=(s3,53), d:=01
£i=(r?, ], 2y 2yt — 270277, 2 1 Lighl _ ;10,10
f:=(0,1, 1 , Ty Ty — T ), hi=1
h:=0
qSK

fl = (Zue c1, uumZ c2] Cp 1V, €115 C2,1)
h1:=0

2 1= (Z;,,e[z] C2,uUp,y Zp,e[z] Cp,2Vp; €1,2, C2,2)

f:
7 . 1,1 1,1 O-T,0 1,121 =770
ha i= 3 epo CLptip + 81,2M_W))

Fig17. Vectors in His.

Thanks to the message-hiding property of 3-slot miFE and Eq. (5.4), we have

{miPP, miCT}"°,
~ {miPP, miCT;"!,

where

miCTT?, miCTy?, miCT?, miSK}
miCT>! miCTy", miCTy ", miSK}

miPP = (G, [w21]1, [wa,2]1, [w2,3]1)

miCT{‘ﬂ = ([5]1]1 [3J1w2 1+ U + x5 2.5 J p_ %’[%Jfﬁh)
miCTy? = ([83]1, [3waz + iip + 23 723” — 2} P2l ?)))
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1,0 —.1,0 1,1 1 1 1
b= (27, 2", stwi 1, stwa, ul, ti, @ 0) b:=(z3y, xy, sawi 2, Sawa,2, U2, t3, 0, 0)
. 1,1 ~1 . 1,1 ~1 1
b= ( 07 xl’ ) S1, 0» 7‘17 V1, 0 O) b 7( 07 IQ) ) 07 S2, T2, V2, 07 0)
1 (] 3. (=1
d:= (s1,|0)), d = (31,0) d:=(s2,|0]), d:=(532,0)
ol T 1 11 1,0 1,0 1,1 1,1 1,0,1,0 o B a R 1,0.1,0 1,1 1,1 1,0 1,0 o
£i= (1, tne) ey~ my wy —ay ), he=0 | fi= (ot @y wy —wwy @y my T —wy ay ), hi=0
3
qCT;
qCT?
) 2,0 b :(952 .zt s3wi, s3waa, us, t),@, 0)
b:= (a7 :ml 731“)1 1751“)2 laul7t11 , 0) 21 .
- 2,1 ;: : 5 g @
b= ( 07 Ty, 07 g‘?’ T17 U1, 0 0) 7 7 52 ) , 2 V2 70)
(&2 q.— (2 X 2 3. ~2
d:= (3,0, d:= (%.0) d:= (s3,[0)). d:= (53 [0)
. 2 2, 1,1 1,1 1,0 1,0 1,1 1,1 1,0 1,0 o
fi=(ri,th,zy xp) —xy ),y ) —xy 2y ), hi=0 £ (2] 2 gt 1,0 1,0 1,1 1,1 10,10y
=t Ty my —r T, Ty Ty — Xy @), b=
qSK
£1 = (30 o) Clonthins 2 puepa) Gl Vs €115 €2,1) 2 1= (X L) C2mtiins Do ez Cni2Vpn, €1,2, C2,2)
h1:=0 ho =

Fig18. Vectors in His.

qCT!? qCT,

% 7$i175%w17175%w2,1,U17 ti 07 0) b:= (.T%(),.Tél, Sle 2, 52w2 2, U2, t27 O 0)
b:=( 0 xil 51, 0, 7i,v1,0,0) | b:=( O, x2 , 0, 53, 13, v2,0,0)
d d:=

= (8%70)? d e (g%vo) ( d - 5270)

=(ri,t},@,@), h:=0 (rg,tg,@@, h:=

qCT? qCT2

bi( w%’o, w?’l, s2wi 1, s3wan, w1, t2, 0, 0) | b:=( mg‘o, mg’l, s3w1 2, s3wa 2, ua, t3, 0, 0)
b:=( 0, x>, 0, 32, 13, 0,0,0) | b:=( 0, 22!, 33, 0, 73, v2,0,0)
d:=(s2,0), d := ) d:= (s3,0), d := (53,0)

f.= rl,tl,@@ f :(r%,t%,@,@), h:=0

fl = (ZMEP] Cl,uUp, Zue[2] Cu,lvuaﬁv @) £2 = (Zue[2] C2,uUp, Z,,e[z] Cu,va@a @)
h1 =0 h2 =0

Fig19. Vectors in His.

miCT, LB — ([53]1, [s3w23 + i3 + 2] LB 25 }’Bazé’ﬁ]l)

message vectors

miSK = ( E C2, Uy + C12U3, —C21W2 1, —C2 2W2 2, —C1 2W2 3,C2 1, C2 2, C1,2)-
N————’

nel2] key vector

Roughly speaking, [b]; in qCT},qCT?,qCT3 is simulatable from miCTl’B miCT?”B, miCTé’B7 respec-
tively, and [hg]l in qSK is simulatable from miSK and miCTy L8 More precisely,

T = Ky — CiKy — 1 2(Ca + o152 _ 10510y
where miCT5” = ([C4]1,[Ca]1) and miSK = (Ky,...,Kz). The case of 8 = 0 corresponds to Hy; and
B = 1 corresponds to Hys.

Hio ~. Hi3. We can justify this indistinguishability by the function-hiding property of gFE. For
all .7 € [2], <fj /f\> + hjhZ in Hio and that in Hi3 are equal, which implies, for all ji,js € [2],

216[2](@]1 ?) + hjlhi) in Hy, and that in Hys are equal. Thus, the indistinguishability of {f,f,h, h}
between Hio and Hi3 is implied by the function-hiding property of gFE.

His ~. Hi4. This indistinguishability can be proven similarly to Hg ~. Hig.
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Hi4 =~. Hi5. Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy

11,11 1,0 1,0
E Ciolr; xy —x; xy") =0,
1,0€[2]

o~

which implies, for all ji, j2 € [2], 32, (7, 8) + hI'hi) in His and that in Hi5 are equal. Thus, the
indistinguishability of {f ,f} between Hi4 and Hjps is implied by the function-hiding property of gFE.
His ~. G;. It is easy to see that this indistinguishability is implied by the partially function-hiding
property of pFE, since, for all 4,4, I,J € [2], (bj,l;ﬁ in Hy5 and that in G; are equal.

6 Our Full MQFE Scheme

6.1 Construction

We present our MQFE scheme, that is, a MIFE scheme for ?M%F x,c- 1t is convenient for us to define
the following functions that relate indices in [n] x [m] with those in [mn]:

— location function, lo : [n] x [m] = [mn], defined as lo(z,y) = (x — 1)m + y;
location set function, Is : [n] — 20", defined as Is(z) = {lo(z,1),...,lo(z,m)};
— slot function, sl : [mn] — [n], defined as sl(x) = [z/m];

— entry function, en : [mn] — [m], defined as en(z) = z — m(sl(z) — 1).

Note that we have lo(sl(z),en(z)) = x for all x € [mn] Let Dy be a matrix distribution. Let pFE =
(pSetup, pEnc, pKeyGen, pDec) be an FE scheme for 9271 2t (mnt 2k (2 k)m.G (Def. 3.2), iFE = (iSetup,
iEnc, iKeyGen, iDec) be an FE scheme for 3"k+1 ¢ (Def.3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec)
be an FE scheme for S:MGIP (Def. 4.2). We construct our MQFE scheme qFE = (qSetup,

2k+m?2n,1,n,G
qEnc, gKeyGen, qDec) from pFE, |FE and gFE. Note that G is fixed by qSetup.

gSetup(1*): It outputs qPP, qMSK as follows:

A
G « 93(;(1 )
k+1 77 7 kxk
Al, .. .,An < Dk, {Wi,j}i,je[mn] < Zp+ s Ul, .. -van L pr
k kxk = ol k
ulw"vumn(_Zpa Vla-- Vrnn<_Z x , V1, an(_Z

pPP, pMSK « pSetup(1%), iPP,iMSK < |Setup( ), gPP,gMSK « gSetup(1?)
qPP := (G, pPP,iPP, gPP)
qMSK = (Ala ) Ana {Wi,j}i,je[mn]7 {ﬁia U, Vi7 V1'}726[7717’1]7 pMSKa IMSK7 gMSK)

qEnc(gMSK, i, x;): Let Wlo(Z K = (W1,lo(i,0)» - - - » Wimn,lo(i,x))- First, it samples vectors as follows:

S« Z*, St 7k L+ 7,

1:=e;, ®(1,L) € Z>", 1:= e/, ® (L, ~1) € Z2"

byt = (i, 0) € Z3, bra i= (Wigg ) (Ln @ AiS), Wo(in)) € Z{mrt D
b=t Vigtin € ZE, by =by,5:=0€ ZT, b.g:=0¢cZ™

b, = (be1,...,beg)

it i= (T4, 0) € Z2, brez := (€io(i ) jmn @ 5,1 Upg(i ) € Z{mmHDE

brs = Vi €ZE, bra=b.5:=0€Z" b.g:=0€Z™

K= (Bn,la .- bn.ﬁ)

d == (a;,.8,0) € ZE*!, d := (5,0) € Z}H!

£l o= (r,t) €220, foy = =fo, =0€Z, fi=(fi,f01,...,f0,), h:=0

o
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T

1, T

where z; . is the s-th entry of x; and a; . is the 7-th row of A;. Then, it outputs qCT, as follows:

PCTio(1.0) <= PENC(PMSK, (L, [bi]1)), PSKig) <= PKeyGen(pMSK, (1, [by]5))

iCT,.» + iEnc(iMSK, [d,]1), iSK; + iKeyGen(iMSK, [d]5)

gCT,; < gEnc(gMSK, 4, ([f]1, [h]2))

qCT,; = ({pCTIo(i,n)v pSKIo(i,m)}KG[mb {iCTi,T}Te[kH]a iSK;, gCT,).
qKeyGen(gMSK, ¢): It outputs qSK as follows:

(6.1)

fi1:= Z cw,ﬁﬂu,,, Z Cu Vv, | € Zf,k
pEls(i) pE[mn]
ve[mn] vEls(i)
5,2,1 = :Ni,2,n =0c Z;,'LZ, [= (E,hﬁ‘,z,h e 7?}'72,71), hi =0

gSK < gKeyGen(gMSK, {[f:]2, [i]1 }icpn)

— E k+1
;0= Cu,vWyu,v € Zp

HEIs(i),
vEls(9)

qSK = (C, gSK> {U'i,e}z‘,ee[n])~
qDec(qCTy4,...,qCT,,,gSK): It computes
[21]T == H pDec(pCT,,, pSK )~

p,vE€[mn)
[Z2,i,9]T = (iDEC(iCTg,l, ISKZ)7 ey iDec(iCT97k+1, ISKZ))
[23]T := gDec(gCTy4,...,8CT,,, gSK)
2l i=[21— Y (22..0,040) — 237
1,0€[n]

Then, it searches for z within the range of z < |m?n?CX?|.

Correctness. Let zjo;,x) = ¥i s and Si,gi,ri,ti,li,i,bi,gi be random elements used to generate

qCT,. Observe that (1;,1;) = 0 for all 4,1 € [n], and thus pDec(pCT,,pSK;) = (b;,b;). From the
correctness of pFE,iFE, gEF, we have

21 = Z Cuw(Tpxy + WZ7VAS|(,,)SS|(Z,)§S|(M) + rST(H)INJuuV + tST(V)VVVH)

wvE[mn]
Y (z2i0.0i0) = Y. D> cuww, ,ApSes;
1,0€[n] 1,0€[n] p€ls(i)
vEls(0)
= Z CowW,  Ag()Sei(S:
v W sl (1) sl (1) Ssl ()
v E[mn]

T17 T =
z3 = g E cupt; Uy, + E cuvt; Vv,

i€[n] \ p€ls(z) p€E[mn]
v€[mn] vels(i)
= Z C#vV(r;ll—(p)Uuuu + tJ(U)VVG#).
p,vE[mn]

Hence, we have z = Y CuvTuy.

v €[mn]
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Gp

{Z’Xl ’ 1 }ZE[”]]E[QCT <_‘A( )

qPP,qMSK < gSetup(1*)

qCT? « qEnc(qMSK, i, x7?)

B+ AT (qPP, {qCT? Y ic i jclacr)

HTI

{Z7Xz ) X }ZE[n]JE[QCT <_‘A( )

qPP, qMSK +— gSetup(1?*)

aCT! + qEnc](aMSK, 7, j, {5, x5 bc e ger))
B’ = AKSGNNKD (PP {qCT?} o e acy])

Fig 20. Security games for qFE.
6.2 Multi-input IPFE Scheme for Security Analysis

Before going to security analysis of our MQFE scheme, we recall the multi-input IPFE scheme (the
MIFE scheme for 3"7'\7/'1”: @, denoted by miFE = (miSetup, miEnc, miKeyGen, miDec)) by Abdalla et al. [4,
Sec.4.1] that satisfies the (adaptive) message-hiding security under the MDDH assumption. Although
the original scheme uses a pairing-free group for the construction, it is easy to see that their scheme can
be similarly built on pairing groups where the MDDH assumption holds. We use the scheme built on
the pairing groups in the security proof of our MQFE scheme. We denote the advantage of A against
miFE by Advﬁ'&%(A). The scheme is described as follows.

miSetup(1*): It outputs miPP, miMSK as follows:
G+ Sec(1Y), A1, .., Ay« Dy, Wi, ool W, = Z2FD gy oy, - 20
miPP := (G, [A1]1, ..., [An]1, [W1A1]1, ..., [WRAL]L), mIMSK := (Wq,...,W,,uy,...,up,).
miEnc(miMSK;, i,x;): It outputs miCT; as follows:
S+ Z’;, miCT; := [c;]1 = ([As]1, [Wi A s + u; + x3]1).
miKeyGen(miMSK, y1,...,y»): It outputs miSK as follows:

miSKo 1= — > (yi,w;), miSK; := (—y, Wy, y:), miSK := (miSKo, {miSK;}ien)-

i€[n]

miDec(miCTy, ..., miCT,, miSK): It computes d where [d]1 = [}, (,j{(ci, miSK;) + miSKo]s.

6.3 Security Analysis of Our Full MQFE Scheme

For security, we have the following theorem.

Theorem 6.1. If pFE is partially function-hiding, iFE and gFE are function-hiding, and Ggg outputs
bilinear groups where the Dyp-MDDH assumption holds with overwhelming probability, then qFE is
message-hiding.

Proof. We prove Theorem 6.1 via a series of hybrid games H? for « € [n],n € [gct]. We show that
Go ~: Hi =~ -+ =~ HI =, H} ~, -+ =, HI™ =~ Gy, where Gp for B € {O 1} is the orlgmal

security game. Each (hybrid) game is defined as described in Fig 20, where qEnc and quyGen work
as follows. In what follows, we use a bijective query location function gl : [n] x [qCT] [ngcT], defined

as ql(z,y) := (x — 1)gcT + .
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qEnc(qMSK, i, 7, {XZ’O, XZ’I}pe[n},ue[qCT])= It samples vectors as follows:

kxk 3 k
S« Z,"", s,v,t < Z,, L+ Zyp

1:=e;, ®(1,L) € 22", Ti=e;, ®(L,~1) € 2

b1 = (20| 205 |) € 22, bra = (Wi T @ AyS), Upe(s ) € Z{™ TV

1,k Y,k

by 3= tT\/vlo(i,m) € ZZ

1,1 T 1,0 T e -
zpoixbt — X0 ifi=1
v b m
bm 4 = ez
' Gl 11T 50, 107 | s ) P
T;X, Ty X, ifi#.

b5 =0€Z" beg:=0€Z™ b, :=(bs1,...,bug)

i1 . .
B, Qi) | iFallig) <allen) 2,
(@l).0)  if ql(i,5) > ql(z.n)

br.2 1= (Cio(i,m)/mn © 5,1 Ulo(in) € Z{™ ¥

0 ifi=uAj<nm
b,€73 = Q;Or(i#_@) EZZ, b,€74 = le:L/\j >77 EZZL

0 ifi#1
]~3~75 =0€7Z,, l~),.;76 =0¢ Z’;m, BK = (Bn,l, ol Bme,)
d, := (a;,8,0) € ZEH d:= (8,0) € Zk*!
fy = (r,t) € 22"

0 if 0>
fo0:= (xg’1 ® xé’l — x;’o ® Xé’o)—r else if 6 =1V ql(i,j) <ql(t,n) e Z;nz
(xg’1 ® x:,’l — xg’o ® xé’o)—r else

f = (fl,fg_’l,... ,f2,n), h = 0

Then, it computes qCT/ in the same way as Eq. (6.1).

qKeyGen(qMSK, c): Let Cis(9),io(i,x) := (Clo(6,1),10(i,k)> - - - » Clo(8,m),lo(i,x)) 3N Cis(g) 1s(i) = (Cis(6),l0(i,1)5 - - -
Cis(0),lo(i,m))- 1t outputs qSK as follows:

fiq1:= E cml,ﬁuuy7 E Cu Vv | € Z?)k
1EIs(z) pE[mn]
vE[mn] vEls(i)

f00:= ez
fo=(F1.fi2a,. . Fion), hi=0

gSK  gKeyGen(gMSK, {[f:]a, [i1 }ie(n))
9= Z Cuw Wy, € Zl;Jrl

pe€ls(i),
vels()

aSK := (¢, gSK, {7 0 }i,0¢[n))-
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Note that the framed parts are changed from qSetup, gEnc, or gKeyGen. Next, we prove the indistin-

guishability of each pair of hybrid games. Let P(A, G) be the probability that A outputs 1 in a security

game G with the security parameter being A, i.e., P(A, Gg) = PjEIETf (N).

Lemma 6.1. Let HI™ = Go. For all PPT adversaries A and v € [n], there exist PPT adversaries
B1,Bs, Bs such that

[PCALHIT,) — POA, HE| <2AdVEE 4 (3) + 2AdvETE, ()
+ 20+ mPn)Advy! PP () 279,

Lemma 6.2. For all PPT adversaries A,. € [n], and n € [2,qcT], there exists a PPT adversary
B1,...,Bs such that

IP(A, HI™Y) = P(A, HI)| <2Advh Eq (V) + 2AdVEES ¢,(A) + 2AdvE g (V)
+ AdVETE () + 2(mk + 2)Advy MPPR () 4 2720

Lemma 6.3. For all PPT adversaries A, there exists a PPT adversary B, Bo such that
P(A, HIT) — P(A, Gy)| < AdvRT o (M) + AdvE T (V).

Thanks to Lemmata 6.1 to 6.3, Theorem 6.1 holds. We present the proofs of these lemmata in Sec. 6.4.

O
6.4 Proofs of Lemmata 6.1 to 6.3
Proof of Lemma 6.1. We introduce more hybrid games ﬁL’h RN H\L’g, to prove Lemma 6.1. We prove
that HY", ~. H,1 ~. --- ~. H,5 =~ H!. H, for ¢ € {1,...,5} is defined the same as H!", except

qct

that gSetup, qEnc/<";, and qP@_(S/en are replaced by q?eﬁp, qﬁc\%, and q@n, respectively. For

reference, we first describe qEnc?T, and gEnc..

—_~—

qEnc’, (qMSK, i, 7, {XZ’O>XZ’l}ue[n],ue[qCT])’ It samples vectors as follows:

S« Z*, St ZF L+ 7,
l:=e;, ®(1,L) € 22", T:=e;, ®(L,~1) € "
b1 = (@], 2]%) € Zp, bz = (Wi (Lnn @ AS), Wi n)) € Zy™" D

bn,3 = tT\flo(i,ﬁ) € Zl;

gcmxl’llT — xl’oxl’of fi=¢—1
b/{4 — 1L,KL— i,k L— c Z;n

G 1,17 40,107 .o
Ty X, —xpx,ny iFe—1

b.s5:=0€Z", bug:=0€Z™ b, :=(be1,...,bug)

B {(0,%3;'&”) if al(i,j) < al(e — 1, gcr)
' (mfm 0) ifql(i,7) >ql(e — 1, qcT)

b2 = (€io(im) /mn @ 5, Ulg(in)) € Z{rn Dk

Brs = Vi) € ZE, B = by = 0 € ZI, byg = 0 € Z™

2
e Z2,



P
0 ifod>.1—-1
. 1,1 1,1 1,0 1,0NT oo m?
=9 (" ®x, —x;7 ®x%x, ) elseifi <. €Z,
Gl o oLl 5,0 o LONT
(x]" @xp, —x7@x,)"  else

f:= (f17f2717 PPN ,fgm)7 h:=0.

Then, it computes qCTg in the same way as Eq. (6.1).

—_~—
—_~—

qEnc; (qMSK, i, 4, {XZ’O,XZ’l}HE[n],DE[qCT])! It is the same as qEnc’“"} except the way of defining the
following vectors:

xi’ix}’ﬁ — x;’gx}’OT ifi=1
b“74 = i T 0 T
mi’ﬁx}’l — x?:Hx}’O ifi #1
(0,22)) ifql(i,5) < al(t—1,qcT)
b= 410,20, | ifal(i,j) = al(,, 1)
7,0 . ..
(27:,0)  ifql(d,5) > ql(e, 1)
0 ifi=tAnj=1
by = ifi=uAj>1
0 ifi#.
0 if 6>
(xg’1 ® xé’l — xg’o ® x;,’o)—r elseif 0 =A<
f20:= (xg’1 ® Xé’l — x{f’(’ ® Xé’o)—r elseif @ =t NP >0

(x,7” ® x;’l -x'® x;’O)T elseif i <

j,1 1,1 i,0 1,0
(xI" @x," —x" ®x,0)" else

—_~

Note that the framed parts are changed from qEnc!",. Next, we describe q?e—ap, qE]c\L’C, and q@n.

q?eﬁp(lk): It works the same as qSetup except that gqMSK contains additional elements as follows:

Vi, Vs < 23

qMSK = A1,---,An,{Wi,j}i,je[mn],{Ui,unviﬁi,}ie[mn]
pMSK, iMSK, gMSK

qEnc, 1 (qMSK, i, j, {XZ’O,XZ’I}I_LE[n],ye[qCT])! Let \7|5(L) = (Vio(,nll - [[Vio(1,m) ) It is the same as qEnc/<";

except the way of defining the following vectors:

~ . T
b4 = tT\/vlo(i,m)‘/vls(b) s bm5 = bfc,4 + xi:gxf’o

(0,278) if ql(i,j) < ql(e — 1,qcT)

b1 : if ql(i, j) = ql(z, 1)

(@,0) if ql(i, §) > ql(s, 1)

BHS- {@ ifi1=1

T\l iA
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ifi=1vj=1

0
bros = ifi=uAj>1
0 ifi 40
- i i, ) = al( 1)
' 0 if ql(4,5) # al(¢, 1)
0 if 6>
’(b14,...,bm4)‘ else if 6 =
fr0:= : ’

xtexyt —x Y @xy”)T elseif =i Vql(i,j) < ql(t — 1,qcT)

J,1 1,1 3,0 L,0NT
(x]" @xy" —x]" ®@x,") else

—

qﬁlc\LQ(qMSK,i,j7 {x10, %1 e imlvelgern)): Tt s the same as qEnc, ; except the way of defining the
following vectors:

b4 = tTvlo(i,n) -

s

qu\Lﬁ(qMSK,i,j7 {XZ>0,xz’l}lte[n],ye[qﬁ]): It is the same as qu\LQ except the way of defining the
following vectors:

- m T
Vi Ly |, b=V, |

o —

qﬁlc\LA(qMSK,i,j7 {XZ*O,x?l}ﬂe[n],ye[qﬂ]): It is the same as qEnc, ;5 except the way of defining the
following vectors:

. 1,1 T 1,0 T e
vz +x; Hx}’l —x; Nx,l’O ifi=1
. m e b 9 v
Vr ZP » B = T 1 1,17 ,0.1,07 ’
: j AT g e
V| T X, Ty X, ifi#.

-

qﬁlc\Lﬁ(qMSK,i,j7 {x10,x01 Y en]velqer]): Tt is the same as gEnc, , except the way of defining the

following vectors:

T \/ 1,1 1,17 1,0,1,07 e
t Vio(im) Vis() [T Z0:X00 — 0%, ifi=1

T < G 11,17 3,0,1,07 g '
t' Vio(iw) Vis |+ 27 .x00 —2),.x) ifi#.

i,k

bn4 =

)

q@n(qMSK, c): It outputs qSK as follows:

fi,l = § C,u,,uU/Lul/a E C,u,,uvl/vu

Hels(i) pelmnl\Is(e)
ve[mn] vels(i)

fi 2.0 := Cis(0),1s(3)
E‘ = (E717E,2,1, . aE‘z,n)a Ez =0

gSK «+ gKeyGen(gMSK, {[f;]2, [hi]l}ie[n])

g0 = § CuvWp,v

els(i),
vels(9)

aSK := (¢, 85K, {oi,0}i,0cin))-
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Thanks to Lemma 6.4 to Lemma 6.8, Lemma 6.1 holds. ]

Lemma 6.4. For all PPT adversaries A and v € [n], there exist PPT adversaries By, Bo such that
[POAHI) = PCALHL )| < AdVE S0 (0) + AdvE 5, (3) 42790,

Proof. Since L is uniformly chosen from the exponentially large space in encryption algorithms, i.e.,
Zy, collisions do not occur in {L]};cin) jelger] With overwhelming probability. Therefore, (v, 17 7)=0 1f

i#1orj=J, and (E,17) # 0 otherwise.
For all (i,4, k), (I,J,K) € [n] x [gct] X [m], observe that (b’

1,K7

be> in HI", are equal to that in
H,1 if i # 1 or j = J. Thus, due to the partially function-hiding property of pFE, this implies that
{pCTZ To(ir)? pSKl To(i, K)} generated in H' and those generated in HL71 are computationally indistin-
guishable. N
Similarly, we can confirm that for all (i, 7, ¢) € [n] x [gct] X [gsk], we have (£, £¢) 4 (b7, hY) in HIT,
are equal to that in /H\L,l. Thus, thanks to the function-hiding property of gFE, {gCTi ,8S KZ} generated
in H’, and those generated in H, ; are computationally indistinguishable. Hence, A’s views in H'

and ﬁhl are computationally indistinguishable. a

Lemma 6.5. For all PPT adversaries A and ¢ € [n], there exists a PPT adversary B against m-fold
Upnnk x-MDDH such that |P(A,H, 1) — P(A, H,2)| < Adviy rmerMPPH

Proof. B works as follows.

1. B takes an instance of the m-fold U,k x--MDDH, (G, [M]1, [Kg]1). Recall that they are distributed
as M Z;""Wk, Ko=MZ¢c Z;’mkxm where Z <+ Z’;X"‘, and K < Z;””kxm.

2. B computes qPP,gMSK in the same way as q?eap except that B (implicitly) defines that V; :=
M,,V, := K, for i € [mn] and \~7|5(L) := Z for i € [m], where M; and Kg; are the matrices
consisting of the (i — 1)k + 1 to ¢k-th rows of M and Kg, respectively.

3. B computes qCTg for ¢ € [n],j € [gcr] in the same way as qﬁlc\hl except that B defines that

bf,n,4 = thKﬁJo(i},ﬁ) and gives qPP, {qCTg} to A.

4. B simulates qK/eyEen using gMSK, which is possible without [\~/|5(L)]2.
5. B outputs A’s output as it is.

Observe that b] od = =t V.o(l N)V|S(L) if 3 =0 and bj od = =t V|o(Z x) if B = 1. This concludes the
proof. Note that m- fold Uk, i-MDDH is reduced to Dk MDDH with the security loss of m. O

Lemma 6.6. For all PPT adversaries A and ¢ € [n], there exists a PPT adversary B against m*n-fold

Upger n-MDDH such that |P(A,A,2) — P(A, F,3)| < Advly "W+ MPPH ()

Proof. B works as follows.

1. B takes an instance of the m2n-fold Uy, xr-MDDH, (G, [M]1, [Kg]1). Recall that they are dis-
tributed as M ¢ Z29T* Ko = MZ € Z29T*™" where Z < ZE*™" and Ky « Zpacrxm’n,

2. B computes qPP,gMSK <« qﬁp except that B implicitly defines that {72 = Z; for i € [mn]
where Z; is the matrix consisting of the (¢ — 1)m + 1 to ém-th columns of Z.

3. B computes qCTg for i € [n],j € [gcT] in the same way as qﬁm\b’2 except that B defines that

b, 4 = Kpqi(ig)olim), b = mg; -, and VI, = K iy iotiy Where kg, € Zp™ is the

(p, v)-th block of Kg by dividing Kz into ngct x mn blocks, and m,, is the p-th row of M. Then,

B gives qPP, {qCT?} to A.

B simulates q@n using qMSK.

B outputs A’s output as it is.

Rl
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Observe that bj ol = t V|o(Z x) if B =0 and bl hd = vl .. if B = 1. This concludes the proof. Note
that m?2n-fold unqu -MDDH is reduced to Dx-MDDH with the security loss of m?n. O

Lemma 6.7. For all PPT adversaries A. we have P(A, ﬁb)?,) = P(A, HLA).

Proof. By implicitly defining that

. L+ xl Ixl xl Ox10if =y
Vi =
i,k J, 1 1,1 170 1,0 e
—I—xML —aox,0 ifi#
where sz,‘i < Z,', we can see that A’s views in both hybrids are identical. This is since v w Ly
and V7 Z," are identically distributed. O

Lemma 6.8. For all PPT adversaries A and ¢ € [n], there exist PPT adversaries By, Ba, B3 such

that |P(A, H,.4) — P(A,H,5)| < Advirc o (A) + Adv e (V) + (m + m?n)Advy MPPH() + 27200

Lemma 6.8 can be proven similarly to Lemmata 6.4 to 6.6. Note that here we use the fact that
Cis(u),1s(i) = 0 if ¢ < ¢ as defined in Def. 2.4, which implies

<C|s( ),Is(i)s X ® X 1 X}’O ® X}’ > <C|s( ),ls(i)s X ® X g’o ® X}’0>
for all (i,7) € [n] X [gcT] if 7 < ¢

Proof of Lemma 6.2. We introduce more hybrid games ﬁZh ce ﬁ?s to prove Lemma 6.2. We prove
that H7—! ~, ﬁ71 R v R ﬁ75 ~. H? ﬁ?c for ¢ € {1,...,5} is defined the same as H"~! except that

L.
—~—

qSetup, qEnc’~!, and qKeyGen are replaced by qgap7 qEnch, and quyGenZ’,C, respectively. They are
defined as follows.

q?eﬁp(lk): It works the same as qSetup except that gqMSK contains additional elements as follows:

{ﬁi,j}ié[mn],je[m,] < Zl;» {ul}le[mn] — Zp ; 1'7757 — Zk

Ala ey Ana {Wi,j}i,je[mn]7 {U'u ui7Viavia {ﬁi,j}je[m]7 uz }ze[mn]

gMSK :=
7,87 | pMSK, iMSK, gMSK
qEnch(qMSK, i 7, {XZ,O’ XZ71}HE[n],V€[QCT]): Let Wl—sr(t),lo(iﬁ) = (Wlo(b,l),lo(i,n)a cee aWIo(L,m),Io(i,m)) and UlS(L) =
(ﬁ'°(“1)” T ||ﬁ'°(b,m))' It is the same as qEnc’ ™' except the way of defining the following vectors:
WIS(L) lo(4, n)(I ® A;SsT) + 11|o(z H)U|s( YL @ 1) i
b = | T ohex!? Fabixl! - fi=unj=n
Wl—sr( ),lo(z, n) (I (9 A Ss” ) + ulo(z H)U|S(L) (Im X I‘?) £ i 7&
P ! " i

by = uﬂ;(ivg)Uls(L)

(vai’m) if ql(i, ') al(z,n)
if ql(7,7) = ql(¢, n)
'LKJ7O) lfq|(7 ) ql([’777)

T
&
7
i

(;L‘
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@ ifi=tAj=n

b2 = (elo(i,n)/mn ®s, @l ifi=uvNnj#n
(elo(i,n)/mn ®§a I‘TUlo(i,,‘»ﬁ)) if ¢ 7& 2
0 ifi=iAj<n-1

~ 0] ifi=unj=n
bm4: e .
€./m ifi=1tAj>n

0 if i
. { if ql(i, 5) = ql(z, 1)
’ 0 if ql(4, ) # ql(z, 1)
0 ifi=uAj=n
B,iﬁ: e,{/m®rT ifi=uvANj#n
0 if i

dq- = (aT S7 az—r'rsg? )7 a = { 5,07 1) ! qI(Z7j) - ql(L’n)
’ : (s,0)  ifql(i,7) #al(e,n)

g . JLOO] ) =allm if ql(i, 5) = al(z, )
(r,t)  ifql(i,§) #ql(e,n) 0 ifql(4,7) # al(e,n)
qEnc] 5 (qMSK, i, j, {x10, X'} el velger]): Let U, = (Ui1,...,Um). It is the same as qEnc;; except
the way of defining the following vectors:
§+ 7}
0 ifi=uvANj#n
Wl—sr(L)Jo(i,n) (I ® Ai@) + ﬁg(m) (In, ®@1)) iz =
bos i § +alx? 4 abix - ol '
WE(L)JO(M) (L, @ A[8]) + ﬁl—c:(i,n) (I, @ 1) i
+al 0 it =l
bH,G = ﬁ;c:(i,ka)

d, = (aZTS, aZT).

—

qEncZg(qMSK,i,j, {XZ’O,XZ’I}ue[n],ve[qCT])‘ It is the same as qEncZ2 except the way of defining the
following vectors:

0 ifi=tANj#n
T . . T
Wis()lo(i, k) (Im ® A48) + | lyg(; ) S P
- ,0 1,07 1,1 1,17 1,0 1,07
b“v5 T + xz,nX? + T X, — T kX
w,!, (I, ® A8) + | i)
Is(¢),lo(i,k) \*m U lo(%,k) if g 7& .
J,0n,0" g1 1,17 50 1,07
+ ‘ri,nxL + xi,nxL xi,nxb
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qEnc?A(qMSK,z‘,j, {XZ’O’XZ’I}ue[n],ve[qCT])z It is the same as qEncZ3 except the way of defining the
following vectors:

0 ifi=0Aj#n
Wis(o) do(iye) (Tm © AqB) + 1,

. ifi= j =
+ ]’1X7]71T 1 L /\j 77
b,.Q 5 = xi,n L

Wil () do(im) Im © AG8) + 11,
1 ifi#¢

+ xj_'lem

KL

qEnc]  (qMSK, i, j, {x/20, X'} e mlwelaer])? It s the same as qEnc}; (not qEnc),) except the way of
defining the following vectors:

0 ifi=uANj#n

Wit toir) (I © Ai) + ul—c:(i,n)fLS(L) (I @ 177) ifim i Aj =
b= +allxit

WE(L)JO(M) (Im ® Ai) + ul—c:(i,n)ﬁh(b) (I, @ 1) oy

+al it

quyGenZl(qMSK7 c): It outputs qSK as follows (the framed part is changed from qmn):

fi,l = § CILL,I/U/LuV7 § CM,VVVVIU,

pEIS(7) nE[mn]
ve[mn] vels(i)

fi 2.0 := Cis(0),1s(s)

f, = (fi1 fi20,-- . fi2n)

Z cmur?TfJHuy ifi=1
h; == nEIs(7)
v ve[mn]

0 ifi#1
gSK « gKeyGen(gMSK, {[Eb, [Eih}ie[n])

00 = E , Cr,vWp,v

HEIs(i),
vEls(9)

aSK := (¢, gSK, {40 }i,0e[n))-

quyGenZz(qMSK,c): It is the same as quyGenZ1 except that it defines

T
) n| 5 e
}NL ZME[Is(z)] Cuwl) | Uy en(p) ifi=1
i = vemn

0 ifi#4

quyGenZB(qMSK,c): Let i) = (iij1,...,1m). It is the same as quyGenZ2 except that it defines

B > nels(i) CM,U Fie

ve[mn]

0 Wit
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—

quyGen?A(qMSK,c): Let @1, = (iij1,...,iim). It is the same as quyGenZ3 except that it defines

Z Cu,uﬁ/y,en(p)
pnels(i)
| e ifi=
h; = :
' + Y (e X @x —x0x0 - (M expt —xt e xph)
pEL—1]
0 ifi £

—

qKeyGen 5 (qMSK;, c): Let i, = (iii1,- -, i m). It is the same as qKeyGen/, except that it defines

Z et Uyu
| Ly pUy
uels(i)
e v€[mn] ifi=1u
i - 4 Z Cls(u) |s ), ® X Xl 0 ® XMO (Xn 1 ® Xl 1 X}’l ® X,i,l)>
nEl—1]
0 ifi#£1

O

Lemma 6.9. For all PPT adversaries A, ¢ € [n], and n € [2,qcT], there exist PPT adversaries
By, By, By such that |P(A,HI"1) — P(A,H!))| < AdvEE o (A) + AdvES o (A) + Advi g (A) + 27200,

Proof. Since L is uniformly chosen from the exponentially large space in encryption algorithms, i.e.,
Zy, collisions do not occur in {L}};cn]je[qer] With overwhelming probability. Therefore, .17y =0 1f

1% I or j=.J,and (12,1{) # 0 otherwise.
For all (i,, k), (I,J,K) € [n] x [qgct] x [m], observe that (b’

o biK) in H7=1 are equal to that in

ﬁ:’l if 1 # 1 or j = J. Thus, due to the partially function-hiding property of pFE, this implies that

{pCTz Jo(i,k)

guishable.
Similarly, we can also confirm that for all (¢,j,7) € [n] x [gcr] x [k] and (I, J) € [n] x [gcT], We

have <d dJ ) in H”~1 are equal to that in ﬁ?l Thus, thanks to the function-hiding property of iFE,

{icT’

1,77

We can also confirm that for all (i, j,€) € [n] X [gcr] % [gsk], we have (£, £) + <hf,/ﬁf> in H?=1 are

17"

equal to that in ﬁ" Thus, thanks to the function-hiding property of gFE, {gCT?, gSKZ} generated in

pSKg |o(¢.n)} generated in H7~! and those generated in /H\?1 are computationally indistin-

|SK§} generated in H7~! and those generated in ﬁ71 are computationally indistinguishable.

H7~1 and those generated in H” .1 are computationally indistinguishable. Hence, A’s views in Hj™ I and
H171 are computationally indistinguishable. O
Lemma 6.10. For all PPT adversaries A, v € [n], andn € [2, qc1], there exist PPT adversaries By, Bo
against mk-fold Uy k,-MDDH and Uknger s-MDDH, respectively, such that |P(A, HZI) —P(A, HZ7,2)| <

Advgf—u,,,,”,k-MDDH()\) + Adv u,quT - MDDH(/\)'

Proof. We can prove the lemma with two steps. In the first step, ﬁuuy for (p,v) € Is(¢) x [mn] is
changed to U, en(,) via mn-fold U,k x-MDDH. Observe that this change corresponds to the change

from ul—(';(i N)U|S(L) to ﬁl—g(i k) B, works as follows.
1. By takes an instance of the mk-fold U,y ,-MDDH, (G, [M];, [Kg]1). Recall that they are dis-
tributed as M - Z7™<F, Ko = MZ € Z*™F where Z « ZE*™F and K, « Zpmmk,

2. By computes qPP,gMSK in the same way as q?eﬁp except that Bq (implicitly) defines that u; :=
m;, U; :=k{; for i € [mn] and Uy, := Z for i € [m], where m; and kg ; are the i-th rows of M
and Kpg, respectively.
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3. By computes qCTg for i € [n],j € [gcT] in the same way as qEnc]; except that B; replaces
ul—g(m)ﬁb(b) in b5, b, with k] ) and gives qPP, {qCTg} to A.

B,lo(i,k
4. B, simulates the key generation oracle in the same way as quyGenZ1 except that By replaces fJMuV
in h; with k;uﬁen(m where k;’i’j for (i,jz € [mn] x [m] is the vector consisting of the (j — 1)k + 1
to jk-th entries of k;_'3—7 . Note that since h; become an exponent of g1, this simulation is possible.
5. By outputs A’s output as it is.

In the second step, Ss} is changed to § via Upnger xs~-MDDH. By works as follows.

1. By takes an instance of the Ugnger i-MDDH, (G, [M]1, [kg]1). Recall that they are distributed as
M Z’;”qCTXk, ko =Mz € Z’;"qCT where z < Z’;, and k; + Z’;”qCT.

2. By computes qPP, gMSK + q?eap except that Bs implicitly defines s} := z.

3. By computes qCTg for i € [n],j € [gcT] in the same way as qEncZ’,1 except that Bo defines Sg =
Mai(i,5)5 sz := Ky qii,5) and replaces Sg'sVZ’ in b, 5 and d, with kg q(; j), where M, for u € [ngcT] is
the matrix consisting of the (i — 1)k + 1 to ik-th rows of M, and kg , is the matrix consisting of
the (u — 1)k + 1 to uk-th entries of k. Then, Bs gives qPP, {qCT?} to A.

4. B, simulates the key generation oracle in the same way as quyGenZ”Q.
5. Bs outputs A’s output as it is.

This concludes the proof. Note that mn-fold U, ,-MDDH is reduced to D,-MDDH with the
security loss of mk, and Ugnge,,,-MDDH is tightly reduced to Dj-MDDH. O

Lemma 6.11. For all PPT adversaries A, ¢ € [n], and n € [2,qct], there exists a PPT adversary B

against Uz, -MDDH such that |P(A, A7) — P(A, A7) < Advy ™ 00T (A).

Proof. B works as follows.

1. B takes an instance of the U2, ,-MDDH, (G, [M]i, [kgl1). Recall that they are distributed as
M Z;ﬂznxk, ko =Mz ¢ Z;ﬂzn where z <+ ZI;, and k; « Zzﬂn.

2. B computes qPP,gMSK <« qﬁp except that B (implicitly) defines that u; ; := mgfl)mﬂ., r:

2,15 := k1 (i—1)ym+; for (i,7) € [mn] x [m], where m,, is the pu-th row of M, and kg, is the p-th
entry of kg.

—

/5 except that B replaces ﬁ;';l,r?

for p x v € [mn] x [m] with kg (,—1)m+.. Then, B gives qPP, {qCT?} to A.

3. B computes qCTg for ¢ € [n],j € [gcT] in the same way as gEnc

4. B simulates the key generation oracle in the same way as quyGenZ2 except that B replaces
r?Tﬁ#/,y/ for p' x v’ € [mn] x [m] with kg (v _1)m40-
5. B outputs A’s output as it is.

Observe that the encryption and key generation algorithms corresponds to qEncZ2 and quyGenZQ,

respectively, if 3 = 0, and qﬁm\z3 and qK@%, respectively, if § = 1. This concludes the proof.
Note that U,,2, ,-MDDH is tightly reduced to D-MDDH. ]

Lemma 6.12. For all PPT adversaries A, ¢ € [n], and n € [2,qct], there exists a PPT adversary B
against miFE in Sec. 6.2 such that |P(A,H] ) — P(A,H] )| < Adv%'anh()\),
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Proof. First, we prove that the following equality holds: for all (¢,n) € [n] X [gcT], J1s -+ Jn € [gcT]™,
and ¢ € [gsk], we have

‘ :,0 7,0 §i,0 1,0 ¢ 7,0 7,0 1,0 1,0
E : <CIS(L),Is(i)7 XX X RX, > + <CIS(L),IS(L)’ X, RXT =X QX% >

i€[n]\¢
+ Z <c|€s(i),|s(L)a x10 @ xh0 — x10 @ x)0)
i€[t—1]
_ Z (ct Jirl o ol il o 1,1 ¢ Ml ool o1, . (6.2)
= |S(L)7|S(i)7 Xi ® XL Xi ® XL > + <C|S(L),|S(L)7 XL ® XL XL ® XL >
i€[n]\¢
+ Z <C|Zs(i),|s(L)7X?)1 ® x%’l —xM @ x;‘),
i€[t—1]

Due to the game condition in Def. 2.3, for all (¢,n) € [n] X [qcT], Jut1s---5dn € [gcT]™ ", and
¢ € [gsk], we have

0),0 i),0 0),1 i),1
Z <C|€5(i),ls(9)7xg( 10 g x]00) = Z <Cli(i),ls(9)’xg( Mo x! O (6.3)
i,0€[n] i,0€[n]
/ 0),0 i),0 0),1 i),1
Z (Cfs(i),|s(9)vxz( ) ®Xf() )= Z <cfs(i),ls(0)?xg( ) ®X¢g() ) (6.4)
1,0€[n] i,0€[n]
where
1 ifi<y 1 ifi<y
f)y=<n ifi=u, gli)=41 ifi=¢.
Ji ifi> Ji ifi >

Then, Eq. (6.3) — Eq. (6.4) results in Eq. (6.2) by reflecting the fact that cf;(i)’ls(g) =0ifi > 6,
which is defined in Def. 2.4.

We set the functionality of miFE as
follows.

SFMIP

m2 i1 and let n’ = n + ¢ — 1. B against miFE works as

1. B obtains miPP = (G, [A4]1,..., [Anw]1, [WlAl]l, R [Wn/An/]l) where they are distributed as
AT m?x (k+1 . .. ~ . .

A, D, W, + Zp x(kHD) g 1Arr/1p1101tly defines w; ; := ngr(j),(en(j)fl)m%n(i) fori €1s(e),j € [mn]

where w,, ,, is the v-th row of W,, and generates qPP and other elements in qMSK the same as

—

qSetup.

2. When A outputs the challenge ciphertexts, {1, xf’o, xg’l}ie[n] j€lacr]» B defines

qcT]

| xIP @ xmh —xIP gxbf ifie [n)\t
P = xnBgxmB _x1Bx!B  ifi=

xMP @xtP —xWBoxi? ifien+1,n0

and outputs {i,iz’o,)7:{71}2-6[”/]7%[%“} as challenge vectors for the message-hiding game for miFE
where

;)1 i=[lVien+1,n]
qCT,’L qgcr 7,6 [n]\[/ :

Then, B obtains {miCTf}ie[vL/],je[qu J where miCTg = (['yg]l, [53]1) = ([Azsf]l, [WlAlsz +1; +

x/711).
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3. B generates qCT{ the same as qEncZ3 except that it defines

0 ifi=unj#£y
(b1s5,...,bpms) = (6;+x2’1®x271)T i=tANj=n
(67 +xIt @xI)T i#.
d, = (aZTS,%{T).

4. When A queries the key generation oracle on ¢, B queries the key generation oracle for miFE
on (El, . ,En/) = (C|5(L),|5(1), ey Cls(L),Is(n)v C|5(1)7|S(L), ey ClS(L—l),|S(L)) and obtains miSK = (miSKo,
{miSK;}icp) = (iepn (€is i), {—iji}ie[n/]) (here we omit ¢; in miSK; for convenience). Since
we have Eq. (6.2), B’s queLies\follow the security game condition for miFE. Then, B generates a

secret key the same as quyGenZ3 except that it defines

EL = m|SK0 — Z (<E“ 611 — i;’()) -+ <mISK1,’)’21>)
i€[n+1,n']

0,0 := miSKgp.

5. B outputs A’s output as it is.

—

Observe that the encryption and key generation algorithms corresponds to qEncZ3 and quyGenZ3,
respectively, if # = 0 in the security game for miFE, and qEnc}, and qKeyGen]',, respectively, if § = 1.
This concludes the proof. O

Lemma 6.13. For all PPT adversaries A, ¢ € [n], and n € [2,qcT], there exist PPT adversaries

B1, B, By against mk-fold Uy 1-MDDH, Upnger x-MDDH, and WU,,2, -MDDH, respectively, such

that [P(A, Al,) — P(A, H7 ;)| < Advipt Ui MPPH () agyiimer #MOPH () | agyg s MPPH ),

Lemma 6.13 can be proven similarly to Lemmata 6.10 and 6.11.

Lemma 6.14. For all PPT adversaries A, ¢ € [n], and n € [2,qcT|, there exist PPT adversaries
By, By, By such that |P(A,H ;) — P(A,HI)| < Advi o (A) + AdVEE 4. (A) + AdvE g (M) + 2790,

Lemma 6.14 can be proven similarly to Lemma 6.9.

—_~—

Proof of Lemma 6.3. For reference, we describe gEnc™ and frame the parts that are different from
gEnc.
qEncT (qMSK, i, 4, {XZ’O, XZ’I}ue[nLue[qa]): It samples vectors as follows:
kxk 3 k
S« Z,", s,v,t Ly, L7

li=e;;, ®(1,L) € Z2", 1:=e;;, ® (L,—1) € Z."

by = (2], 2]) | € Z, by = (Wio(i,m) (Lmn © AiS), Wo(i k) € Z{mn Dk

K ViR

bm?) = tT\flo(i,m) S Zl;

1,1,1,17 1,0 1,07 i —
TiwXe—1 — & X1 ULT=N

pp— m
b4 = 1117 401,07 ey € Zp
'Ti,rcxbfl - xi,chLfl e 7é n

bus:=0€Z" b.g:=0€Z"™ b, :=(bs1,...,bug)

b1 = (0,27}) | € Z2

ViR
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o

K2t (elo(i,m)/mn ®§, rTUlo(i,m)) € Z;S)mn+1)k

ST kE - Y k
58 7= Vig(i) € Ly bra =brs =0 L} byg:=0€Z™

o

EH = (BHJ? e 7bn,6)
d, := (a;,S,0) € ZEH d:= (8,0) € Zk*!
fy == (r,t) € 22"

f>,
f = (f17f2717 - ,fgm), h = 0

o1 1,1 1,0 1,0NT m?2
9= (X;" %y —X;" ®X,") €7Z,

Then, it computes qCTg in the same way as Eq. (6.1).
For all (¢,7,k), (I, J, K) € [n] X [gcT] X [m], observe that <bg,mB}],K> in HIT are equal to that in Gy.
Thus, due to the partially function-hiding property of pFE, this implies that {pCTZ lo(ir) pSKg loi H)}
generated in HIT and those generated in G; are computationally indistinguishable.

Next, we confirm that, for all £ € [gsk], we have

1,1 1,1 1,0 1,0
E (Clatiyisoy: Xo™ ©X; =% @%;7) = 0.
i,0€[n]

This is implied by the game condition defined in Def. 2.3. Thus, for all (j1, ..., jn, ) € [gcr]™ % [gsk],
we have >, (£ £) + (h?7,hf)) in HIT are equal to that in G;. Thus, thanks to the function-

T 07
hiding property of gFE, {gCTg ,8S KZ} generated in HI™ and those generated in G; are computationally
indistinguishable. Hence, A’s views in H¥T and G; are computationally indistinguishable. O
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A Public-Key MQFE from IPFE

A.1 Definitions

Definition A.1 (Public-Key Multi-Input Functional Encryption). Let F be a function family
such that, for all f € F, f: Xy x -+ x X,, = Z. An public-key MIFE scheme for &, MIFE, consists of
four algorithms.

Setup(1*): It takes a security parameter 1* and outputs a public parameter PP and a master secret
key MSK. The other three algorithms implicitly takes PP as input.

Enc(i, z;): It takes MSK, an index i € [n], and z; € X; and outputs a ciphertext CT;.

KeyGen(MSK, f): Tt takes MSK, and f € F, and outputs a secret key SK.

Dec(CTy,...,CT,,SK): It takes CTy,...,CT, and SK, and outputs a decryption value d € Z or a
symbol 1.

When n = 1, we call it just a functional encryption (FE) scheme and omit the second argument of
Enc.

Correctness. MIFE is correct if it satisfies the following condition. For all A € N, (zq,...,2,) €
Xy x - xX,, f€TF, wehave

PP, MSK « Setup(1*)

CT; < Enc(, x;)

SK <+ KeyGen(MSK, f)

d := Dec(CTy,...,,CT,,SK)

Pr|d= f(z1,...,2n)

Security. We define two indistinguishability-based security definitions for MIFE. For a stateful PPT
adversary A and \ € N, let

PP, MSK « Setup(1*)

MIFE,B /yy . r ) p ) ,

Oct(8,") takes (i,29,2}) and outputs Enc(i, xZ’B) Let gcT,; and gsk be a number of queries to Oct(8, -)
with the form of (i, *,*) and KeyGen, respectively. Let S := {i € [n] | gct,; > 0}. We say that A is
admissible if for all I = (i1,...,4) €S, (Gt11s---50n) = [P\, (Giys---»Ji) € [gcT,iy] X -+ X [qcT )5

0 € lgsk), (Tipyys--®i,) € Xgpy X -+ x X, A’s queries satisfy
Jiy 50 jig >0 Jig»l Jig >l
f€(<xi11 - 796;* STy Tiy)) = f€(<;];i11 . ,xft‘ Tipirs e Tiy))
where (x;,,...,x;,) denotes a permutation such that z; is moved to the i-th entry. MIFE is adap-

tively secure if, for all admissible PPT adversaries A, the following advantage of A is negligible in A:

AdVREE(A) == PEEO(N) = PRS-

Definition A.2 (Bounded-Norm Inner Products over Z). A function family ELZ,X,C for bounded-

norm inner products consist of functions f : X™ — Z where X = {i | i € Z, |i] < X}. Each f € F'T,PL,XC
is specified by ¢ € Z™ s.t. ||c||oc < C. Then, f specified by c is defined as f(x) := (c, x).
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A.2 Construction

Let iFE = (iSetup, iEnc, iKeyGen, iDec) and iFE’ = (iSetup’,iEnc’,iKeyGen’,iDec’) be an FE scheme for

FP, « o and FI¥ . For convenience, we introduce notations for computing matrix multiplication via

IPFE. For V = (vi]|---|[vm), we denote (iSKi, ...,iSK,) by iSK where iSK; « iKeyGen(iMSK, v;)
and thi_s)procedure by iS_K)(— iKeyGen(iMSK, V). Similarly, for iCT for x, we denote decryption of iCT
with iSK by iDec(iCT,iSK) = (iDec(iCT,iSKy),...,iDec(iCT,iSK,)). The public-key MQFE scheme
qFE = (qSetup, qEnc, gKeyGen, qDec) for iTD:'lQFX’C can be constructed as follows.

gSetup(1*): It outputs qPP,gMSK as follows:
(iPP;,iMSK;) + iSetup(1*), (iPPj ;,iMSK] ;) + iSetup'(1*)
qPP := ({iPP;}icin), {iPP} ; }ijemlizi), aMSK := ({iMSK;}icn), {iIMSK] i }i eqng,ins)
qEnc(i,x; € Z™): Tt outputs qCT, as follows:
iCT; + iEnc(iPP;, x; ® x;), iCT}; ¢ iEnc'(iPP. ;, x,)
qCT, := (iICT, {iCT; ; }jempi})
Ci1 - Cin

qKeyGen(gMSK, ¢ € Z(m")2): Let C = < ) € ZM™X™" he a matrix such that x' Cx =

Cn,l "‘. C'n,n
(c,x ® x). Let ¢; be a vector such that x;C; ;x; = (¢;,X; @ x;). It outputs qSK as follows:

ISK; + iKeyGen(iMSK;, c;), iSK, , + iKeyGen'(iMSK _, C; ; + C],)
. <
qSK := (c, {iSKi}ien), {iSK} ; }ijein] i)

qDec(qCT,,...,qCT,,,qSK): Let (C;; + CL)+ € Q be the Moore-Penrose inverse of C; ; + C;»':i. It
outputs z as follows:

Zi = iDec(iPPi, iCTZ', ISKZ)

2i,j = iDec(iPP) ;,iCT} ,,iSK! ,)(Cy; + CJ,) TiDec’ (iPP/,,iCT’,,iSK; )T
Z = Z Z; + Z Zi,5
1€[n] 2,]6[71]

i<j
Correctness. Due to the correctness of iFE and iFE’, we have
Z; = X;Ciﬂ;xi
T T T T T T
zij=%; (Cij+ C]ﬂ,i)(ci’j + Cj,¢)+(ci,j + Cj,i)xj =x; (Cij+ Cj,i)xj

Hence, we have z = x' Cx = (¢, x ® x) where x = (x1,...,%,) .

A.3 Security

Theorem A.l. IfiFE and iFE' are adaptively secure, then qFE is also adaptively secure.

Proof (sketch). We can reduce the indistinguishability of qFE to that of iFE and iFE’. The admissi-
bility of A guarantees that

ji,0 " ji,0 ji 1T jir 1
x10 Ct xI0 = xIt Cf x)

2,200 2,20

1,07 1~ a ¢ a
x]"" (Cig+Cy) =x]"" (Cig+Cy,)

K3

1T

for all 4,6 € [n] s.t. ¢ # 6, j; € [gcTi], £ € [gsk]- These conditions are exactly consistent with the query
conditions in the reduction to iFE and iFE'.
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