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Abstract. Multi-input functional encryption (MIFE) is a generalization of functional encryption
and allows decryptor to learn only function values f(x1, . . . , xn) from ciphertexts of x1, . . . , xn.
We present the first MIFE schemes for quadratic functions (MQFE) from pairings. We first
observe that public-key MQFE can be obtained from inner product functional encryption in a
relatively simple manner whereas obtaining secret-key MQFE from standard assumptions is com-
pletely nontrivial. The main contribution of this paper is to construct the first secret-key MQFE
scheme that achieves indistinguishability-based selective security against unbounded collusion
under the standard bilateral matrix Diffie-Hellman assumption. All previous MIFE schemes
either support only inner products (linear functions) or rely on non-standard cryptographic as-
sumptions such as indistinguishability obfuscation or multi-linear maps. Thus, our schemes are
the first MIFE for functionality beyond linear functions from polynomial hardness of standard
assumptions.
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1 Introduction

Multi-Input Functional Encryption. Functional encryption (FE) [13,31] is a novel cryptographic
paradigm that has an essentially different feature from traditional encryption schemes. Concretely, FE
allows us to obtain computation results from encrypted data without revealing any other information
about the underlying data. This is in contrast to the traditional encryption schemes, where only owners
of legitimate keys can learn entire underlying data from ciphertexts whereas others can learn nothing.
An FE scheme that supports a function class F allows an owner of a master secret to issue a secret
key SK for a function f ∈ F. Decryption of a ciphertext CT for a message x with SK yields f(x) and
nothing else. Functional encryption is quite useful for securely delegating computation since it allows
a sever to learn only function values from encrypted data.

Multi-input functional encryption (MIFE) [24] is a natural generalization of FE, which can handle
functions that take multiple inputs. That is, an owner of SK for f can learn only f(x1, . . . , xµ) from
CT1, . . . ,CTn of messages x1, . . . , xn. MIFE schemes can be basically classified into two categories with
respect to their function classes.

General functionalities: The first consists of MIFE schemes for general circuits or Turing machines,
e.g., [7, 9, 14, 15, 24, 25]. Although they are powerful enough to handle all functions computable in
polynomial time, they are built on non-standard cryptographic assumptions such as indistinguisha-
bility obfuscation (iO) [22] or multi-linear maps [21] and thus prohibitively inefficient. Very recently,
iO was constructed from sub-exponential hardness of four well-founded assumptions [26]. Note that,
however, we refer to polynomial hardness of a well-founded problem as a standard assumption in
this paper.

Specific functionalities: The second covers MIFE schemes for specific functions such as inner prod-
ucts and order revealing, e.g., [1,2,4,6,12,16,19,29,32]. They are aimed at obtaining more practical
features, namely, efficiency and concrete security, with sacrificing the generality. Therefore, most
of them have efficient constructions, and their security is based on standard assumptions, except
the order-revealing encryption by Boneh et al. [12], which relies on multi-linear maps.

Recent works proposed extensions of MIFE that do not require a trusted third party for secret-key
generation [7, 17].

Functional Encryption for Specific Functionalities. This paper is categorized to the latter since
we are interested in the specific functionality, namely, quadratic functions. We recall related works
on FE for the latter category in a bit more detail. Abdalla et al. first presented FE schemes for
inner products (linear functions) based on DDH and LWE [3], which is called inner product functional
encryption (IPFE). An IPFE scheme from DCR is proposed later by Agrawal et al. [8]. Then, Abdalla et
al. presented a multi-input IPFE (MIPFE) scheme based on pairings [6]. Abdalla et al. also constructed
MIPFE schemes based on DDH or k-Lin without pairings, LWE, and DCR by introducing a generic
conversion from IPFE to MIPFE [4]. As another line of works, several FE schemes for quadratic
functions have been constructed from pairings [10, 23, 30]. Note that FE for quadratic functions are
trivially constructible from IPFE by encrypting all quadratic terms in advance, although the ciphertext
size inherently becomes O(n2) where n is the number of elements to be encrypted. Thus, FE for
quadratic functions normally refers to that with the ciphertext size being O(n).

Since the first introduction of MIPFE scheme [6], no MIFE schemes for functionality beyond lin-
ear functions based on standard cryptographic assumptions have been proposed until now. Although
(MI)FE for linear functions is expected to be applied for statistical analysis as it can provide weighted
means, linear functions are insufficient for evaluating important values for statistics such as variance
and standard deviation. This motivates the fundamental question:

Can we construct an (efficient) MIFE scheme for more than linear functions from standard
cryptographic assumptions?
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Alternatively, considering the fact that MIFE for inner products is constructible without pairings, the
following question naturally comes to mind:

Can we construct an MIFE scheme for quadratic functions from pairings?

1.1 Our Results

We answer these questions affirmatively, that is, we construct the first MIFE schemes for quadratic
functions, or multi-input quadratic functional encryption (MQFE) schemes, from pairings [20]. Our
first observation is that public-key MQFE can be generically obtained from public-key IPFE, which
can be constructed even without pairings, in a relatively simple manner as the case of public-key
MIPFE [6].

The main result of this paper is to construct a secret-key MQFE scheme from the bilateral matrix
Diffie-Hellmen assumption, in which users need a master secret key for encryption. Recall that public-
key MIFE does not imply secret-key MIFE. Roughly speaking, a user who has CT1 for x1 and SK for
f of a public-key scheme is allowed to learn f(x1, x2, . . . , xn) for all (x2, . . . , xn) since this is inherent
leakage, while it is not the case in secret-key MIFE. Hence, just including a public key of a public-key
MIFE scheme in a master secret key does not necessarily result in a secret-key MIFE scheme due to
the leakage. Our secret-key scheme has indistinguishability-based selective security against unbounded
collusion. Roughly speaking, the security implies that an adversary that has any numbers of ciphertexts
and secret keys can learn only decryption values for all decryptable combinations and nothing else.
Our scheme has no limits on the numbers of encryption slots and elements per slot while they are
fixed at the setup. The ciphertext size of our scheme is O(m2n), and the secret-key size is O(m2n2),
where m is the number of elements per slot and n is the number of encryption slots.1 Furthermore,
our scheme is far more efficient than MIFE schemes for general functions since ours basically uses only
efficient IPFE as a building block in a direct manner.

Our secret-key MQFE scheme is built on two newly introduced primitives that we call predicated
IPFE and multi-input mixed-group IPFE. Both of them need to have the function-hiding property
to construct our MQFE scheme, and we construct them from a (multi-input) function-hiding IPFE
scheme based on pairings [4, 11, 19] in a generic way. In a function-hiding scheme, secret keys hide
underlying functions as well as ciphertexts hide plaintexts.

Multi-Input Quadratic Functional Encryption. Informally, a function class Fm,n for n-input
MQFE is defined as follows. Each function f ∈ Fm,n is represented by a vector c ∈ Z(mn)2 . For inputs
x1, . . . ,xn ∈ Zm, f is defined as

f(x1, . . . ,xn) := 〈c,x⊗ x〉
where x = (x1|| · · · ||xn) and ⊗ denotes the Kronecker product. In an MQFE scheme for Fm,n, a user
can encrypt xi ∈ Zm to CTi for slot i ∈ [n], a key issuer can generate a secret key SK for c ∈ Z(mn)2 ,
and decryption of CT1, . . . ,CTn with SK reveals only 〈c,x⊗ x〉.

An important fact on MQFE is that the relation between linear and quadratic functions in the
multi-input case is essentially different from that in the single-input case. As mentioned above, FE
for quadratic functions aims short ciphertexts because it is trivially implied by IPFE if there are no
ciphertext-size requirements. On the other hand, an MQFE scheme cannot be trivially constructed
from MIPFE scheme even if there are no ciphertext-size requirements. This is because the method
of encrypting all quadratic terms in advance cannot deal with the quadratic terms derived from two
different users. In other words, MQFE enables us to perform some sort of computation that is uncom-
putable with MIPFE such as computing variance over multiple data sources encrypted by different
users. We remark that although the ciphertext size of our scheme is not optimal, i.e., O(m), our result
is by no means trivial as discussed.

As the case of MIFE for general functions or inner products, we can also consider the security model
where an adversary can choose users to be corrupted, which is called multi-client setting [1,2,16,24,29].
1 Precisely, sizes of ciphertexts and secret keys refer to the number of group elements.
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Our secret-key scheme is not easily applicable to the multi-client setting. The intuitive reason is that the
function-hiding IPFE, which is the main building block of our scheme, works only when encryption keys
are hidden (uncorrupted). Constructing a multi-client functional encryption for quadratic functions is
an interesting open problem, and we leave it for a future direction.

1.2 Technical Overview

Public-Key MQFE. For simplicity, we consider the two-input case in this paragraph. We also assume

that quadratic functions are represented by matrices C ∈ Z2m×2m, where f(x1,x2) = (x>
1 ||x>

2 )C

(
x1

x2

)
.

In a public-key scheme, an adversary that has CT1 for x1, CT2 for x2, and SK for C =
(

C1,1C1,2

C2,1C2,2

)
can learn (x̃>

1 ||x>
2 )C

(
x̃1

x2

)
and (x>

1 ||x̃>
2 )C

(
x1

x̃2

)
for all x̃1, x̃2 since it can encrypt x̃1, x̃2. By setting

x̃2 = 0 and x̃1 = 0, the adversary can learn x>
1 C1,1x1 and x>

2 C2,2x2, respectively. By setting x̃2 = ei
and x̃1 = ei for all i ∈ [m] where e1, . . . , em are linearly independent vectors, the adversary can learn
x>
1 (C1,2+C>

2,1) and (C1,2+C>
2,1)x2, respectively. This is because the adversary can compute x̃>

1 C1,1x̃1

and x̃>
2 C2,2x̃2 by itself. Furthermore, Dec(CT1,CT2,SK) = (x>

1 ||x>
2 )C

(
x1

x2

)
is computable from the

inherent leakage as follows:

x>
1 C1,1x1 + x>

2 C2,2x2 + x>
1 (C1,2 +C>

2,1)(C1,2 +C>
2,1)

+(C1,2 +C>
2,1)x

>
2

where (C1,2 +C>
2,1)

+ ∈ Qm×m denotes the Moore-Penrose inverse of C1,2 +C>
2,1. It is not hard to see

that the inherent leakage can be computed by IPFE since they are linear functions over a single input.
Thus, public-key 2-input MQFE can be constructed from public-key IPFE. This construction can be
easily extended to the general multi-input case, which is presented in Appx. A.

Secret-Key MQFE. Our secret-key MQFE scheme is inspired by the secret-key FE scheme for
quadratic functions (or quadratic functional encryption (QFE) scheme) from pairings by Lin [30].
First of all, we briefly recall the public-key IPFE scheme from DDH by Abdalla et al. [3] (ABDP). Let
m be a vector length in the scheme. For a matrix M = (mi,j)i,j and a generator g` of a cyclic group
of order p, we denote (g

mi,j

` )i,j by [M]`. The ABDP scheme works as follows:

Setup(1λ): w← Zm
p , PK := [w], MSK := w.

Enc(PK,x ∈ Zm): s← Zp, CT := ([s], [x+ sw]).
KeyGen(MSK, c ∈ Zm): SK := −c>w.
Dec(CT,SK): −c>w[s] + c>[x+ sw] = [〈c,x〉].

Lin’s idea for constructing QFE is to use function-hiding IPFE, which is inherently secret-key
FE [11], to compress the size of ABDP ciphertexts for quadratic terms. Recall that the function-hiding
property requires that secret keys hide its function (or vector in IPFE). Let iFE = (iSetup, iEnc, iKeyGen,
iDec) be a function-hiding IPFE scheme based on pairings. Note that all known function-hiding IPFE
schemes based on pairings output a decryption value as an exponent of the target-group generator
[11,18,28,30,33]. Informally, her secret-key QFE scheme works as follows:

Setup(1λ): w = (w1, . . . , wm), w̃ = (w̃1, . . . , w̃m)← Zm
p , iMSK′ ← iSetup(1λ)

MSK := (iMSK′,w, w̃).
Enc(MSK,x ∈ Zm): s← Zp, iCT

′ ← iEnc(MSK′, s), iMSK← iSetup(1λ)
iCTi ← iEnc(iMSK, (xi, wi)), iSKi ← iKeyGen(iMSK, (xi, sw̃i)).
CT := (iCT′, {iCTi, iSKi}i∈[m]).

KeyGen(MSK, c = {ci,j}i,j∈[m] ∈ Zm2

): a
SK := iSK′ ← iKeyGen(MSK′,−c>(w ⊗ w̃)).

5



Dec(CT,SK): iDec(iCT′, iSK′) +
∑

i,j∈[m] ci,j iDec(iCTi, iSKj) = [〈c,x⊗ x〉]T .

In decryption, her scheme first generates an ABDP ciphertext and an ABDP secret key for quadratic
terms in the target group GT of bilinear groups from ciphertexts and secret keys of iFE. Then, it de-
crypts the ABDP ciphertext in the same way as the ABDP scheme. That is, we have iDec(iCTi, iSKj) =
[xixj + swiw̃j ]T , which can be seen as the (i, j)-th element of the ABDP ciphertext [x⊗x+ sw⊗ w̃]T ,
and iDec(iCT′, iSK′) = [−sc>(w⊗w̃)]T , where −c>(w⊗w̃) is an ABDP secret key for c. The function-
hiding property of iFE guarantees that iSK hides xi. Since w ⊗ w̃ only appears on the exponent of
group elements, we can argue that it is computationally indistinguishable from random in Zm2

p in the
security proof.

MIPFE instead of IPFE. Our first attempt is to modify Lin’s scheme so that it generates ciphertexts
of secret-key MIPFE scheme from DDH by Abdalla et al. [4] (ACFGU) in GT instead of the ABDP
ciphertext (recall that the ACFGU scheme does not use pairings). That is, the decryption algorithm
similarly generates ACFGU ciphertexts for all quadratic terms over all inputs and then decrypt it
similarly to the ACFGU scheme. The reason for using MIPFE instead of IPFE is to deal with multiple
independent randomnesses derived from different users, which inherently come in when generating the
IPFE ciphertext elements for quadratic terms. We also remark that the reason for decomposing the
ACFGU ciphertext into ciphertexts and secret keys of function-hiding IPFE is to allow decryptors to
generate ACFGU ciphertext elements for quadratic terms derived from two different users. This is in
contrast to Lin’s QFE scheme, which uses function-hiding IPFE to compress the ciphertext size.

The n-input ACFGU scheme is described as follows:

Setup(1λ): MSK := w1, . . . ,wn,u1, . . . ,un ← Zm
p .

Enc(MSK, i,xi ∈ Zm): si ← Zp, CTi := ([si], [xi + siwi + ui]).
KeyGen(MSK, (c1, . . . , cn) ∈ Zmn): SK := (−

∑
i∈[n]〈ci,ui〉, {−c>i wi}i∈[n]).

Dec(CT1, . . . ,CTn,SK): a∑
i∈[n](−c>i wi[si] + c>i [xi + siwi + ui])− [

∑
i∈[n]〈ci,ui〉] = [

∑
i∈[n]〈ci,xi〉].

Then, the candidate MQFE construction qFE = (qSetup, qEnc, qKeyGen, qDec) will be defined as follows
(for simplicity, we assume m = 1 in what follows):

qSetup(1λ): iMSK, iMSK′ ← iSetup(1λ), wi, w̃i, ui, ũi ← Zp

qMSK := (iMSK, iMSK′, {wi, w̃i, ui, ũi}i∈[n]).
qEnc(qMSK, i, xi ∈ Z): si, s̃i ← Zp

iCT′
i ← iEnc(iMSK′, si), iSK

′
i ← iKeyGen(iMSK′, s̃i)

iCTi ← iEnc(iMSK, (xi, siwi, ui)), iSKi ← iKeyGen(iMSK, (xi, s̃iw̃i, ũi))
qCTi := (iCT′

i, iSK
′
i, iCTi, iSKi).

qKeyGen(MSK, c={ci,j}i,j∈[n]): qSK :=([−
∑

i,j∈[n] ci,juiũj ]T , {−ci,jwiw̃j}i,j∈[n]).

qDec(qCT1, . . . , qCTn, qSK): a
−
∑

i,j∈[n] ci,jwiw̃j iDec(iCT
′
i, iSK

′
j) +

∑
i,j∈[n] ci,j iDec(iCTi, iSKj)

−[
∑

i,j∈[n] ci,juiũj ]T = [〈c,x⊗ x〉]T

Observe that {iCTi, iSKi}i∈[n] yield {[xixj +sis̃jwiw̃j +uiũj ]T }i,j∈[n] in decryption, which can be seen
as ciphertexts of the n2-input ACFGU scheme.

However, this scheme is not secure, that is, it leaks unnecessary information to decryptors more
than expected. The problem is that the candidate scheme allows two types of mixed-up attacks where
an adversary can simultaneously use two different ciphertexts with the same index for decryption:

1. For iCT1
i , iSK

2
i in qCT1

i , qCT
2
i , respectively, iDec(iCT1

i , iSK
2
i ) is a valid ACFGU ciphertext and usable

for the ACFGU decryption with qSK.
2. Let i1 6= i2. For {iCT1

i1 , iSK
1
i1}, {iCT

1
i2 , iSK

1
i2}, iCT

2
i2 in qCT1

i1 , qCT
1
i2 , qCT

2
i2 , respectively, iDec(iCT1

i1 , iSK
1
i1),

iDec(iCT2
i2 , iSK

1
i1) and iDec(iCT1

i2 , iSK
1
i2) are valid ACFGU ciphertexts and usable for the ACFGU

decryption with qSK together.
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Preventing Attack 1. Recall that Lin’s QFE scheme does not allow Attack 1 since the encryption
algorithm generate new iMSK for each ciphertext. On the other hand, our candidate uses the same
iMSK for all ciphertexts so that decryptors can generate ACFGU ciphertext elements for quadratic
terms from two different users. To prevent this attack, we need a function-hiding IPFE scheme where
iCT is decryptable with iSK if and only if they come from either different slots or the same qCTi.
For that purpose, we introduce predicated IPFE (PIPFE), which can be seen as a combination of
inner product encryption [27] and IPFE. Informally, a ciphertext pCT and a secret key pSK of a
PIPFE scheme are associated with two vectors {x1,x2} and {y1,y2}, respectively. Decryption of pCT
with pSK reveals 〈x2,y2〉 iff 〈x1,y1〉 = 0. Although PIPFE can be captured as a class of IPFE with
fine-grained access control [5], they did not consider the function-hiding property. Thus, our PIPFE
scheme is the first instantiation of function-hiding IPFE with fine-grained access control, which is of
independent interest.2

PIPFE yields the expected decryption mechanism by setting x1 = (02(i−1), 1, L, 02(n−i)), y1 =
(02(i−1), L,−1, 02(n−i)) where L← Zp in each encryption. Let (i1, L1) (resp. (i2, L2)) be a pair of a slot
index and random element of x1 (resp. y1). It is easy to see that 〈x1,y1〉 = 0 iff i1 6= i2 or L1 = L2. Since
L is chosen from an exponentially large space, L1 6= L2 with overwhelming probability if they are chosen
independently. We construct a function-hiding PIPFE scheme pFE from a function-hiding IPFE scheme
iFE in a generic way. The construction is very simple, that is, pCT is iCT for (ax1||x2) and pSK is iSK
for (by1||y2) where a, b ← Zp. We define pDec(pCT, pSK) = iDec(iCT, iSK) = [ab〈x1,y1〉 + 〈x2,y2〉]T ,
where 〈x2,y2〉 is computable iff 〈x1,y1〉 = 0.
Preventing Attack 2. A cumbersome point of Attack 2 is the fact that iDec(iCT1

i1 , iSK
1
i1) and

iDec(iCT1
i2 , iSK

1
i2) are necessary for decryption with qCT1

i1 , qCT
1
i2 , and iDec(iCT2

i2 , iSK
1
i1) is necessary

for decryption with qCT1
i1 , qCT

2
i2 . However, they leak inappropriate information if both of them are

used in decryption simultaneously. Thus, we cannot solve the problem by prohibiting some sort of iFE
decryption like the case of Attack 1.

Our solution is to bind ACFGU ciphertexts generated from the iFE decryption with common random
elements. That is, iCTi in qCTi is changed to encryption of (xi, siwi, ui, tivi), and iSKi is changed to
a secret key of (xi, s̃iw̃i, riũi, ṽi) where vi, ṽi are new elements in qMSK and ri, ti are the common
random elements for binding ACFGU ciphertexts, which is chosen by qEnc. Then, decryption with
{iCTi, iSKi}i∈[n] yields {[xixj+sis̃jwiw̃j+rjuiũj+tiviṽj ]T }i,j∈[n]. According to the change of iCT, iSK,
the first element of an ACFGU secret key should be modified as qSK1 = [−

∑
i,j∈[n] ci,j(rjuiũj +

tiviṽj)]T . By this construction, we cannot simultaneously use iDec(iCT1
i1 , iSK

1
i1), iDec(iCT

1
i2 , iSK

1
i2) and

iDec(iCT2
i2 , iSK

1
i1) for ACFGU decryption. Intuitively, qSK1 must involve t1i2 and t2i2 (randomnesses used

in iCT1
i2 and iCT2

i2 , respectively) to decrypt the ACFGU ciphertexts generated from iDec(iCT1
i1 , iSK

1
i1),

iDec(iCT1
i2 , iSK

1
i2) and iDec(iCT2

i2 , iSK
1
i1) together, but in fact qSK1 can involve only one of t1i2 and t2i2 .

How to Generate the Modified Secret Key. The last challenge is how to generate the mod-
ified secret key. It is obvious that qKeyGen cannot generate the modified key since it contains ran-
dom elements ri, ti used in ciphertexts. We solve the problem by employing an additional function-
hiding MIPFE scheme, denoted by miFE, into the candidate scheme. That is, qEnc additionally gen-
erates an MIPFE ciphertext miCTi for (ri, ti), and qKeyGen generates an MIPFE secret key miSK
for {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n]. Then, a decryptor can generate the secret-key element

−
∑

i,j∈[n] ci,j(rjuiũj + tiviṽj) from miCT1, . . . ,miCTn,miSK without knowing unnecessary informa-
tion. This technique similar to Gay’s technique in [23], which uses (partially) function-hiding IPFE
to generate a “decryption key” consisting of both elements inherently derived from a ciphertext and
a secret key. Note that our actual scheme needs multi-input mixed-group IPFE instead of MIPFE so
that the security proof go through, although they are similar primitives.

This is a rough sketch of our MQFE scheme. We need a further modification to make the scheme
satisfy the formal security definition, since we cannot argue that {wiw̃j}i,j∈[n] is distributed pseudo-
2 To be precise, secret keys of our PIPFE scheme hide y2 but do not y1, and we call this property partially

function-hiding.
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randomly. This is because qSK contains them as not the exponent of group elements but Zp elements
in the candidate. The modification is simple; we use {wi,j}i,j∈[n] instead of {wiw̃j}i,j∈[n]. We also need
hidden spaces of IPFEs that are used only for the security proof as in [30]. These modifications make
the ciphertext size be O(m2n). We give an overview of the security proof for very simple case in Sec. 5
besides the full proof in Sec. 6.

2 Preliminaries

2.1 Notations

For a natural number m,n ∈ N, [m] denotes a set {1, . . . ,m}, and [m,n] denotes a set {m, . . . , n}. For
matrices M1, . . . ,Mn with the same number of rows, (M1|| · · · ||Mn) denotes their matrix concatena-
tion. For vectors v1, . . . ,vn, (v1, . . . ,vn) denotes the vector concatenation as row vectors regardless of
whether each vi is a row or column vector. For instance, for v1 ∈ Zm×1

p ,v2 ∈ Z1×n
p , (v1,v2) = (v>

1 ||v2).
We use ⊗ for the Kronecker product. We denotes an n-dimensional unit vector (0i−1, 1, 0n−1) by ei/n.
For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, we denote X ≈c Y as computational
indistinguishability.

2.2 Basic Tools and Assumptions

Definition 2.1 (Bilinear Groups). A description of bilinear groups G:=(p,G1, G2, GT , g1, g2, e)
consist of a prime p, cyclic groups G1, G2, GT of order p, generators g1 and g2 of G1 and G2 respectively,
and a bilinear map e : G1 ×G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(h
a
1 , h

b
2) = e(h1, h2)

ab.
– (Non-degeneracy): For generators g1 and g2, gT := e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1
λ) takes a security parameter 1λ and outputs a description of bilinear

groups G with a Ω(λ)-bit prime p.

Definition 2.2 (Dj,k-MDDH Assumption [20]). For j > k, let Dj,k be a matrix distribution over
matrices in Zj×k

p , which outputs a full-rank matrix with overwhelming probability. Let G be bilinear
groups. We can assume that, wlog, the first k rows of a matrix chosen from Dj,k form an invertible
matrix. We consider the following distribution: A ← Dj,k, z ← Zk

p, k0 := Az, k1 ← Zj
p, Pi,β :=

(G, [A]i, [kβ ]i). We say that the Dj,k-MDDH assumption holds with respect to G if, for any PPT
adversary A,

Adv
Dj ,k -MDDH
A (λ) := max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl(λ).

In what follows, we denote Dk+1,k by Dk. Note that the well-known k-Lin assumption can be captured
as the Dk-MDDH assumption.
Bilateral Variant. Let G,A,kβ be the same as above and Pβ := (G, [A]1, [A]2, [kβ ]1, [kβ ]2). We
say the bilateral Dj,k-MDDH assumption holds with respect to GBG if P0 and P1 are computationally
indistinguishable as above. The bilateral Dj,k-MDDH assumption generically holds in bilinear groups
if k ≥ 2. Note that the following two properties are applicable to the bilateral case similarly.
Uniform Distribution. Let Uj,k be a uniform distribution over Zj×k

p . Then, the following holds
with tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH.

Random Self-Reducibility. We can obtain arbitrarily many instances of the Dj,k-MDDH prob-
lem from a single instance. For any n ∈ N, we define the following distribution: A ← Dj,k, Z ←
Zk×n
p , K0 := AZ, K1 ← Zj×n

p , Pi,β := (G, [A]i, [Kβ ]i). The n-fold Dj,k-MDDH assumption is simi-
larly defined to the Dj,k-MDDH assumption. Then, the n-fold Dj,k-MDDH assumption is implied by
the Dj,k-MDDH assumption with security loss of min{n, j − k}.
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2.3 Multi-Input Functional Encryption

There are several definitions for MIFE such as the public-key setting, secret-key setting, and multi-
client setting [24]. We focus on the case where encryption keys are hidden from an adversary, which
is called secret-key MIFE. In what follows, we omit the term “secret-key” since we only consider the
secret-key variant. The definition of public-key MIFE is presented in Def. A.1.

Definition 2.3 (Multi-Input Functional Encryption). Let F be a function family such that, for
all f ∈ F, f : X1 × · · · × Xn → Z. An MIFE scheme for F, MIFE, consists of four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP and a master secret
key MSK. The other three algorithms implicitly takes PP as input.

Enc(MSK, i, xi): It takes MSK, an index i ∈ [n], and xi ∈ Xi and outputs a ciphertext CTi.
KeyGen(MSK, f): It takes MSK, and f ∈ F, and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

When n = 1, we call it just a functional encryption (FE) scheme and omit the second argument of
Enc.
Correctness. MIFE is correct if it satisfies the following condition. For all λ ∈ N, (x1, . . . , xn) ∈
X1 × · · · × Xn, f ∈ F, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣
PP,MSK← Setup(1λ)
CTi ← Enc(MSK, i, xi)
SK← KeyGen(MSK, f)
d := Dec(CT1, . . . , ,CTn,SK)

 = 1.

Security. We define two indistinguishability-based security definitions for MIFE, namely, message-
hiding and function-hiding. For a stateful PPT adversary A and λ ∈ N, let

PMIFE,β
A,mh (λ) := Pr

β′ = 1

∣∣∣∣∣∣∣∣
{i, xj,0

i , xj,1
i }i∈[n],j∈[qCT,i] ← A(1λ)

PP,MSK← Setup(1λ),

CTj
i ← Enc(MSK, i, xj,β

i )

β′ ← AKeyGen(MSK,·)(PP, {CTj
i}i∈[n],j∈[qCT,i])

 .

Let qSK be a number of queries to KeyGen. We say A is admissible if, in case of qCT,1, . . . , qCT,n, qSK ≥ 1,
A’s queries satisfy f `(xj1,0

1 , . . . , xjn,0
n ) = f `(xj1,1

1 , . . . , xjn,1
n ) for all (j1, . . . , jn) ∈ [qCT,1] × · · · × [qCT,n]

and ` ∈ [qSK]. MIFE is message-hiding if, for all admissible PPT adversaries A, the following advantage
of A is negligible in λ: AdvMIFE

A,mh(λ) := |P
MIFE,0
A,mh (λ)− PMIFE,1

A,mh (λ)|.
Next, we define a function-hiding property. Let PMIFE,β

A,fh (λ) be defined the same as PMIFE,β
A,mh (λ) except

that A’s oracle is OSK(β, ·) instead of KeyGen(MSK, ·), where OSK(β, ·) takes (f0, f1) and outputs
KeyGen(MSK, fβ). This time, A is admissible if, in case of qCT,1, . . . , qCT,n, qSK ≥ 1, A’s queries satisfy
f `,0(xj1,0

1 , . . . , xjn,0
n ) = f `,1(xj1,1

1 , . . . , xjn,1
n ) for all (j1, . . . , jn) ∈ [qCT,1] × · · · × [qCT,n] and ` ∈ [qSK].

Then, MIFE is function-hiding if, for all admissible PPT adversaries A, the following advantage of A
is negligible in λ: AdvMIFE

A,fh (λ) := |P
MIFE,0
A,fh (λ)− PMIFE,1

A,fh (λ)|.

Remark 2.1. These security definitions are the so-called selective security, where an adversary declares
the challenge messages before it gets PP. We do not use the term “selective” in security definitions
since we only consider the selective security throughout the paper.

Remark 2.2. In this paper, we assume that qCT,i ≥ 1 for all i ∈ [n]. Note that this condition can
be easily removed by simply utilizing symmetric key encryption (SKE) [6, 19]. Roughly speaking, by
encrypting all ciphertexts and secret keys with an SKE scheme and attaching the secret shares of the
secret key of the SKE scheme to ciphertexts of the MIFE scheme, we can reduce the indistinguishability
in the case where qCT = 0 for some i ∈ [n] to the security of the SKE scheme. Furthermore, without
loss of generality, we can assume that qCT,1 = · · · = qCT,n(= qCT).
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We next define quadratic functions. Our scheme computes the functions on the exponent of a group
element where the discrete log (DL) problem is hard. Thus, we need to bound norms of vectors used
in the scheme so that the decryption algorithm can compute DL of function values. Note that this
restriction is common in all previous FE schemes for inner products or quadratic functions based on
cyclic groups. We formally define the functionality as follows.

Definition 2.4 (Bounded-Norm Multi-Input Quadratic functions over Z). A function family
FMQF
m,n,X,C for bounded-norm multi-input quadratic functions consist of functions f : (Xm)n → Z where

X = {i | i ∈ Z, |i| ≤ X}. Each f ∈ FMQF
m,n,X,C is specified by c = {cµ,ν}µ,ν∈[mn] ∈ Z(mn)2 s.t. ||c||∞ ≤ C

and cµ,ν = 0 if µ > ν. Let xµ be the µ-th element of x = (x1, . . . ,xn) ∈ (Xm)n. Then, f specified by
c is defined as

f(x1, . . . ,xn) :=
∑

µ,ν∈[mn]

cµ,νxµxν .

3 Predicated Inner Product Functional Encryption

In this section, we define a new primitive called predicated inner product functional encryption and
show how to construct it. We use it as a building block of our MQFE scheme.

3.1 Definitions

Definition 3.1 (Inner Products over Bilinear Groups). Let G = (p,G1, G2, GT , g1, g2, e) be
bilinear groups. A function family FIP

m,G for inner products over bilinear groups consists of functions
f : Gm

1 → GT . Each f ∈ FIP
m,G is specified by [y]2 where y ∈ Zm

p and defined as f([x]1) := [〈x,y〉]T .

Definition 3.2 (Predicated Inner Products over Bilinear Groups). A function family FPIP
d,m,G

for predicated inner products over bilinear groups consists of functions f : Zd
p×Gm

1 → GT ∪{⊥}. Each
f ∈ FPIP

d,m,G is specified by y1 ∈ Zd
p and [y2]2 where y2 ∈ Zm

p and defined as

f(x1, [x2]1) :=

{
[〈x2,y2〉]T if 〈x1,y1〉 = 0

⊥ if 〈x1,y1〉 6= 0
.

We refer to FE for FIP
m,G and FPIP

d,m,G as IPFE and predicated IPFE, respectively.
Then, we define partially function-hiding security of FE for FPIP

d,m,G. Intuitively, partially function-
hiding security guarantees that secret keys hide y2 (but do not y1).
Partially Function-Hiding Security. Let pFE = (pSetup, pEnc, pKeyGen, pDec) be a FE scheme
for FPIP

d,m,G. For a stateful PPT adversary A and λ ∈ N, let

PpFE,β
A,pfh (λ) := Pr

β′ = 1

∣∣∣∣∣∣∣∣
{xj

1, [x
j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT] ← A(1λ)

pPP, pMSK← pSetup(1λ),

pCTj ← pEnc(pMSK, (xj
1, [x

j,β
2 ]1))

β′ ← AOSK(β,·)(pPP, {pCTj}j∈[qCT])


where OSK takes (y1, [y

0
2]2, [y

1
2]2) and outputs pKeyGen(MSK, (y1, [y

β
2 ]2)). Let qSK be a number of

queries to OSK. We say A is admissible if A’s queries satisfy 〈xj,0
2 ,y`,0

2 〉 = 〈x
j,1
2 ,y`,1

2 〉 when 〈xj
1,y

`
1〉 = 0

for all j ∈ [qCT] and ` ∈ [qSK]. pFE is partially function-hiding if, for all admissible PPT adversaries A,
the following advantage of A is negligible in λ: AdvpFEA,pfh(λ) := |P

pFE,0
A,pfh(λ)− PpFE,1

A,pfh(λ)|.
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3.2 Predicated IPFE from IPFE

We construct a partially function-hiding FE scheme for FPIP
d,m,G from a function-hiding FE scheme for

FIP
kd+2m+1,G in a generic way. Note that k is a parameter for the MDDH assumption. A function-hiding

FE scheme for FIP
m,G based on MDDH is easily obtained from a function-hiding inner product FE

scheme described in [32, Appx. A], which is obtained by applying Lin’s technique to the IPFE scheme
by Abdalla et al. [6,30]. This is since the scheme works even if input vectors for Enc and KeyGen consist
of group elements, and Dec first obtains decryption values on the exponent of a target-group generator
and then computes its discrete log.

Construction. Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for FIP
kd+2m+1,G.

Then, our partially function-hiding FE scheme pFE = (pSetup, pEnc, pKeyGen, pDec) for FPIP
d,m,G is con-

structed as follows.

pSetup(1λ): It outputs (pPP, pMSK) := (iPP, iMSK)← iSetup(1λ).
pEnc(MSK, (x1, [x2]1)): It outputs pCT as follows:

z← Zk
p, x := (z⊗ x1,x2, 0

m, 0) ∈ Zkd+2m+1
p

iCT← iEnc(iMSK, [x]1), pCT := (x1, iCT).

pKeyGen(pMSK, (y1, [y2]2)): It outputs SK as follows:

a← Zk
p, y := (a⊗ y1,y2, 0

m, 0) ∈ Zkd+2m+1
p

iSK← iKeyGen(iMSK, [y]2), pSK := (y1, iSK).

pDec(pCT, pSK): If 〈x1,y1〉 6= 0, it outputs ⊥. Otherwise, outputs iDec(iCT, iSK).

Correctness. Since 〈z⊗ x1,a⊗ y1〉 = 〈z,a〉 · 〈x1,y1〉, iDec(iCT, iSK) outputs [〈x,y〉]T = [〈x2,y2〉]T
if 〈x1,y1〉 = 0. This follows from the correctness of iFE.

3.3 Security of Our Predicated Inner Product FE Scheme

For security, we have the following theorem.

Theorem 3.1. If iFE is function-hiding, and the MDDH assumption holds in G, then pFE is partially
function-hiding. More precisely, for all PPT adversaries A, there exist PPT adversaries B1,B2 such
that

AdvpFEA,pfh(λ) ≤ qCT(3Adv
iFE
B1,fh(λ) + 2AdvDk -MDDH

B2
(λ)).

Proof. We prove Theorem 3.1 via a series of hybrid games Hι,1, . . . ,Hι,5 for ι ∈ [qCT]. We show that
G0 ≈c H1,1 ≈c · · · ≈c H1,5 ≈c H2,1 ≈c · · · ≈c HqCT,4 ≈c G1, where Gβ for β ∈ {0, 1} is the original
security game (described in Fig 1). Each hybrid is defined as follows.

Hι,1: This game is the same as G0 except that
– for j ∈ [qCT], xj to be encrypted is set as

xj :=


(zj ⊗ xj

1, 0m,xj,1
2 , 0) if j < ι

( 0kd ,xj,0
2 , 0m, 1 ) if j = ι

(zj ⊗ xj
1,x

j,0
2 , 0m, 0) if j > ι

(3.1)

– OSK sets y := (a⊗ y1,y
0
2, y1

2, 〈zι,a〉 · 〈xι
1,y1〉 ) for all queries.
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Gβ

{xj
1, [x

j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT] ← A(1λ)

(pPP, pMSK) := (iPP, iMSK)← iSetup(1λ)

zj ← Zk
p, x

j := (zj ⊗ xj
1,x

j,β
2 , 0m, 0) ∈ Zkd+2m+1

p

iCTj ← iEnc(iMSK, [xj ]1), pCT
j := (xj

1, iCT
j)

β′ ← AOSK(β,·)(pPP, {pCTj}j∈[qCT])

OSK(β, ·)
Input: (y1, [y

0
2]2, [y

1
2]2)

a← Zk
p, y := (a⊗ y1,y

β
2 , 0

m, 0) ∈ Zkd+2m+1
p

iSK← iKeyGen(iMSK, [y]2), pSK := (y1, iSK)

Output: pSK

Fig 1. Partially function-hiding security game for pFE.

Hι,2: This game is the same as Hι,1 except that OSK samples t← Zp and sets y := (a⊗ y1,y
0
2,y

1
2, t ·

〈xι
1,y1〉) for each query.

Hι,3: This game is the same as Hι,2 except that xι := (0kd, 0m,xι,1
2 , 1).

Hι,4: This game is the same as Hι,3 except that OSK sets y := (a⊗y1,y
0
2,y

1
2, 〈zι,a〉 · 〈xι

1,y1〉) for all
queries.

Hι,5 (ι ∈ [qCT − 1]): This game is the same as Hι,4 except that
– xι := ( zι ⊗ xι

1 , 0m,xι,1
2 , 0 );

– OSK sets y := (a⊗ y1,y
0
2,y

1
2, 0 ) for all queries.

Thanks to Lemmata 3.1 to 3.5, Theorem 3.1 holds. ut

Next, we prove the indistinguishability of each pair of hybrid games. Let P(A,G) be the probability
that A outputs 1 in a security game G with the security parameter being λ, i.e., P(A,Gβ) = PpFE,β

A,pfh (λ).

Lemma 3.1. Let H0,5 = G0. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary
B such that |P(A,Hι−1,5)− P(A,Hι,1)| ≤ AdviFEB,fh(λ).

Proof. Recall that the differences between Hι−1,5 and Hι,1 are

– xι := (zι ⊗ xι
1,x

ι,0
2 , 0m, 0) −→ xι := (0kd,xι,0

2 , 0m, 1);

– y :=

{
(a⊗ y1,y

0
2, 0

m, 0) if ι = 1

(a⊗ y1,y
0
2,y

1
2, 0) if ι > 1

−→ y := (a⊗ y1,y
0
2,y

1
2, 〈zι,a〉 · 〈xι

1,y1〉).

For j ∈ [qCT] and ` ∈ [qSK], let xj,0 and y`,0 be xj and y` defined in Hι−1,5, respectively. Similarly,
let xj,1 and y`,1 be xj and y` defined in Hι,1, respectively. Then, it is not hard to see that we have
〈xj,0,y`,0〉 = 〈xj,1,y`,1〉 for all j ∈ [qCT] and ` ∈ [qSK]. Thus, we can reduce the indistinguishability
between Hι−1,5 and Hι,1 to the function-hiding property of iFE. Note that since xj is independent of
y`
1,y

`,0
2 ,y`,1

2 , the adaptiveness of secret-key queries does not become a matter in the reduction. This
concludes the proof. ut

Lemma 3.2. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,Hι,1)− P(A,Hι,2)| ≤ Adv

UqSK,k -MDDH

B (λ).

Proof. We describe the reduction B.

1. B obtains a UqSK,k-MDDH instance (G, [A]2, [kβ ]2), where A ∈ ZqSK×k
p , k0 = Az, k1 ← ZqSK

p .
2. When A outputs {xj

1, [x
j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT], B sets (pPP, pMSK) := (iPP, iMSK)← iSetup and gives

pPP, {pCTj := (xj
1, iEnc(iMSK, [xj ]1))}j∈[qCT] to A, where xj is set as Eq. (3.1).
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3. For the `-th query to OSK on (y`
1, [y

`,0
2 ]2, [y

`,1
2 ]2), B replies pSK by setting y` := (a`⊗y`

1,y
`,0
2 ,y`,1

2 ,
kβ,` · 〈xι

1,y
`
1〉), where a` is the `-th row of A and kβ,` is the `-th entry of kβ .

4. B outputs A’s output as it is.
It is not hard to see that A’s view corresponds to Hι,1 if β = 0 and Hι,2 otherwise. Note that
UqSK,k-MDDH is tightly reduced to Dk-MDDH. ut

Lemma 3.3. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,Hι,2)− P(A,Hι,3)| ≤ AdviFEB,fh(λ).

Proof. Let xj,0 be xj defined in Hι,2, i.e., as in Eq. (3.1), and xj,1 be xj defined in Hι,3, i.e., the same
as in Eq. (3.1) except that xι := (0kd, 0m,xι,1

2 , 1). Let us define that

y`,0 := (a` ⊗ y`
1,y

`,0
2 ,y`,1

2 , t` · 〈xι
1,y

`
1〉)

y`,1 := (a` ⊗ y`
1,y

`,0
2 ,y`,1

2 , t` · 〈xι
1,y

`
1〉+ (〈xι,0

2 ,y`,0
2 〉 − 〈x

ι,1
2 ,y`,1

2 〉)).

Then, it is not hard to see that we have 〈xj,0,y`,0〉 = 〈xj,1,y`,1〉 for all j ∈ [qCT] and ` ∈ [qSK]. Thus,
we can reduce the indistinguishability between the 0-side and 1-side to the function-hiding property
of iFE. Here, we have the two cases:
〈xι

1,y
`
1〉 = 0: The game condition imposes 〈xι,0

2 ,y`,0
2 〉 − 〈x

ι,1
2 ,y`,1

2 〉 = 0 on A.
〈xι

1,y
`
1〉 6= 0: Since t` is distributed randomly in Zp, the terms t` ·〈xι

1,y
`
1〉 and t` ·〈xι

1,y
`
1〉+(〈xι,0

2 ,y`,0
2 〉−

〈xι,1
2 ,y`,1

2 〉) are also distributed randomly.
Hence, y`,0 and y`,1 are identically distributed in both cases, which means that the 0-side corresponds
to Hι,2 and the 1-side corresponds to Hι,3. ut

Lemma 3.4. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,Hι,3)− P(A,Hι,4)| ≤ Adv

UqSK,k -MDDH

B (λ).

We omit the proof since Lemma 3.4 can be proven similarly to Lemma 3.2.

Lemma 3.5. Let HqCT,5 = G1. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary
B such that |P(A,Hι,4)− P(A,Hι,5)| ≤ AdviFEB,fh(λ).

We omit the proof since Lemma 3.5 can be proven similarly to Lemma 3.1.

4 Multi-Input Mixed-Group Inner Product Functional Encryption

In this section, we define a new primitive called multi-input mixed-group inner product functional
encryption and show how to construct it. We use it as a building block of our MQFE scheme.

4.1 Definitions
Definition 4.1 (Multi-Input Inner Products over Bilinear Groups). Let G = (p,G1, G2, GT , g1,
g2, e) be bilinear groups. A function family FMIP

m,n,G for multi-input inner products over bilinear groups
consists of functions f : (Gm

1 )n → GT . Each f ∈ FMIP
m,n,G is specified by [y1]2, . . . , [yn]2 where yi ∈ Zm

p

and defined as f([x]1, . . . , [x]n) := [
∑

i∈[n]〈xi,yi〉]T .

Definition 4.2 (Multi-Input Mixed-Group Inner Products over Bilinear Groups). Let G =
(p,G1, G2, GT , g1, g2, e) be bilinear groups. A function family FMGIP

m1,m2,n,G for multi-input mixed-group
inner products over bilinear groups consists of functions f : (Gm1

1 ×Gm2
2 )n → GT . Each f ∈ FMGIP

m1,m2,n,G
is specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Zm1

p and yi,2 ∈ Zm2
p and defined as

f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) := [〈x,y〉]T where x := (x1,1,x1,2, . . . ,xn,1,xn,2) and y :=
(y1,1,y1,2, . . . ,yn,1,yn,2).

We refer to MIFE for FMIP
m,n,G and FMGIP

m1,m2,n,G as MIPFE and multi-input mixed-group IPFE, respec-
tively.
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4.2 Multi-Input Mixed-Group IPFE from MIPFE

Let FIP′

m,G be a function class defined the same as FIP
m,G in Def. 3.1 except that G1 and G2 are switched,

that is, each f : Gm
2 → GT is specified by [y]1. We construct a function-hiding MIFE scheme for

FMGIP
m1,m2,n,G from a function-hiding MIFE scheme for FMIP

m1+m2+k+1,n,G and function-hiding FE scheme
for FIP′

m2+k+1,G in a generic way. Note that k is a parameter for the MDDH assumption. A function-
hiding MIFE scheme for FMIP

m,n,G based on MDDH is easily obtained from a function-hiding multi-input
IPFE schemes in [4,19,32]. This is since these schemes in the literetures work even if input vectors for
Enc and KeyGen consist of group elements, and Dec first obtains decryption values on the exponent of
a target-group generator and then computes its discrete log.

Construction. Let miFE = (miSetup,miEnc,miKeyGen,miDec) be a function-hiding MIFE scheme
for FMIP

m1+m2+k+1,n,G and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for FIP′

m2+k+1,G.
Then, our function-hiding MIFE scheme gFE = (gSetup, gEnc, gKeyGen, gDec) for FMGIP

m1,m2,n,G is con-
structed as follows.

gSetup(1λ): It outputs gPP, gMSK as follows:

miPP,miMSK←miSetup(1λ), (iPP1, iMSK1), . . . , (iPPn, iMSKn)←iSetup(1λ)

gPP := (miPP, iPP1, . . . , iPPn), gMSK := (miMSK, iMSK1, . . . , iMSKn).

gEnc(MSK, i, ([xi,1]1, [xi,2]2)): It outputs CTi as follows:

z←Zk
p, x̃i,1:=(xi,1, 0

m2 , z, 0) ∈ Zm1+m2+k+1
p , x̃i,2:=(xi,2,−z, 0) ∈ Zm2+k+1

p

miCTi ← miEnc(miMSK, i, [x̃i,1]1), iCTi ← iEnc(iMSKi, [x̃i,2]2)

gCTi := (miCTi, iCTi).

gKeyGen(MSK, {[yi,1]2, [yi,2]1}i∈[n]): It outputs SK as follows:

a←Zk
p, ỹi,1:=(yi,1, 0

m2 ,a, 0) ∈ Zm1+m2+k+1
p , ỹi,2:=(yi,2,a, 0) ∈ Zm2+k+1

p

ỹ := (ỹ1,1, . . . , ỹn,1), miSK← miKeyGen(miMSK, [ỹ]2)

iSKi ← iKeyGen(iMSKi, [ỹi,2]1), gSK := (miSK, {iSKi}i∈[n]).

gDec(gCT1, . . . , gCTn, gSK): It outputs

miDec(miCT1, . . . ,miCTn,miSK)
∏
i∈[n]

iDec(iCTi, iSKi).

Correctness. Due to the correctness of miFE and iFE, gDec outputs∑
i∈[n]

(〈x̃i,1, ỹi,1〉+ 〈x̃i,2, ỹi,2〉)


T

=

∑
i∈[n]

(〈xi,1,yi,1〉+ 〈xi,2,yi,2〉)


T

.

4.3 Security of Our Multi-Input Mixed-Group IPFE scheme

For security, we have the following theorem.

Theorem 4.1. If miFE and iFE are function-hiding, and the bilateral MDDH assumption holds in G,
then gFE is function-hiding. More precisely, for all PPT adversaries A, there exist PPT adversaries
B1,B2,B3 such that

AdvgFEA,fh(λ)≤(4qCT + 1)AdvmiFE
B1,fh(λ) + n(4qCT + 1)AdviFEB2,fh(λ) + 4nqCTAdv

bi-Dk -MDDH
B3

(λ).

14



Gβ

{i, ([xj,0
i,1 ]1, [x

j,0
i,2 ]2), ([x

j,1
i,1 ]1, [x

j,1
i,2 ]2)}i∈[n],j∈[qCT] ← A(1λ)

miPP,miMSK← miSetup(1λ), (iPP1, iMSK1), . . . , (iPPn, iMSKn)← iSetup(1λ)

gPP := (miPP, iPP1, . . . , iPPn), gMSK := (miMSK, iMSK1, . . . , iMSKn)

zji ← Zk
p, x̃

j
i,1 := (xj,β

i,1 , 0
m2 , zji , 0), x̃

j
i,2 := (xj,β

i,2 ,−z
j
i , 0)

miCTj
i ← miEnc(miMSK, i, [x̃j

i,1]1), iCT
j
i ← iEnc(iMSKi, [x̃

j
i,2]2), gCT

j
i := (miCTj

i , iCT
j
i )

β′ ← AOSK(β,·)(gPP, {gCTj
i}i∈[n],j∈[qCT])

OSK(β, ·)
Input: {([y0

i,1]2, [y
0
i,2]1), ([y

1
i,1]2, [y

1
i,2]1)}i∈[n]

a← Zk
p, ỹi,1 := (yβ

i,1, 0
m2 ,a, 0), ỹi,2 := (yβ

i,2,a, 0)

ỹ := (ỹ1,1, . . . , ỹn,1), miSK← miKeyGen(miMSK, [ỹ]2), iSKi ← iKeyGen(iMSKi, [ỹi,2]1)

gSK := (miSK, {iSKi}i∈[n]).

Output: gSK

Fig 2. Function-hiding security game for gFE.

Proof. We prove Theorem 4.1 via a series of hybrid games H1,ι,1, . . . ,H1,ι,5,H2 for ι ∈ [qCT]. We show
that G0 ≈c H1,1,1 ≈c · · · ≈c H1,1,5 ≈c H1,2,1 ≈c · · · ≈c H1,qCT,5 ≈c H2 ≈c G1, where Gβ for β ∈ {0, 1} is
the original security game (described in Fig 2). Each hybrid is defined as follows.

H1,ι,1: This game is the same as G0 except that
– for (i, j) ∈ [n]× [qCT], x̃j

i,1, x̃
j
i,2 to be encrypted are set as

x̃j
i,1 :=


(xj,0

i,1 , xj,0
i,2 , zji , 0)

(xj,0
i,1 , 0

m2 , 0k, 1 )

(xj,0
i,1 , 0

m2 , zji , 0)

x̃j
i,2 :=


( 0m2 ,−zji , 0) if j < ι

( 0m2 , 0k, 1 ) if j = ι

(xj,0
i,2 ,−z

j
i , 0) if j > ι

(4.1)

– OSK sets ỹi,1 := (y0
i,1, y0

i,2 ,a, 〈zιi,a〉 ), ỹi,2 := (y0
i,2,a, −〈zιi,a〉+ 〈x

ι,0
i,2,y

0
i,2〉 ) for all queries.

H1,ι,2: This game is the same as H1,ι,1 except that OSK samples ti ← Zp and sets ỹi,1 := (y0
i,1,y

0
i,2,a, ti ),

ỹi,2 := (y0
i,2,a, −ti + 〈xι,0

i,2,y
0
i,2〉) for each query.

H1,ι,3: This game is the same as H1,ι,2 except that OSK sets ỹi,1 := (y0
i,1,y

0
i,2,a, ti +〈x

ι,0
i,2,y

0
i,2〉 ), ỹi,2 :=

(y0
i,2,a,−ti +�����〈xι,0

i,2,y
0
i,2〉) for each query.

H1,ι,4: This game is the same as H1,ι,3 except that OSK sets ỹi,1 := (y0
i,1,y

0
i,2,a, 〈zιi,a〉 + 〈xι,0

i,2,y
0
i,2〉),

ỹi,2 := (y0
i,2,a, −〈zιi,a〉 ) for all queries.

H1,ι,5: This game is the same as H1,ι,4 except that

– x̃ι
i,1 := (xι,0

i,1, xι,0
i,2, z

ι
i, 0 ), x̃ι

i,2 := (0m2 , −zιi, 0 ) for all i ∈ [n];

– OSK sets ỹi,1 := (y0
i,1,y

0
i,2,a, 0 ), ỹi,2 := (y0

i,2,a, 0 ) for all queries.
H2: This game is the same as H1,qCT,5 except that

– x̃j
i,1 := ( xj,1

i,1 ,x
j,1
i,2 , zji , 0), x̃

j
i,2 := (0m2 ,−zji , 0) for all (i, j) ∈ [n]× [qCT];

– OSK sets ỹi,1 := ( y1
i,1,y

1
i,2 ,a, 0), ỹi,2 := ( y1

i,2 ,a, 0) for all queries.

Thanks to Lemmata 4.1 to 4.7, Theorem 4.1 holds. ut

Next, we prove the indistinguishability of each pair of hybrid games. Let P (A,G) be the probability
that A outputs 1 in G with the security parameter being λ, i.e., P(A,Gβ) = PgFE,β

A,fh (λ).
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Lemma 4.1. Let H1,0,5 = G0. For all PPT adversaries A and ι ∈ [qCT], there exist PPT adversary
B1,B2 such that |P(A,H1,ι−1,5)− P(A,H1,ι,1)| ≤ AdvmiFE

B1,fh(λ) + nAdviFEB2,fh(λ).

Proof. Recall that the differences between H1,ι−1,5 and H1,ι,1 are

– x̃ι
i,1 := (xι,0

i,1, 0
m2 , zιi, 0) −→ x̃ι

i,1 := (xι,0
i,1, 0

m2 , 0k, 1);

– x̃ι
i,2 := (xι,0

i,2,−zιi, 0) −→ x̃ι
i,2 := (0m2 , 0k, 1);

– ỹi,1 :=

{
(y0

i,1, 0
m2 ,a, 0) if ι = 1

(y0
i,1,y

0
i,2,a, 0) if ι > 1

−→ ỹi,1 := (y0
i,1,y

0
i,2,a, 〈zιi,a〉);

– ỹi,2 := (y0
i,2,a, 0) −→ ỹi,2 := (y0

i,2,a,−〈zιi,a〉+ 〈x
ι,0
i,2,y

0
i,2〉).

For all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0
i,1 and ỹ`,0

i,1 be x̃j
i,1 and ỹ`

i,1 defined in H1,ι−1,5, respectively. Let
x̃j,1
i,1 and ỹ`,1

i,1 be x̃j
i,1 and ỹ`

i,1 defined in H1,ι,1, respectively. Then, it is not hard to see that we have
〈x̃j,0

i,1 , ỹ
`,0
i,1 〉 = 〈x̃

j,1
i,1 , ỹ

`,1
i,1 〉. Hence, for all (j1, . . . , jn) ∈ [qCT]

n, ` ∈ [qSK], we have
∑

i∈[n]〈x̃
j,0
i,1 , ỹ

`,0
i,1 〉 =∑

i∈[n]〈x̃
j,1
i,1 , ỹ

`,1
i,1 〉 and can reduce the indistinguishability between x̃j

i,1 and ỹ`
i,1 in H1,ι−1,5 and those

in H1,ι,1 to the function-hiding property of miFE.
Similarly, for all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0

i,2 and ỹ`,0
i,2 be x̃j

i,2 and ỹ`
i,2 defined in H1,ι−1,5,

respectively. Let x̃j,1
i,2 and ỹ`,1

i,2 be x̃j
i,2 and ỹ`

i,2 defined in H1,ι,1, respectively. Then, we have 〈x̃j,0
i,2 , ỹ

`,0
i,2 〉 =

〈x̃j,1
i,2 , ỹ

`,1
i,2 〉. Thus, we can reduce the indistinguishability between x̃j

i,2 and ỹ`
i,2 in H1,ι−1,5 and those

in H1,ι,1 to the function-hiding property of iFE. Note that the function-hiding property of iFE in the
multi-instance setting is easily reduced to that in the single-instance setting via hybrid argument. This
concludes the proof. ut

Lemma 4.2. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B against n-fold
bilateral UqSK,k-MDDH such that |P(A,H1,ι,1)− P(A,H1,ι,2)| ≤ Adv

n-bi-UqSK,k -MDDH

B (λ).

Proof. We describe the reduction B.

1. B obtains an n-fold bilateral UqSK,k-MDDH instance (G, [A]1, [Kβ ]1, [A]2, [Kβ ]2), where A ∈ ZqSK×k
p ,

Z← Zk×n
p , K0 = AZ, K1 ← ZqSK×n

p .
2. When A outputs {i, ([xj,0

i,1 ]1, [x
j,0
i,2 ]2), ([x

j,1
i,1 ]1, [x

j,1
i,2 ]2)}i∈[n],j∈[qCT], B computes gPP, gMSK as in Fig 2

and gives gPP, {miCTj
i , iCT

j
i}i∈[n],j∈[qCT] to A, where miCTj

i ← miEnc(miMSK, i, [x̃j
i,1]1), iCTj

i ←
iEnc(iMSKi, [x̃

j
i,2]2) with x̃j

i,1, x̃
j
i,2 being set as in Eq. (4.1).

3. For the `-th query to OSK on {([y`,0
i,1 ]2, [y

`,0
i,2 ]1), ([y

`,1
i,1 ]2, [y

`,1
i,2 ]1)}i∈[n], B replies gSK := (miSK,

{iSKi}i∈[n]) as follows:

ỹ`
i,1 := (y`,0

i,1 ,y
`,0
i,2 ,a

`, kβ,`,i), ỹ
`
i,2 := (y0

i,2,a
`,−kβ,`,i + 〈xι,0

i,2,y
`,0
i,2 〉)

ỹ` := (ỹ`
1,1, . . . , ỹ

`
n,1), miSK← miKeyGen(miMSK, [ỹ`]2)

iSKi ← iKeyGen(iMSKi, [ỹ
`
i,2]1)

where a` is the `-th row of A and kβ,`,i is the (`, i)-th entry of Kβ .
4. B outputs A’s output as it is.

It is not hard to see that A’s view corresponds to H1,ι,1 if β = 0 and H1,ι,2 otherwise. Note that n-fold
bilateral UqSK,k-MDDH reduced to bilateral Dk-MDDH with the security loss of n. ut

Lemma 4.3. For all PPT adversaries A and ι ∈ [qCT], we have P(A,H1,ι,2) = P(A,H1,ι,3).

Proof. We implicitly define ti,` := t′i,` + 〈x
ι,0
i,2,y

`,0
i,2 〉 where t′i,` ← Zp for all i ∈ [n], ` ∈ [qSK]. This

does not change the distribution of ti,`. Then, it is easy to see that OSK sets ỹ`
i,1 := (y`,0

i,1 ,y
`,0
i,2 ,a, t

′
i,` +

〈xι,0
i,2,y

`,0
i,2 〉), ỹ`

i,2 := (y`,0
i,2 ,a

`,−t′i,`) in H1,ι,2, which are identically distributed to ỹ`
i,1, ỹ

`
i,2 in H1,ι,3.

Thus, A’s views in both hybrids are identical. ut
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Lemma 4.4. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,H1,ι,3)− P(A,H1,ι,4)| ≤ nAdv

bi-UqSK,k -MDDH

B (λ).

We omit the proof since Lemma 4.4 can be proven similarly to Lemma 4.2.

Lemma 4.5. For all PPT adversaries A and ι ∈ [qCT], there exist PPT adversary B1,B2 such that
|P(A,H1,ι,4)− P(A,H1,ι,5)| ≤ AdvmiFE

B1,fh(λ) + nAdviFEB2,fh(λ).

We omit the proof since Lemma 4.5 can be proven similarly to Lemma 4.1.

Lemma 4.6. For all PPT adversaries A, there exist PPT adversary B1,B2 such that |P(A,H1,qSK,5)−
P(A,H2)| ≤ AdvmiFE

B1,fh(λ) + nAdviFEB2,fh(λ).

Proof. For all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0
i,1 and ỹ`,0

i,1 be x̃j
i,1 and ỹ`

i,1 defined in H1,qSK,5,
respectively. Let x̃j,1

i,1 and ỹ`,1
i,1 be x̃j

i,1 and ỹ`
i,1 defined in H2, respectively. Due to the admissibility of A

against gFE, its queries satisfy that
∑

i∈[n](〈x
j,0
i,1 ,y

`,0
i,1 〉+ 〈x

j,0
i,2 ,y

`,0
i,2 〉) =

∑
i∈[n](〈x

j,1
i,1 ,y

`,1
i,1 〉+ 〈x

j,1
i,2 ,y

`,1
i,2 〉)

for all (j1, . . . , jn) ∈ [qCT]
n, ` ∈ [qSK]. Thus, we have

∑
i∈[n]〈x̃

j,0
i,1 , ỹ

`,0
i,1 〉 =

∑
i∈[n]〈x̃

j,1
i,1 , ỹ

`,1
i,1 〉 and can

reduce the indistinguishability between x̃j
i,1 and ỹ`

i,1 in H1,qSK,5 and those in H2 to the function-hiding
property of miFE.

Similarly, for all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0
i,2 and ỹ`,0

i,2 be x̃j
i,2 and ỹ`

i,2 defined in H1,qSK,5,
respectively. Let x̃j,1

i,2 and ỹ`,1
i,2 be x̃j

i,2 and ỹ`
i,2 defined in H2, respectively. Then, we have 〈x̃j,0

i,2 , ỹ
`,0
i,2 〉 =

〈x̃j,1
i,2 , ỹ

`,1
i,2 〉. Thus, we can reduce the indistinguishability between x̃j

i,2 and ỹ`
i,2 in H1,qSK,5 and those in

H2 to the function-hiding property of iFE. This concludes the proof. ut

Lemma 4.7. For all A, there exist B1,B2,B3 such that |P(A,H2) − P(A,G1)| ≤ 2qCT(Adv
miFE
B1,fh(λ) +

nAdviFEB2,fh(λ) + nAdv
bi-UqSK,k -MDDH

B3
(λ)).

We omit the proof since Lemma 4.7 is proven similarly to Lemmata 4.1 to 4.5.

5 Warm-up: Toy MQFE Scheme

Since our MQFE scheme, presented in Sec. 6, is highly complicated, and its security analysis is quite
hard to follow, we first present a toy scheme, which will help to understand the idea of our full MQFE
scheme. The toy scheme is a MIFE scheme for FMQF

1,2,X,C from the SXDH assumption, that is, it has
two slots and one element per slot. The SXDH assumption is captured as the Dk assumption where
Dk consists of all matrices with the form of (a, 1)> ∈ Z2

p. Note that the toy scheme is obtained by not
only just setting the full scheme as m = 1, n = 2, but also given simplification that is applicable only
when m = 1 and the number of ciphertext queries is 2 per slot. Concretely, we omit the elements that
corresponds to Ũi and ṽi in the full scheme and some free spaces for security proof.

Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for FPIP
4,8,G (Def. 3.2), iFE = (iSetup,

iEnc, iKeyGen, iDec) be an FE scheme for FIP
2,G (Def.3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec) be an

FE scheme for FMGIP
4,1,2,G (Def. 4.2). The toy scheme qFE = (qSetup, qEnc, qKeyGen, qDec) is constructed

from pFE, iFE, and gFE. Precisely, since gFE cannot be instantiated from SXDH, the toy scheme needs
an additional assumption such as XDLIN (bilateral 2-Lin). G is fixed by qSetup.

5.1 Construction
qSetup(1λ): It outputs qPP, qMSK as follows:

G← GBG(1
λ), w1,1, w1,2, w2,1, w2,2, u1, u2, v1, v2 ← Zp

pPP, pMSK←pSetup(1λ), iPP, iMSK←iSetup(1λ), gPP, gMSK←gSetup(1λ)

qPP := (G, pPP, iPP, gPP)

qMSK := ({wi,j}i,j∈[2], {ui, vi}i∈[2], pMSK, iMSK, gMSK).
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qEnc(qMSK, i, xi): First, it samples vectors as follows:

s, s̃, r, t, L← Zp

l := ei/2 ⊗ (1, L) ∈ Z4
p, l̃ := ei/2 ⊗ (L,−1) ∈ Z4

p

b := (xi, 0, sw1,i, sw2,i, ui, t, 0, 0) ∈ Z8
p

b̃ := (xi, 0, s̃ei/2, r, vi, 0, 0) ∈ Z8
p

d := (s, 0) ∈ Z2
p, d̃ := (s̃, 0) ∈ Z2

p

f := (r, t, 0, 0) ∈ Z4
p, h := 0

Then, it outputs qCTi as follows:

pCTi ← pEnc(pMSK, (l, [b]1)), pSKi ← pKeyGen(pMSK, (̃l, [b̃]2))

iCTi ← iEnc(iMSK, [d]1), iSKi ← iKeyGen(iMSK, [d̃]2)

gCTi ← gEnc(gMSK, i, ([f ]1, [h]2))

qCTi := (pCTi, pSKi, iCTi, iSKi, gCTi)

qKeyGen(qMSK, c = {cµ,ν}µ,ν∈[2]): It outputs qSK as follows:

f̃i :=

∑
µ∈[2]

ci,µuµ,
∑
µ∈[2]

cµ,ivµ, 0, 0

 ∈ Z4
p

h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[2])

σi,θ := ci,θwi,θ

qSK := (c, gSK, {σi,θ}i,θ∈[2]).

qDec(qCT1, qCT2, qSK): It computes

[z1]T :=
∏

µ,ν∈[2]

pDec(pCTν , pSKµ)
cµ,ν

[z2]T :=
∏

i,θ∈[2]

iDec(iCTθ, iSKi)
σi,θ

[z3]T := gDec(gCT1, gCT2, gSK)

[z]T := [z1 − z2 − z3]T .

Then, it searches for z within the range of z ≤ |4CX2|.

Correctness. Let si, s̃i, ri, ti, li, l̃i,bi, b̃i for i ∈ [2] be random elements used to generate qCTi.
Observe that 〈li, l̃I〉 = 0 for all i, I ∈ [2], and thus pDec(pCTi, pSKI) = 〈bi, b̃I〉. Due to the correctness
of pFE, iFE, gEF, we have

z1 =
∑

µ,ν∈[2]

cµ,ν(xµxν + sν s̃µwµ,ν + rµuν + tνvµ)

z2 =
∑

µ,ν∈[2]

cµ,νsν s̃µwµ,ν

z3 =
∑

µ,ν∈[2]

cµ,ν(rµuν + tνvµ).

Hence, we have z =
∑

µ,ν∈[2] cµ,νxµxν .

18



Gβ

{i,xj,0
i ,xj,1

i }i∈[2],j∈[2] ← A(1λ)

qPP, qMSK← qSetup(1λ) qCTj
i ← qEnc(qMSK, i,xj,β

i )

c← A(qPP, {qCTj
i}i∈[2],j∈[2])

qSK← qKeyGen(qMSK, c)

β′ ← A(qSK)

Fig 3. Toy security game for qFE.

5.2 Multi-input IPFE Scheme for Security Analysis

Before going to the security analysis of our MQFE scheme, we introduce a message-hiding MIPFE
scheme (the MIFE scheme for FMIP

m,n,G, denoted by miFE = (miSetup,miEnc,miKeyGen,miDec)) that
we use for the security proof. The scheme is obtained by applying the conversion by Abdalla et
al. [4, Sec. 4.1], which converts a single-input IPFE scheme into a multi-input one, to the single-
input IPFE scheme by Abdalla et al. [3, Sec. 5]. The resulting scheme satisfies the message-hiding
security under the DDH assumption. Note that although Abdalla et al. considered the conversion in
the adaptive setting, it is not hard to see that the conversion works in the selective setting. The original
scheme in [3] uses a pairing-free group for the construction, but it is easy to see that their scheme can
be similarly built on pairing groups where the SXDH assumption holds. We use the scheme built on
the pairing groups in the security proof of our toy MQFE scheme. The scheme is described as follows.

miSetup(1λ): It outputs miPP,miMSK as follows:

G← GBG(1
λ), w1, . . . ,wn ← Zm

p , u1, . . . ,un ← Zm
p

miPP := (G, [w1]1, . . . , [wn]1), miMSK := (w1, . . . ,wn,u1, . . . ,un).

miEnc(miMSK, i,xi): It outputs miCTi as follows:

s← Zp, miCTi := [ci]1 = ([s]1, [swi + ui + xi]1).

miKeyGen(miMSK,y1, . . . ,yn): It outputs miSK as follows:

miSK0:=−
∑
i∈[n]

〈yi,ui〉, miSKi:=(−y>
i wi,yi), miSK:=(miSK0, {miSKi}i∈[n]).

miDec(miCT1, . . . ,miCTn,miSK): It computes d where [d]1 = [
∑

i∈[n]〈ci,miSKi〉+miSK0]1.

5.3 Security Analysis for Simple Case

In this section, we consider the security analysis for the simple case where an adversary makes two
ciphertext queries per slot and one secret key query. The reason for considering two ciphertext queries
is that the ways of changing the first and second ciphertexts in hybrid games are different. In the
general case, the second and subsequent ciphertexts are changed similarly in the hybrid sequence.
Thus, the two-ciphertexts case suffices for understanding the basic strategy for security analysis. In a
high-level view, the security proof of our MQFE scheme is similar to that of the MIPFE schemes by
Abdalla et al. [4] in which the first ciphertexts of each slot are changed from the 0-side to the 1-side
by the information-theoretical property of the one-time pad and the rest of ciphertexts is changed by
the security of an IPFE scheme (in our case, the IPFE scheme corresponds to the MIPFE scheme in
Sec.5.2). Since the formal security proof for our MQFE scheme is given in Sec.6, we present a security
proof for the simple case in an informal way.

We want to prove G0 ≈c G1 where Gβ is the message-hiding security game (described in Fig 3). In
Gβ , the vectors in the ciphertexts and the secret key that the adversary obtains are defined as Fig 4.
We introduce a series of hybrid games, H1, . . . ,H15, and prove G0 ≈c H1 ≈c · · · ≈c H15 ≈c G1. In each
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qCT1
1

b1
1 := (x1,β

1 , 0, s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃1
1 := (x1,β

1 , 0, s̃11, 0, r11, v1, 0, 0)

d1
1 := (s11, 0), d̃

1
1 := (s̃11, 0)

f11 := (r11, t
1
1, 0, 0), h

1
1 := 0

qCT1
2

b1
2 := (x1,β

2 , 0, s12w1,2, s
1
2w2,2, u2, t

1
2, 0, 0)

b̃1
2 := (x1,β

2 , 0, 0, s̃12, r12, v2, 0, 0)

d1
2 := (s12, 0), d̃

1
2 := (s̃12, 0)

f12 := (r12, t
1
2, 0, 0), h

1
2 := 0

qCT2
1

b2
1 := (x2,β

1 , 0, s21w1,1, s
2
1w2,1, u1, t

2
1, 0, 0)

b̃2
1 := (x2,β

1 , 0, s̃21, 0, r21, v1, 0, 0)

d2
1 := (s21, 0), d̃

2
1 := (s̃21, 0)

f21 := (r21, t
2
1, 0, 0), h

2
1 := 0

qCT2
2

b2
2 := (x2,β

2 , 0, s22w1,2, s
2
2w2,2, u2, t

2
2, 0, 0)

b̃2
2 := (x2,β

2 , 0, 0, s̃22, r22, v2, 0, 0)

d2
2 := (s22, 0), d̃

2
2 := (s̃22, 0)

f22 := (r22, t
2
2, 0, 0), h

2
2 := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, 0, 0)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, 0, 0)

h̃2 := 0

Fig 4. Vectors in Gβ .

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t11, 0, t11v1 + x1,0

1 x1,0
1 )

b̃ := ( 0 , 0, s̃11, 0, r11, 0 , 0, 1 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, t11v1 , 0), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, t12v1 , t12v1 + x1,0

1 x1,0
2 )

b̃ := ( x1,0
2 , 0, 0, s̃12, r12, v2, 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, t12v1 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, t21v1 , 0 )

b̃ := ( x2,0
1 , 0, s̃21, 0, r21, 0 , 1 , 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, t21v1 , 0), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, t22v1 , t22v1 + x1,0

1 x2,0
2 )

b̃ := ( x2,0
2 , 0, 0, s̃22, r22, v2, 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, t22v1 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2 , c1,1 , c2,1 )

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2 , c1,2 , c2,2 )

h̃2 := 0

Fig 5. Vectors in H1.

qCT1
1

v̈11 ← Zp

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, v̈11 + x1,0

1 x1,0
1 )

b̃ := ( 0, 0, s̃11, 0, r11, 0, 0, 1 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, v̈11 , 0), h := 0

qCT1
2

v̈12 ← Zp

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, v̈12 , v̈12 + x1,0

1 x1,0
2 )

b̃ := ( x1,0
2 , 0, 0, s̃12, r12, v2, 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, v̈12 , 0), h := 0

qCT2
1

v̈21 ← Zp

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, v̈21 , 0 )

b̃ := ( x2,0
1 , 0, s̃21, 0, r21, 0, 1, 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, v̈21 , 0), h := 0

qCT2
2

v̈22 ← Zp

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, v̈22 , v̈22 + x1,0

1 x2,0
2 )

b̃ := ( x2,0
2 , 0, 0, s̃22, r22, v2, 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, v̈22 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2, c1,2, c2,2)

h̃2 := 0

Fig 6. Vectors in H2.

hybrid game, the vectors for generating the ciphertexts and the secret keys are changed from G0, which
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qCT1
1

v̈11 ← Zp

b := ( — , 0, v̈11 + x1,1
1 x1,1

1 )

b̃ := ( — , 0, 1 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, v̈

1
1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT1
2

v̈12 ← Zp

b := ( — , v̈12 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , v̈12 + x1,1
1 x1,1

2 )

b̃ := ( — , 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, v̈

1
2 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0), h := 0

qCT2
1

v̈21 ← Zp

b := ( — , v̈21 + x1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, v̈

2
1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT2
2

v̈22 ← Zp

b := ( — , v̈22 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , v̈22 + x1,1
1 x2,1

2 )

b̃ := ( — , 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, v̈

2
2 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2, c1,2, c2,2)

h̃2 := 0

Fig 7. Vectors in H3.

qCT1
1

b := ( — , 0, t11v1 + x1,1
1 x1,1

1 )

b̃ := ( — , 0, 1 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, t11v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT1
2

b := ( — , t12v1 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , t12v1 + x1,1
1 x1,1

2 )

b̃ := ( — , 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, t12v1 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0), h := 0

qCT2
1

b := ( — , t21v1 + x1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, t21v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT2
2

b := ( — , t22v1 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , t22v1 + x1,1
1 x2,1

2 )

b̃ := ( — , 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, t22v1 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2, c1,2, c2,2)

h̃2 := 0

Fig 8. Vectors in H4.

is shown in Fig 5 to 19. We frame the parts that are changed from the previous game by a box and
sometimes denote the parts that are not changed by —.

G0 ≈c H1. We can justify this indistinguishability by the (partially) function-hiding property of pFE
and gFE. For all i, j, I, J ∈ [2], we can see that 〈bj

i , b̃
J
I 〉 in G0 and that in H1 are equal unless i = I

and j 6= J . Recall that 〈lji , l̃JI 〉 6= 0 with overwhelming probability if i = I and j 6= J , since L is chosen
from the exponentially large space, Zp. Hence, the indistinguishability of {b, b̃} between G0 and H1 is
implied by the partially function-hiding property of pFE.

Similarly, for all i, j ∈ [2], 〈f ji , f̃i〉 in G0 and that in H1 are equal, which implies, for all j1, j2 ∈ [2],∑
i∈[2](〈f

ji
i , f̃i〉+hji

i h̃i) in G0 and that in H1 are equal. Thus, the indistinguishability of {f , f̃} between
G0 and H1 is implied by the function-hiding property of gFE.

H1 ≈c H2. We can justify this indistinguishability by the SXDH assumption, which implies (G, [t]1,

[v1t]1) ≈c (G, [t]1, [v̈]1) where G← GBG(1
λ), t = {tji}i,j∈[2], v̈ = {v̈ji }i,j∈[2] ← Z4

p, v1 ← Zp.
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qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t11, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1 , 0, 0 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1,��t11v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT1
2

b := ( — ,��t12v1 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2,��t12v1 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, ��t21v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0 )

b̃ := ( x2,0
1 , 0, s̃21, 0, r21, v1 , 1, 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1,��t21v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT2
2

b := ( — ,��t22v1 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2,��t22v1 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ , c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ , c1,2, c2,2)

h̃2 := 0

Fig 9. Vectors in H5.

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s11s̃
2
1 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( — , s12s̃
2
1w1,2 + r21u2 + x2,0

1 x1,0
2 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s12s̃
2
1 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( — , s21s̃
2
1w1,1 + r21u1 + x2,0

1 x2,0
1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0 )

b̃ := ( 0 , 0, 0 , 0, 0 , v1, 1, 0 )

d := (s21, s21s̃
2
1 ), d̃ := ( 0 , 1 )

f := ( 0 , t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

b := ( — , s22s̃
2
1w1,2 + r21u2 + x2,0

1 x2,0
2 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s22s̃
2
1 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := r21
∑

µ∈[2] c1,µuµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 10. Vectors in H6.

Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s̈11 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , s̈12 w1,2 + ü2 + x2,0
1 x1,0

2 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s̈12 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21 w1,1 + ü1 + x2,0
1 x2,0

1 + x1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, s̈21 ), d̃ := (0, 1)

f := (0, t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

s̈22 ← Zp

b := ( — , s̈22 w1,2 + ü2 + x2,0
1 x2,0

2 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s̈22 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 :=
∑

µ∈[2] c1,µüµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 11. Vectors in H7.

H2 = H3. These hybrid games are information-theoretically equivalent. This can be confirmed by
setting

v̈ji :=

{
v̈′ji + x1,1

1 x1,1
i − x1,0

1 x1,0
i (i = 1)

v̈′ji + x1,1
1 xj,1

i − x1,0
1 xj,0

i (i = 2)
where v̈′ji ← Zp.
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Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s̈
1
1), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , s̈12w1,2 + ü2 + x2,1
1 x1,1

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s̈
1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w1,1 + ü1 + x2,1
1 x2,1

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, s̈
2
1), d̃ := (0, 1)

f := (0, t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w1,2 + ü2 + x2,1
1 x2,1

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s̈
2
2), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 :=
∑

µ∈[2] c1,µüµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 12. Vectors in H8.

H3 ≈c H4. We can justify this indistinguishability by the SXDH assumption, and the indistinguisha-
bility can be shown similarly to that between H1 and H2.
H4 ≈c H5. We can justify this indistinguishability by the (partially) function-hiding property of pFE
and gFE, similarly to the case of G0 ≈c H1.
G5 ≈c H6. We can justify this indistinguishability by the (partially) function-hiding property of pFE,
iFE, and gFE, similarly to the case of G0 ≈c H1. Note that here we also need to consider iFE since
{d, d̃} is also changed, but it is easy to see that, for all i, j, I, J ∈ [2], 〈dj

i , d̂
J
I 〉 in H5 and that in H6

are equal.
H6 ≈c H7. We can justify this indistinguishability by the SXDH assumption, which implies (G, [s]1,

[s̃21s]1) ≈c (G, [s]1, [s̈]1) and (G, [u]1, [r
2
1u]1) ≈c (G, [u]1, [ü]1) where G ← GBG(1

λ), s = {sji}i,j∈[2], s̈ =

{s̈ji}i,j∈[2] ← Z4
p, s̃

2
1 ← Zp,u = {ui}i∈[2], ü = {üi}i∈[2] ← Z2

p, r
2
1 ← Zp.

H7 ≈c H8. We can justify this indistinguishability by the message-hiding property of miFE. First, we
prove that, for all j ∈ [2], we have

c1,1(x
2,0
1 x2,0

1 − x1,0
1 x1,0

1 ) + c1,2(x
2,0
1 xj,0

2 − x1,0
1 xj,0

2 )

=c1,1(x
2,1
1 x2,1

1 − x1,1
1 x1,1

1 ) + c1,2(x
2,1
1 xj,1

2 − x1,1
1 xj,1

2 ).
(5.1)

Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy∑
i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑
i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.2)

∑
i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑
i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.3)

where

f(i) =

{
2 (i = 1)

j (i = 2)
, g(i) =

{
1 (i = 1)

j (i = 2)
.
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qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s11s̃
2
1 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( — , s12s̃
2
1w1,2 + r21u2 + x2,1

1 x1,1
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s12s̃
2
1 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, s21s̃

2
1w1,1 + r21u1 + x2,1

1 x2,1
1 , 0 )

b̃ := ( 0, 0, s̃21, 0, r21, v1, 1, 0 )

d := (s21, s21s̃
2
1 ), d̃ := (0, 1)

f := (0, t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

b := ( — , s22s̃
2
1w1,2 + r21u2 + x2,1

1 x2,1
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s22s̃
2
1 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := r21
∑

µ∈[2] c1,µuµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 13. Vectors in H9.

Note that Eq. (5.2) represents the restriction f(x2,0
1 , xj,0

2 ) = f(x2,1
1 , xj,1

2 ), and Eq. (5.3) represents the
restriction f(x1,0

1 , xj,0
2 ) = f(x1,1

1 , xj,1
2 ). Eq. (5.2) − Eq. (5.3) implies Eq. (5.1) by reflecting the fact that

c2,1 = 0, which is defined in Def. 2.4.
Thanks to the message-hiding property of 2-slot miFE and Eq. (5.1), we have

{miPP,miCT1,0
1 ,miCT1,0

2 ,miCT2,0
2 ,miSK} ≈c {miPP,miCT1,1

1 ,miCT1,1
2 ,miCT2,1

2 ,miSK}

where

miPP = (G, [w1,1]1, [w1,2]1)

miCT1,β
1 = ([s̈21]1, [s̈

2
1w1,1 + ü1 + x2,β

1 x2,β
1 − x1,β

1 x1,β
1 ]1)

miCTj,β
2 = ([s̈j2]1, [s̈

j
2w1,2 + ü2 + x2,β

1 xj,β
2 − x1,β

1 xj,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑
µ∈[2]

c1,µüµ,−c1,1w1,1,−c1,2w1,2, c1,1, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT2
1, qCT

1
2, qCT

2
2 is simulatable from miCT1,β

1 ,miCT1,β
2 ,miCT2,β

2 , respec-
tively, and [h̃1]1 in qSK is simulatable from miSK, and the case of β = 0 corresponds to H7 and β = 1
corresponds to H8.
H8 ≈c H9. We can justify this indistinguishability by the SXDH assumption similarly to the case of
H6 ≈c H7.
H9 ≈c H10. We can justify this indistinguishability by the (partially) function-hiding property of pFE,
iFE, and gFE, similarly to the case of G5 ≈c H6. At this point, all ciphertexts for slot 1 are changed
from encryption of 0-side to that of 1-side.
H10 ≈c H11. As stated above, G0 to H10 are hybrid games for processing the ciphertexts for slot 1.
Next, we apply a similar procedure to slot 2. H11 in the process for slot 2 corresponds to H7 in the
process for slot 1. That is, G10 ≈c H11 can be proven similarly to G0 ≈c H7.
H11 ≈c H12. This indistinguishability can be prove similarly to the case of H7 ≈c H8, but we need an
additional tweak in this case. First, we prove that, for all j ∈ [2], we have

c2,1(x
2,0
2 xj,0

1 − x1,0
2 xj,0

1 ) + c2,2(x
2,0
2 x2,0

2 − x1,0
2 x1,0

2 ) + c1,2(x
1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

=c2,1(x
2,1
2 xj,1

1 − x1,1
2 xj,1

1 ) + c2,2(x
2,1
2 x2,1

2 − x1,1
2 x1,1

2 ) + c1,2(x
1,1
1 x2,1

2 − x1,1
1 x1,1

2 ).
(5.4)
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qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0 , 0)

b̃ := ( x1,0
2 , 0, 0, s̃12, r12, v2, 0, 0)

d := (s12, 0 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, 0 , 0)

b̃ := ( 0, x2,1
1 , s̃21 , 0, r21 , v1, 0 , 0)

d := (s21, 0 ), d̃ := ( s̃21 , 0 )

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, 0 , 0)

b̃ := ( x2,0
2 , 0, 0, s̃22, r22, v2, 0, 0)

d := (s22, 0 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 14. Vectors in H10.

Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,0
2 x1,0

1 + x1,1
2 x1,1

1 − x1,0
2 x1,0

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈11 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( 0 , x1,1

2 , 0, s̃12, r
1
2, v2, 0, 0)

d := (s12, s̈12 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,0
2 x2,0

1 + x1,1
2 x2,1

1 − x1,0
2 x2,0

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈21 ), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x2,1

1 − x1,0
2 x2,0

1 ), h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,0
2 x2,0

2 + x1,1
2 x1,1

2 − x1,0
2 x1,0

2 , 0)

b̃ := ( 0 , 0, 0, 0 , 0 , v2, 1 , 0)

d := (s22, s̈22 ), d̃ := ( 0 , 1 )

f := ( 0 , t22, x
1,1
1 x2,1

2 − x1,0
1 x2,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ

Fig 15. Vectors in H11.

Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy∑
i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑
i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.5)

∑
i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑
i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.6)

where

f(i) =

{
1 (i = 1)

2 (i = 2)
, g(i) =

{
1 (i = 1)

1 (i = 2)
.

Note that Eq. (5.5) represents the restriction f(x1,0
1 , x2,0

2 ) = f(x1,1
1 , x2,1

2 ), and Eq. (5.6) represents the
restriction f(x1,0

1 , x1,0
2 ) = f(x1,1

1 , x1,1
2 ). Eq. (5.5) − Eq. (5.6) implies Eq. (5.4) by reflecting the fact that

c2,1 = 0, which is defined in Def. 2.4.
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Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,1
2 x1,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈
1
1), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 )

h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( — , 0, 0)
d := (s12, s̈

1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,1
2 x2,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈
2
1), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x2,1

1 − x1,0
2 x2,0

1 )

h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,1
2 x2,1

2 , 0)

b̃ := ( — , 1, 0)

d := (s22, s̈
2
2), d̃ := (0, 1)

f := (0, t22, x
1,1
1 x2,1

2 − x1,0
1 x2,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ +c1,2(x
1,1
1 x1,1

2 − x1,0
1 x1,0

2 − (x1,1
1 x2,1

2 − x1,0
1 x2,0

2 ))

Fig 16. Vectors in H12.

Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,1
2 x1,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈
1
1), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 )

h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( — , 0, 0)
d := (s12, s̈

1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,1
2 x2,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈
2
1), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 )

h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,1
2 x2,1

2 , 0)

b̃ := ( — , 1, 0)

d := (s22, s̈
2
2), d̃ := (0, 1)

f := (0, t22, x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ + c1,2((((((((
(x1,1

1 x1,1
2 − x1,0

1 x1,0
2 −((((((((

(x1,1
1 x2,1

2 − x1,0
1 x2,0

2 ))

Fig 17. Vectors in H13.

Thanks to the message-hiding property of 3-slot miFE and Eq. (5.4), we have

{miPP,miCT1,0
1 ,miCT2,0

1 ,miCT1,0
2 ,miCT1,0

3 ,miSK}
≈c{miPP,miCT1,1

1 ,miCT2,1
1 ,miCT1,1

2 ,miCT1,1
3 ,miSK}

where

miPP = (G, [w2,1]1, [w2,2]1, [w2,3]1)

miCTj,β
1 = ([s̈j1]1, [s̈

j
1w2,1 + ü1 + x2,β

2 xj,β
1 − x1,β

2 xj,β
1 ]1)

miCT1,β
2 = ([s̈22]1, [s̈

2
2w2,2 + ü2 + x2,β

2 x2,β
2 − x1,β

2 x1,β
2 ]1)
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qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0 , 0)

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0, 0)

b̃ := ( 0, x1,1
2 , 0, s̃12, r12, v2, 0, 0)

d := (s12, 0 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, 0 , 0)

b̃ := ( 0, x2,1
1 , 0, s̃21, r21, v1, 0, 0)

d := (s21, 0 ), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t22, 0 , 0)

b̃ := ( 0, x2,1
2 , s̃22 , 0, r22 , v2, 0 , 0)

d := (s22, 0 ), d̃ := ( s̃22 , 0 )

f := ( r22 , t22, x
1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 18. Vectors in H14.

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, 0 , 0 ), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0, 0)

b̃ := ( 0, x1,1
2 , 0, s̃12, r12, v2, 0, 0)

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, 0 , 0 ), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, 0, 0)

b̃ := ( 0, x2,1
1 , 0, s̃21, r21, v1, 0, 0)

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, 0 , 0 ), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, 0, 0)

b̃ := ( 0, x2,1
2 , s̃22, 0, r22, v2, 0, 0)

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, 0 , 0 ), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, 0 , 0 )

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, 0 , 0 )

h̃2 := 0

Fig 19. Vectors in H15.

miCT1,β
3 = ([s̈13]1, [s̈

1
3w2,3 + ü3 + x1,β

1 x2,β
2 − x1,β

1 x1,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑
µ∈[2]

c2,µüµ + c1,2ü3,−c2,1w2,1,−c2,2w2,2,−c1,2w2,3, c2,1, c2,2, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT1
1, qCT

2
1, qCT

2
2 is simulatable from miCT1,β

1 ,miCT2,β
1 ,miCT1,β

2 , respec-
tively, and [h̃2]1 in qSK is simulatable from miSK and miCT1,β

3 . More precisely,

h̃2 = K1 − C1K4 − c1,2(C2 + x1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

where miCT1,β
3 = ([C1]1, [C2]1) and miSK = (K1, . . . ,K7). The case of β = 0 corresponds to H11 and

β = 1 corresponds to H12.

H12 ≈c H13. We can justify this indistinguishability by the function-hiding property of gFE. For
all i, j ∈ [2], 〈f ji , f̂i〉 + hj

i h̃i in H12 and that in H13 are equal, which implies, for all j1, j2 ∈ [2],∑
i∈[2](〈f

ji
i , f̂i〉 + hji

i h̃i) in H12 and that in H13 are equal. Thus, the indistinguishability of {f , f̃ , h, h̃}
between H12 and H13 is implied by the function-hiding property of gFE.

H13 ≈c H14. This indistinguishability can be proven similarly to H8 ≈c H10.
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H14 ≈c H15. Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy∑
i,θ∈[2]

ci,θ(x
1,1
i x1,1

θ − x1,0
i x1,0

θ ) = 0,

which implies, for all j1, j2 ∈ [2],
∑

i∈[2](〈f
ji
i , f̂i〉 + hji

i h̃i) in H14 and that in H15 are equal. Thus, the
indistinguishability of {f , f̃} between H14 and H15 is implied by the function-hiding property of gFE.
H15 ≈c G1. It is easy to see that this indistinguishability is implied by the partially function-hiding
property of pFE, since, for all i, j, I, J ∈ [2], 〈bj

i , b̂
J
I 〉 in H15 and that in G1 are equal.

6 Our Full MQFE Scheme

6.1 Construction
We present our MQFE scheme, that is, a MIFE scheme for FMQF

m,n,X,C . It is convenient for us to define
the following functions that relate indices in [n]× [m] with those in [mn]:

– location function, lo : [n]× [m]→ [mn], defined as lo(x, y) = (x− 1)m+ y;
– location set function, ls : [n]→ 2[mn], defined as ls(x) = {lo(x, 1), . . . , lo(x,m)};
– slot function, sl : [mn]→ [n], defined as sl(x) = dx/me;
– entry function, en : [mn]→ [m], defined as en(x) = x−m(sl(x)− 1).

Note that we have lo(sl(x), en(x)) = x for all x ∈ [mn]. Let Dk be a matrix distribution. Let pFE =
(pSetup, pEnc, pKeyGen, pDec) be an FE scheme for FPIP

2n,2+(mn+2)k+(2+k)m,G (Def. 3.2), iFE = (iSetup,

iEnc, iKeyGen, iDec) be an FE scheme for FIP
k+1,G (Def. 3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec)

be an FE scheme for FMGIP
2k+m2n,1,n,G (Def. 4.2). We construct our MQFE scheme qFE = (qSetup,

qEnc, qKeyGen, qDec) from pFE, iFE, and gFE. Note that G is fixed by qSetup.
qSetup(1λ): It outputs qPP, qMSK as follows:

G← GBG(1
λ)

A1, . . . ,An ← Dk, {wi,j}i,j∈[mn] ← Zk+1
p , Ũ1, . . . , Ũmn ← Zk×k

p

u1, . . . ,umn ← Zk
p, V1, . . . ,Vmn ← Zk×k

p , ṽ1, . . . , ṽmn ← Zk
p

pPP, pMSK← pSetup(1λ), iPP, iMSK← iSetup(1λ), gPP, gMSK← gSetup(1λ)

qPP := (G, pPP, iPP, gPP)

qMSK := (A1, . . . ,An, {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi}i∈[mn], pMSK, iMSK, gMSK).

qEnc(qMSK, i,xi): Let w>
lo(i,κ) := (w1,lo(i,κ), . . . ,wmn,lo(i,κ)). First, it samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xi,κ, 0) ∈ Z2
p, bκ,2 := (w>

lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k
p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p, bκ,4 = bκ,5 := 0 ∈ Zm

p , b̃κ,6 := 0 ∈ Zkm
p

bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 := (xi,κ, 0) ∈ Z2
p, b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k

p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p

b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τS, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p

f1 := (r, t) ∈ Z2k
p , f2,1 = · · · = f2,n := 0 ∈ Zm2

p , f := (f1, f2,1, . . . , f2,n), h := 0
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where xi,κ is the κ-th entry of xi and a>i,τ is the τ -th row of Ai. Then, it outputs qCTi as follows:

pCTlo(i,κ) ← pEnc(pMSK, (l, [bκ]1)), pSKlo(i,κ) ← pKeyGen(pMSK, (̃l, [b̃κ]2))

iCTi,τ ← iEnc(iMSK, [dτ ]1), iSKi ← iKeyGen(iMSK, [d̃]2)

gCTi ← gEnc(gMSK, i, ([f ]1, [h]2))

qCTi := ({pCTlo(i,κ), pSKlo(i,κ)}κ∈[m], {iCTi,τ}τ∈[k+1], iSKi, gCTi).

(6.1)

qKeyGen(qMSK, c): It outputs qSK as follows:

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ

 ∈ Z2k
p

f̃i,2,1 = · · · = f̃i,2,n := 0 ∈ Zm2

p , f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν ∈ Zk+1
p

qSK := (c, gSK, {σi,θ}i,θ∈[n]).

qDec(qCT1, . . . , qCTn, qSK): It computes

[z1]T :=
∏

µ,ν∈[mn]

pDec(pCTν , pSKµ)
cµ,ν

[z2,i,θ]T := (iDec(iCTθ,1, iSKi), . . . , iDec(iCTθ,k+1, iSKi))

[z3]T := gDec(gCT1, . . . , gCTn, gSK)

[z]T := [z1 −
∑

i,θ∈[n]

〈z2,i,θ,σi,θ〉 − z3]T .

Then, it searches for z within the range of z ≤ |m2n2CX2|.

Correctness. Let xlo(i,κ) = xi,κ and Si, s̃i, ri, ti, li, l̃i,bi, b̃i be random elements used to generate
qCTi. Observe that 〈li, l̃I〉 = 0 for all i, I ∈ [n], and thus pDec(pCTi, pSKI) = 〈bi, b̃I〉. From the
correctness of pFE, iFE, gEF, we have

z1 =
∑

µ,ν∈[mn]

cµ,ν(xµxν +w>
µ,νAsl(ν)Ssl(ν)s̃sl(µ) + r>sl(µ)Ũµuν + t>sl(ν)Vν ṽµ)

∑
i,θ∈[n]

〈z2,i,θ,σi,θ〉 =
∑

i,θ∈[n]

∑
µ∈ls(i)
ν∈ls(θ)

cµ,νw
>
µ,νAθSθ s̃i

=
∑

µ,ν∈[mn]

cµ,νw
>
µ,νAsl(ν)Ssl(ν)s̃sl(µ)

z3 =
∑
i∈[n]

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νr
>
i Ũµuν +

∑
µ∈[mn]
ν∈ls(i)

cµ,νt
>
i Vν ṽµ


=

∑
µ,ν∈[mn]

cµ,ν(r
>
sl(µ)Ũµuν + t>sl(ν)Vν ṽµ).

Hence, we have z =
∑

µ,ν∈[mn] cµ,νxµxν .
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Gβ

{i,xj,0
i ,xj,1

i }i∈[n],j∈[qCT] ← A(1λ)

qPP, qMSK← qSetup(1λ)

qCTj
i ← qEnc(qMSK, i,xj,β

i )

β′ ← AqKeyGen(qMSK,·)(qPP, {qCTj
i}i∈[n],j∈[qCT])

Hη
ι

{i,xj,0
i ,xj,1

i }i∈[n],j∈[qCT] ← A(1λ)

qPP, qMSK← qSetup(1λ)

qCTj
i ← q̃Encηι (qMSK, i, j, {xν,0

µ ,xν,1
µ }µ∈[n],ν∈[qCT])

β′ ← A
˜qKeyGen(qMSK,·)(qPP, {qCTj

i}i∈[n],j∈[qCT])

Fig 20. Security games for qFE.

6.2 Multi-input IPFE Scheme for Security Analysis

Before going to security analysis of our MQFE scheme, we recall the multi-input IPFE scheme (the
MIFE scheme for FMIP

m,n,G, denoted by miFE = (miSetup,miEnc,miKeyGen,miDec)) by Abdalla et al. [4,
Sec.4.1] that satisfies the (adaptive) message-hiding security under the MDDH assumption. Although
the original scheme uses a pairing-free group for the construction, it is easy to see that their scheme can
be similarly built on pairing groups where the MDDH assumption holds. We use the scheme built on
the pairing groups in the security proof of our MQFE scheme. We denote the advantage of A against
miFE by AdvmiFE

A,mh(λ). The scheme is described as follows.

miSetup(1λ): It outputs miPP,miMSK as follows:

G← GBG(1
λ), A1, . . . ,An ← Dk, W1, . . . ,Wn ← Zm×(k+1)

p , u1, . . . ,un ← Zm
p

miPP := (G, [A1]1, . . . , [An]1, [W1A1]1, . . . , [WnAn]1), miMSK := (W1, . . . ,Wn,u1, . . . ,un).

miEnc(miMSK, i,xi): It outputs miCTi as follows:

s← Zk
p, miCTi := [ci]1 = ([Ais]1, [WiAis+ ui + xi]1).

miKeyGen(miMSK,y1, . . . ,yn): It outputs miSK as follows:

miSK0 := −
∑
i∈[n]

〈yi,ui〉, miSKi := (−y>
i Wi,yi), miSK := (miSK0, {miSKi}i∈[n]).

miDec(miCT1, . . . ,miCTn,miSK): It computes d where [d]1 = [
∑

i∈[n]〈ci,miSKi〉+miSK0]1.

6.3 Security Analysis of Our Full MQFE Scheme

For security, we have the following theorem.

Theorem 6.1. If pFE is partially function-hiding, iFE and gFE are function-hiding, and GBG outputs
bilinear groups where the Dk-MDDH assumption holds with overwhelming probability, then qFE is
message-hiding.

Proof. We prove Theorem 6.1 via a series of hybrid games Hη
ι for ι ∈ [n], η ∈ [qCT]. We show that

G0 ≈c H1
1 ≈c · · · ≈c HqCT

1 ≈c H1
2 ≈c · · · ≈c HqCT

n ≈c G1, where Gβ for β ∈ {0, 1} is the original
security game. Each (hybrid) game is defined as described in Fig 20, where q̃Encηι , and ˜qKeyGen work
as follows. In what follows, we use a bijective query location function ql : [n]× [qCT]→ [nqCT], defined
as ql(x, y) := (x− 1)qCT + y.
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q̃Encηι (qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xj,0
i,κ, xj,1

i,κ ) ∈ Z2
p, bκ,2 := (w>

lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k
p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p

bκ,4 :=


x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι
∈ Zm

p

bκ,5 := 0 ∈ Zm
p , bκ,6 := 0 ∈ Zkm

p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 :=

 (0, xj,1
i,κ) if ql(i, j) ≤ ql(ι, η)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, η)

∈ Z2
p,

b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k
p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 :=


0 if i = ι ∧ j ≤ η

eκ/m if i = ι ∧ j > η

0 if i 6= ι

∈ Zm
p

b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p , b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τS, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p

f1 := (r, t) ∈ Z2k
p

f2,θ :=


0 if θ > ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if θ = i ∨ ql(i, j) ≤ ql(ι, η)

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else

∈ Zm2

p

f := (f1, f2,1, . . . , f2,n), h := 0.

Then, it computes qCTj
i in the same way as Eq. (6.1).

˜qKeyGen(qMSK, c): Let cls(θ),lo(i,κ) := (clo(θ,1),lo(i,κ), . . . , clo(θ,m),lo(i,κ)) and cls(θ),ls(i) := (cls(θ),lo(i,1), . . . ,
cls(θ),lo(i,m)). It outputs qSK as follows:

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ

 ∈ Z2k
p

f̃i,2,θ := cls(θ),ls(i) ∈ Zm2

p

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν ∈ Zk+1
p

qSK := (c, gSK, {σi,θ}i,θ∈[n]).
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Note that the framed parts are changed from qSetup, qEnc, or qKeyGen. Next, we prove the indistin-
guishability of each pair of hybrid games. Let P(A,G) be the probability that A outputs 1 in a security
game G with the security parameter being λ, i.e., P(A,Gβ) = PqFE,β

A,mh (λ).

Lemma 6.1. Let HqCT
0 = G0. For all PPT adversaries A and ι ∈ [n], there exist PPT adversaries

B1,B2,B3 such that

|P(A,HqCT
ι−1)− P(A,H1

ι )| ≤2Adv
pFE
B1,pfh

(λ) + 2AdvgFEB2,fh
(λ)

+ 2(m+m2n)AdvDk -MDDH
B3

(λ) + 2−Ω(λ).

Lemma 6.2. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exists a PPT adversary
B1, . . . ,B5 such that

|P(A,Hη−1
ι )− P(A,Hη

ι )| ≤2Adv
pFE
B1,pfh

(λ) + 2AdviFEB2,fh(λ) + 2AdvgFEB3,fh
(λ)

+ AdvmiFE
B4,mh(λ) + 2(mk + 2)AdvDk -MDDH

B5
(λ) + 2−Ω(λ)

Lemma 6.3. For all PPT adversaries A, there exists a PPT adversary B1,B2 such that

|P(A,HqCT
n )− P(A,G1)| ≤ AdvpFEB1,pfh

(λ) + AdvgFEB2,fh
(λ).

Thanks to Lemmata 6.1 to 6.3, Theorem 6.1 holds. We present the proofs of these lemmata in Sec.6.4.
ut

6.4 Proofs of Lemmata 6.1 to 6.3

Proof of Lemma 6.1. We introduce more hybrid games Ĥι,1, . . . , Ĥι,5 to prove Lemma 6.1. We prove
that HqCT

ι−1 ≈c Ĥι,1 ≈c · · · ≈c Ĥι,5 ≈c H1
ι . Ĥι,ζ for ζ ∈ {1, . . . , 5} is defined the same as HqCT

ι−1 except
that qSetup, ˜qEncqCTι−1, and ˜qKeyGen are replaced by q̂Setup, q̂Encι,ζ , and ̂qKeyGen, respectively. For

reference, we first describe ˜qEncqCTι−1 and q̃Enc1ι .

˜qEncqCTι−1(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xj,0
i,κ, x

j,1
i,κ) ∈ Z2

p, bκ,2 := (w>
lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k

p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p

bκ,4 :=

{
x1,1
i,κx

1,1>

ι−1 − x1,0
i,κx

1,0>

ι−1 if i = ι− 1

xj,1
i,κx

1,1>

ι−1 − xj,0
i,κx

1,0>

ι−1 if i 6= ι− 1
∈ Zm

p

bκ,5 := 0 ∈ Zm
p , bκ,6 := 0 ∈ Zkm

p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 :=

{
(0, xj,1

i,κ) if ql(i, j) ≤ ql(ι− 1, qCT)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι− 1, qCT)

∈ Z2
p,

b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k
p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p

b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τ Ŝ, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p
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f1 := (r, t) ∈ Z2k
p

f2,θ :=


0 if θ > ι− 1

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if i ≤ ι

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else
∈ Zm2

p

f := (f1, f2,1, . . . , f2,n), h := 0.

Then, it computes qCTj
i in the same way as Eq. (6.1).

q̃Enc1ι (qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as ˜qEncqCTι−1 except the way of defining the
following vectors:

bκ,4 :=


x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι

b̃κ,1 :=


(0, xj,1

i,κ) if ql(i, j) ≤ ql(ι− 1, qCT)

(0, xj,1
i,κ) if ql(i, j) = ql(ι, 1)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, 1)

b̃κ,4 :=


0 if i = ι ∧ j = 1

eκ/m if i = ι ∧ j > 1

0 if i 6= ι

f2,θ :=



0 if θ > ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if θ = ι ∧ i ≤ ι

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else if θ = ι ∧ i > ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if i ≤ ι

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else

.

Note that the framed parts are changed from ˜qEncqCTι−1. Next, we describe q̂Setup, q̂Encι,ζ , and ̂qKeyGen.

q̂Setup(1λ): It works the same as qSetup except that qMSK contains additional elements as follows:

V̂1, . . . , V̂mn ← Zk×m
p

qMSK :=

A1, . . . ,An, {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi, V̂i }i∈[mn]

pMSK, iMSK, gMSK

 .

q̂Encι,1(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let Ṽls(ι) = (ṽlo(ι,1)|| · · · ||ṽlo(ι,m)). It is the same as ˜qEncqCTι−1

except the way of defining the following vectors:

bκ,4 := t>Vlo(i,κ)Ṽls(ι) , bκ,5 := bκ,4 + xj,0
i,κx

1,0>

ι

b̃κ,1 :=


(0, xj,1

i,κ) if ql(i, j) ≤ ql(ι− 1, qCT)

(0, 0) if ql(i, j) = ql(ι, 1)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, 1)

b̃κ,3 :=

{
0 if i = ι

ṽ>
lo(i,κ) if i 6= ι
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b̃κ,4 :=


0 if i = ι ∨ j = 1

eκ/m if i = ι ∧ j > 1

0 if i 6= ι

b̃κ,5 :=

{
eκ/m if ql(i, j) = ql(ι, 1)

0 if ql(i, j) 6= ql(ι, 1)

f2,θ :=


0 if θ > ι

(b1,4, . . . ,bm,4) else if θ = ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if θ = i ∨ ql(i, j) ≤ ql(ι− 1, qCT)

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else

q̂Encι,2(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,1 except the way of defining the
following vectors:

bκ,4 := t>V̂lo(i,κ) .

q̂Encι,3(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,2 except the way of defining the
following vectors:

v̈κ ← Zm
p , bκ,4 := v̈>

κ .

q̂Encι,4(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,3 except the way of defining the
following vectors:

v̈κ ← Zm
p , bκ,4 :=


v̈>
κ +x1,1

i,κx
1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

v̈>
κ +xj,1

i,κx
1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι
.

q̂Encι,5(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,4 except the way of defining the
following vectors:

bκ,4 :=


t>Vlo(i,κ)Ṽls(ι) + x1,1

i,κx
1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

t>Vlo(i,κ)Ṽls(ι) + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι
.

̂qKeyGen(qMSK, c): It outputs qSK as follows:

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]\ls(ι)
ν∈ls(i)

cµ,νVν ṽµ


f̃i,2,θ := cls(θ),ls(i)

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν

qSK := (c, gSK, {σi,θ}i,θ∈[n]).
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Thanks to Lemma 6.4 to Lemma 6.8, Lemma 6.1 holds. ut

Lemma 6.4. For all PPT adversaries A and ι ∈ [n], there exist PPT adversaries B1,B2 such that
|P(A,HqCT

ι−1)− P(A, Ĥι,1)| ≤ AdvpFEB1,pfh
(λ) + AdvgFEB2,fh

(λ) + 2−Ω(λ).

Proof. Since L is uniformly chosen from the exponentially large space in encryption algorithms, i.e.,
Zp, collisions do not occur in {Lj

i}i∈[n],j∈[qCT] with overwhelming probability. Therefore, 〈lji , l̃JI 〉 = 0 if
i 6= I or j = J , and 〈lji , l̃JI 〉 6= 0 otherwise.

For all (i, j, κ), (I, J,K) ∈ [n] × [qCT] × [m], observe that 〈bj
i,κ, b̃

J
I,K〉 in HqCT

ι−1 are equal to that in
Ĥι,1 if i 6= I or j = J . Thus, due to the partially function-hiding property of pFE, this implies that
{pCTj

i,lo(i,κ), pSK
j
i,lo(i,κ)} generated in HqCT

ι−1 and those generated in Ĥι,1 are computationally indistin-
guishable.

Similarly, we can confirm that for all (i, j, `) ∈ [n]× [qCT]× [qSK], we have 〈f ji , f̃ `i 〉+ 〈h
j
i , ĥ

`
i〉 in HqCT

ι−1

are equal to that in Ĥι,1. Thus, thanks to the function-hiding property of gFE, {gCTj
i , gSK

`} generated
in HqCT

ι−1 and those generated in Ĥι,1 are computationally indistinguishable. Hence, A’s views in HqCT
ι−1

and Ĥι,1 are computationally indistinguishable. ut

Lemma 6.5. For all PPT adversaries A and ι ∈ [n], there exists a PPT adversary B against m-fold
Umnk,k-MDDH such that |P(A, Ĥι,1)− P(A, Ĥι,2)| ≤ Adv

m-Umnk,k -MDDH
B (λ).

Proof. B works as follows.

1. B takes an instance of the m-fold Umnk,k-MDDH, (G, [M]1, [Kβ ]1). Recall that they are distributed
as M← Zmnk×k

p , K0 = MZ ∈ Zmnk×m
p where Z← Zk×m

p , and K1 ← Zmnk×m
p .

2. B computes qPP, qMSK in the same way as q̂Setup except that B (implicitly) defines that Vi :=

Mi, V̂i := K1,i for i ∈ [mn] and Ṽls(ι) := Z for i ∈ [m], where Mi and Kβ,i are the matrices
consisting of the (i− 1)k + 1 to ik-th rows of M and Kβ , respectively.

3. B computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encι,1 except that B defines that

bj
i,κ,4 := tj

>

i Kβ,lo(i,κ) and gives qPP, {qCTj
i} to A.

4. B simulates ̂qKeyGen using qMSK, which is possible without [Ṽls(ι)]2.
5. B outputs A’s output as it is.

Observe that bj
i,κ,4 = tj

>

i Vlo(i,κ)Ṽls(ι) if β = 0 and bj
i,κ,4 = tj

>

i V̂lo(i,κ) if β = 1. This concludes the
proof. Note that m-fold Umnk,k-MDDH is reduced to Dk-MDDH with the security loss of m. ut

Lemma 6.6. For all PPT adversaries A and ι ∈ [n], there exists a PPT adversary B against m2n-fold
UnqCT,k-MDDH such that |P(A, Ĥι,2)− P(A, Ĥι,3)| ≤ Adv

m2n-UnqCT,k -MDDH

B (λ).

Proof. B works as follows.

1. B takes an instance of the m2n-fold UnqCT,k-MDDH, (G, [M]1, [Kβ ]1). Recall that they are dis-
tributed as M← ZnqCT×k

p , K0 = MZ ∈ ZnqCT×m2n
p where Z← Zk×m2n

p , and K1 ← ZnqCT×m2n
p .

2. B computes qPP, qMSK ← q̂Setup except that B implicitly defines that V̂i := Zi for i ∈ [mn]
where Zi is the matrix consisting of the (i− 1)m+ 1 to im-th columns of Z.

3. B computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encι,2 except that B defines that

bj
i,κ,4 := kβ,ql(i,j),lo(i,κ), tji := m>

ql(i,j), and v̈j
i,κ := k>

1,ql(i,j),lo(i,κ) where kβ,µ,ν ∈ Z1×m
p is the

(µ, ν)-th block of Kβ by dividing Kβ into nqCT ×mn blocks, and mµ is the µ-th row of M. Then,
B gives qPP, {qCTj

i} to A.
4. B simulates ̂qKeyGen using qMSK.
5. B outputs A’s output as it is.
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Observe that bj
i,κ,4 = tj

>

i V̂lo(i,κ) if β = 0 and bj
i,κ,4 = v̈j>

i,κ if β = 1. This concludes the proof. Note
that m2n-fold UnqCT,k-MDDH is reduced to Dk-MDDH with the security loss of m2n. ut

Lemma 6.7. For all PPT adversaries A. we have P(A, Ĥι,3) = P(A, Ĥι,4).

Proof. By implicitly defining that

v̈j
i,κ :=

{
v̈′j
i,κ + x1,1

i,κx
1,1
ι − x1,0

i,κx
1,0
ι if i = ι

v̈′j
i,κ + xj,1

i,κx
1,1
ι − xj,0

i,κx
1,0
ι if i 6= ι

where v̈′j
i,κ ← Zm

p , we can see that A’s views in both hybrids are identical. This is since v̈j
i,κ ← Zm

p

and v̈′j
i,κ ← Zm

p are identically distributed. ut

Lemma 6.8. For all PPT adversaries A and ι ∈ [n], there exist PPT adversaries B1,B2,B3 such
that |P(A, Ĥι,4)− P(A, Ĥι,5)| ≤ AdvpFEB1,pfh

(λ) + AdvgFEB2,fh
(λ) + (m+m2n)AdvDk -MDDH

B3
(λ) + 2−Ω(λ).

Lemma 6.8 can be proven similarly to Lemmata 6.4 to 6.6. Note that here we use the fact that
cls(ι),ls(i) = 0 if i < ι as defined in Def. 2.4, which implies

〈cls(ι),ls(i),x1,1
i ⊗ x1,1

ι − x1,0
i ⊗ x1,0

ι 〉 = 〈cls(ι),ls(i),x
j,1
i ⊗ x1,1

ι − xj,0
i ⊗ x1,0

ι 〉

for all (i, j) ∈ [n]× [qCT] if i < ι.

Proof of Lemma 6.2. We introduce more hybrid games Ĥη
ι,1, . . . , Ĥ

η
ι,5 to prove Lemma 6.2. We prove

that Hη−1
ι ≈c Ĥ

η
ι,1 ≈c · · · ≈c Ĥ

η
ι,5 ≈c H

η
ι . Ĥη

ι,ζ for ζ ∈ {1, . . . , 5} is defined the same as Hη−1
ι except that

qSetup, ˜qEncη−1
ι , and ˜qKeyGen are replaced by q̂Setup, q̂Encηι,ζ , and ̂qKeyGenηι,ζ , respectively. They are

defined as follows.

q̂Setup(1λ): It works the same as qSetup except that qMSK contains additional elements as follows:

{ûi,j}i∈[mn],j∈[m] ← Zk
p, {üi}i∈[mn] ← Zm

p , rηι , s̃
η
ι ← Zk

p

qMSK :=

A1, . . . ,An, {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi, {ûi,j}j∈[m], üi }i∈[mn]

rηι , ŝ
η
ι , pMSK, iMSK, gMSK

 .

q̂Encηι,1(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let w>
ls(ι),lo(i,κ) := (wlo(ι,1),lo(i,κ), . . . ,wlo(ι,m),lo(i,κ)) and Ũls(ι) :=

(Ũlo(ι,1)|| · · · ||Ũlo(ι,m)). It is the same as ˜qEncη−1
ι except the way of defining the following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗AiSŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗AiSŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι

if i 6= ι

bκ,6 := u>
lo(i,κ)Ũls(ι)

b̃κ,1 :=


(0, xj,1

i,κ) if ql(i, j) < ql(ι, η)

(0, 0) if ql(i, j) = ql(ι, η)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, η)
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b̃κ,2 :=


0 if i = ι ∧ j = η

(elo(i,κ)/mn ⊗ s̃, 0 ) if i = ι ∧ j 6= η

(elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) if i 6= ι

b̃κ,4 :=


0 if i = ι ∧ j ≤ η − 1

0 if i = ι ∧ j = η

eκ/m if i = ι ∧ j > η

0 if i 6= ι

b̃κ,5 :=

{
eκ/m if ql(i, j) = ql(ι, 1)

0 if ql(i, j) 6= ql(ι, 1)

b̃κ,6 :=


0 if i = ι ∧ j = η

eκ/m ⊗ r> if i = ι ∧ j 6= η

0 if i 6= ι

dτ := (a>i,τS, a>i,τSs̃
η
ι ), d̃ :=

{
(0, 1) if ql(i, j) = ql(ι, η)

(s̃, 0) if ql(i, j) 6= ql(ι, η)

f1 :=

{
(0, t) if ql(i, j) = ql(ι, η)

(r, t) if ql(i, j) 6= ql(ι, η)
, h :=

{
1 if ql(i, j) = ql(ι, η)

0 if ql(i, j) 6= ql(ι, η)
.

q̂Encηι,2(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let û>
i := (ûi,1, . . . , ûi,m). It is the same as q̂Encηι,1 except

the way of defining the following vectors:

s̈← Zk
p

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ai s̈ ) + û>

lo(i,κ) (Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ai s̈ ) + û>

lo(i,κ) (Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι

if i 6= ι

bκ,6 := û>
lo(i,κ)

dτ := (a>i,τS,a
>
i,τ s̈ ).

q̂Encηι,3(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encηι,2 except the way of defining the
following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

lo(i,κ)

+ xj,0
i,κx

η,0>

ι + x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

lo(i,κ)

+ xj,0
i,κx

η,0>

ι + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι

if i 6= ι

.

37



q̂Encηι,4(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encηι,3 except the way of defining the
following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

κ

+ xj,1
i,κx

η,1>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

κ

+ xj,1
i,κx

η,1>

ι

if i 6= ι

.

q̂Encηι,5(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encηι,1 (not q̂Encηι,4) except the way of
defining the following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ai Sŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,1
i,κx

η,1>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ai Sŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,1
i,κx

η,1>

ι

if i 6= ι

.

̂qKeyGenηι,1(qMSK, c): It outputs qSK as follows (the framed part is changed from ˜qKeyGen):

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ


f̃i,2,θ := cls(θ),ls(i)

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n)

h̃i :=


∑

µ∈ls(i)
ν∈[mn]

cµ,νr
η>

ι Ũµuν if i = ι

0 if i 6= ι

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν

qSK := (c, gSK, {σi,θ}i,θ∈[n]).

̂qKeyGenηι,2(qMSK, c): It is the same as ̂qKeyGenηι,1 except that it defines

h̃i :=


∑

µ∈ls(i)
ν∈[mn]

cµ,νr
η>

ι ûν,en(µ) if i = ι

0 if i 6= ι
.

̂qKeyGenηι,3(qMSK, c): Let ü>
i = (üi,1, . . . , üi,m). It is the same as ̂qKeyGenηι,2 except that it defines

h̃i :=


∑

µ∈ls(i)
ν∈[mn]

cµ,ν üν,en(µ) if i = ι

0 if i 6= ι
.
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̂qKeyGenηι,4(qMSK, c): Let ü>
i = (üi,1, . . . , üi,m). It is the same as ̂qKeyGenηι,3 except that it defines

h̃i :=



∑
µ∈ls(i)
ν∈[mn]

cµ,ν üν,en(µ)

+
∑

µ∈[ι−1]

〈cls(µ),ls(i),xη,0
ι ⊗ x1,0

µ − x1,0
ι ⊗ x1,0

µ − (xη,1
ι ⊗ x1,1

µ − x1,1
ι ⊗ x1,1

µ )〉
if i = ι

0 if i 6= ι

.

̂qKeyGenηι,5(qMSK, c): Let ü>
i = (üi,1, . . . , üi,m). It is the same as ̂qKeyGenηι,4 except that it defines

h̃i :=



∑
µ∈ls(i)
ν∈[mn]

cµ,ν rη
>

ι Ũµuν

+
∑

µ∈[ι−1]

〈cls(µ),ls(i),xη,0
ι ⊗ x1,0

µ − x1,0
ι ⊗ x1,0

µ − (xη,1
ι ⊗ x1,1

µ − x1,1
ι ⊗ x1,1

µ )〉
if i = ι

0 if i 6= ι

.

ut

Lemma 6.9. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries
B1,B2,B3 such that |P(A,Hη−1

ι )− P(A, Ĥη
ι,1)| ≤ AdvpFEB1,pfh

(λ) + AdviFEB2,fh(λ) + AdvgFEB3,fh
(λ) + 2−Ω(λ).

Proof. Since L is uniformly chosen from the exponentially large space in encryption algorithms, i.e.,
Zp, collisions do not occur in {Lj

i}i∈[n],j∈[qCT] with overwhelming probability. Therefore, 〈lji , l̃JI 〉 = 0 if
i 6= I or j = J , and 〈lji , l̃JI 〉 6= 0 otherwise.

For all (i, j, κ), (I, J,K) ∈ [n] × [qCT] × [m], observe that 〈bj
i,κ, b̃

J
I,K〉 in Hη−1

ι are equal to that in
Ĥη

ι,1 if i 6= I or j = J . Thus, due to the partially function-hiding property of pFE, this implies that
{pCTj

i,lo(i,κ), pSK
j
i,lo(i,κ)} generated in Hη−1

ι and those generated in Ĥη
ι,1 are computationally indistin-

guishable.
Similarly, we can also confirm that for all (i, j, τ) ∈ [n] × [qCT] × [k] and (I, J) ∈ [n] × [qCT], we

have 〈dj
i,τ , d̃

J
I 〉 in Hη−1

ι are equal to that in Ĥη
ι,1. Thus, thanks to the function-hiding property of iFE,

{iCTj
i,τ , iSK

j
i} generated in Hη−1

ι and those generated in Ĥη
ι,1 are computationally indistinguishable.

We can also confirm that for all (i, j, `) ∈ [n]× [qCT]× [qSK], we have 〈f ji , f̃ `i 〉+ 〈h
j
i , ĥ

`
i〉 in Hη−1

ι are
equal to that in Ĥη

ι,1. Thus, thanks to the function-hiding property of gFE, {gCTj
i , gSK

`} generated in
Hη−1

ι and those generated in Ĥη
ι,1 are computationally indistinguishable. Hence, A’s views in Hη−1

ι and
Ĥη

ι,1 are computationally indistinguishable. ut

Lemma 6.10. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries B1,B2

against mk-fold Umn,k-MDDH and UknqCT,k-MDDH, respectively, such that |P(A, Ĥη
ι,1)−P(A, Ĥη

ι,2)| ≤
Adv

mk-Umn,k -MDDH
B1

(λ) + Adv
UknqCT,k -MDDH

B2
(λ).

Proof. We can prove the lemma with two steps. In the first step, Ũµuν for (µ, ν) ∈ ls(ι) × [mn] is
changed to ûν,en(µ) via mn-fold Umk,k-MDDH. Observe that this change corresponds to the change
from u>

lo(i,κ)Ũls(ι) to û>
lo(i,κ). B1 works as follows.

1. B1 takes an instance of the mk-fold Umn,k-MDDH, (G, [M]1, [Kβ ]1). Recall that they are dis-
tributed as M← Zmn×k

p , K0 = MZ ∈ Zmn×mk
p where Z← Zk×mk

p , and K1 ← Zmn×mk
p .

2. B1 computes qPP, qMSK in the same way as q̂Setup except that B1 (implicitly) defines that ui :=

m>
i , ûi := k>

1,i for i ∈ [mn] and Ũls(ι) := Z for i ∈ [m], where mi and kβ,i are the i-th rows of M
and Kβ , respectively.
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3. B1 computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encηι,1 except that B1 replaces

u>
lo(i,κ)Ũls(ι) in bκ,5,bκ,6 with k>

β,lo(i,κ) and gives qPP, {qCTj
i} to A.

4. B1 simulates the key generation oracle in the same way as ̂qKeyGenηι,1 except that B1 replaces Ũµuν

in h̃i with k>
β,ν,en(µ) where k>

β,i,j for (i, j) ∈ [mn]× [m] is the vector consisting of the (j − 1)k + 1

to jk-th entries of k>
β,i. Note that since h̃i become an exponent of g1, this simulation is possible.

5. B1 outputs A’s output as it is.

In the second step, Ss̃ηι is changed to s̈ via UknqCT,k-MDDH. B2 works as follows.

1. B2 takes an instance of the UknqCT,k-MDDH, (G, [M]1, [kβ ]1). Recall that they are distributed as
M← ZknqCT×k

p , k0 = Mz ∈ ZknqCT
p where z← Zk

p, and k1 ← ZknqCT
p .

2. B2 computes qPP, qMSK← q̂Setup except that B2 implicitly defines s̃ηι := z.
3. B2 computes qCTj

i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encηι,1 except that B2 defines Sj
i :=

Mql(i,j), s̈
j
i := k1,ql(i,j) and replaces Sj

i s̃
η
ι in bκ,5 and dτ with kβ,ql(i,j), where Mµ for µ ∈ [nqCT] is

the matrix consisting of the (i− 1)k + 1 to ik-th rows of M, and kβ,µ is the matrix consisting of
the (µ− 1)k + 1 to µk-th entries of kβ . Then, B2 gives qPP, {qCTj

i} to A.
4. B2 simulates the key generation oracle in the same way as ̂qKeyGenηι,2.
5. B2 outputs A’s output as it is.

This concludes the proof. Note that mn-fold Umk,k-MDDH is reduced to Dk-MDDH with the
security loss of mk, and UknqCT,k-MDDH is tightly reduced to Dk-MDDH. ut

Lemma 6.11. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exists a PPT adversary B

against Um2n,k-MDDH such that |P(A, Ĥη
ι,2)− P(A, Ĥη

ι,3)| ≤ Adv
Um2n,k -MDDH

B (λ).

Proof. B works as follows.

1. B takes an instance of the Um2n,k-MDDH, (G, [M]1, [kβ ]1). Recall that they are distributed as
M← Zm2n×k

p , k0 = Mz ∈ Zm2n
p where z← Zk

p, and k1 ← Zm2n
p .

2. B computes qPP, qMSK← q̂Setup except that B (implicitly) defines that ûi,j := m>
(i−1)m+j , r

η
ι :=

z, üi,j := k1,(i−1)m+j for (i, j) ∈ [mn]× [m], where mµ is the µ-th row of M, and kβ,µ is the µ-th
entry of kβ .

3. B computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encηι,2 except that B replaces û>

µ,νr
η
ι

for µ× ν ∈ [mn]× [m] with kβ,(µ−1)m+ν . Then, B gives qPP, {qCTj
i} to A.

4. B simulates the key generation oracle in the same way as ̂qKeyGenηι,2 except that B replaces
rη

>

ι ûµ′,ν′ for µ′ × ν′ ∈ [mn]× [m] with kβ,(µ′−1)m+ν′ .
5. B outputs A’s output as it is.

Observe that the encryption and key generation algorithms corresponds to q̂Encηι,2 and ̂qKeyGenηι,2,
respectively, if β = 0, and q̂Encηι,3 and ̂qKeyGenηι,3, respectively, if β = 1. This concludes the proof.
Note that Um2n,k-MDDH is tightly reduced to Dk-MDDH. ut

Lemma 6.12. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exists a PPT adversary B

against miFE in Sec. 6.2 such that |P(A, Ĥη
ι,3)− P(A, Ĥη

ι,4)| ≤ AdvmiFE
B,mh(λ).
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Proof. First, we prove that the following equality holds: for all (ι, η) ∈ [n]× [qCT], j1, . . . , jn ∈ [qCT]
n,

and ` ∈ [qSK], we have∑
i∈[n]\ι

〈c`ls(ι),ls(i),x
ji,0
i ⊗ xη,0

ι − xji,0
i ⊗ x1,0

ι 〉+ 〈c`ls(ι),ls(ι),x
η,0
ι ⊗ xη,0

ι − x1,0
ι ⊗ x1,0

ι 〉

+
∑

i∈[ι−1]

〈c`ls(i),ls(ι),x
η,0
ι ⊗ x1,0

i − x1,0
ι ⊗ x1,0

i 〉

=
∑

i∈[n]\ι

〈c`ls(ι),ls(i),x
ji,1
i ⊗ xη,1

ι − xji,1
i ⊗ x1,1

ι 〉+ 〈c`ls(ι),ls(ι),x
η,1
ι ⊗ xη,1

ι − x1,1
ι ⊗ x1,1

ι 〉

+
∑

i∈[ι−1]

〈c`ls(i),ls(ι),x
η,1
ι ⊗ x1,1

i − x1,1
ι ⊗ x1,1

i 〉.

(6.2)

Due to the game condition in Def. 2.3, for all (ι, η) ∈ [n] × [qCT], jι+1, . . . , jn ∈ [qCT]
n−ι, and

` ∈ [qSK], we have ∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
f(θ),0
θ ⊗ x

f(i),0
i 〉 =

∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
f(θ),1
θ ⊗ x

f(i),1
i 〉 (6.3)

∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
g(θ),0
θ ⊗ x

g(i),0
i 〉 =

∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
g(θ),1
θ ⊗ x

g(i),1
i 〉 (6.4)

where

f(i) =


1 if i < ι

η if i = ι

ji if i > ι

, g(i) =


1 if i < ι

1 if i = ι

ji if i > ι

.

Then, Eq. (6.3) − Eq. (6.4) results in Eq. (6.2) by reflecting the fact that c`ls(i),ls(θ) = 0 if i > θ,
which is defined in Def. 2.4.

We set the functionality of miFE as FMIP
m2,n+ι−1, and let n′ = n + ι − 1. B against miFE works as

follows.

1. B obtains miPP = (G, [A1]1, . . . , [An′ ]1, [W̃1A1]1, . . . , [W̃n′An′ ]1) where they are distributed as
Ai ← Dk,W̃i ← Zm2×(k+1)

p . B implicitly defines wi,j := w̃>
sl(j),(en(j)−1)m+en(i) for i ∈ ls(ι), j ∈ [mn]

where w̃µ,ν is the ν-th row of W̃µ, and generates qPP and other elements in qMSK the same as
q̂Setup.

2. When A outputs the challenge ciphertexts, {i,xj,0
i ,xj,1

i }i∈[n],j∈[qCT], B defines

x̃j,β
i :=


xj,β
i ⊗ xη,β

ι − xj,β
i ⊗ x1,β

ι if i ∈ [n]\ι
xη,β
ι ⊗ xη,β

ι − x1,β
ι ⊗ x1,β

ι if i = ι

xη,β
ι ⊗ x1,β

i−n − x1,β
ι ⊗ x1,β

i−n if i ∈ [n+ 1, n′]

and outputs {i, x̃j,0
i , x̃j,1

i }i∈[n′],j∈[q′CT,i]
as challenge vectors for the message-hiding game for miFE

where

q′CT,i =

{
1 i = [ι] ∨ i ∈ [n+ 1, n′]

qCT i ∈ [n]\ι
.

Then, B obtains {miCTj
i}i∈[n′],j∈[q′CT,i]

where miCTj
i = ([γj

i ]1, [δ
j
i ]1) = ([Ais̈

j
i ]1, [W̃iAis̈

j
i + üi +

x̃j,β
i ]1).
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3. B generates qCTj
i the same as q̂Encηι,3 except that it defines

(b1,5, . . . ,bm,5) :=


0 if i = ι ∧ j 6= η

(δ1i + x1,1
i ⊗ x1,1

ι )> i = ι ∧ j = η

(δji + xj,1
i ⊗ x1,1

ι )> i 6= ι

dτ := (a>i,τS, γ
j
i,τ ).

4. When A queries the key generation oracle on c, B queries the key generation oracle for miFE
on (c̃1, . . . , c̃n′) := (cls(ι),ls(1), . . . , cls(ι),ls(n), cls(1),ls(ι), . . . , cls(ι−1),ls(ι)) and obtains miSK = (miSK0,

{miSKi}i∈[n′]) = (
∑

i∈[n′]〈c̃i, üi〉, {−c̃>i W̃i}i∈[n′]) (here we omit c̃i in miSKi for convenience). Since
we have Eq. (6.2), B’s queries follow the security game condition for miFE. Then, B generates a
secret key the same as ̂qKeyGenηι,3 except that it defines

h̃ι := miSK0 −
∑

i∈[n+1,n′]

(
〈c̃i, δ1i − x̃1,0

i 〉+ 〈miSKi,γ
1
i 〉
)

σι,θ := miSKθ.

5. B outputs A’s output as it is.

Observe that the encryption and key generation algorithms corresponds to q̂Encηι,3 and ̂qKeyGenηι,3,
respectively, if β = 0 in the security game for miFE, and q̂Encηι,4 and ̂qKeyGenηι,4, respectively, if β = 1.
This concludes the proof. ut

Lemma 6.13. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries
B1,B2,B3 against mk-fold Umn,k-MDDH, UknqCT,k-MDDH, and Um2n,k-MDDH, respectively, such
that |P(A, Ĥη

ι,4)− P(A, Ĥη
ι,5)| ≤ Adv

mk-Umn,k -MDDH
B1

(λ) + Adv
UknqCT,k -MDDH

B2
(λ) + Adv

Um2n,k -MDDH

B3
(λ).

Lemma 6.13 can be proven similarly to Lemmata 6.10 and 6.11.

Lemma 6.14. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries
B1,B2,B3 such that |P(A, Ĥη

ι,5)− P(A,Hη
ι )| ≤ AdvpFEB1,pfh

(λ) + AdviFEB2,fh(λ) + AdvgFEB3,fh
(λ) + 2−Ω(λ).

Lemma 6.14 can be proven similarly to Lemma 6.9.

Proof of Lemma 6.3. For reference, we describe ˜qEncqCTn and frame the parts that are different from
qEnc.

˜qEncqCTn (qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xj,0
i,κ, x

j,1
i,κ) ∈ Z2

p, bκ,2 := (w>
lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k

p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p

bκ,4 :=

{
x1,1
i,κx

1,1>

ι−1 − x1,0
i,κx

1,0>

ι−1 if i = n

xj,1
i,κx

1,1>

ι−1 − xj,0
i,κx

1,0>

ι−1 if i 6= n
∈ Zm

p

bκ,5 := 0 ∈ Zm
p , bκ,6 := 0 ∈ Zkm

p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 := (0, xj,1
i,κ) ∈ Z2

p
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b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k
p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p

b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τ Ŝ, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p

f1 := (r, t) ∈ Z2k
p

f2,θ := (x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> ∈ Zm2

p

f := (f1, f2,1, . . . , f2,n), h := 0.

Then, it computes qCTj
i in the same way as Eq. (6.1).

For all (i, j, κ), (I, J,K) ∈ [n] × [qCT] × [m], observe that 〈bj
i,κ, b̃

J
I,K〉 in HqCT

n are equal to that in G1.
Thus, due to the partially function-hiding property of pFE, this implies that {pCTj

i,lo(i,κ), pSK
j
i,lo(i,κ)}

generated in HqCT
n and those generated in G1 are computationally indistinguishable.

Next, we confirm that, for all ` ∈ [qSK], we have∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
1,1
θ ⊗ x1,1

i − x1,0
θ ⊗ x1,0

i 〉 = 0.

This is implied by the game condition defined in Def. 2.3. Thus, for all (j1, . . . , jn, `) ∈ [qCT]
n × [qSK],

we have
∑

i∈[n](〈f
ji
i , f̃ `i 〉 + 〈h

ji
i , ĥ

`
i〉) in HqCT

n are equal to that in G1. Thus, thanks to the function-
hiding property of gFE, {gCTj

i , gSK
`} generated in HqCT

n and those generated in G1 are computationally
indistinguishable. Hence, A’s views in HqCT

n and G1 are computationally indistinguishable. ut
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A Public-Key MQFE from IPFE

A.1 Definitions

Definition A.1 (Public-Key Multi-Input Functional Encryption). Let F be a function family
such that, for all f ∈ F, f : X1 × · · · × Xn → Z. An public-key MIFE scheme for F, MIFE, consists of
four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP and a master secret
key MSK. The other three algorithms implicitly takes PP as input.

Enc(i, xi): It takes MSK, an index i ∈ [n], and xi ∈ Xi and outputs a ciphertext CTi.
KeyGen(MSK, f): It takes MSK, and f ∈ F, and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

When n = 1, we call it just a functional encryption (FE) scheme and omit the second argument of
Enc.
Correctness. MIFE is correct if it satisfies the following condition. For all λ ∈ N, (x1, . . . , xn) ∈
X1 × · · · × Xn, f ∈ F, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣
PP,MSK← Setup(1λ)
CTi ← Enc(i, xi)
SK← KeyGen(MSK, f)
d := Dec(CT1, . . . , ,CTn,SK)

 = 1.

Security. We define two indistinguishability-based security definitions for MIFE. For a stateful PPT
adversary A and λ ∈ N, let

PMIFE,β
A,ad (λ) := Pr

[
β′ = 1

∣∣∣∣ PP,MSK← Setup(1λ),

β′ ← AOCT(β,·),KeyGen(MSK,·)(PP, {CTj
i}i∈[n],j∈[qCT,i])

]
.

OCT(β, ·) takes (i, x0
i , x

1
i ) and outputs Enc(i, xβ

i ). Let qCT,i and qSK be a number of queries to OCT(β, ·)
with the form of (i, ∗, ∗) and KeyGen, respectively. Let S := {i ∈ [n] | qCT,i > 0}. We say that A is
admissible if for all I = (i1, . . . , it) ⊆ S, (it+1, . . . , in) = [n]\I, (ji1 , . . . , jit) ∈ [qCT,i1 ] × · · · × [qCT,it ],
` ∈ [qSK], (xit+1

, . . . , xin) ∈ Xit+1
× · · · × Xin , A’s queries satisfy

f `(〈xji1 ,0
i1

, . . . , x
jit ,0
it

, xit+1 , . . . , xin〉) = f `(〈xji1 ,1
i1

, . . . , x
jit ,1
it

, xit+1 , . . . , xin〉)

where 〈xi1 , . . . , xin〉 denotes a permutation such that xi is moved to the i-th entry. MIFE is adap-
tively secure if, for all admissible PPT adversaries A, the following advantage of A is negligible in λ:
AdvMIFE

A,ad (λ) := |P
MIFE,0
A,ad (λ)− PMIFE,1

A,ad (λ)|.

Definition A.2 (Bounded-Norm Inner Products over Z). A function family FIP
m,X,C for bounded-

norm inner products consist of functions f : Xm → Z where X = {i | i ∈ Z, |i| ≤ X}. Each f ∈ FIP
m,X,C

is specified by c ∈ Zm s.t. ||c||∞ ≤ C. Then, f specified by c is defined as f(x) := 〈c,x〉.
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A.2 Construction

Let iFE = (iSetup, iEnc, iKeyGen, iDec) and iFE′ = (iSetup′, iEnc′, iKeyGen′, iDec′) be an FE scheme for
FIP
m2,X,C and FIP

m,X,C . For convenience, we introduce notations for computing matrix multiplication via
IPFE. For V = (v1|| · · · ||vm), we denote (iSK1, . . . , iSKm) by

−→
iSK where iSKi ← iKeyGen(iMSK,vi)

and this procedure by
−→
iSK← iKeyGen(iMSK,V). Similarly, for iCT for x, we denote decryption of iCT

with
−→
iSK by iDec(iCT,

−→
iSK) = (iDec(iCT, iSK1), . . . , iDec(iCT, iSKn)). The public-key MQFE scheme

qFE = (qSetup, qEnc, qKeyGen, qDec) for FMQF
m,n,X,C can be constructed as follows.

qSetup(1λ): It outputs qPP, qMSK as follows:

(iPPi, iMSKi)← iSetup(1λ), (iPP′
i,j , iMSK′

i,j)← iSetup′(1λ)

qPP := ({iPPi}i∈[n], {iPP′
i,j}i,j∈[n],i6=j), qMSK := ({iMSKi}i∈[n], {iMSK′

i,j}i,j∈[n],i6=j)

qEnc(i,xi ∈ Zm): It outputs qCTi as follows:

iCTi ← iEnc(iPPi,xi ⊗ xi), iCT
′
i,j ← iEnc′(iPP′

i,j ,xi)

qCTi := (iCTi, {iCT′
i,j}j∈[n]\{i})

qKeyGen(qMSK, c ∈ Z(mn)2): Let C =

(
C1,1 ··· C1,n

. . .
Cn,1 ··· Cn,n

)
∈ Zmn×mn be a matrix such that x>Cx =

〈c,x⊗ x〉. Let ci be a vector such that xiCi,ixi = 〈ci,xi ⊗ xi〉. It outputs qSK as follows:

iSKi ← iKeyGen(iMSKi, ci),
−→
iSK′

i,j ← iKeyGen′(iMSK′
i,j ,Ci,j +C>

j,i)

qSK := (c, {iSKi}i∈[n], {
−→
iSK′

i,j}i,j∈[n],i6=j)

qDec(qCT1, , . . . , qCTn, qSK): Let (Ci,j +C>
j,i)

+ ∈ Q be the Moore-Penrose inverse of Ci,j +C>
j,i. It

outputs z as follows:

zi := iDec(iPPi, iCTi, iSKi)

zi,j := iDec′(iPP′
i,j , iCT

′
i,j ,
−→
iSK′

i,j)(Ci,j +C>
j,i)

+iDec′(iPP′
j,i, iCT

′
j,i,
−→
iSK′

j,i)
>

z :=
∑
i∈[n]

zi +
∑

i,j∈[n]
i<j

zi,j

Correctness. Due to the correctness of iFE and iFE′, we have

zi = x>
i Ci,ixi

zi,j = x>
i (Ci,j +C>

j,i)(Ci,j +C>
j,i)

+(Ci,j +C>
j,i)xj = x>

i (Ci,j +C>
j,i)xj

Hence, we have z = x>Cx = 〈c,x⊗ x〉 where x = (x1, . . . ,xn)
>.

A.3 Security

Theorem A.1. If iFE and iFE′ are adaptively secure, then qFE is also adaptively secure.

Proof (sketch). We can reduce the indistinguishability of qFE to that of iFE and iFE′. The admissi-
bility of A guarantees that

xji,0
>

i C`
i,ix

ji,0
i = xji,1

>

i C`
i,ix

ji,1
i

xji,0
>

i (C`
i,θ +C`>

θ,i) = xji,1
>

i (C`
i,θ +C`>

θ,i)

for all i, θ ∈ [n] s.t. i 6= θ, ji ∈ [qCT,i], ` ∈ [qSK]. These conditions are exactly consistent with the query
conditions in the reduction to iFE and iFE′.
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