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1 Introduction

Functional encryption (FE) [O’N10,BSW11] is a novel cryptographic paradigm that moves beyond the
“all or nothing” access of traditional public key encryption and enables fine grained access to encrypted
data. Concretely, an FE scheme that supports a function class F allows an owner of a master secret
to issue a secret key SKf for a function f ∈ F. Decryption of a ciphertext CTx for a message x with
SKf yields f(x) and nothing else. Functional encryption has been extensively studied in the literature,
with elegant constructions supporting various function classes, achieving different notions of security
and from diverse assumptions, e.g., [GGH+13,GGHZ16,BS15,ABDP15,BCFG17].

Multi-input functional encryption (MIFE) [GGG+14] is a natural generalization of FE, which
supports functions that take multiple inputs. In MIFE, multiple parties can encrypt data independently
– thus, n users may encrypt their data x1, . . . , xn to produce ciphertexts CT1, . . . ,CTn, which can be
decrypted using a functional key SKf to learn f(x1, . . . , xn) and nothing else.

Research in MIFE has followed two broad directions. On one hand, it was shown that for gen-
eral function classes (all polynomial sized circuits), FE is powerful enough to imply MIFE (albeit
with exponential loss), which in turn implies the powerful notion of indistinguishability obfusca-
tion (iO) [AJ15, BV15]. On the other hand, for restricted function classes such as constant degree
polynomials, single-input schemes do not generically imply multi-input schemes and constructing
multi-input schemes directly proved significantly more challenging. Intuitively, this is because in
the multi-input setting, inputs x1, . . . , xn encrypted using independent sources of randomness must
be combined in a secure way to “emulate” the single input setting where encodings of x1, . . . , xn

may be tied together using common randomness. Nevertheless, for the inner product functionality,
several novel MIFE constructions emerged based on simple, standard polynomial hardness assump-
tions [AGRW17,DOT18,ACF+18,CDG+18,Tom19,ABKW19,ABG19,LT19].

Beyond Inner Products. While the inner product functionality is useful for several meaningful
applications (we refer the reader to [AGRW17] for a discussion), it is evidently desirable, from the
viewpoint of both theory and practice, to extend the reach of MIFE from standard assumptions
beyond inner products. In the single input setting, there has been significant progress in this direction.
For quadratic functions, several FE schemes have been constructed from standard assumptions on
pairings [Lin17,BCFG17,Gay20]4. Indeed, from pairings, there have also been innovative constructions
for “degree 2.5” FE [AJL+19], the so-called “partially hiding functional encryption” (PHFE) schemes.
Intuitively, PHFE permits part of the encryptor’s input to be public and supports deeper computation
on the public input as compared to the private input.

However, in the multi-input setting, constructions going beyond inner products have proved elusive.
Note that unlike the single input setting, quadratic MIFE cannot be trivially constructed from inner
product MIFE even with large ciphertext, since the naive idea of encrypting all quadratic monomi-
als in advance cannot deal with quadratic terms derived from two different users. Therefore, there are
currently no candidate constructions for MIFE supporting quadratic polynomials, from standard, poly-
nomial hardness assumptions5. This is a significant gap in our understanding of MIFE, and motivates
the fundamental question:

Can we construct MIFE for quadratic functions from pairings?

4 Note that FE for quadratic functions are trivially constructible from FE for inner products (IPFE) by
linearizing and encrypting all quadratic monomials. However, FE for quadratic functions requires that the
ciphertext size be linear in input length.

5 In an exciting recent work, iO has been constructed from sub-exponential hardness of four well-founded as-
sumptions [JLS20]. However, this construction relies on a series of intricate, lossy reductions and is primarily
a feasibility result. We will focus on the polynomial hardness of a well-founded problem in this work.
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1.1 Our Results

In this work, we answer the above question affirmatively and construct the first MIFE scheme for
quadratic functions from pairings. In more detail, we construct n-input MIFE scheme for the function
class Fm,n, which is defined as follows. Each function f ∈ Fm,n is represented by a vector c ∈ Z(mn)2 .
For inputs x1, . . . ,xn ∈ Zm, f is defined as f(x1, . . . ,xn) := 〈c,x ⊗ x〉 where x = (x1|| · · · ||xn) and
⊗ denotes the Kronecker product. In a quadratic MIFE scheme for Fm,n, a user can encrypt xi ∈ Zm

to CTi for slot i ∈ [n], a key issuer can generate a secret key SK for c ∈ Z(mn)2 , and decryption of
CT1, . . . ,CTn with SK reveals only 〈c,x⊗ x〉 and nothing else.

To begin, we show that in the public key setting, quadratic MIFE can be generically obtained
from public-key IPFE, which can be obtained even without pairings, in a relatively simple manner,
as the case of public-key inner product MIFE [AGRW17]. Then we provide our main construction in
the much more challenging secret-key setting6. Our construction relies on the bilateral matrix Diffie-
Hellmen assumption [EHK+17] and achieves standard indistinguishability-based (selective) security
against unbounded collusions. We observe that in the symmetric key setting, selective security is the
same as “semi-adaptive” [CW14,GKW16] security. Recall that in semi-adaptive security, the adversary
is permitted to see the public key before committing to the challenge. In the symmetric key setting,
since the “public key” is simply public parameters of the scheme, such as group description, which
may always be provided to the adversary in the first step of the game, the distinction between selective
and semi-adaptive is moot. Thus, our construction achieves the same level of security as single input
quadratic FE [Lin17,BCFG17,Gay20].

Our construction is built using two newly introduced primitives that we call predicated IPFE
and mixed-group multi-input IPFE, which we describe next. Predicated IPFE (pIPFE) is a class of
attribute-based IPFE [ACGU20], but additionally with a function hiding property. In more detail, a
ciphertext pCT and a secret key pSK of a pIPFE scheme pFE are associated with two vectors {x1,x2}
and {y1,y2}, respectively. Decryption of pCT with pSK reveals 〈x2,y2〉 iff 〈x1,y1〉 = 0. Secret keys
are required to hide y2 but not y1, This scheme is the first instantiation of function-hiding attribute-
based IPFE, which may be of independent interest. Mixed group multi input IPFE is similar to
multi input IPFE but supports mixed groups, as suggested by the name. In more detail, consider a
function f : (Gm1

1 × Gm2
2 )n → GT , specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Zm1

p

and yi,2 ∈ Zm2
p and defined as

f
(
([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)

)
:= [〈(x1,1,x1,2, . . . ,xn,1,xn,2), (y1,1,y1,2, . . . ,yn,1,yn,2)〉]T

Mixed group multi input IPFE is also required to achieve function-hiding. We provide constructions
for these primitives by leveraging a (multi-input) function-hiding IPFE scheme based on pairings
[BJK15,DOT18,ACF+18]. These constructions may be of independent interest.

1.2 Our Techniques

As discussed above, quadratic MIFE in the public-key setting is simple to achieve due to the leakage
inherent in that setting. To formalize this, we show in Appx. A that public key, quadratic MIFE can
be achieved generically from public-key IPFE, which can be constructed even without pairings, as
the case of public-key inner product MIFE [AGRW17]. Below, we discuss the intuition for the same.
Public-Key Quadratic MIFE. For simplicity, we consider the two-input case in this paragraph.

We also assume that quadratic functions are represented by matrices C ∈ Z2m×2m, where f(x1,x2) =

(x>
1 ||x>

2 )C

(
x1

x2

)
. In a public-key scheme, an adversary that has CT1 for x1, CT2 for x2, and SK for

6 Recall that public-key MIFE does not imply secret-key MIFE. Roughly speaking, a user who has CT1 for
x1 and SK for f of a public-key scheme is allowed to learn f(x1, x2, . . . , xn) for all (x2, . . . , xn), since this is
inherent leakage, while it is not the case in secret-key MIFE.
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C =
(

C1,1C1,2

C2,1C2,2

)
can learn (x̃>

1 ||x>
2 )C

(
x̃1

x2

)
and (x>

1 ||x̃>
2 )C

(
x1

x̃2

)
for all x̃1, x̃2 since it can encrypt

x̃1, x̃2. By setting x̃2 = 0 and x̃1 = 0, the adversary can learn x>
1 C1,1x1 and x>

2 C2,2x2, respectively.
By setting x̃2 = ei and x̃1 = ei for all i ∈ [m] where e1, . . . , em are linearly independent vectors, the
adversary can learn x>

1 (C1,2 +C>
2,1) and (C1,2 +C>

2,1)x2, respectively. This is because the adversary

can compute x̃>
1 C1,1x̃1 and x̃>

2 C2,2x̃2 by itself. Furthermore, Dec(CT1,CT2,SK) = (x>
1 ||x>

2 )C

(
x1

x2

)
is computable from the inherent leakage as follows:

x>
1 C1,1x1 + x>

2 C2,2x2 + x>
1 (C1,2 +C>

2,1)(C1,2 +C>
2,1)

+(C1,2 +C>
2,1)x

>
2

where (C1,2 +C>
2,1)

+ ∈ Qm×m denotes the Moore-Penrose inverse of C1,2 +C>
2,1. It is not hard to see

that the inherent leakage can be computed by IPFE since they are linear functions over a single input.
Thus, public-key 2-input quadratic MIFE can be constructed from public-key IPFE. This construction
can be easily extended to the general multi-input case. Hence, as in prior work [AGRW17], we focus
on the much more challenging secret key setting. In the following, we basically use m for the vector
length of each user and n for the number of slots.

Lin’s Single Key Quadratic FE. The starting point of our secret-key quadratic MIFE scheme is
the secret-key quadratic FE scheme from pairings by Lin [Lin17], which in turn builds upon the public
key IPFE scheme from DDH by Abdalla et al. [ABDP15] (ABDP). We begin by recalling the ABDP
scheme. In what follows, we let g` denote the generator of a cyclic group of order p and for matrix
A = (ai,j)i,j , we denote (g

ai,j

` )i,j by [A]`. The ABDP scheme works as follows:

Setup(1λ): w← Zm
p , PK := [w], MSK := w.

Enc(PK,x ∈ Zm): s← Zp, CT := ([s], [x+ sw]).
KeyGen(MSK, c ∈ Zm): SK := −c>w.
Dec(CT,SK): −c>w[s] + c>[x+ sw] = [〈c,x〉].

Lin’s construction of quadratic (secret key) FE uses a clever interleaving of IPFE schemes. To
compress the size of ABDP ciphertexts for quadratic terms, she leverages function-hiding IPFE, which
is inherently secret-key [BJK15]. Decryption of components in this scheme yields ciphertexts under
the ABDP IPFE scheme, while secret keys of the ABDP scheme are generated using another function
hiding IPFE. Finally, decryption of ABDP IPFE allows to recover the output.

In more detail, let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme based on
pairings. Note that all known function-hiding IPFE schemes based on pairings output a decryption
value as an exponent of the target-group generator [BJK15,DDM16,TAO16,Lin17,KLM+18]. A sim-
plification of her quadratic FE scheme (we omit the components of the scheme that are only required
for the proof of security) is as follows:

Setup(1λ): w = (w1, . . . , wm), w̃ = (w̃1, . . . , w̃m)← Zm
p , iMSK′ ← iSetup(1λ)

MSK := (iMSK′,w, w̃).
Enc(MSK,x ∈ Zm): s← Zp, iCT

′ ← iEnc(iMSK′, s), iMSK← iSetup(1λ)
iCTi ← iEnc(iMSK, (xi, wi)), iSKi ← iKeyGen(iMSK, (xi, sw̃i)).
CT := (iCT′, {iCTi, iSKi}i∈[m]).

KeyGen(MSK, c = {ci,j}i,j∈[m] ∈ Zm2

): a
SK := iSK′ ← iKeyGen(MSK′,−c>(w ⊗ w̃)).

Dec(CT,SK): iDec(iCT′, iSK′) +
∑

i,j∈[m] ci,j iDec(iCTi, iSKj) = [〈c,x⊗ x〉]T .

To decrypt, we compute iDec(iCTi, iSKj) = [xixj + swiw̃j ]T , which can be seen as the (i, j)-th
element of the ABDP ciphertext [x ⊗ x + sw ⊗ w̃]T , and iDec(iCT′, iSK′) = [−sc>(w ⊗ w̃)]T , where
−c>(w ⊗ w̃) is an ABDP secret key for c. The function-hiding property of iFE guarantees that iSK
hides xi. Since w ⊗ w̃ only appears on the exponent of group elements, one can argue that it is
computationally indistinguishable from random in the security proof using the SXDH assumption.
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IP-MIFE instead of IPFE. To generalize the above scheme to the multi-input setting, our first
attempt is to modify Lin’s scheme so that decryption of the function hiding IPFE scheme generates ci-
phertexts of a multi-input IPFE (IP-MIFE) scheme [ACF+18] (ACFGU) instead of a single input IPFE
scheme (ABDP). Intuitively, the reason for using IP-MIFE instead of IPFE is to deal with multiple
independent randomnesses derived from different users, which inherently come in when generating the
IPFE ciphertext elements for quadratic terms. Now, we may hope that the key generator can provide
a secret key matching the ACFGU scheme so that decryption of ciphertexts of the ACFGU scheme
yields the desired result. Fortunately, the ACFGU scheme does not use pairings, so this basic template
does not seem impossible. However, this starting point idea runs into several hurdles as we discuss
below.

Let us recall the n-input ACFGU scheme:

Setup(1λ): MSK := w1, . . . ,wn,u1, . . . ,un ← Zm
p .

Enc(MSK, i,xi ∈ Zm): si ← Zp, CTi := ([si], [xi + siwi + ui]).
KeyGen(MSK, (c1, . . . , cn) ∈ Zmn): SK := (−

∑
i∈[n]〈ci,ui〉, {−c>i wi}i∈[n]).

Dec(CT1, . . . ,CTn,SK): a∑
i∈[n](−c>i wi[si] + c>i [xi + siwi + ui])− [

∑
i∈[n]〈ci,ui〉] = [

∑
i∈[n]〈ci,xi〉].

For intuition, we note that the ACFGU scheme may be thought of as running n instances of the
ABDP scheme, where each ABDP decryption outputs the ith inner product 〈ci,xi〉. Revealing each
partial inner product 〈ci,xi〉 would leak too much information, so these partial decryptions are masked
using 〈ci,ui〉 – this creates an extra term

∑
i∈[n]〈ci,ui〉 during decryption, which, fortunately may be

computed by the key generator and is compensated for by subtraction.

A First Candidate. Armed with these ideas, we construct a first candidate quadratic MIFE qFE =
(qSetup, qEnc, qKeyGen, qDec) as follows. For ease of exposition, we assume below that the dimension
of each user’s input vector m is set to 1.

qSetup(1λ): iMSK, iMSK′ ← iSetup(1λ), wi, w̃i, ui, ũi ← Zp

qMSK := (iMSK, iMSK′, {wi, w̃i, ui, ũi}i∈[n]).
qEnc(qMSK, i, xi ∈ Z): si, s̃i ← Zp

iCT′
i ← iEnc(iMSK′, si), iSK

′
i ← iKeyGen(iMSK′, s̃i)

iCTi ← iEnc(iMSK, (xi, siwi, ui)), iSKi ← iKeyGen(iMSK, (xi, s̃iw̃i, ũi))
qCTi := (iCT′

i, iSK
′
i, iCTi, iSKi).

qKeyGen(MSK, c={ci,j}i,j∈[n]): qSK :=([−
∑

i,j∈[n] ci,juiũj ]T , {−ci,jwiw̃j}i,j∈[n]).

qDec(qCT1, . . . , qCTn, qSK): a
−
∑

i,j∈[n] ci,jwiw̃j iDec(iCT
′
i, iSK

′
j) +

∑
i,j∈[n] ci,j iDec(iCTi, iSKj)

−[
∑

i,j∈[n] ci,juiũj ]T = [〈c,x⊗ x〉]T

Observe that {iCTi, iSKi}i∈[n] yield {[xixj + sis̃jwiw̃j + uiũj ]T }i,j∈[n] in decryption, which can be
seen as ciphertexts of the n2-input ACFGU scheme. We also remark that we decompose the ACFGU
ciphertext into ciphertexts and secret keys of function-hiding IPFE so as to allow decryptors to generate
ACFGU ciphertext elements for quadratic terms derived from two different users. This is in contrast
to Lin’s quadratic FE scheme, which uses function-hiding IPFE to compress the ciphertext size.

However, this scheme is not secure and leaks unnecessary information to the decryptor. The problem
stems for the fact that the candidate scheme allows two types of mix-and-match attacks where an
adversary can simultaneously use two different ciphertexts with the same index (slot) for decryption.
In more detail, the adversary can learn the following information using the current scheme. Below, the
superscript denotes the ciphertext index and subscript denotes the slot in a given ciphertext – thus,
qCT1

i denotes the 1st ciphertext for the ith slot (recall there can be multiple ciphertexts in a given
slot).

1. Attack 1: For iCT1
i in qCT1

i and iSK2
i in qCT2

i , we have that iDec(iCT1
i , iSK

2
i ) is a valid ACFGU

ciphertext and usable for the ACFGU decryption with qSK. This is problematic because it per-
mits combining components from different ciphertexts qCT1

i and qCT2
i for the same slot i, which

6



does not correspond to a valid combination. Recall that in an MIFE scheme, a ciphertext in slot
i may be combined with multiple ciphertexts in slot j 6= i but not with other ciphertexts in slot
i. However, ciphertext components iCT1

i and iSK1
i from the same ciphertext and in the same slot

i are allowed to be combined. Thus, to prevent this attack, we need to enforce that ciphertext
components can be combined only when they come either from different slots or the same qCTi.

2. Attack 2: Let i1 6= i2. For {iCT1
i1 , iSK

1
i1} in qCT1

i1 , {iCT1
i2 , iSK

1
i2} in qCT1

i2 and iSK2
i2 in qCT2

i2 , we
have that iDec(iCT1

i1 , iSK
1
i1), iDec(iCT

1
i1 , iSK

2
i2) and iDec(iCT1

i2 , iSK
1
i2) are valid ACFGU ciphertexts

and usable for the decryption with qSK. This decryption leads to an inconsistency attack, where
an adversary can compute a function over multiple ciphertexts for a given slot.
As an example, let us consider the case where a decryptor has ciphertexts for (scalar) elements
x1
1, x

1
2, x

2
2 and a secret key for quadratic function f = (c1,1, c1,2, c2,2) (w.l.o.g., we can assume

c2,1 = 0). Now, the only valid function evaluations that an adversary should learn are

c1,1x
1
1x

1
1 + c1,2x

1
1x

1
2 + c2,2x

1
2x

1
2, and c1,1x

1
1x

1
1 + c1,2x

1
1x

2
2 + c2,2x

2
2x

2
2

However, the above leakage enables the adversary to additionally learn, e.g.,

c1,1x
1
1x

1
1 + c1,2x

1
1x

2
2 + c2,2x

1
2x

1
2

The above uses two different inputs (underlined) for the second slot for the same function evalua-
tion, which is invalid.

More generally, valid combinations correspond to the set of superscripts (in red) (1, 1), (1, 1), (1, 1)
and (1, 1), (1, 2), (2, 2). However, the adversary can learn function evaluations corresponding to
(1, 1), (1, r), (s, t) for any r, s, t ∈ [2] in the current candidate scheme.

Thus, both attacks leverage the decomposable structure of the quadratic ciphertext to mix and match
invalid components to obtain leakage. While both attacks have the similarity that they combine differ-
ent ciphertexts for the same slot in a given evaluation, the technical treatment to handle them needs
to differ. This is because to address the first attack, we must prevent the attacker from combining
(1, 1), (1, r), (s, t) for s 6= t while for the second, we must prevent the same for r 6= t. Intuitively, r and
t are the indices related to the ciphertexts of iFE while s is the index related to the secret keys of iFE,
and thus prohibiting the case of s 6= t and that of r 6= t are essentially different things, which must be
handled separately. Next, we describe how each of these attacks may be prevented.

Preventing Attack 1. Recall that Lin’s quadratic FE scheme does not allow attack 1 since the
encryption algorithm generates a new iMSK for each ciphertext. On the other hand, our candidate
uses the same iMSK for all ciphertexts so that decryptors can generate ACFGU ciphertext elements
for quadratic terms from two different users. To prevent this attack, we need a function-hiding IPFE
scheme where iCT is decryptable with iSK if and only if they come from either different slots or the same
qCTi. Thus, we need to extend the functionality of function-hiding IPFE to check the above condition
prior to computation. Although this primitive is reminiscent of “attribute-based IPFE” [ACGU20], we
also need the function-hiding property which has not been considered in prior works.

To address this need, we define and construct a function-hiding “predicated IPFE” (pIPFE), which
can be seen as a combination of inner product encryption [KSW08] and IPFE. Informally, a ciphertext
pCT and a secret key pSK of a pIPFE scheme pFE are associated with two vectors {x1,x2} and {y1,y2},
respectively. Here, the secret key must hide y2 but do not y1. Decryption of pCT with pSK reveals
〈x2,y2〉 iff 〈x1,y1〉 = 0.

To see how function-hiding predicated IPFE yields the desired functionality, let us set x1 =
(02(i−1), 1, L, 02(n−i)), y1 = (02(i−1), L,−1, 02(n−i)) where L ∈ Zp is sampled randomly for each en-
cryption, and i ∈ [n]. Let (i1, L1) (resp. (i2, L2)) be a pair of a slot index and random element of
x1 (resp. y1). It is easy to see that 〈x1,y1〉 = 0 iff i1 6= i2 or L1 = L2. Since L is chosen from
an exponentially large space, we have that L1 6= L2 with overwhelming probability. We construct a
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function-hiding predicated IPFE scheme pFE from a function-hiding IPFE scheme iFE in a generic
way. Please see Section 3 for details.

Preventing Attack 2. Attack 2 is much more tricky to handle. A problematic aspect of this attack is
the fact that iDec(iCT1

i1 , iSK
1
i1) and iDec(iCT1

i2 , iSK
1
i2) are necessary for decryption of ciphertexts qCT1

i1 ,

qCT1
i2 respectively, and iDec(iCT2

i2 , iSK
1
i1) is necessary for combined decryption of the pair qCT1

i1 , qCT
2
i2 .

However, they leak inappropriate information if both of them are used in decryption simultaneously.
Thus, we cannot solve the problem by building in some sort of access control into iFE decryption as in
the case of attack 1.

Our solution is to bind ACFGU ciphertexts generated from the iFE decryption with common random
elements. That is, iCTi in qCTi is changed to encryption of (xi, siwi, ui, tivi), and iSKi is changed to
a secret key of (xi, s̃iw̃i, riũi, ṽi) where vi, ṽi are new elements in qMSK and ri, ti are the common
random elements for binding ACFGU ciphertexts, which are chosen by qEnc. Then, decryption with
{iCTi, iSKi}i∈[n] yields {[xixj + sis̃jwiw̃j + rjuiũj + tiviṽj ]T }i,j∈[n].

According to the change of iCT, iSK, the first element of an ACFGU secret key should be modi-
fied as qSK1 = [−

∑
i,j∈[n] ci,j(rjuiũj + tiviṽj)]T . By this construction, we cannot simultaneously use

iDec(iCT1
i1 , iSK

1
i1), iDec(iCT

1
i2 , iSK

1
i2) and iDec(iCT2

i2 , iSK
1
i1) for ACFGU decryption. Intuitively, qSK1

must involve t1i2 and t2i2 (randomnesses used in iCT1
i2 and iCT2

i2 , respectively) to decrypt the ACFGU
ciphertexts generated from iDec(iCT1

i1 , iSK
1
i1), iDec(iCT

1
i2 , iSK

1
i2) and iDec(iCT2

i2 , iSK
1
i1) together, but

in fact qSK1 can involve only one of t1i2 and t2i2 .

How to Generate the Modified Secret Key. The last challenge is how to generate the mod-
ified secret key. It is obvious that qKeyGen cannot generate the modified key since it contains ran-
dom elements ri, ti used in ciphertexts. We solve the problem by employing an additional function-
hiding IP-MIFE scheme, denoted by miFE, into the candidate scheme. That is, qEnc additionally
generates an IP-MIFE ciphertext miCTi for (ri, ti), and qKeyGen generates an IP-MIFE secret key
miSK for {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n]. Then, a decryptor can generate the secret-key ele-

ment −
∑

i,j∈[n] ci,j(rjuiũj+ tiviṽj) from miCT1, . . . ,miCTn,miSK without knowing unnecessary infor-
mation. This technique is similar to Gay’s technique in [Gay20], which uses (partially) function-hiding
IPFE to generate a “decryption key” consisting of both elements inherently derived from a cipher-
text and a secret key. Note that our actual scheme needs mixed-group multi-input IPFE instead of
IP-MIFE, which we construct in Sec. 4.

Putting it all Together. Putting together the ideas discussed above, we now present a second
version of our scheme.

qSetup(1λ): iMSK′ ← iSetup(1λ), pMSK← pSetup(1λ),miMSK← miSetup(1λ)
wi, w̃i, ui, ũi, vi, ṽi ← Zp

qMSK := (iMSK′, pMSK,miMSK, {wi, w̃i, ui, ũi, vi, ṽi}i∈[n]).

qEnc(qMSK, i, xi ∈ Z): si, s̃i, ri, ti, L← Zp, `1 = (02(i−1), 1, L, 02(n−i))
`2 = (02(i−1), L,−1, 02(n−i)), iCT′

i ← iEnc(iMSK′, si), iSK
′
i ← iKeyGen(iMSK′, s̃i)

pCTi ← pEnc(pMSK, `1, (xi, siwi, riui, vi))
pSKi ← pKeyGen(pMSK, `2, (xi, s̃iw̃i, ũi, tiṽi))
miCTi ← miEnc(miMSK, (ri, ti)), qCTi := (iCT′

i, iSK
′
i, pCTi, pSKi,miCTi).

qKeyGen(MSK, c={ci,j}i,j∈[n]): a
miSK← miKeyGen(miMSK, {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n])

qSK :=(miSK, {−ci,jwiw̃j}i,j∈[n]).
qDec(qCT1, . . . , qCTn, qSK): a
−
∑

i,j∈[n] ci,jwiw̃j iDec(iCT
′
i, iSK

′
j) +

∑
i,j∈[n] ci,jpDec(pCTi, pSKj)

−miDec(miCT1, . . . ,miCTn,miSK) = [〈c,x⊗ x〉]T

However, while the above candidate satisfies functionality and resists the aforementioned attacks, we
are still far from a proof of security. For instance, one hurdle is that we must argue that {wiw̃j}i,j∈[n]
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is pseudorandom, which is not true because qSK contains these elements not as exponents of group
elements but as elements in Zp. Moreover, since we have already “used up” our pairing, we cannot
move these to the exponent as in [Lin17]. Another hurdle is that the underlying IPFE schemes satisfy
only indistinguishability based security rather than simulation based security. To arrive at a security
proof, we must address several such challenges, which we describe next.

Overview of Proof of Security. For ease of exposition, we outline our ideas for the warm-up case
of two input quadratic MIFE described in Sec. 5. The general case is handled in Sec. 6.

First, we briefly recall the definition for indistinguishability based security of secret-key MIFE.
Intuitvely, security requires that all PPT adversaries cannot guess a randomly chosen bit β with
meaningful probability in the following game: the adversary first outputs a set of challenge mes-
sages {i, xj,0

i , xj,1
i }i∈[n],j∈[qCT] and obtains ciphertexts for {i, xj,β

i }. After that, the adversary can query
a key generation oracle on any functions f such that for all (j1, . . . , jn) ∈ [qCT]

n, it holds that
f(xj1,0

1 , . . . , xjn,0
n ) = f(xj1,1

1 , . . . , xjn,1
n ). The goal of the security proof is to show that ciphertexts

for {i, xj,0
i } and {i, xj,1

i } are indistinguishable.
The first challenge in the security proof is how to design a series of hybrids between the real games

Gβ for β = 0 and β = 1. A naive strategy is to change each ciphertext from β = 0 to β = 1 one by one,
that is, in hybrid Hη

ι for ι ∈ [2], η ∈ [qCT], the adversary is given the ciphertext for xj,1
i if (i, j) ≤ (ι, η)

and that for xj,0
i otherwise, where (i, j) ≤ (ι, η) ⇔ (i − 1)qCT + j ≤ (ι − 1)qCT + η. Then, we may

hope to prove that G0 ≈c H
1
1 ≈c · · · ≈c H

qCT
1 ≈c H

1
2 ≈c · · · ≈c H

qCT
2 ≈c G

1. However, it quickly becomes
evident that this strategy does not work. This is since the queried function f does not necessarily
satisfy f(x1,0

1 , xj2,0
2 ) = f(x1,1

1 , xj2,0
2 ), and thus the adversary can trivially distinguish G0 from H1

1. Even
worse, when we change some input from β = 0 to β = 1, the change affects the quadratic terms that
contain an input from another slot such as x1,1

1 xj2,0
2 . This correlation does not appear in IP-MIFE and

makes the proof much more complex.
We address this issue as follows. Recall that our quadratic MIFE decryption first generates modified

ACFGU ciphertexts {aCTi,`}i,`∈[2] and a secret key element aSK where

aCTi,` = pDec(pCTi, pSK`) = [xix` + sis̃`wiw̃` + r`uiũ` + tiviṽ`]T

aSK = miDec(miCT1,miCT2,miSK) = [−
∑

i,`∈[2]

ci,`(r`uiũ` + tiviṽ`)]T .

Our first idea is to define Hη
ι so that qDec(qCTj1

1 , qCTj2
2 , qSK) in Hη

ι yields ({aCTji,j`
i,` }i,`∈[2], aSK

j1,j2)
where

aCTji,j`
i,` =

{
[x1

ix
1
` + sis̃`wiw̃` + r`uiũ` + tiviṽ`]T (`, j`) ≤ (ι, η)

[x0
ix

0
` + sis̃`wiw̃` + r`uiũ` + tiviṽ`]T (`, j`) > (ι, η)

aSKj1,j2 = [−
∑

i,`∈[2]

ci,`(r`uiũ` + tiviṽ`)−
∑
i∈[2]

`∈{k∈[2]|(k,jk)≤(ι,η)}

ci,`(x
1
ix

1
` − x0

ix
0
`)]T .

Note that variables x, s, s̃, r, t are also indexed by j1, j2, but we often omit j1, j2 for conciseness if it
is clear in context. Observe that, in hybrid Hη

ι ,
∑

i,`∈[2] ci,`aCT
ji,j`
i,` + aSKj1,j2 =

∑
i,`∈[2] ci,`[x

0
ix

0
` +

sis̃`wiw̃`]T for all (ι, η, j1, j2) ∈ [2] × [qCT]
3. Therefore, the adversary always obtains f(x0

1, x
0
2) by

decryption in all hybrids and cannot trivially distinguish them. Since the second term of aSKj1,j2 ,∑
i,`∈[2] ci,`(x

1
ix

1
` − x0

ix
0
`) = 0 due to the query condition, HqCT

2 almost can be seen as G1. Thanks to
the function-hiding property of pFE and miFE, information encoded in ciphertexts and secret keys is
not revealed other than aCTi,`, aSK.

Next we must define encoded vectors in ciphertexts and secret keys in pFE and miFE in each hybrid
so that they are indistinguishable in the hybrid sequence. First, let us consider vectors encoded in pFE
that yield aCTi,`. In G0, recall that bi = (x0

i , siwi, ui, tivi) and b̃i = (x0
i , s̃iw̃i, riũi, ṽi) are encoded in
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pCTi and pSKi, respectively. To make [〈bji
i , b̃

j`
` 〉]T = aCTji,j`

i,` in all hybrids, we introduce a free space,
used for only the security proof, and define bji

i , b̃
ji
i in Hη

ι as follows:

bji
i = (x0

i , x
1
i , siwi, ui, tivi), b̃ji

i =

{
(0, x1

i , s̃iw̃i, riũi, ṽi) (i, ji) ≤ (ι, η)

(x0
i , 0, s̃iw̃i, riũi, ṽi) (i, ji) > (ι, η)

.

Then, we need to prove that {bji
i , b̃

ji
i }i∈[2],ji∈[qCT] in Hη−1

ι and that in Hη
ι are indistinguishable.

Initially, it appears that we can prove it similarly to Lin’s technique [Lin17], that is, we introduce a
more free space and consider an intermediate hybrid in which we define

bji
i = (xji,0

i , xji,1
i , siwi, ui, tivi, x

ji,0
i xη,0

ι + sis̃ιwiw̃ι + rιuiũι + tiviṽι) (1.1)

b̃ji
i =


(0, xji,1

i , s̃iw̃i, riũi, ṽi, 0) (i, ji) < (ι, η)

(0, 0, 0, 0, 0, 1) (i, ji) = (ι, η)

(xji,0
i , 0, s̃iw̃i, riũi, ṽi, 0) (i, ji) > (ι, η)

Now, we may hope to change xji,0
i xη,0

ι in the last entry of bji
i to xji,1

i xη,1
ι by the indistinguishability-

based security of the (modified) ACFGU IP-MIFE scheme.
However, we get stuck here; the relation between {xji,0

i xη,0
ι }i∈[2],ji∈[qCT] and {xji,1

i xη,1
ι }i∈[2],ji∈[qCT]

implied by the query condition f(xj1,0
1 , xj2,0

2 ) = f(xj1,1
1 , xj2,1

2 ) is unclear. This is because, in the reduc-
tion to ACFGU IP-MIFE, the simulator is expected to simulate pCT for bji

i and qSK for quadratic
function f using ACFGU ciphertexts for {xji,β

i xη,β
ι }i∈[2],ji∈[qCT] and secret keys for linear functions fι,

respectively, such that fι(x
j1,0
1 xη,0

ι , xj2,0
2 xη,0

ι ) = fι(x
j1,1
1 xη,1

ι , xj2,1
2 xη,1

ι ). Note that fι comprises coeffi-
cients of f that are related to the ι-th input. Unfortunately, we cannot derive the above relation on fι
from the query condition. The critical observation we make here is that we have an alternative equality
on fι that are implied by the condition: for all (j1, j2, η) ∈ [qCT]

3, we have

f1(x
η,0
1 xη,0

1 − x1,0
1 x1,0

1 , xj2,0
2 xη,0

1 − xj2,0
2 x1,0

1 ) = f1(x
η,1
1 xη,1

1 − x1,1
1 x1,1

1 , xj2,1
2 xη,1

1 − xj2,1
2 x1,1

1 ) (1.2)

f2(x
j1,0
1 xη,0

2 − xj1,0
1 x1,0

2 , xη,0
2 xη,0

2 − x1,0
2 x1,0

2 ) = f2(x
j1,1
1 xη,1

2 − xj1,1
1 x1,1

2 , xη,1
2 xη,1

2 − x1,1
2 x1,1

2 ). (1.3)

Eq. (1.2) and (1.3) can be obtained by Eq. (1.4) − Eq. (1.5) where

f(xη,0
1 , xj2,0

2 ) = f(xη,1
1 , xj2,1

2 ) f(xj1,0
1 , xη,0

2 ) = f(xj1,1
1 , xη,1

2 ) (1.4)
f(x1,0

1 , xj2,0
2 ) = f(x1,1

1 , xj2,1
2 ) f(xj1,0

1 , x1,0
2 ) = f(xj1,1

1 , x1,1
2 ). (1.5)

The last challenge is to somehow change xji,0
i xη,0

ι in the last entry of Eq. (1.1) in to xji,1
i xη,1

ι

leveraging Eq. (1.2) or Eq. (1.3). We first observe that

xji,0
i xη,0

ι + sjii s̃
jι
ι wiw̃ι + rjιι uiũι + tjii viṽι ≈c x

ji,0
i xη,0

ι + ŝjii,ιŵi,ι + ûi + v̂jii

= xji,0
i xη,0

ι − xji,0
i x1,0

ι + ŝjii,ιŵi,ι + ûi︸ ︷︷ ︸
ACFGU ciphertext

+v̈jii

where ŝjii,ι, ŵi,ι, ûi, v̂
ji
i , v̈jii are fresh random elements. The computational indistinguishability is implied

by the SXDH assumption, and the equality follows by implicitly defining v̂jii = v̈jii −x
ji,0
i x1,0

ι . We can see
that the last part of the above equation is exactly the ACFGU ciphertext of xji,0

i xη,0
ι −x

ji,0
i x1,0

ι plus v̈jii .
At this point, we can use the security of the ACFGU IP-MIFE scheme to change xji,0

i xη,0
ι −xji,0

i x1,0
ι to

xji,1
i xη,1

ι −x
ji,1
i x1,1

ι . This is because they satisfy Eq.(1.2) or Eq.(1.3), and thus the reduction can follow
the query condition of IP-MIFE. Perceptive readers may notice that if i = ι, then xji,0

i xη,0
ι −x

ji,0
i x1,0

ι =

xji,1
i xη,1

ι −xji,1
i x1,1

ι holds only when ji = η. This is not a problem since we can deal with the terms for
i = ι, ji 6= η leveraging the security of predicated IPFE.
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Next we give some intuition for how to define vectors in miFE. Similarly to bji
i , b̃

ji
i , we want to define

f jii , f̃i in Hη
ι , which are encoded in miFE and yield aSK, but this approach quickly runs into cumbersome

issues. The first problem is that the second term of aSKj1,j2 , aSKj1,j2 [2] =
∑

ci,`(x
ji,1
i xj`,1

` −xji,0
i xj`,0

` ),
in the current definition depends on both xj1

1 and xj2
2 . Thus, we must somehow encode xj1

1 and xj2
2 in

miCTj1
1 and miCTj2

2 , respectively. However, we cannot generate the term xj1
1 xj2

2 via miFE, which can
only compute linear functions! A naive idea may be to program all quadratic terms into additional free
spaces in miCT. It immediately ends in failure; we cannot program q2CT values into O(qCT) spaces.

Our solution is to use Eq.(1.2) and Eq.(1.3) to compress the q2CT values into qCT values. For instance,
Eq. (1.2) implies

f1(x
j1,1
1 xj1,1

1 − xj1,0
1 xj1,0

1 , xj2,1
2 xj1,1

1 − xj2,0
2 xj1,0

1 ) = f1(x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , xj2,1
2 x1,1

1 − xj2,0
2 x1,0

1 )

since f1 is a linear function (we change η to j1). This means that
∑

`=1 ci,`(x
ji,1
i xj`,1

` − xji,0
i xj`,0

` ) =∑
`=1 ci,`(x

ji,1
i x1,1

` − xji,0
i x1,0

` ) for all ji. Similarly, we can handle the case for ` = 2. Thus, we can
program aSKj1,j2 [2] in miCTj1

1 and miCTj2
2 as:

f jii =

{
(ri, ti, x

ji,1
i x1,1

1 − xji,0
i x1,0

1 , 0) ι = 1

(ri, ti, x
ji,1
i x1,1

1 − xji,0
i x1,0

1 , xji,1
i x1,1

2 − xji,0
i x1,0

2 ) ι = 2

f̃i = (
∑
`∈[2]

c`,iu`ũi,
∑
`∈[2]

ci,`viṽ`, ci,1, ci,2).

The second problem is the fact that

aSKj1,j2 [2] = 〈f jii , f̃i〉 −
∑

i,`∈[2]

ci,`(r`uiũ` + tiviṽ`) =
∑

i∈[ι],`∈[2]

ci,`(x
1
ix

1
` − x0

ix
0
`)

in the current definition of f jii , f̃i, while aSKj1,j2 [2] should be

aSKj1,j2 [2] =
∑

i∈{k∈[2]|(k,jk)≤(ι,η)}
`∈[2]

ci,`(x
1
ix

1
` − x0

ix
0
`).

We adjust them by modifying aCT as aCTji,j`
i,` = aCTji,j`

i,` + Q(x) so that
∑

i,`∈[2] ci,`aCT
ji,j`
i,` +

aSKj1,j2 =
∑

i,`∈[2] ci,`[x
0
ix

0
` + sis̃`wiw̃`]T holds, where Q is a quadratic polynomial over variables

x = {xji,β
i }i∈[2],ji∈[qCT],β∈{0,1}. The additional term Q(x) in aCTji,j`

i,` can be programed into pCT and
pSK by introducing more additional space. Please see Section 5 for a detailed argument.

Future Directions. Our work opens up several exciting questions for MIFE. A pressing question
is whether our MIFE for quadratic functions can be generalized to MIFE for “degree 2.5” functions
discussed above, and subsequently to MIFE for larger function classes without going through generic
expensive and lossy transformations. The direct construction of MIFE for degree 2 provided by our
work opens the possibility of direct constructions for larger function classes, potentially leveraging
the Learning Parity with Noise (LPN) and Learning With Errors (LWE) assumptions as in [JLS20].
Another interesting open problem is to study a stronger security model where an adversary can choose
users to be corrupted, called the multi-client setting [GGG+14,CDG+18,ABKW19,ABG19,LT19]. Our
current construction does not support such corruption, the intuitive reason is that the function-hiding
IPFE, which is the main building block of our scheme, works only when encryption keys are hidden
(uncorrupted). It would also be useful and interesting to improve the parameters of our construction.
The ciphertext size of our scheme is O(m2n), and the secret-key size is O(m2n2), where m is the number
of elements per slot and n is the number of encryption slots.7. Since our construction is already quite
complex, we leave these extensions to future work.
7 More precisely, here sizes of ciphertexts and secret keys refer to the number of group elements.
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2 Preliminaries

2.1 Notations

For a natural number m,n ∈ N, [m] denotes a set {1, . . . ,m}, and [m,n] denotes a set {m, . . . , n}. For
matrices M1, . . . ,Mn with the same number of rows, (M1|| · · · ||Mn) denotes their matrix concatena-
tion. For vectors v1, . . . ,vn, (v1, . . . ,vn) denotes the vector concatenation as row vectors regardless of
whether each vi is a row or column vector. For instance, for v1 ∈ Zm×1

p ,v2 ∈ Z1×n
p , (v1,v2) = (v>

1 ||v2).
We use ⊗ for the Kronecker product. We denote an n-dimensional unit vector (0i−1, 1, 0n−1) by ei/n.
For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, we denote X ≈c Y as computational
indistinguishability.

2.2 Bilinear Groups

Definition 2.1 (Bilinear Groups). A description of bilinear groups
G:=(p,G1, G2, GT , g1, g2, e) consists of a prime p, cyclic groups G1, G2, GT of order p, generators g1
and g2 of G1 and G2 respectively, and a bilinear map e : G1 ×G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(h
a
1 , h

b
2) = e(h1, h2)

ab.
– (Non-degeneracy): For generators g1 and g2, gT := e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1
λ) takes a security parameter 1λ and outputs a description of bilinear

groups G with a Ω(λ)-bit prime p.

Definition 2.2 (Dj,k-MDDH Assumption [EHK+17]). For j > k, let Dj,k be a matrix distri-
bution over matrices in Zj×k

p , which outputs a full-rank matrix with overwhelming probability. Let
G be bilinear groups. We can assume that, wlog, the first k rows of a matrix chosen from Dj,k form
an invertible matrix. We consider the following distribution: A ← Dj,k, z ← Zk

p, k0 := Az, k1 ←
Zj
p, Pi,β := (G, [A]i, [kβ ]i). We say that the Dj,k-MDDH assumption holds with respect to G if, for

any PPT adversary A,

Adv
Dj ,k -MDDH
A (λ) := max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl(λ).

In what follows, we denote Dk+1,k by Dk. Note that the well-known k-Lin assumption can be captured
as the Dk-MDDH assumption.
Bilateral Variant. Let G,A,kβ be the same as above and Pβ := (G, [A]1, [A]2, [kβ ]1, [kβ ]2). We
say the bilateral Dj,k-MDDH assumption holds with respect to GBG if P0 and P1 are computationally
indistinguishable as above. The bilateral Dj,k-MDDH assumption generically holds in bilinear groups
if k ≥ 2. Note that the following two properties are applicable to the bilateral case similarly.
Uniform Distribution. Let Uj,k be a uniform distribution over Zj×k

p . Then, the following holds
with tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH.

Random Self-Reducibility. We can obtain arbitrarily many instances of the Dj,k-MDDH prob-
lem from a single instance. For any n ∈ N, we define the following distribution: A ← Dj,k, Z ←
Zk×n
p , K0 := AZ, K1 ← Zj×n

p , Pi,β := (G, [A]i, [Kβ ]i). The n-fold Dj,k-MDDH assumption is simi-
larly defined to the Dj,k-MDDH assumption. Then, the n-fold Dj,k-MDDH assumption is implied by
the Dj,k-MDDH assumption with security loss of min{n, j − k}.

2.3 Multi-Input Functional Encryption

Below, we define secret-key MIFE. The definition of public-key MIFE is presented in Def. A.1.

Definition 2.3 (Multi-Input Functional Encryption). Let F be a function family such that, for
all f ∈ F, f : X1 × · · · × Xn → Z. An MIFE scheme for F, MIFE, consists of four algorithms.
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Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP and a master secret
key MSK. The other algorithms implicitly take PP.

Enc(MSK, i, xi): It takes MSK, an index i ∈ [n], and xi ∈ Xi and outputs a ciphertext CTi.
KeyGen(MSK, f): It takes MSK, and f ∈ F, and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

When n = 1, we call it just a functional encryption (FE) scheme and omit the second argument of
Enc.
Correctness. MIFE is correct if it satisfies the following condition. For all λ ∈ N, (x1, . . . , xn) ∈
X1 × · · · × Xn, f ∈ F, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣
PP,MSK← Setup(1λ)
CTi ← Enc(MSK, i, xi)
SK← KeyGen(MSK, f)
d := Dec(CT1, . . . , ,CTn,SK)

 = 1.

Selective Security. We define two indistinguishability-based security definitions for MIFE, namely,
message-hiding and function-hiding. For a stateful PPT adversary A and λ ∈ N, let

PMIFE,β
A,mh (λ) := Pr

β′ = 1

∣∣∣∣∣∣∣∣
{i, xj,0

i , xj,1
i }i∈[n],j∈[qCT,i] ← A(1λ)

PP,MSK← Setup(1λ),

CTj
i ← Enc(MSK, i, xj,β

i )

β′ ← AKeyGen(MSK,·)(PP, {CTj
i}i∈[n],j∈[qCT,i])

 .

Let qSK be a number of queries to KeyGen. We say A is admissible if, in case of qCT,1, . . . , qCT,n, qSK ≥ 1,
A’s queries satisfy f `(xj1,0

1 , . . . , xjn,0
n ) = f `(xj1,1

1 , . . . , xjn,1
n ) for all (j1, . . . , jn) ∈ [qCT,1] × · · · × [qCT,n]

and ` ∈ [qSK]. MIFE is message-hiding if, for all admissible PPT adversaries A, the following advantage
of A is negligible in λ: AdvMIFE

A,mh(λ) := |P
MIFE,0
A,mh (λ)− PMIFE,1

A,mh (λ)|.
Next, we define a function-hiding property. Let PMIFE,β

A,fh (λ) be defined the same as PMIFE,β
A,mh (λ)

except that A’s oracle is OSK(β, ·) instead of KeyGen, where OSK(β, ·) takes (f0, f1) and outputs
KeyGen(MSK, fβ). This time, A is admissible if, in case of qCT,1, . . . , qCT,n, qSK ≥ 1, A’s queries satisfy
f `,0(xj1,0

1 , . . . , xjn,0
n ) = f `,1(xj1,1

1 , . . . , xjn,1
n ) for all (j1, . . . , jn) ∈ [qCT,1] × · · · × [qCT,n] and ` ∈ [qSK].

Then, MIFE is function-hiding if, for all admissible PPT adversaries A, the following advantage of A
is negligible in λ: AdvMIFE

A,fh (λ) := |P
MIFE,0
A,fh (λ)− PMIFE,1

A,fh (λ)|.

Remark 2.1. In this paper, we assume that qCT,i ≥ 1 for all i ∈ [n] and that qCT,1 = · · · = qCT,n(= qCT).
This is w.l.o.g as discussed in [AGRW17,DOT18].

We next define quadratic functions.

Definition 2.4 (Bounded-Norm Multi-Input Quadratic functions over Z). A function family
FMQF
m,n,X,C for bounded-norm multi-input quadratic functions consist of functions f : (Xm)n → Z where

X = {i | i ∈ Z, |i| ≤ X}. Each f ∈ FMQF
m,n,X,C is specified by c = {cµ,ν}µ,ν∈[mn] ∈ Z(mn)2 s.t. ||c||∞ ≤ C

and cµ,ν = 0 if µ > ν. Let xµ be the µ-th element of x = (x1, . . . ,xn) ∈ (Xm)n. Then, f specified by
c is defined as f(x1, . . . ,xn) :=

∑
µ,ν∈[mn] cµ,νxµxν .

3 Predicated Inner Product Functional Encryption

We define and construct predicated inner product functional encryption.
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Definition 3.1 (Inner Products over Bilinear Groups). Let G = (p,G1, G2, GT , g1, g2, e) be
bilinear groups. A function family FIP

m,G for inner products over bilinear groups consists of functions
f : Gm

1 → GT . Each f ∈ FIP
m,G is specified by [y]2 where y ∈ Zm

p and defined as f([x]1) := [〈x,y〉]T .

Definition 3.2 (Predicated Inner Products over Bilinear Groups). A function family FPIP
d,m,G

for predicated inner products over bilinear groups consists of functions f : Zd
p × Gm

1 → GT ∪ {⊥}.
Each f ∈ FPIP

d,m,G is specified by y1 ∈ Zd
p and [y2]2 where y2 ∈ Zm

p and defined as f(x1, [x2]1) :={
[〈x2,y2〉]T if 〈x1,y1〉 = 0

⊥ if 〈x1,y1〉 6= 0
.

We refer to FE for FIP
m,G and FPIP

d,m,G as IPFE and predicated IPFE, respectively. We define partially
function-hiding security of FE for FPIP

d,m,G. Partially function-hiding security guarantees that secret keys
hide y2 (but do not y1).
Partially Function-Hiding Security. Let pFE = (pSetup, pEnc, pKeyGen, pDec) be a FE scheme
for FPIP

d,m,G. For a stateful PPT adversary A and λ ∈ N, let

PpFE,β
A,pfh (λ) := Pr

β′ = 1

∣∣∣∣∣∣∣∣
{xj

1, [x
j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT] ← A(1λ)

pPP, pMSK← pSetup(1λ),

pCTj ← pEnc(pMSK, (xj
1, [x

j,β
2 ]1))

β′ ← AOSK(β,·)(pPP, {pCTj}j∈[qCT])


where OSK takes (y1, [y

0
2]2, [y

1
2]2) and outputs pKeyGen(MSK, (y1, [y

β
2 ]2)). Let qSK be a number of

queries to OSK. We say A is admissible if A’s queries satisfy 〈xj,0
2 ,y`,0

2 〉 = 〈x
j,1
2 ,y`,1

2 〉 when 〈xj
1,y

`
1〉 = 0

for all j ∈ [qCT] and ` ∈ [qSK]. pFE is partially function-hiding if, for all admissible PPT adversaries A,
the following advantage of A is negligible in λ: AdvpFEA,pfh(λ) := |P

pFE,0
A,pfh(λ)− PpFE,1

A,pfh(λ)|.

3.1 Predicated IPFE from IPFE
We construct a partially function-hiding FE scheme for FPIP

d,m,G from a function-hiding FE scheme for
FIP
kd+2m+1,G generically. Note that k is a parameter for the MDDH assumption. A function-hiding FE

scheme for FIP
m,G based on MDDH is implied by the function-hiding IPFE scheme described in [Tom19,

Appx. A] 8. Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for FIP
kd+2m+1,G.

Then, our partially function-hiding FE scheme pFE = (pSetup, pEnc, pKeyGen, pDec) for FPIP
d,m,G is

constructed as shown in Fig 1.
Correctness. Since 〈z⊗ x1,a⊗ y1〉 = 〈z,a〉 · 〈x1,y1〉, iDec(iCT, iSK) outputs [〈x,y〉]T = [〈x2,y2〉]T
if 〈x1,y1〉 = 0. This follows from the correctness of iFE.

3.2 Security
In this section, we prove security for our predicated inner product FE described in Sec. 3.1. Formally,
we prove the following theorem.
Theorem 3.1. If iFE is function-hiding, and the MDDH assumption holds in G, then pFE is partially
function-hiding. More precisely, for all PPT adversaries A, there exist PPT adversaries B1,B2 such
that

AdvpFEA,pfh(λ) ≤ qCT(3Adv
iFE
B1,fh(λ) + 2AdvDk -MDDH

B2
(λ)).

Proof. We prove Theorem 3.1 via a series of hybrid games Hι,1, . . . ,Hι,5 for ι ∈ [qCT]. We show that
G0 ≈c H1,1 ≈c · · · ≈c H1,5 ≈c H2,1 ≈c · · · ≈c HqCT,4 ≈c G1, where Gβ for β ∈ {0, 1} is the original
security game (described in Fig 2). Each hybrid is defined as follows.
8 In more detail, this follows since the scheme remains correct and secure even if input vectors for Enc and
KeyGen consist of group elements, and Dec first obtains decryption values on the exponent of a target-group
generator and then computes its discrete log.
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pSetup(1λ)→ pPP, pMSK

(pPP, pMSK) := (iPP, iMSK)← iSetup(1λ)

pEnc(MSK, (x1, [x2]1))→ pCT

z← Zk
p, x := (z⊗ x1,x2, 0

m, 0) ∈ Zkd+2m+1
p , iCT← iEnc(iMSK, [x]1), pCT := (x1, iCT)

pKeyGen(pMSK, (y1, [y2]2))→ pSK

a← Zk
p, y := (a⊗ y1,y2, 0

m, 0) ∈ Zkd+2m+1
p , iSK← iKeyGen(iMSK, [y]2), pSK := (y1, iSK)

pDec(pCTpSK)→ z

If 〈x1,y1〉 6= 0, outputs z = ⊥. Otherwise, outputs z = iDec(iCT, iSK).

Fig 1: Our predicated IPFE scheme.

Gβ

{xj
1, [x

j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT] ← A(1λ)

(pPP, pMSK) := (iPP, iMSK)← iSetup(1λ)

zj ← Zk
p, x

j := (zj ⊗ xj
1,x

j,β
2 , 0m, 0) ∈ Zkd+2m+1

p

iCTj ← iEnc(iMSK, [xj ]1), pCT
j := (xj

1, iCT
j)

β′ ← AOSK(β,·)(pPP, {pCTj}j∈[qCT])

OSK(β, ·)
Input: (y1, [y

0
2]2, [y

1
2]2)

a← Zk
p, y := (a⊗ y1,y

β
2 , 0

m, 0) ∈ Zkd+2m+1
p

iSK← iKeyGen(iMSK, [y]2), pSK := (y1, iSK)

Output: pSK

Fig 2: Partially function-hiding security game for pFE.

Hι,1: This game is the same as G0 except that
– for j ∈ [qCT], xj to be encrypted is set as

xj :=


(zj ⊗ xj

1, 0m,xj,1
2 , 0) if j < ι

( 0kd ,xj,0
2 , 0m, 1 ) if j = ι

(zj ⊗ xj
1,x

j,0
2 , 0m, 0) if j > ι

(3.1)

– OSK sets y := (a⊗ y1,y
0
2, y1

2, 〈zι,a〉 · 〈xι
1,y1〉 ) for all queries.

Hι,2: This game is the same as Hι,1 except that OSK samples t← Zp and sets y := (a⊗ y1,y
0
2,y

1
2, t ·

〈xι
1,y1〉) for each query.

Hι,3: This game is the same as Hι,2 except that xι := (0kd, 0m,xι,1
2 , 1).

Hι,4: This game is the same as Hι,3 except that OSK sets y := (a⊗y1,y
0
2,y

1
2, 〈zι,a〉 · 〈xι

1,y1〉) for all
queries.

Hι,5 (ι ∈ [qCT − 1]): This game is the same as Hι,4 except that
– xι := ( zι ⊗ xι

1 , 0m,xι,1
2 , 0 );

– OSK sets y := (a⊗ y1,y
0
2,y

1
2, 0 ) for all queries.

Thanks to Lemmata 3.1 to 3.5, Theorem 3.1 holds. ut

Next, we prove the indistinguishability of each pair of hybrid games. Let P(A,G) be the probability
that A outputs 1 in a security game G with the security parameter being λ, i.e., P(A,Gβ) = PpFE,β

A,pfh (λ).

15



Lemma 3.1. Let H0,5 = G0. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary
B such that |P(A,Hι−1,5)− P(A,Hι,1)| ≤ AdviFEB,fh(λ).

Proof. Recall that the differences between Hι−1,5 and Hι,1 are
– xι := (zι ⊗ xι

1,x
ι,0
2 , 0m, 0) −→ xι := (0kd,xι,0

2 , 0m, 1);

– y :=

{
(a⊗ y1,y

0
2, 0

m, 0) if ι = 1

(a⊗ y1,y
0
2,y

1
2, 0) if ι > 1

−→ y := (a⊗ y1,y
0
2,y

1
2, 〈zι,a〉 · 〈xι

1,y1〉).

For j ∈ [qCT] and ` ∈ [qSK], let xj,0 and y`,0 be xj and y` defined in Hι−1,5, respectively. Similarly,
let xj,1 and y`,1 be xj and y` defined in Hι,1, respectively. Then, it is not hard to see that we have
〈xj,0,y`,0〉 = 〈xj,1,y`,1〉 for all j ∈ [qCT] and ` ∈ [qSK]. Thus, we can reduce the indistinguishability
between Hι−1,5 and Hι,1 to the function-hiding property of iFE. Note that since xj is independent of
y`
1,y

`,0
2 ,y`,1

2 , the adaptiveness of secret-key queries does not become a matter in the reduction. This
concludes the proof. ut
Lemma 3.2. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,Hι,1)− P(A,Hι,2)| ≤ Adv

UqSK,k -MDDH

B (λ).
Proof. We describe the reduction B.
1. B obtains a UqSK,k-MDDH instance (G, [A]2, [kβ ]2), where A ∈ ZqSK×k

p , k0 = Az, k1 ← ZqSK
p .

2. When A outputs {xj
1, [x

j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT], B sets (pPP, pMSK) := (iPP, iMSK)← iSetup and gives

pPP, {pCTj := (xj
1, iEnc(iMSK, [xj ]1))}j∈[qCT] to A, where xj is set as Eq. (3.1).

3. For the `-th query to OSK on (y`
1, [y

`,0
2 ]2, [y

`,1
2 ]2), B replies pSK by setting y` := (a`⊗y`

1,y
`,0
2 ,y`,1

2 ,
kβ,` · 〈xι

1,y
`
1〉), where a` is the `-th row of A and kβ,` is the `-th entry of kβ .

4. B outputs A’s output as it is.
It is not hard to see that A’s view corresponds to Hι,1 if β = 0 and Hι,2 otherwise. Note that
UqSK,k-MDDH is tightly reduced to Dk-MDDH. ut
Lemma 3.3. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,Hι,2)− P(A,Hι,3)| ≤ AdviFEB,fh(λ).

Proof. Let xj,0 be xj defined in Hι,2, i.e., as in Eq. (3.1), and xj,1 be xj defined in Hι,3, i.e., the same
as in Eq. (3.1) except that xι := (0kd, 0m,xι,1

2 , 1). Let us define that

y`,0 := (a` ⊗ y`
1,y

`,0
2 ,y`,1

2 , t` · 〈xι
1,y

`
1〉)

y`,1 := (a` ⊗ y`
1,y

`,0
2 ,y`,1

2 , t` · 〈xι
1,y

`
1〉+ (〈xι,0

2 ,y`,0
2 〉 − 〈x

ι,1
2 ,y`,1

2 〉)).

Then, it is not hard to see that we have 〈xj,0,y`,0〉 = 〈xj,1,y`,1〉 for all j ∈ [qCT] and ` ∈ [qSK]. Thus,
we can reduce the indistinguishability between the 0-side and 1-side to the function-hiding property
of iFE. Here, we have the two cases:
〈xι

1,y
`
1〉 = 0: The game condition imposes 〈xι,0

2 ,y`,0
2 〉 − 〈x

ι,1
2 ,y`,1

2 〉 = 0 on A.
〈xι

1,y
`
1〉 6= 0: Since t` is distributed randomly in Zp, the terms t` ·〈xι

1,y
`
1〉 and t` ·〈xι

1,y
`
1〉+(〈xι,0

2 ,y`,0
2 〉−

〈xι,1
2 ,y`,1

2 〉) are also distributed randomly.
Hence, y`,0 and y`,1 are identically distributed in both cases, which means that the 0-side corresponds
to Hι,2 and the 1-side corresponds to Hι,3. ut
Lemma 3.4. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,Hι,3)− P(A,Hι,4)| ≤ Adv

UqSK,k -MDDH

B (λ).
We omit the proof since Lemma 3.4 can be proven similarly to Lemma 3.2.

Lemma 3.5. Let HqCT,5 = G1. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary
B such that |P(A,Hι,4)− P(A,Hι,5)| ≤ AdviFEB,fh(λ).

We omit the proof since Lemma 3.5 can be proven similarly to Lemma 3.1.
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gSetup(1λ)→ gPP, gMSK

miPP,miMSK←miSetup(1λ), (iPP1, iMSK1), . . . , (iPPn, iMSKn)←iSetup(1λ)

gPP := (miPP, iPP1, . . . , iPPn), gMSK := (miMSK, iMSK1, . . . , iMSKn)

gEnc(MSK, i, ([xi,1]1, [xi,2]2))→ gCTi

z←Zk
p, x̃i,1:=(xi,1, 0

m2 , z, 0) ∈ Zm1+m2+k+1
p , x̃i,2:=(xi,2,−z, 0) ∈ Zm2+k+1

p

miCTi ← miEnc(miMSK, i, [x̃i,1]1), iCTi ← iEnc(iMSKi, [x̃i,2]2), gCTi := (miCTi, iCTi)

gKeyGen(MSK, {[yi,1]2, [yi,2]1}i∈[n])→ gSK

a←Zk
p, ỹi,1:=(yi,1, 0

m2 ,a, 0) ∈ Zm1+m2+k+1
p , ỹi,2:=(yi,2,a, 0) ∈ Zm2+k+1

p , ỹ := (ỹ1,1, . . . , ỹn,1)

miSK← miKeyGen(miMSK, [ỹ]2), iSKi ← iKeyGen(iMSKi, [ỹi,2]1), gSK := (miSK, {iSKi}i∈[n])

gDec(gCT1, . . . , gCTn, gSK)→ z

Outputs miDec(miCT1, . . . ,miCTn,miSK)
∏

i∈[n] iDec(iCTi, iSKi)

Fig 3: Our mixed-group IP-MIFE scheme.

4 Mixed-Group Multi-Input IPFE

In this section, we define and construct our mixed-group multi-input inner product functional encryp-
tion (mixed-group IP-MIFE).

Definition 4.1 (Multi-Input Inner Products over Bilinear Groups). Let G = (p,G1, G2, GT , g1,
g2, e) be bilinear groups. A function family FMIP

m,n,G for multi-input inner products over bilinear groups
consists of functions f : (Gm

1 )n → GT . Each f ∈ FMIP
m,n,G is specified by [y1]2, . . . , [yn]2 where yi ∈ Zm

p

and defined as f([x]1, . . . , [x]n) := [
∑

i∈[n]〈xi,yi〉]T .

Definition 4.2 (Multi-Input Mixed-Group Inner Products over Bilinear Groups). Let G =
(p,G1, G2, GT , g1, g2, e) be bilinear groups. A function family FMGIP

m1,m2,n,G for multi-input mixed-group
inner products over bilinear groups consists of functions f : (Gm1

1 ×Gm2
2 )n → GT . Each f ∈ FMGIP

m1,m2,n,G
is specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Zm1

p and yi,2 ∈ Zm2
p and defined as

f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) := [〈x,y〉]T where x := (x1,1,x1,2, . . . ,xn,1,xn,2) and y :=
(y1,1,y1,2, . . . ,yn,1,yn,2).

We refer to MIFE for FMIP
m,n,G and FMGIP

m1,m2,n,G as IP-MIFE and mixed-group IP-MIFE, respectively. We
require mixed-group IP-MIFE to satisfy the standard function-hiding security in Def. 2.3.

4.1 Construction

Let FIP′

m,G be a function class defined the same as FIP
m,G in Def. 3.1 except that G1 and G2 are switched,

that is, each f : Gm
2 → GT is specified by [y]1. We construct a function-hiding MIFE scheme for

FMGIP
m1,m2,n,G from a function-hiding MIFE scheme for FMIP

m1+m2+k+1,n,G and function-hiding FE scheme
for FIP′

m2+k+1,G in a generic way. Note that k is a parameter for the MDDH assumption. A function-
hiding MIFE scheme for FMIP

m,n,G based on MDDH is easily obtained from a function-hiding multi-input
IPFE schemes in [DOT18, ACF+18, Tom19]. This is since these schemes in the literatures work even
if input vectors for Enc and KeyGen consist of group elements, and Dec first obtains decryption values
on the exponent of a target-group generator and then computes its discrete log.

Let miFE = (miSetup,miEnc,miKeyGen,miDec) be a function-hiding MIFE scheme for FMIP
m1+m2+k+1,n,G

and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for FIP′

m2+k+1,G. Then, our
function-hiding MIFE scheme gFE = (gSetup, gEnc, gKeyGen, gDec) for FMGIP

m1,m2,n,G is constructed as
shown in Fig 3.
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Gβ

{i, ([xj,0
i,1 ]1, [x

j,0
i,2 ]2), ([x

j,1
i,1 ]1, [x

j,1
i,2 ]2)}i∈[n],j∈[qCT] ← A(1λ)

miPP,miMSK← miSetup(1λ), (iPP1, iMSK1), . . . , (iPPn, iMSKn)← iSetup(1λ)

gPP := (miPP, iPP1, . . . , iPPn), gMSK := (miMSK, iMSK1, . . . , iMSKn)

zji ← Zk
p, x̃

j
i,1 := (xj,β

i,1 , 0
m2 , zji , 0), x̃

j
i,2 := (xj,β

i,2 ,−z
j
i , 0)

miCTj
i ← miEnc(miMSK, i, [x̃j

i,1]1), iCT
j
i ← iEnc(iMSKi, [x̃

j
i,2]2), gCT

j
i := (miCTj

i , iCT
j
i )

β′ ← AOSK(β,·)(gPP, {gCTj
i}i∈[n],j∈[qCT])

OSK(β, ·)
Input: {([y0

i,1]2, [y
0
i,2]1), ([y

1
i,1]2, [y

1
i,2]1)}i∈[n]

a← Zk
p, ỹi,1 := (yβ

i,1, 0
m2 ,a, 0), ỹi,2 := (yβ

i,2,a, 0)

ỹ := (ỹ1,1, . . . , ỹn,1), miSK← miKeyGen(miMSK, [ỹ]2), iSKi ← iKeyGen(iMSKi, [ỹi,2]1)

gSK := (miSK, {iSKi}i∈[n]).

Output: gSK

Fig 4: Function-hiding security game for gFE.

Correctness. Due to the correctness of miFE and iFE, gDec outputs∑
i∈[n]

(〈x̃i,1, ỹi,1〉+ 〈x̃i,2, ỹi,2〉)


T

=

∑
i∈[n]

(〈xi,1,yi,1〉+ 〈xi,2,yi,2〉)


T

.

4.2 Security

In this section, we prove security of the construction provided in Sec. 4.1. In more detail, we prove the
following theorem.

Theorem 4.1. If miFE and iFE are function-hiding, and the bilateral MDDH assumption holds in G,
then gFE is function-hiding. More precisely, for all PPT adversaries A, there exist PPT adversaries
B1,B2,B3 such that

AdvgFEA,fh(λ)≤(4qCT + 1)AdvmiFE
B1,fh(λ) + n(4qCT + 1)AdviFEB2,fh(λ) + 4nqCTAdv

bi-Dk -MDDH
B3

(λ).

Proof. We prove Theorem 4.1 via a series of hybrid games H1,ι,1, . . . ,H1,ι,5,H2 for ι ∈ [qCT]. We show
that G0 ≈c H1,1,1 ≈c · · · ≈c H1,1,5 ≈c H1,2,1 ≈c · · · ≈c H1,qCT,5 ≈c H2 ≈c G1, where Gβ for β ∈ {0, 1} is
the original security game (described in Fig 4). Each hybrid is defined as follows.

H1,ι,1: This game is the same as G0 except that
– for (i, j) ∈ [n]× [qCT], x̃j

i,1, x̃
j
i,2 to be encrypted are set as

x̃j
i,1 :=


(xj,0

i,1 , xj,0
i,2 , zji , 0)

(xj,0
i,1 , 0

m2 , 0k, 1 )

(xj,0
i,1 , 0

m2 , zji , 0)

x̃j
i,2 :=


( 0m2 ,−zji , 0) if j < ι

( 0m2 , 0k, 1 ) if j = ι

(xj,0
i,2 ,−z

j
i , 0) if j > ι

(4.1)

– OSK sets ỹi,1 := (y0
i,1, y0

i,2 ,a, 〈zιi,a〉 ), ỹi,2 := (y0
i,2,a, −〈zιi,a〉+ 〈x

ι,0
i,2,y

0
i,2〉 ) for all queries.

H1,ι,2: This game is the same as H1,ι,1 except that OSK samples ti ← Zp and sets ỹi,1 := (y0
i,1,y

0
i,2,a, ti ),

ỹi,2 := (y0
i,2,a, −ti + 〈xι,0

i,2,y
0
i,2〉) for each query.

H1,ι,3: This game is the same as H1,ι,2 except that OSK sets ỹi,1 := (y0
i,1,y

0
i,2,a, ti +〈x

ι,0
i,2,y

0
i,2〉 ), ỹi,2 :=

(y0
i,2,a,−ti +�����〈xι,0

i,2,y
0
i,2〉) for each query.
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H1,ι,4: This game is the same as H1,ι,3 except that OSK sets ỹi,1 := (y0
i,1,y

0
i,2,a, 〈zιi,a〉 + 〈xι,0

i,2,y
0
i,2〉),

ỹi,2 := (y0
i,2,a, −〈zιi,a〉 ) for all queries.

H1,ι,5: This game is the same as H1,ι,4 except that

– x̃ι
i,1 := (xι,0

i,1, xι,0
i,2, z

ι
i, 0 ), x̃ι

i,2 := (0m2 , −zιi, 0 ) for all i ∈ [n];

– OSK sets ỹi,1 := (y0
i,1,y

0
i,2,a, 0 ), ỹi,2 := (y0

i,2,a, 0 ) for all queries.
H2: This game is the same as H1,qCT,5 except that

– x̃j
i,1 := ( xj,1

i,1 ,x
j,1
i,2 , zji , 0), x̃

j
i,2 := (0m2 ,−zji , 0) for all (i, j) ∈ [n]× [qCT];

– OSK sets ỹi,1 := ( y1
i,1,y

1
i,2 ,a, 0), ỹi,2 := ( y1

i,2 ,a, 0) for all queries.

Thanks to Lemmata 4.1 to 4.7, Theorem 4.1 holds. ut

Next, we prove the indistinguishability of each pair of hybrid games. Let P (A,G) be the probability
that A outputs 1 in G with the security parameter being λ, i.e., P(A,Gβ) = PgFE,β

A,fh (λ).

Lemma 4.1. Let H1,0,5 = G0. For all PPT adversaries A and ι ∈ [qCT], there exist PPT adversary
B1,B2 such that |P(A,H1,ι−1,5)− P(A,H1,ι,1)| ≤ AdvmiFE

B1,fh(λ) + nAdviFEB2,fh(λ).

Proof. Recall that the differences between H1,ι−1,5 and H1,ι,1 are

– x̃ι
i,1 := (xι,0

i,1, 0
m2 , zιi, 0) −→ x̃ι

i,1 := (xι,0
i,1, 0

m2 , 0k, 1);

– x̃ι
i,2 := (xι,0

i,2,−zιi, 0) −→ x̃ι
i,2 := (0m2 , 0k, 1);

– ỹi,1 :=

{
(y0

i,1, 0
m2 ,a, 0) if ι = 1

(y0
i,1,y

0
i,2,a, 0) if ι > 1

−→ ỹi,1 := (y0
i,1,y

0
i,2,a, 〈zιi,a〉);

– ỹi,2 := (y0
i,2,a, 0) −→ ỹi,2 := (y0

i,2,a,−〈zιi,a〉+ 〈x
ι,0
i,2,y

0
i,2〉).

For all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0
i,1 and ỹ`,0

i,1 be x̃j
i,1 and ỹ`

i,1 defined in H1,ι−1,5, respectively. Let
x̃j,1
i,1 and ỹ`,1

i,1 be x̃j
i,1 and ỹ`

i,1 defined in H1,ι,1, respectively. Then, it is not hard to see that we have
〈x̃j,0

i,1 , ỹ
`,0
i,1 〉 = 〈x̃

j,1
i,1 , ỹ

`,1
i,1 〉. Hence, for all (j1, . . . , jn) ∈ [qCT]

n, ` ∈ [qSK], we have
∑

i∈[n]〈x̃
j,0
i,1 , ỹ

`,0
i,1 〉 =∑

i∈[n]〈x̃
j,1
i,1 , ỹ

`,1
i,1 〉 and can reduce the indistinguishability between x̃j

i,1 and ỹ`
i,1 in H1,ι−1,5 and those

in H1,ι,1 to the function-hiding property of miFE.
Similarly, for all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0

i,2 and ỹ`,0
i,2 be x̃j

i,2 and ỹ`
i,2 defined in H1,ι−1,5,

respectively. Let x̃j,1
i,2 and ỹ`,1

i,2 be x̃j
i,2 and ỹ`

i,2 defined in H1,ι,1, respectively. Then, we have 〈x̃j,0
i,2 , ỹ

`,0
i,2 〉 =

〈x̃j,1
i,2 , ỹ

`,1
i,2 〉. Thus, we can reduce the indistinguishability between x̃j

i,2 and ỹ`
i,2 in H1,ι−1,5 and those

in H1,ι,1 to the function-hiding property of iFE. Note that the function-hiding property of iFE in the
multi-instance setting is easily reduced to that in the single-instance setting via hybrid argument. This
concludes the proof. ut

Lemma 4.2. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B against n-fold
bilateral UqSK,k-MDDH such that |P(A,H1,ι,1)− P(A,H1,ι,2)| ≤ Adv

n-bi-UqSK,k -MDDH

B (λ).

Proof. We describe the reduction B.

1. B obtains an n-fold bilateral UqSK,k-MDDH instance (G, [A]1, [Kβ ]1, [A]2, [Kβ ]2), where A ∈ ZqSK×k
p ,

Z← Zk×n
p , K0 = AZ, K1 ← ZqSK×n

p .
2. When A outputs {i, ([xj,0

i,1 ]1, [x
j,0
i,2 ]2), ([x

j,1
i,1 ]1, [x

j,1
i,2 ]2)}i∈[n],j∈[qCT], B computes gPP, gMSK as in Fig 4

and gives gPP, {miCTj
i , iCT

j
i}i∈[n],j∈[qCT] to A, where miCTj

i ← miEnc(miMSK, i, [x̃j
i,1]1), iCTj

i ←
iEnc(iMSKi, [x̃

j
i,2]2) with x̃j

i,1, x̃
j
i,2 being set as in Eq. (4.1).
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3. For the `-th query to OSK on {([y`,0
i,1 ]2, [y

`,0
i,2 ]1), ([y

`,1
i,1 ]2, [y

`,1
i,2 ]1)}i∈[n], B replies gSK := (miSK,

{iSKi}i∈[n]) as follows:

ỹ`
i,1 := (y`,0

i,1 ,y
`,0
i,2 ,a

`, kβ,`,i), ỹ
`
i,2 := (y0

i,2,a
`,−kβ,`,i + 〈xι,0

i,2,y
`,0
i,2 〉)

ỹ` := (ỹ`
1,1, . . . , ỹ

`
n,1), miSK← miKeyGen(miMSK, [ỹ`]2)

iSKi ← iKeyGen(iMSKi, [ỹ
`
i,2]1)

where a` is the `-th row of A and kβ,`,i is the (`, i)-th entry of Kβ .
4. B outputs A’s output as it is.

It is not hard to see that A’s view corresponds to H1,ι,1 if β = 0 and H1,ι,2 otherwise. Note that n-fold
bilateral UqSK,k-MDDH reduced to bilateral Dk-MDDH with the security loss of n. ut

Lemma 4.3. For all PPT adversaries A and ι ∈ [qCT], we have P(A,H1,ι,2) = P(A,H1,ι,3).

Proof. We implicitly define ti,` := t′i,` + 〈x
ι,0
i,2,y

`,0
i,2 〉 where t′i,` ← Zp for all i ∈ [n], ` ∈ [qSK]. This

does not change the distribution of ti,`. Then, it is easy to see that OSK sets ỹ`
i,1 := (y`,0

i,1 ,y
`,0
i,2 ,a, t

′
i,` +

〈xι,0
i,2,y

`,0
i,2 〉), ỹ`

i,2 := (y`,0
i,2 ,a

`,−t′i,`) in H1,ι,2, which are identically distributed to ỹ`
i,1, ỹ

`
i,2 in H1,ι,3.

Thus, A’s views in both hybrids are identical. ut

Lemma 4.4. For all PPT adversaries A and ι ∈ [qCT], there exists a PPT adversary B such that
|P(A,H1,ι,3)− P(A,H1,ι,4)| ≤ nAdv

bi-UqSK,k -MDDH

B (λ).

We omit the proof since Lemma 4.4 can be proven similarly to Lemma 4.2.

Lemma 4.5. For all PPT adversaries A and ι ∈ [qCT], there exist PPT adversary B1,B2 such that
|P(A,H1,ι,4)− P(A,H1,ι,5)| ≤ AdvmiFE

B1,fh(λ) + nAdviFEB2,fh(λ).

We omit the proof since Lemma 4.5 can be proven similarly to Lemma 4.1.

Lemma 4.6. For all PPT adversaries A, there exist PPT adversary B1,B2 such that |P(A,H1,qSK,5)−
P(A,H2)| ≤ AdvmiFE

B1,fh(λ) + nAdviFEB2,fh(λ).

Proof. For all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0
i,1 and ỹ`,0

i,1 be x̃j
i,1 and ỹ`

i,1 defined in H1,qSK,5,
respectively. Let x̃j,1

i,1 and ỹ`,1
i,1 be x̃j

i,1 and ỹ`
i,1 defined in H2, respectively. Due to the admissibility of A

against gFE, its queries satisfy that
∑

i∈[n](〈x
j,0
i,1 ,y

`,0
i,1 〉+ 〈x

j,0
i,2 ,y

`,0
i,2 〉) =

∑
i∈[n](〈x

j,1
i,1 ,y

`,1
i,1 〉+ 〈x

j,1
i,2 ,y

`,1
i,2 〉)

for all (j1, . . . , jn) ∈ [qCT]
n, ` ∈ [qSK]. Thus, we have

∑
i∈[n]〈x̃

j,0
i,1 , ỹ

`,0
i,1 〉 =

∑
i∈[n]〈x̃

j,1
i,1 , ỹ

`,1
i,1 〉 and can

reduce the indistinguishability between x̃j
i,1 and ỹ`

i,1 in H1,qSK,5 and those in H2 to the function-hiding
property of miFE.

Similarly, for all i ∈ [n], j ∈ [qCT], ` ∈ [qSK], let x̃j,0
i,2 and ỹ`,0

i,2 be x̃j
i,2 and ỹ`

i,2 defined in H1,qSK,5,
respectively. Let x̃j,1

i,2 and ỹ`,1
i,2 be x̃j

i,2 and ỹ`
i,2 defined in H2, respectively. Then, we have 〈x̃j,0

i,2 , ỹ
`,0
i,2 〉 =

〈x̃j,1
i,2 , ỹ

`,1
i,2 〉. Thus, we can reduce the indistinguishability between x̃j

i,2 and ỹ`
i,2 in H1,qSK,5 and those in

H2 to the function-hiding property of iFE. This concludes the proof. ut

Lemma 4.7. For all A, there exist B1,B2,B3 such that |P(A,H2) − P(A,G1)| ≤ 2qCT(Adv
miFE
B1,fh(λ) +

nAdviFEB2,fh(λ) + nAdv
bi-UqSK,k -MDDH

B3
(λ)).

We omit the proof since Lemma 4.7 is proven similarly to Lemmata 4.1 to 4.5.

20



5 Warm-up: Two Input Quadratic MIFE

Since our general quadratic MIFE scheme (Sec. 6) is quite complex, we first present a simpler scheme
as a warm-up. This scheme is a MIFE scheme for FMQF

1,2,X,C from the SXDH assumption, that is m =
1, n = 2. For ease of exposition, we also restrict the number of ciphertext queries to 2 per slot. The
SXDH assumption is captured as the Dk assumption where Dk consists of all matrices with the form
of (a, 1)> ∈ Z2

p.
Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for FPIP

4,8,G (Def. 3.2), iFE = (iSetup,

iEnc, iKeyGen, iDec) be an FE scheme for FIP
2,G (Def. 3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec) be

an FE scheme for FMGIP
4,1,2,G (Def. 4.2). The warm-up scheme qFE = (qSetup, qEnc, qKeyGen, qDec) is

constructed from pFE, iFE, and gFE as follows. Since gFE cannot be instantiated from SXDH, the
warm-up scheme needs an additional assumption such as XDLIN (bilateral 2-Lin).

qSetup(1λ): It outputs qPP, qMSK as follows:

G← GBG(1
λ), w1,1, w1,2, w2,1, w2,2, u1, u2, v1, v2 ← Zp

pPP, pMSK←pSetup(1λ), iPP, iMSK←iSetup(1λ), gPP, gMSK←gSetup(1λ)

qPP := (G, pPP, iPP, gPP)

qMSK := ({wi,j}i,j∈[2], {ui, vi}i∈[2], pMSK, iMSK, gMSK).

qEnc(qMSK, i, xi): First, it samples vectors as follows:

s, s̃, r, t, L← Zp

l := ei/2 ⊗ (1, L) ∈ Z4
p, l̃ := ei/2 ⊗ (L,−1) ∈ Z4

p

b := (xi, 0, sw1,i, sw2,i, ui, t, 0, 0) ∈ Z8
p

b̃ := (xi, 0, s̃ei/2, r, vi, 0, 0) ∈ Z8
p

d := (s, 0) ∈ Z2
p, d̃ := (s̃, 0) ∈ Z2

p

f := (r, t, 0, 0) ∈ Z4
p, h := 0

Then, it outputs qCTi as follows:

pCTi ← pEnc(pMSK, (l, [b]1)), pSKi ← pKeyGen(pMSK, (̃l, [b̃]2))

iCTi ← iEnc(iMSK, [d]1), iSKi ← iKeyGen(iMSK, [d̃]2)

gCTi ← gEnc(gMSK, i, ([f ]1, [h]2))

qCTi := (pCTi, pSKi, iCTi, iSKi, gCTi)

qKeyGen(qMSK, c = {cµ,ν}µ,ν∈[2]): It outputs qSK as follows:

f̃i :=

∑
µ∈[2]

ci,µuµ,
∑
µ∈[2]

cµ,ivµ, 0, 0

 ∈ Z4
p

h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[2])

σi,θ := ci,θwi,θ

qSK := (c, gSK, {σi,θ}i,θ∈[2]).
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qDec(qCT1, qCT2, qSK): It computes

[z1]T :=
∏

µ,ν∈[2]

pDec(pCTν , pSKµ)
cµ,ν

[z2]T :=
∏

i,θ∈[2]

iDec(iCTθ, iSKi)
σi,θ

[z3]T := gDec(gCT1, gCT2, gSK)

[z]T := [z1 − z2 − z3]T .

Then, it searches for z within the range of z ≤ |4CX2|.

Correctness. Let si, s̃i, ri, ti, li, l̃i,bi, b̃i for i ∈ [2] be random elements used to generate qCTi.
Observe that 〈li, l̃I〉 = 0 for all i, I ∈ [2], and thus pDec(pCTi, pSKI) = 〈bi, b̃I〉. Due to the correctness
of pFE, iFE, gEF, we have

z1 =
∑

µ,ν∈[2]

cµ,ν(xµxν + sν s̃µwµ,ν + rµuν + tνvµ)

z2 =
∑

µ,ν∈[2]

cµ,νsν s̃µwµ,ν , z3 =
∑

µ,ν∈[2]

cµ,ν(rµuν + tνvµ).

Hence, we have z =
∑

µ,ν∈[2] cµ,νxµxν .

5.1 Multi-input IPFE Scheme for Security Analysis

Before going to the security analysis of our quadratic MIFE scheme, we introduce a message-hiding IP-
MIFE scheme, i.e. an MIFE scheme for FMIP

m,n,G, denoted by miFE = (miSetup,miEnc,miKeyGen,miDec)
that we use for the security proof. The scheme is obtained by applying the conversion of single to
multi-input IPFE by Abdalla et al. [ACF+18, Sec. 4.1], to the single-input IPFE scheme by Abdalla
et al. [ABDP15, Sec. 5]. The resulting scheme satisfies the message-hiding security under the DDH
assumption. Note that although Abdalla et al. considered the conversion in the adaptive setting, it is
not hard to see that the conversion works in the selective setting. The original scheme in [ABDP15]
uses a pairing-free group for the construction, but it is easy to see that their scheme can be similarly
built on pairing groups where the SXDH assumption holds. The scheme is described as follows.

miSetup(1λ): It outputs miPP,miMSK as follows:

G← GBG(1
λ), w1, . . . ,wn ← Zm

p , u1, . . . ,un ← Zm
p

miPP := (G, [w1]1, . . . , [wn]1), miMSK := (w1, . . . ,wn,u1, . . . ,un).

miEnc(miMSK, i,xi): It outputs miCTi as follows:

s← Zp, miCTi := [ci]1 = ([s]1, [swi + ui + xi]1).

miKeyGen(miMSK,y1, . . . ,yn): It outputs miSK as follows:

miSK0:=−
∑
i∈[n]

〈yi,ui〉, miSKi:=(−y>
i wi,yi), miSK:=(miSK0, {miSKi}i∈[n]).

miDec(miCT1, . . . ,miCTn,miSK): It computes d where [d]1 = [
∑

i∈[n]〈ci,miSKi〉+miSK0]1.
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Gβ

{i,xj,0
i ,xj,1

i }i∈[2],j∈[2] ← A(1λ)

qPP, qMSK← qSetup(1λ)

qCTj
i ← qEnc(qMSK, i,xj,β

i )

c← A(qPP, {qCTj
i}i∈[2],j∈[2])

qSK← qKeyGen(qMSK, c)

β′ ← A(qSK)

Fig 5: qFE warmup security game.

qCT1
1

b1
1 := (x1,β

1 , 0, s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃1
1 := (x1,β

1 , 0, s̃11, 0, r11, v1, 0, 0)

d1
1 := (s11, 0), d̃

1
1 := (s̃11, 0)

f11 := (r11, t
1
1, 0, 0), h

1
1 := 0

qCT1
2

b1
2 := (x1,β
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Fig 6: Vectors in Gβ .

5.2 Proof of Security

Theorem 5.1. If pFE is partially function-hiding, iFE and gFE are function-hiding, and GBG outputs
bilinear groups where the SXDH assumption holds, then qFE is message-hiding as long as qCT = 2 and
qSK = 1.

Proof. For ease of exposition, we prove security in the restricted game where an adversary makes two
ciphertext queries per slot and one secret key query. This simplification showcases the basic strategy
of the general proof, which is provided in Sec. 6. At a high-level view, our security proof is inspired by
that of the IP-MIFE schemes by Abdalla et al. [ACF+18] in which the first queried ciphertexts of each
slot are changed from bit 0 to bit 1 by the information-theoretic property of the one-time pad and the
rest of ciphertexts are changed by the security of an IPFE scheme. In our case, the IPFE scheme will
instead correspond to the IP-MIFE scheme in Sec. 5.1.

Intuitively, we want to prove G0 ≈c G1 where Gβ is the message-hiding security game (described in
Fig 5). In Gβ , the vectors in the ciphertexts and the secret key that the adversary obtains are defined
as Fig 6. We introduce a series of hybrid games, H1, . . . ,H15, and prove G0 ≈c H1 ≈c · · · ≈c H15 ≈c G1.
In each hybrid game, the vectors for generating the ciphertexts and the secret keys are changed from
G0, which is shown in Fig 7 to 21. We frame the parts that are changed from the previous game by a
box and sometimes denote the parts that are not changed by —.
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Fig 7: Vectors in H1.
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Fig 8: Vectors in H2.
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Fig 9: Vectors in H3.
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Fig 10: Vectors in H4.
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Fig 11: Vectors in H5.
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Fig 12: Vectors in H6.
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Fig 13: Vectors in H7.
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Fig 14: Vectors in H8.
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Fig 15: Vectors in H9.
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1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0 ), d̃ := (s̃11, 0)
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1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0 , 0)

b̃ := ( x1,0
2 , 0, 0, s̃12, r12, v2, 0, 0)

d := (s12, 0 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, 0 , 0)

b̃ := ( 0, x2,1
1 , s̃21 , 0, r21 , v1, 0 , 0)

d := (s21, 0 ), d̃ := ( s̃21 , 0 )

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, 0 , 0)

b̃ := ( x2,0
2 , 0, 0, s̃22, r22, v2, 0, 0)

d := (s22, 0 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 16: Vectors in H10.

Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,0
2 x1,0

1 + x1,1
2 x1,1

1 − x1,0
2 x1,0

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈11 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( 0 , x1,1

2 , 0, s̃12, r
1
2, v2, 0, 0)

d := (s12, s̈12 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0
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2 ), h := 0
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1 ), h := 0
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s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,0
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2 x1,1

2 − x1,0
2 x1,0
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d := (s22, s̈22 ), d̃ := ( 0 , 1 )

f := ( 0 , t22, x
1,1
1 x2,1

2 − x1,0
1 x2,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ

Fig 17: Vectors in H11.
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Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,1
2 x1,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈
1
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1, x
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h := 0

qCT1
2
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b := ( — , 0, 0)
b̃ := ( — , 0, 0)
d := (s12, s̈

1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,1
2 x2,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈
2
1), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x2,1

1 − x1,0
2 x2,0

1 )
h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,1
2 x2,1

2 , 0)

b̃ := ( — , 1, 0)

d := (s22, s̈
2
2), d̃ := (0, 1)

f := (0, t22, x
1,1
1 x2,1

2 − x1,0
1 x2,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ +c1,2(x
1,1
1 x1,1

2 − x1,0
1 x1,0

2 − (x1,1
1 x2,1

2 − x1,0
1 x2,0

2 ))

Fig 18: Vectors in H12.

Additional sampling for qMSK
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µ∈[2] c1,µuµ,
∑
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Fig 19: Vectors in H13.
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qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 20: Vectors in H14.
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qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, 0 , 0 )

h̃1 := 0

f̃2 := (
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µ∈[2] c2,µuµ,
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µ∈[2] cµ,2vµ, 0 , 0 )

h̃2 := 0

Fig 21: Vectors in H15.
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G0 ≈c H1. We can justify this indistinguishability by the (partially) function-hiding property of pFE
and gFE. For all i, j, I, J ∈ [2], we can see that 〈bj

i , b̃
J
I 〉 in G0 and that in H1 are equal unless i = I

and j 6= J . Recall that 〈lji , l̃JI 〉 6= 0 with overwhelming probability if i = I and j 6= J , since L is chosen
from the exponentially large space, Zp. Hence, the indistinguishability of {b, b̃} between G0 and H1 is
implied by the partially function-hiding property of pFE.

Similarly, for all i, j ∈ [2], 〈f ji , f̃i〉 in G0 and that in H1 are equal, which implies, for all j1, j2 ∈ [2],∑
i∈[2](〈f

ji
i , f̃i〉+hji

i h̃i) in G0 and that in H1 are equal. Thus, the indistinguishability of {f , f̃} between
G0 and H1 is implied by the function-hiding property of gFE.

H1 ≈c H2. We can justify this indistinguishability by the SXDH assumption, which implies (G, [t]1,

[v1t]1) ≈c (G, [t]1, [v̈]1) where G← GBG(1
λ), t = {tji}i,j∈[2], v̈ = {v̈ji }i,j∈[2] ← Z4

p, v1 ← Zp.

H2 = H3. These hybrid games are information-theoretically equivalent. This can be confirmed by

setting v̈ji :=

{
v̈′ji + x1,1

1 x1,1
i − x1,0

1 x1,0
i (i = 1)

v̈′ji + x1,1
1 xj,1

i − x1,0
1 xj,0

i (i = 2)
where v̈′ji ← Zp.

H3 ≈c H4. We can justify this indistinguishability by the SXDH assumption, and the indistinguisha-
bility can be shown similarly to that between H1 and H2.

H4 ≈c H5. We can justify this indistinguishability by the (partially) function-hiding property of pFE
and gFE, similarly to the case of G0 ≈c H1.

H5 ≈c H6. We can justify this indistinguishability by the (partially) function-hiding property of pFE,
iFE, and gFE, similarly to the case of G0 ≈c H1. Note that here we also need to consider iFE since
{d, d̃} is also changed, but it is easy to see that, for all i, j, I, J ∈ [2], 〈dj

i , d̃
J
I 〉 in H5 and that in H6

are equal.

H6 ≈c H7. We can justify this indistinguishability by the SXDH assumption, which implies (G, [s]1,

[s̃21s]1) ≈c (G, [s]1, [s̈]1) and (G, [u]1, [r
2
1u]1) ≈c (G, [u]1, [ü]1) where G ← GBG(1

λ), s = {sji}i,j∈[2], s̈ =

{s̈ji}i,j∈[2] ← Z4
p, s̃

2
1 ← Zp,u = {ui}i∈[2], ü = {üi}i∈[2] ← Z2

p, r
2
1 ← Zp.

H7 ≈c H8. We can justify this indistinguishability by the message-hiding property of miFE. First, we
prove that, for all j ∈ [2], we have

c1,1(x
2,0
1 x2,0

1 − x1,0
1 x1,0

1 ) + c1,2(x
2,0
1 xj,0

2 − x1,0
1 xj,0

2 )

=c1,1(x
2,1
1 x2,1

1 − x1,1
1 x1,1

1 ) + c1,2(x
2,1
1 xj,1

2 − x1,1
1 xj,1

2 ).
(5.1)

Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy∑
i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑
i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.2)

∑
i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑
i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.3)

where f(i) =

{
2 (i = 1)

j (i = 2)
, g(i) =

{
1 (i = 1)

j (i = 2)
. Note that Eq. (5.2) represents the restriction

f(x2,0
1 , xj,0

2 ) = f(x2,1
1 , xj,1

2 ), and Eq.(5.3) represents the restriction f(x1,0
1 , xj,0

2 ) = f(x1,1
1 , xj,1

2 ). Eq.(5.2)
− Eq. (5.3) implies Eq. (5.1) by reflecting the fact that c2,1 = 0, which is defined in Def. 2.4.

Thanks to the message-hiding property of 2-slot miFE and Eq. (5.1), we have

{miPP,miCT1,0
1 ,miCT1,0

2 ,miCT2,0
2 ,miSK} ≈c {miPP,miCT1,1

1 ,miCT1,1
2 ,miCT2,1

2 ,miSK}
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where

miPP = (G, [w1,1]1, [w1,2]1)

miCT1,β
1 = ([s̈21]1, [s̈

2
1w1,1 + ü1 + x2,β

1 x2,β
1 − x1,β

1 x1,β
1 ]1)

miCTj,β
2 = ([s̈j2]1, [s̈

j
2w1,2 + ü2 + x2,β

1 xj,β
2 − x1,β

1 xj,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑
µ∈[2]

c1,µüµ,−c1,1w1,1,−c1,2w1,2, c1,1, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT2
1, qCT

1
2, qCT

2
2 is simulatable from miCT1,β

1 ,miCT1,β
2 ,miCT2,β

2 , respec-
tively, and [h̃1]1 in qSK is simulatable from miSK, and the case of β = 0 corresponds to H7 and β = 1
corresponds to H8.

H8 ≈c H9. We can justify this indistinguishability by the SXDH assumption similarly to the case of
H6 ≈c H7.

H9 ≈c H10. We can justify this indistinguishability by the (partially) function-hiding property of pFE,
iFE, and gFE, similarly to the case of G5 ≈c H6. At this point, all ciphertexts for slot 1 are changed
from encryption of 0-side to that of 1-side.

H10 ≈c H11. As stated above, G0 to H10 are hybrid games for processing the ciphertexts for slot 1.
Next, we apply a similar procedure to slot 2. H11 in the process for slot 2 corresponds to H7 in the
process for slot 1. That is, H10 ≈c H11 can be proven similarly to G0 ≈c H7.

H11 ≈c H12. This indistinguishability can be prove similarly to the case of H7 ≈c H8, but we need an
additional tweak in this case. First, we prove that, for all j ∈ [2], we have

c2,1(x
2,0
2 xj,0

1 − x1,0
2 xj,0

1 ) + c2,2(x
2,0
2 x2,0

2 − x1,0
2 x1,0

2 ) + c1,2(x
1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

=c2,1(x
2,1
2 xj,1

1 − x1,1
2 xj,1

1 ) + c2,2(x
2,1
2 x2,1

2 − x1,1
2 x1,1

2 ) + c1,2(x
1,1
1 x2,1

2 − x1,1
1 x1,1

2 ).
(5.4)

Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy

∑
i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑
i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.5)

∑
i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑
i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.6)

where f(i) =

{
1 (i = 1)

2 (i = 2)
, g(i) =

{
1 (i = 1)

1 (i = 2)
. Note that Eq. (5.5) represents the restriction

f(x1,0
1 , x2,0

2 ) = f(x1,1
1 , x2,1

2 ), and Eq.(5.6) represents the restriction f(x1,0
1 , x1,0

2 ) = f(x1,1
1 , x1,1

2 ). Eq.(5.5)
− Eq. (5.6) implies Eq. (5.4) by reflecting the fact that c2,1 = 0, which is defined in Def. 2.4.

Thanks to the message-hiding property of 3-slot miFE and Eq. (5.4), we have

{miPP,miCT1,0
1 ,miCT2,0

1 ,miCT1,0
2 ,miCT1,0

3 ,miSK}
≈c{miPP,miCT1,1

1 ,miCT2,1
1 ,miCT1,1

2 ,miCT1,1
3 ,miSK}
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where

miPP = (G, [w2,1]1, [w2,2]1, [w2,3]1)

miCTj,β
1 = ([s̈j1]1, [s̈

j
1w2,1 + ü1 + x2,β

2 xj,β
1 − x1,β

2 xj,β
1 ]1)

miCT1,β
2 = ([s̈22]1, [s̈

2
2w2,2 + ü2 + x2,β

2 x2,β
2 − x1,β

2 x1,β
2 ]1)

miCT1,β
3 = ([s̈13]1, [s̈

1
3w2,3 + ü3 + x1,β

1 x2,β
2 − x1,β

1 x1,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑
µ∈[2]

c2,µüµ + c1,2ü3,−c2,1w2,1,−c2,2w2,2,−c1,2w2,3, c2,1, c2,2, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT1
1, qCT

2
1, qCT

2
2 is simulatable from miCT1,β

1 ,miCT2,β
1 ,miCT1,β

2 , respec-
tively, and [h̃2]1 in qSK is simulatable from miSK and miCT1,β

3 . More precisely,

h̃2 = K1 − C1K4 − c1,2(C2 + x1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

where miCT1,β
3 = ([C1]1, [C2]1) and miSK = (K1, . . . ,K7). The case of β = 0 corresponds to H11 and

β = 1 corresponds to H12.

H12 ≈c H13. We can justify this indistinguishability by the function-hiding property of gFE. For all
i, j ∈ [2], 〈f ji , f̃i〉 + hj

i h̃i in H12 and that in H13 are equal (recall that c2,1 = 0), which implies, for all
j1, j2 ∈ [2],

∑
i∈[2](〈f

ji
i , f̃i〉+ hji

i h̃i) in H12 and that in H13 are equal. Thus, the indistinguishability of
{f , f̃ , h, h̃} between H12 and H13 is implied by the function-hiding property of gFE.

H13 ≈c H14. This indistinguishability can be proven similarly to H8 ≈c H10.

H14 ≈c H15. Due to the game condition defined in Def. 2.3, the queries by the adversary satisfy∑
i,θ∈[2] ci,θ(x

1,1
i x1,1

θ − x1,0
i x1,0

θ ) = 0, which implies, for all j1, j2 ∈ [2],
∑

i∈[2](〈f
ji
i , f̃i〉 + hji

i h̃i) in H14

and that in H15 are equal. Thus, the indistinguishability of {f , f̃} between H14 and H15 is implied by
the function-hiding property of gFE.

H15 ≈c G1. It is easy to see that this indistinguishability is implied by the partially function-hiding
property of pFE, since, for all i, j, I, J ∈ [2], 〈bj

i , b̃
J
I 〉 in H15 and that in G1 are equal.

6 Quadratic Multi-Input Functional Encryption

We present our quadratic MIFE scheme for FMQF
m,n,X,C . We define the following functions that relate

indices in [n]× [m] with those in [mn]:

– location function, lo : [n]× [m]→ [mn], defined as lo(x, y) = (x− 1)m+ y;
– location set function, ls : [n]→ 2[mn], defined as ls(x) = {lo(x, 1), . . . , lo(x,m)};
– slot function, sl : [mn]→ [n], defined as sl(x) = dx/me;
– entry function, en : [mn]→ [m], defined as en(x) = x−m(sl(x)− 1).

Note that we have lo(sl(x), en(x)) = x for all x ∈ [mn]. Let Dk be a matrix distribution. Let pFE =
(pSetup, pEnc, pKeyGen, pDec) be an FE scheme for FPIP

2n,2+(mn+2)k+(2+k)m,G (Def. 3.2), iFE = (iSetup,

iEnc, iKeyGen, iDec) be an FE scheme for FIP
k+1,G (Def.3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec) be

an FE scheme for FMGIP
2k+m2n,1,n,G (Def. 4.2). We construct our quadratic MIFE scheme qFE = (qSetup,

qEnc, qKeyGen, qDec) from pFE, iFE, and gFE as follows.
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qSetup(1λ): It outputs qPP, qMSK as follows:

G← GBG(1
λ)

A1, . . . ,An ← Dk, {wi,j}i,j∈[mn] ← Zk+1
p , Ũ1, . . . , Ũmn ← Zk×k

p

u1, . . . ,umn ← Zk
p, V1, . . . ,Vmn ← Zk×k

p , ṽ1, . . . , ṽmn ← Zk
p

pPP, pMSK← pSetup(1λ), iPP, iMSK← iSetup(1λ), gPP, gMSK← gSetup(1λ)

qPP := (G, pPP, iPP, gPP)

qMSK := (A1, . . . ,An, {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi}i∈[mn], pMSK, iMSK, gMSK).

qEnc(qMSK, i,xi): Let w>
lo(i,κ) := (w1,lo(i,κ), . . . ,wmn,lo(i,κ)). First, it samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xi,κ, 0) ∈ Z2
p, bκ,2 := (w>

lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k
p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p, bκ,4 = bκ,5 := 0 ∈ Zm

p , bκ,6 := 0 ∈ Zkm
p

bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 := (xi,κ, 0) ∈ Z2
p, b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k

p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p

b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τS, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p

f1 := (r, t) ∈ Z2k
p , f2,1 = · · · = f2,n := 0 ∈ Zm2

p , f := (f1, f2,1, . . . , f2,n), h := 0

where xi,κ is the κ-th entry of xi and a>i,τ is the τ -th row of Ai. Then, it outputs qCTi as follows:

pCTlo(i,κ) ← pEnc(pMSK, (l, [bκ]1)), pSKlo(i,κ) ← pKeyGen(pMSK, (̃l, [b̃κ]2))

iCTi,τ ← iEnc(iMSK, [dτ ]1), iSKi ← iKeyGen(iMSK, [d̃]2)

gCTi ← gEnc(gMSK, i, ([f ]1, [h]2))

qCTi := ({pCTlo(i,κ), pSKlo(i,κ)}κ∈[m], {iCTi,τ}τ∈[k+1], iSKi, gCTi).

(6.1)

qKeyGen(qMSK, c): It outputs qSK as follows:

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ

 ∈ Z2k
p

f̃i,2,1 = · · · = f̃i,2,n := 0 ∈ Zm2

p , f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν ∈ Zk+1
p

qSK := (c, gSK, {σi,θ}i,θ∈[n]).
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qDec(qCT1, . . . , qCTn, qSK): It computes

[z1]T :=
∏

µ,ν∈[mn]

pDec(pCTν , pSKµ)
cµ,ν

[z2,i,θ]T := (iDec(iCTθ,1, iSKi), . . . , iDec(iCTθ,k+1, iSKi))

[z3]T := gDec(gCT1, . . . , gCTn, gSK)

[z]T := [z1 −
∑

i,θ∈[n]

〈z2,i,θ,σi,θ〉 − z3]T .

Then, it searches for z within the range of z ≤ |m2n2CX2|.

Correctness. Let xlo(i,κ) = xi,κ and Si, s̃i, ri, ti, li, l̃i,bi, b̃i be random elements used to generate
qCTi. Observe that 〈li, l̃I〉 = 0 for all i, I ∈ [n], and thus pDec(pCTi, pSKI) = 〈bi, b̃I〉. From the
correctness of pFE, iFE, gEF, we have

z1 =
∑

µ,ν∈[mn]

cµ,ν(xµxν +w>
µ,νAsl(ν)Ssl(ν)s̃sl(µ) + r>sl(µ)Ũµuν + t>sl(ν)Vν ṽµ)

∑
i,θ∈[n]

〈z2,i,θ,σi,θ〉 =
∑

i,θ∈[n]

∑
µ∈ls(i)
ν∈ls(θ)

cµ,νw
>
µ,νAθSθ s̃i =

∑
µ,ν∈[mn]

cµ,νw
>
µ,νAsl(ν)Ssl(ν)s̃sl(µ)

z3 =
∑
i∈[n]

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νr
>
i Ũµuν +

∑
µ∈[mn]
ν∈ls(i)

cµ,νt
>
i Vν ṽµ


=

∑
µ,ν∈[mn]

cµ,ν(r
>
sl(µ)Ũµuν + t>sl(ν)Vν ṽµ).

Hence, we have z =
∑

µ,ν∈[mn] cµ,νxµxν .

6.1 Multi-input IPFE Scheme for Security Analysis

Before going to security analysis of our quadratic MIFE scheme, we recall the multi-input IPFE
scheme (the MIFE scheme for FMIP

m,n,G, denoted by miFE = (miSetup,miEnc,miKeyGen,miDec)) by
Abdalla et al. [ACF+18, Sec.4.1] that satisfies the (adaptive) message-hiding security under the MDDH
assumption. Although the original scheme uses a pairing-free group for the construction, it is easy to
see that their scheme can be similarly built on pairing groups where the MDDH assumption holds. We
use the scheme built on the pairing groups in the security proof of our quadratic MIFE scheme. We
denote the advantage of A against miFE by AdvmiFE

A,mh(λ). The scheme is described as follows.

miSetup(1λ): It outputs miPP,miMSK as follows:

G← GBG(1
λ), A1, . . . ,An ← Dk, W1, . . . ,Wn ← Zm×(k+1)

p , u1, . . . ,un ← Zm
p

miPP := (G, [A1]1, . . . , [An]1, [W1A1]1, . . . , [WnAn]1), miMSK := (W1, . . . ,Wn,u1, . . . ,un).

miEnc(miMSK, i,xi): It outputs miCTi as follows:

s← Zk
p, miCTi := [ci]1 = ([Ais]1, [WiAis+ ui + xi]1).

miKeyGen(miMSK,y1, . . . ,yn): It outputs miSK as follows:

miSK0 := −
∑
i∈[n]

〈yi,ui〉, miSKi := (−y>
i Wi,yi), miSK := (miSK0, {miSKi}i∈[n]).

miDec(miCT1, . . . ,miCTn,miSK): It computes d where [d]1 = [
∑

i∈[n]〈ci,miSKi〉+miSK0]1.
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Gβ

{i,xj,0
i ,xj,1

i }i∈[n],j∈[qCT] ← A(1λ)

qPP, qMSK← qSetup(1λ)

qCTj
i ← qEnc(qMSK, i,xj,β

i )

β′ ← AqKeyGen(qMSK,·)(qPP, {qCTj
i}i∈[n],j∈[qCT])

Hη
ι

{i,xj,0
i ,xj,1

i }i∈[n],j∈[qCT] ← A(1λ)

qPP, qMSK← qSetup(1λ)

qCTj
i ← q̃Encηι (qMSK, i, j, {xν,0

µ ,xν,1
µ }µ∈[n],ν∈[qCT])

β′ ← A
˜qKeyGen(qMSK,·)(qPP, {qCTj

i}i∈[n],j∈[qCT])

Fig 22: Security games for qFE.

6.2 Security Analysis of Our Full Quadratic MIFE Scheme

For security, we have the following theorem.

Theorem 6.1. If pFE is partially function-hiding, iFE and gFE are function-hiding, and GBG outputs
bilinear groups where the Dk-MDDH assumption holds with overwhelming probability, then qFE is
message-hiding.

Proof. We prove Theorem 6.1 via a series of hybrid games Hη
ι for ι ∈ [n], η ∈ [qCT]. We show that

G0 ≈c H1
1 ≈c · · · ≈c HqCT

1 ≈c H1
2 ≈c · · · ≈c HqCT

n ≈c G1, where Gβ for β ∈ {0, 1} is the original
security game. Each (hybrid) game is defined as described in Fig 22, where q̃Encηι , and ˜qKeyGen work
as follows. In what follows, we use a bijective query location function ql : [n]× [qCT]→ [nqCT], defined
as ql(x, y) := (x− 1)qCT + y.

q̃Encηι (qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xj,0
i,κ, xj,1

i,κ ) ∈ Z2
p, bκ,2 := (w>

lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k
p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p

bκ,4 :=


x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι
∈ Zm

p

bκ,5 := 0 ∈ Zm
p , bκ,6 := 0 ∈ Zkm

p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 :=

 (0, xj,1
i,κ) if ql(i, j) ≤ ql(ι, η)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, η)

∈ Z2
p,

b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k
p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 :=


0 if i = ι ∧ j ≤ η

eκ/m if i = ι ∧ j > η

0 if i 6= ι

∈ Zm
p

b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p , b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τS, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p
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f1 := (r, t) ∈ Z2k
p

f2,θ :=


0 if θ > ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if θ = i ∨ ql(i, j) ≤ ql(ι, η)

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else

∈ Zm2

p

f := (f1, f2,1, . . . , f2,n), h := 0.

Then, it computes qCTj
i in the same way as qEnc in ??.

˜qKeyGen(qMSK, c): Let cls(θ),lo(i,κ) := (clo(θ,1),lo(i,κ), . . . , clo(θ,m),lo(i,κ)) and cls(θ),ls(i) := (cls(θ),lo(i,1), . . . ,
cls(θ),lo(i,m)). It outputs qSK as follows:

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ

 ∈ Z2k
p

f̃i,2,θ := cls(θ),ls(i) ∈ Zm2

p

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν ∈ Zk+1
p

qSK := (c, gSK, {σi,θ}i,θ∈[n]).

Note that the framed parts are changed from qSetup, qEnc, or qKeyGen. Next, we prove the indistin-
guishability of each pair of hybrid games. Let P(A,G) be the probability that A outputs 1 in a security
game G with the security parameter being λ, i.e., P(A,Gβ) = PqFE,β

A,mh (λ).

Lemma 6.1. Let HqCT
0 = G0. For all PPT adversaries A and ι ∈ [n], there exist PPT adversaries

B1,B2,B3 such that

|P(A,HqCT
ι−1)− P(A,H1

ι )| ≤2Adv
pFE
B1,pfh

(λ) + 2AdvgFEB2,fh
(λ)

+ 2(m+m2n)AdvDk -MDDH
B3

(λ) + 2−Ω(λ).

Lemma 6.2. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exists a PPT adversary
B1, . . . ,B5 such that

|P(A,Hη−1
ι )− P(A,Hη

ι )| ≤2Adv
pFE
B1,pfh

(λ) + 2AdviFEB2,fh(λ) + 2AdvgFEB3,fh
(λ)

+ AdvmiFE
B4,mh(λ) + 2(mk + 2)AdvDk -MDDH

B5
(λ) + 2−Ω(λ)

Lemma 6.3. For all PPT adversaries A, there exists a PPT adversary B1,B2 such that

|P(A,HqCT
n )− P(A,G1)| ≤ AdvpFEB1,pfh

(λ) + AdvgFEB2,fh
(λ).

Thanks to Lemmata 6.1 to 6.3, Theorem 6.1 holds. We present the proofs of these lemmata in Sec.6.3.
ut

6.3 Proofs of Lemmata 6.1 to 6.3

Proof of Lemma 6.1. We introduce more hybrid games Ĥι,1, . . . , Ĥι,5 to prove Lemma 6.1. We prove
that HqCT

ι−1 ≈c Ĥι,1 ≈c · · · ≈c Ĥι,5 ≈c H1
ι . Ĥι,ζ for ζ ∈ {1, . . . , 5} is defined the same as HqCT

ι−1 except
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that qSetup, ˜qEncqCTι−1, and ˜qKeyGen are replaced by q̂Setup, q̂Encι,ζ , and ̂qKeyGen, respectively. For

reference, we first describe ˜qEncqCTι−1 and q̃Enc1ι .

˜qEncqCTι−1(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xj,0
i,κ, x

j,1
i,κ) ∈ Z2

p, bκ,2 := (w>
lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k

p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p

bκ,4 :=

{
x1,1
i,κx

1,1>

ι−1 − x1,0
i,κx

1,0>

ι−1 if i = ι− 1

xj,1
i,κx

1,1>

ι−1 − xj,0
i,κx

1,0>

ι−1 if i 6= ι− 1
∈ Zm

p

bκ,5 := 0 ∈ Zm
p , bκ,6 := 0 ∈ Zkm

p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 :=

{
(0, xj,1

i,κ) if ql(i, j) ≤ ql(ι− 1, qCT)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι− 1, qCT)

∈ Z2
p,

b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k
p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p

b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τ Ŝ, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p

f1 := (r, t) ∈ Z2k
p

f2,θ :=


0 if θ > ι− 1

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if i ≤ ι

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else
∈ Zm2

p

f := (f1, f2,1, . . . , f2,n), h := 0.

Then, it computes qCTj
i in the same way as qEnc in ??.

q̃Enc1ι (qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as ˜qEncqCTι−1 except the way of defining the
following vectors:

bκ,4 :=


x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι

b̃κ,1 :=


(0, xj,1

i,κ) if ql(i, j) ≤ ql(ι− 1, qCT)

(0, xj,1
i,κ) if ql(i, j) = ql(ι, 1)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, 1)

b̃κ,4 :=


0 if i = ι ∧ j = 1

eκ/m if i = ι ∧ j > 1

0 if i 6= ι
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f2,θ :=



0 if θ > ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if θ = ι ∧ i ≤ ι

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else if θ = ι ∧ i > ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if i ≤ ι

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else

.

Note that the framed parts are changed from ˜qEncqCTι−1. Next, we describe q̂Setup, q̂Encι,ζ , and ̂qKeyGen.

q̂Setup(1λ): It works the same as qSetup except that qMSK contains additional elements as follows:

V̂1, . . . , V̂mn ← Zk×m
p

qMSK :=

A1, . . . ,An, {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi, V̂i }i∈[mn]

pMSK, iMSK, gMSK

 .

q̂Encι,1(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let Ṽls(ι) = (ṽlo(ι,1)|| · · · ||ṽlo(ι,m)). It is the same as ˜qEncqCTι−1

except the way of defining the following vectors:

bκ,4 := t>Vlo(i,κ)Ṽls(ι) , bκ,5 := bκ,4 + xj,0
i,κx

1,0>

ι

b̃κ,1 :=


(0, xj,1

i,κ) if ql(i, j) ≤ ql(ι− 1, qCT)

(0, 0) if ql(i, j) = ql(ι, 1)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, 1)

b̃κ,3 :=

{
0 if i = ι

ṽ>
lo(i,κ) if i 6= ι

b̃κ,4 :=


0 if i = ι ∨ j = 1

eκ/m if i = ι ∧ j > 1

0 if i 6= ι

b̃κ,5 :=

{
eκ/m if ql(i, j) = ql(ι, 1)

0 if ql(i, j) 6= ql(ι, 1)

f2,θ :=


0 if θ > ι

(b1,4, . . . ,bm,4) else if θ = ι

(x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> else if θ = i ∨ ql(i, j) ≤ ql(ι− 1, qCT)

(xj,1
i ⊗ x1,1

θ − xj,0
i ⊗ x1,0

θ )> else

q̂Encι,2(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,1 except the way of defining the
following vectors:

bκ,4 := t>V̂lo(i,κ) .

q̂Encι,3(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,2 except the way of defining the
following vectors:

v̈κ ← Zm
p , bκ,4 := v̈>

κ .
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q̂Encι,4(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,3 except the way of defining the
following vectors:

v̈κ ← Zm
p , bκ,4 :=


v̈>
κ +x1,1

i,κx
1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

v̈>
κ +xj,1

i,κx
1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι
.

q̂Encι,5(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encι,4 except the way of defining the
following vectors:

bκ,4 :=


t>Vlo(i,κ)Ṽls(ι) + x1,1

i,κx
1,1>

ι − x1,0
i,κx

1,0>

ι if i = ι

t>Vlo(i,κ)Ṽls(ι) + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι if i 6= ι
.

̂qKeyGen(qMSK, c): It outputs qSK as follows:

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]\ls(ι)
ν∈ls(i)

cµ,νVν ṽµ


f̃i,2,θ := cls(θ),ls(i)

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν

qSK := (c, gSK, {σi,θ}i,θ∈[n]).

Thanks to Lemma 6.4 to Lemma 6.8, Lemma 6.1 holds. ut

Lemma 6.4. For all PPT adversaries A and ι ∈ [n], there exist PPT adversaries B1,B2 such that
|P(A,HqCT

ι−1)− P(A, Ĥι,1)| ≤ AdvpFEB1,pfh
(λ) + AdvgFEB2,fh

(λ) + 2−Ω(λ).

Proof. Since L is uniformly chosen from the exponentially large space in encryption algorithms, i.e.,
Zp, collisions do not occur in {Lj

i}i∈[n],j∈[qCT] with overwhelming probability. Therefore, 〈lji , l̃JI 〉 = 0 if
i 6= I or j = J , and 〈lji , l̃JI 〉 6= 0 otherwise.

For all (i, j, κ), (I, J,K) ∈ [n] × [qCT] × [m], observe that 〈bj
i,κ, b̃

J
I,K〉 in HqCT

ι−1 are equal to that in
Ĥι,1 if i 6= I or j = J . Thus, due to the partially function-hiding property of pFE, this implies that
{pCTj

i,lo(i,κ), pSK
j
i,lo(i,κ)} generated in HqCT

ι−1 and those generated in Ĥι,1 are computationally indistin-
guishable.

Similarly, we can confirm that for all (i, j, `) ∈ [n]× [qCT]× [qSK], we have 〈f ji , f̃ `i 〉+ 〈h
j
i , ĥ

`
i〉 in HqCT

ι−1

are equal to that in Ĥι,1. Thus, thanks to the function-hiding property of gFE, {gCTj
i , gSK

`} generated
in HqCT

ι−1 and those generated in Ĥι,1 are computationally indistinguishable. Hence, A’s views in HqCT
ι−1

and Ĥι,1 are computationally indistinguishable. ut

Lemma 6.5. For all PPT adversaries A and ι ∈ [n], there exists a PPT adversary B against m-fold
Umnk,k-MDDH such that |P(A, Ĥι,1)− P(A, Ĥι,2)| ≤ Adv

m-Umnk,k -MDDH
B (λ).

Proof. B works as follows.
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1. B takes an instance of the m-fold Umnk,k-MDDH, (G, [M]1, [Kβ ]1). Recall that they are distributed
as M← Zmnk×k

p , K0 = MZ ∈ Zmnk×m
p where Z← Zk×m

p , and K1 ← Zmnk×m
p .

2. B computes qPP, qMSK in the same way as q̂Setup except that B (implicitly) defines that Vi :=

Mi, V̂i := K1,i for i ∈ [mn] and Ṽls(ι) := Z for i ∈ [m], where Mi and Kβ,i are the matrices
consisting of the (i− 1)k + 1 to ik-th rows of M and Kβ , respectively.

3. B computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encι,1 except that B defines that

bj
i,κ,4 := tj

>

i Kβ,lo(i,κ) and gives qPP, {qCTj
i} to A.

4. B simulates ̂qKeyGen using qMSK, which is possible without [Ṽls(ι)]2.
5. B outputs A’s output as it is.

Observe that bj
i,κ,4 = tj

>

i Vlo(i,κ)Ṽls(ι) if β = 0 and bj
i,κ,4 = tj

>

i V̂lo(i,κ) if β = 1. This concludes the
proof. Note that m-fold Umnk,k-MDDH is reduced to Dk-MDDH with the security loss of m. ut

Lemma 6.6. For all PPT adversaries A and ι ∈ [n], there exists a PPT adversary B against m2n-fold
UnqCT,k-MDDH such that |P(A, Ĥι,2)− P(A, Ĥι,3)| ≤ Adv

m2n-UnqCT,k -MDDH

B (λ).

Proof. B works as follows.

1. B takes an instance of the m2n-fold UnqCT,k-MDDH, (G, [M]1, [Kβ ]1). Recall that they are dis-
tributed as M← ZnqCT×k

p , K0 = MZ ∈ ZnqCT×m2n
p where Z← Zk×m2n

p , and K1 ← ZnqCT×m2n
p .

2. B computes qPP, qMSK ← q̂Setup except that B implicitly defines that V̂i := Zi for i ∈ [mn]
where Zi is the matrix consisting of the (i− 1)m+ 1 to im-th columns of Z.

3. B computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encι,2 except that B defines that

bj
i,κ,4 := kβ,ql(i,j),lo(i,κ), tji := m>

ql(i,j), and v̈j
i,κ := k>

1,ql(i,j),lo(i,κ) where kβ,µ,ν ∈ Z1×m
p is the

(µ, ν)-th block of Kβ by dividing Kβ into nqCT ×mn blocks, and mµ is the µ-th row of M. Then,
B gives qPP, {qCTj

i} to A.
4. B simulates ̂qKeyGen using qMSK.
5. B outputs A’s output as it is.

Observe that bj
i,κ,4 = tj

>

i V̂lo(i,κ) if β = 0 and bj
i,κ,4 = v̈j>

i,κ if β = 1. This concludes the proof. Note
that m2n-fold UnqCT,k-MDDH is reduced to Dk-MDDH with the security loss of m2n. ut

Lemma 6.7. For all PPT adversaries A. we have P(A, Ĥι,3) = P(A, Ĥι,4).

Proof. By implicitly defining that

v̈j
i,κ :=

{
v̈′j
i,κ + x1,1

i,κx
1,1
ι − x1,0

i,κx
1,0
ι if i = ι

v̈′j
i,κ + xj,1

i,κx
1,1
ι − xj,0

i,κx
1,0
ι if i 6= ι

where v̈′j
i,κ ← Zm

p , we can see that A’s views in both hybrids are identical. This is since v̈j
i,κ ← Zm

p

and v̈′j
i,κ ← Zm

p are identically distributed. ut

Lemma 6.8. For all PPT adversaries A and ι ∈ [n], there exist PPT adversaries B1,B2,B3 such
that |P(A, Ĥι,4)− P(A, Ĥι,5)| ≤ AdvpFEB1,pfh

(λ) + AdvgFEB2,fh
(λ) + (m+m2n)AdvDk -MDDH

B3
(λ) + 2−Ω(λ).

Lemma 6.8 can be proven similarly to Lemmata 6.4 to 6.6. Note that here we use the fact that
cls(ι),ls(i) = 0 if i < ι as defined in Def. 2.4, which implies

〈cls(ι),ls(i),x1,1
i ⊗ x1,1

ι − x1,0
i ⊗ x1,0

ι 〉 = 〈cls(ι),ls(i),x
j,1
i ⊗ x1,1

ι − xj,0
i ⊗ x1,0

ι 〉

for all (i, j) ∈ [n]× [qCT] if i < ι.
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Proof of Lemma 6.2. We introduce more hybrid games Ĥη
ι,1, . . . , Ĥ

η
ι,5 to prove Lemma 6.2. We prove

that Hη−1
ι ≈c Ĥ

η
ι,1 ≈c · · · ≈c Ĥ

η
ι,5 ≈c H

η
ι . Ĥη

ι,ζ for ζ ∈ {1, . . . , 5} is defined the same as Hη−1
ι except that

qSetup, ˜qEncη−1
ι , and ˜qKeyGen are replaced by q̂Setup, q̂Encηι,ζ , and ̂qKeyGenηι,ζ , respectively. They are

defined as follows.

q̂Setup(1λ): It works the same as qSetup except that qMSK contains additional elements as follows:

{ûi,j}i∈[mn],j∈[m] ← Zk
p, {üi}i∈[mn] ← Zm

p , rηι , s̃
η
ι ← Zk

p

qMSK :=

A1, . . . ,An, {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi, {ûi,j}j∈[m], üi }i∈[mn]

rηι , ŝ
η
ι , pMSK, iMSK, gMSK

 .

q̂Encηι,1(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let w>
ls(ι),lo(i,κ) := (wlo(ι,1),lo(i,κ), . . . ,wlo(ι,m),lo(i,κ)) and Ũls(ι) :=

(Ũlo(ι,1)|| · · · ||Ũlo(ι,m)). It is the same as ˜qEncη−1
ι except the way of defining the following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗AiSŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗AiSŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι

if i 6= ι

bκ,6 := u>
lo(i,κ)Ũls(ι)

b̃κ,1 :=


(0, xj,1

i,κ) if ql(i, j) < ql(ι, η)

(0, 0) if ql(i, j) = ql(ι, η)

(xj,0
i,κ, 0) if ql(i, j) > ql(ι, η)

b̃κ,2 :=


0 if i = ι ∧ j = η

(elo(i,κ)/mn ⊗ s̃, 0 ) if i = ι ∧ j 6= η

(elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) if i 6= ι

b̃κ,4 :=


0 if i = ι ∧ j ≤ η − 1

0 if i = ι ∧ j = η

eκ/m if i = ι ∧ j > η

0 if i 6= ι

b̃κ,5 :=

{
eκ/m if ql(i, j) = ql(ι, 1)

0 if ql(i, j) 6= ql(ι, 1)

b̃κ,6 :=


0 if i = ι ∧ j = η

eκ/m ⊗ r> if i = ι ∧ j 6= η

0 if i 6= ι

dτ := (a>i,τS, a>i,τSs̃
η
ι ), d̃ :=

{
(0, 1) if ql(i, j) = ql(ι, η)

(s̃, 0) if ql(i, j) 6= ql(ι, η)

f1 :=

{
(0, t) if ql(i, j) = ql(ι, η)

(r, t) if ql(i, j) 6= ql(ι, η)
, h :=

{
1 if ql(i, j) = ql(ι, η)

0 if ql(i, j) 6= ql(ι, η)
.
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q̂Encηι,2(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let û>
i := (ûi,1, . . . , ûi,m). It is the same as q̂Encηι,1 except

the way of defining the following vectors:

s̈← Zk
p

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ai s̈ ) + û>

lo(i,κ) (Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ai s̈ ) + û>

lo(i,κ) (Im ⊗ rηι )

+ xj,0
i,κx

η,0>

ι + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι

if i 6= ι

bκ,6 := û>
lo(i,κ)

dτ := (a>i,τS,a
>
i,τ s̈ ).

q̂Encηι,3(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encηι,2 except the way of defining the
following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

lo(i,κ)

+ xj,0
i,κx

η,0>

ι + x1,1
i,κx

1,1>

ι − x1,0
i,κx

1,0>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

lo(i,κ)

+ xj,0
i,κx

η,0>

ι + xj,1
i,κx

1,1>

ι − xj,0
i,κx

1,0>

ι

if i 6= ι

.

q̂Encηι,4(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encηι,3 except the way of defining the
following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

κ

+ xj,1
i,κx

η,1>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ais̈) + ü>

κ

+ xj,1
i,κx

η,1>

ι

if i 6= ι

.

q̂Encηι,5(qMSK, i, j, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): It is the same as q̂Encηι,1 (not q̂Encηι,4) except the way of
defining the following vectors:

bκ,5 :=



0 if i = ι ∧ j 6= η

w>
ls(ι),lo(i,κ)(Im ⊗Ai Sŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,1
i,κx

η,1>

ι

if i = ι ∧ j = η

w>
ls(ι),lo(i,κ)(Im ⊗Ai Sŝ

η
ι ) + u>

lo(i,κ)Ũls(ι)(Im ⊗ rηι )

+ xj,1
i,κx

η,1>

ι

if i 6= ι

.
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̂qKeyGenηι,1(qMSK, c): It outputs qSK as follows (the framed part is changed from ˜qKeyGen):

f̃i,1 :=

 ∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ


f̃i,2,θ := cls(θ),ls(i)

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n)

h̃i :=


∑

µ∈ls(i)
ν∈[mn]

cµ,νr
η>

ι Ũµuν if i = ι

0 if i 6= ι

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n])

σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν

qSK := (c, gSK, {σi,θ}i,θ∈[n]).

̂qKeyGenηι,2(qMSK, c): It is the same as ̂qKeyGenηι,1 except that it defines

h̃i :=


∑

µ∈ls(i)
ν∈[mn]

cµ,νr
η>

ι ûν,en(µ) if i = ι

0 if i 6= ι
.

̂qKeyGenηι,3(qMSK, c): Let ü>
i = (üi,1, . . . , üi,m). It is the same as ̂qKeyGenηι,2 except that it defines

h̃i :=


∑

µ∈ls(i)
ν∈[mn]

cµ,ν üν,en(µ) if i = ι

0 if i 6= ι
.

̂qKeyGenηι,4(qMSK, c, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let ü>
i = (üi,1, . . . , üi,m). It is the same as ̂qKeyGenηι,3

except that it defines

h̃i :=



∑
µ∈ls(i)
ν∈[mn]

cµ,ν üν,en(µ)

+
∑

µ∈[ι−1]

〈cls(µ),ls(i),xη,0
ι ⊗ x1,0

µ − x1,0
ι ⊗ x1,0

µ − (xη,1
ι ⊗ x1,1

µ − x1,1
ι ⊗ x1,1

µ )〉
if i = ι

0 if i 6= ι

.

̂qKeyGenηι,5(qMSK, c, {xν,0
µ ,xν,1

µ }µ∈[n],ν∈[qCT]): Let ü>
i = (üi,1, . . . , üi,m). It is the same as ̂qKeyGenηι,4

except that it defines

h̃i :=



∑
µ∈ls(i)
ν∈[mn]

cµ,ν rη
>

ι Ũµuν

+
∑

µ∈[ι−1]

〈cls(µ),ls(i),xη,0
ι ⊗ x1,0

µ − x1,0
ι ⊗ x1,0

µ − (xη,1
ι ⊗ x1,1

µ − x1,1
ι ⊗ x1,1

µ )〉
if i = ι

0 if i 6= ι

.
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ut

Lemma 6.9. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries
B1,B2,B3 such that |P(A,Hη−1

ι )− P(A, Ĥη
ι,1)| ≤ AdvpFEB1,pfh

(λ) + AdviFEB2,fh(λ) + AdvgFEB3,fh
(λ) + 2−Ω(λ).

Proof. Since L is uniformly chosen from the exponentially large space in encryption algorithms, i.e.,
Zp, collisions do not occur in {Lj

i}i∈[n],j∈[qCT] with overwhelming probability. Therefore, 〈lji , l̃JI 〉 = 0 if
i 6= I or j = J , and 〈lji , l̃JI 〉 6= 0 otherwise.

For all (i, j, κ), (I, J,K) ∈ [n] × [qCT] × [m], observe that 〈bj
i,κ, b̃

J
I,K〉 in Hη−1

ι are equal to that in
Ĥη

ι,1 if i 6= I or j = J . Thus, due to the partially function-hiding property of pFE, this implies that
{pCTj

i,lo(i,κ), pSK
j
i,lo(i,κ)} generated in Hη−1

ι and those generated in Ĥη
ι,1 are computationally indistin-

guishable.
Similarly, we can also confirm that for all (i, j, τ) ∈ [n] × [qCT] × [k] and (I, J) ∈ [n] × [qCT], we

have 〈dj
i,τ , d̃

J
I 〉 in Hη−1

ι are equal to that in Ĥη
ι,1. Thus, thanks to the function-hiding property of iFE,

{iCTj
i,τ , iSK

j
i} generated in Hη−1

ι and those generated in Ĥη
ι,1 are computationally indistinguishable.

We can also confirm that for all (i, j, `) ∈ [n]× [qCT]× [qSK], we have 〈f ji , f̃ `i 〉+ 〈h
j
i , ĥ

`
i〉 in Hη−1

ι are
equal to that in Ĥη

ι,1. Thus, thanks to the function-hiding property of gFE, {gCTj
i , gSK

`} generated in
Hη−1

ι and those generated in Ĥη
ι,1 are computationally indistinguishable. Hence, A’s views in Hη−1

ι and
Ĥη

ι,1 are computationally indistinguishable. ut

Lemma 6.10. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries B1,B2

against mk-fold Umn,k-MDDH and UknqCT,k-MDDH, respectively, such that |P(A, Ĥη
ι,1)−P(A, Ĥη

ι,2)| ≤
Adv

mk-Umn,k -MDDH
B1

(λ) + Adv
UknqCT,k -MDDH

B2
(λ).

Proof. We can prove the lemma with two steps. In the first step, Ũµuν for (µ, ν) ∈ ls(ι) × [mn] is
changed to ûν,en(µ) via mn-fold Umk,k-MDDH. Observe that this change corresponds to the change
from u>

lo(i,κ)Ũls(ι) to û>
lo(i,κ). B1 works as follows.

1. B1 takes an instance of the mk-fold Umn,k-MDDH, (G, [M]1, [Kβ ]1). Recall that they are dis-
tributed as M← Zmn×k

p , K0 = MZ ∈ Zmn×mk
p where Z← Zk×mk

p , and K1 ← Zmn×mk
p .

2. B1 computes qPP, qMSK in the same way as q̂Setup except that B1 (implicitly) defines that ui :=

m>
i , ûi := k>

1,i for i ∈ [mn] and Ũls(ι) := Z for i ∈ [m], where mi and kβ,i are the i-th rows of M
and Kβ , respectively.

3. B1 computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encηι,1 except that B1 replaces

u>
lo(i,κ)Ũls(ι) in bκ,5,bκ,6 with k>

β,lo(i,κ) and gives qPP, {qCTj
i} to A.

4. B1 simulates the key generation oracle in the same way as ̂qKeyGenηι,1 except that B1 replaces Ũµuν

in h̃i with k>
β,ν,en(µ) where k>

β,i,j for (i, j) ∈ [mn]× [m] is the vector consisting of the (j − 1)k + 1

to jk-th entries of k>
β,i. Note that since h̃i become an exponent of g1, this simulation is possible.

5. B1 outputs A’s output as it is.

In the second step, Ss̃ηι is changed to s̈ via UknqCT,k-MDDH. B2 works as follows.

1. B2 takes an instance of the UknqCT,k-MDDH, (G, [M]1, [kβ ]1). Recall that they are distributed as
M← ZknqCT×k

p , k0 = Mz ∈ ZknqCT
p where z← Zk

p, and k1 ← ZknqCT
p .

2. B2 computes qPP, qMSK← q̂Setup except that B2 implicitly defines s̃ηι := z.
3. B2 computes qCTj

i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encηι,1 except that B2 defines Sj
i :=

Mql(i,j), s̈
j
i := k1,ql(i,j) and replaces Sj

i s̃
η
ι in bκ,5 and dτ with kβ,ql(i,j), where Mµ for µ ∈ [nqCT] is

the matrix consisting of the (i− 1)k + 1 to ik-th rows of M, and kβ,µ is the matrix consisting of
the (µ− 1)k + 1 to µk-th entries of kβ . Then, B2 gives qPP, {qCTj

i} to A.
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4. B2 simulates the key generation oracle in the same way as ̂qKeyGenηι,2.
5. B2 outputs A’s output as it is.

This concludes the proof. Note that mn-fold Umk,k-MDDH is reduced to Dk-MDDH with the
security loss of mk, and UknqCT,k-MDDH is tightly reduced to Dk-MDDH. ut

Lemma 6.11. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exists a PPT adversary B

against Um2n,k-MDDH such that |P(A, Ĥη
ι,2)− P(A, Ĥη

ι,3)| ≤ Adv
Um2n,k -MDDH

B (λ).

Proof. B works as follows.

1. B takes an instance of the Um2n,k-MDDH, (G, [M]1, [kβ ]1). Recall that they are distributed as
M← Zm2n×k

p , k0 = Mz ∈ Zm2n
p where z← Zk

p, and k1 ← Zm2n
p .

2. B computes qPP, qMSK← q̂Setup except that B (implicitly) defines that ûi,j := m>
(i−1)m+j , r

η
ι :=

z, üi,j := k1,(i−1)m+j for (i, j) ∈ [mn]× [m], where mµ is the µ-th row of M, and kβ,µ is the µ-th
entry of kβ .

3. B computes qCTj
i for i ∈ [n], j ∈ [qCT] in the same way as q̂Encηι,2 except that B replaces û>

µ,νr
η
ι

for µ× ν ∈ [mn]× [m] with kβ,(µ−1)m+ν . Then, B gives qPP, {qCTj
i} to A.

4. B simulates the key generation oracle in the same way as ̂qKeyGenηι,2 except that B replaces
rη

>

ι ûµ′,ν′ for µ′ × ν′ ∈ [mn]× [m] with kβ,(µ′−1)m+ν′ .
5. B outputs A’s output as it is.

Observe that the encryption and key generation algorithms corresponds to q̂Encηι,2 and ̂qKeyGenηι,2,
respectively, if β = 0, and q̂Encηι,3 and ̂qKeyGenηι,3, respectively, if β = 1. This concludes the proof.
Note that Um2n,k-MDDH is tightly reduced to Dk-MDDH. ut

Lemma 6.12. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exists a PPT adversary B

against miFE in Sec. 6.1 such that |P(A, Ĥη
ι,3)− P(A, Ĥη

ι,4)| ≤ AdvmiFE
B,mh(λ).

Proof. First, we prove that the following equality holds: for all (ι, η) ∈ [n]× [qCT], j1, . . . , jn ∈ [qCT]
n,

and ` ∈ [qSK], we have∑
i∈[n]\ι

〈c`ls(ι),ls(i),x
ji,0
i ⊗ xη,0

ι − xji,0
i ⊗ x1,0

ι 〉+ 〈c`ls(ι),ls(ι),x
η,0
ι ⊗ xη,0

ι − x1,0
ι ⊗ x1,0

ι 〉

+
∑

i∈[ι−1]

〈c`ls(i),ls(ι),x
η,0
ι ⊗ x1,0

i − x1,0
ι ⊗ x1,0

i 〉

=
∑

i∈[n]\ι

〈c`ls(ι),ls(i),x
ji,1
i ⊗ xη,1

ι − xji,1
i ⊗ x1,1

ι 〉+ 〈c`ls(ι),ls(ι),x
η,1
ι ⊗ xη,1

ι − x1,1
ι ⊗ x1,1

ι 〉

+
∑

i∈[ι−1]

〈c`ls(i),ls(ι),x
η,1
ι ⊗ x1,1

i − x1,1
ι ⊗ x1,1

i 〉.

(6.2)

Due to the game condition in Def. 2.3, for all (ι, η) ∈ [n] × [qCT], jι+1, . . . , jn ∈ [qCT]
n−ι, and

` ∈ [qSK], we have ∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
f(θ),0
θ ⊗ x

f(i),0
i 〉 =

∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
f(θ),1
θ ⊗ x

f(i),1
i 〉 (6.3)

∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
g(θ),0
θ ⊗ x

g(i),0
i 〉 =

∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
g(θ),1
θ ⊗ x

g(i),1
i 〉 (6.4)

45



where

f(i) =


1 if i < ι

η if i = ι

ji if i > ι

, g(i) =


1 if i < ι

1 if i = ι

ji if i > ι

.

Then, Eq. (6.3) − Eq. (6.4) results in Eq. (6.2) by reflecting the fact that c`ls(i),ls(θ) = 0 if i > θ,
which is defined in Def. 2.4.

We set the functionality of miFE as FMIP
m2,n+ι−1, and let n′ = n + ι − 1. B against miFE works as

follows.

1. B obtains miPP = (G, [A1]1, . . . , [An′ ]1, [W̃1A1]1, . . . , [W̃n′An′ ]1) where they are distributed as
Ai ← Dk,W̃i ← Zm2×(k+1)

p . B implicitly defines wi,j := w̃>
sl(j),(en(j)−1)m+en(i) for i ∈ ls(ι), j ∈ [mn]

where w̃µ,ν is the ν-th row of W̃µ, and generates qPP and other elements in qMSK the same as
q̂Setup.

2. When A outputs the challenge ciphertexts, {i,xj,0
i ,xj,1

i }i∈[n],j∈[qCT], B defines

x̃j,β
i :=


xj,β
i ⊗ xη,β

ι − xj,β
i ⊗ x1,β

ι if i ∈ [n]\ι
xη,β
ι ⊗ xη,β

ι − x1,β
ι ⊗ x1,β

ι if i = ι

xη,β
ι ⊗ x1,β

i−n − x1,β
ι ⊗ x1,β

i−n if i ∈ [n+ 1, n′]

and outputs {i, x̃j,0
i , x̃j,1

i }i∈[n′],j∈[q′CT,i]
as challenge vectors for the message-hiding game for miFE

where

q′CT,i =

{
1 i = [ι] ∨ i ∈ [n+ 1, n′]

qCT i ∈ [n]\ι
.

Then, B obtains {miCTj
i}i∈[n′],j∈[q′CT,i]

where miCTj
i = ([γj

i ]1, [δ
j
i ]1) = ([Ais̈

j
i ]1, [W̃iAis̈

j
i + üi +

x̃j,β
i ]1).

3. B generates qCTj
i the same as q̂Encηι,3 except that it defines

(b1,5, . . . ,bm,5) :=


0 if i = ι ∧ j 6= η

(δ1i + x1,1
i ⊗ x1,1

ι )> i = ι ∧ j = η

(δji + xj,1
i ⊗ x1,1

ι )> i 6= ι

dτ := (a>i,τS, γ
j
i,τ ).

4. When A queries the key generation oracle on c, B queries the key generation oracle for miFE
on (c̃1, . . . , c̃n′) := (cls(ι),ls(1), . . . , cls(ι),ls(n), cls(1),ls(ι), . . . , cls(ι−1),ls(ι)) and obtains miSK = (miSK0,

{miSKi}i∈[n′]) = (
∑

i∈[n′]〈c̃i, üi〉, {−c̃>i W̃i}i∈[n′]) (here we omit c̃i in miSKi for convenience). Since
we have Eq. (6.2), B’s queries follow the security game condition for miFE. Then, B generates a
secret key the same as ̂qKeyGenηι,3 except that it defines

h̃ι := miSK0 −
∑

i∈[n+1,n′]

(
〈c̃i, δ1i − x̃1,0

i 〉+ 〈miSKi,γ
1
i 〉
)

σι,θ := miSKθ.

5. B outputs A’s output as it is.

Observe that the encryption and key generation algorithms corresponds to q̂Encηι,3 and ̂qKeyGenηι,3,
respectively, if β = 0 in the security game for miFE, and q̂Encηι,4 and ̂qKeyGenηι,4, respectively, if β = 1.
This concludes the proof. ut
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Lemma 6.13. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries
B1,B2,B3 against mk-fold Umn,k-MDDH, UknqCT,k-MDDH, and Um2n,k-MDDH, respectively, such
that |P(A, Ĥη

ι,4)− P(A, Ĥη
ι,5)| ≤ Adv

mk-Umn,k -MDDH
B1

(λ) + Adv
UknqCT,k -MDDH

B2
(λ) + Adv

Um2n,k -MDDH

B3
(λ).

Lemma 6.13 can be proven similarly to Lemmata 6.10 and 6.11.

Lemma 6.14. For all PPT adversaries A, ι ∈ [n], and η ∈ [2, qCT], there exist PPT adversaries
B1,B2,B3 such that |P(A, Ĥη

ι,5)− P(A,Hη
ι )| ≤ AdvpFEB1,pfh

(λ) + AdviFEB2,fh(λ) + AdvgFEB3,fh
(λ) + 2−Ω(λ).

Lemma 6.14 can be proven similarly to Lemma 6.9.

Proof of Lemma 6.3. For reference, we describe ˜qEncqCTn and frame the parts that are different from
qEnc.
˜qEncqCTn (qMSK, i, j, {xν,0

µ ,xν,1
µ }µ∈[n],ν∈[qCT]): It samples vectors as follows:

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp

l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xj,0
i,κ, x

j,1
i,κ) ∈ Z2

p, bκ,2 := (w>
lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k

p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p

bκ,4 :=

{
x1,1
i,κx

1,1>

ι−1 − x1,0
i,κx

1,0>

ι−1 if i = n

xj,1
i,κx

1,1>

ι−1 − xj,0
i,κx

1,0>

ι−1 if i 6= n
∈ Zm

p

bκ,5 := 0 ∈ Zm
p , bκ,6 := 0 ∈ Zkm

p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 := (0, xj,1
i,κ) ∈ Z2

p

b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k
p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p

b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>i,τ Ŝ, 0) ∈ Zk+1
p , d̃ := (s̃, 0) ∈ Zk+1

p

f1 := (r, t) ∈ Z2k
p

f2,θ := (x1,1
i ⊗ x1,1

θ − x1,0
i ⊗ x1,0

θ )> ∈ Zm2

p

f := (f1, f2,1, . . . , f2,n), h := 0.

Then, it computes qCTj
i in the same way as qEnc in ??.

For all (i, j, κ), (I, J,K) ∈ [n] × [qCT] × [m], observe that 〈bj
i,κ, b̃

J
I,K〉 in HqCT

n are equal to that in G1.
Thus, due to the partially function-hiding property of pFE, this implies that {pCTj

i,lo(i,κ), pSK
j
i,lo(i,κ)}

generated in HqCT
n and those generated in G1 are computationally indistinguishable.

Next, we confirm that, for all ` ∈ [qSK], we have∑
i,θ∈[n]

〈c`ls(i),ls(θ),x
1,1
θ ⊗ x1,1

i − x1,0
θ ⊗ x1,0

i 〉 = 0.

This is implied by the game condition defined in Def. 2.3. Thus, for all (j1, . . . , jn, `) ∈ [qCT]
n × [qSK],

we have
∑

i∈[n](〈f
ji
i , f̃ `i 〉 + 〈h

ji
i , ĥ

`
i〉) in HqCT

n are equal to that in G1. Thus, thanks to the function-
hiding property of gFE, {gCTj

i , gSK
`} generated in HqCT

n and those generated in G1 are computationally
indistinguishable. Hence, A’s views in HqCT

n and G1 are computationally indistinguishable. ut
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A Public-Key Quadratic MIFE from IPFE

A.1 Definitions

Definition A.1 (Public-Key Multi-Input Functional Encryption). Let F be a function family
such that, for all f ∈ F, f : X1 × · · · × Xn → Z. An public-key MIFE scheme for F, MIFE, consists of
four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP and a master secret
key MSK. The other three algorithms implicitly takes PP as input.
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Enc(i, xi): It takes MSK, an index i ∈ [n], and xi ∈ Xi and outputs a ciphertext CTi.
KeyGen(MSK, f): It takes MSK, and f ∈ F, and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

When n = 1, we call it just a functional encryption (FE) scheme and omit the second argument of
Enc.
Correctness. MIFE is correct if it satisfies the following condition. For all λ ∈ N, (x1, . . . , xn) ∈
X1 × · · · × Xn, f ∈ F, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣
PP,MSK← Setup(1λ)
CTi ← Enc(i, xi)
SK← KeyGen(MSK, f)
d := Dec(CT1, . . . , ,CTn,SK)

 = 1.

Security. We define two indistinguishability-based security definitions for MIFE. For a stateful PPT
adversary A and λ ∈ N, let

PMIFE,β
A,ad (λ) := Pr

[
β′ = 1

∣∣∣∣ PP,MSK← Setup(1λ),

β′ ← AOCT(β,·),KeyGen(MSK,·)(PP, {CTj
i}i∈[n],j∈[qCT,i])

]
.

OCT(β, ·) takes (i, x0
i , x

1
i ) and outputs Enc(i, xβ

i ). Let qCT,i and qSK be a number of queries to OCT(β, ·)
with the form of (i, ∗, ∗) and KeyGen, respectively. Let S := {i ∈ [n] | qCT,i > 0}. We say that A is
admissible if for all I = (i1, . . . , it) ⊆ S, (it+1, . . . , in) = [n]\I, (ji1 , . . . , jit) ∈ [qCT,i1 ] × · · · × [qCT,it ],
` ∈ [qSK], (xit+1

, . . . , xin) ∈ Xit+1
× · · · × Xin , A’s queries satisfy

f `(〈xji1 ,0
i1

, . . . , x
jit ,0
it

, xit+1
, . . . , xin〉) = f `(〈xji1 ,1

i1
, . . . , x

jit ,1
it

, xit+1
, . . . , xin〉)

where 〈xi1 , . . . , xin〉 denotes a permutation such that xi is moved to the i-th entry. MIFE is adap-
tively secure if, for all admissible PPT adversaries A, the following advantage of A is negligible in λ:
AdvMIFE

A,ad (λ) := |P
MIFE,0
A,ad (λ)− PMIFE,1

A,ad (λ)|.

Definition A.2 (Bounded-Norm Inner Products over Z). A function family FIP
m,X,C for bounded-

norm inner products consist of functions f : Xm → Z where X = {i | i ∈ Z, |i| ≤ X}. Each f ∈ FIP
m,X,C

is specified by c ∈ Zm s.t. ||c||∞ ≤ C. Then, f specified by c is defined as f(x) := 〈c,x〉.

A.2 Construction

Let iFE = (iSetup, iEnc, iKeyGen, iDec) and iFE′ = (iSetup′, iEnc′, iKeyGen′, iDec′) be an FE scheme for
FIP
m2,X,C and FIP

m,X,C . For convenience, we introduce notations for computing matrix multiplication via
IPFE. For V = (v1|| · · · ||vm), we denote (iSK1, . . . , iSKm) by

−→
iSK where iSKi ← iKeyGen(iMSK,vi)

and this procedure by
−→
iSK← iKeyGen(iMSK,V). Similarly, for iCT for x, we denote decryption of iCT

with
−→
iSK by iDec(iCT,

−→
iSK) = (iDec(iCT, iSK1), . . . , iDec(iCT, iSKn)). The public-key quadratic MIFE

scheme qFE = (qSetup, qEnc, qKeyGen, qDec) for FMQF
m,n,X,C can be constructed as follows.

qSetup(1λ): It outputs qPP, qMSK as follows:

(iPPi, iMSKi)← iSetup(1λ), (iPP′
i,j , iMSK′

i,j)← iSetup′(1λ)

qPP := ({iPPi}i∈[n], {iPP′
i,j}i,j∈[n],i6=j), qMSK := ({iMSKi}i∈[n], {iMSK′

i,j}i,j∈[n],i6=j)

qEnc(i,xi ∈ Zm): It outputs qCTi as follows:

iCTi ← iEnc(iPPi,xi ⊗ xi), iCT
′
i,j ← iEnc′(iPP′

i,j ,xi)

qCTi := (iCTi, {iCT′
i,j}j∈[n]\{i})
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qKeyGen(qMSK, c ∈ Z(mn)2): Let C =

(
C1,1 ··· C1,n

. . .
Cn,1 ··· Cn,n

)
∈ Zmn×mn be a matrix such that x>Cx =

〈c,x⊗ x〉. Let ci be a vector such that xiCi,ixi = 〈ci,xi ⊗ xi〉. It outputs qSK as follows:

iSKi ← iKeyGen(iMSKi, ci),
−→
iSK′

i,j ← iKeyGen′(iMSK′
i,j ,Ci,j +C>

j,i)

qSK := (c, {iSKi}i∈[n], {
−→
iSK′

i,j}i,j∈[n],i6=j)

qDec(qCT1, , . . . , qCTn, qSK): Let (Ci,j +C>
j,i)

+ ∈ Q be the Moore-Penrose inverse of Ci,j +C>
j,i. It

outputs z as follows:

zi := iDec(iPPi, iCTi, iSKi)

zi,j := iDec′(iPP′
i,j , iCT

′
i,j ,
−→
iSK′

i,j)(Ci,j +C>
j,i)

+iDec′(iPP′
j,i, iCT

′
j,i,
−→
iSK′

j,i)
>

z :=
∑
i∈[n]

zi +
∑

i,j∈[n]
i<j

zi,j

Correctness. Due to the correctness of iFE and iFE′, we have

zi = x>
i Ci,ixi

zi,j = x>
i (Ci,j +C>

j,i)(Ci,j +C>
j,i)

+(Ci,j +C>
j,i)xj = x>

i (Ci,j +C>
j,i)xj

Hence, we have z = x>Cx = 〈c,x⊗ x〉 where x = (x1, . . . ,xn)
>.

A.3 Security

Theorem A.1. If iFE and iFE′ are adaptively secure, then qFE is also adaptively secure.

Proof (sketch). We can reduce the indistinguishability of qFE to that of iFE and iFE′. The admissi-
bility of A guarantees that

xji,0
>

i C`
i,ix

ji,0
i = xji,1

>

i C`
i,ix

ji,1
i

xji,0
>

i (C`
i,θ +C`>

θ,i) = xji,1
>

i (C`
i,θ +C`>

θ,i)

for all i, θ ∈ [n] s.t. i 6= θ, ji ∈ [qCT,i], ` ∈ [qSK]. These conditions are exactly consistent with the query
conditions in the reduction to iFE and iFE′.
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