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Abstract

Secure two-party computation considers the problem of two parties computing a joint function of
their private inputs without revealing anything beyond the output of the computation. In this work, we
take the first steps towards understanding the setting in which the two parties want to evaluate a joint
quantum functionality while using only a classical communication channel between them. Our first result
indicates that it is in general impossible to realize a two-party quantum functionality against malicious
quantum adversaries with black-box simulation, relying only on classical channels. The negative result
stems from reducing the existence of a black-box simulator to the existence of an extractor for classical
proof of quantum knowledge, which in turn leads to violation of the quantum no-cloning.

Towards the positive results, we first introduce the notion of Oblivious Quantum Function Evaluation
(OQFE). An OQFE is a two-party quantum cryptographic primitive with one fully classical party (Alice)
whose input is (a classical description of a) quantum unitary, U , and a quantum party (Bob) whose input
is a quantum state, ψ. In particular, Alice receives the classical output corresponding to the measurement
of U(ψ) while Bob receives no output. At the same time, the functionality guarantees that Bob remains
oblivious to Alice’s input U , while Alice learns nothing about ψ more than what can be learned from the
output of the computation. We present two concrete constructions, one secure against semi-honest parties
and the other secure against malicious parties. Due to the no-go result mentioned above, we consider
what is arguably the best possible notion obtainable in our model with respect to malicious adversaries:
one-sided simulation security. This notion protects the input of one party (the quantum Bob) in the
standard simulation-based sense, and protects the privacy of the other party’s input (the classical Alice).
We realize our protocol relying on the assumption of quantum secure injective homomorphic trapdoor
one-way functions, which in turn rely on the learning with errors problem. As a result, we put forward a
first, simple and modular construction of secure one-sided quantum two-party computation and quantum
oblivious transfer over classical networks.
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1 Introduction

Secure multi-party computation (MPC) [2, 3] allows multiple distrusting parties to jointly compute any
function of their joint input, such that no information is leaked about their private inputs apart from what
can be inferred from the correct output of the computation [4, 5]. From the security point of view, it is
well known that MPC is not possible with information-theoretic security, nonetheless, the field of MPC is
actively studied in the last several decades both from the theoretical and practical side, relaxing the security
to computational and/or trusted-third party scenarios (in both honest and dishonest majority of adversaries).
Recently, an MPC protocol has been proposed that guarantees security against quantum adversaries [6].
MPC in the quantum world, is still relatively less studied in comparison to its classical counterpart. Secure
quantum multiparty computation (QMPC) and the case of quantum 2-party computation (Q2PC) have been
originally proposed in [7, 8] and [9, 10] and further explored in [11, 12, 13, 14]. Here we will only consider
the case of two mutually distrusting parties.

All the previous works either realize post-quantum secure classical functionalities over classical networks
or require all the involved parties to possess quantum resources and are based on quantum networks. This
means a two-way quantum communication channel is a must if we want to implement a joint quantum
function and hence, puts a rather heavy burden on the parties involved. Nonetheless, similar to the classical
setting, we know that information-theoretic secure QMPC is not possible. Therefore, the security achievable
in QMPC protocols with the quantum channel are at best computational, despite requiring parties to have
powerful quantum devices and access to the quantum channel. Therefore, a natural question regarding the
trade-off between the functionality achieved and the resources needed is the following:

Do all parties involved in (computationally) secure quantum MPC protocols require quantum devices and need
to share quantum channels between them?

Getting insights into the minimum requirements for QMPC protocols is important not only from the
foundational perspective, but will also lay the stepping stone for the practical QMPC protocols. Another
common theme in almost all the prior works is that they are not modular and are therefore non-trivial to
further optimise in terms of resources. For example, we know how MPC can be realised in the classical world
based on oblivious transfer (as OT is necessary and sufficient for 2PC and MPC [15]). However, a similar
module for QMPC and Q2PC is yet to be identified1 and remains an important open problem. Ideally, we
would like to construct a primitive that achieves the quantum functionality equivalent of classical oblivious
transfer, that would be universal for Q2PC, and which would require only classical communication channels.
Furthermore, analysing the security of such functionality in sequential or concurrent composition would help
to guarantee the security of more complex protocols for Q2PC and QMPC. Keeping in mind this grand vision,
we take the first step towards this direction and present a modular construction of a quantum 2PC protocol
based entirely on a classical channel without compromising the security of either party. In particular, we
focus in this paper on the functionality of secure function evaluation, an important class of 2PC protocols in
the classical world [4]. In such a setting, a client wants to evaluate an input x of a function f , in such a way
that only the clients get the output. Moreover, the server should not learn anything about the client’s input,
and the client should not learn anything about f beyond the output f(x).

We present an analogue of secure function evaluation in the quantum setting and we call it oblivious
quantum function evaluation (OQFE). Informally, the OQFE functionality consists of two parties: a user Alice
and a server Bob that allows Alice to evaluate a quantum unitary Ui from a set of unitaries U (known to both
parties) on Bob’s private input state ψ. Additionally, OQFE guarantees that Alice learns nothing more than
the output state Ui(ψ), and Bob gets no information about the index i of Alice at the end of the protocol.

Our work also initiates the study towards the following questions: Is it possible to achieve Q2PC with
the same level of security when the parties only share a classical communication channel? What are the
minimum cryptographic assumptions required to construct OQFE and therefore, Q2PC? We settle the first
question with a no-go result on achieving black-box simulation-based security against quantum adversaries.
This notion of security guarantees the existence of a simulator that works by having only black-box access to
the adversary. We circumvent the impossibility, by considering the weaker notion of one-sided simulation.

1There are works on quantum oblivious transfer but the aim in those works is to achieve classical functionality using quantum
resources.
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This notion protects the input of one party (the quantum Bob) in the standard simulation-based sense and
protects the privacy of the other party’s input (the classical Alice).

Regarding the second question, we provide a connection between OQFE and some fundamental quantum
primitives such as secure remote state preparation (RSP) [16, 1, 17, 18]. In particular, we present an explicit
construction of OQFE from RSP (and in turn, of quantum OT from OQFE) which can be further reduced to
the existence of injective homomorphic trapdoor one-way functions (OWFs). Classically, we know that there
exists a black-box separation between OT and OWFs [19]. However, if the parties are equipped with quantum
resources and share quantum channel, then one-way functions are sufficient and the black-box reduction no
longer holds [20]. It remains an open problem if secure OT can be constructed from OWFs in the quantum
world where parties only share a classical channel.

Our modular construction of OQFE from RSP establishes the latter primitive as a candidate for a universal
primitive. It is worth mentioning that due to the direct link, any further optimisation of the complexity of
RSP will also provide answers to the complexity of OQFE. This, in turn, will enhance our understanding of
the question of minimal complexity-theoretic resources required for important cryptographic primitives such
as delegated quantum computing [21] and classical verification of quantum computing [17, 22] in addition to
quantum multi-party computation.

1.1 Our Contributions

All the results in this work concern secure quantum two-party computation (Q2PC) over a classical channel.
Nonetheless, we divide our contributions into two sets. The first one is independent of any protocol and
uncovers a fundamental trade-off between the achievable security and the resources required in any Q2PC.
The second one is more concrete in nature and we present a candidate construction for quantum two-party
computation with classical Alice and quantum Bob and further analyse the security under different threat
models.

Security of Q2PC with classical channel. What is the best possible security, achievable when a quantum
two-party computation is implemented over classical networks? We answer this question at the highest level
of abstraction, i.e. without going into the details of the implementation, particular functionality, and model
of computation. Doing so, we analyze the difficulty underlying the process of achieving simulation-based
security with black-box access to the adversary. To elaborate on this further, firstly, we formalize a connection
between the existence of a simulator for any malicious adversary in (quantum) multi-party computation
and the existence of an extractor (with the same run-time) in (quantum) proofs/arguments of (quantum)
knowledge. This can be informally summarised as follows.

Theorem 1 (Informal) Any secure black-box two-party (quantum) computation is also a proof of (quantum)
knowledge with negligible knowledge error.

As a consequence of this relation, we present a no-go result for the black-box fully-simulatable security of
any Q2PC that only requires classical communication channels between the parties.2

Corollary 1 (Informal) Secure quantum two-party computation over classical channel with black-box simula-
tion is impossible.

The negative result arises essentially from the connection to classical proof of quantum knowledge where
the existence of an extractor is used to build an algorithm for cloning arbitrary quantum states. Since the
latter is an impossible task even with unbounded devices, this makes our argument robust against extractor
run-time. Due to these limitations, we resort to a one-sided simulation framework.

Oblivious Quantum Function Evaluation. We introduce the notion of oblivious quantum function
evaluation (OQFE): a quantum analogue of secure function evaluation that only relies on a classical network
between the parties. For the sake of simplicity, we first present a simplified case of OQFE that we call

2Our result also applies to a quantum multi-party computation where any two-party only share a classical channel.
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1-out-of-2 OQFE. The constructions for 1-out-of-2 OQFE and OQFE are based on one-bit teleportation and
measurement-based model of quantum computation (in particular, the second one is inspired by the universal
blind quantum computation protocol [23]). In 1-out-of-2 OQFE, we present two concrete protocols one of
which is non-interactive, secure against semi-honest Alice and protects the input of Alice against a malicious
Bob. Then, in the second protocol, we uplift the security of the protocol against malicious Alice achieving
the best possible security: one-sided simulation. Finally, we present the extension of 1-out-of-2 OQFE to full
OQFE and we obtain the following result.

Theorem 7 (Informal) There exists an OQFE protocol (Protocol 7.1) that securely computes the OQFE
functionality with one-sided simulation.

All the protocols in this work only require a classical channel instead of a quantum channel between Alice
and Bob. This task is achieved using recent (computationally-secure) classical-client remote state preparation
protocols as a sub-module. Specifically, given the underlying connection to remote state preparation, this
reduces the cryptographic complexity of OQFE to injective homomorphic trapdoor quantum one-way functions.
Additionally, as a side and direct application of OQFE, we give a simple construction of a quantum oblivious
transfer protocol that relies only on a classical channel.

1.2 Related Works

The first work that studied the question of MPC in the quantum domain is [8], where a secure QMPC protocol
is proposed based on the ideas of verifiable quantum secret sharing of the inputs of all the parties and later
extended in [8, 7, 24].

In a series of works by Dupuis et al. [9, 10] the setting of two-party quantum computation is presented
using the tools from classical MPC and quantum authentication codes developed in [25]. This protocol is
generalized to the multi-party setting with the dishonest majority in a recent work by Dulek et al. [14]. In a
recent work of [26], the authors propose a garbling scheme for quantum circuits.

A different approach inspired by delegated quantum computing [23, 27] towards secure two-party com-
putation, similar to a quantum analog of Yao’s protocol from classical MPC [4], is studied in [11, 12] and
towards (composable) secure multi-party quantum computation in [28, 29, 30].

All previous works on secure two-party and multi-party quantum computation considers both quantum
and classical communication channel shared between parties. However, in our work, we propose a secure
two-party quantum computation protocol that only requires a classical channel and completely mitigates the
need for a quantum channel, as well as quantum resources from one of the parties.

From a cryptographic complexity point of view, Unruh in [31], building upon the works of quantum
oblivious OT [20] and MPC [32], proposed a UC-secure protocol for classical multi-party computations using
only commitments and a quantum channel. This is known to be impossible in a purely classical setting [19].
It is not clear whether a quantum channel is necessary to achieve MPC with quantum parties just relying
on commitments. However, in this work, we show that a quantum channel is necessary to achieve general
two-party quantum computation in the setting of malicious parties (and hence in the UC security model as
well). Furthermore, we relax the security requirement to one-sided simulation and show that classical channel
is indeed sufficient albeit our construction requires primitives stronger than quantum one-way functions.

1.3 Overview of Our Results and Techniques

We describe the approach to our results and give a brief overview of the tools and techniques involved.

Limitations of black-box secure Q2PC.

It is known that if the functionality of MPC is classical then one-sided protocols cannot be information-
theoretically secure in the quantum world (using quantum resources) [33, 34, 35]. Our first result takes a
step forward in generalising this result for quantum functionalities. In particular, we show that one-sided
quantum protocols over a completely classical channel cannot be secure in the full-simulation secure sense
even against computationally-bounded adversaries. This features a striking trade-off between the resources
needed to achieve the desired level of security for quantum two-party computation (Q2PC). We start by
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establishing a connection between black-box-security for two-party computation and proofs/arguments of
knowledge for both classical and quantum two-party functionalities. Classically, this connection is folklore,
nonetheless, we formalize here this relationship in a unified manner taking into account both the classical
and quantum two-party functionalities.

The high-level idea behind the reduction of black-box-security of two-party computation to the existence
of proof of knowledge (e.g. Theorem 1) is the following. We assume that the two-party functionality is secure
in the black-box simulation-based model (as per Definition 9). Consider one of the parties say, Alice, is honest
while Bob is fully malicious. This immediately implies the existence of a simulator Sim for this functionality
that uses the adversary (Bob’s state) in a black-box fashion. Next, we construct an extractor Extract which
calls Sim in an oracle manner to extract the witness state. For a quantum relation (such as QMA-relation,
Definition 7) such a witness would be quantum, unlike the classical relations. Note that the computational
power of simulator Sim also differs in the classical and the quantum world. As a result, we obtain an extractor
whose run-time is expected PPT in the classical and QPT in the quantum setting, respectively. A formal
proof of how Q2PC implies proof of quantum knowledge is provided in Section 3 and the proof of how 2PC
implies proof of knowledge is presented in Appendix D, as it essentially follows the same argument. Building
upon the previous result, we then present the impossibility of one-sided two-party quantum protocols based
on a classical channel (Corollary 1). This is possible due to the above reduction and a recent result on
classical proofs of quantum knowledge [36]. To further refine this argument, note that, as a result of the
above connection, a Q2PC with a classical channel would imply classical proofs of quantum knowledge. Let
us assume that at least one of the parties in Q2PC functionality is quantum (this is the most general setting
possible) and is malicious. Then we claim that the existence of Q2PC over a classical channel for such a
functionality in the black-box simulation security reduces to cloning an arbitrary quantum state. The latter
task is not possible even with unbounded computational power. Loosely speaking, this is because the security
of such a functionality over classical channel implies the existence of a simulator Sim which can be invoked by
an extractor Extract to extract quantum states of malicious parties using only classical transcript. For some
cheating strategies, such an algorithm (ExtractSim) outputs multiple copies of an unknown quantum state
using only classical messages as the input. This is not possible even with a non-black-box definition of proof
of quantum knowledge provided in [36] and the no-go result is independent of the computational power of
Extract. A formal argument is presented in Section 3.

Next, we move towards our positive results and propose a construction for one-sided two-party quantum
computation. We further analyze the security in the one-sided simulation model, which is (arguably) the best
possible scenario given the above limitation.

Our Constructions.

The one-sided two-party classical-quantum setup consists of two parties - Alice (A) and Bob (B) - that have
their own private inputs and wish to perform a joint computation, but where only one of the parties receives
the output. In the remainder of this work, we will use the following convention: a) the joint computation is
described by both parties’ inputs, and b) Alice would be the (classical) party who receives the output. One of
the potential applications of such a setting is the following. Imagine a scenario where one of the parties, Bob,
has a quantum database and the other party, Alice, queries the database in such a way that i) Bob would like
to keep the entries of the database secure except the one which is queried, and ii) Alice would like to maintain
the privacy of her requested query. We call such functionality as the oblivious quantum function evaluation
(OQFE) in analogy with secure function evaluation in the classical setting. The OQFE ideal functionality is
provided in Section 4 along with the security model.

Informally, the description of this functionality (as shown in Figure 1) can be understood as follows:

1. Alice has as input (a classical description of) a quantum function f , where f has quantum input and
classical output.

2. Bob has as input a quantum state ψ.

3. Alice obtains f(ψ) and “learns nothing” more than this information. At the same time, Bob receives
no output and “learns nothing” about f .
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Bob Alice

OQFE

ψ

f

f(ψ)

Figure 1: Oblivious quantum function evaluation functionality with two parties - classical Alice and quantum
Bob.

In general, ψ could be an arbitrary quantum state (pure as well mixed) and since Alice is classical, f
denotes the quantum map that consists of a unitary U followed by measurement in the computational basis.
We provide a modular approach towards the construction of an OQFE protocol and prove its security in the
one-sided simulation-based framework. At a high level, we first give a protocol that achieves privacy against
quantum Bob and (statistical) security against semi-honest Alice. Then, in the second construction, using
cryptographic tools such as secure commitment schemes and zero-knowledge proof of knowledge, we uplift
the security to full simulation-based security against malicious Alice.

To this end, in Section 4.2, we present a simplified functionality called 1-out-of-2 OQFE (Definition 12),
where Alice’s input is a single bit b and Bob’s input is a single qubit state ψ. The target computation is 1
out of 2 possible functions f0 and f1. This functionality ensures that Alice obtains fb(ψ) without “learning”
anything about the other function applied on Bob’s input (i.e. f1⊕b(ψ)), while Bob “learns” nothing about
Alice’s input b. The notion of learning is formalised using one-sided simulation framework (Section 3.2).
Aside from being instrumental in the construction and security proofs of the full OQFE protocol, this simple
functionality of 1-out-of-2 OQFE can be of independent interest. For instance, we show in Appendix F that it
can lead to the construction of quantum oblivious transfer over classical channel.

In Section 5, we present a concrete protocol for 1-out-of-2 OQFE that is non-interactive and achieves
security against semi-honest Alice. This protocol sets the stage for 1-out-of-2 OQFE functionality that is
one-sided simulation-based secure, which in turn is extended to a full OQFE protocol with one-sided simulation
security. The central idea behind the construction of this protocol (Protocol 5.2) is inspired by simple one-bit
teleportation circuits and relies on a remote state preparation sub-module to eliminate the need for quantum
communication between Alice and Bob. While the security of this construction holds only against semi-honest
Alice, we can show that it holds in the statistical regime. On the other hand, for Bob, we show that the
privacy of Alice’s input is achieved given the hardness of the LWE problem, where this computational security
arises from the use of classical-client RSP. To sum up, the result of Section 5 is given by the following
theorems.

Theorems 3 and 4 (Informal) The 1-out-of-2 OQFE Protocol 5.2 achieves privacy against malicious Bob
and is statistically secure against semi-honest Alice.

To uplift the security from semi-honest Alice to a malicious Alice, we need to be able to validate the
transcripts Alice is sending to Bob during the run of the protocol. Specifically, in Section 6, we first show
that this can be reduced to ensuring that Alice generates correctly the public key of the trapdoor function
employed within the RSP procedure. As a result, we need to impose that Alice runs the correct key generation
algorithm and at the same time she should not use a “bad” randomness in executing this algorithm. We
follow standard techniques from the (classical) modern cryptography literature. In order to ensure the first
condition, Alice will prove to Bob that the key is an output of the public key generation algorithm using a
zero-knowledge proof of knowledge procedure. Then, for the second condition, Alice and Bob will run a variant
of a coin-tossing protocol, in which Alice sends a commitment of a random string to Bob. Upon receiving the
commitment, Bob replies to Alice with another randomness. Finally, Alice proves using a zero-knowledge
proof system that the key was generated using the key generation algorithm and the randomness computed
as the exclusive or (XOR) of the two random strings chosen by Alice and Bob. These tools will ensure the
security against malicious Alice, however, it is also important to demand the zero-knowledge property and
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the hiding property of the commitment scheme to remain secure against quantum Bob. The result can be
summarised with the following theorem and is proved in Section 6.

Theorem 5 (Informal) The 1-out-of-2 OQFE Protocol 6.1 securely computes the 1-out-of-2 OQFE functionality
with one-sided simulation.

In Section 7, we extend the construction of Protocol 6.1 to the full OQFE protocol with the desired level
of security.

More concretely, our construction for one-sided simulation secure OQFE protocol is based on the
measurement-based model of quantum computation, by combining the blind quantum computation proto-
col [23] with RSP as subroutines. Additionally, we employ the following cryptographic tools: commitment
scheme and zero-knowledge proof of knowledge to enforce the honest behavior of Alice. This is done in a
similar manner and with the help of proof techniques we developed for the simplified setting of 1-out-of-2
OQFE. We obtain the following result for our full OQFE construction.

Theorem 7 (Informal) The OQFE Protocol 7.1 securely computes the OQFE functionality with one-sided
simulation.

Finally, we would like to remark that the cryptographic complexity of our Q2PC proposal can be reduced to
the cryptographic assumptions required to achieve classical-client RSP. More specifically, our construction can
be instantiated with injective homomorphic trapdoor quantum one-way functions and leaves the possibility of
realizing Q2PC over a classical channel with only quantum one-way functions as an important open problem.

1.4 Organization of the paper

In Section 2, we define the notations and definitions of black-box simulation-based two party (quantum)
functionality followed by relevant classical as well as quantum cryptographic primitives. In Section 3, we
present an impossibility result for simulation-based quantum two-party over classical channel in the black-box
model and discuss the issue concerning security against both parties. Subsection 3.2 describes our (relaxed)
security model of one-sided simulation. In Section 4, we present a simple construction for 1-out-of-2 oblivious
quantum function evaluation. Section 5 and Section 6 analyse the security of 1-out-of-2 oblivious quantum
function evaluation in semi-honest and malicious setting. An extension from 1-out-of-2 oblivious quantum
function evaluation to full oblivious quantum function evaluation along with its security is presented in
Section 7.

2 Preliminaries

2.1 Notations

In this paper when we talk about distributions being indistinguishable for any PPT adversary we will use
the symbol ≈c, if they are indistinguishable for any QPT distinguisher, we will use ≈q and if they are
indistinguishable for an unbounded adversary we will use ≈u. Additionally, when testing for equality we will
use directly the symbol “=”. Let A and B be two Hilbert spaces. The set L(A,B) is the set of all linear maps
from A to B. The set L(A) = L(A,A) is the set of all linear maps on A and the mapping ϕ : L(A) 7→ L(B) is
also called super-operator. If ϕ is completely positive and preserves the trace then such a super-operator
is also known as quantum operation or CPTP map. We denote identity operator as I and A⊗ B denotes
the space of two such quantum registers. For more details on the quantum background we refer the readers
to [37].

In the rest of the section, we define black-box two-party quantum computing functionality along with the
definitions of classical and quantum primitives used in this work including proof of quantum knowledge. Some
parts of this section are taken from [38, 39, 40]. The remaining definitions related to interactive quantum
machines and (quantum) oracle are presented in Appendix A.
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2.2 Secure 2-party Computation

We extend the definition of black-box 2-party computation from [41] to quantum functionalities. Let F be a
joint quantum function F : L(Ain,Bin) 7→ L(Aout,Bout) with input x and y from Alice and Bob, resp. Let
REALΠ,A(z),i(x, y, 1

λ) and IDEALF,S(z),i(x, y, 1
λ) be the output in the real and ideal execution for F when

the adversary A is controlling party i ∈ {0, 1} with the auxiliary input z.

Definition 1 (Black-box (Quantum) 2-party computation). We say that a protocol Π securely computes F
if for every i ∈ {0, 1}, every non-uniform quantum-polynomial-time (QPT) adversary P ?i controlling Pi in the
real model, there exists a non-uniform quantum polynomial-time adversary Simi (having black-box access to
Pi) for the ideal world such that:

{REALΠ,P?i (z)(1
λ)}z∈{0,1}λ ≈q {IDEALF,Simi(z)(1

λ)}z∈{0,1}λ

where REALΠ,P?i (z)(1
λ) denotes the distribution of the output of the adversary P ?i (controlling the Pi) after a

real execution of protocol Π. IDEALF,Simi(z)(1
λ) denotes the analogous distribution in an ideal execution with

a trusted party that computes F for the parties and hands the output to them.

2.3 Classical and Quantum Cryptographic Primitives

Polynomial time relation Rel is a subset of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be
decided in time polynomial |x|. For a polynomial-time relation Rel, we define the NP language LRel :=
{x | ∃w such that (x,w) ∈ Rel}.

Definition 2 (Proof/Argument system). A pair of PPT interactive algorithms Π = (K,P,V) constitutes a
proof system (resp., an argument system) for an NP-language L, if the following condition holds:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that for every crs← K(1n):

Pr[〈P(w),V〉(crs, x) = 1] = 1.

Soundness: For every interactive (resp., PPT interactive) algorithm P?, there exists a negligible function ν
such that for crs← K(1n) and for every x /∈ L and every z:

Pr[〈P?(z),V〉(crs, x) = 1] < negl(n) .

Definition 3. Let (K,P,V) be an interactive proof (argument) system for an NP-language L. We say that
(K,P,V) is post-quantum zero-knowledge with respect to an auxiliary input if for every quantum polynomial-
size interactive machine V? there exists a black-box3 quantum polynomial-time Sim = (Sim1,Sim2) such
that:

{crs← K(1n), 〈P(w),V?(z)〉(crs, x)}(x,w)∈RelL,z∈{0,1}? ≈ {Sim1(1n),Sim2(crs, x, z)}x∈L,z∈{0,1}?

Instantiation. A post-quantum zero-knowledge argument system can be instantiated from the scheme
proposed in [42]. This scheme also satisfies the property of the argument of knowledge for the case of PPT
adversaries.

Definition 4 (Remote State Preparation (Informal)). A resource S is a Remote State Preparation resource
if it outputs on the right interface (Bob’s interface) a quantum state ρ and on the left interface (Alice’s
interface) a classical description of a state ρ′ such that the states ρ and ρ′ are close in trace distance.

Instantiation. A remote state preparation primitive can be instantiated using the QFactory protocol [1].
This protocol is described in

Section 5.
Next, we define proof of knowledge in both the classical and quantum setting.

3The simulator has only black-box access to the adversary V?.
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A Proof of Knowledge (PoK) is an interactive proof system for some relation R such that if the verifier
accepts some input x with high enough probability, then she is “convinced” that the prover “knows”
some witness w such that (x,w) ∈ R. This notion is formalized by requiring the existence of an efficient
extractor Extract, that is able to return a witness for x when given oracle access to the prover (including the
ability to rewind its actions, in the classical case).

Definition 5 (Proof of Knowledge4). A pair (P,V) of PPT interactive machines is a proof of knowledge
with knowledge error k(·) for polynomial-time relation Rel if the following properties hold:

• Completeness: for every (x,w) ∈ Rel, it holds that

Pr[〈P(w),V〉(x) = 1] = 1− negl(|x|).

• Knowledge Soundness: there exists a probabilistic oracle machine Extract, called the extractor, running
in expected probabilistic polynomial time, such that for every interactive machine P? and for every input
x accepted by V when interacting with P? with probability ε(x) > k(x), we have

Pr
(

((x,w) ∈ R) : w ← ExtractP
?

(x)
)
≥ p

(
ε(x)− k(x),

1

poly(|x|)

)
.

The notion of the argument of knowledge is essentially the same but it requires the knowledge soundness
property to hold against PPT adversaries and for a sufficiently long input [43].

Definition 6 (Quantum Proof of Classical Knowledge [38]). Let R ⊆ X × Y be a relation. A proof system
(P, V ) for R is a Quantum Proof of Knowledge for R with knowledge error κ if there exists a polynomial
p > 0 and a quantum polynomial-time machine Extract such that for any quantum interactive machine P ∗,
any µ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(µ) and any state ρ: if the execution
(P ∗(x, ρ), V (x)) returns 1 with probability ε > κ(µ), we have:

Pr
(

((x, σ) ∈ R) : σ ← Extract|P
∗(x,ρ)〉(x)

)
≥ p

(
ε− κ(µ),

1

n

)
,

where Extract|P
∗(x,ρ)〉 is the extractor Extract with oracle access to (quantum) P ∗ and ρ is some (quantum)

side information held by P ∗.
Recently, proof systems have also been extended to QMA-relations in [39, 40]. The main difference from
Quantum Proofs of (classical) Knowledge is that in the case of QMA relations, the notion of a witness is in a
different manner than NP relations. For any 0 ≤ γ ≤ 1, a quantum relation is defined as follows:

RQ,γ = {(x, σ) : Q accepts (x, σ) with probability at least γ}.

The parameter γ quantifies the expected success probability for the verifier and roughly speaking, γ is a
measure of the “quality” of a witness |ψ〉 (or mixture thereof, as represented by the density matrix σ) that is
sufficient for the witness to be acceptable with respect to the relation R. More formally, we have:

Definition 7 (QMA-relation). Let A be a problem in QMA (See Definition 16), and let Q be a QPT verifier,
with completeness α and soundness β. Then, we say that RQ,γ is a QMA-relation such that the following
holds

1. (Completeness) (x, |ψ〉) ∈ RQ,α =⇒ Pr
[
Q|x|(x, |ψ〉) = 1

]
≥ α

2. (Soundness)(x, ρ) 6∈ RQ,β =⇒ Pr
[
Q|x|(x, ρ) = 1

]
< β.

Additionally, the extractor Extract is also allowed to abort (i.e. output a “⊥” state) and we require that either
the extractor returns “⊥” or it returns a witness of a certain quality. One can formalize this by assuming
that the output of extractor Extract is measured according to {|⊥〉 〈⊥| , I− |⊥〉 〈⊥|}. Finally, we require the
outcome of this measurement corresponding to non-abort state (σ) be least inverse-polynomial probability,
and that, conditioned on the latter outcome, the post-measurement state be a witness (of a certain quality).

4This definition can be easily extended to the CRS model. In that case the extractor would have the additional power of
programming the CRS. We make this algorithm explicit when it is required for our constructions.
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Definition 8 (Proof of Quantum Knowledge [39, 40]). Let RQ,γ be a QMA relation. A proof system (P, V )
is a Proof of Quantum Knowledge for RQ,γ with knowledge error κ(n) > 0 and quality q, if there exists a
polynomial p > 0 and a polynomial-time machine Extract such that for any quantum interactive machine P ∗

that makes V accept some instance x of size n with probability at least ε > κ(n), we have:

Pr
[(

(x, σ) ∈ RQ,q(ε, 1n )

)
: σ ← Extract|P

∗(x,ρ)〉(x)
]
≥ p

(
ε− κ(n),

1

n

)
.

3 Impossibility of Simulation-based Quantum Two-Party Compu-
tation over Classical Channel

In this section, we present a relationship between the simulator Sim in black-box (quantum) 2-party computa-
tion (Definition 9) and extractor Extract from proofs of (quantum) knowledge (Definition 5, Definition 8). For
sake of simplicity, we only present the results for proof of knowledge but a similar result holds for arguments
of knowledge.

We consider the quantum zero-knowledge functionality FQZK that is parametrised by QMA-relation RQ,γ
(Definition 7) and takes inputs only from one party called the prover. Given input statement x and a witness
ρ, FQZK checks if (x, ρ) ∈ RQ,γ . If that is the case, then FQZK outputs 1 to the second party (called verifier)
with probability γ, else it outputs 0.

Theorem 1. Any 2-party quantum computation protocol Π that realizes the functionality FQZK accordingly
to Definition 1 is also a proof of quantum knowledge (acc. to Definition 8) with negligible knowledge error κ
and non-negligible quality γ.

Proof. To prove our theorem we need to show that Π satisfies the property of completeness and knowledge
soundness. The property of completeness comes immediately from the Definition 1. Hence, we just need to
exhibit an extractor Extract. By assumption, we know that for every malicious party acting as the prover P?
in Π, there exists an QPT simulator SimP such that:

{REALΠ,P?(z)(1
λ)}z∈{0,1}λ ≈ {IDEALFQZK,SimP(z)(1

λ)}z∈{0,1}λ

where REALΠ,P?(z)(1
λ) denotes the distribution of the output of the adversarial prover P? after a real

execution of protocol Π. IDEALFQZK,SimP(z)(1
λ) denotes the analogous distribution in an ideal execution with

a trusted party that computes FQZK for the parties and hands the output to them.
Our proof of quantum knowledge extractor Extract simply runs SimP , and when SimP provides the input

(x, ρ) to the ideal functionality FQZK, Extract measures the final outcome with {|⊥〉 〈⊥| , I − |⊥〉 〈⊥|} and
checks if (x, σ) ∈ RQ,γ where σ is the post-measurement state corresponding to the latter projector. We note
that SimP makes only black-box use of the adversary P , hence, so does Extract (that makes black-box use of
SimP).

We now just need to argue that Extract runs in QPT time and it extracts a valid witness with probability
negligibly close to p, where p is the probability that the verifier, in the real world experiment, outputs 1.
Without loss of generality, we assume that |x| and λ are polynomially related. By assumption, we know
that SimP successfully extracts the input ρ such that (x, ρ) ∈ RQ,γ from the adversarial prover P? with
probability (at least) negligible close to p. Indeed, if this does not hold, then the security of Π would not
hold. Hence, the probability that SimP successfully extracts a witness is negligibly close to the probability
p · γ, for which the verifier outputs 1 in the real world.

Our result holds for arguments of knowledge and computational secure black-box two-party computation.
A similar relationship between secure 2PC and proofs of knowledge holds in the classical setting. For
completeness, we provide the full proof for the classical counterpart in Appendix D.

Definition 9 (Q2PC over classical channel). An m-round (classical Alice, quantum Bob) quantum protocol
P = (A,B,m) over classical communication channel consists of:

1. input spaces S0 and S′0 consisting of inputs ψA and ψB for parties A and B.
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2. memory spaces S := (S1, . . . , Sm) for A and S′ := (S′1, . . . , S
′
m) for B and (classical) communication

spaces N := (N1, . . . , Nm) and N′ := (N ′1, . . . , N
′
m).

3. an m-tuple of stochastic operations (A1, . . . ,Am) for A, where A1 : L(S0) 7→ L(S1 ⊗ N1), and Ai :
L(Si−1 ⊗N ′i−1) 7→ L(Si ⊗Ni), (2 ≤ i ≤ m).

4. an m-tuple of quantum operations (B1, . . . ,Bm) for B, where Bi : L(S′i−1 ⊗ Ni) 7→ L(S′i ⊗ N ′i),
(1 ≤ i ≤ m− 1) and Bm : L(S′m−1 ⊗Nm) 7→ L(S′m).

3.1 Security of Q2PC with Classical Channel

In this work, we only deal with security proofs in the black-box simulation paradigm. That is, we require
the simulator to be an oracle algorithm that makes oracle calls to the adversary. Next, we elaborate on
the limitations that such a high level of security brings forward for secure two-party quantum computation,
especially when the interaction is restricted to be completely classical. This highlights a trade-off between
the security and resources required for quantum primitives. A similar trade-off has been recently studied
in [18] in the context of the composable security of delegation protocols.

Recall that the quantum two-party computation as defined in Definition 9 consists of a completely classical
Alice and a quantum Bob. Since information-theoretic secure quantum two-party is not possible, the best
one could hope for, is to weaken the security of one of the parties to be computational. This is discussed
below in more detail.

Simulator for Malicious Quantum Bob implies an Extractor in Classical proofs [Argument] of
Quantum Knowledge. In the previous section, we showed that (quantum) two-party computation implies
proof of (quantum) knowledge. If we restrict the communication between the two parties (Alice and Bob) to
be completely classical (as in Definition 9) then the security of quantum two-party computation would imply
a classical argument of quantum knowledge between a classical verifier and a quantum prover. Essentially this
means we require an extractor Extract that extracts or reconstructs the quantum witness ρ from a classical
transcript. This seems unlikely as also mentioned in the recent work of Vidick and Zhang [36]. The authors
propose a definition of classical proofs/argument of knowledge where the extractor is non-black-box i.e.
extractor is allowed to make use of the prover’s internal state by defining an abstract party called intermediary.
Additionally, the new definition also comes with a property, relevant to our result, that is a nondestructive
classical argument of quantum knowledge, which is proven to be impossible for nontrivial states. Roughly
speaking, a protocol is called a nondestructive if all the intermediate measurements when acted on a quantum
state ρ keep the state ρ unchanged.

Corollary 1. Secure quantum two-party computation over classical channel with black-box simulation is not
possible.

Proof. We choose the same notations for Alice and Bob as presented in Definition 9 and assume that only
Bob has input while Alice gets the output. Furthermore, we assume that Alice behaves honestly. This
trivially satisfies the requirement for FQZK functionality (as required in Theorem 1). Let us define a cheating
strategy in the following way. We take an unclonable state in the input space S′0 of Bob, while the general
quantum operations (B1, . . . , Bm) performed on Bob’s end are such that they are Identity on the quantum
registers and generate random classical transcripts N′. More formally, Bi : L(S′i−1 ⊗Ni) 7→ L(S′i−1 ⊗N ′i), for
every i ∈ [m]. Such operation guarantees that Bob’s initial input state in the register S′0 remains unchanged
during the intermediate quantum operations and therefore, the protocol satisfies the nondestructive property.
Intuitively, all the intermediate state (S′1, . . . , S

′
m) on Bob’s side remains the same and all the information

about cheating strategy is contained in the classical messages N′. For this cheating strategy, the security of
Q2PC in simulation-based notion (i.e. the existence of simulator) reduces to the existence of an extractor for
a nondestructive classical argument of knowledge. The latter is impossible as shown in Claim 4.2 of [36].

Relaxing Security Definition: One-sided Simulation. Since Bob is computationally powerful it is
reasonable to expect computational security against QPT Bob. There are two possible ways of going forward
to relax the security definition. One is to consider the non-black-box extractors and the other is to require
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only input privacy against QPT Bob. It is important to note that our no-go result via the cheating strategy
mentioned earlier also rules out the non-black-box extractors defined in [36]. Also, as mentioned earlier our
approach in this work is to focus only on black-box simulation techniques for which we provide a negative
result. A natural step in relaxing the two-sided simulation is to show what is commonly known as one-sided
simulation. The notion of one-sided simulation security is usually used when only one party receives output
while the other learns nothing. This captures exactly our setup, where only Alice receives the output of the
computation, while Bob must learn nothing about Alice’s input.

When a party should learn nothing, we can define privacy via indistinguishability similar to encryption.
Specifically, it suffices to require that Bob is not able to distinguish between two protocol runs corresponding
to two different inputs of Alice. That is, consider a protocol/functionality where Alice receives output while
Bob learns nothing. Roughly speaking, when Bob is corrupted we require that Bob should not be able to learn
anything about Alice’s input and formalize this via indistinguishability. Before presenting a formal definition,
we look into the case of security against dishonest Alice and the issues concerning black-box simulation-based
definition. This is discussed in detail below.

Using Quantum Proof of Classical Knowledge as a Subroutine. When Alice is corrupted we require
the existence of a simulator that can fully simulate its view. Ideally, we would like to present security against
unbounded Alice or against computationally bounded QPT Alice. Following Theorem 1 for our setup of
classical Alice this implies the existence of an extractor for the quantum proof of classical knowledge or
quantum arguments of classical knowledge, respectively. Defining and invoking such proofs/arguments of
knowledge against quantum adversaries bring in different levels of difficulty as highlighted in [38].

To elaborate further, classically, the probability of a successful extraction by an extractor, as defined in 5,
could be increased by repeating the procedure (polynomially) many times. However, a similar trick does
not work straightforwardly for a general quantum prover because the measurement performed to extract the
witness state could possibly disturb the internal state of the prover, making it impossible to simulate the
side information that the prover had originally in the subsequent simulations. The implication of not being
able to amplify the extractor’s success probability restricts in invoking the quantum proof [argument] of
knowledge as a subroutine.

Security against Alice. However, due to difficulty in obtaining proper quantum proofs [argument] of
knowledge, in this work, we discuss the simulation-based security against computationally-bounded PPT
Alice. However, our results should be easily lifted to the case of statistical or QPT adversary if there is any
further advancement in the quantum proof or argument of knowledge (which can be used as a subroutine) in
the future. One could also in principle obtain input privacy against Alice to obtain statistical input-privacy
or post-quantum security. Since Alice is classical and given the way we construct our protocol5, we believe it
is rather straightforward for our concrete protocol to be generalized. For the rest of the paper, we are only
concerned with the non-trivial case of simulation-based security.

Having discussed all the security issues, we present the one-sided simulation security definition for a
one-sided6 quantum two-party computation that is used in the remaining part of this work.

3.2 One-sided Simulation.

Let F be a joint quantum function F : L(Ain,Bin) 7→ L(Aout) with input x and y from Alice (A) and Bob
(B), resp. and output only on Alice’s side. Let REALΠ,A(z),i(x, y, 1

λ) and IDEALF,S(z),i(x, y, 1
λ) be the

output in the real and ideal execution for F when the adversary A is controlling party i ∈ {A,B} with the

the auxiliary input z. The viewA,iΠ,A(z)(x, y, z, 1
λ) denote the view of the adversary A after a real execution of

Π.

Definition 10 (One-Sided Secure Realization of F). We say a protocol Π = (A,B) securely computes F
with one-sided simulation (adapted from Def.2.6.2 in [44])) if for all inputs (x, y) ∈ D(Ain ⊗Bin ⊗R) we
have:

5Bob one-time pads all the messages sent to Alice in the Protocol 5.2 and Protocol 7.1 while still preserving the correctness.
Therefore, the input privacy of Bob against a malicious Alice reduces to analysing the information gain only for the final round.

6Our work only deals with one-sided computation but the definition can be easily generalized to the setting where both
parties receive output.
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1. For every non-uniform PPT adversary A controlling A in the real model, there exists a non-uniform
PPT adversary S for the ideal model, such that:

{REALΠ,A(z),A(x, y, 1λ)}x,y,z,λ ≈c {IDEALF,S(z),A(x, y, 1λ)}x,y,z,λ (1)

2. For every non-uniform QPT adversary A controlling B, we have that the following distributions are
indistinguishable to any QPT distinguisher D:

{viewA,BΠ,A(z)(x, y, z, 1
λ)}x,x′,y,z,λ ≈q {viewA,BΠ,A(z)(x

′, y, 1λ)}x,x′,y,z,λ
where |x| = |x′|.

(2)

4 One-sided Two-party Quantum Computation over Classical
Channel

In the rest of the work, we will consider a special case of two-party quantum computation that is one-sided,
meaning that Alice has the input and Bob controls the function to be performed on the input. Inspired by
the secure function evaluation functionality in classical world, we define an m-round, one-sided, two-party
quantum functionality over classical channel and call it oblivious quantum function evaluation (OQFE)-
(Definition 9). The ideal functionality for OQFE is formally defined as follows.

A1

A2

...

Am

Alice

B1

B2

...

Bm

Bob

...

Classical Channel

ψA ψB

s

Figure 2: One-sided two-party quantum protocol with classical Alice and quantum Bob. The left and the
right box represents the parties Alice (classical) and Bob (quantum) and the center box depicts the classical
communication channel between them.

Definition 11. (Ideal Functionality FOQFE) An Oblivious Quantum Function Evaluation functionality FOQFE

is defined as follows: When both the parties (A and B) are honest then Oblivious Quantum Function Evaluation
takes as input (a classical description of) a quantum function f from Alice and a quantum state ψ from Bob,
respectively and outputs f(ψ) at Alice’s side. This is represented pictorially in Figure 1.

In the previous section, we showed that it is not possible to attain the full security of Definition 1 for
a quantum two-party protocol over a classical network. To show this we presented an adversary B′ in
P for which there cannot exist any simulator SimB in the ideal world independent of the (statistical or
computational) indistinguishability measure. We note that the same no-go argument remains valid for
OQFE as well. As mentioned before, a natural step forward is to relax the security requirement to one-sided
simulation. We present a concrete OQFE protocol and analyse the security in the case when either of the
party is malicious. In particular, we show simulation-based security against a PPT Alice and input privacy
against a QPT Bob. Such compromise seems inevitable given our previous result and the challenges to
construct a quantum proof of knowledge, which shows that full simulation-based security in the presence of
malicious adversaries is not possible.
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4.1 Simplified Scenario: 1-out-of-2 OQFE

Before describing a candidate construction for oblivious quantum function evaluation (OQFE) that satisfies
the above definition, we introduce a simplified functionality 1-out-of-2 oblivious quantum function evaluation,
which can be understood as Alice having 2 possible functions f0 and f1 that she can choose from. The reason
for introducing 1-out-of-2-OQFE is that it is simple in construction and security analysis and sets the stage
for more complex OQFE functionality.

We model 1-out-of-2 oblivious quantum function evaluation functionality, denoted as ΞOQFE, in the
following way: Bob’s private quantum computation is parameterized by a quantum state |ψin〉 and a set of
angles (φ0, φ1). The measurement outputs si are then given by the computational basis measurement of
the unitary Rx (φi) on the input state |ψin〉 for i ∈ {0, 1}. For simplicity, we choose φ0 = 0 and φ1 = π/2.
Therefore, the functionality ΞOQFE is given by:

((s0, s1), b)→ (λ, sb, ε) (3)

where λ denotes the empty string, (1- ε) is the probability of Alice obtaining the correct outcome and:

s0 = MZ |ψin〉 ,

s1 = MZRx

(
−π

2

)
|ψin〉

(4)

4.2 Ideal Functionality: 1-out-of-2 OQFE

Definition 12. (Ideal Functionality ΞOQFE) A 1-out-of-2 Oblivious Quantum Function Evaluation function-
ality ΞOQFE is defined as follows. When both the parties (A and B) are honest then 1-out-of-2 Oblivious
Quantum Function Evaluation takes the input b and (s0, s1) from Alice and Bob, respectively and outputs
sb at Alice’s side. Here (s0, s1) corresponds to measurement output of Bob’s (server’s) private quantum
computation and b denotes the choice of computation Alice (user) wishes to retrieve.

In the following sections, we give two constructions for 1-out-of-2-OQFE protocols in which b and (s0, s1)
are the inputs of Alice and Bob, respectively, and sb is the output of Alice.

1. The first protocol, denoted as πSH, is non-interactive in nature i.e. requires only two-message between
Alice and Bob and we prove the simulation-based security against any semi-honest adversaries as well
as privacy against malicious Bob.

2. Building upon the first construction, the second protocol, denoted as πMAL, crucially relies on the
properties of a zero-knowledge argument of knowledge as well as commitment schemes to achieve
simulation-based security against fully malicious Alice. This, however, comes at the cost of an increase
in the number of rounds for the overall protocol.

The most important feature of these protocols is that Alice and Bob only need to share a classical channel
between them and are modular in design. This means advancement in any of the techniques can easily
upgrade the security of our protocols. To the best of our knowledge, this is the first secure construction of
any classical client - quantum server two-party quantum computation.

5 1-out-of-2 OQFE: Semi-Honest Alice

Our first construction is a 2-message, non-interactive protocol for semi-honest Alice and can be further seen
as a two-step process: a simple 2-party quantum computing protocol over a quantum channel inspired from
one-bit teleportation circuit [45, 46] and replacing the quantum channel with a classical-client remote state
preparation protocol [1, 17]. The protocol consists of two parties - Alice and Bob, where Alice’s input is
represented by an index i and Bob have a quantum input |ψin〉. As mentioned before, we will consider Alice
to be the party who receives the output at the end of the protocol. Without loss of generality, we assume
that the goal of Alice and Bob is to perform a unitary operation Ui from a set U on Bob’s private input state
|ψin〉. Here, the set of unitaries U := {Ui}i is known to both parties and we denote the output of the joint
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computation as |ψout〉, where |ψout〉 := Ui |ψin〉. We emphasize that our protocols hold for Bob having as
input a mixed state as well, but for simplicity of presentation, we will denote Bob’s input as a pure state.

For simplicity, we present the protocol where Alice’s input is denoted with a bit and Bob’s input is a
single qubit quantum state. Alice’s input bit b is encoded using an angle φb, where the bit b = 0 and b = 1
corresponds to the angle φ0 = 0 and φ1 = π/2, respectively. Bob’s private input is ρin. In step 1 and step 2,
Alice encrypts her private bit b (parameterized with the angle φb) using one-time pad with random key θ2

and rA in the following way:

δ := φb + θ2 ·
π

2
+ rA · π = (b+ θ2) · π

2
+ rA · π =

π

2
· [b+ θ2 + 2rA mod 4] (5)

where θ2 and rA are uniformly chosen random bits. Hereafter, we will drop the π/2 coefficient and refer to δ
as δ = b+ θ2 + 2rA mod 4. Alice remotely prepares on Bob’s side the following single qubit state:

|ψA〉 = |+θ〉 :=
1√
2

(|0〉+ eiθ |1〉) (6)

where θ ∈ {0, π/2, π, 3π/2} is an angle represented as a two bit string (θ1, θ2) ∈ {0, 1}2, where θ2 is exactly
the bit used above by Alice. This is achieved by following the steps described in the remote state protocol
(RSP), presented in Protocol 5.1 7. Alice transmits to Bob the classical message δ along with the classical
messages required in Protocol 5.1.

Protocol 5.1 4-states QFactory: classical delegation of |+θ〉 states (θ ∈ {0, π/2, π, 3π/2}) ([1])

Requirements: A 2-regular trapdoor one-way family F and homomorphic hardcore predicate {hk}.
1. Preimages superposition

(a) Alice runs the algorithm (k, tk)← GenF (1n).

(b) Alice instructs Bob to prepare one register at ⊗nH |0〉 and second register initiated at |0〉m.

(c) Bob receives k from Alice and applies Ufk using the first register as control and the second as target.

(d) Bob measures the second register in the computational basis, obtains the outcome y. The combined state
is given by (|x〉+ |x′〉)⊗ |y〉 with fk(x) = fk(x′) = y and y ∈ Im fk.

2. Output preparation

(a) Bob applies Uhk on the preimage register |x〉 + |x′〉 as control and another qubit initiated at |0〉 as
target. Then, measures all the qubits, but the target in the { 1√

2
(|0〉 ± |1〉)} basis, obtaining the outcome

b = (b1, ..., bn). Bob applies on the unmeasured qubit (representing the output state) the operation
HR(−π/2). Now, Bob returns both y and b to Alice.

(b) Alice using the trapdoor tk computes the preimages of y:

(c) Then compute: θ2 := hk(x)⊕ hk(x′) and θ1 := (θ2 · 〈b, x⊕ x′〉)⊕ hk(x)hk(x′)

3. Outputs: The quantum state that Bob has generated is (with overwhelming probability 8) the state |+θ〉,
where θ ∈ {0, π/2, π, 3π/2} state described using the two bits (θ1, θ2), where θ2 is also known as the basis of the
state. The output of Alice is the classical description (θ1, θ2).

In step 3, upon receiving the messages from Alice, Bob applies on the state |ψA〉 (resulted from the RSP
procedure) a controlled Pauli X where the control is a random bit rB and also updates the classical message
δ to δ′ := (−1)rBδ. These operations enable Bob to ensure security against malicious Alice while preserving
correctness. The purpose of this step is to hide the classical messages sent from Bob during the run of the
protocol. In step 4, Bob initializes an ancillary register, |ψB〉, in the |+〉 state and performs entangling
operations, controlled-Z (CZ) gates, as shown in Fig. 3. In the end, Bob measures the first two registers
corresponding to his private input state and to the quantum state obtained from the RSP procedure. The
two measurements are performed in the Hadamard and {|±δ′〉} basis, respectively, where |±δ′〉 := R(−δ′)|±〉

7It is important to emphasize the exact construction of remote state preparation used here relies on a two-way communication
classical channel.

8 the probability comes from the probability of F being a 2-regular homomorphic-hardcore family of functions
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and R(−δ′) is the rotation around z-axis with the angle δ′. This step results in the measurement outcomes
m0 and m1 on Bob’s side. Finally, Bob performs a correction operator Zm0Xm1 on the ancillary register and
measures it in computational basis to obtain s̄b. Bob sends m0 ⊕ rB and s̄b to Alice.

Protocol 5.2 1-out-of-2 OQFE Protocol, πSH, with Semi-Honest Classical Alice

Inputs: Bob: single qubit state |ψin〉 and Alice: b ∈ {0, 1}
Output: Alice: sb, where sb := MZ [Rx

(
−π

2
· b
)
|ψin〉]

1. Alice and Bob follows Step 1 (a) - (d) and Step 2 (a) of the Protocol 5.1. Alice obtains θ2 and Bob obtains
|ψA〉 (See, Eq. 6).

2. Alice encodes her input as φb := b · π
2

, uniformly samples rA
$← {0, 1}, computes the angle δ (See, Eq. 5) and

sends δ to Bob.

3. Bob samples uniformly rB
$← {0, 1} and updates the quantum state, |ψA〉, as well as the classical message, δ, to

obtain: |ψ0〉 := XrB |ψA〉 and δ′ := (−1)rB δ.

4. Bob performs the following entangling operations on his private input register |ψin〉, the updated state |ψ0〉,
and the ancillary register |ψB〉: (I⊗ CZ)(CZ ⊗ I)(|ψin〉 ⊗ |ψ0〉 ⊗ |ψB〉), where |ψ0〉 is in the state |+〉.

5. Bob performs the measurement of first register in the X-basis and the second register in the (X,Y)-plane with
an angle δ′ to obtain the measurement outcomes m0 ∈ {0, 1} and m1 ∈ {0, 1}.

6. Bob applies Xm1Zm0 to the resulting quantum state to obtain:

|outb〉 = Xθ1 ⊕ rA ⊕ (m0⊕rB)·b[HR(−φb)H |ψin〉] (7)

7. Bob measures |outb〉 in the computational basis and obtains a measurement outcome s̄b, updates m′0 := m0⊕ rB
and sends (m′0, s̄b) to Alice.

8. Alice computes (efficiently) θ1 from mqf and the trapdoor tk and performs the following (classical) operation to
get her desired outcome: sb := s̄b ⊕ θ1 ⊕ rA ⊕ m′0 · b.

|ψin〉 • H m0

|ψA〉 XrB Z • R(−δ′) H m1

|ψB〉 Z Xm1 Zm0 s̄b

Figure 3: Quantum computations performed by Bob in steps 4-8 of Protocol 5.2.

Theorem 2 (Correctness). In an honest run of 1-out-of-2 OQFE Protocol 5.2, when both parties follow the
protocol specifications, Alice obtains the outcome sb = MZ [Rx

(
−b · π2

)
|ψin〉], where b is Alice’s input and

|ψin〉 is Bob’s input.

Proof Sketch. Protocol 5.2 can be seen as two consecutive run of one-bit teleportation circuit [45]
distributed between Alice and Bob. In particular, Alice controls the quantum state of the second wire and
the measurement angle while Bob controls the state of the first of the circuit as shown in Figure 3. The state
of the third wire is fixed in |+〉 state and known to both the parties. We first show that there is no effect
of Bob’s randomness rB (Step 3) on the correctness. Recall that R(−δ′) = XrBR(−δ) and moving R(−δ′)
on the second wire towards left-hand side to merge with XrB will cancel the randomness added by Bob on
the second wire, however this commutation will give rise to an additional Pauli term ZrB on the first wire.
This is because of the following identity: CZ12(I⊗XrB )12(I⊗R(−δ))12 = (ZrB ⊗XrB )12(I⊗R(−δ))12CZ12.
This additional Pauli byproduct ZrB , after commuting with Hadamard towards the right, essentially dictates
the need for correction at Bob’s end in Step 7. Next, we note that |ψA〉 = |+θ〉 (by Eqn. 6), where θ is Alice’s
private key. The effect of this randomness is partially cancelled by the R(−δ) as R(−δ) |+θ〉 = R(−δ + θ) |+〉
and the rest of the randomness is carried over the measurement outcome which is corrected by Alice (Step 8).
Roughly speaking, these two steps allows Alice and Bob to hide their input while still maintaining correctness.
For full proof see Appendix E.
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Theorem 3 (Simulation-based statistical security against semi-honest Alice). The 1-out-of-2 OQFE Protocol,
πSH, (Protocol 5.2) securely computes ΞOQFE in the presence of semi-honest adversary Alice.

Proof. We need to prove that there exists a PPT simulator SA that given Alice’s input and output can
simulate the view of Alice in πSH, such that the output of the simulator and the real view of Alice are
indistinguishable to any unbounded distinguisher :

{SA(b, sb)} b∈{0,1}
|ψin〉∈H2

≈u {viewπSH

A (b, |ψin〉)} b∈{0,1}
|ψin〉∈H2

(8)

The view of Alice in πSH consists of an input b, the randomness rA and all the messages received from
Bob during the protocol. More specifically, we have:

viewπSH

A (b, |ψin〉)} = {b, rA, (mqf ,m
′
0, s̄b)} (9)

The internal random coins rA consists of the random bit rA and the randomness used for the algorithm
GenF , denoted by rAf .

We construct the simulator SA in the following way:

SA(b, sb)

1 : r̃A ←$RA// RA is the space of randomness of Alice, and r̃
A

includes r̃
A
f and r̃A

2 : ˜̄sb ←$ {0, 1}
3 : (k̃, t̃k, hp)← GenF (1λ)

4 : ỹ←$ Im(fk̃) , m̃←$ {0, 1}n

5 : m̃qf ← (ỹ, m̃)

6 : θ̃1 ← InvF (m̃qf , t̃k)

7 : if (b == 1) then

8 : γ̃ ← ˜̄sb ⊕ sb ⊕ θ̃1 ⊕ r̃A// γ̃ := m̃
′
0 · b can be computed from Step 8 of Protocol 5.2.

9 : m̃′0 ← γ̃

10 : else

11 : γ̃ ←$ {0, 1}
12 : m̃′0 ← γ̃

13 : return (b, r̃A, (m̃qf , m̃
′
0, ˜̄sb))

In order to prove that the output of SA and the real view of Alice are indistinguishable, we need to show
that the following distributions D1 and D2 are indistinguishable (where D1 corresponds to Alice’s view and
D2 with SA’s output):

D1 = {b, rA,mqf ,m
′
0, s̄b}b,|ψin〉

D2 = {b, r̃A, m̃qf , m̃
′
0, ˜̄sb}b,|ψin〉

(10)

From step 7 of simulator SA and Step 8 of Protocol 5.2, we can also write the distribution D1 and D2 as:

D′1 = {b, rA,mqf ,m
′
0, s̄b}b,|ψin〉

D′2 = {b, r̃A, m̃qf , γ̃, ˜̄sb}b,|ψin〉
(11)

Independent of the value of the bit b, m′0 and γ̃ are indistinguishable.
Since (rA, r̃A) and (s̄b, ˜̄sb) are sampled uniformly and independently at random from {0,1}, the task of

the distinguisher can be equivalently seen as distinguishing these two distributions:

D′′1 = {b,mqf , sb ⊕ θ1}b,|ψin〉
D′′2 = {b, m̃qf , sb ⊕ θ̃1}b,|ψin〉

(12)
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Since θ1 and θ̃1 are generated from mqf and m̃qf , respectively, which are sampled uniformly and independently
at random, the task of distinguisher can be equivalently seen as distinguishing these two distributions:

D′′′1 = {b,mqf}b,|ψin〉
D′′′2 = {b, m̃qf}b,|ψin〉

(13)

Finally, in the real protocol mqf consists of y ∈ Im(fk) and a bitstring m ∈ {0, 1}n. They represent
outcomes of Bob’s measurements inside QFactory protocol (thus before |ψin〉 was even used) and irrespective
of b, in an honest run they occur with equal probability: Pr [y] = 1

| Im f | , Pr [m] = 1
2n . Therefore, as in m̃qf we

sample ỹ uniformly from the the image of fk′ and m̃ uniformly at random from {0, 1}n, this makes mqf and
m̃qf statistically indistinguishable. This shows that D′1 and D′2 are indistinguishable against the unbounded
distinguished D, which concludes the proof.

Theorem 4 (Privacy against Malicious Bob). The 1-out-of-2 OQFE Protocol 5.2 πSH is private against
malicious Bob.

Proof. To show that the πSH is private against Bob, it suffices to show that Bob cannot distinguish between
the cases when Alice has input b = 0 or input b = 1.

In other words, we need to show that: For any QPT Bob∗ (interacting with Alice in πSH) and for any
auxiliary input z, we have:

{viewBob∗(Bob∗(z), Alice(0))} ≈q {viewBob∗(Bob∗(z), Alice(1))} (14)

The view of a malicious Bob∗ in πSH when he has auxiliary input z and Alice has input b is defined as:

viewBob∗(Bob
∗(z), Alice(b)) = (z, rB , (k, δ)) (15)

where rB is the randomness of Bob∗.
The transcript received by Bob∗ from Alice during πSH consists of:

1. k - the public key obtained by Alice when running GenF corresponding to a 2-regular trapdoor
(post-quantum) function fk;

2. δ - represents the measurement angle that Bob is instructed to use in the quantum computations he is
performing in Stage 3 of the Protocol 5.2;

The internal random tape of Bob∗ contains rB. We will prove by contradiction that if there exists a QPT
distinguisher that can distinguish between the 2 views of Bob∗ in the cases Alice’s input is b = 0 and
respectively b = 1, then there exists a QPT algorithm that can break the 4-states basis blindness property
(Definition 21) of QFactory, or equivalently, the hardcore property of the basis bit θ2. More specifically,
we assume that there exists a QPT algorithm A that on input (rB , k, δ) can output Alice’s input b with
probability 1

2 + 1
p and we will construct an algorithm A′ that can break the hardcore property of the basis θ2

with probability 1
2 + 1

p . This implies that if A succeeds to distinguish the 2 views with inverse polynomial
probability, the same applies to the hard-core predicate property, and hence we reach a contradiction.
A′(k)

1 : rB ←$ {0, 1} , rA ←$ {0, 1} , b←$ {0, 1} , B2 ←$ {0, 1}
2 : δ̃ ← b+B2 + 2rA mod 4

3 : b̃← A(rB , k, δ̃)

4 : if (b̃ = b) then θ̃2 ← B2

5 : else θ̃2 ← B2 ⊕ 1

6 : return θ̃2

Now to compute the probability that A break the hardcore predicate, we first consider 2 cases: i) B2 = θ2

and ii) B2 6= θ2, where as B2 is sampled uniformly, each occur with probability 1
2 . The first case corresponds
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to the view of the protocol when Alice’s input is b and the second case corresponds to the view of the protocol
when Alice’s input is 1⊕ b. Therefore, we have:

Pr[A′(k) = θ2] = Pr[A′(k) = θ2 |B2 = θ2] · Pr[B2 = θ2]+

+ Pr[A′(k) = θ2 |B2 = 1⊕ θ2] · Pr[B2 = 1⊕ θ2]

=
1

2
(Pr[A outputs b |Alice input= b] + Pr[A outputs 1⊕ b |Alice input= 1⊕ b])

=
1

2

(
1

2
+

1

p
+

1

2
+

1

p

)
=

1

2
+

1

p

6 1-out-of-2 OQFE: Malicious Alice

In this section, we present a protocol πMAL that is one-sided simulatable against malicious parties.
The main reason why the previous Protocol 5.2 is not secure against a malicious Alice is that we have

no guarantee that the key k sent in the first round represents a valid key. That is, Alice could generate k
using an algorithm different from GenF , or using GenF with some bad randomness (a non-uniformly chosen
random string). To solve the first problem, we could just let Alice prove that k is a key computed using the
algorithm GenF via a zero-knowledge protocol. In this way, Alice protects the trapdoor of k and Bob can be
convinced about the validity of k. Unfortunately, this does not prevent Alice from using “bad” randomness.
To tackle the second problem, we let Alice and Bob engage in a sort of coin-tossing protocol. In more details,
Alice sends a commitment of a string rAf , Bob sends a random string rBf in the clear in the second round,
and Alice proves, always using a zero-knowledge scheme, that the key k of the trapdoor function is generated
accordingly to GenF , using as the randomness the xor of the string committed from Alice (rAf ) and the string

sent from Bob (rBf ).
Given that Bob is a quantum adversary, we need a post-quantum hiding commitment scheme in addition

to the quantum zero-knowledge property. If we can employ a zero-knowledge proof in combination with a
post-quantum hiding and statistically binding commitment we would get statistical security against malicious
Alice in the one-sided simulation framework. Unfortunately, we are not aware of any post-quantum secure
zero-knowledge proof of knowledge protocol

For this reason, in this section, we assume Alice to be a PPT adversary, hence we need the binding of
the commitment scheme and the soundness of the zero-knowledge scheme to hold against PPT adversaries
(argument of knowledge). The commitment scheme can be instantiated from any non-interactive statistically
hiding commitment scheme. Alternatively, we can rely on the protocol proposed by Baum et al [47]. In
this commitment scheme, the binding property is based on the Module-LWE assumption and the Hiding
property is based on the Module-SIS assumption (which are generalizations of the LWE and SIS problems
to polynomial rings), but under specific choices of parameters, the scheme can be made statistical binding.
Since we want to prove that our protocol is simulatable against malicious Alice, we require the post-quantum
secure zero-knowledge protocol to enjoy the property of the argument of knowledge. One zero-knowledge
protocol that has all these features is the one proposed in [42].9

We now formally prove the security of our protocol against Alice requiring the output distribution of the
simulator and the adversarial Alice to be computationally indistinguishable. However, we note that relying
on a proof of knowledge zero-knowledge (instead of an argument of knowledge) it is easy to extend our result
to the statistical case.

More precisely, our scheme makes use of the following tools:

1. Non-interactive post-quantum hiding, computationally binding commitment scheme COM =
(Com,Dec);

2. A 2-regular Trapdoor One-Way Function F = (GenF , EvalF , InvF ).

9In [42] the authors do not explicitly prove the property of AoK for their protocol but acknowledge that the AoK extractor
would work as for the protocol provided in [48].
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3. An argument of knowledge post-quantum zero-knowledge protocol Π := (GZK, PZK, VZK) for the NP-
relation:

Relf = {(x = (k, rBf , comf ), w = (rAf , decf )}

such that decf is the decommitment of comf and k is (part of) the output of probabilistic algorithm
GenF when run with internal random coins rf = rAf ⊕ rBf .

We refer to the Protocol 6.1 for the formal description of our scheme.

Protocol 6.1 1-out-of-2 OQFE Protocol, πMAL, against Malicious Alice

Common input: σ ← GZK(1λ)
Private Inputs:

1. Sender (Bob): single qubit state |ψin〉
2. Receiver (Alice): b ∈ {0, 1}

1. Alice’s Verification and Setup

1.1 Alice samples uniformly at random rAf from {0, 1}λ.

1.2 Alice runs Com(rAf )→ (comf , decf ) and sends comf to Bob.

1.3 Bob samples rBf uniformly at random from {0, 1}λ and sends it to Alice.

1.4 Alice now run computes rf = rAf ⊕ rBf . She then runs GenF using internal random coins rf and obtains
(k, tk, hp).

1.5 Alice now sends k to Bob and runs the interactive algorithm PZK on input the CRS σ, the statement to be
proven x = (k, rBf , comf ) and the witness w = (rAf , decf ).

1.6 Bob runs the interactive algorithm VZK on input the CRS σ and the statement x. Let c be the output of VZK.
If c = 0 then Bob aborts, otherwise he waits to receive another message from Alice.

1.7 Alice assigns θ2 = hp and encodes her input as φb := b · π
2

, uniformly samples rA
$← {0, 1} and computes the

angle δ (See, Eq 5) and sends δ to Bob. Bob continues to the next stage.

2. 4-states QFactory (Protocol 5.1)

3. Computation on Bob’s side (Steps 5-8 of Protocol 5.2)

4. Output on Alice’s side (Step 9 of Protocol 5.2)

Output: Alice obtains: sb = MZ [Rx
(
−π

2
· b
)
|ψin〉].

Theorem 5. Protocol πMAL securely computes ΞOQFE with one-sided simulation.

The correctness of the modified protocol (Theorem 2) follows from the correctness of the commitment
scheme COM and the correctness of Π.

To complete the proof we need to prove the following two lemmata: Lemma 1 and Lemma 2.

Lemma 1 (Simulation-based (computational) security against malicious Alice). The protocol πMAL is
simulation-based secure against malicious Alice.

Proof. We need to show that for any PPT adversary Alice∗, there exists a PPT adversary S for the ideal
model such that:

{IDEALΞOQFE,S(z),Alice(b, |ψin〉)}b,|ψin〉,z ≈c {REALπMAL,Alice∗(z),Alice(b, |ψin〉)}b,|ψin〉,z

In other words, to show that πMAL is simulation-based secure against malicious receiver Alice∗, we have to
prove that there exists a PPT simulator S, that by having access only to the ideal functionality ΞOQFE, can
simulate the output of any malicious Alice∗ who runs one execution of πMAL with an honest sender Bob. The
simulator S having oracle access to Alice∗, will run as a sender Bob in the real protocol πMAL. By studying
the real protocol, we notice that the 2 messages that Alice∗ sends to Bob (that she could be cheating about)
are k (the public key of the 2-regular trapdoor function) and δ (the angle that Alice∗ instructs Bob to use
in his computation and which should depend on her input b). One of the important elements to prove the

21



security is the Argument of Knowledge property of Π, which guarantees the existence of an extractor that,
given an acceptable proof for an NP statement x, it extracts the witness for x with overwhelming probability.
At a high level, our simulator works as follows. Upon receiving a proof Π from Alice∗, the simulator runs the
PoK extractor of Π thus obtaining rAf , computes rf = rAf ⊕ rBf and runs the algorithm GenF with internal
random coins rf . The output of GenF corresponds to (k, tk, hp), where θ2 = hp. Now using δ∗ and θ2, the
simulator can compute d := δ∗ − θ2 mod 4 and finally to extracts b∗ by computing b∗ = d mod 2.

Before providing the formal description of our simulator, we assume, without loss of generality, that the
AoK extractor of Π consists of two algorithms: (E1, E2). E1, on input the security parameter outputs a CRS
σ and an auxiliary information ξ (if any). E2 on input σ, ξ and the theorem x interacts (in a black-box way)
with the malicious prover to extract the witness for x. Formally, the simulator S does the following steps.

1. Computes (σ, ξ)← E1(1n) where σ represents the CRS

2. Receives comf from Alice∗

3. Samples rBf uniformly at random and sends it to Alice∗

4. Receives k and defines the statement x = (k, rBf , comf )

5. Runs E2(σ, ξ, x), where x = (k, rBf , comf ) thus obtaining w = (rAf , decf )

6. Verifies the decommitment phase, namely if Dec(comf , r
A
f , decf ) = 1.

7. If not, this means that Alice∗ cheated during the commitment and we abort

8. Computes rf = rAf ⊕ rBf
9. Runs GenF using the randomness rf , and since the randomness is fixed the output of GenF is

deterministic.

10. Denote this output (k̄, tk, hp) and assign θ2 = hp, as in the real protocol

11. Upon receiving σ∗, computes d = δ∗ − θ2 mod 4

12. Computes the input of Alice∗ as: b∗ = d mod 2

13. Invokes the ideal functionality ΞOQFE on input b∗ and obtains sb∗

14. Runs the simulator for semi-honest Alice (see the proof of Theorem 4): SA(b∗, sb∗) using the
randomness rf to compute the last round

We now show this simulator S is a good simulator, i.e. the output of S is computationally indistinguishable
from the output of Alice∗ in the real-world experiment. We note that there are only two scenarios in which
the simulator would fail:

1. Alice∗, to generate the public key k, uses a randomness r̄Af different than the one she committed to

(rAf ), or k is not in the domain of GenF .

2. Alice∗ biases the randomness used to run GenF by constructing an opening for the commitment which
depends on rBf .

Loosely speaking, the simulator fails if Alice∗ breaks the binding of the commitment or the argument of
knowledge property of Π.

i In the first scenario, we can immediately use Alice∗ to construct a reduction to the AoK property of Π.

ii In the second scenario, we want to use the malicious Alice to construct a reduction to the binding of
the commitment scheme. The reduction works as follows.

(a) Interact with Alice∗ as Bob would do, and upon receiving the proof Π, run the extractor to obtain
the opening of the commitment.

22



(b) Rewind Alice∗ and sample a randomness rBf
′

such that rBf
′ 6= rBf . Then send again rBf

′
to Alice∗.

(c) As a result we receive from Alice∗ a new tuple (k′, δ∗′).

(d) Run again the extractor of Π on input (σ, x′, zkp′) where x′ = (k′, rBf , comf ) and obtain a new

witness w′ = (rAf
′
, decf

′).

(e) If rAf
′ 6= rAf , then this means we have found 2 decommitments (rAf , decf ) and (rAf

′
, decf

′) for the

same commitment comf with rAf 6= rAf
′
, and as a result we break the binding property of COM. If

rAf
′ 6= rAf then restart from the beginning.

Lemma 2 (Privacy against Malicious Bob). The 1-out-of-2-OQFE Protocol πMAL is private against malicious
Bob.

Proof. The proof follows directly from Theorem 4 and the quantum secure zero-knowledge property of Π.

Finally, as a direct application of 1-out-of-2-OQFE, we show in Appendix F a construction for Oblivious
Transfer between a classical Alice and a quantum Bob over a classical channel where the security is in the
semi-honest model, statistical against Alice and post-quantum against Bob.

7 Oblivious Quantum Function Evaluation

In this section we describe the oblivious quantum function evaluation (OQFE) protocol achieving one-sided
simulation security. It is important to emphasize that the OQFE functionality is equivalent to a quantum
2-party computation (Q2PC) protocol between a fully classical party Alice and a quantum party Bob, where
only Alice receives the quantum computation output. The equivalence follows directly by considering the
Q2PC where the target computation is a universal function. Specifically, the Q2PC computation is chosen
as a quantum function g which takes 2 inputs: a classical input x (Alice’s input) and a quantum input |ψ〉
(Bob’s input) and the result of the computation g(x, |ψ〉) is obtained only by Alice (as Alice is classical, the
output of the Q2PC will also be classical).

As the two functionalities are equivalent, from a security point of view our Quantum 2PC protocol achieves
the same security as the OQFE protocol, namely: privacy against Bob (he learns nothing about Alice’s input
x) and simulation security against Alice (she learns nothing more than g(x, |ψ〉)). Due to this relation, in
this section, we will only focus on the OQFE setting.

The OQFE protocol, denoted as πOQFE, represents a generalization of the 1-out-of-2 OQFE construction
and similar to the Protocol 6.1, we require the following primitives:

1. A commitment scheme COM = (Com,Dec) that is hiding against quantum adversaries and computa-
tionally biding.

2. A trapdoor one-way function F = (GenF , EvalF , InvF ) for the construction of OQFE.

3. An argument of knowledge post-quantum zero-knowledge protocol Π? := (G?ZK, P
?
ZK, V

?
ZK) for the

NP-relation: Rel = {com, (dec,m) : Dec(com, dec,m) = 1} described earlier.

4. An argument of knowledge post-quantum zero-knowledge protocol Π := (GZK, PZK, VZK) for the NP-
relation: Relf described earlier.

5. An argument system post-quantum zero-knowledge protocol Π := (G′ZK, P
′
ZK, V

′
ZK) for the NP-relation:

Rel′ = {(δ, π, sZ , sX , com), (r, θ, φ′, dec) : δ = φ′ + θ + rπ and φ′ = (−1)s
X

φ +
sZπ and Dec(com, dec, φ) = 1}.
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Additionally, we require the universal blind quantum computation (UBQC) protocol with classical output
(Protocol 2 of [23]) as a sub-module. The UBQC protocol is interactive and is based on the measurement-based
model of quantum computation. In this model, one can represent an arbitrary quantum function f equivalently
as a tuple (Gn×m,Φ, g) where Gn×m is a highly entangled quantum state (often represented as a graph with
dimension (n,m) and is also known as graph state), a sequence of classical angles: Φ := {φi,j} for i ∈ [n]
and j ∈ [m], where φi,j ∈ {0, π4 , · · · ,

7π
4 }, and g denotes a set of bits dictating the dependency sets (sXi,j and

sZi,j), known to both parties, which are required to perform certain Pauli corrections to obtain the desired
deterministic computation. We assume that the bits corresponding to g are known to both Alice and Bob and
for our purposes we can as well ignore it. Similarly, we can fix the graph state Gn×m, except its dimension
(n,m), to say brickwork state [23] or cluster state [49] as both of them are known to be universal for quantum
computation with (X,Y )-plane measurements [49, 50]. Similarly, we parametrize Bob’s input quantum state
|ψ〉 as: Φin = {φ0,j}j∈[m] (modulo graph state and flow bits). For more details on measurement-based
quantum computation we refer the readers to this excellent tutorial [51].

Protocol 7.1 OQFE Protocol, πOQFE, with Classical Alice and Quantum Bob

Common input: σ ← GZK(1λ), σ? ← G?ZK(1λ), σ′ ← G′ZK(1λ)
Private Inputs:

1. Sender (Bob): |ψ〉 an m-qubit state represented as the set of angles Φin := {φ0,j}j .
2. Receiver (Alice): f an n-qubit unitary represented as the set of angles Φ := {φi,j}i,j of a one-way quantum

computation over a brickwork state/cluster state [50], of the size n×m, along with the dependencies X and Z
obtained via flow construction [52].

1. Preliminary phase

1.1 Alice samples uniformly at random rAf,i,j ← {0, 1}λ and ri,j ← {0, 1} for i ∈ [n] and j ∈ [m].

1.2 For each i ∈ [n] and j ∈ [m], Alice computes Com(r
(i,j)

fA
) → (com

(i,j)
f , dec

(i,j)
f ) and Com(φi,j) →

(com(i,j), dec(i,j)) and sends (com
(i,j)
f , com(i,j)) to Bob.

1.3 For each i ∈ [n] and j ∈ [m], Alice runs P ?ZK on input σ? the statement x := com(i,j) and the witness
(dec(i,j), φi,j), and Bob runs V ?ZK on input σ? and the statement x. If V ?ZK outputs 0 then Bob stops, otherwise
he continues with the following steps.

1.4 For each i ∈ [n] and j ∈ [m], Bob samples rBf,i,j uniformly at random from {0, 1}λ. We denote by rBf :=
{rBf,i,j}i,j . Bob sends rBf to Alice.

1.5 Alice computes rf,i,j = rAf,i,j ⊕ rBf,i,j . She then runs GenF n ·m times using internal random coins rf,i,j and

obtains (k(i,j), t
(i,j)
k , hp(i,j)) for i ∈ [n] and j ∈ [m]. Denote by k := {k(i,j)}i,j is the concatenation of the

n ·m public keys.

1.6 For each i ∈ [n] and j ∈ [m]:

1.6.1 Alice runs PZK on input σ, x(i,j) = (k(i,j), r
(i,j)

fB
, com

(i,j)
f ), w = (r

(i,j)

fA
, dec

(i,j)
f ) and Bob runs VZK on input

σ, x(i,j).

1.6.2 If VZK outputs 0 then Bob aborts. Otherwise, he continues to the next step.

2. QFactory and UBQC

2.1 For each i ∈ [n] and j ∈ [m], Alice on input t
(i,j)
k , and Bob on input k(i,j) run an instances of 8-states

QFactory protocol10 (in sequence) to obtain θi,j on client’s side and
∣∣+θi,j

〉
on server’s side, where

θi,j ← Zπ
4

, i ∈ [n], j ∈ [m]. For each qubit
∣∣+θi,j

〉
Bob samples uniformly rBi,j

$← {0, 1} and applies

controlled Pauli-X, XrBi,j to
∣∣+θi,j

〉
.

2.2 Bob entangles all these qubits by applying controlled-Z gates between them in order to create a graph
state Gn×m

2.3 For j ∈ [m] and i ∈ [n]:

10An 8-states QFactory protocol is combination of two runs of 4-states QFactory Protocol 5.1 given in [1]. The only difference
between the QFactory Protocol 5.1, and the one used in our construction is that Alice does not execute the first step (a), since
the key for the trapdoor OWFs has been already generated as described in the previous steps.
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2.3.1 Alice computes δi,j = φ′i,j+θi,j+ri,jπ, where φ′i,j = (−1)s
X
i,jφi,j+sZi,jπ and sXi,j and sZi,j are computed

using the previous measurement outcomes and the X and Z dependency sets. Alice then sends the
measurement angle δi,j to Bob.

– Alice runs P ′ZK on input the CRS σ, the statement to be proven x := (δi,j , πi,j , s
Z
i,j , s

X
i,j , comi,j) and

the witness w := (ri,j , θi,j , φ
′
i,j , deci,j), and Bob runs the interactive algorithm VZK, on input the CRS

σ and the statement x. Let b be the output of V ′ZK. If b = 0 then Bob aborts, otherwise he continues
as follows.

2.3.2 Bob updates the measurement angles δ′i,j := (−1)r
B
i,j δi,j (as in Protocol 6.1). Bob measures the

qubit
∣∣+θi,j

〉
in the basis {

∣∣+δ′i,j

〉
,
∣∣−δ′i,j〉} and obtains a measurement outcome si,j ∈ {0, 1}. Bob

updates s′i,j = si,j ⊕ rBi,j . Bob sends the updated measurement result s′i,j to Alice.

2.3.3 Alice computes s̄i,j = s′i,j ⊕ ri,j .

Output: Alice obtains the output f(|ψ〉) as the concatenation of {s̄i,m}i.

Theorem 6 (Correctness). In an honest run of the OQFE Protocol 7.1, when both parties follow the protocol
specifications, Alice obtains the outcome f(|ψ〉), where f is Alice’s input and |ψ〉 is Bob’s input.

Proof. The correctness of OQFE Protocol 7.1 follows from the correctness proof of 1-out-of-2 OQFE (Theorem 2)
and the correctness of the UBQC protocol [23].

Theorem 7. Protocol πOQFE securely computes FOQFE with one-sided simulation.

To complete the proof we need to prove the following two lemmata: Lemma 3 and Lemma 4.

Lemma 3 (Privacy against Malicious Bob). The OQFE Protocol 7.1 is private against malicious Bob.

Proof. This results from the privacy against Bob of the protocol resulting from combining the quantum-client
UBQC protocol with QFactory proven in Theorem 5.3 of [18] together with the zero-knowledge property of Π
and Π′, and the hiding of the commitment scheme.

Lemma 4 (Simulation-based Security Malicious Alice). The OQFE Protocol 7.1 is simulation-based secure
against malicious Alice.

Proof. We need to show that for any adversary Alice∗ there exists a PPT adversary S for the ideal model
such that:

{IDEALFOQFE,S(z),Alice(Φ,Φin)}Φ,Φin,z ≈c {REALπOQFE,Alice∗(z),Alice(Φ,Φin)}Φ,Φin,z

The proof will follow closely the steps of the proof of Theorem 5, hence we only provide a sketch of the
proof highlighting the main differences.

We have to prove that there exists a PPT simulator S, that by having access only to the ideal functionality
FOQFE, can simulate the output of any malicious Alice∗ who runs one execution of πOQFE with an honest
sender Bob. The simulator S having oracle access to Alice∗, will run as a sender Bob in the real protocol.
The simulator runs the argument of knowledge extractor for Π? (which exists by definition), and extracts the
input of the adversary (i.e., it extracts φi,j for all i ∈ [n], j ∈ [m]). The simulator now can invoke the ideal
functionality FOQFE to obtain the output. Then the simulator extracts the trapdoors for all the trapdoor
OWFs keys following the same procedure of the simulator of Theorem 5, to make sure that Alice? was
behaving honestly.

From this point on we are guaranteed that Alice? behaves honestly by the soundness of Π′. Moreover,
the soundness of Π′ guarantees that the input that Alice? is using to compute the values {δi,j}i∈[n],j∈[m] is
compatible with the input {φi,j}i∈[n],j∈[m] extracted by the simulator. Hence, the simulator can act as the
semi-honest simulator for the UBQC stage of the protocol.
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A Computational Complexity Classes

We provide some well-known relations and the class of languages associated with it. Classically, a relation
over finite sets {0, 1}∗ × {0, 1}∗ is a subset R ⊆ {0, 1}∗ × {0, 1}∗, and the language associated with R is
LR = {x : ∃y : (x, y) ∈ R}.

Definition 13 (NP). The class NP consists of all languages L ⊆ {0, 1}∗ for which there exists a uniformly
generated family of classical, deterministic, poly-size circuits {Vx : x ∈ {0, 1}∗} and a polynomial m, such
that the following holds:

1. (Completeness) For all x ∈ L there exists an m(|x|)-bit witness w such that Vx(w) = 1

2. (Soundness) For all x /∈ L and for all m(|x|)-bit witness w, Vx(w) = 0.

Definition 14 (MA). The class MA consists of all languages L ⊆ {0, 1}∗ for which there exists a uniformly
generated family of classical, randomized, poly-size circuits {Vx : x ∈ {0, 1}∗} and a polynomial m, such that
the following holds:

1. (Completeness) For all x ∈ L there exists an m(|x|)-bit witness w such that Pr(Vx(w) = 1) ≥ 2/3

2. (Soundness) For all x /∈ L and for all m(|x|)-bit witness w, Pr(Vx(w) = 0) ≥ 1/3.

Definition 15 (MA-relation). A relation R is an MA-relation if there is a PPT Verifier V such that:

1. (Completeness) (x,w) ∈ LR =⇒ Pr
[
V|x|(x,w) = 1

]
≥ 2/3

2. (Soundness) x /∈ LR =⇒ Pr
[
V|x|(x,w) = 1

]
≤ 1/3.

where V = {Vn} are the uniformly generated family of circuits.

In the quantum case we replace the “witness” w (the second argument) with a quantum state |ψ〉 and
define the class QMA with polynomial-size quantum circuits Q = {Qn}n∈N such that for every n, Qn takes
as input a string x ∈ {0, 1}n and a quantum state σ on p(n) qubits (for some polynomial p(n)) and returns a
single bit as output.

Definition 16 (QMA). The class QMA consists of all languages L ⊆ {0, 1}∗ for which there exists a uniformly
generated family of quantum poly-size circuits {Qx : x ∈ {0, 1}∗} and a polynomial m, p where each Vx has
m(|x|) input qubits, k(|x|) auxiliary qubits and its output is given by the first output qubit such that the
following holds:

1. (Completeness) For all x ∈ L there exists an m(|x|)-qubit witness |ψ〉 such that Pr(Vx accepts |ψ〉) ≥ 2/3

2. (Soundness) For all x /∈ L and for all m(|x|)-qubit witness |ψ〉, Pr(Vxaccepts |ψ〉) ≤ 2/3.

Note that the completeness and soundness can be amplified to 1− 2−poly(|x|) and 2−poly(|x|), respectively.
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Interactive quantum machines [38, 40]. An interactive quantum machine is a machine M with two
registers: a register S for its internal state, and a register N for sending and receiving messages (the network
register). Upon activation, M expects in N a message, and in S the state at the end of the previous activation.
At the end of the current activation, N contains the outgoing message of M , and S contains the new internal
state of M . A machine M gets as input: a security parameter µ ∈ N, a classical input x ∈ {0, 1}∗, and quantum
input |Φ〉, which is stored in S. Formally, machine M is specified by a family of circuits {Mµx}µ∈N,x∈{0,1}∗ ,
and a family of integers {rµx}µ∈N,x∈{0,1}∗ . Mµx is the quantum circuit that M performs on the registers S
and N upon invocation. rµx determines the total number of messages/invocations. We might omit writing
the security parameter when it is clear from the context. We say that M is quantum-polynomial-time (QPT)
if the circuit Mµx has polynomial size in µ+ |x|, the description of the circuit is computable in deterministic
polynomial time in µ+ |x| given µ and x, and rµ,x is polynomially bounded in µ and x.

Usually, both these registers are assumed to be quantum but for this work, we require the register N
to be strictly classical. In this work, we model one of the parties (Bob) as a quantum interactive machine
while the other party (Alice) is only required to perform classical (stochastic) operations. We will denote the
interactive machines for Alice and Bob as A and B, respectively, with internal registers S and S′ and the
classical network register as N and N′, respectively. Finally, we assume that Alice (completely classical party)
sends the first message as well as receives the last message.

Oracle access to an interactive (quantum) machine. We say that a (quantum) algorithm A has
oracle access to an interactive (quantum) machine M (and we write this as AM , or sometimes A|M〉 to
emphasize that M is a quantum machine and that oracle access includes the ability to apply the inverse
of M) to mean the following. Besides the security parameter and its own classical input x, we allow A to
execute the quantum circuit Mµx specifying M , and its inverse (recall that these act on the internal register S
and on the network register N of M). Moreover, we allow A to provide and read messages from M (formally,
we allow A to act freely on the network register N). We do not allow A to act on the internal register S of M ,
except via Mµx or its inverse.

B Cryptographic Primitives

Definition 17 (k-regular). A deterministic function f : D → R is k-regular if ∀y ∈ Im f , we have
|f−1(y)| = k.

Definition 18 (Trapdoor One-Way Function). A family of functions {fk : D → R} is a trapdoor function
if:

• There exists a PPT algorithm Gen which on input 1n outputs (k, tk), where k represents the index of
the function.

• {fk : D → R}k∈K is a family of one-way functions, namely:

– There exists a PPT algorithm that can compute fk(x) for any index k, outcome of the PPT
parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can invert fk with at most negligible probability over the choice of k:
Pr

k←Gen(1n)
x←D

rc←{0,1}∗

[f(A(k, fk(x)) = f(x)] ≤ negl(n)

where rc represents the randomness used by A

• There exists a PPT algorithm Inv, which on input tk (which is called the trapdoor information) output
by Gen(1n) and y = fk(x) can invert y (by returning all preimages of y11) with overwhelming probability
over the choice of (k, tk) and uniform choice of x.

11While in the standard definition of trapdoor functions it suffices for the inversion algorithm Inv to return one of the preimages
of any output of the function, in our case we require a two-regular trapdoor function where the inversion procedure returns both
preimages for any function output.
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Instantiation. A trapdoor one-way function can be instantiated from the construction of [53] and a
2-regular variant can be found in [1].

Definition 19 (Hardcore Predicate). A function hc : D → {0, 1} is a hardcore predicate for a function f
if:

• There exists a PPT algorithm that, for any input x, can compute hc(x);

• Any QPT algorithm A when given f(x), can compute hc(x) with negligible better than 1/2 probability:
Pr

x←D(n)
rc←{0,1}∗

[A(f(x), 1n) = hc(x)] ≤ 1
2 + negl(n), where rc is the randomness used by A;

Definition 20 (Commitment Scheme). CS = (Sen,Rec) is a 2-phase protocol between 2 polynomial-time
interactive algorithms: sender Sen and receiver Rec. In the commitment phase Sen with input m interacts
with Rec to produce a commitment com and the private output d of Sen.

1. Correctness: On the decommitment phase, Rec on input m and d accepts m as decommitment of
com.

2. Computational (post-quantum) Hiding: For any QPT adversary Rec∗ interacting with Sen, the
probability distributions describing the output of Rec∗: {〈Sen(0), Rec∗〉} and {〈Sen(1), Rec∗〉} are
computationally indistinguishable.

3. Statistical Binding: For any commitment com generated during the commitment phase by a malicious
unbounded sender Sen∗, there exists negligible negl such that Sen∗ with probability at most negl outputs
2 decommitments (m0, d0) and (m1, d1) with m0 6= m1 such that Rec accepts both decommitments.

For non-interactive commitment scheme (Com,Dec) we use the notation:

1. Commitment phase: Com(m)→ (com, dec), where com is the commitment of the message m and dec
is the corresponding decommitment information.

2. Decommitment phase: Dec(com, dec,m) = 1

Instantiation. A post-quantum hiding, statistical binding commitment scheme can be instantiated from
the scheme proposed in [47].

C Security and Construction of required primitives for QFactory
from [1]

In any run of the protocol, honest or malicious, the state that Alice believes that Bob has is the one described
in Protocol 5.1. Therefore, the task that a malicious Bob wants to achieve, is to be able to guess, as good
as it can, the description of the output state that Alice (based on the public communication) thinks Bob
has produced. In particular, in our case, Bob needs to guess the bit θ2 (corresponding to the basis) of the
(honest) output state.

Definition 21 (4 states basis blindness). We say that a protocol (πA, πB) achieves basis-blindness with
respect to an ideal list of 4 states
S = {Sθ1,θ2}(θ1,θ2)∈{0,1}2 if:

• S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SB1B2
∈ S | ((θ1, θ2), |φ〉)← (πA‖πB)] ≥ 1− negl(n)

• and no information is leaked about the index bit θ2 of the output state of the protocol, i.e for all QPT
adversary A:

Pr
[
θ2 = θ̃2 | ((θ1, θ2), θ̃2)← (πA‖A)

]
≤ 1/2 + negl(n)
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Theorem 8 (4-states QFactory is secure ([1])). Protocol 5.1 satisfies 4-states basis blindness with respect to
the ideal list of states:
S = {|+〉 , |−〉 ,

∣∣+π/2

〉
,
∣∣+3π/2

〉
}.

An 8-state QFactory protocol producing states in the set {kπ/4}k∈{0,...,7} can be obtained from 2 runs of
4-state QFactory Protocol 5.1 given in [1].

C.1 Generic Construction

We will denote with g the injective, homomorphic, post-quantum OWF and with h the hardcore predicate of
g, which is also homomorphic with respect to the operation of g. In more details, we require:
Consider a fixed element of the domain of g, x0 and for now a public function h having the same domain as g
Then, we define the function f(x, c) = g(x+ c · x0), where c ∈ {0, 1}. As g is injective, we can see that f is
2-regular (and one-way). Now, this function needs to be constructed and applied by Bob, but we don’t want
to reveal him the value of x0, which is where the homomorphic property (for a one-time operation) steps in:

g(x) ∗ g(x0) = g(x+ x0) for any operations “*” and “+”

Then, to compute f : f(x, c) = g(x)∗ (c ·g(x0)), therefore it is sufficient to send him g(x0) (and the description
of g) for Bob to apply f . And as g is one-way, then x0 is also hidden from Bob.
Then, after applying a unitary corresponding to function f and a series of measurements, Bob obtains the
quantum state: HB1XB2 |0〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉}, a single qubit gate whose description is represented by
the 2 bits B1 and B2. We call B1 the basis bit, and B2 the output bit. The target is to ensure that B1 is
completely hidden from Bob.
The formal description of the 2 bits is the following:

B1 = h(x+ x0)⊕ h(x)

B2 = (B1 · 〈b, (x⊕ (x+ x0)〉)⊕ h(x)h(x+ x0)
(16)

where x is a randomly chosen preimage of g and b is a random bit-string.
But now, as we were saying we wanted to ensure B1 is completely hidden from Bob who only received from
Alice g(x0).
The, if we impose that h is homomorphic in the sense:

h(x+ x0)⊕ h(x) = h(x0)

, then we have:
B1 = h(x0)

And if additionally, we impose that h is a hardcore predicate with respect to function g, then Bob while he
has g(x0) he knows nothing about B1 = h(x0).
Moreover, as B1 = h(x0), then Alice knows from the very beginning the value of the basis bit.

C.2 Function Description

The generation algorithm GenF will output:

1. k - the public description of a 2-regular trapdoor (post-quantum) function fk;

2. tk - the trapdoor information corresponding to fk;

3. hp - a hardcore predicate associated with fk

To construct GenF we rely on a family of injective homomorphic trapdoor functions G = {gk′}k′ and a
hardcore predicate h for G.
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GenF (1λ)

1 : (K′, tK′)←$GenG(1λ)

2 : z0 ←$Dom(gK′)

3 : y0 ← gK′(z0)

4 : tk ← (tK′ , z0)

5 : k ← (K′, y0)

6 : fk(z, c) := gK′(z) + c · y0 = gK′(z + c · z0) , where c ∈ {0, 1}
7 : hp← h(z0)

8 : return (k, tk, hp)

To construct the injective homomorphic trapdoor functions G = {gk′}k′ we rely on the construction of
[53].

In other words, to sample a function fk, we first sample a matrix K ′ ∈ Zm×nq using the construction of
[53] (that provides an injective and trapdoor function), a uniform vector s0 ∈ Znq , an error e0 ∈ Zmq according
to a small Gaussian12 and a random bit d0, and we compute:

z0 = (s0, e0, d0)

y0 = K ′s0 + e0 + d0 ×
(
q
2 0 . . . 0

)T
gK′(s, e, d) = K ′s+ e+ d×

(
q
2 0 . . . 0

)T (17)

The function fk will then be defined as follow:

fk(s, e, c, d) = K ′s+ e+ c× y0 + d×
(
q
2 0 . . . 0

)T
(18)

Note that c and d are bits, and the error e is chosen in a bigger space13 than e0 to ensure that the function
fK,y0 has two preimages with good probability. Moreover, if we define h(s, e, c, d) = d, it is easy to see
that the hardcore property will directly come from the fact that under LWE assumption, no adversary can
distinguish a LWE instance K ′s0 + e0 from a random vector, so it is not possible to know if we added or not
a constant vector.

D From Secure Two-party Computation to Argument of Knowl-
edge

Let F (x1, x2) be a two-party functionality run between parties P1 holding input x1 and P2 holding input x2.
In the ideal world, Pi with (i ∈ {1, 2}) sends its input xi to the F and obtains only y = F (x1, x2). We say
that a protocol Π securely realizes F if the view of any malicious PPT P ?i executing Π with an honest Pj
with i 6= j combined with the output of Pj (if any) can be simulated by a PPT simulator that has only access
to F and has oracle access to P ?i .

This security requirement is formalized via the ideal/real-world paradigm. In the ideal world, the
functionality is implemented by a trusted party that takes the inputs from P1 and P2 and provides the output
to them and is therefore secure by definition. A real-world protocol Π securely realizes the ideal functionality
F , if the following conditions hold.

The joint view of the output of any malicious sender P ?i running one execution of Π with Pi−1 and the
output of Pi−1 can be simulated by an expected PPT simulator Sim that has only access to the ideal world
functionality F and oracle access to P ?i .

Definition 22 (Black-box 2-party computation [41]). Let F be any PPT two inputs functionality. We say
that a protocol Π securely computes F with if for every b ∈ {0, 1}, every non-uniform PPT adversary P ?i
controlling Pi in the real model, there exists a non-uniform expected PPT adversary Simi (having black-box
access to Pi) for the ideal world such that:

12but big enough to make sure the function is secure
13but small enough to make sure the partial functions f(·, ·, c, ·) are still injective
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{REALΠ,P?i (z)(1
λ)}z∈{0,1}λ ≈ {IDEALF,Simi(z)(1

λ)}z∈{0,1}λ

where REALΠ,P?i (z)(1
λ) denotes the distribution of the output of the adversary P ?i (controlling the Pi) after

a real execution of protocol Π. IDEALF,Simi(z)(1
λ) denotes the analogous distribution in an ideal execution

with a trusted party that computes f for the parties and hands the output to the them.

D.1 2-party Computation implies Arguments of Knowledge

In this section, we consider the zero-knowledge functionality FZK. FZK is parametrised by an NP-relation R
and takes inputs only from one party called the prover. FZK, on input a statement x and a witness w, checks
if (x,w) ∈ R. If that is the case, then FZK outputs 1 to the second party (called verifier), else it outputs 0.

Theorem 9. Any 2-party computation protocol Π that realizes the functionality FZK accordingly to Def 22 is
also an argument of knowledge with negligible knowledge error.

Proof. To prove our theorem we need to show that Π satisfies the property of completeness and knowledge
soundness. We property of completeness comes immediately from the Def. 22. Hence, we just need to exhibit
an extractor Extract. By assumption, we know that for every malicious party acting as the prover P? in Π,
there exists an expected PPT simulator SimP such that

{REALΠ,P?(z)(1
λ)}z∈{0,1}λ ≈ {IDEALFZK,SimP (z)(1

λ)}z∈{0,1}λ

where REALΠ,P?(z)(1
λ) denotes the distribution of the output of the adversarial prover P? after a real

execution of protocol Π. IDEALFZK,SimP(z)(1
λ) denotes the analogous distribution in an ideal execution with

a trusted party that computes FZK for the parties and hands the output to the them.
Our PoK extractor Extract, then simply runs SimP , and when SimP provides the input (x,w) to the ideal

functionality FZK, Extract checks if (x,w) ∈ R, and if it is the case then it outputs w. We note that SimP
makes only black-box use of the adversary P , hence, so does Extract (that makes black-box use of SimP).

We now just need to argue that Extract runs in expected polynomial time and it extracts a valid witness
with probability negligibly close to p, where p is the probability that the verifier, in the real world experiment,
outputs 1. Without loss of generality, we assume that |x| and λ are polynomially related.

By assumption, we know that SimP successfully extracts the input w such that (x,w) ∈ R from the
adversarial prover P? with probability (at least) negligible close to p. Indeed, if this does not hold, then
neither the security of Π would hold.

Hence, the probability that SimP successfully extracts a witness is negligibly close to the probability p,
for which the verifier outputs 1 in the real world.

E 1-out-of-2 OQFE Correctness: Proof of Theorem 2

Theorem 2 (Correctness) In an honest run of 1-out-of-2 OQFE Protocol 5.2, when both parties follow the
protocol specifications, Alice obtains the outcome sb = MZ [Rx

(
−b · π2

)
|ψin〉], where b is Alice’s input and

|ψin〉 is Bob’s input.

Proof. Using the correctness of the 4-states QFactory protocol (Protocol 5.1), Alice fixes θ2 ∈ {0, 1} and
Bob obtains at the end of the protocol the state |outqf 〉 = |+θ〉 where θ can be described using the 2 bits
θ1θ2 ∈ {0, 1}2.
Now let us examine the computations performed in Steps 3-7 by Bob.
First Bob computes:

|ψ0〉 = XrB |+θ〉 =
∣∣+(−1)rB θ

〉
(19)

Then in Step 4, he performs:
(MZ ⊗ I2)(H1 ⊗ I2)(CZ |ψin〉 ⊗ |ψ0〉) (20)

34



If the measurement outcome is m0 the unmeasured qubit |ψ1〉 becomes:

|ψ1〉 = Xm0R((−1)m0⊕ rBθ)H |ψin〉 (21)

By using the notation m′0 = m0 ⊕ rB :

|ψ1〉 = Xm0R((−1)m
′
0θ)H |ψin〉 (22)

Bob uses now the measurement angle received from Alice:

δ = φb + θ2 ·
π

2
+ rA · π = (b+ θ2) · π

2
+ rA · π (23)

Then, Bob computes computes δ′ = (−1)rB · δ and performs the following quantum measurement in Step 5:

(MZ ⊗ I2)(H1R1(−δ′)⊗ I2) [CZ(|ψ1〉 ⊗ |+〉)] (24)

If the measurement outcome is m1 the unmeasured qubit |out′c〉 is equal to:

|out′b〉 = Xm1HR(−δ′) |ψ1〉 (25)

By replacing δ′ and |ψ1〉 we get:

|out′b〉 = Xm1HR
(
−(−1)rB ((b+ θ2) · π

2
+ rA · π)

)
Xm0R

(
(−1)m

′
0θ
)
H |ψin〉

= Xm1Zm0HR
[
−(−1)rB⊕m0((b+ θ2) · π

2
+ rA · π)

]
·

·R
[
(−1)m

′
0(θ1 · π + θ2 ·

π

2
)
]
H |ψin〉

= Xm1Zm0HR
[
(−1)m

′
0(−(b+ θ2) · π

2
− rA · π + θ1 · π + θ2 ·

π

2
)
]
H |ψin〉

= Xm1Zm0HR
[
−(−1)m

′
0b · π

2
+ (−1)m

′
0(θ1 − rA) · π

]
H |ψin〉

= Xm1Zm0HR
[
−(−1)m

′
0b · π

2

]
R
[
(−1)m

′
0(θ1 − rA) · π

]
H |ψin〉

(26)

Using the relations: R((−1)b1b2π) = R(b2π) = Zb2 and R((−1)b1b2
π
2 ) = Zb1b2R(b2

π
2 ), for any b1, b2 ∈ {0, 1}

we get:

|out′b〉 = Xm1Zm0HZm
′
0 · bR

(
−b · π

2

)
R
[
(−1)m

′
0(θ1 − rA) · π

]
H |ψin〉

= Xm1⊕ (m′0 · b)Zm0HR
[
−b · π

2

]
Zθ1⊕rAH |ψin〉

= Xm1⊕ (m′0 · b)⊕ θ1⊕ rAZm0HR
(
−b · π

2

)
H |ψin〉

(27)

Then, Bob applies the final corrections in Step 6:

|outb〉 = Xm1Zm0 |out′b〉

|outb〉 = X(m′0 · b)⊕ θ1⊕ rAHR
(
−b · π

2

)
H |ψin〉

(28)

In step 7, Bob measures this quantum state in the computational basis and sends the outcome s̄b together
with m′0 = m0 ⊕ rB and mqf to Alice.

s̄b = MZ |outb〉 = MZX
(m′0 · b)⊕ θ1⊕ rAHR

(
−b · π

2

)
H |ψin〉

s̄b = [(m′0 · b) ⊕ θ1 ⊕ rA]⊕MZHR
(
−b · π

2

)
H |ψin〉

(29)

On Alice side, in Step 8, she first uses her trapdoor key tk and computes from mqf the value of θ1.
Then, we can see that Alice by computing: sb = s̄b ⊕ (m′0 · b) ⊕ θ1 ⊕ rA she will obtain:

sb = MZHR
(
−b · π

2

)
H |ψin〉 = MZRx

(
−b · π

2

)
|ψin〉 (30)
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F 1-out-of-2 OT from 1-out-of-2 OQFE

Oblivious transfer (OT) is an important two-party cryptographic primitive that is used in a wide range of
other (complex) cryptographic protocols including secure function evaluation, key exchange, etc.

Definition 23. (Ideal Functionality FOT) A 1-out-of-2 oblivious transfer functionality, ot, is defined as
follows. When both the parties (A and B) are honest then FOT takes the input b and (s0, s1) from Alice and
Bob, respectively and outputs sb at Alice’s side and nothing, ⊥, on Bob’s side.

((s0, s1), b)→ (⊥, sb) (31)

We briefly sketch a simple constructions of 1-out-of-2 OT from 1-out-of-2 OQFE. The security can be
shown similar to the 1-out-of-2 OQFE case, however, we won’t present rigorous security analysis in this work.
This is because our main idea here is to show that one can in principle obtain other important cryptographic
primitives such as1-out-of-2 OQFE rather than providing a non-trivial construction of OT. Interestingly,
our construction of quantum OT relies only on a classical channel and a single quantum party. To be
precise, our construction relies on assumption from classical-client remote state preparation, in addition
to the classical channel, which in turn can be reduced to variants of trapdoor claw-free family [54, 17] or
injective homomorphic one-way functions [1]. We, therefore, leave further exploration of OQFE applications
and their use cases for future work.

F.1 Our Construction

Our construction is modular in design and require only 2 runs of 1-out-of-2 OQFE, where Alice is classical
and Bob is quantum, as shown in the figure below. Bob encodes his classical input (s0, s1) as quantum states,
simply as (|s0〉 , |s1〉). Alice’s input are b and b ⊕ 1 corresponding to two runs of OQFE. If b = 0, Alice
obtains f0(|s0〉) and f1(|s1〉); otherwise, she obtains f1(|s0〉) and f0(|s1〉) and we note that f0(|sb〉) = sb.

1-out-of-2 OT

Alice(b) Bob(s0, s1)

1-out-of-2 OQFE
b |s0〉

fb(|s0〉)

1-out-of-2 OQFE
1⊕ b |s1〉

f1⊕b(|s1〉)

if (b = 0) return

s0 ← f0(|s0〉)
else return

s1 ← f0(|s1〉)

Let’s assume the case of semi-honest adversaries. Loosely speaking, Alice cannot obtain any information
from f1(|sb〉) and this can be seen by expanding the output obtained by Alice:

f1(|sb〉) = MZRX

(
−π

2

)
|sb〉 = MZ

[
1− i

2
|sb〉+

1 + i

2
|sb ⊕ 1〉

]
Pr[f1(|sb〉) = 0] =

|1− i|2

4
+
|1 + i|2

4
=

1

2
= Pr[f1(|sb〉) = 1].

(32)
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Moreover, it can also be shown that Bob cannot learn anything from the 2 runs of 1-out-of-2 OQFE
with Alice’s inputs b and b⊕ 1. To see this, note that the only messages received by Bob are, classical and
depending on the values of b, the 2 angles - δ for the first run and δ′ for the second run along with classical
transcript corresponding to remote state preparation. The latter encodes θ2 and θ′2, however, from the
security of QFactory (Theorem 8) we have that θ2 and θ′2 are independent and unknown to Bob. Additionally,
rA and rA

′ are uniformly and independently sampled by Alice. Recall that δ and δ′ encrypts (with one-time
pad) Alice’s input b using θ2, r

′
A and θ′2, r

′
A, respectively, in the following way:

δ = b+ θ2 + 2rA mod 4

δ′ = 1 + b+ θ′2 + 2rA
′ mod 4

(33)

Therefore, δ and δ′ does not reveal anything about b to Bob. The above informal argument about security
only works in the semi-honest case, because for instance if Alice runs both runs of 1-out-of-2 OQFE with the
same input b, then she obtains both secrets s0 and s1. Security against malicious Alice can be achieved using
similar tools and techniques of commitment scheme and zero knowledge proof of knowledge techniques that
is employed to uplift the security of OQFE (section 6).
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