
Multivariate Cryptographic Primitive based on the
product of the roots of a polynomial over a field

Borja Gómez
kub0x@elhacker.net

October 15, 2020

Abstract

Cryptographic Primitives in Multivariate Public Key Cryptography are of rele-
vant interest, specially in the quadratic case. These primitives classify the families of
schemes that we encounter in this field. In this paper, the reader can find a new primi-
tive based on the product of the roots of a polynomial over a field, where the coefficients
of this polynomials are the elementary symmetric polynomials on n variables, which
guarantees a solution when inverting the scheme. Moreover, a cryptosystem and a dig-
ital signature scheme are built on top of this primitive, where distinct parametrizations
and criteria that define the schemes are commented, along with applications of attacks
available in literature.

1 Introduction

A small summary is done here. The cryptographic primitive is introduced in plus the cryp-
tosystem and digital signature are explained in section 2, section 3 and section 4. There
are several cases of parametrizations that are only commented but not developed during
this research. Continuing, the primitive supports a special parametrization that allows the
cryptographer to obtain a system of equations having degree d over Fp for d = 2 in sec-
tion 5, which guards similarity with (un)balanced Oil-Vinegar schemes, but it’s internals are
completely different. The public key’s size complexity is commented in section 6.

Multiples strategies for speeding up the Public Key generation are developed in section 9,
which results in ≈ 40 seconds to compute the public key for the recommended parametriza-
tion . In section 7 the relevancy of basing the scheme in the IP2 assumption is commented.
Complexity of Gröbner Basis computations that apply for the chosen parametrization are
given in section 8. Finally, the reader can toy with an example built using Mathematica in
section 10, where the code is also given.

1.1 Background

Given a polynomial p(t) =
∑n−1

i=0 a0t
i ∈ Fq[t] and its analogue polynomial g(t) expressed as

the product of its roots, so p(t) = g(t) =
∏n−1

i=0 (t−xi), xi ∈ Fq it results that we can express
p(t) as g(t): a monic univariate polynomial on the variable t with the first n elementary
symmetric polynomials as coefficients. Historically, the roots of a polynomial p(t) have been
studied from the viewpoint of the product of its roots. For example, we can relate the
coefficients of a polynomial p(t) with the first n elementary symmetric polynomials where
the variables are the roots xi s.t p(xi) = 0. Extending to Vieta’s Formulas, this means that
the product of the roots of p(x) and the coefficients are strongly related.

2 The MVSYM primitive

From now, denote the polynomial g(t)− td as G(X, t) where t is the univariate variable and
X = (x1, . . . , xn) are the roots. Note how the monomial td has been eliminated, as it won’t
contribute to the cryptosystem. Following, G(X, t) serves as a trapdoor for hiding the roots
of a polynomial p(x) ∈ Fq[X] since there exists efficient root finding algorithms over fields
(and their extension). A natural question is to ask ourselves if G(X, t) could be placed as

1

mailto:kub0x@elhacker.net

the central polynomial map in a MPKC scheme. Let G(X) be the map representation of the
polynomial G(X, t), where every equation of the map is an elementary symmetric polynomial
.

The very first drawback noticed is that a public key derived using this primitive P (X) =
T ◦ G ◦ S(X) contains monomials of degree d ≥ 2, which results in an increase of memory
needed for its representation. That has an impact on network transmission as well and in
the evaluation of the public key when a plaintext is provided.

Here we find distinct cases for the parametrization of the polynomial G(X, t). Given
d, n,m where d = Deg(G(X, t)) = m and n the nº of variables:

1. The primary case is when d = m = n, which means that the coefficients of G(X, t) are
the first n elementary symmetric polynomials in n variables, which are the roots xi, so
Deg(gi(X)). = i The polynomial G(X, t) has degree n− 1 since we removed the monic
monomial tn. Consequently, in the primary case we find the trivial degree partition
λ = (e1, . . . , en) = (1, . . . , 1).

2. The secondary case is when d = m 6= n. This means that there exists an integer
partition λ ` d = (e1, . . . , en) with at least one ei > 1 such that G(X, t) = td −∏n

i=1(t − xi)
ei . Then G(X, t) has degree d = 1 −

∑n
i=1 ei as we removed the monic

monomial td. The coefficients of G(X, t) are not the n first symmetric polynomials
anymore, however Deg(gi(X)) = i. So both cases converge on the degree of each
polynomial in G(X).

The secondary case is only commented in the cryptosystem in a general way, the rest
of the paper focuses in the primary case over an extension field. Something that can be
commented of the secondary case is that when adding a linear transformation S, the action
of S in the variable set x = (x1, . . . , xn) doesn’t alter the degrees of each gi(X), but it does
include new monomials. These condition tells us that the degrees ei ∈ λ are visible in the
multivariate equations computed by G ◦ S(X) for the secondary case.

3 Description of the Cryptosystem based in MVSYM

Given the number of variables n, the degree d, two (affine) transformations T ∈ GL(d, q)×
F d
q S ∈ GL(n, q)× F n

q and the set of variables x = (x1, . . . , xn) ∈ Fq

Remark The reader can head to section 5 and to point 5.1.2 to find the selected parametriza-
tion for the cryptosystem. The following description of the cryptosystem is mostly general
and differs from the implementation seen in the referenced points.

3.1 Encryption

1. S(x) acts linearly on the set of variables, giving a linear combination tuple x′ =
(x′1, . . . , x

′
n).

2. Select an integer partition λ ` d = (e1, . . . , en) with length n. The sum of partition
elements equals the degree so d =

∑n
i=1 ei.

3. The primary case has ei = 1 as n = d. The secondary case has n < d as there’s at
least one ei ≥ 1.

4. Expand the polynomial G(X, t) = td−
∏n

i=1(t− x′i)ei modulo p or f(x) if we are in an
extension field and represent it as a d equation map identified by G(X) = y′.

5. Obtain the final equation Ty′ = y which is P (x) = y

3.2 Decryption

The decryption stage is done backwards, where the ciphertext P (m) = y and the digest of
the message plus a public salt H(m+ s) are given

1. Recover y′ = T−1y

2

2. Solve the equation td + G(y′, t) = td +
∑d

i=1 y
′
it
i−1 = 0 which gives G ◦ S(X) =∏n

i=1(t− x′i)ei .

3. As a consequence of root finding not giving the roots in the correct position, we must
guess the valid ordering for the sequence of the roots. This is up to n! permutations in
the worst case for the primary case as the algorithm works with n variables in total.

4. For every vector x′ that we obtained permuting the roots, compute x = S−1x′ and
verify if H(M + s) = H(x+ s)

Clearly, we notice that the decryption stage is bounded by the nº of permutations applied
to x′ until we find the correct decryption in x. A natural question is to ask how we can bypass
this search for the right permutation. If Bob selects values x1 < x2 < . . . < xn or the opposite
case x1 > . . . > xn it’s easy for Alice to recover the right x′ from the root finding invocation
on G ◦ S(X) as the ascending or descending order of the roots gives us the right values.

4 Digital Signatures and MVSYM

Digital Signatures are pursued in the field of MPKC. Generally, a bijective Cryptosystem has
an analogue Digital Signing algorithm, where the value y is the digest of a salted message.
When a cryptosystem is surjective, the condition P (X) = P (Z) = y for multiple pairs (X,Z)
is satisfied. As a consequence, it’s relevant to classify how many surjections do arise for a
particular point-image P (X) = Y in MVSYM.

Furthermore, the inverse of G(X, t) gives it’s roots, as these are the elements X =
(x1, . . . , xn) but in a permuted order, we obtain G ◦ P ◦ S(X) where P is a permutation
matrix, or a Linearised Polynomial that permutes the input polynomial’s coefficients. Here,
let P be any matrix from the permutation group of matrices that is isomorphic to the
symmetric group Sn. Then the obvious case for surjectivity is that any permutation matrix
that gives an ordering for the roots, doesn’t alter the output of the polynomial map G(X).
However, there are n! permutations that match the same output for G(X), which alerts us
that when the number of variable grows, each ciphertext has n! surjections. Thus if qn is
the cardinality of the space of the ciphertext, we end up having qn

n!
possible plaintexts. The

same happens after a linear change of variables, only if the transformation S is non-singular.

∀i, j : G ◦ Pi ◦ S(X) = G ◦ Pj ◦ S(X) 1 ≤ i < j ≤ n! Pi ∈ Perm(Sn)

When working with Digital Signatures over MVSYM, the issues of obtaining the correct
sequence X by permuting the roots, as in the decryption stage, is not a problem anymore.
Any permuted sequence of S(X) will match the digital signature, so the process offers a
considerable speedup when the number of variables grows.

1. Bob sends a server certificate to Alice where P (X) as his public key.

2. Alice validates Bob’s certificate.

3. Bob computes y = H(m||s) which is a n-tuple that represents the digest of a salted
message

4. He recovers y′ = T−1y and find the roots of the equation td + y′(t) = 0 which gives
x′ = G ◦ Pi ◦ S(X) =

∏n
i=1(t− x′i)ei .

5. Computes x = S−1x′ and verifies if P (x) = y

6. Bob sends to Alice the pair (x, y,m, s).

7. As Alice trusts Bob’s certificate, she already has P (X) and verifies whether P (x) =
y = H(m||s). If it’s correct she knows that Bob sent that particular message.

Now, forgery is possible when an attacker finds a value P (x′) = y′ = H(m′||s′). Then
he could impersonate Bob, sending the tuple (x′, y′,m′, s′). The thing is that the
attacker must match P (X) = y to a digest of a salted message, which is as hard as
inverting P (X) to obtain the point x that matches y = H(m′||s′). The recommended
parametrization will be further commented.

3

5 Analyzed Parametrization

Parametrization is an important step to evaluate the computational needs for the cryptosys-
tem. Here, the focus is set on the case m = n where every variable xi is in the extension
GF (pn). The cases that set q as a prime field or those based in the secondary case m > n
where multi-degree parameters appear (ei > 1) are not covered here.

As the reader can see, we’re focusing in a particular subsinstance of MVSYM, thereafter,
two vital cases for parametrization using a finite field extension are found: the case when
m = n = 2 and m = n = 3. This paper focus on m = n = 2 ,and doesn’t work with cubic
cases.

The most important thing to recall during the reading is that polynomial equations in
the system are taken from F 2

pn to F 2n
p .

5.1 Public Key Generation on the quadratic case over F2

When m = n = 2 we find that G(X, t) = t2 + (x1 + x2)t + x1x2, thus by observation, the
monomial x1x2 and x1 + x2 where x1, x2 ∈ F2nv gives an oil vinegar polynomial as x1 and
x2 provide distinct variable sets. Oil-Vinegar has been extended studied, in the case o = v
it can be broken by the cryptanalysis given in [1] . The paper focuses on retrieving an
invariant subspace of the Oil space as the structure present in the quadratic forms allows
the cryptographer to mount such attack, even in characteristic 2. Besides, it’s commented
in [2] section 14 that when 2o ≤ v ≤ o2

2
the scheme remains secure against the KS attack

for OV. In literature, such condition is called Unbalanced Oi-Vinegar. Let’s document the
general case that applies to this parametrization of the scheme. First let n = no + nv be the
number of variables the field q = GF (pnv) and the irreducible polynomial f(t):

ϕ(−→x) : F n
q → Fqn (a1, . . . , an) 7→

n−1∑
i=0

ait
i

−→x1 = (x1, · · · , xno ,

nv−no︷ ︸︸ ︷
0, . . . , 0),−→x2 = (xno+1, . . . , xnv)

ϕ(x1) + ϕ(x2)) =
no∑
i=1

xit
i−1 +

nv∑
i=1

xno+it
i−1 (mod f(t))

ϕ(x1)ϕ(x2) =
no∑
i=1

xit
i−1 ·

nv∑
i=1

xno+it
i−1 (mod f(t))

After the reduction of both polynomial equations modulo f(t), take the polynomials as
vectors and join them. We end up having 2nv equations on no + nv variables. From now,
consider the quadratic forms of this polynomial map:

ϕ−1(ϕ(x1) + ϕ(x2))) = (f1(x1, . . . , xn), . . . , fnv(x1, . . . , xn)) = (xTQ1x, . . . , x
TQnvx)

ϕ−1(ϕ(x1x2)) = (fnv+1(x1, . . . , xn), . . . , f2nv(x1, . . . , xn)) = (xTQnv+1x, . . . , x
TQ2nvx)

After the obtention of both polynomials, select the pair of transformations T ∈ F 2nv×2nv
2 , S ∈

F n×n
2 and compute each polynomial pi(X) of the public key P (X) as follows:

pi(x1, . . . , xn) = xTST (
2nv∑
j=1

ti,jQj)Sx

Before applying T , notice that the first half of the quadratic forms represent the linear
mapping x1 + x2, as we are in characteristic 2, linear forms can be stored in a quadratic
forms too, i.e: x21 + x23 + x25 = x1 + x3 + x5 can be stored in a diagonal matrix. This means
that the action of T in this quadratic form returns a linear combination of the STQiS where
the Qi’s in the first half are diagonal matrices.

The main diference of Oil-Vinegar schemes with MVSYM for the unbalanced case is
that MVSYM has 2nv polynomials on no + nv variables, so m > n but in UOV we have
m < n. In addition, the inversion of the primitive MVSYM depends entirely on root finding
over Fq, not in Gaussian Elimination once the vinegar values are substituted.

4

5.1.1 KS Attack on Balanced Oil-Vinegar

If we set up nv = no and n = no +nv then this scheme raises a distinct structure on the final
quadratic form system found in P (X), concretely we’ve m = n = 2n equations-variables.

The structure of a matrix that represents a quadratic form of the Balanced Oil-Vinegar
map must have the structure presented here [1]. The characteristic 2 is covered as well, as
this is the case. every Qi is an upper triangular matrix such that:

∀i : 1 ≤ i ≤ n fi(X) = XTQiX =
[
x1 . . . xn/2, xn/2+1, . . . , xn

]
Di

x1
...
xn
xn+1

...
x2n

∀i : n+ 1 ≤ i ≤ 2n fi(X) = XTQiX =
[
x1 . . . xn/2, xn/2+1, . . . , xn

] [0 A1,i

0 0

]

x1
...

xn/2
xn/2+1

...
xn

Consequently, the conditions of section 3 in [1] seem not to apply to the quadratic forms

in P (X) = (xTM1x, . . . , x
TM2nx) since the diagonal matrices Di change the structure of

the matrices G−1j Gi. It remains open if a modification of the KS technique will break this
balanced OV map.

5.1.2 Recommended Case: Unbalanced Oil-Vinegar

In the other hand, the quadratic set can be strengthen by including the condition [2] 2o ≤
v ≤ o2

2
. Here, the both variables x1, x2 are taken over the bigger field GF (2nv) as nv > no.

Then we have 2nv equations in n = no + nv variables.

Setting nv = 2no the rule to calculate the nº of equations m and the nº of variables n is
m = 2nv = 4no, n = no +nv = 3no. These properties are useful in section 8 for estimating
the effective number of operations required for a Gröbner Basis computation.

6 Public Key Size

In the field of Multivariate Cryptography, the public keys found in schemes are typically
quadratic sets over a prime characteristic. This means that every quadratic polynomial
pi(x) having degree 2 is representable by the equation xTQix where Qi is the square matrix
over Fq associated to the quadratic form. However, the scheme introduced in this paper, in
most of the cases cannot be represented as a system of quadratic forms. section 5 illustrates
why m = 2nv and the parametrization no = 64, nv = 128,m = 256, n = 192 is selected in
point 5.1.1.

Moreover, the space complexity of a quadratic system of m n-variate polynomials over
Fp is O(mn2 log2(q)) and O(n3 log2(q)) when m = n.

Complexity for fields over characteristic 2 When the field q = pk has characteristic
2, we’ve to distinguish between the Balanced Oil-Vinegar and Unbalanced cases.

Balanced Oil-Vinegar The bound is

O(2n · (2n)2 log2(p)) = O(8n3)

as we work over the extension F2n we have m′ = n′ = 2 thus 2 equations and variables.
Translating it to F2 we end up having 2n equations on 2n variables. For example m′ = n′ =
2, n = 64, q = F264 so O(8 · 643) ≈ 256KB for the storage needed for the quadratic forms in
128 equation and variables of the polynomials in P (X).

5

Unbalanced Oil-Vinegar As seen in subsection 5.1 we end up having 2nv equations in
no + nv variables. Then the bound is

O(2nv(no + nv)
2)

For example, with the condition nv = 2no set up no = 64, nv = 128 and n = no + nv = 192.
The storage needed is calculated as O(2 · 128 · 1922) = 1.125MB for 256 equations in 192
variables. Another example with no = 32, nv = 64, n = 96 then O(2 · 64 · 962) = 144KB for
128 equations in 96 variables, however the last parametrization seems not to be secure as
found in section 8.

Other cases Note that the case m = n = d is called the primary case found in section 2
which has a trivial partition λ with every degree being 1. If we fix n = 2 and m = d > n
we end up having a non trivial partition λ that still sums to d however the monomial terms
involved in the polynomial expression either on Fq or taken into Fp are not longer quadratic.

In the other hand, if we stick to the primary case with the condition m = n > 2, the
public key P (X) taken from Fq to Fp doesn’t give full quadratic polynomials anymore thus
we must stick to the complexities for the non-quadratic case.

7 Isomorphism of Polynomials

The Isomorphism of Polynomials Problem was introduced by [3] in an attempt to add a
layer of security to MPKC schemes. In this scheme, the central polynomial is publicly
known, which is the polynomial G(X, t) which is a polynomial having the first d elementary
symmetric polynomials as its coefficients.

If we only consider the IP1 assumption [4], and set P (X) = G ◦ S(X), it results that
P (X) is reversible and S can be entirely determined as we know how to invert the central
map G(X, t). First, set x = ei then P (ei) = G ◦ S(ei) thus we compute the i-th column of

S by Sei = G
−1

(Sei). This is equal to set td + G(Sei, t) = 0 and apply root finding over
p or Fq depending on which field we’re working. Each root finding gives us Sei which we
must reorder up to n! permutations. Then by linearity S(ei + ej) = S(ei) + S(ej) thus we
can check in the list of column candidates those that satisfies these relations until we build
the complete transformation S. This process can be found in [5] section 6.2.

Another important remark, is when P (X) = T ◦ G(X). In literature, this kind of ex-
pression is not considered into the IP1 assumption. It results that any scheme presented in
this form is broken, where G(X, t) and G(x) are publicly known along with the inversion
method. To prove that fix, xi so that G(xi) = ei then compute P (xi) = T ◦ G(xi) = T (ei)

thus recovering the i-th column of T . Obviously, we need to compute td + G
−1

(ei) = xi to
retrieve the correct value xi that is sent to the canonical vector ei under the image of G(X).

Then the only conclusion that comes up to make P (X) secure to these kinds of attacks
is to base the scheme in the IP2 assumption, thus the central map is in between of two
invertible transformations T, S such that P (X) = T ◦G ◦ S(X).

8 Gröbner Basis

In MPKC, algorithms for the computation of a Gröbner Basis of the Ideal < f1, . . . , fn > are
extensively studied. Specially those that involve dense linear algebra to build the Macaulay
matrix Mn,D. In the past years, a lot of effort has been put for estimating the degree
of regularity dreg of a polynomial system of equations over Fq. We know that it can be
obtained by calculating the coefficients of the Hilbert Series [6] Sm,n and taking the degree of
the first non-positive coefficient when the system is semi-regular, which is the case we study.

Continuing with the analysis, It results that the total nº of operations to come up with a
Gröbner Basis is bounded by this parameter. However, despite of asymptotic bounds being
a necessary tool for cryptanalysis, it doesn’t mean that it should cover the complexity found
in schemes for example, based in the HFE [8]. The most popular algorithms that are used
to compute such a basis are F4, F5, XL. In particular, F4, F5 require a number of operations
that depends on the size of the Macaulay matrix Mn,dreg and the linear algebra constant w.
The natural conclusion is to focus on the general complexity and asymptotics found in [6]
[7].

6

First, consider the the ideal I generated by < f1, . . . , fm, x
q
1 − x1, . . . , xqn − xn > over a

field of characteristic 2, which corresponds to the Frobenious Criterion as seen in [7], section
4.1, and results in adding the equations xqi = xi to the system so we end up having m + n
equations on n variables.

The parametrization given in subsection 5.1 has 2nv equations on no + nv variables.
After the adding the equations x2i − xi = 0, we obtain 2nv + no + nv equations in no + nv

variables. Since nv = 2no, this gives m = 2nv + no + nv = 4no + no + 2no = 7no and
n = no + nv = no + 2no = 3no, thus clearly m

n
= 7

3
which tends to a constant. If we don’t

take into account the Frobenius Criterion the constant tends to 4
3
. The asymptotic for the

case where N = m
n

tends to a constant is found in section 6 in [7], which applies to this case
as N = 7

3
> 1

4
is:

dreg
n

=
1

2
−N +

1

2

√
2N2 − 10N − 1 + 2(N + 2)

√
N(N + 2) + o(1)

Plugging N = 7
3

and n = no + nv = 64 + 128 = 192, the approximation 0.0450835 is
obtained, when multiplied by 192 we obtain an approximation

dreg ≈ 8.65603 ≈ 8

. In [6], page 9 the bound for the nº of operations required by F5 given a semi-regular
polynomial set over F2 is about

O(m · dreg
(
n

dreg

)w

)

Then as m = 7no n = 3no m = 7 · 64 = 442 n = 3 · 64 = 192 and computing a
Gröbner basis by the F5 algorithm requires ≈ 2125 operations.

In the other hand, [7] offers a continuity for the approximation to the nº of operations
required to compute a Gröbner Basis.

As we computed D0 = dreg
n

then

D1 = −(1−D0) log2(1−D0)−D0 log2D0

and the global cost of the basis computation is (2D1)nw. For example, in the previous
calculation we found that D0 = dreg

n
= 0.0450835, then D1 ≈ 0.265133, so (2D1)nw ≈ 2127.

An interesting case is when no = 32 so nv = 64 and m = 128, n = 96 over F2. Then
for the algorithm F5 to work we end up having m = 7 · 32 n = 3 · 32. Both aforementioned
complexities converge to ≈ 263 operations, thus both formulas are useful when estimating.

From here we can possibly conclude that the parametrization nv = 2no must satisfy
no ≥ 64 if we want to achieve minimal security

9 Improving Public Key Generation: Linear Algebra

and the polynomial remainder in Finite Fields

If we select the parametrization m′ = n′ = 2 and q = F nv
2 and we end up having a quadratic

system of 2nv equations and n = no +nv variables. However, the steps taken to produce the
map G(X) involve symbolic polynomial multiplication and transformations under symbolic
variables.

Recall that (x′1, x
′
2) = S(x1, x2) so t2 +(x′1 +x′2)t+x′1x

′
2 where x1, x2 ∈ GF (2k). Then the

hardest symbolic computation will happen in the monomial product x′1x
′
2. Both monomials

contain a linear combination of the columns of S ∈ F 2×2
2nv and the vector (x1, x2) ∈ F 2

2nv . This
process is slow, i.e when the extension length nv grows. However, we can use linear algebra
to represent the remainder of a polynomial multiplication of two elements in GF (2nv) by a
nv × n matrix over Fp.

If we multiply two symbolic polynomials p(x), q(x) ∈ GF (2nv), where Deg(p(x)) = no−1
and Deg(q(x)) = nv − 1 their product results in a polynomial of degree n − 1 and the
reduction in the field will give a polynomial of degree nv − 1, this is a nv tuple.

7

1. The following algorithm computes the quadratic map of the product p(x)q(x) = r(x) =∑no−1
i=0 aix

i ·
∑nv−1

i=0 bix
i =

∑n−1
i=0 cix

i in the univariate polynomial ring Zp[X]. Using
basic arithmetic on the set of variables where nv = 2no and n = no + nv.

Input: The triplet (n, no, nv)
Output: The pyramidal multiplication map of r from the product p(x)q(x) having

n quadratic equations
Function pyramUOV(start, ord) is

map1 ← List()
map2 ← List()
for i = 1, i ≤ nv, i+ + do

pv ← 1
poly ← 0
for j = i, j > 0, j −− do

poly ← poly + xpvxno+j

if pv == no then
Break

else
pv++

end

end
Insert(map1,poly)

end
for i = 1, i ≤ no, i+ + do

pv ← no

poly ← 0
for j = i, j > 0, j −− do

poly ← poly + xpvx3no−j+1

pv–
end
Insert(map2, poly)

end
return Join(map1,Reverse(map2))

end

2. Now let rf : the reduction of r as a polynomial in GF (2nv), which is converted back to
a tuple in F nv

2 .

3. Then rf is the quadratic map corresponding to the monomial x1x2 in GF (2nv)

4. To obtain G(X), join rf with the map corresponding to the sum of polynomials x1 +x2
in GF (2nv).

However, in step 3 we are bounded by the time that takes to compute the polynomial
remainder of an univariate polynomial having quadratic monomials as coefficients, which
is costly for example when no = 64, nv = 128. It results that the polynomial remainder
operation can be translated to Linear Algebra, as reducing a n−1 degree polynomial modulo
f(x) would yield a nv − 1 degree polynomial. By simple inspection, derive the following
relation:

r1,1 . . . r1,n
.
.

rnv ,1 . . . rnv ,n

c1
...
...
...
cn

 =

 d1 =
∑n

j r1,jcj
...

dnv =
∑n

j rnv ,jcj

Thereafter, we can read the values ri,j from each di which gives the nv×n transformation

matrix R that sends the product p(x)q(x) = r(x) in Zp[x] to it’s reduction in Fq. Why?
Taking (c1, . . . , cn) as a polynomial and reducing it modulo f(x) gives a polynomial in
GF (2nv) having linear combinations of the ci as coefficients. Taking such polynomial as
a map gives the values (d1, . . . , dnv).

8

After that, obtain the Quadratic Forms of every polynomial gi(X) ∈ G(X) ∀1 ≤ i ≤ nv

And compute P (X) as

pi(x1, . . . , xn) = xTST (
2nv∑
j=1

ti,jQj)Sx

For example, using the algorithms shown in section 10 for the parametrization no =
64, nv = 128,m = 256, n = 192 it takes ≈ 40 seconds, which is the recommended setup.

10 Toy Example in Mathematica

The research made has been experimentaly tested on Mathematica and Sage. The draw-
back of using Mathematica for Finite Field arithmetic is that it lacks of root finding and
factorisation methods over finite field extensions. Sage supports these methods, so for toying
with some examples, the public key generation happens in Mathematica, and the decryption
is an hybrid approach using Mathematica and Sage. The same routines can be written on
C/C++ with the aid of NTL for the extension field arithmetic and linear algebra.

Moreover, the code listed here, generates a public key for the case m = n = 2 and
q = GF (2nv). So we end up having 2nv equations on no + nv = n variables. The Public
Key’s generating algorithm computes the multiplication map of two polynomials in Z2[X]
first, then reduces it by f(x) using Linear Algebra, yielding nv equations in n variables.
After that, quadratic forms from these quadratic monomials are extracted. Then the sum
map x1 + x2 of polynomials is computed because a linear map is represented as a quadratic
form by the condition x2i = xi in characteristic 2. Finally, joining the sum map and the
multiplication map gives the map G(X), which is composed of 2nv quadratic equations in
n = no + nv variables and equations. The rest is to compute the public key by using Linear
Algebra on the quadratic forms from the central polynomial map G(X).

9

In[1]:= GenRndMat[p_,n_]:=(

mat=0;

rnk=0;

While[rnk < n,

mat = RandomInteger[{0,p-1},{n,n}];

rnk=MatrixRank[mat,Modulus->p];

];

Return[mat];

)

In[2]:= pyramuov[n_, no_, nv_] := (

syms = Table[

Symbol[StringJoin[ToString[x], ToString[i]]], {i, 1, 3*no}];

j = 1;

map1 = List[];

map2 = List[];

For[i = 1, i <= nv, i++,

pivot = 1;

poly = 0;

For[j = i, j > 0, j--,

poly += syms[[pivot]]*syms[[no + j]];

If[pivot == no,

Break[];

,

pivot++;

];

];

map1 = Insert[map1, poly, Length[map1] + 1];

];

For[i = 1, i < no, i++,

pivot = no;

poly = 0;

For[j = i, j > 0, j--,

poly += syms[[pivot]]*syms[[3*no - j + 1]];

pivot--;

];

map2 = Insert[map2, poly, Length[map2] + 1];

];

mulmap = Join[map1, Reverse[map2]];

)

In[3]:= GenQF[qset_, no_, nv_] := (

Qs = Array[0 &, Length[qset]];

o = Take[symsE, {1, no}];

v = Take[symsE, {no + 1, no + nv}];

For[i = 1, i <= Length[qset], i++,

mons = MonomialList[qset[[i]], o];

mons = Table [mons[[l]]/symsE[[l]], {l, 1, Length[mons]}];

qmat = ConstantArray[0, {no + nv, nv + no}];

For[j = 1, j <= Length[mons], j++,

monscoeff = MonomialList[mons[[j]], v];

For[k = 1, k <= Length[monscoeff], k++,

pos = Position[v, monscoeff[[k]]];

If[pos != {},

pos = no + pos[[1]][[1]];

qmat[[j]][[pos]] = 1;

];

];

];

Qs[[i]] = qmat;

];

Return[Qs];

)

10

In[4]:= GenLF[lset_] := (

Qs = Array[0 &, Length[lset]];

For[i = 1, i <= Length[lset], i++,

mons = MonomialList[lset[[i]]];

qmat = ConstantArray[0, {2*Length[lset], 2*Length[lset]}];

For[j = 1, j <= Length[mons], j++,

pos = Position[symsE, mons[[j]]];

If[pos != {},

pos = pos[[1]][[1]];

qmat[[pos]][[pos]] = 1;

];

];

Qs[[i]] = qmat;

];

Return[Qs];

)

In[5]:= PolyMul[p_, n_, no_] := (

irr = IrreduciblePolynomial[t, p, n - no];

pyramuov[n, no, n - no]; symsred =

Table[Symbol[StringJoin[ToString[r], ToString[i]]], {i, 1,

n - 1}]; matred =

CoefficientArrays[

CoefficientList[

PolynomialMod[symsred.t^Range[0, n - 2], irr, Modulus -> p], t,

n - no], symsred][[2]] // Normal; mulmapF =

PolynomialMod[matred.mulmap, aa, Modulus -> p];

Return[mulmapF];

)

In[6]:= GenSysE[p_, n_, no_, nv_] := (

symsE = Table[Symbol[StringJoin[ToString[x], ToString[i]]], {i, 1, n}];

mulmapF = PolyMul[p, n, no];

qf = GenQF[mulmapF, no, nv];

lf = GenLF[Join[o, Array[0 &, nv - no]] + v, no + nv];

Qs = Join[lf, qf];

S = GenRndMat[p, n];

T = GenRndMat[p, Length[Qs]];

QsS = PolynomialMod[Table[Transpose[S].Qs[[i]].S, {i, 1, Length[Qs]}],

aa, Modulus -> p];

TQsS = PolynomialMod[T.QsS, aa, Modulus -> p];

)

In[7]:= Encipher[plaintext_]:=(

Table[Mod[plaintext.TQsS[[i]].plaintext, 2],

{i, 1, Length[plaintext]}] // Return;

)

1. Generate a system of equations for the case no = 3, nv = 6,m = 12, n = 9. So
GenSysE[2,9,3,6] The plaintext is X = (x1, . . . , x9) where the variables are taken in
the field GF (2nv) = GF (26).

2. Call Encipher passing a n = 9 bit tuple as the plaintext argument. It will return a
2nv = m = 12 bit tuple, this is the ciphertext.

3. Apply c′ = T−1c where c is the tuple representing the ciphertext.

4. Solve the equation t2 + G(c′, t) = 0 over GF (26) in Sage to retrieve x′1, x
′
2 ∈ GF (26).

Over F2 both polynomial tuples are seen as x′1 = (x1,1, . . . , x1,3) and x′2 = (x2,1, . . . , x
′
2,6).

5. Apply S−1(x′1,1, . . . , x
′
1,3, x

′
2,1, . . . , x

′
2,6) = (x1, . . . , x9).

11

Let’s give a detailed explanation of the whole process. For example, let P (X):

x1x3 + x1x5 + x1x7 + x1x8 + x1x9 + x1 + x2x4 + x2x7 + x2x8 + x2 + x3x4 + x3x5 + x3x6 + x3x9 + x4x5 + x4x7 + x4x8 + x5x6 + x5x7 + x5x9 + x5 + x6x7 + x6x8 + x6x9 + x7 + x8
x1x3 + x1x7 + x1x9 + x2 + x3x4 + x3x5 + x3x8 + x3x9 + x4x6 + x4 + x5x7 + x5x9 + x5 + x6x7 + x6 + x8x9 + x9
x1x2 + x1x4 + x1x8 + x1x9 + x1 + x2x4 + x2x5 + x2x6 + x2x8 + x2 + x3x4 + x3x5 + x3x6 + x3x7 + x4x5 + x4x6 + x4x7 + x4x8 + x4x9 + x5x7 + x5 + x6x7 + x7x8 + x8
x1x3 + x1x4 + x1x5 + x1x6 + x1 + x2x3 + x2x7 + x2x8 + x2x9 + x3x4 + x3x5 + x3x6 + x3x7 + x3x8 + x4x5 + x4x7 + x4x9 + x5x7 + x6x8 + x7x8 + x7 + x8x9 + x8 + x9
x1x2 + x1x3 + x1x4 + x1x8 + x1x9 + x1 + x2x4 + x2x5 + x2x6 + x2x8 + x2 + x3x8 + x3 + x4x5 + x4x6 + x4x7 + x4x9 + x4 + x5x7 + x5 + x6x7 + x7x8 + x7x9
x1x2 + x1x8 + x1x9 + x1 + x2x4 + x2x5 + x2x6 + x2x8 + x3x8 + x4x7 + x4x8 + x4 + x5x8 + x5x9 + x5 + x6x8 + x6x9 + x7x9 + x8x9
x1x5 + x1x7 + x1x8 + x1x9 + x2x4 + x2x7 + x2x8 + x3x7 + x3x8 + x3x9 + x4x5 + x4x7 + x5x6 + x5x7 + x5x9 + x6x7 + x6x8 + x6x9 + x7x9 + x7 + x8 + x9
x1x5 + x1x8 + x2x4 + x2x7 + x2x8 + x2 + x3x6 + x3x8 + x4x5 + x4x6 + x4x7 + x4x8 + x5x6 + x6x8 + x6x9 + x7 + x8x9 + x9
x1x2 + x1x5 + x1x6 + x1x8 + x1x9 + x1 + x2x3 + x2x4 + x2x5 + x2x6 + x2x7 + x2x9 + x3x4 + x3x5 + x3x6 + x3x7 + x3 + x4x6 + x5 + x6x7 + x6x8 + x6 + x7x9 + x8x9 + x8 + x9
x1x4 + x1x5 + x1x8 + x2x4 + x2x7 + x2x8 + x3x4 + x3x5 + x3x7 + x3 + x4x7 + x4x8 + x4x9 + x5x6 + x5x7 + x5x8 + x5x9 + x5 + x6x7 + x6 + x7x8 + x7x9 + x9
x1x3 + x2 + x3x4 + x3x5 + x3x6 + x3x7 + x3x8 + x4x8 + x4 + x5 + x7x9
x1x2 + x1x3 + x1x7 + x1x8 + x2x4 + x2x5 + x2x6 + x2x8 + x3x4 + x3x5 + x3x9 + x4x6 + x4x7 + x4x8 + x5x7 + x5x8 + x5 + x6x7 + x6x8 + x6x9 + x7x9 + x8 + x9

Check that in fact P (X) has m = 2nv = 12 equations on n = no + nv = 3 + 6 = 9
variables.

1. Every n tuple is decomposed as two polynomials one of degree no − 1 and the other
nv − 1.

2. Let the plaintext be x = (1, 1, 1, 0, 1, 0, 0, 1, 1) a n = 9 variable tuple such that it
corresponds to the concatenation of two polynomials x1 = 1 + a+ a2, x2 = a+ a4 + a5

both in GF (2nv) = GF (26).

3. Call Encipher to retrieve the m = 12 bit tuple corresponding to the ciphertext c =
(0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1).

4. Compute c′ = T−1c = (0, 1, 1, 1, 0, 0, 1, 1). The first nv values from the ciphertext
correspond to the operation x1 + x2. The second half contains the operation x1x2.
Both operations are taken in GF (26).

5. Build the polynomial G(X, t) = t2 + φ(c′) where φ(c′) lifts the tuple c′ from F 2nv
2 to

F 2
2nv , so we end up having two polynomial coefficients in GF (26). The polynomial

taken in the univariate variable t is G(t) = t2 + (1 + a5) ∗ t+ (1 + a+ a2 + a4 + a5).

6. Sage gives roots x′1 = a2, x′2 = a5+a2+1, over GF (26). The mathematical construction
of the algorithm provides that Deg(x1) ≤ Deg(x′1) < no.

7. Build the tuple x′ of length n, where the first no values correspond to the coef-
ficients of x′1. The rest values are the nv values of the coefficients of x′2. Then
x′ = (0, 0, 1, 1, 0, 1, 0, 0, 1)

8. Compute x = S−1x′ = (1, 1, 1, 0, 1, 0, 0, 1, 1) which gives the correct plaintext.

12

References

[1] Aviad Kipnis. Adi Shamir Cryptanalysis of the oil and vinegar signature scheme https:

//link.springer.com/chapter/10.1007%2FBFb0055733

[2] Aviad Kipnis. Jacques Patarin. Louis Goubin Unbalanced Oil and Vinegar Signature
Schemes https://link.springer.com/chapter/10.1007/3-540-48910-X_15

[3] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms https://link.springer.com/

chapter/10.1007/3-540-68339-9_4

[4] Jacques Patarin. Louis Goubin. Improved Algorithms for Isomorphisms of Polynomials
http://www.minrank.org/ip6long.ps

[5] Françoise Levy-Dit-Vehel. Ludovic Perret Polynomial equivalence problems and ap-
plications to multivariate cryptosystems https://hal.inria.fr/inria-00071464/

document

[6] M.Bardet J.-C.Faugère B. Salvy B-Y.Yang Asymptotic Behaviour of the Index of Regu-
larity of Quadratic Semi-Regular Polynomial Systems https://www-polsys.lip6.fr/

~jcf/Papers/BFS05.pdf

[7] Magali Bardet, Jean-Charles Faugère, Bruno Salvy Complexity of Gröbner basis compu-
tation for Semi-regular Overdetermined sequences over F2 with solutions in F2 https:

//hal.inria.fr/inria-00071534/document

[8] Jean-Charles Faugère and Antoine Joux Algebraic Cryptanalysis of Hidden Field
Equation (HFE) Cryptosystems Using Gröbner Bases https://hal.inria.fr/

inria-00071849/document

13

https://link.springer.com/chapter/10.1007%2FBFb0055733
https://link.springer.com/chapter/10.1007%2FBFb0055733
https://link.springer.com/chapter/10.1007/3-540-48910-X_15
https://link.springer.com/chapter/10.1007/3-540-68339-9_4
https://link.springer.com/chapter/10.1007/3-540-68339-9_4
http://www.minrank.org/ip6long.ps
https://hal.inria.fr/inria-00071464/document
https://hal.inria.fr/inria-00071464/document
https://www-polsys.lip6.fr/~jcf/Papers/BFS05.pdf
https://www-polsys.lip6.fr/~jcf/Papers/BFS05.pdf
https://hal.inria.fr/inria-00071534/document
https://hal.inria.fr/inria-00071534/document
https://hal.inria.fr/inria-00071849/document
https://hal.inria.fr/inria-00071849/document

	Introduction
	Background

	The MVSYM primitive
	Description of the Cryptosystem based in MVSYM
	Encryption
	Decryption

	Digital Signatures and MVSYM
	Analyzed Parametrization
	Public Key Generation on the quadratic case over F2
	KS Attack on Balanced Oil-Vinegar
	Recommended Case: Unbalanced Oil-Vinegar

	Public Key Size
	Isomorphism of Polynomials
	Gröbner Basis
	Improving Public Key Generation: Linear Algebra and the polynomial remainder in Finite Fields
	Toy Example in Mathematica

