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Abstract

Basic key exchange protocols built from the learning with errors (LWE) assumption are insecure if
secret keys are reused in the face of active attackers. One example of this is Fluhrer’s attack on the Ding,
Xie, and Lin (DXL) LWE key exchange protocol, which exploits leakage from the signal function for error
correction. Protocols aiming to achieve security against active attackers generally use one of two techniques:
demonstrating well-formed keyshares using re-encryption like in the Fujisaki–Okamoto transform; or
directly combining multiple LWE values, similar to MQV-style Diffie–Hellman-based protocols.

In this work, we demonstrate improved and new attacks exploiting key reuse in several LWE-based
key exchange protocols. First, we show how to greatly reduce the number of samples required to carry
out Fluhrer’s attack and reconstruct the secret period of a noisy square waveform, speeding up the attack
on DXL key exchange by a factor of over 200. We show how to adapt this to attack a protocol of Ding,
Branco, and Schmitt (DBS) designed to be secure with key reuse, breaking the claimed 128-bit security
level in 12 minutes. We also apply our technique to a second authenticated key exchange protocol of
DBS that uses an additive MQV design, although in this case our attack makes use of ephemeral key
compromise powers of the eCK security model, which was not in scope of the claimed BR-model security
proof. Our results show that building secure authenticated key exchange protocols directly from LWE
remains a challenging and mostly open problem. Our results show that building secure key exchange
protocols directly from LWE that resist key re-use attacks remains a challenging and mostly open problem.
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1 Introduction

The learning with errors (LWE) problem [29] can be used to construct a variety of post-quantum cryptographic
algorithms, such as digital signatures, public-key encryption, key encapsulation mechanisms (KEMs), and key
exchange, the latter being the focus of this paper.

LWE-based key exchange protocols are appealingly similar to the Diffie–Hellman (DH) protocol [9] which
is the prototypical unauthenticated key exchange protocol. Authenticated key exchange (AKE) can be built
from unauthenticated DH through two main techniques, either explicit authentication using digital signatures,
or implicit authentication where public-key encryption or DH keys are used as long-term credentials for
authentication. However, the similarities between DH and LWE break down when it comes to building AKE
protocols, and it seems to be much more challenging to build secure AKE protocols directly from the LWE
assumption.

Passively secure LWE-based key exchange. LWE-based key exchange can be constructed from LWE-
based public-key encryption [29, 23]: the core idea is that two (plain or ring) LWE samples asA + eA and
asB + eB are combined to form approximately equal shared secrets close to asAsB (where a is a public
parameter, sA and sB are the initiator and responder’s secret keys, and eA and eB are secret noise). Reliable
passively secure key exchange can be achieved by transmitting error correcting hints about the shared secret,
such as the signal function of Ding, Xie, and Lin (DXL) [16] or Peikert’s reconciliation function [26]. The
basic idea of DXL’s signal function is as follows. In the ring-LWE variant of DXL key exchange, both Alice
and Bob derive a polynomial that is their copy of the approximately equal shared secret. The signal function
is applied to each coefficient of the polynomial, and returns a bit indicating whether the coefficient is within
a certain range, namely, within {−bq/4c, . . . , bq/4c}, where q is the modulus defining the ring. These signal
bits are computed by Bob and transmitted to Alice. This extra information allows both parties to derive
from each coefficient one or more exactly equal secret bits with high probability.

Attacks against passively secure LWE-based key exchange. Bare LWE public key encryption [29, 23]
and key exchange [16, 26] are not designed to be secure against active adversaries, and in fact are insecure
against active adversaries. For example, Regev’s search-to-decision equivalence for LWE [29] is a chosen
ciphertext attack that recovers the LWE secret given an oracle for decision LWE. Fluhrer [17] constructed an
active attack against a simplified form of DXL key exchange [16], in which an attacker Eve sends malicious
public keys and uses information leaked via the signal function to recover a party’s secret key. [11] refines
this to work on the full DXL protocol using signal leakage.

The basic idea of this key reuse attack is as follows. Rather than sending a well-formed public key
pA = asA + eA, Eve sends malformed pA = k, for k = 0, ..., q− 1. The victim Bob computes the shared secret
≈ pAsB = ksB, and returns a signal value on each coefficient of the shared secret, which indicates whether
the ith coefficient of ksB [i] is in a fixed range or not. As k ranges over {0, . . . , q − 1}, the ith coefficients of
the shared secret range over {0sB [i], . . . , (q− 1)sB [i]}. The attack assumes, that Bob reuses his secret key sB
for every session with Eve. After collecting the signals, Eve now inspects how the signals of these coefficients
behave. If all sB[i] = 0, then the signals of sB[i] remain constantly 0 (ignoring noise). If sB[i] = ±1, then
(ignoring noise) the signals of sB[i] will start off 0, switch to 1, and then switch back to 0: there are two
switches. If sB [i] = ±2, the “frequency” of the signal function on the ith coefficient doubles, and there will
be four switches. Thus, after appropriately handling the noise, if Eve observes 2` switches in the signals of
sB[i], she can conclude that |sB[i]| = `. To determine the signs, the attack is repeated with pA = (1 + x)k,
which allows for determining the relative sign between consecutive coefficients; and higher powers (1 + xz+1)k
where z is the maximum number of zeros between two nonzero coefficients.

There is also a related attack that does not rely on signal leakage [14], also called a key mismatch attack,
and that has been applied to the original NewHope scheme [1] and also the non-IND-CCA versions of several
NIST Round 2 and Round 3 candidates [27, 13, 28]. However, it should be emphasized that the non-IND-CCA
versions were not designed to be secure against key mismatch attacks and these attacks do not invalidate the
security claims of the IND-CCA versions.

Authenticated key exchange. Authenticated key exchange should be secure against active attacks by an
adversary. There is a small selection of literature building AKE from generic building blocks such as public
key encryption [2] or key encapsulation mechanisms [6, 18, 4, 30]; KEMs were original introduced in part to
serve as an abstract of the Diffie–Hellman construction.
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Yet most non-post-quantum AKE protocols in the literature have been constructed directly from various
combinations of Diffie–Hellman-like operations. Starting with work by Matsumoto, Takashima, and Imai [24],
a long series of papers (see [7, §5.3–5.4] for a history) has tried to directly combine ephemeral and long-term
DH shares in clever ways to create a single implicitly authenticated shared secret, with a nearly equally long
series of works breaking such constructions. An important construction is the MQV protocol by Menezes, Qu,
Vanstone, Law, and Solinas [25, 22] which computes the shared secret as g(rA+csA)(rB+dsB) for certain values c
and d derived from ephemeral public keys yA = grA and yB = grB , which lead to many derivations. Krawczyk’s
HMQV protocol [20] tweaked the MQV protocol, using pseudorandom c = H(yA, idB) and d = H(yB , idA)
and hashing the shared secret, permitting a proof of security in a variant of the Canetti–Krawczyk (CK) [8]
security model. Ustaoglu’s CMQV protocol [31] uses the so-called NAXOS trick [21] when generating the
ephemeral secret keys to obtain security in the eCK model [21], which provides security against ‘maximal
exposure’ attacks: the session key is indistinguishable if either (but not both) of each party’s long-term and
ephemeral secret keys is compromised. Many more implicitly authenticated DH protocols exist; again see [7,
§5.3–5.4] for a survey.

Prevention of key reuse attacks in LWE-based protocols. While the constructions of AKEs from
generic building blocks such as KEMs as mentioned above can be used to build secure AKE protocols from
LWE assumptions that resist active attacks against key reuse, there have been several attempts to build
AKE protocols directly from LWE, in many cases using techniques paralleling some of the DH-based AKE
protocols mentioned above.

At Eurocrypt 2015, Zhang, Zhang, Ding, Snook, and Dagdelen (ZZDSD) [32] presented a ring-LWE-
based AKE protocol inspired by the HMQV design of combining the ephemeral and static keys alongside
pseudorandom masking values; their approximately equal shared secrets were of the form a(rA+csA)(rB+dsB)
(where a is a public parameter, sA and sB are Alice and Bob’s long-term private keys, rA and rB are their
ephemeral private keys, yA and yB are their corresponding ephemeral public keys, and c = H(yA, idA, idB) and
d = H(yB , yA, idB , idA) are pseudorandom and distributed according to error distribution). The protocol is
claimed secure in the Bellare–Rogaway (BR) [3] security model with weak forward secrecy, though subsequent
work by Gong and Zhao has identified potential gaps in the proof [19].

Ding, Branco, and Schmitt (DBS) [12] also propose two key exchange protocols from LWE that are
designed to be secure against key reuse, also inspired by the HMQV design, although this time using the
pseudorandom c and d values in an additive rather than multiplicative way. Their first protocol, which we
call the DBS reusable-keys protocol, aims to achieve what they call “key reuse robustness” (see Section 2.1)
with an approximately equal shared secret of the form a(sA + c)(sB + d) for public values c and d. Their
second protocol, which we call the DBS AKE protocol, achieves AKE security in the BR model [3] with weak
forward secrecy, using an approximate shared secret of the form a(rA + sA + c)(rB + sB + d).

Table 1 summarizes the various Diffie–Hellman and LWE-based key exchange protocols discussed so far;
note especially some of the parallels in the shared secret derivation in the DH- and LWE-based protocols.

Our contributions. In this paper, we improve the query complexity of the key reuse attack using signal
leakage and apply the improved attack in several settings. Table 2 compares our improvements and new
attacks to the literature.

Improved attack using signal leakage. The key reuse attack exploiting signal leakage [17, 11] sends malformed
public keys pA = k for all k ∈ {0, . . . , q − 1}. This obtains a full picture of the noisy “waveform” ≈ ksB[i]
induced for each coefficient sB [i] of the secret key, then recovers the period from that binary waveform. To
assemble the full waveform formerly q samples were used, with a rather large value of q, e.g. ≈ 26 million in
[12].

We show that many fewer samples suffice for determining the period of the noisy waveform, given that the
period—which depends on the secret key—is bounded by some known value h (for example, for reasonable
parameters, the secret key coefficients have magnitude less than 15 with high probability). If there was no
noise, then the waveform would be square and have exactly 2sB [i] switches, equally distributed. With noise,
there will be many switches bunched around the period. However, based on the standard deviation of the
noise distribution, we can bound the region in which these noisy switches occur with high probability. If we
could sample from the stable regions, where noisy switches do not occur, we would be able to reconstruct the
period and thus the secret key coefficient. Our technique is to sample every tth value, where t is chosen so
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Table 1: Characteristics of selected key exchange protocols

Protocol Shared secret Error Security model
correction

DH-based key exchange

DH [9] grArB — passive
HMQV [20] g(rA+csA)(rB+dsB) — CK with wFS
CMQV [31] g(r̃A+csA)(r̃B+dsB) — eCK

LWE-based public key encryption and key exchange

Regev [29], LPR [23] ≈ arArB rounding IND-CPA
DXL [16] ≈ arArB signal fn. passive
Peikert [26], BCNS [5] ≈ arArB reconciliation passive
ZZDSD [32] ≈ a(rA + csA)(rB + dsB) signal fn. BR with wFS
DBS reusable [12] ≈ a(sA + c)(sB + d) signal fn. key reuse robustness
DBS AKE [12] ≈ a(rA + sA + c)(rB + sB + d) signal fn. BR with wFS

Legend: public parameters g, a; ephemeral secret keys rA, rB; long-term secret keys sA, sB; c = H(yA, . . . )
and d = H(yB , . . . ) for ephemeral public keys yA, yB and appropriate labels/transcripts. r̃ denotes NAXOS
trick applied [21].

Table 2: Summary of attacks on LWE key exchange protocols with key reuse

Attack Protocol Security model Query
claimed of attack complexity

[11] DXL [16] passive key reuse rob. (1 + z)q
[14, §5] DXL [16] passive key reuse rob. ≈ 32000n2α
[14, §7] DXL [16] passive key reuse rob. (1 + z) q2 +O(1)

ours, §4 DXL [16] passive key reuse rob. ≈ 36(1 + 2z)α
ours, §5 DBS reusable [12] key reuse rob. key reuse rob. ≈ 3600(1 + 4z)α2

ours, §6 DBS AKE [12] BR eCK ≈ 1467(1 + 4z)α2

Legend: n: LWE dimension; q: modulus; α: standard deviation of the secret/noise distribution; z: number of
consecutive zeros in the secret key, typically z ≈ 4. “Constants” in query complexity column are slightly
parameter-dependent, but do not vary substantially at cryptographic parameter sizes.

that we will collect at least one value from each stable region and at most one value from each noisy region
around period switches, allowing efficient computation of the period.

Our optimizations yield an active key recovery attack against the DXL protocol that uses (1 + 2z)8Cα
queries, where α is the standard deviation of the noise distribution, z is the maximum number of consecutive
zeros in a secret key plus one, and C is a small constant; for the parameters we consider, C ≈ 5 and z = 4
suffice for the attack to work with high probability. We implemented our attack against the same parameters
used in the previous best attack [11]: n = 1024, α = 3.197, q = 214 + 1. Our attack succeeds with probability
0.97 in on average 57 seconds, compared to 3.8 hours of [11].

Attack on DBS reusable-keys protocol. In Section 5, we examine the DBS reusable-keys protocol and
observe that its countermeasure for achieving security against key reuse —additive pseudorandom values—is
unfortunately not sufficient. Using our improved attack, we experimentally recover the key of the proposed
128-bit security parameters, within in the security model that the DBS reusable-keys protocol was claimed
secure, successfully.

The main idea of our attack is as follows. Recall from Table 1 that the approximate shared secret is
a(sA+c)(sB+d), for pseudorandom values c and d distributed according to the error distribution. From Bob’s
perspective, this is computed (ignoring small error terms) as ≈ (pA+ac)(sB+d) = pAsB+(pAd+acsB+acd),
where pA is the attacker’s public key. DBS calls the process of adding ac to pA before multiplying by the secret
key sB “pasteurization” and claims it “force[s] the parties involved in the KE scheme to behave honestly”. In
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fact, this pasteurization does not force honest behaviour. Consider an attacker who uses the basic signal
leakage attack described above, and sends malformed public keys pA = k for k ∈ {0, . . . , q − 1}. Noting that
asB is approximately equal to Bob’s public key pB , from the attacker’s perspective, the shared secret is pAsB
(which the attacker does not know) plus pAd+ pBc+ acd (which is known to the adversary). This known sum
is approximately uniformly distributed, so each coefficient will be 0 with probability around 1/q, and most
importantly the adversary knows when it is 0. Thus, when the ith coefficient of this known sum is 0, the
signal function is being applied to the ith coefficient of (pAsB)[i] directly—with no “pasteurization”—and we
are able to apply the original attack! We discuss the potential gap in the proof of “key reuse robustness” in
Section 5.8.

Our optimizations to the attack against DXL key exchange also apply in this scenario, yielding an attack
that runs in (1 + 4z) · 144C2α2, where α, z, and C are as above. We implemented our attack against the
parameters proposed by DBS for 128-bit security, with n = 512, α = 4.19, and q ≈ 26 million, and on average
successfully recovered the key in less than 12 minutes; see Section 5.7.

Attack on LWE-based AKE protocols in the eCK model. Two LWE-based AKE protocols, the ZZDSD AKE
protocol [32] and the DBS AKE protocol [12], are claimed secure in the Bellare–Rogaway security model [3].
Yet the design of these protocols is acknowledged to be inspired by MQV-style protocols [25, 22]—again see
the direct comparison between the shared secret of the ZZDSD AKE protocol and HMQV in Table 1, and
the very closely related CMQV protocol [31] can be proven secure in the eCK model [21] against maximal
exposure attacks.

Given the similarity of the ZZDSD and DBS AKE protocols to MQV-style constructions, we examine the
security of DBS AKE protocol [12] and the ZZDSD AKE protocol protocol in the eCK model to see if it is
possible they achieve that stronger form of security.

For the DBS AKE protocol, we show that it is not eCK-secure. Recall that its approximate shared secret
is ≈ a(rA + sA + c)(rB + sB + d); the additive “pasteurization” terms c and d are used alongside addition of
the ephemeral and long-term keys. We were not able to successfully adapt our attack technique from the DBS
reusable-keys protocol to the DBS AKE protocol protocol under the conditions of the BR model claimed;
there is not enough information for the attacker to know when extra addends in the shared secret sum to 0
for any particular coefficient. However, if we permit ourselves the powers of the eCK model—compromising
the ephemeral secret key the victim used in other sessions—then we do have enough information to know
when extra addends in the shared secret sum to 0, and we can reduce to the previous attack.

We implemented our eCK-model attack against the DBS AKE protocol with the originally suggested
parameters targeting 128-bit security, with n = 512, α = 4.19, and q ≈ 26 million, and on average successfully
recovered the key in less than 34 minutes; see Section 6 for details.

Adapting our eCK attack against the DBS AKE protocol to the ZZDSD protocol was not successful; a
brief discussion of our attempt is given in Section 6.2.

To summarize, our attack on the DBS reusable-keys protocol does invalidate its security claim of key
reuse robustness, but the eCK-model attack on the DBS AKE protocol does not invalid its claimed BR
security, nor do we invalidate the security claims of the ZZDSD protocol. However, given that the DBS
AKE protocol mixed together ephemeral and static secret keys in a way that bears superficial similarity to
MQV-style protocols [25, 22] like CMQV [31] which are eCK-secure, we think it interesting to point out that
this additive pasteurization approach does not achieve eCK security. The ZZDSD protocol’s design is even
closer to MQV-style protocols; determining whether it is eCK-secure, or broken in the eCK model, remains
an open question. Our observations highlight the challenges in building secure AKE protocols directly from
LWE assumptions and that the parallels between DH- and LWE-based protocols break down. There remain
many open problems in constructing LWE-based AKE protocols.

2 Background

Notation. An instance of the ring learning with errors (RLWE) problem will be specified by a prime modulus
q, a dimension n, and distribution χα with standard deviation α which is used for both the secrets and errors.
The ring is Rq[x] = Zq[x]/〈f(x)〉 for an irreducible polynomial f(x). Elements of Zq may be represented as
either {0, . . . , q − 1} or {−q−1/2, . . . , q−1/2} as required. The coefficient of xi of y ∈ Rq[x] is denoted by y[i].
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Table 3: Notation for ring-LWE parameters and key exchange protocols

Symbol Description

n dimension of the (ring) LWE instance
q modulus
α standard deviation of the secret/noise distribution
χα secret/noise distribution

sA, sB Alice and Bob’s long-term/reused secret keys
pA, pB Alice and Bob’s long-term/reused public keys
rA, rB Alice and Bob’s ephemeral secret keys
yA, yB Alice and Bob’s ephemeral public keys
eA, eB , fA, fB , gA, gB noise terms sampled from χα
kA, kB Alice and Bob’s approximately equal shared secret
wB Bob’s signal (reconciliation) value
skA, skB final shared secret
r random bit used in signal function

Initiator (Alice) Responder (Bob)

sA, eA←$ χα sB , eB ←$ χα
pA ← asA + 2eA ∈ Rq pB ← asB + 2eB ∈ Rq

pA gB ←$ χα

gA←$ χα kB ← pAsB + 2gB

kA ← pBsA + 2gA
pB , wB wB ← Sig(kB) ∈ {0, 1}n

skA ← Mod2(kA, wB) skB ← Mod2(kB , wB)

Sig(v) = 0 if v ∈ E else 1
(extended component-wise)

E = {−bq/4c + r, · · · , bq/4c + r} for
r←$ {0, 1}

Mod2(v, w) =((
v + w q−1

2

)
mod q

)
mod 2 for

(v, w) ∈ Zq × {0, 1}

Figure 1: Ring-LWE-based key exchange protocol of Ding, Xie, and Lin (DXL) [16].

We write #S to denote the number of elements in set S. x←$ S denotes sampling x uniformly from set S. If
χ is a distribution on S, x←$ χ denotes sampling from S according to χ.

Table 3 summarizes the notation used in this paper for ring-LWE parameters and ring-LWE key exchange
protocols.

Basic ring-LWE key exchange. The basic ring-LWE-based key exchange protocol of Ding, Xie, and Lin (DXL)
[16] is shown in Figure 1, and was the basis of the NIST PQC Round 1 submission “Ding Key Exchange”. It
makes use of a component-wise “signal” function Sig(v) shown on the right-side of Figure 1.

2.1 Definition of key reuse and robustness against key reuse

Let Π be a 2-pass key exchange protocol between two parties A and B. During the protocol, party A initiates
the exchange by sending pA. Party B responds by sending pB . (Note that in the notation of this subsection,
party B’s response may consist of multiple components; in the context of DXL key exchange in Figure 1, this
would be both pB and wB .) Let K be the shared secret key space.

Key reuse means that each party is willing to run multiple sessions using the same long-term secret. To
model this, [11] defines a key reuse oracle S which executes party B’s responses. The oracle S has access to
the (fixed) secret key of party B (e.g., sB , eB in Figure 1). On receiving pA from party A, S computes and
returns pB according to the protocol using the same secret key for every response.

The key reuse robustness [12] of a 2-pass key exchange protocol captures the idea that it is safe for a
party to reuse a key, even in the face of maliciously generated messages from the other party. Formally key
reuse robustness can be defined in terms of either the initiator or responder; for the purposes of the attacks
in this paper, it suffices to define it in terms of the responder. Figure 2 shows the security experiment kru
defining responder key reuse robustness for a 2-pass key exchange protocol Π. A responder secret key sB
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ExptkruΠ (A):

1 Generate responder long-term secret key sB

2 Generate initiator message m

3 Execute Π as responder on message m∗ and secret
key sB to produce outgoing message m′∗ and
shared secret sk0

4 sk1←$K
5 b←$ {0, 1}
6 b′←$AS(m∗,m′∗, skb)

7 Return Jb = b′K

Oracle S(m):

1 Execute Π as responder on message m
and secret key sB to produce outgoing
message m′ and shared secret k

2 Return m′

Figure 2: Responder key reuse robustness kru security experiment for 2-pass key exchange protocol Π against
adversary A

is fixed for a party B. Adversary A may query the above-defined oracle S with arbitrary messages; this
corresponds to the adversary impersonating the initiator during a key exchange with B when B reuses their
key sB . The experiment constructs one honest interaction between an initiator and the responder B (with
the responder reusing their key), and gives to the adversary either the real session key or a random string of
the same length. The adversary must determine which is the case.

The advantage of A against the key reuse robustness of Π is defined as

Advkru
Π (A) =

∣∣∣∣Pr[ExptkruΠ (A)⇒ 1]− 1

2

∣∣∣∣ .
Our definition differs slightly from [12] in that we allow the challenge session at any point during the

experiment, while [12] seems to allow queries to the oracle only before the challenge session. Although our
formulation allows a more powerful adversary in the security game, our attack in Section 5 does not make
use of this extra power and applies against the original definition in [12] as well.

2.2 Fluhrer’s key reuse attack on DXL RLWE-based key exchange

The original key reuse attack by Fluhrer [17] and refined by [11] against RLWE-based key exchange protocols,
such as the DXL protocol depicted in Figure 1, takes advantage of the signal function to determine the
coefficients of the reused secret sB(formalized via the oracle S described in Figure 2). The attack can be
described by the following two steps.

Absolute value recovery. Adversary A invokes oracle S with input pA = k for k = 0, . . . , q − 1. As k changes
from 0 to q − 1, the corresponding signal wB[i] of the ith coefficient will essentially be a noisy version of a
periodic function with |2sB [i]| signal changes between zero and one. By recovering the period from this noisy
signal, A can determine the absolute value of sB[i]. Applied component-wise to all coefficients of wB, the
adversary can reveal the absolute values of all coefficients of sB .

Relative sign recovery. To determine the sign of each secret coefficient, the adversary A invokes the oracle
S with input (1 + x)pA where pA = k for k = 0, . . . , q − 1. Again, by recovering the period from this noisy
signal, A can determine the value of the coefficients of (1 + x)sB, up to sign. The coefficients of (1 + x)sB
are sB[0]− sB[n− 1], sB[1] + sB[2], . . . , sB[n− 2] + sB[n− 1]. With this information, A can determine the
relative signs of adjacent pairs of coefficients in sB . If there are z − 1 consecutive zeros in the sB (which can
be seen from the absolute value recovery stage), this technique must be repeated with (1 + xz)k to determine
relative signs between coefficients z positions apart. Once all relative signs are recovered, this narrows the
possibilities down to two options: ±sB .
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Figure 3: Noisy periodic binary signal, highlighting concentration of noise around a boundary

Although the values pA = k sent by the adversary look atypical and one could try to protect against this
attack by filtering such values out, it is possible to adapt the attack to work with values that look random,
namely pA = asA + k for some sA←$ χ [10, §4.4].

3 Sparse signal collection

As described in the previous section, the main tool in Fluhrer’s attack is recovering the secret period from
the noisy binary signal induced by Sig(kB). In this section, we present our improvements which use a much
smaller number of samples from the signal, hence we call this sparse signal collection.

We aim to keep our presentation in this section generic, but it helps to keep in mind the application to
RLWE-based key exchange protocols like DXL (Figure 1). In DXL, as a result of the error term gB , there are
frequent changes in the value of the signal function when kB [i] is near ±bq/4c+ r, i.e., near the boundary of
the region E (see Section 2). As kB[i] moves away from the boundary of the region E, the impact of the
error term gB decreases and the signal stabilizes.

Figure 3 shows an example of a noisy periodic binary signal, where the noise is concentrated around the
period changes, which correspond to when kB [i] passes the boundaries of region E in the DXL protocol.

If one could filter out fluctuations near the boundaries of E, i.e., not counting them as signal changes, the
value of sB[i] could still be determined by determining the period or alternatively counting the number of
signal changes in a noiseless signal. The attack as described in [11] collects all signals but does not specify a
general algorithm to determine the secret coefficients.

Potential approaches for recovering the period from the noisy signal could rely on determining the
Hamming distance from a pure signal of each period, or applying the Fourier transform or high pass filters
often used in signal processing. Each of these strategies requires collecting samples for many or every value
from 0 to q − 1. In this section, we describe a new method of signal collection that determines the period
with high probability while substantially reducing the number of samples needed to carry out the attack. In
what follows, we will describe the idea of our sparse signal collection algorithm in general, then apply it to
different RLWE-based key exchange protocols in subsequent sections.

Requirements. Let I be a finite integer interval and b some bound specified below. Let f : I → {0, 1} be a
periodic signal function, changing signals at points P1, ..., Pm, equally spaced out over the interval I, i.e.,
Pi < Pj , Pj −Pi = #I/m− b for i < j. Without loss of generality, assume f(x) = 0 for x < P1 or x ≥ Pm. Let
g : I → {0, 1} be a function that approximates f . By this we mean the following: there exist m+ 1 non-empty
(“stable”) intervals Si ⊂ I, with Si ∩ Sj = ∅ for i 6= j such that f(Si) = g(Si) for i = 1, ...,m+ 1. Let the
intervals be ordered in the sense that all elements of Si are strictly smaller than all elements in Sj for i < j.
Furthermore, let #S1 = #Sm+1 = #Si/2 for 1 < i < m+1. (Strictly speaking, this requirement is not needed
in general but simplifies our explanation and is closer to the case of RLWE-based key exchange.) In addition,
we define the (ordered) set of remaining (“noisy”) intervals (in between the Si) to be N1, ..., Nm, with Pi ∈ Ni.
We assume that for all i it holds that #Ni ≤ b for some integer bound b ≤ #Sk for 1 < k < m + 1 and
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Figure 4: Periodic function f (left) and noisy version g (right) over interval I with m = 6 signal changes at
points Pi, split into stable (Si) and noisy (Ni) regions.

b b

Figure 5: Two different sets of collected signals (marked with dashed vertical lines).

Ni ∩Nj = ∅ for i 6= j. We visualize the above definitions in Figure 4.
The problem of interest is recovering the unknown period m using samples from g. The problem may be

constrained in the sense that m is upper bounded.

Description. Rather than collecting signals for every k in the interval I, we only collect a few signals in the
stable intervals Si of the periodic function by trying to skip the noisy areas Nj of the period around the
points Pj ; or at least limit the number of samples coming from noisy periods. In particular, if we could
guarantee that we collect (i) at least one sample from every stable region and (ii) at most one signal from
every noisy region, we could still determine the period by counting the number of signal changes. The main
task becomes bounding the width b of the noisy region and determining how far apart samples should be
taken to ensure that both (i) and (ii) are satisfied while trying to minimize the number of samples collected.

Figure 5 shows two examples that involve collecting every (b+ 1)th signal. Since the width of the noisy
region is bounded by b, no matter where the signal collection begins, at most one sample will be collected
from each noisy region. In Figure 5 (left), the collected values are 0 0 0 1; in Figure 5 (right), the collected
value are 0 1 1 1. In either case, we count only one signal change—as desired. Suppose in Figure 5 (left), the
third signal collected was equal to 1 instead of 0, leading to the collected values 0 0 1 1 (this is possible since
that position is within a noisy interval Ni). Even then, only one signal change from 0 to 1 would be counted.

In order for the count of signal changes to be correct, we must ensure that at least one value from every
stable interval Si is collected. There are m+ 1 stable periods, where the intervals S2, ..., Sm and #(S1∪Sm+1)
have width #I/m− b. Thus, in order to ensure collection of at least one value from every stable interval Si, at
least every (#I/2m− b/2)th value of g(x) must be collected. Since we assumed that the values of g during the
first and last stable interval are equal to zero, actually only at least every (#I/m− b)th value of g(x) needs to
be collected.

4 Improvements to existing key reuse attacks

We now apply the sparse signal collection strategy of Section 3 to Fluhrer’s attack [17, 11] against the DXL
RLWE-based key exchange protocol [16] in Figure 1.

4.1 Determining sparse signal collection parameters

For the remainder of this section, we focus on recovering the ith coefficient of kB , i.e., kB [i] = (pAsB + 2gB)[i].
In the notation of Section 3, the interval I corresponds to [0, ..., q − 1]; the approximation function f
corresponds to the response of the oracle S except that gB = 0, i.e., f(pA) = Sig(pAsB)[i], while g is defined
as g(pA) = Sig(pAsB + 2gB)[i].

Determining b. In the case of a signal change from 0 to 1, a noisy signal occurs if (pAsB)[i] ≤ bq/4c+ r and
(pAsB + 2gB)i] > bq/4c + r, or if (pAsB)[i] > bq/4c + r and (pAsB + 2gB)[i] ≤ bq/4c + r. Put differently, if
|2gB [i]| ≥ |bq/4c+ r − (pAsB)[i]|. Similarly, in the case of a signal change from 1 to 0, a noisy signal occurs if
|2gB [i]| ≥ |b3q/4c+ r − (pAsB)[i]|.
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As pA changes, the difference between (pAsB)[i] and the closest point of signal change Pj changes as well.
This means that the farther away the absolute value of (pAsB)[i] is from bq/4c+ r, the larger must be |2gB [i]|
in order to cause a noisy signal. Since gB is sampled from a discrete Gaussian distribution, there is some
value, say h, where it is highly unlikely that |2gB [i]| > h.

For the following argument, suppose we can choose some h such that |2gB [i]| is never greater than h.1 In
practice, our choice of h will determine the success probability of the attack. For each possible value of sB [i],
since |2gB [i]| is bounded by h, we can calculate the width of the interval where the noise may affect the signal;
this corresponds to the noisy intervals Nj . Note that as the value of sB[i] increases, the distance between
(pAsB)[i] and bq/4c+ r changes at a faster rate as pA increases. Hence, the noisy intervals are largest when
sB [i] = 1 (when sB [i] = 0, the noise only changes the signal when |2gB [i]| ≥ bq/4c+ r and we can assume this
does not occur). Thus it suffices to take a value b that is an upper bound for the size of the noisy intervals
Ni corresponding to sB [i] = 1; namely, b = 2h.

Determining the maximum number of signal changes m. In Fluhrer’s attack, signals are collected for two
different purposes: to find the absolute value of a coefficient, and to determine the relative sign of two
coefficients. In the case of finding the absolute value, the number m of signal changes observed in our sparse
signal collection corresponds to the maximum absolute value of sB [i] times two. If sB is chosen with discrete
Gaussian distribution, no theoretical upper bound exists. However, as in the case of the noise term gB
above, we can upper bound this with high probability, which then impacts the overall success probability of
determining the correct number of signal changes, i.e., of finding the correct absolute value. Following the
same reasoning as for b, the maximum number of signal changes is m = 2h. In case of finding the relative
sign of two coefficients, the number m of signal changes corresponds to the maximum value of sB [i] + sB [j].
Again bounding these with high probability, the maximum number of signal changes is m = 4h.

Number of signals needed to be collected. Following Section 3, in order to ensure we collect at least one
value from every stable period, we must collect at least every (q/2m− b/2)th signal. Moreover, in order to
ensure we collect at most one value from every noisy period, we must collect at most every bth signal, with
b = 2h. Say we collect every t1th signal when recovering absolute value and every t2th signal when recovering
the sign of a coefficient; this means that we must choose t1 such that 2h < t1 < q/4h− h and t2 such that
2h < t2 < q/8h− h.

4.2 Description of the improved attack

Absolute value recovery. The adversary A invokes the oracle S with input pA = k where k takes on every t1th
value from 0 to q − 1. As k changes from 0 to q − 1, the signal returned, wB [i], will change exactly |2sB [i]|
times. So, A can determine the value of sB[i] up to the ± sign. After this step, A knows the value of each
coefficient of sB up to its sign.

Relative sign recovery. The adversary A invokes the oracle S with input pA = (1 + x)k where k takes on
every t2th value from 0 to q − 1. Again, by checking the number of signal changes, A can determine the
absolute value of the coefficients of (1 + x)sB. The coefficients of (1 + x)sB are sB[0] − sB[n − 1], sB[1] +
sB [2], . . . , sB [n− 2] + sB [n− 1]. With this information, A can determine the relative signs of adjacent pairs
of coefficients in sB . Repeat this step as necessary with (1 + xz)pA to determine relative signs of coefficients
between which there are z − 1 zeros. This narrows the possibilities down to two options, namely sB or −sB .

4.3 Success probability

As noted in Section 4.1, our attack works assuming certain values are bounded; in this section, we determine
the success probability of our attack by bounding the failure probability. In particular, we analyze that
probability that coefficients of sB , gB ←$ χα exceed the bound h.

Suppose |sB[i]| > h for some coefficient i, which might hinder collecting at least one signal from every

1Many practical LWE and ring-LWE protocols have bounded sB since they use approximate Gaussian distributions, e.g.,
FrodoKEM has errors between ±12.
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stable interval. The probability that this occurs is

ρ1 = 2

∞∑
x=h+1

1√
2π · α2

exp(−x
2
/2α2) ;

otherwise, |sB [i]| ≤ h. When |sB [i]| ≤ h, the attack may fail if there is some error that causes enough noise
which results in the collection of an incorrect signal. This occurs if the noisy interval is larger than expected,
i.e., if the coefficient of the error term gB [i] is greater than or equal to t1/2 + r. This probability is given by

ρ2 = 2

∞∑
x=t1/2+1

1√
2π · α2

exp(−x
2
/2α2) .

There are 2|sB[i]| + 1 noisy intervals, |sB[i]| ≤ h, n coefficients of sB, and 1/t1 chance that we collect
this incorrect signal. Given that each sB [i], eB [i] is chosen independently,it is reasonable to assume that the
probability of collecting an incorrect signal at each noisy interval is independent. Then, the probability of
failure of absolute value recovery is at most

n(ρ1 + (1− ρ1)(2h+ 1)
1

t1
ρ2) .

Similarly, the probability of failure in one iteration of relative sign recovery is

n(ρ1 + (1− ρ1)(4h+ 1)
1

t2
ρ3) ,

where

ρ3 = 2

∞∑
x=t2/2+1

1√
2π · α2

exp(−x
2
/2α2) .

Putting this all together, the probability of failure of the entire attack is

n

(
ρ1 + (1− ρ1)(2h+ 1)

1

t1
ρ2

)
+ zn

(
ρ1 + (1− ρ1)(4h+ 1)

1

t2
ρ3

)
,

where z is the maximum number of consecutive zeros in the key plus one.

Example. Consider the DXL parameters n = 1024, q = 214 + 1, α = 3.197. Suppose there are at most z−1 = 3
consecutive zeros. We let h = 14 and we collect every t = t1 = t2 = 100th signal value. Then the probability
that some coefficient of sB exceeds h is approximately 2−17.53. The probability that some coefficient of the
error term exceeds t/2 = 50 is approximately 2−50.25. Therefore, the probability of failure is at most 0.02164,
i.e., the success probability is at least 97.84%.

4.4 Query complexity

The key reuse attack requires qS = (z + 1)q queries where z denotes the number of times the relative sign
recovery step must be taken, i.e., the maximum number of consecutive zeros between two nonzero coefficients
plus one, so z ≤ n/2. It is likely for z to be much smaller since the coefficients in sB are sampled from a discrete

Gaussian distribution. Hence, the probability of sampling z−1 consecutive zeros is 1−(1−1/(
√

2πα2)z−1)n−z.
For example, for α = 3.197 and n = 1024, the probability of five or more consecutive zeros is 0.030392. Thus,
we expect z ≈ 4, which is very likely for practical values of α and n.

To improve the query complexity, [14] suggested collecting signals for values of k until the signal changes
and stabilizes. That method requires q/2 + c queries to recover |sB [i]|, where c is a small constant, leading to
a total of (1 + z)(q/2 + c) queries. Suppose we choose h = Cα, where C is a constant such that it is highly
unlikely that |sB [i]| ≥ Cα, and t1 = q/8h, which satisfies 2h < t1 < q/4h− h for parameters we consider. Our
method requires only 8Cα queries to recover |sB [i]|. Since t2 ≈ 2t1, the total number of queries we require
is qS = 8Cα + z(16Cα) = (1 + 2z)8Cα. This is a significant improvement since α � q. We compare the
number of queries from [11, 14] with sparse signal collection in Table 2.

The choice of the constant C will affect the efficiency and the success probability. For practical LWE
parameters, C ≈ 4.5, accompanied with a reasonable choice of t1 and t2, provides high success probability of
approximately 97%.
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Initiator (Alice) Responder (Bob)

sA, eA←$ χα sB , eB ←$ χα

pA ← asA + 2eA
pA pB ← asB + 2eB

c← H1(idA, idB , pA)

d← H1(idA, idB , pA, pB)

gB , g
′
B ←$ χα

pA ← pA + ac+ 2gB
c← H1(idA, idB , pA) kB ← pA(sB + d) + 2g′B
d← H1(idA, idB , pA, pB) pB , wB wB ← Sig(kB)
gA, g

′
A←$ χα

pB ← pB + ad+ 2gA
kA ← pB(sA + c) + 2g′A
skA ← Mod2(kA, wB) skB ← Mod2(kB , wB)

Figure 6: DBS reusable-keys protocol [12]

4.5 Experimental results

We compute the number of signals that we must collect for the parameters n = 1024, q = 214 + 1, α = 3.197
proposed in [11]. The number of elements in the noisy intervals is largest when sB = 1. In this case, noise
may affect the signal when |2gB[i]| ≥ |bq/4c+ r − pA| . For α = 3.197, the probability that gB[i]←$ χα has
absolute value greater than or equal to 15 is approximately 2−17.53.

So we assume that |gB[i]| < 15, i.e., h = 14, in what follows. Thus, the signal may be affected when
bq/4c + r − 28 ≤ pA ≤ bq/4c + r + 28 since |2gB[i]| ≤ |2 · 14| = 28. So the noisy intervals have at most
b = 2 · 28 = 56 elements.

Now we consider the size of the stable intervals, which is at least q/4sB [i] − b with sB[i] the coefficient
to-be-determined. Since sB ←$ χα we assume again that |sB [i]| < 15. Hence, the stable interval has at least
264 elements.

However, when recovering relative signs, we collect values corresponding to the difference between two
coefficients, i.e., we bound these values by 2 · 14 = 28. So, during relative sign collection the stable intervals
have at least 118 elements.

If we collect every t-th value with t1 = t2 = t, for any 56 < t < 118, then we can ensure that we collect at
least one value for every stable and at most one value for every noisy interval in absolute value and relative
sign recovery.

Collecting every 100th signal, our experimental implementation obtains correct results up to sign in an
average of 57.892 seconds over five runs, compared to 3.8 hours of the original attack [11]. The execution of
our attack was performed using a MacBook Air equipped with a 1.6 GHz dual-core Intel Core i5 CPU.

5 Attack on DBS reusable-keys protocol

In this section, we show a new variant of Fluhrer’s attack [17, 11] that, combined with our sparse signal
collection technique, yields a successful and efficient key recovery attack against a protocol by Ding, Branco,
and Schmitt [12] that was designed to be secure against key reuse.

The protocol in question is the DBS reusable-keys protocol as shown in Figure 6. It relies on a public
parameter a←$Rq and a hash function H1 : {0, 1}∗ → χα whose outputs follow the discrete Gaussian
distribution χα with standard deviation α. In [12], the protocol is claimed to provide key reuse robustness
for the initiator and responder, under the assumption that the Hermite-normal-form ring-LWE assumption is
hard and H1 is a random oracle. For the purpose of key reuse, the values that the responder reuses are sB ,
eB , and pB .
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5.1 High-level idea of the attack

For the purposes of simplifying the explanation of the attack idea, in this subsection we assume that the
error terms eB , gB, and g′B are chosen to be 0; Section 5.2 describes the attack with error terms following
the original distribution.

Let S be the oracle described in Section 2.1 with access to the fixed secret key sB. During the attack,
adversary A invokes S on pA = k (and an identity idA) for some k ∈ {0, ..., q− 1}. The oracle S then samples
gB , g

′
B ←$ χα, computes

kB = pA(sB + d) + 2g′B = (pA + ac+ 2gB)(sB + d) + 2g′B

= pAsB + pAd+ acsB + acd+ 2gBsB + 2gBd+ 2g′B

= pAsB + (cpB + acd+ dpA)︸ ︷︷ ︸
∆

+ (2gBsB + 2gBdd+ 2g′B − 2ceB)︸ ︷︷ ︸
ε

,

and returns (pB , wB) = (pB ,Sig(kB)). Notice that gB , eB , c, d, g
′
B , sB are all distributed according to χα, and

hence, ε = 2gBsB + 2gBd+ 2g′B − 2ceB is the sum of small values. Furthermore, A knows a, controls pA,
receives pB , is able to compute d and c, and hence, is able to compute the value of ∆ = cpB + acd+ dpA.

The core idea of our attack is as follows: an adversary is able to find pA and an identity idA such that
the ith coefficient of ∆ is equal to zero. Invoking the oracle S with such pA, idA, returns Sig(pAsB + ∆)
(assuming ε = 0 for simplicity), with Sig(pAsB [i] + ∆[i]) = Sig(pAsB [i]) = Sig(pAsB)[i].

The key observation is that the probability that ∆[i] = 0 is close to 1/q, as analyzed in Section 5.4.
Moreover, the adversary can tell when ∆[i] = 0 occurs. When it does occur, the adversary can determine the
coefficient of sB [i] up to its sign by counting the number of signal changes as in the original key reuse attack.
Now, this only succeeds 1/qth of the time, specifically when ∆[i] = 0, but since q is not cryptographically
large, it is feasible to repeat this ≈ q times. (We show how to do this with fewer than q repetitions below.)
Thus, for each pA ranging from k = 0, . . . , q − 1, we repeat this with different idA (different pA and idA will
induce random c and d, thereby randomizing ∆) until observing a sample with ∆[i] = 0, which we then use
as for k in the original key reuse attack. Having done this for all k ∈ {0, . . . , q − 1} for every coefficient, we
have the information needed to recover the entire secret sB up to sign.

The relative sign recovery is similar to the initial step, except that the oracle S is queried with input
(1 + x)pA. In particular, using the above method, A first recovers the coefficients (up to sign) of (1 + x)sB ,
i.e., A recovers sB [0]− sB [n− 1], sB [1] + sB [2], . . . , sB [n− 2] + sB [n− 1] up to ± sign. Again to attack the
DBS reusable-keys protocol we must filter to samples where ∆[i] = 0.

As in Fluhrer’s original attack on DXL key exchange, this may not completely determine relative signs if
sB [i] = sB [i+ k2] = 0 and sB [i+ k1] 6= 0 for 0 < k1 < k2. The reason is that only the relationships between
adjacent values are learned from (1 + x)sB. However, this can be solved by repeatedly performing relative
sign recovery using input (1 + xz1)pA, for 1 ≤ z1 ≤ z, with z being the maximum numbers of consecutive
zeros plus one which is known after the absolute value recovery (see Section 2.2 and 4.3).

Combining the absolute value and relative sign recovery stages, the adversary can then determine that
the secret is either sB or −sB .

5.2 The complete attack

We now assume eB , gB , g
′
B ←$ χα and, hence, upon input pA, idA the oracle S returns Sig(pAsB + ∆ + ε). In

our description below, we will follow the notation from Section 3 and 4. Table 4 summarizes the tuneable
parameters of the attack.

Adversary construction of pA and deconstructing corresponding kB. In the simple form of the
attack, the adversary uses values of the form pA = k for k = 0, ..., q − 1. Party B could in principle thwart
this attack by checking whether pA is a constant polynomial. To undermine such countermeasures, we pick
pA to take the form of a RLWE sample, namely pA = asA + keA with sA←$ χα and eA = 1. The key
determined by the oracle S is then kB = (pA + ac+ 2gB)(sB + d) + 2g′B = asAsB + ksB + ∆ + ε. The value
asAsB is constant as we loop over values of k. Hence, the number of signal changes will still be |2sB | for
each coefficient. The first ith signal will correspond to the value of asAsB [i] (plus some error term), so it is
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Table 4: Attack parameters

Symbol Description

h1 upper bound on error terms added to key
h2 upper bound on known terms used during absolute value collection
h3 upper bound on secret coefficients
t1 collect every t1-th signal in absolute value recovery
h′2 upper bound on known terms used during relative sign collection
h′3 upper bound on difference of secret coefficients
t2 collect every t2-th signal in relative sign recovery
z maximum number of consecutive zeros in the secret plus one

not guaranteed to start at 0. In fact, all signals of the ith coefficient will be shifted by the value of asAsB [i].
Hence, we cannot assume the first and last signal to be 0. However, a simple modification of the signal
processing, which checks if there is a signal change between the last and first signal received, is sufficient to
correctly account for this shift. Also, the known value will be different due to the factor of dpA but is still
expected to be approximately uniform.

Determine the number of signals needed. To determine the number of signals needed during absolute
value and relative sign recovery, t1 and t2 respectively, we first need to bound the width b of the noisy intervals
and the number of signal changes m (see Section 4.1). To this end, we make the following observations.

The terms ∆ = cpB + acd+ dpA and ε = 2gBsB + 2gBd+ 2g′B − 2ceB add noise which may change the
value of the signal. In the simplified form of the attack, we demanded ∆[i] = 0 in order to make use of a
sample. However in the complete attack we can relax this and just demand that this is sufficiently small. At
some boundary, β ∈ {bq/4c , b3q/4c}, the signal may change if |∆ + ε| > |β − pAsB |. Thus, in order to bound b
and m, we need find bounds h1, h2 and h3 such that

(1) h1 ≥ |ε| with high probability

(2) h2 ≥ |∆| with probability 2h2/q, since the known values are indistinguishable from uniform (see
Section 5.4), and

(3) h3 ≥ |sB | with high probability.

In Section 5.3, we show that the sum ε of error terms is normally distributed with some standard deviation
αe. Choosing h1 ≈ 4.5αe means the probability that ε is greater than h1 is at most 2−17. Similarly, we
choose h3 ≈ 4.5α and, hence, the probability that |sB | ≥ h3 is at most 2−17. Additionally, we choose h2 such
that 2(h1 + h2) < q/2h3 − 2(h1 + h2). That is, h2 < 1/4(q/2h3 − 4h1) = q/8h3 − h1. A larger value of h2 will
increase the efficiency but decrease the success probability.

Following Section 4.4, we can now determine the number of signals needed for absolute and sign recovery,
t1 and t2 respectively. Namely, collecting every t1th signal for any t1 satisfying

2 (h1 + h2) < t1 <
q

2h3
− 2(h1 + h2)

ensures that at most one signal in every noisy interval Ni and at least one signal for every stable interval Sj
is collected. The value of h2 will determine how large this range is. A t1 value closer to either bound will
decrease the success probability, so, to optimize the success probability, choose some t1 value in the middle of
either bound. However, a larger value of t1 will improve the efficiency of the attack.

During relative sign recovery, we are collecting values corresponding to the difference between two
coefficients. These coefficients are bounded by 2h3 with high probability. Similarly, we can compute a
collection interval t2 for relative sign recovery using h′3 = 2h3 and h′2 < q/8h′

3 − h1.
To summarize, the two stages of the attack are as follows.

Absolute value recovery. Invoke the oracle S with input pA = asA + k (taking eA = 1) where k takes on every
t1th value from 0 to q − 1. For each of these k, collect signals wB [i] where the value of the known term ∆ at
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coefficient i is less than or equal to h2 (a single sample wB may provide satisfying samples for several indices).
Stop when a signal has been collected for every i ∈ [0, n] for each k. For each coefficient i, as k changes, the
signal returned, wB [i], will change exactly |2sB [i]| times. Thus, the value of sB [i] can be determined up to ±
sign by dividing the number of signal changes by 2.

Relative sign recovery. Invoke the oracle S with input (1 + x)pA where pA = asA + k (taking eA = 1) where k
takes on every t2th value from 0 to q−1. For each of these k, collect signals when the value of the known term ∆
is less than or equal to h′2. Checking the number of signal changes, the value of the coefficients of (1+x)sB can
be determined up to sign. The coefficients of (1+x)sB are sB [0]−sB [n−1], sB [1]+sB [2], . . . , sB [n−2]+sB [n−1],
which determine the relative signs of adjacent pairs of coefficients in sB . Repeat this step as necessary with
(1 + xz)pA based on the number of consecutive zeroes.

5.3 Distribution of the error terms

Recall that the key computed by the oracle S is given by kB = pAsB + ∆ + ε, where ε = 2gBsB + 2gBd+
2g′B − 2ceB. During the attack, values such that kB[i] = (pAsB + ε)[i] are found, where the polynomials
gB , d, g

′
B , c, eB are sampled with discrete Gaussian distribution with standard deviation α. In what follows,

we argue that we can assume that the error ε also follows a discrete Gaussian distribution with standard
deviation γ to be determined. To this end, we will use the fact that the sum of Gaussian distributed variables
is again Gaussian distributed and the central limit theorem (CLT) as stated next.

Theorem 5.1 (Central Limit Theorem). Let X1, ..., XN be a set of N independent random variables with a
common distribution with mean µ and variance α2. Moreover, let SN = (X1+...+XN )/N. Then for every fixed
x it holds that

Pr
[√
n(SN − µ) ≤ x

]
→N→∞ N

(
µ = 0,

α2

n

)
where N

(
µ = 0, α

2
/n
)

is the normal distribution with standard deviation α/n.

Hence, the distribution of X1 + ...+Xn follows the normal distribution with variance nα2 (for sufficiently
large N) since V ar(X1 + ...+XN ) = V ar(N · SN ) = N2V ar(SN ) = N2 · α2

/N = N · α2.

Lemma 5.2 (Sum of Gaussian Variables). Let X1 and X2 independent random variables normal distribution
N (µ1 = 0, α1) and N (µ2 = 0, α2), respectively. Then X1 +X2 is of normal distribution N (µ = 0,

√
α2

1 + α2
2),

and V ar(X1 ·X2) = α2
1 · α2

2.

Thus, we can write

ε = 2gBsB + 2gBd+ 2g′B − 2ceB

=

n−1∑
k=0

(
n−1∑
l=0

αk,l

)
xk + 2

n−1∑
k=0

(
n−1∑
l=0

βk,l

)
xk + 2g′B − 2

n−1∑
k=0

(
n−1∑
l=0

γk,l

)
xk,

where αk,l, βk,l and γk,l is the product of two Gaussian distributed values for k, l = 0, ..., n−1. Hence, αk,l, βk,l
and γk,l are of the same distribution for k, l = 0, ..., n. Moreover, we know that the variance of each is α4. By

the CLT it then follows that
∑n−1
l=0 αk,l,

∑n−1
l=0 βk,l, and

∑n−1
l=0 γk,l follow the normal distribution N (0,

√
nα2)

for large enough n. Thus, one coefficient (during the attack we are only interested in one coefficient) of
2gBsB , 2gBd, or 2ceB is normal distributed with variance 4nα4, i.e., standard deviation 2

√
nα2. Hence, each

coefficient of ε is normal distributed with standard deviation
√

12nα4 + 4α2.
Although the Central Limit Theorem only holds asymptotically, its results are good enough for our

concrete parameters. For example, we experimentally measured the variance of ε observed over 10000 samples
for α = 4.19, n = 512 and q = 26 038 273, which was 1.862 million, compared to the variance of 10000 samples
from N (0,

√
12nα4 + 4α2) which was 1.894 million.

5.4 Distribution of the known term ∆

We now take a look at the distribution of the so-called known terms ∆ = cpB + acd+ dpA = a(csB + cd+
dsA) + (ceB + deA) in the computation of kB . We define s = csB + cd+ dsA and e = ceB + deA. Applying
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Figure 7: Distribution of coefficients of known value ∆

the CLT, we can assume that s ∼ χψ and e ∼ χφ with standard deviations ψ and φ, respectively. Let
Aq,ψ,φ be the distribution of the pair (a, as+ e) ∈ Rq ×Rq where a←$Rq, s←$ χψ and e←$ χφ, i.e., Aq,ψ,φ
is an RLWE distribution (the non-normal form version of the RLWE distribution, in which potentially
different distributions are used for s and e). Under the decision RLWE assumption on Aq,ψ,φ, (a,∆) is
indistinguishable from uniform. Rather than trying to calculate the specific ψ and φ in question and arguing
these are reasonable φ and ψ for which the RLWE assumption might hold, it suffices for our purposes to
observe experimentally that coefficients of ∆ are distributed so that we get values of ∆[i] ≤ h2 with reasonable
probability. As a check, we collected samples of approximately 133 million coefficients of randomly-constructed
∆ for RLWE parameters suggested in [12], i.e., α = 4.19, n = 512 and q = 26 038 273. Figure 7 shows the
frequency each value in Zq was observed, bucketed into groups of 1000. We found that the distribution at
this granularity of bucketing is close to uniform, and that the proportion of ∆[i] values satisfying ∆[i] ≤ h2

was approximately h2/q. Thus, we proceed assuming that the coefficients of ∆ follow a distribution close to
uniform over Rq, and consequently that the probability of observing values such that(cpB + acd+ dpA)[i] = 0,
is close to 1/q.

5.5 Query complexity

In this section, we calculate the number of queries required to collect samples to carry out our attack against
the DBS reusable-keys protocol as (1 + 4z) · 144C2α2, for a small constant C. For the range of parameters
we consider in our experiments (see Section 5.7), C ≈ 5 and z ≈ 4 suffice.

The query complexity depends on choices of h1, h2, h3, t1, and t2. For the following argument, we assume
that n ≥ 2C2α and α > 1. Suppose we choose some constant C such that h3 = Cα and h1 = C

√
12nα4 + 4α2.

Also, suppose we choose t1 = q/4h3, i.e., the midpoint between 2(h1 + h2) and q/2h3 − 2(h1 + h2). Then the
number of signals collected for each coefficient is q/t1 = 4Cα.

For each of these signals, we require the corresponding coefficient of δ to have absolute value less than or
equal to h2, where h2 < q/4h3 − h1 = q/8Cα− C

√
12nα4 + 4α2. We want to choose some h2 that is close to

but does not exceed this bound. One way of doing so is to find some value γ that is close to, but slightly
greater than C

√
12nα4 + 4α2. Then we can let h2 = q/8Cα− γ.

Lemma 5.3. For C > 0, n, α > 1, Cq/4.5n > C
√

12α4 + 4α2.

Proof. By the correctness lemma [12], we must have

q > 16α2n
3
2 + 2α

√
n ,

so it is enough to show that

C

4.5n

(
16α2n

3
2 + 2α

√
n
)
> C

√
12α4 + 4α2 .
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Figure 8: Closeness of f1(n) = C
4.5

16α2n
3/2+2α

√
n

n to h1(n) = C
√

12nα4 + 4α2

If C, n > 0, this statement simplifies to 13n2α2 + 64nα− 81n+ 4 > 0. Since n, α > 0, this is true if and only if

α >
9
√

13n+ 12− 32

13n
.

As a function of n, 9
√

13n+12−32
13n is decreasing for n ≥ 1 and 9

√
13n+12−32

13n = 1 when n = 1. So, since n, α > 1
by assumption, it follows that

α >
9
√

13n+ 12− 32

13n

as required.

Applying this fact, let γ = Cq/4.5n and

h2 =
q

8Cα
− Cq

4.5n
<

q

8Cα
− C

√
12nα4 + 4α2 .

In addition, Figure 8 exemplifies that for parameters of interest, h1(n) = C
√

12nα4 + 4α2 is indeed
slightly less than f1(n) = C/4.5n

(
16α2n3/2 + 2α

√
n
)
, and hence, it seems γ = Cq/4.5n is a reasonable choice.

This choice of h2 is positive when n > (16/9)C2α, which is true by assumption. Since the known values
are approximately uniform (see Section 5.4), we expect to find some known value with absolute value less
than h2 in approximately q/2h2 = 36Cnα/9n−16C2α queries. Moreover, by assumption, it holds that n ≥ 2C2α
so

q

2h2
=

36Cnα

9n− 16C2α
≤ 36Cnα

n
= 36Cα .

Thus, we expect that 4Cα · 36Cα = 144C2α2 queries will be sufficient to collect enough signals to complete
absolute value recovery and obtain |sB [i]|.

For relative sign collection, we can choose h′2 to be h2/2 and t2 to be t1/2. Then we expect the number of
queries for each iteration of relative sign collection to be 4 · 144C2α2. Therefore, (1 + 4z)144C2α2 queries
suffice to complete relative sign recovery and retrieve sB or −sB .

As n increases and α decreases, z becomes larger; however, we still expect z to be small in practice.
Average values of z from experimental results are given in Figure 9. Although z does depend on n, larger
values of n only increase z by a small amount. Different choices for h1, h2, h3, and t1 will affect the query
complexity, but we note that our analysis shows that it is possible to make choices such that the complexity
does not depend on q and depends very little on n. Thus, as q becomes large, the query complexity remains
the same and as n becomes large, the query complexity increases at a slow rate.

5.6 Success probability

We now compute the success probability of our attack. In particular, the attack may fail if any of the bounds
h1, h2 or h3 are exceeded.

Similarly to Section 4.3, we start with the case |sB[i]| > h3 for some i; this would lead to not counting
enough signal changes because the stable intervals are smaller than expected. The probability that this occurs
is ρ1 as defined in Section 4.3 with h = h3. Otherwise, |sB [i]| ≤ h3. In this case, the attack may fail if we count
too many signal changes. That is, a noisy interval is larger than expected, i.e., when 2 (|ε[i]|+ |∆[i]|) | > t1.
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Since the absolute value of the known value ∆[i] is guaranteed to be less than or equal to h2, and we chose
t1 such that 2(h1 + h2) < t1, this implies that the absolute value of the error term at coefficient i exceeds
t1/2− h2. The probability that this occurs is

ρ2 = 2

∞∑
x=

t1
2 −h2+1

exp
(

−x2

2(12nα4+4α2)

)
√

2π · (12nα4 + 4α2)
.

There are 2|sB [i]|+ 1 boundary periods where this error could occur (note |sB [i]| ≤ h3) and a 1/t1 chance we
actually collect the incorrect signal so the probability that this occurs (for any coefficient) is at most

n (ρ1 + (1− ρ1) (2h3 + 1)ρ2/t1) .

Similarly, the probability of failure of relative sign recovery is at most

zn (ρ1 + (1− ρ1) (4h3 + 1)ρ3/t2) ,

where

ρ3 = 2

∞∑
x=

t2
2 −h

′
2+1

exp
(

−x2

2(12nα4+4α2)

)
√

2π · (12nα4 + 4α2)
.

Then, the overall failure probability is at most

n

(
ρ1 + (1− ρ1) (2h3 + 1)

ρ2

t1

)
+ zn

(
ρ1 + (1− ρ1) (4h3 + 1)

ρ3

t2

)
.

To demonstrate the high success probability while needing only a small number of queries, we instantiate
the above parameters using parameters proposed in[12], i.e., n = 512, α = 4.19, q = 26 038 273. Moreover,
recall our choice of parameters in Section 5.5: h1 = C

√
12nα4 + 4α2, h2 = q/(8Cα)− Cq/(4.5n), h′2 = h2/2,

h3 = Cα, t1 = q/(4h3) = 2 and t2 = t1/2. Then t1
2 − h2 = Cq

4.5n and t2
2 − h

′
2 = Cq

9n . Hence, the probability of
failure is at most

n

(
ρ1 + (1− ρ1) (2Cα+ 1)

4Cα

q
ρ2

)
+ zn

(
ρ1 + (1− ρ1) (4Cα+ 1)

8Cα

q
ρ3

)
.

Continuing our example, suppose z = 3 and C = 4.5, leading to some secret coefficient being greater than
h3 = 19 with probability ≈ 2−18.3. Moreover, since Cq/9n > h1 = 6193, the probability that some coefficient
of an error term is greater than h1 is ≈ 2−19.1. Thus, the overall failure probability is at most ≈ 0.00634, i.e.,
the success probability is at least 99.36%. Using the query complexity derived in the previous section, this
success probability is achieved with only q

t1
· qh2

+ z · qt2 ·
q
h′
2
≤ 217.7 ≈ 212 900 queries to the oracle S in total.

5.7 Experimental results

We ran our attack against the DBS reusable-keys protocol for the two parameter sets proposed in [12]
and additional sets for n = 128, 256, 512, and 1024, with two different choices of α = 4.19 and 2.6. The
corresponding q were chosen based on the correctness requirement [12, Lemma 16].

Figure 9 shows the experimental results which are the average over 15 tests, on a 2.4 GHz Intel Xeon
CPU E7-8870 with 80 cores and 1 TB RAM. Our software is predominantly written in Python, but calls
C implementations for discrete Gaussian sampling and polynomial multiplication, which takes advantage
of Montgomery reduction, based on the implementation of NewHope. Our code is publicly available at
https://git.uwaterloo.ca/ssveitch/improved-key-reuse.

As n increases, the runtime increases largely due to more time spent on polynomial multiplication, since
polynomial multiplication increases quadratically in n and key recovery increases linearly in n. The runtime
for a set of parameters varies depending on the value of z and the amount of queries it takes to find known
values that are sufficiently small.
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n 128 256 512 1024
q 2 255 041 9 205 761 26 038 273 28 434 433

α = 4.19

h2 17 000 75 000 220 000 240 000
t1 40 000 164 000 465 000 500 000
h′2 6 500 35 000 110 000 115 000
t2 20 000 82 000 230 000 253 000

z (avg.) 2.73 3.00 3.20 3.73
max. (h:m:s) 3:37 5:06 21:13 2:18:12
avg. (h:m:s) 2:12 4:46 16:56 1:22:54
min. (h:m:s) 1:20 4:35 15:09 59:16

α = 2.6

h2 30 000 125 000 350 000 380 000
t1 63 000 255 000 720 000 790 000
h′2 14 000 62 000 175 000 190 000
t2 31 000 128 000 360 000 395 000

z (avg.) 3.47 3.67 4.07 4.73
max. (h:m:s) 1:03 4:03 17:36 1:20:46
avg. (h:m:s) 0:53 2:49 11:37 53:12
min. (h:m:s) 0:44 2:11 8:08 38:01

Figure 9: Parameters and experimental runtime of attack on DBS reusable-keys protocol

5.8 Analysis of the claimed proof showing robustness

As our experiments and theoretical analysis show, the DBS reusable-keys protocol is not robust against key
reuse as claimed in [12, Theorem 14]. We point out a mistake in the proof that might have lead to this wrong
conclusion.

The idea of the proof of [12, Theorem 14] is essentially that, because of the use of the random oracle H1

to compute c = H1(idA, idB , pA) and d = H1(idA, idB , pA, pB), the shared secret key kj is “indistinguishable
from a uniformly chosen value of Rq from the point-of-view of [the adversary] A” [12]. In particular, it is
said that if A (impersonating the initiator) samples pA from an arbitrary distribution, the distribution of
pA = pA + aH1(idA, idB , pA) + 2gB (with gB ←$ χα) is “statistically close to the uniform distribution [over
Rq]” [12].

At the core of this argument is [12, Lemma 10] (originally stated in [15]): “Let φ be an arbitrary
distribution over Rq and ψ be a distribution over Rq statistically close to the uniform distribution over Rq.
Let x←$ φ and y←$ ψ. Then, the distribution of x̄ = x+ y is statistically close to uniform [over Rq].” The
statement assumes implicitly that x and y are independent random variables.

In the proof of [12, Theorem 14], the variable x corresponds to pA (the value controlled by the adversary
A) and y corresponds to aH1(idA, idB , pA) + 2gB. However, since pA is given as input to H1, the random
variables x and y are not independent from each other from the perspective of an adversary who can query
the random oracle. Indeed, the dependency of H1(idA, idB , pA) on pA is exploited in our attack by finding
pA and idA such that the ith coefficient of the known values ∆ = cpB + acd+ dpA is equal to 0 (or small).

6 Extension to authenticated key exchange protocols

In this section we consider the application of our attack to two different authenticated key exchange protocols
with a similar structure.

Both those protocols were claimed secure in the Bellare–Rogaway (BR) model [3] with weak forward
secrecy. For the purposes of this section, it suffices to think of the BR model as permitting the adversary to
compromise session keys of any session except the target session, and long-term secret keys of any parties
except the two parties involved in the session before the session has completed (weak forward secrecy). The
goal is to break indistinguishability of the session key of a single adversary-selected target session.

Our attack exploits stronger powers available in the extended Canetti-Krawczyk (eCK) model [8]. Like in
the BR model, an eCK adversary is allowed to compromise session keys of any session except the target session,
but the difference is that they have the ability to compromise both ephemeral and long-term secret keys of
any party, subject to not having compromised both the ephemeral and long-term secret of each party involved
in the target session. A common approach for achieving eCK security in DH-based protocols is to construct a
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Initiator (Alice) Responder (Bob)

sA, eA←$ χα sB , eB ←$ χα

pA ← asA + 2eA pB ← asB + 2eB

rA, fA←$ χα rB , fB ←$ χα

yA ← arA + 2fA yB ← arB + 2fB
yA c← H1(idA, idB , yA)

d← H1(idA, idB , yA, yB)

gB , g
′
B ←$ χα

yA ← yA + ac+ 2gB

kB ← (pA + yA)(sB + rB + d)

− pAsB + 2g
′
B

wB ← Sig(kB)

c← H1(idA, idB , yA) yB , wB σB ← Mod2(kB , wB)

d← H1(idA, idB , yA, yB)

gA, g
′
A←$ χα

yB ← yB + ad+ 2gA

kA ← (pB + pB)(sA+yA + c)− pBsA + 2g
′
A

σA ← Mod2(kA, wB)

skA ← H2(idA, idB , yA, yB , wB , σA) skB ← H2(idA, idB , yA, yB , wB , σB)

Figure 10: DBS AKE protocol [12]

shared secret which includes in some way all four static-ephemeral DH components: grArB , grAsB , gsArB , gsAsB ,
either directly by concatenation or collected in a single group element via clever arithmetic in the exponent,
such as in CMQV [31].

It is important to note that both the protocols we consider in this section are not proven secure in the
eCK model; hence, the considered attack is outside of the claimed security model. However, both these AKE
protocols inspired by designs that, in the DH setting, can achieve eCK security. The ZZDSD AKE protocol
[32] is a direct LWE analog of the HMQV protocol, and the CMQV variant of HMQV is eCK-secure. The
DBS AKE protocol [12] is inspired by the ZZDSD AKE protocol, but uses the c and d values in an additive,
rather than multiplicative way. As a result, we think it interesting to consider whether these protocols
withstand attacks by an eCK adversary.

6.1 eCK attack on the DBS AKE protocol

Figure 10 shows the DBS AKE protocol using the notation of Table 3. The long-term public key of A is
pA = asA + 2eA with secret key sA, eA←$ χα; analogously for B. H1 : {0, 1}∗ → Z is a hash function whose
outputs are distributed according to χα and H2 : {0, 1}∗ → {0, 1}κ is a key derivation function.

Our attack from Section 5 on the DBS reusable-keys protocol can be extended to the DBS AKE protocol
in the eCK model. The value kB can be written as

kB = (pA + yA)(sB + rB + d)− pAsB + 2g′B

= pArB + pAd+ yAsB + yAsB + yAd+ 2g′B

= pArB + pAd+ yAsB + acsB + 2gBsB + yArB + yAd+ 2g′B

= yApB + pBc+ pAyB + pAd+ yAyB + yAd+ 2g′B︸ ︷︷ ︸
∆

+ 2gBsB − 2eBc︸ ︷︷ ︸
ε

.

After revealing the ephemeral keys rB , fB , gB , g
′
B of party B in a session using the eCK model powers, all

the values in ∆ are known. By Theorem 5.2 and the Central Limit Theorem, the error term ε, is normally
distributed for large enough n with variance 2 · 4nα4. As before, we expect the known value ∆ to be
approximately uniform. The attack is largely the same as in Section 5.2, with a modified standard deviation
for the error term and an additional query to reveal ephemeral keys each time a new value of yA is sent to
party B. This allows, by absolute value and relative sign recovery, computation of sB or −sB . Knowledge of
the responder’s long-term secret key can then be used to break eCK security of a new session.
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Query complexity. To determine the number of queries required to collect samples to carry out our
attack, observe that the number of key exchange instantiations required is (1 + 4z)(176/3)C2α2, for a small
constant C and a value z which is the maximum number of consecutive zeros in a secret key plus one. For
the parameters we consider, C ≈ 5 and z ≈ 4 suffice.

As in Section 5.5, we assume that n ≥ 2C2α2 and α > 0. Suppose we make the following choices:
h1 = C

√
8nα4, h3 = Cα, t1 = q/(4h3). Then the number of signals collected for each coefficient is q/t1 = 4Cα.

For each of these signals, we require coefficients of ∆ with absolute value less than or equal to h2 < q/4h3−h1 =
q/(8Cα)− C

√
8nα4. If we find some q/(8Cα) > γ > C

√
8nα4 then we can choose h2 = q/(8Cα)− γ.

Lemma 6.1. For C, n, α > 0, Cq/(5.5n) > C
√

8nα4.

Proof. In order to fulfill the correctness lemma, we must have

q > 16α2n32 + 2α
√
n ,

so it is enough to show that
C

5.5n
(16α2n32 + 2α

√
n) > C

√
8nα4 .

Since C, n, α > 0, this simplifies to
(16− 5.5

√
8)αn+ 2 > 0

which is true since 16− 5.5
√

8 > 0.

Hence, we can choose γ = Cq/(5.5n). Then h2 = q/(8Cα) − γ is positive as long as n > (16/11)C2α,
which is true by assumption. We expect to find coefficients of ∆ with absolute value less than h2 in
q/2h2 = (44Cnα)/(11n−16C2α) queries. By assumption, n ≥ 2C2α, so q/2h2 = (44Cnα)/(11n−16C2α) ≤ (44Cnα)/3n =
(44/3)Cα. Therefore, we expect the amount of key exchange instantiations with party B required to collect
|sB | to be 4Cα · (44/3)Cα = (176/3)C2α2.

For relative sign collection, we expect approximately four times as many queries. So the total number of
key exchange instantiations required to retrieve sB or −sB is given by (1 + 4z)(176/3)C2α2.

Success probability. Very similar to Section 5.6, the failure probability of the entire attack is at most

n

(
ρ1 + (1− ρ1)(2h3 + 1)

ρ2

t1

)
+ zn

(
ρ1 + (1− ρ1)(4h3 + 1)

ρ3

t2

)
,

with ρ1, ρ2, and ρ3 as defined in Section 5.6.

Run time of the attack. Running the above-described attack on the two parameter sets suggested
in [12], we are able to successfully recover the secret sB. Using the same setup as in Section 5.7, for
parameters (n, q, α) = (512, 26 038 273, 4.19) the key sB is recovered in less than 34 minutes. For parameters
(n, q, α) = (1024, 28 434 433, 2.6), sB is recovered in less than one hour and 36 minutes.

6.2 Investigation of the ZZDSD AKE protocol

In this section, we consider whether the RLWE-based AKE protocol of ZZDSD [32], which was a predecessor
to and motivated the design of DBS AKE protocol, can also be attacked in the eCK model.

The key in the ZZDSD AKE protocol can be written as

kB = (pAc+ yA)(sBd+ rB) + 2cgB

= (asA + 2eA)csBd+ pAcrB + yAsBd+ yArB + 2cgB

= yAsBd+ sAcdpB + pAcrB + yArB︸ ︷︷ ︸
∆

+ 2eAcsBd− 2sAcdeB + 2cgB︸ ︷︷ ︸
ε

In the eCK model, the ephemeral value rB can be revealed, making the value ∆ known to an attacker
impersonating party A. Also, c and d are output from a function H1 whose output is sampled from a discrete
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Gaussian distribution, χγ . Therefore, the value ε is the sum of products of small error terms. This is all
promising information as it is in line with the structure of our previous attacks. However, rather than having
the term yArB, we have a term yArBd. Now, d is an invertible element in Rq so our method would collect
signals corresponding to coefficients of sAd, rather than sA. Since d depends on yA and the identity of party
A, it does not remain constant as the attacker sends its varying pA values. We do not see a way to extract
the coefficients of sA from the signals received and so the protocol appears to resist this attack.
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