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Koç University

Alptekin Küpçü
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Abstract

Selfish mining (SM) attack of Eyal and Sirer (2018) endangers permissionless Proof-of-
Work blockchains by allowing a rational mining pool with a hash power (α) much less than
50% of the whole network to deviate from the honest mining algorithm and to steal from
the fair shares of honest miners. Since then, the attack has been studied extensively in
various settings, for understanding its interesting dynamics, optimizing it, and mitigating it.
In this context, Heilman (14) “Freshness Preferred”, we propose a timestamp based defence
if timestamps are not generated by an authority. To use this proposal in a decentralized
setting, we would like to remove the timestamp authority, but due to two natural and simple
attacks this turns out to be a non-trivial task. These attacks are composed of Oracle mining
by setting the timestamp to future and Bold mining by generating an alternative chain by
starting from a previous block. Unfortunately, these attacks are hard to analyze and optimize,
and the available tools, to our knowledge, fail to help us for this task. Thus, we propose
generalized formulas for revenue and profitability of SM attacks to ease our job in analysis and
optimization of these attacks. Our analyses show that although the use of timestamps would
be promising for selfish mining mitigation, Freshness Preferred, in its current form, is quite
vulnerable, as any rational miner with α > 0 can directly benefit from our attacks. To cope
with this problem, we propose an SM mitigation algorithm Fortis with forgeable timestamps
(without the need for a trusted authority), which protects the honest miners’ shares against
any attacker with α < 27.0% against all the known SM-type attacks.By building upon the
blockchain simulator BlockSim by Alharby and Moorsel (2019), we simulate our Oracle and
Bold mining attacks against the Freshness Preferred and our Fortis defenses. Similar to
our theoretical results, the simulation results demonstrate the effectiveness of these attacks
against the former and their ineffectiveness against the latter.

Keywords: selfish mining; cloud mining; bitcoin; proof-of-work; blockchain.

1 Introduction

First proposed by [1] for Bitcoin, proof-of-work (PoW) blockchain plays a crucial role as the
underlying technology behind modern cryptocurrencies (e.g., Bitcoin, Ethereum, and Litecoin)
and many distributed and cloud-based applications (e.g., certificate transparency as in [2], smart
contracts as in [3], e-government as in [4], e-voting as in [5], online donations systems as in [6],
smart appliances as in [7], and healthcare as in [8]). Blockchain technology is quite promising to
cope with some prominent challenges that cloud computing is recently facing, e.g., data security,
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data management, compliance, reliability [9]. PoW blockchain depends on an incentive based
mechanism called mining rather than a central authority for its proper operation. Mining is
an unremitting competition for finding and propagating the hash value of the next block that
gets appended to the blockchain. Miners are investors on computational resources that are
specialized for mining procedures. The investment may be in the form of buying or hiring the
resources, or the miners can outsource the mining work to cloud services, in which case the
process is called cloud mining (e.g., via Genesis Mining1 or NiceHash2). When a miner mines a
block, she receives a wealthy block reward, which builds up the incentive for her investment.

Selfish mining attack. Nakamoto claimed that as long as the majority (¿50%) of hashing
power in the system belongs to the miners that follow the correct mining algorithm, the reward
of each miner would be proportional to her expenditures, securing the proper operation of the
blockchain. Yet, [10] proposed the selfish mining (SM) attack that yields a miner more than
her fair share by deviating from honest mining (i.e., following the publicly accepted correct
algorithm), even if the honest majority assumption holds. The main idea of the attack is
keeping the mined blocks private for further extending them individually, and releasing them
at a later time for elimination of others blocks from the main chain. The attack works because
the honest miners always choose the chain with more blocks and the difficulty adjusts over
time. In fact, none of these causes seem avoidable, as the former is a countermeasure against
network partitions and propagation delays, and the latter is an initial design choice to ensure
the expected inter-block time of the main chain would be constant. The selfish mining attack is
extensively studied in the recent blockchain literature, including the research for optimizing it
as in [11, 12, 13, 14], combining it with other attacks (e.g., with eclipse attack as in [13, 15] and
block witholding attack as in [16]), and defending against it as in [10, 17, 18, 19]. Although so
far no known selfish mining attack occurred on Bitcoin, its practice would be harmful not only
by reducing the fair shares of miners, but also by resulting in inconsistent views of blockchain
and allowing double-spend exploits, overall reducing trust of honest users on the system and
negatively affecting its perception and wide-spread use. We highlight that selfish mining remains
as a major focus in blockchain research [20].

Timestamp based SM defense. The initial defense mechanism proposed by [10] was that
honest miners should choose one of the chains at random when there are multiple chains of the
same length (i.e., the number of blocks), while in the deployed Bitcoin implementation of April
2021, miners choose the one that they received first. Regardless of the attacker’s location or
bandwidth, this defense prevented him from obtaining high rewards for computational powers
below 25% hashing power of the whole system.

A later proposal by [17] utilizes timestamps issued by an authority to improve this resistance
up to the computational power of 33.3%. Although by the state-of-the-art selfish mining attack
by [11], its security lowers to 30.1%, the proposal of [17] still remains as the most resistant work
against selfish mining. The defense idea is that honest miners would pick the chain with fresher
timestamps in case of a tie in chain lengths. As this solution was contradicting to the decen-
tralized philosophy of blockchain, Heilman also considered removal of the timestamp authority.
However, we show that this solution without a timestamp authority (i.e., with forgeable times-
tamps) is susceptible to two attacks, one by setting the timestamp to the future and another by
mining on the block previous to the last mined one 3.

1https://www.genesis-mining.com
2https://www.nicehash.com
3Without a timestamp authority, [17] also considered a possible attack by setting the timestamp to the future,
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Our approach. We would like to leverage the high security of [17] against the state-of-the-
art selfish mining attacks. However, requiring an authority for timestamps prevents this solution
from a general use. Therefore, we would like to remove it, and let the miners put the current
time into their mined blocks themselves. Yet, we detect two natural issues arising with this
scheme, i.e., it becomes possible for a defective miner to set the timestamp of the block being
mined to a future point (Oracle mining), and it gets easier to mine an alternate chain by starting
from an old block (Bold mining). We show that if the attacker chooses the attack parameters
fine-tuned, unfortunately, choosing the fresher chain works in favor of the defectively mined
chain in both cases. Although these attacks are simple simple and natural, their analyses and
optimization for the attacker required us to develop a new mathematical model, which can be
standardized for using in selfish mining attack analyses beyond our work. To solve these issues,
we then propose Fortis, a mining algorithm based on forgeable timestamps that is optimized
to be not vulnerable to these attacks or the state-of-the-art optimal selfish mining attack [11]
against a computational power ratio up to 27.0%. Thereby, we achieve the highest security
against a single rational miner capable of performing all the selfish attacks known to date. More
concretely, we list the contributions of this work as follows:

1. We define two natural mining attacks as mentioned above, namely Bold mining and Oracle
mining, exploiting timestamp based solution of [17].

2. We propose generic formulas that can be utilized for revenue calculations in selfish mining
type of attacks. Our formulas makes complicated analysis of attacks easier and more
dependable by providing a systematical methodology. We use this to show that there
exists optimized choices of parameters in both Bold and Oracle mining, that yield a miner
more than his fair share, even if his resources are very low.

3. We propose our selfish mining mitigation algorithm Fortis that defends against previous
selfish mining attacks and our proposed ones, as long as the attacker’s computational
power ratio is less than 27.0% of the whole system, providing the best-known solution to
date. Our solution is decentralized and the only assumption that we make over Bitcoin
is availability of a global synchronous clock (which is a common assumption in other
blockchain proposals [21, 22]).

4. We provide the simulation results for Oracle and Bold mining attacks against the solution
of [17] and against our Fortis algorithm. Our simulation is based on implementation of
these attacks and defenses on top of the core blockchain simulation Blocksim by [23]. It
confirms our theoretical results by showing that these attacks are indeed effective against
the solution of [17] and ineffective against ours. We also simulate small (but realistic)
clock drifts and show that the attacks and our defense are still viable.

2 Related Work

Blockchain. A blockchain is essentially an ever-growing chain of data blocks [1, 24]. Each
block consists of a set of recent transactions, its index from the first block, the hash of the
previous block (its parent), and a nonce. The hash of each block is required to be lower than
a publicly determined value called difficulty. The blockchain miners keep competing to become

and named it as “slothful mining”. However, this attack has neither been formally defined nor analyzed so far.
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the first one to mine the next block.4 Whenever a miner mines a new block, she publishes it
to the network. If the block is included in the main chain, she receives some block reward. An
honest miner always mines on the head (the last block) of the longest branch (i.e., the chain
that has the most blocks that is privy to her). If there exists a tie among the longest branches,
various tie-breaking mechanisms can be involved5. The blocks that do not end up in the main
chain are not rewarded and are called as “orphan blocks”. We highlight that each miner invests
some computational and communication resources for mining coins. The aim for fairness in a
PoW blockchain is that the revenue of each miner is proportional to her investment [25]. If this
is achieved, miners are better off with honest mining strategy rather than harmful ones to the
system and the proper operation of the blockchain is secured.

Selfish mining attacks. A major strike for blockchain security was the invention of selfish
mining (SM) attack by [10]. Briefly, the attacker keeps his mined blocks as a private chain for
further mining on them, and later releases his private chain, when the public chain approaches it
in terms of length. This way, the attacker can eliminate the honest blocks from the main chain.
The proposal shows that even if the honest majority assumption holds, a miner can obtain more
revenue than honest mining via this mining strategy, since the difficulty adjusts automatically
through time. Eventually what matters is the ratio of blocks being found by the attacker (the
relative revenue) in the main chain, although block rewards and his resource investment remain
the same.

We call any type of attack involving a miner that keeps his mined blocks private to obtain
high relative revenue as an SM-type attack. Some recent studies including [11, 12, 13, 14]
of selfish mining optimizes it further by allowing the attacker to mine on the private chain
even when the public chain is longer. Other focuses of attention related to the SM attack are
combining it with different attacks (e.g., with Eclipse attack by [15, 13] and block witholding
attack by [26, 27, 16]), conducting the attack on different currencies (e.g., on Ethereum [28]), and
exploring the game theoretical implications of the attack by [29, 30, 31, 32, 33]. We note that
the state-of-the-art optimized selfish mining attack is “optimal selfish mining” (OSM) algorithm
of [11]. We do not go over the details of the algorithm or its relative revenue calculations here,
and refer the reader to the original paper.

Selfish mining is harmful to the blockchain system, not only since it is stealing from the fair
shares of honest miners, but also since it results in inconsistent views of blockchain among the
users. A recent study by [34] showed that other currencies than Bitcoin are far more susceptible
to selfish mining, and to the best of our knowledge, differentiating this attack from a network
partition is not fully possible yet. So far, selfish mining seems to be an unavoidable burden for
the blockchain community for being robust against network partitions [18].

Existing selfish mining defenses. Here we briefly review the existing selfish mining
defenses (honest mining algorithms) in the literature.

Uniform tie-breaking. The initial SM defense proposed by [10] was that an honest miner
picks a branch uniformly at random among the longest chains in case of ties. We call this
defense as Uniform Tie-breaking (UT). Against the SM attack, this defense achieves security up
to hashing power 25.0%. However, the later optimized attack proposal of OSM of [11] reduced
this to 23.2%.

4To mine a block means to find the nonce included in the block such that the hash of the block maps below
the difficulty. The difficulty is frequently adjusted by the miners so that the expected inter-block time of the main
chain would be constant.

5the Bitcoin application in April 2021 suggests that each miner mines on the chain that she received the first
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Freshness preferred. Heilman proposes use of timestamps for tie-braking to reduce the rela-
tive revenue of a selfish miner [17]. In case of a tie, the miners choose the branch that is fresher
(i.e., the branch whose timestamps (TS) are closer to the current time τ), hence the scheme is
called “Freshness Preferred” (FP). As the primary proposal, the author recommended support
of a TS authority that generates unforgeable timestamps that will be embedded in the blocks
to eliminate any forgery risks. If the timestamps are generated in an infinitesimal fashion, the
scheme improve security against SM to the hashing power 33.3% and against OSM to the hash-
ing power 30.1% (computed by using the implementation of [35]). However, this scheme suffers
from centralization and as we show removing this authority turns out to be tricky.

Publish or Perish (PP) by [18]. provides incentive compatibility against OSM up to a hashing
power 25.0%. As we do not utilize this algorithm and its related defense ideas in our work, we
skip the protocol details and refer the reader to [18]. For comparison, Fortis provides security
to all known attacks (including ones analyzed in this work) up to a hashing power 27.0%. Also,
[18] defines a notion “fail-safe parameter” as the minimum length difference required for enforced
adoption of the longest branch, and suggests 3 as the optimum fail-safe parameter for PP. The
paper shows that in this case, there exists an attack that results in a expected 18.5 blocks to
pass for a consensus in case of a tie. We stress that this attack is not possible in our case and
even in case of a tie, the consensus among the honest miners occurs immediately. Although in
a setting with complete absence of a global clock publish and perish remains as the most secure
solution known to date, our experiments in Section 8 shows that even with a low synchrony
Fortis defends against attackers with higher hashing powers than 25.0%.

To clarify the significance of our 2.0% improvement against PP, in Bitcoin, it corresponds
to roughly 300 Million US Dollars additional investment in hardware for an attacker to benefit
from the attack, as of October 2021.6

GHOST of [36], Bobtail of [19], and the other works [37, 38, 39], unfortunately, fail to satisfy
backward incompatibility [18] (i.e., old blocks cannot be verified with them). Also, there exist
some works including [40, 41] for detecting the behavior of the selfish miner and eliminate his
blocks from the main chain. However, this detection has not been reliably achieved yet, as there
seems to be no clear way for differentiating it from network partitioning.

3 Preliminaries

Notation for mining algorithms. In a miner’s view, there exists two separate chains, the
chain PubCh known by all miners and the chain MyCh chosen by the miner for mining on. PubCh
gets updated automatically and might have forks of equal length, in which case a miner needs
to choose which block to mine on.

• Append(Chain,b) denotes that “append the block b to the head of the Chain and other
blocks between b and the head of the Chain”.

• Publish(b) denotes that “publish the block b”.

• Publish(MyCh,z/head) denotes that “publish all the blocks until and including either z-th
block of MyCh indexed from start of the fork from PubCh (the first forked block is indexed
as 1) or the head of PubCh”.

6The cost is calculated from the fact that in October 2021, the total hash rate is 120 million tera hash per
second (TH/s) and a mining hardware with 100 TH/s can be found for the price of 13,000 dollars.
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Table (1) Table of frequent abbreviations and notations used throughout this paper.

Abbreviation/Notation Meaning

TS Timestamp
UT Uniform tie-braking
FP Freshness preferred
Authority FP Freshness preferred scheme with unforgeable timestamps
Decentralized FP Freshness preferred scheme with forgeable timestamps
PP Publish or perish scheme of [18]
SM Selfish mining attack [10]
SM-type attacks Attacks to receive high revenue by private mining
OSM Optimized selfish mining attack [11]
OM Oracle mining (our attack)
BM Bold mining (our attack)
Fortis Our defense proposal
α Hashing power
γ Network power
τ The current timestamp
ε Increment of the timestamp
tm The optimal difference of the timestamp from current time
tC The expected time interval between block found by any miner
Spub The state of the SM-type attacker when mining on a public block
Spriv The state of the SM-type attacker when mining on a private block
R Revenue of a miner

• Trun(Chain,z) returns the chain obtained by truncating Chain by z blocks backwards from
the head. Last denotes the index of the last block found by the miner in PubCh backwards
from the head.

• a ← b denotes that a is set as whatever b is at that moment.

• A � b denotes that “A finds the next block b”. A denotes “The attacker’s pool” and O
denotes “Any pool other than attacker’s one”.

• Mine(Chain,Fork,z,TS) denotes that “mine on starting from z-th block backward indexed
from the head (the index of the head is 1) of the Fork of the Chain, and set the timestamp
of the currently mined block as TS”. We highlight that an attacker always mines on the
fork that includes more blocks found by him, therefore we omit the Fork input in attack
algorithms. Also, if the fork resolving policy does not depend on timestamps, the input
TS can be omitted.

Table of abbreviations. We provide Table 1 for the frequently used abbreviations and
notations throughout the paper.

Uniform tie-breaking algorithm. The honest miner’s algorithm in uniform tie-breaking
(UT) [10] is given in Algorithm 2.

Freshness preferred algorithm. The honest miner’s algorithm of [17] is given in Algo-
rithm 2. In case of a tie, the miners choose the branch that is fresher (i.e., the branch whose
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Algorithm 1 Uniform Tie-breaking Mining Algorithm of [10]

while true do
if PubCh has 1 branch then

Mine(PubCh,PubCh,1)
else if PubCh has n branches then

Mine(PubCh,i-th branch,1) with probability 1/n
end if
Propagate PubCh

end while

timestamps (TS) are closer to the current time τ), hence the scheme is called “Freshness Pre-
ferred” (FP). As the primary proposal, the author recommended support of a TS authority that
generates unforgeable timestamps that will be embedded in the blocks to eliminate any forgery
risks. However, considering that this would be an obstacle for decentralization, the author also
argued that the authority may not be necessary in the presence of a global synchronous clock,
as the timestamps cannot be changed once the block is mined. In this case each miner can just
embed the current time into the block being mined. We call the former and the latter schemes
as Freshness Preferred with unforgeable timestamps (Authority FP) and Freshness Preferred
with forgeable timestamps (Decentralized FP), respectively.

Algorithm 2 Freshness Preferred Mining Algorithm of [17]

while true do
if PubCh has 1 branch then

Mine(PubCh,PubCh,1,τ)
else if PubCh has n branches then

Mine(PubCh,freshest branch,1,τ)
end if
Propagate PubCh

end while

Standard model of revenue analysis.7 The model that we utilize throughout the paper
mainly includes two players, Adam (the attacker) and Helen (the collection of the rest of the
miners, assumed to be honest). Adam has a relative hashing power α < 0.5 (i.e., the ratio of
the number of hash operations by him over that all hash operations in a given time interval)
and a relative network power γ (i.e., the expected ratio of the honest miners that will work on
the selfish miner’s chain in case of a tie). We note that in Bitcoin, γ depends on the bandwidth
and location of the attacker’s competitor blocks origin, as miners choose the branch that they
receive first in case of a tie. We omit propagation delays and network partitions, therefore honest
miners know whatever is public immediately. Honest miners may mine on different blocks due
to forks. We assume a fully anonymized network, where detecting a malicious miner personally
is impossible. We assume that computation times other than hashes and costs due to mining
are 0. The finder of any block in the main chain is rewarded 1, unless it is stated otherwise. We

7This model is also the one provided by the original SM paper by [10]. Although analyses in different settings
(e.g., without fixed block rewards [42, 43], in asynchronous setting as in [12, 44], in the presence of multiple
attackers as in [30, 31, 32]) also exist, the previous attacks and defenses are mostly analyzed in this model.
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omit the transaction fees from the reward for simplicity. Difficulty adjustment is quick enough
that the revenue of attacker is equivalent to his relative revenue (i.e., the ratio of the blocks
found by him over those found by all miners). We say that Adam benefits from an attack if his
relative revenue from the attack is more than his benefit from honest mining. Otherwise, we say
that he does not benefit from an attack.

It would be interesting to see the analyses of our attack and defense proposals in presence
of multiple attackers. It has been shown that selfish miners perform better, when there are
other selfish miners in the system [30, 31, 32]. Yet, these analyses become very complicated,
even when there exist two attackers. Thus, in this work we limit ourselves to one attacker.
Also, the analysis of our defence in more realistic setting “imperfect network” as in [45, 46] is
left as an interesting future work. We note that other mentioned defenses (except for Uniform
Tie-breaking) are analyzed only in presence of one attacker with to a large extent our mentioned
assumptions as well. The only additional assumption that we make over these works is presence
of a global clock, but later in Section 8, we provide simulation results to show that even with a
low synchronicity we provide high security.

4 Oracle and Bold Mining Attacks

The attacks that we present here are simple and natural exploits of Decentralized FP, as this
scheme enforce the honest miners pick the freshest “looking” chain in case of a tie. We note that
the bold mining attack is applicable to even Authority FP, as here indeed the attacker mines
a fresh alternative chain to the public one. Due to the reasons that will be clear in Section 5,
we represent the Oracle and Bold Mining attack algorithms and the other SM-type attacks in
the rest of the paper as two main different states of the attacker: one where he is mining on a
block on the public chain (we call this Spub) and one where he is mining on his private chain
(we call this Spriv). At a given time, the attacker will be at either Spub or Spriv state. This
separation is sound based on the generic idea of selfish mining attack strategies that the attacker
wants to eliminate some of the already-found blocks of the honest majority from the main chain.
Often, the attacker continues with the honest mining in Spub, but sometimes when the attacking
conditions occur, he deviates from the honest mining strategy in order to go to Spriv.

Oracle mining algorithm. We now describe a rational algorithm based on setting the
timestamp of the currently mined block to the future. At Spub the attacker sets the timestamp
TS = τ + tm of the block he is mining on, where τ is the current time (based on the global
clock) and tm > 0. We will later show how to set tm for maximizing the revenue depending
on α. If he succeeds, he will have a block that cannot be published immediately, but can be
kept private for mining on until about the time τ + tm (i.e., by switching to Spriv). He will
increment the timestamps of the next blocks he finds at Spriv with the unit increment ε. If
the honest miners outperform him by mining two blocks more than him at Spriv, the attacker’s
found blocks will be lost. Otherwise, he will kick all the blocks of honest miners found within
Spriv off the main chain. Algorithm 3 provides full description of the OM attack, where ε and
tm denote the incremental unit of timestamps and the value t that maximizes the attacker’s
revenue, respectively. Also, an example flow of OM is shown in Figure 1, including example Spub
and Spriv states.

Bold mining algorithm. The attacker’s strategy is essentially to mine a sibling to the
k-th past block from the current head at Spub (if he does not own any block between the current
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TS=90.0 TS=90.1 TS=98.0

TS=81.8 TS=85.9 TS=88.0 TS=91.4 TS=94.0 TS=96.3 TS=98.8

Timeline

𝑆𝑝𝑢𝑏  𝑆𝑝𝑢𝑏  𝑆𝑝𝑟𝑖𝑣  𝑆𝑝𝑟𝑖𝑣  𝑆𝑝𝑢𝑏  

Figure (1) An example flow of Oracle mining attack. The squares are honest miners’ blocks,
while the hexagons are those of the attacker. Straight lines shows parent-child relation between
two blocks. The thick lined blocks are the ones that remains in the main chain and gets rewarded,
while the thin lined ones are orphan blocks. The dashed arrows point to the time when the
attacker publishes the block. Spub and Spriv states are shown by the areas colored as white and
coral, respectively.

head and the k-th past block, both inclusive), and then to keep it private (going to Spriv), and
next to try to catch up with honest miners by mining on his found block. If the honest chain
surpasses his chain (with k + 1 blocks), he accepts defeat and goes back to Spub. If his chain
succeeds by having an equal number of blocks to the public chain, he publishes his chain and
goes back to Spub as the winner. We especially require the honest chain to be k+1 blocks ahead
for the attacker’s failure, since if the honest chain is k blocks ahead, the attacker is better off
by following his private chain, since his private chain has more blocks belonging to him than
the other one. Upon going to Spub with success, to be flexible with the number k, we allow the
attacker to choose a value K, such that K is the trail bound of the honest miners’ blocks for k.
Algorithm 4 provides the Bold mining (BM) algorithm. Also, an example flow of the BM attack
is shown in Figure 2, including example Spub and Spriv states.

Setting the parameters. The values tm and K in Oracle and Bold Mining are the param-
eters that the attacker should choose. As a rational miner, he would naturally be interested in
setting them in a way that it would maximize his share in the system. However, this requires
a complete analysis of both attacks’ revenues. In particular, the analysis of oracle mining is
difficult, and although the attack idea exists in a basic form in [17], it has never been analyzed
ever since. Thus we will return setting the optimum of these parameters, after their analyses in
Section 6.

5 Generic Formulas For SM Attacks

The formulation. We now derive a formulation that we will use for analyzing the attacks given
in Section 4. The separation of the states Spub and Spriv that we provided at the beginning of
that section will help us with this aim. We start by the main formulas for the expected revenue
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Algorithm 3 Oracle Mining Attack Algorithm

procedure Spub
Set ∆← 0, flag ← 0
while flag = 0 do

Find tm for α
MyCh ← PubCh, Mine(MyCh,τ + tm)
if A � b then

Append(MyCh,b)
Set t← τ + tm, ∆← 1, flag ← 1

end if
end while
Go to procedure Spriv

end procedure

procedure Spriv
while τ < t+ (∆− 1) · ε do

Mine(MyCh,1,t+ ∆ · ε)
if A � b and ∆ > 0 then

Append(MyCh,b), Set ∆← ∆ + 1
end if

end while
Publish(MyCh,head), Go to procedure Spub

end procedure

of the attacker which can be calculated as:

R =
α− f · `A

1− f · (`A + `H)
(1)

where `A, `H , and f denote the expected block loss of the attacker in Spriv, the expected block
loss of the honest parties in Spriv, and the expected frequency of returning to Spriv, respectively.
Since being at states Spriv and Spub keep alternating, f can be calculated as

f =
1

ESpriv + ESpub
(2)

where ESx is the expected number of all blocks mined by both parties secretly or publicly while
being at state Sx. The intuition for the equation is that if the attacker only executes honest
mining all the time during an expected period ESpriv + ESpub, the expected number of blocks
that he finds would be α(ESpriv + ESpub) (where α is the attacker’s hashing power) and those
that are found by all miners would be ESpriv + ESpub. We obtain Eq. 1 by subtracting the
corresponding expected losses from both, then dividing them by the period, and then calculating
the ratio of the former to the latter.

Whether the attacking strategy is expected to benefit the attacker depends on the ratio of
`A
`H

. More concretely, iff the attacking strategy benefits the attacker, then we have

`A
`A + `H

< α or equivalently
`A
`H

<
α

1− α
(3)
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Algorithm 4 Bold Mining Attack Algorithm

procedure Spub
Set flag ← 0
while flag = 0 do

Set ∆← min(Last,K)− 1
MyCh← Trun(PubCh,∆), Mine(MyCh, 1, τ)
if A � b and ∆ = 0 then

Publish(MyCh,head)
else if A � b and ∆ > 0 then

Append(MyCh,b)
Set k ← ∆, ∆← ∆− 1, flag ← 1

else if O � b and ∆ < K then
Set ∆← ∆ + 1

end if
end while
Go to procedure Spriv

end procedure

procedure Spriv
while 0 < ∆ < k + 1 do

Mine(MyCh,1,τ)
if A � b and ∆ > 1 then

Append(MyCh,b), Set ∆← ∆− 1
else if A � b then

Set ∆← ∆ + 1
end if

end while
Publish(MyCh,head), Go to procedure Spub

end procedure

We name the ratio `A
`H

as profitability ratio B. We emphasize that sole knowledge of `A and
`H is not enough to determine the attacker’s revenue, but rather a tool for his decision-making
in choosing between applying an SM-type mining strategy and honest mining. We note that
setting R > α in Eq. 1 leads to Eq. 3.

Example appliction. To show that our formulas indeed work, we apply them to the basic
selfish mining algorithm of [10]. Algorithm 5 provides the same SM algorithm given by [10], but
it shows Spriv and Spub states as distinct procedures.

In Spub, the adversary tries to mine a block. Whenever he mines it, instead of publishing,
he keeps it secret and goes to Spriv. His block loss can only occur if an honest miner finds a
block first in Spriv, and then γ(1−α) fraction of honest miners that work on Helen’s block finds
the next block. In this case, Adam loses 1 block. As the probability that this case occurs is
(1− α)2(1− γ), we obtain

`A,SM = (1− α)2(1− γ)

Helen may lose blocks in Spriv mainly in two different ways: (1) Helen finds the first block,
Adam publishes the head of his private chain, Adam’s block wins the block race with probability
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TS=86.7 TS=89.2 TS=91.4

TS=81.8 TS=84.0 TS=86.0 TS=88.5 TS=94.0 TS=96.3 TS=98.8

Timeline

k=2 k=1

𝑆𝑝𝑟𝑖𝑣  𝑆𝑝𝑢𝑏  𝑆𝑝𝑢𝑏  𝑆𝑝𝑢𝑏  𝑆𝑝𝑟𝑖𝑣  

TS=97.8

Figure (2) An example flow of Bold mining attack. The squares are honest miners’ blocks, while
the hexagons are those of the attacker. Straight lines shows parent-child relation between two
blocks. The thick lined blocks are the ones that remains in the main chain and gets rewarded,
while the thin lined ones are orphan blocks. The dashed arrows point to the time when the
attacker publishes the block. Spub and Spriv states are shown by the areas colored as white and
coral, respectively. Note that in case k = 1, the attacker immediately releases the block in Spriv.

(1 − α)
(
γ(1 − α) + α

)
, Helen loses 1 block. (2) Adam finds the first block with probability α,

eventually Helen catches up with Adam, Adam publishes his chain and Helen loses all the blocks
she has found within Spriv. For the second outcome, we consider this as a “monkey at the cliff”
problem [47], starting when Adam’s chain is 2 blocks ahead of Helen’s chain, going away from the
cliff with probability α and towards it with probability 1−α. Therefore, the expected number of
steps for this walk to the end is 1

(1−α)−α = 1
1−2α [47]. Since the expected steps towards the cliff

should be 1 more than those away from it for the state to end, we calculate Helen’s expected
block loss in this case as 1

2

(
1

1−2α + 1
)

= 1−α
1−2α . At the end, we obtain

`H,SM = (1− α)
(
γ(1− α) + α

)
+ α · 1− α

1− 2α

Regarding fSM , we need to obtain ESpriv and ESpub. Upon going to state Spriv, the proba-
bility that Helen finds the next block is (1 − α), ending the state with 1 block. Upon going to
state Spriv, the probability that Adam finds the next block is α, ending the state in expected
1 + 1

1−2α steps. We calculate ESpriv = (1− α) + α
(
1 + 1

1−2α
)

= 1 + α
1−2α . At the beginning of

Spub, there may be a block race where either Adam’s branch or Helen’s one (the forks differ by
only 1 block) will be the winner if Helen found the first block in the last Spriv. Thus, this case
occurs with probability 1− α. After this, Spub finishes when the attacker mines the next block
requiring the expected number of 1

α blocks since it is a geometric random variable. Hence, we
calculate ESpub = 1− α+ 1

α . From Eq. 2, we obtain that

fSM =
1

2 + α
1−2α − α+ 1

α

=
(1− 2α)(α)

1− 4α2 + 2α3

If we plug `A,SM , `H,SM , and fSM into Eq. 1, we obtain an equation equivalent to the
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Figure (3) Revenue from selfish mining [10] with respect to hashing power α for network powers
γ = 0, γ = 0.5, and γ = 1 calculated using our Eq. 1 and the original equation of [10] given at
Eq. 4.

revenue equation of [10] as

RSM =
α(1− α)2(4α+ γ(1− 2α))− α3

1− α(1 + (2− α)α)
, (4)

which is also deducible from Figure 3, that shows the revenues of the attacker with respect to
his hashing power for network powers γ = 0, γ = 0.5, and γ = 1 for both equations.

6 Analyses of Oracle and Bold Mining

We now show that there exists parameters for tm in Oracle Mining and K in Bold Mining, such
that the attacker is better off compared to honest mining regardless of his hashing power. The
simulation results in Section 8 confirms our results obtained here.

6.1 Oracle Mining Attack Optimization

Analysis. For simplicity we let ε = 0. We model the mining in a given time range as a

Poisson random variable as in [11]. The success probability is given as P [X = x] = e−µµx

x! where
X = {0, 1, 2, 3 . . .} is a set of possible number of successes, e is the Euler’s number, and µ is
a success rate. Let Tc denote the current expected time interval between block found by any
miner. This differs from the public expected inter-block time by including the blocks that do
not end up in the main chain. The attacker can determine this value from his hashing power, or
can estimate it from statistics as he knows his and honest miners’ found blocks. We let µA = αt

Tc

and µH = (1−α)t
Tc

denote success rates of Adam and Helen, respectively.
We can state

`A,OM =
∞∑
h=2

h−2∑
a=0

(
P [A = a] · P [H = h] · (a+ 1)

)
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`H,OM =
∞∑
a=0

a+1∑
h=1

(
P [A = a] · P [H = h] · h

)
Here P [A = a] and P [H = h] denote probabilities that Adam finds a blocks and Helen finds h

blocks within Spriv, respectively. Since these are Poisson random variables, P [A = a] =
e−µAµaA

a!

and P [H = h] =
e−µHµhH

h! . As the time spent in Spriv is tm, we calculate ESpriv = tm
Tc

. Also,

ESpub = 1
α , as Spub finishes when Adam finds a block. Hence, from Eq. 2, we obtain

fOM =
1

tm
Tc

+ 1
α

=
αTc

αtm + Tc

Plugging `A,OM , `H,OM , and fOM into Eq. 1, it is straightforward to obtain Adam’s revenue.
By setting tm properly, the attacker can maximize his revenue from this attack and thus beat
the honest mining strategy for any α

How to set the optimum tm. Intuitively, setting t as a large value does not make much
sense for an attacker with α < 0.5, since it gives the honest majority a larger time interval (and
hence a higher chance) to beat him. From the analysis, we deduce that increasing the value of t
increases both `A,OM and `H,OM , and decreases fOM . Figure 4 shows the revenue of the attacker
with respect to α for optimum tm/Tc. The attacker can keep setting the tm by preparing a look
up table for tm/Tc and α from this figure or computing them by himself. We note that both
α and Tc may vary over time, but the attacker can estimate them from the difficulty and the
statistics of the publicly and privately mined blocks.

Impact of the attack. The most important implication of this attack is that for any α
value, there exists a value tm > 0 that provides more revenue than honest mining does. Even if
the direct revenue gain from this attack does not seem as great as the previously known SM-type
attacks, it is more likely to occur in practice in an Decentralized FP application, since it may
be attractive for any rational miner, while the latter usually requires large α or γ values. Its
effects are similar to selfish mining: It exhausts honest miners, which can reduce their numbers,
leading to a more vulnerable blockchain system to other SM-type attacks. It also results in
inconsistency as a ledger of transactions.

6.2 Bold Mining Attack Optimization

Analysis of profitability Ratio for all bounds K. We know from the previous analyses
(including the one by Nakamoto [1]) of PoW mining that it is not a good idea to mine on from
long past blocks; therefore, there must be a good bound K for the plausible values of k. In
what follows, we show that for α < 0.432 the only plausible value is K = 1 (and in the range
α ∈ (0.432, 0.5), the only other plausible bound is K = 2), then calculate the revenue equation
based on this choice.

For simplicity, we define `A,BM,k and `H,BM,k as expected losses of Adam and Helen, respec-

tively, in case Adam goes to Spriv with k. The corresponding profitability ratio BBM,k =
`A,k
`H,k

still needs to be less than α
1−α . We state that

`A,BM,k = P [Helen surpasses k + 1 blocks](1 + EHA)

`H,BM,k = P [Adam catches up](1 + EAH)

14



Figure (4) Revenue from Oracle mining on Decentralized FP w.r.t. the hashing power α when
the timestamps set optimally. Also the optimum tm/Tc values for all α of interest are provided.

where EH wins,A and EA wins,H denote the expected number of blocks found by Adam in Spriv
given that Helen wins, and those by Helen given that Adam wins, respectively. The flow of
Spriv can be modeled as the “Gambler’s ruin” problem [47].Let EH and EA denote the expected
number of blocks found by all parties in Spriv given that Helen wins (Adam loses) and those

given that Adam wins, respectively. EA wins,H = EA−(k−1)
2 and EH wins,A = EH−2

2 . We utilize
Corollary 2.12 of [48], and deduce that

EA =
r + 1

r − 1
·
(
N · r

N + 1

rN − 1
− i · r

i + 1

ri − 1

)
if k > 1, 0 for k > 1

EH =
r + 1

r − 1
·
(
N · r

N + 1

rN − 1
− (N − i) · r

N−i + 1

rN−i − 1

)
for k > 1

where r = α
1−α is the ratio of Adam’s and Helen’s probabilities of finding the next block, i = 2

is the starting point of the gambler’s ruin, and N = k+ 1 is its ending point. From [47], we also
deduce that

P [Adam catches up] =

(
1−α
α

)2 − 1(
1−α
α

)k+1 − 1
for k > 1

P [Helen surpasses k + 1 blocks] = 1−
(
1−α
α

)2 − 1(
1−α
α

)k+1 − 1
for k > 1

By plugging the above formula, it is straightforward to calculate the profitability ratio

BBM,k =
`A,BM,k
`H,BM,k

. Using Eq. 3 we calculate both ∀α ∈ (0, 0.432) ∀k > 1 Bk ≥ α
1−α and

∀α ∈ (0, 0.432) B1 <
α

1−α . Therefore, by setting K = 1, and the attack in Algorithm 4 simplifies
to the attack in Algorithm 6 as at Spriv, ∆ = 0.

Revenue analysis for optimized bound K = 1. Clearly `A,BM = 0, as there are no
blocks lost by Adam. Similarly, `H,BM = 1, since Helen will lose 1 block whenever attack
condition occurs. Also ESpriv = 0, as Adam immediately releases his found block. To calculate
ESpub, upon going out of Spriv, first, Helen needs to find a block, whose average length is
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Figure (5) Revenue from Bold mining on Decentralized (or even Authority) FP vs. revenue
from honest mining with respect to α.

1
1−α . Then, Adam needs to find a block, whose average length is 1

α . From Eq. 2, we obtain

fBM = 1
1

1−α+
1
α

= α(1− α). Applying Eq. 1, we deduce

RBM =
α− α(1− α).0

1− α(1− α)(0 + 1)
=

α

1− α(1− α)

Figure 5 shows the expected revenue outcome of this attack for various α values, clearly
demonstrating that it outperforms the honest mining strategy for any α < 0.5.

We note that [11] has previously stated that if freshness preferred is applied, mining on one
block behind the head is profitable for any attacker. However, this deduction seems merely
intuitive, as they do not provide any analysis of the attack. Here, our analysis will help us in
our defense proposal.

Impacts of the attack. The impact of this attack is similar to that of Oracle mining,
but with increased severity. For any α value, the attacker’s revenue surpass the one receivable
from honest mining, therefore it is more likely to occur in practice in an FP application than
previously known SM-type attacks. It exhausts honest miners, which can reduce their numbers,
leading to a more vulnerable blockchain system to other SM-type attacks. It also results in
inconsistency as a ledger of transactions.

7 Our SM Mitigation Algorithm

In the light of the analyses in Section 6, we now propose an algorithm Fortis with a tie-breaking
strategy such that if applied, an attacker with α < 27.0% can benefit from none of the SM-type
attacks to known date including Oracle mining (OM), Bold mining (BM), and optimal selfish
mining (OSM) [11]. This proposal is a relaxation of Decentralized FP, biasing some forks with
respect to timestamps unlike Uniform Tie-breaking [10]. For the sake of proper operation of
Fortis, we assume that a global synchronous clock functionality is available to every party. Yet,
in Section 8, we also provide results that show even without high synchrony our proposal enjoys
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the highest security. Also, we stress that global clocks have already been used in proof-of-stake
based consensus algorithms [21, 22].

Intuition. Observe that both OM and BM are applicable to FP, since in case of ties the
freshest block is the one that always wins. However, neither of them is possible against uniform
tie-breaking (UT) where γ = 0.5 (yet it prevents OSM only for adversaries with hashing power
less than 0.232): Regarding OM, the most likely outcome of Spriv is that only Helen would find
one block within the time t. Thus, if γ = 0.5, Adam will risk his first found block in cases Helen
also finds a block. Regarding BM, clearly, Adam is better off with honest mining, since the
blocks he finds in BM will be counted only roughly half of the time, whereas Helen’s block loss
will be less in terms of ratio.

Let ψ denote the bias for the probability that an honest miner chooses the fresher chain in
case of a tie. FP sets ψ = 1 for defending against SM. We can set this number to any value
0.5 ≤ ψ < 1, and still be better against OSM than UT that set it to ψ = 0.5. Decreasing ψ
gives more chance to the blocks with lower timestamp, and we start to be susceptible to BM
and OM. Therefore, we need an optimized value of ψ for a certain lowest bound of α that an
attacker would benefit from any of OM, BM, and OSM. Let us reconsider the OM attack with
the introduction of ψ < 1. Also, we need to consider that now the honest miners will be divided
upon going back to Spub with a tie. In this case the following occurs: Adam releases his blocks,
and a block race takes place for the next block (Adam sets the timestamp of the block he is
mining on as the current time). Then, the probabilities that Adam and Helen lose the mined
blocks are (1− ψ)(1− α) and α+ ψ(1− α), respectively. Whoever finds the next block, Adam
switches back to the honest chain, and continues with the attack algorithm the same way as
in standard OM on FP. We state the expected block loss `ψA,OM of the attacker in Spriv, the

expected block loss `ψH,OM of the honest parties in Spriv, and the expected frequency fψOM of
returning Spriv in this attack are as follows:

`ψA,OM =
∞∑
h=2

h−2∑
a=0

(
P [A = a] · P [H = h] · (a+ 1)

)
+

(1− ψ)(1− α)
∞∑
h=1

(
P [A = h− 1] · P [H = h] · h

)
`ψH,OM =

∞∑
a=0

a∑
h=1

(
P [A = a] · P [H = h] · h

)
+

(
α+ ψ(1− α)

) ∞∑
h=1

(
P [A = h− 1] · P [H = h] · h

)
Moreover, as ESpub of OM is elongated with 1 block due to the above-mentioned procedural
change we obtain from Eq. 2:

fψOM =
1

tm
Tc

+ 1 + 1
α

=
αTc

αtm + Tc + αTc

Also, when BM is applied on Fortis and a tie occurs upon going back to Spub, the above-
mentioned block race and additional procedure takes place. We calculate the expected block
loss `ψA,BM of the attacker in Spriv, the expected block loss `ψH,BM of the honest parties in Spriv,
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and the expected frequency fψBM of returning Spriv in this attack as follows:

`ψA,BM = (1− ψ)(1− α), `ψH,BM = α+ ψ(1− α),

fψBM =
α(1− α)

1 + α(1− α)

We end up with an optimization problem regarding the revenues from the attacks OM, BM,
and OSM, which can be stated as follows:

Maximize α subject to : RψOM , R
ψ
BM , R

ψ
OSM < α,

α ∈ (0, 0.5), ψ ∈ (0.5, 1)

For RψOM and RψBM we apply Eq. 1 with the above values, and for RψOSM we utilize the
implementation given in [35]. We obtain the solution for this problem is α ≈ 0.270 and occurs
at ψ ≈ 0.630. We denote the number 0.630 as Υ. We provide our Fortis algorithm in Algorithm
7. We highlight that in case more than 2 longest branches exist, the honest miners pick the
branch uniformly at random to mine on. Note that generating more than one longest branch
is less beneficial for an attacker than extending only one chain; therefore, one of the longest
branches can belong to the attacker8. Therefore, uniform picking results in less than 1 − Υ or
Υ chance for the attacker’s chain, i.e., for all n we have 1/n < 1−Υ and 1/n < Υ, if he applies
OSM or BM (OM), respectively. This is good enough to ensure the incentive compatibility
bounds that our scheme provides. We also note that the index of the siblings for determining
the fresher chain does not make any difference against the known attacks, but for completeness
it is decided based on the timestamps of the oldest forked siblings.

Figure 6 shows the revenues of an attacker from OM, BM, and OSM attacks applied on a PoW
blockchain where honest miners practice our Fortis algorithm. We note that the simulation
results in Section 8 confirms our results here.

8 Simulation

We simulate our timestamp-based Oracle and Bold mining attacks on Freshness Preferred [17]
and Fortis by implementing these algorithms on top of the blockchain simulator BlockSim
[23, 49]. The Python code for our simulation can be found in the repository9. We note that
the simulation results given in this section are probabilistic and independent of the hardware
platform on which the simulation runs. Also, we highlight that we have already simulated
Fortis with optimal OSM algorithm [11] while picking the optimum value for Υ.

Generic setup. The setup of the simulation mimics the Bitcoin protocol parameters of
April 2021. Inter-block time and block size limit are set as 600 seconds and 2 MB, respectively.
Regarding the block rewards, we assume a fixed block reward regime, since it is well-known
that selfish mining attacks become much more minacious in the presence of transaction fees as
proposed by [42]. We leave the study of our attacks and defenses in this setting as a future work.
We enabled a single common clock for the miners, as our protocol assumes a global synchronous
clock.

8In case of multiple attackers, there may be multiple longest branches belonging to attackers. Yet, this has
been shown as less beneficial than collusion [30, 31, 32]

9https://anonymous.4open.science/r/FortisSim-C2F3/
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Figure (6) The relative revenues of the optimal selfish mining of [11], our Bold mining, and
our Oracle mining on our Fortis algorithm. The attacker cannot benefit from these attacks, if
his hashing power α < 27.0%. We note that for α < 27.0%, optimal selfish mining and Oracle
mining generate the honest mining algorithm as the optimum strategy.

Propagation delay. Regarding block propagation delay, it has been considered to generally
affect the outcome of selfish mining [10] due to the fact that it is closely related to the network
power γ of the attacker [50]. The attacker would like to keep the delay low between him and
an honest miner, but high between two honest miners. Considering the Bitcoin tie-breaking
mechanism in April 2021 (i.e., a miner follows the first block received), the attacker’s aim is
to be the first to convey his block. If he achieves this, the effect is obviously devastating, as it
is effectively setting γ = 1. Somewhat counter-intiutive for a timestamp based scheme, block
propagation delays do not have much effect in our attacks and defense. This is because both
our defense mechanism Fortis and Freshness Preferred of [17] renders the network power of the
attacker less useful (i.e., γ does not directly affect his revenue). Also, those delays are observed
in relatively low duration with respect to the inter-block time for an attacker to obtain a high
gain from.

To demonstrate the impact of propagation delay in our simulations, we model it as an
exponential random variable (in accordance with the findings of [51]) with a varying average
computed as follows. [52] has found that a 1 MB block is received on average in 15.7 seconds.
We adjust this for each block as this average time varies linearly with the block size [12]. For
simplicity, a constant 3.4 transactions per second are generated and each transaction has a size
of 615 bytes. We note that these values are derived from the statistics available on the websites10

per April 2021. We assume that an attacker (Oracle or Bold miner) and seven honest nodes
exist in the system to approximate the big mining pools in the real world cryptocurrencies.

Clock asynchronicity. The clock asynchronicity is a well-known problem in distributed
systems and inherently in blockchains. There exist centralized (e.g., Network Time Protocol) and
decentralized solutions [53, 54]. The centralized ones give more efficient results but their security
depends on authorities. To show the effect clock asynchronicity in our simulation, we assume the
decentralized protocol of [54] is executed among neighbouring nodes frequently. According to this

10https://bitinfocharts.com/bitcoin/ and https://bitcoinvisuals.com/chain-tx-size
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(a) Our Attacks on Freshness Preferred (b) Our Attacks on Fortis

Figure (7) Simulation results of relative revenues of the Oracle and Bold miners when the
honest mining algorithm is (a) Freshness Preferred and (b) our Fortis algorithm. Note that
the theoretical revenue calculations from the previous chapters are also provided for reference.

work, the expected clock difference between two neighbouring nodes is calculated as roughly 0.75
seconds in 12 hours. Modelling Bitcoin, we assume all nodes are not neighbouring. Although we
do not have any exact knowledge of the distance between Bitcoin nodes, we estimate it as follows.
As of January 2021, there exist about 83,000 full nodes in Bitcoin [55]. Since each full node, by
default, connects to 8 separate full nodes [56]; without any overlaps, the distance between two
nodes would be log8 83, 000 = 5.45. This would mean a maximum of 0.75× 5.45 = 4.09 seconds
clock skew. However, as there would be inevitably overlaps, we assign random clock differences
between each node up to 5 seconds.11

Connectivity. In the ones with Freshness Preferred, the attacker’s network connectivity
is set to the same as the other nodes, since here we aim to show the strength of our attacks.
This is contrasted to those with Fortis, where we aim to show the strength of our defense and
let the attacker’s connectivity be perfect. That is, the attacker receives a block as soon as it is
found and the others receive each block mined by the attacker immediately.

Results. In our simulations, we conduct the Oracle and Bold mining attacks with hashing
powers between and including 1% and 50% with 1% increments against Freshness Preferred
and Fortis algorithms. Each simulation is repeated 5,000 times. Figure 7 provides attacker’s
expected relative revenues from each attack. We attribute the small deviations of the simulation
results from theory to propagation delay, connectivity, and clock skew. Still, they are close,
which shows that our attacks are effective on Freshness Preferred, and that our Fortis provides
security up to attacker’s hashing power being 27% of the whole system in realistic scenarios.

9 Conclusion and Future Work

Selfish mining attacks still continue to be a significant threat against the security and reliability of
PoW blockchains. There is an ongoing research on both for improving the attack effectiveness

11We highlight that deliberately deviating from network clock, as in Oracle mining, has already been disincen-
tivized for the attacker. Further, the effects of deliberate block delaying is covered in Spriv state of the attacks.
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and for defending against them. In this paper, we have shown the weakness of the previous
timestamp based defense [17] by providing attacks even with a low hashing power. Then, we
provide a backward compatible defense algorithm Fortis, which is fast to achieve consensus in
recovery from network partitions and 2.0% more incentive compatible compared to the other
known defense [18]. The importance of 2.0% improvement in Bitcoin, as of April 2021, can force
a selfish miner to invest an additional 200 million dollars in hardware for receiving any unfair
benefit. Although we are still far from the Nakamato’s security goal of honest majority, we
consider this as a step towards it. Our solution uses global synchronous clocks (with skew) as
in [21, 22].

We also provided generic formulas in Section 5 that can be used in the analysis of similar
attacks and defenses. We stress that without these formulas, it would be quite challenging to
analyze our attacks, let alone optimizing them and proposing a defense against them. The
application of our formulas for more complicated attacks, e.g., combination of Eclipse attacks
with selfish mining, remains as future work. Moreover, generating a single optimized attack that
combines our timestamp based attacks and the OSM strategy of [11] is a non-trivial task, and
is left as future work.

Depending on the setting, one may need to see more evidence for reliability of Fortis

deployment. Simulations and analyses regarding different cases, including reward regimes with
transaction fees and multiple attackers, are interesting open problems. We highlight that the
development of a complete framework for provable security in blockchains would eliminate taking
into account each type of attacks. Nevertheless, currently it is a non-trivial task, as even
modelling the basic features of blockchains are challenging [25, 57], and new attacks keep being
discovered at a fast pace. We leave the analysis of our attacks and defence with rational protocol
design as future work [58, 59, 60]. We also leave its analysis with the cooperative game theoretic
framework given in [61].

We simulated our attacks and optimal selfish mining attack of [11] on the previous timestamp
based scheme of [17] and our defense algorithm Fortis. The simulation output shows that even
with propagation delay and clock asynchronicity, the results closely follow theory.
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Algorithm 5 Selfish Mining Attack Algorithm of [10]

procedure Spub
Set ∆← 0, flag ← 0
while flag = 0 do

if |MyCh| = |PubCh| and MyCh 6= PubCh then
Mine(MyCh,1)
if A � b then

Append(MyCh,b), Publish(MyCh,head)
end if

else
MyCh ← PubCh, Mine(MyCh,1)
if A � b then

Append(MyCh,b), Set ∆← 1, flag ← 1
end if

end if
end while
Go to procedure Spriv

end procedure

procedure Spriv
Set flag ← 0
while flag = 0 do

Mine(MyCh,1)
if A � b and ∆ > 0 then

Append(MyCh,b), Set ∆← ∆ + 1
else if O � b and ∆ ≤ 2 then

Publish(MyCh,head), flag ← 1
else if O � b and ∆ > 2 then

Publish(MyCh,1), Set ∆← ∆− 1
end if

end while
Go to procedure Spub

end procedure
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Algorithm 6 Bold Mining Attack Algorithm as K = 1

procedure Spub
flag ← 0
while flag = 0 do

Set ∆← min(Last, 1)− 1
MyCh ← Trun(PubCh,∆), Mine(MyCh,1,τ)
if A � b and ∆ = 0 then

Publish(MyCh,head)
else if A � b and ∆ = 1 then

Append(MyCh,b)
Set ∆← ∆− 1, flag ← 1

else if O � b and ∆ = 0 then
Set ∆← ∆ + 1

end if
end while
Go to procedure Spriv

end procedure

procedure Spriv
Publish(MyCh,head), Go to procedure Spub

end procedure

Algorithm 7 Our Fortis Honest Mining Algorithm

while true do
if PubCh has 1 branch then

Mine(PubCh,1,τ)
else if PubCh has 2 branches then

Mine(PubCh,fresher branch,1,τ) with probability Υ
else if PubCh has n branches s.t. n > 2 then

Mine(PubCh,i-th branch,1,τ) with probability 1/n
end if
Propagate PubCh

end while

27


