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Abstract

Lattice-based NIST PQC finalists need efficient multiplication in Zq[x]/〈f(x)〉. Mul-

tiplication in this ring can be performed very efficiently via number theoretic transform

(NTT) as done in CRYSTALS-Kyber if the parameters of the scheme allow it. If NTT

is not supported, other multiplication algorithms must be employed. For example, if the

modulus q of the scheme is a power of two as in Saber and NTRU, then NTT can not be

used directly. In this case, Karatsuba and Toom-Cook methods together with modular

reduction are commonly used for multiplication in this ring. In this paper, we show that

the Toeplitz matrix-vector product (TMVP) representation of modular polynomial mul-

tiplication yields better results than Karatsuba and Toom-Cook methods. We present

three- and four-way TMVP formulas that we derive from three- and four-way Toom-Cook

algorithms, respectively. We use the four-way TMVP formula to develop an algorithm for

multiplication in the ring Z2m [x]/〈x256+1〉. We implement the proposed algorithm on the

ARM Cortex-M4 microcontroller and apply it to Saber, which is one of the lattice-based

finalists of the NIST PQC competition. We compare the results to previous implementa-

tions. The TMVP-based multiplication algorithm we propose is 20.83% faster than the

previous algorithm that uses a combination of Toom-Cook, Karatsuba, and schoolbook

methods. Our algorithm also speeds up key generation, encapsulation, and decapsulation

algorithms of all variants of Saber. The speedups vary between 4.3 − 39.8%. Moreover,

our algorithm requires less memory than the others, except for the memory-optimized

implementation of Saber.
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1 Introduction

Since the beginning of the NIST post-quantum standardization competition [29], lattice-based

cryptographic schemes have been compelling candidates. In July 2020 NIST announced the

third round finalists [28], and three out of four PKE/KEM finalists are lattice-based schemes:

CRYSTALS-Kyber [5], NTRU [18, 9], and Saber [12, 13]. These schemes are defined on

polynomial rings of the form Rq = Zq[x]/〈f(x)〉 where f(x) ∈ Z[x] is a degree n polynomial.

Multiplication in these rings has a major effect on the efficiency of the schemes. The most

efficient polynomial multiplication algorithm used in implementations varies depending on

the values of the parameters n and q. The parameters of the schemes such as NewHope

[2] and CRYSTALS-Kyber [5] are convenient for using the ‘Number Theoretic Transform

(NTT)’ [11], which is the most efficient polynomial multiplication algorithm known. The

downside of NTT is the constraint on the parameters, which also limits the security levels

of the schemes. The polynomial rings that Saber [12, 13] and NTRU [9, 17, 18] operate on

are not NTT friendly. In such polynomial rings, Toom-Cook [10, 32] and Karatsuba [22]

are the most preferred algorithms for multiplication. These algorithms or combinations of

these algorithms are more efficient than the naive method, but they are not as efficient as

NTT. In [19], the use of Karatsuba and Toom-Cook methods in the optimized ARM Cortex-

M4 implementations of some schemes can be seen. Albeit not commonly used, Toeplitz

matrix-vector product (TMVP) based algorithms are good alternatives for residue polynomial

multiplication [33]. Toeplitz matrices appear in various cryptographic applications. For

detailed information about the use of Toeplitz matrices in cryptography, we refer to the

reader to [24, 25, 14, 7, 8, 1, 31]. TMVP-based algorithms include the polynomial reduction

step inside the multiplication process, whereas Karatsuba and Toom-Cook methods require

additional reduction. This property makes TMVP-based algorithms more advantageous in

some cases considering the high degree modulo polynomials and the number of multiplications

performed in schemes.

In this paper, we work on improving multiplication in Rq with q = 2k by developing

TMVP-based algorithms. The main objective of this work is to speed up the cryptographic

schemes that do not support NTT such as Saber and NTRU which are the lattice-based

finalists of the NIST post-quantum standardization competition . Following this purpose, we

present three- and four-way Toeplitz matrix-vector product formulas TMVP-3 and TMVP-4

that we derive from Toom-3 and Toom-4 methods, respectively, using the technique ex-

plained in [33]. Moreover, we propose an algorithm for TMVP-based multiplication in the

ring Z2m [x]/〈x256 + 1〉 exploiting TMVP-4 formula. We implement the proposed algorithm

on ARM Cortex-M4. The proposed polynomial multiplication algorithm surpasses the one

given in [19] that uses a combination of Toom-4, Karatsuba, and schoolbook polynomial

multiplication by 20.16%. We integrate this algorithm to Saber by replacing the assembly
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code for polynomial multiplication in the software package accompanying the paper [19] with

ours. We speed up the key generation by 7.93%, encapsulation by 8.67% and decapsulation

by 10.67%.

The application of the proposed algorithm in this paper is not explicitly optimized for

Saber. In [27], such optimization is done by using the lazy interpolation and the precompu-

tation methods. These methods reduce the number of evaluation and recombination steps,

hence increases efficiency. The lazy interpolation method for polynomials can be thought of as

the counterpart of the block recombination method [15] for matrices. Thereby, the proposed

algorithm in this paper can be optimized for Saber using the block recombination method,

and similar improvements in [27] can be achieved.

Based on the results we receive from our application to Saber, TMVP-based residue poly-

nomial multiplication algorithms seem to work well for the rings that are not NTT friendly,

and they might be good alternatives to Karatsuba and Toom-Cook methods. Apparently,

lattice-based cryptosystems are very popular for post-quantum cryptography, and research

on the efficiency of lattice-based schemes will continue for a long time. To the best of

our knowledge, TMVP-based algorithms have not been used in post-quantum cryptogra-

phy applications so far. Having options other than Karatsuba and Toom-Cook methods for

multiplication in Rq when NTT is out of the question would provide diversity in research.

Availability of the software: All source codes are available at https://github.com/

iremkp/Saber_tmvp4_m4

Organization of this paper: In Section 2, we provide preliminary information and

describe the notations we use throughout this paper. We explain the derivation of the new

TMVP-3 and TMVP-4 formulas and introduce the algorithm we propose for multiplication

in Z2m [x]/〈x256 + 1〉 in Section 3. Finally, in Section 4, we summarize our work and conclude

the paper with some ideas for future study.

2 Preliminaries

In this section, we introduce some definitions and properties to build a background. Through-

out the paper, we use the notation MALG(n) to state the arithmetic complexity of the al-

gorithm ALG for dimension n, and M(n) to state the arithmetic complexity of the most

efficient algorithm for the computation in question for dimension n. Rq = Zq[x]/〈xn + 1〉
denotes the finite polynomial ring modulo xn + 1 where the coefficients of the polynomials

are integers in Zq.

2.1 Toeplitz Matrix Vector Product

There are many cryptographic applications utilize theToeplitz matrix-vector product (TMVP)

in the literature. The use of TMVP in cryptographic computations first appeared in [14]
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for multiply elements of binary extension fields. Then, many proposals were suggested

[1, 14, 15, 16, 30, 31]. Recently, in [1] and [31] the use of TMVP for integer modular mul-

tiplication is proposed to speed up the residue multiplication modulo the Mersenne prime

2521− 1 and the prime 2255− 19 respectively. TMVP can be used to calculate the product of

two polynomials modulo a polynomial as explained in [33].

Definition 2.1. Let m and n be two positive integers. A Toeplitz matrix T is an m × n
matrix whose entry in i-th row and j-th column is defined as Ti,j = Ti−1,j−1 for i = 2, . . . ,m

and j = 2, . . . n.

Throughout this paper, we focus only on square Toeplitz matrices:

T =



a0 a′1 a′2 . . . . . . . . . a′n−1

a1 a0 a′1 a′2 . . . . . .
...

a2 a1 a0 a′1
. . .

...
... a2 a1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a′1 a′2
...

. . .
. . . a1 a0 a′1

an−1 . . . . . . . . . a2 a1 a0


. (1)

The matrix T in (1) shows the special form of an n×n Toeplitz matrix. Clearly, specifying only

2n−1 of its elements would suffice to identify T . Therefore, addition of two Toeplitz matrices

requires only 2n−1 additions while addition of regular matrices requires n2. Moreover, every

submatrix of a Toeplitz matrix is also a Toeplitz matrix. These properties become very

handy when it comes to calculating a TMVP efficiently. Instead of using the naive matrix

vector multiplication, the divide and conquer method works very well for TMVP for large n.

Suppose we want to compute the product of the Toeplitz matrix T in (2.1) by a vector B

where the transpose of B is BT = (b0, b1, . . . , bn). We may apply different splitting methods

[16] to compute the following TMVP:

T.B =



a0 a′1 . . . a′n−2 a′n−1
a1 a0 . . . a′n−3 a′n−2

...
...

. . .
...

...

an−2 an−3 . . . a0 a′1
an−1 an−2 . . . a1 a0





b0

b1
...

bn−2

bn−1


. (2)

For example, a two-way TMVP formula allows us to compute an n dimensional TMVP via

three n/2 dimensional TMVPs. For this, we denote the TMVP in (2) by

T.B =

(
T1 T0

T2 T1

)(
B0

B1

)
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where T0, T1, T2 are n
2×

n
2 Toeplitz matrices and B0, B1 are n

2×1 matrices. The n dimensional

Toeplitz matrix vector product T.B can be calculated as follows:(
T1 T0

T2 T1

)(
B0

B1

)
=

(
P1 + P2

P1 − P3

)
,

where
P1 = T0(B0 +B1),

P2 = (T0 − T1)B1,

P3 = (T1 − T2)B0.

The arithmetic complexity of the given two-way TMVP formula (TMVP-2) above isMTMV P−2(n) =

3M(n/2) + 3n− 1. Similarly, a three-way TMVP formula allows us to compute an n dimen-

sional TMVP via six n/3 dimensional TMVPs. For this, we denote (2) by

T.B =

T2 T1 T0

T3 T2 T1

T4 T3 T2


B0

B1

B2


where T0, T1, T2, T3, T4 are n

3 ×
n
3 Toeplitz matrices and B0, B1, B2 are n

3 × 1 matrices. The

n dimensional Toeplitz matrix vector product T.B can be calculated as follows:T2 T1 T0

T3 T2 T1

T4 T3 T2


B0

B1

B2

 =

P1 + P4 + P5

P2 + P4 + P6

P3 + P5 + P6

 ,

where
P1 = (T0 + T1 + T2)B2,

P2 = (T1 + T2 + T3)B1,

P3 = (T2 + T3 + T4)B0,

P4 = T1(B1 +B2),

P5 = T2(B0 +B2),

P6 = T3(B0 +B1).

The arithmetic complexity of three-way TMVP algorithm is MTMV P3(n) = 6M(n/3)+5n−1.

These split formulas for TMVP can be derived from any polynomial multiplication formula.

The technique of derivation of a TMVP formula from a polynomial multiplication algorithm

is explained elaborately in [33]. We use the same technique given in [33] to derive three-

and four-way TMVP formulas from Toom-3 and Toom-4 algorithms using five and seven

multiplications, respectively. These formulas will be denoted by TMVP-3 and TMVP-4. We

present the formulas and explain the derivation technique in detail in Section 3.
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2.2 Polynomial Multiplication Modulo xn ± 1 via TMVP

Let us denote the product of the polynomials a(x) =
∑n−1

i=0 aix
i and b(x) =

∑n−1
i=0 bix

i in Z[x]

by c′(x) =
∑2n−2

i=0 c′ix
i ∈ Z[x] where c′i =

∑
j+k=i ajbk. Let R = Z[x]/〈xn ± 1〉. The product

c(x) =
∑n−1

i=0 cix
i of the polynomials a(x) and b(x) in R can be calculated by reducing c′(x)

modulo xn ± 1. Clearly, ci = c′i ∓ c′i+n for i = 0, . . . , n− 2 and cn−1 = c′n−1. The coefficients

of the polynomial c(x) can be expressed as follows:

c0

c1

c2
...
...

cn−2

cn−1


=



a0 ∓an−1 ∓an−2 . . . ∓a3 ∓a2 ∓a1
a1 a0 ∓an−1 . . . ∓a4 ∓a3 ∓a2
a2 a1 a0 . . . ∓a5 ∓a4 ∓a3
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

an−2 an−3 an−4 . . . a1 a0 ∓an−1
an−1 an−2 an−3 . . . a2 a1 a0





b0

b1

b2
...
...

bn−2

bn−1


. (3)

The matrix in (3) is a Toeplitz matrix which has a more special form. It contains only n

different entries which are the coefficients of one of the multiplicand polynomials. Having n

components instead of 2n− 1 means we can simplify the formulas we use. Therefore, we can

calculate this type of TMVPs even more efficiently. To be more specific if we use a k-split

method (TMVP-k formula) we would have k different components instead of 2k − 1. Thus,

it allows us to reduce the number of additions and the memory usage.

2.3 Saber

Saber [12, 13] is a lattice-based key encapsulation mechanism (KEM) and one of the fi-

nalists of the NIST PQC standardization competition. Its security relies on the Module

Learning with Rounding (MLWR) problem [4, 26]. Saber defines an IND-CPA secure pub-

lic key encryption scheme (Saber.PKE) consisting of key generation (Saber.PKE.Keygen),

encryption (Saber.PKE.Enc), decryption (Saber.PKE.Dec) algorithms as described in Al-

gorithms 1, 2, 3. It uses a version of the Fujisaki-Okamoto transformation to have an

IND-CCA secure key encapsulation mechanism (Saber.KEM), which also consists of three

algorithms key generation (Saber.KEM.KeyGen), encapsulation (Saber.KEM.Encaps), de-

capsulation (Saber.KEM.Decaps).
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Algorithm 1 Saber.PKE.KeyGen

1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×lq

3: r ← U({0, 1}256)
4: s = βµ(Rl×1q ; r)

5: b = ((ATs + h) mod q)� (εq − εp) ∈ Rl×1p

6: return (pk = (seedA, b), sk = (s))

Algorithm 2 Saber.PKE.Enc(pk = (seedA, b),m ∈ R2; r)

1: seedA ← U({0, 1}256)
2: if r is not specified then

3: r ← U({0, 1}256)

4: s′ = βµ(Rl×1q ; r)

5: b′ = ((As′ + h) mod q)� (εq − εp) ∈ Rl×1p

6: v′ = bT (s′ mod p) ∈ Rp
7: cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT ) ∈ RT
8: return c = (cm, b

′)

Algorithm 3 Saber.PKE.Dec(sk = s, c = (cm, b
′))

1: Qv = b′T (s mod p) ∈ Rp
2: m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

3: return m′

The scheme specifies three values for the parameter l that determines the security level.

The values l = 2 (LightSaber), l = 3 (Saber), l = 4 (FireSaber) provide level 1, level 3,

level 5 security, respectively. Saber operates on the finite polynomial rings Rq = R213 =

Z213 [x]/〈x256 + 1〉 and Rp = R210 = Z210 [x]/〈x256 + 1〉. Like most of the lattice-based cryp-

tosystems defined on polynomial rings, multiplication directly affects the efficiency of the

scheme. The rings Rq and Rp that Saber is defined on are not suitable for using the Number

Theoretic Transform (NTT), which is the most efficient polynomial multiplication algorithm.

Regardless of the platform, all implementations of Saber use a combination of Toom-Cook,

Karatsuba, and schoolbook methods for efficient polynomial multiplication. Details of exist-

ing implementations on different platforms can be found in [19, 23, 27].
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2.4 Implementation Platform: ARM Cortex-M4

We choose the ARM Cortex-M4 microcontroller as the implementation platform. The Cortex-

M4 implements the ARMv7E-M instruction set and it is recommended by NIST as a reference

implementation platform for evaluation of PQC candidates on microcontrollers. It has sixteen

32-bit registers and aside from Program Counter (PC) and Stack Pointer (SP) registers,

they are all available for development. We use the STM32F4DISCOVERY development

board which is used in many implementations of PQC candidates [3, 6, 19, 20, 23]. The

ARM Cortex-M4 is designed especially for digital signal processing (DSP) and it supports

many useful single instruction multiple data (SIMD) instructions that can perform parallel

arithmetic operations on 16-bit halfwords of multiple registers in one cycle. In Table 1,

descriptions of some instructions we use in our implementation are given.

Table 1: Example instructions

General data processing

ADD Rd, Rn, Rm Rd = Rn + Rm

USUB16 Rd, Rn, Rm Rdb = (Rnb − Rmb)mod 216 Rdt = (Rnt − Rmt)mod 216

Multiply-Accumulate

SMUADX Rd, Rn, Rm Rd = RnbRmt + RntRmb

SMLADX Rd, Rn, Rm, Rt Rd = RnbRmt + RntRmb + Rt

Packing-Unpacking

PKHBT Rd, Rn, Rm LSL # k Rdb = Rnb Rdt = (Rm� k)t

PKHTB Rd, Rn, Rm ASR # k Rdb = (Rm� k)b Rdt = Rnt
The indices b and t denote the bottom (bits 0 − 15) and top (bits 16 − 31) halfwords of the relevant register. The

symbols � and � denote the left and right shifts respectively.

3 Our Work

We derive TMVP-3 and TMVP-4 formulas from Toom-3 and Toom-4 algorithms using the

same technique given in [33], which require five and seven smaller TMVPs, respectively. We

also propose a TMVP-based algorithm for multiplication in the ring R2m = Z2m [x]/〈x256+1〉
which utilizes our TMVP-4 formula, and implement it on the ARM Cortex-M4 microcon-

troller. An important note here is the proposed algorithm includes the polynomial reduction

step and does not require additional polynomial reduction outside of polynomial multipli-

cation, unlike Karatsuba and Toom-Cook. We integrate the assembly code of the proposed

multiplication algorithm to an existing implementation of Saber that accompanying the pa-

per [19], and we improve the efficiency of multiplication, key generation, encryption, and

decryption algorithms comparing to the results given in [19]. Moreover, we reduce stack

usage. This section explains the derivation of our new three- and four-way TMVP formulas
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and describes the proposed multiplication algorithm.

3.1 TMVP-3 formula from Toom-3 algorithm

Let a(x) = a0 + a1x + a2x
2 and b(x) = b0 + b1x + b2x

2 be two polynomials in Z[x]. The

product of these polynomials a(x)b(x) = c(x) = c0+c1x+c2x
2+c3x

3+c4x
4 can be calculated

using different methods.

The coefficients of the product polynomial c(x) are computed using the schoolbook

method as follows:

c0 = a0b0,

c1 = a0b1 + a1b0,

c2 = a0b2 + a1b1 + a2b0,

c3 = a1b2 + a2b1,

c4 = a2b2.

(4)

This computation requires 9 multiplications and 4 additions. On the other hand, using

evaluation points {0, 1,−1,−2,∞} leads to

c(0) = a(0)b(0) = a0b0,

c(1) = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2),

c(−1) = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2),

c(−2) = a(−2)b(−2) = (a0 − 2a1 + 4a2)(b0 − 2b1 + 4b2),

c(∞) = a(∞)b(∞) = a2b2.

The coefficients ci of the product polynomial c(x) are interpolated and the following equalities

are obtained:

c0 = c(0),

c1 = c(0)/2 + c(1)/3− c(−1) + c(−2)/6− 2c(∞),

c2 = −c(0) + c(1)/2 + c(−1)/2− c(∞),

c3 = −c(0)/2 + c(1)/6 + c(−1)/2− c(−2)/6 + 2c(∞),

c4 = c(∞).

(5)

This method is known as Toom-3.

Now, we derive a three way TMVP (TMVP-3) formula from Toom-3. To this end, we

multiply each equation of both (4) and (5) that corresponds to ci by a symbolic variable z4−i

for i = 0, . . . , 4 and we take the sum of all equations. Then, we rearrange the terms to obtain

two equations of the form z4c0 + z3c1 + z2c2 + z1c3 + z0c4 = k2b0 + k1b1 + k0b2. From (4) we
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get

k2 = z4a0 + z3a1 + z2a2,

k1 = z3a0 + z2a1 + z1a2,

k0 = z2a0 + z1a1 + z0a2

(6)

and from (5) we get

k2 =
1

2
a0 (2z4 + z3 − 2z2 − z1) +

1

6
(a0 + a1 + a2) (2z3 + 3z2 + z1)

+
1

2
(a0 − a1 + a2) (−2z3 + z2 + z1) +

1

6
(a0 − 2a1 + 4a2) (z3 − z1) ,

k1 =
1

6
(a0 + a1 + a2) (2z3 + 3z2 + z1)−

1

2
(a0 − a1 + a2) (−2z3 + z2 + z1)

− 1

3
(a0 − 2a1 + 4a2) (z3 − z1) ,

k0 =
1

6
(a0 + a1 + a2) (2z3 + 3z2 + z1) +

1

2
(a0 − a1 + a2) (−2z3 + z2 + z1)

+
2

3
(a0 − 2a1 + 4a2) (z3 − z1) + a2 (−2z3 − z2 + 2z1 + z0) .

(7)

Clearly, (6) can be expressed as a TMVP which gives the left hand side of the equation (8)

while the right hand side comes from (7). Finally, we have the following TMVP-3 formula:z2 z1 z0

z3 z2 z1

z4 z3 z2


a0a1
a2

 =

P1 + P2 + 4P3 + P4

P1 − P2 − 2P3

P0 + P1 + P2 + P3

 (8)

where

P0 =
1

2
a0 (2z4 + z3 − 2z2 − z1) ,

P1 =
1

6
(a0 + a1 + a2) (2z3 + 3z2 + z1) ,

P2 =
1

2
(a0 − a1 + a2) (−2z3 + z2 + z1) ,

P3 =
1

6
(a0 − 2a1 + 4a2) (z3 − z1) ,

P4 = a2 (−2z3 − z2 + 2z1 + z0) .

Therefore, with this formulation, an n dimensional TMVP can be calculated via five smaller

TMVPs whose dimensions are 1/3-rd of the original one. In [33, 14], three-way formulas for

TMVP which requires six TMVPs of dimension n/3 can be seen. The arithmetic complexity

of the new TMVP-3 formula is roughly MTMV P−3(n) = 5M(n/3)+10n. We ignore the scalar

multiplication and shifting operations while calculating the computational complexity of the

algortihms.
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3.2 TMVP-4 formula from Toom-4 algorithm

Let a(x) = a0+a1x+a2x
2+a3x

3 and b(x) = b0+b1x+b2x
2+b3x

3 be two polynomials in Z[x].

The product of these polynomials a(x)b(x) = c(x) = c0+c1x+c2x
2+c3x

3+c4x
4+c5x

5+c6x
6

can be calculated using different methods. The coefficients ci of the product polynomial c(x)

are computed using the schoolbook method as follows:

c0 = a0b0,

c1 = a0b1 + a1b0,

c2 = a0b2 + a1b1 + a2b0,

c3 = a0b3 + a1b2 + a2b1 + a3b0,

c4 = a1b3 + a2b2 + a3b1,

c5 = a2b3 + a3b2,

c6 = a3b3.

(9)

This computation requires 16 multiplication and 9 additions.

On the other hand, the set of evaluation points {0, 1,−1, 2,−2, 3,∞} leads to

c(0) = a0b0,

c(1) = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3),

c(−1) = (a0 − a1 + a2 − a3)(b0 − b1 + b2 − b3),

c(2) = (a0 + 2a1 + 4a2 + 8a3)(b0 + 2b1 + 4b2 + 8b3),

c(−2) = (a0 − 2a1 + 4a2 − 8a3)(b0 − 2b1 + 4b2 − 8b3),

c(3) = (a0 + 3a1 + 9a2 + 27a3)(b0 + 3b1 + 9b2 + 27b3),

c(∞) = a3b3.

The coefficients ci of the product polynomial c(x) are interpolated and the following equalities

are obtained:

c0 = c(0),

c1 = −c(0)/3 + c(1)− c(−1)/2− c(2)/4 + c(−2)/20 + c(3)/30− 12c(∞),

c2 = −5c(0)/4 + 2c(1)/3 + 2c(−1)/3− c(2)/24− c(−2)/24 + 4c(∞),

c3 = 5c(0)/12− 7c(1)/12− c(−1)/24 + 7c(2)/24− c(−2)/24− c(3)/24 + 15c(∞),

c4 = c(0)/4− c(1)/6− c(−1)/6 + c(2)/24 + c(−2)/24− 5c(∞),

c5 = −c(0)/12 + c(1)/12 + c(−1)/24− c(2)/24− c(−2)/120 + c(3)/120− 3c(∞),

c6 = c(∞).

(10)

This method is known as Toom-4.
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To derive four way TMVP (TMVP-4) formula, first we multiply each equation of both (9)

and (10) that corresponds to ci by a symbolic variable z6−i for i = 0, . . . , 6. Then, we take

the sum of all equations to obtain two equations of the form z6c0 + z5c1 + z4c2 + z3c3 + z2c4 +

z1c5 + z0c6 = k3b0 + k2b1 + k1b2 + k0b3. From (9) and (10), we get the following TMVP-3,

we get the TMVP-4 formula using the similar rearrangements as in TMVP-3:
z3 z2 z1 z0

z4 z3 z2 z1

z5 z4 z3 z2

z6 z5 z4 z3



a0

a1

a2

a3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 (11)

where

P0 =
1

12
a0 (12z6 − 4z5 − 15z4 + 5z3 + 3z2 − z1) ,

P1 =
1

12
(a0 + a1 + a2 + a3) (12z5 + 8z4 − 7z3 − 2z2 + z1) ,

P2 =
1

24
(a0 − a1 + a2 − a3) (−12z5 + 16z4 − z3 − 4z2 + z1) ,

P3 =
1

24
(a0 + 2a1 + 4a2 + 8a3) (−6z5 − z4 + 7z3 + z2 − z1) , (12)

P4 =
1

120
(a0 − 2a1 + 4a2 − 8a3) (6z5 − 5z4 − 5z3 + 5z2 − z1) ,

P5 =
1

120
(a0 + 3a1 + 9a2 + 27a3) (4z5 − 5z3 + z1) ,

P6 = a3 (−12z5 + 4z4 + 15z3 − 5z2 − 3z1 + z0) .

Therefore with this formulation, an n dimensional TMVP can be calculated via seven smaller

TMVPs whose sizes are 1/4-th of the original one. The arithmetic complexity of TMVP-4

formula is roughly MTMV P−4(n) = 7M(n/4) + 79n/4− 27. We ignore scalar multiplication

and shifting operations in aritmetic complexity calculations.

3.3 TMVP-based Multiplication in R2m = Z2m[x]/〈x256 + 1〉

Let a(x) =
∑255

i=0 aix
i and b(x) =

∑255
i=0 bix

i be two polynomials in the finite polynomial ring

R2m = Z2m [x]/〈x256+1〉. The coefficients of the product polynomial c(x) =
∑255

i=0 cix
i ∈ R2m

can be calculated via the following TMVP:

c0

c1

c2
...
...

c254

c255


=



a0 −a255 −a254 . . . −a3 −a2 −a1
a1 a0 −a255 . . . −a4 −a3 −a2
a2 a1 a0 . . . −a5 −a4 −a3
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

a254 a253 a252 . . . a1 a0 −a255
a255 a254 a253 . . . a2 a1 a0





b0

b1

b2
...
...

bn−2

bn−1


. (13)
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Applying the new TMVP-4 formula to the TMVP in (13) gives the following:
C0

C1

C2

C3

 =


A0 −A3 −A2 −A1

A1 A0 −A3 −A2

A2 A1 A0 −A3

A3 A2 A1 A0



B0

B1

B2

B3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 (14)

where

P0 =
1

12
(5A0 − 15A1 − 3A2 + 9A3)B0,

P1 =
1

12
(−7A0 + 8A1 + 11A2 + 2A3) (B0 +B1 +B2 +B3),

P2 =
1

24
(−A0 + 16A1 − 13A2 + 4A3) (B0 −B1 +B2 −B3),

P3 =
1

24
(7A0 −A1 − 5A2 −A3) (B0 + 2B1 + 4B2 + 8B3),

P4 =
1

120
(−5A0 − 5A1 + 7A2 − 5A3) (B0 − 2B1 + 4B2 − 8B3),

P5 =
1

120
(−5A0 + 3A2) (B0 + 3B1 + 9B2 + 27B3),

P6 = (15A0 + 3A1 − 9A2 + 5A3)B3,

and the partitions Ai are regular Toeplitz matrices of dimension 64, and Bi, Ci are vectors

of length 64 for i = 0, . . . , 3. Clearly, when the Toeplitz matrix has a more special form as

in (14) the computation of Pi become simpler than the ones given in (12). The number of

additions required to compute Pi decreases by 4n = 1024.

Utilizing TMVP formulas allows us to split our computation into many similar com-

putations of smaller size. We can use these splitting methods consecutively to reduce the

dimension to a level that the schoolbook matrix-vector multiplication is more efficient than

using the formulas. TMVP formulas are more efficient than schoolbook matrix-vector mul-

tiplication for large n values, but for small dimensions like n = 2, the schoolbook method

is more efficient than TMVP formulas. The level of switching the multiplication method to

the schoolbook, i.e., the threshold, might differ depending on the value of dimension n, the

modulus q, the formula being used, and the implementation platform. The threshold must

be chosen carefully depending on those factors to develop efficient algorithms. In our case,

we want to establish a TMVP-based multiplication algorithm for Saber and implement it on

the ARM Cortex-M4. To make use of the benefits of SIMD instructions, we use the same

strategy in [19] and place the components of the matrices (or equivalently, the coefficients of

the polynomials) into registers pairwise. It means that we operate on modulo 216. In other

words, we develop an algorithm for multiplication in R216 , and then we apply a modular

reduction to obtain a result in R2m . Fortunately, this reduction is made easily by shifting

right by 16 − m bits. Since some of TMVP formulas require integer divisions by powers
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of two, modular reduction may cause a loss in the most significant bits. A formula that

requires a division by 2r can work correctly if m + r ≤ 16 for the modulus 2m. To be more

precise, for the modulus q = 213 = 2m of Saber, we have r ≤ 3; that is, any method that

requires a division by 2r with r ≤ 3 works correctly. That is, we can afford to lose at most

three bits. We already apply a layer of TMVP-4 formula and lose the maximum number of

bits we can. For seven TMVPs of dimension 64, we can not use a formula that contains a

division by a power of two. It leaves us only two options: the TMVP-2 formula or the school-

book matrix-vector multiplication since none of them require division by a power of two. At

this point, we must determine the threshold, i.e., the dimension at which the schoolbook

matrix-vector multiplication is better than the TMVP-2 formula. For this, we implement the

schoolbook matrix-vector multiplication and the TMVP-2 formula for small dimensions and

compare their cycle counts. Since n = 256 and we use only four and two-way split methods,

we restrict our search to powers of two. In the next section, we give the threshold value and

implementation results.

3.4 Implementation Results for Saber

As explained in the previous section, we need to determine the threshold for switching the

multiplication method to complete our algorithm. We compare the schoolbook and two-way

TMVP methods for the power of two dimensions. Table 2 shows the cycle counts of the

schoolbook method and the TMVP-2 formula for small values of n. As can be seen in Table

2, the schoolbook method is faster than TMVP-2 for n = 2. For n = 4, we implement

schoolbook matrix-vector multiplication and observe that SB(4) = 29. We know that the

TMVP-2 formula calls three schoolbook methods of dimension 2, so we have TMV P2(4) >

3 × SB(2) = 30. The schoolbook is the best method for n = 4 too. A similar observation

shows that also for n = 8, the schoolbook is the best algorithm. For n = 16, schoolbook

method takes 280 cycles which is not less than 3× 73 = 219. So, we implement the TMVP-2

method to see whether it is better than the schoolbook method or not. But it takes 410 cycles,

and hence for n = 16, the schoolbook method is the best. Finally, we do the same thing

for n = 32 and conclude that 32 is the smallest dimension at which the TMVP-2 method is

faster than the schoolbook method, so 16 is the threshold.
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Table 2: Schoolbook vs. TMVP-2

n SB(n) TMV P2(n)

2 10 16

4 29 > 3× 10 = 30

8 73 > 3× 29 = 87

16 280 401

32 1313 1082

That is to say, the TMVP-based algorithm we propose for multiplication in R216 =

Z216 [x]/〈x256+1〉 uses the TMVP-4 formula to split the computations into seven 64-dimensional

TMVPs. Then, to each of these seven TMVPs, we apply the TMVP-2 formula twice and

end up with 16-dimensional TMVPs. We perform sixty-three schoolbook matrix-vector mul-

tiplications and recombine their results according to the formulas to obtain the final result.

We implement this algorithm on the ARM Cortex-M4 to compare the results with [19]. To

make a fair comparison, we evaluate the polynomial multiplication algorithm in [19] with the

polynomial reduction step since our algorithm already includes it. As can be seen in Table

3, our algorithm for multiplication in R216 is 20.83% faster and requires 15.89% less memory

than the one in [19], which uses Toom-4 and the Karatsuba algorithms.

Table 3: Multiplication in R216

Cycles Stack

[19] This work Imp. [19] This work Imp.

37804 29927 20.83% 3800 3196 15.89%

In this work, we only focus on multiplication, not on a complete optimized implementation

of Saber. We use the publicly available codes from [19], and [20] to compose a software package

for our application to Saber. We make some adjustments to existing codes to integrate our

algorithm into this package. We compare the results with the ones given in [21], and [27].

Table 4 shows the comparison of the cycle counts and the stack usage on the ARM Cortex-M4

microcontroller of key generation, encapsulation, and decapsulation algorithms of all variants

of Saber.
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Table 4: Results of application to Saber

[21] [27] [27] This

(speed) (memory) work

LightSaber

KeyGen:
460 k 466 k 612 k 440 k cycles

9656 14208 3564 7956 bytes

Encaps:
651 k 653 k 880 k 615 k cycles

11392 15928 3148 9684 bytes

Decaps:
679 k 678 k 976 k 622 k cycles

12136 16672 3164 10428 bytes

Saber

KeyGen:
896 k 853 k 1230 k 825 k cycles

13256 19824 4348 12616 bytes

Encaps:
1161 k 1103 k 1616 k 1060 k cycles

15544 22088 3412 14896 bytes

Decaps:
1204 k 1127 k 1759 k 1073 k cycles

16640 23184 3420 15992 bytes

FireSaber

KeyGen:
1449 k 1340 k 2046 k 1319 k cycles

20144 26448 5116 20144 bytes

Encaps:
1787 k 1642 k 2538 k 1621 k cycles

23008 29228 3668 22992 bytes

Decaps:
1853 k 1679 k 2740 k 1649 k cycles

24592 30768 3684 24472 bytes

As can be seen in Table 4, our algorithm is the fastest compared to the others. Table 5

shows the percentage of the gain in terms of the execution time that our algorithm achieves.

Our algorithm also reduces the stack usage more or less comparing to [21] and the speed-

optimized version in [27]. The percentage of improvements in memory utilization can be

seen in Table 6. Even though our algorithm requires less execution time, it consumes more

memory, comparing the memory-optimized version in [27].
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Table 5: Speed ups

[21] [27] [27]

(speed) (memory)

LightSaber

KeyGen: -4.3% -5.5% -28.1%

Encaps: -5.5% -5.8% -30.1%

Decaps: -8.3% -8.2% -36.2%

Saber

KeyGen: -7.9% -3.2% -32.9%

Encaps: -8.6% -3.8% -34.4%

Decaps: -10.8% -4.7% -38.9%

FireSaber

KeyGen: -8.9% -1.5% -35.5%

Encaps: -9.2% -1.2% -36.1%

Decaps: -11.0% -1.7% -39.8%

Table 6: Improvements in memory utilization

[21] [27](speed)

LightSaber

KeyGen: -17.6% -44.0%

Encaps: -14.9% -39.2%

Decaps: -14.0% -37.4%

Saber

KeyGen: -4.8% -36.3%

Encaps: -4.1% -32.5%

Decaps: -3.8% -31.0%

FireSaber

KeyGen: - -28.8%

Encaps: - -21.3%

Decaps: - -20.4%

4 Conclusion/Discussion

In this work, we focus on the non-NTT style of multiplication algorithms for post-quantum

candidates utilizing the Toeplitz matrix-vector product. We derive new Toeplitz matrix-

vector product (TMVP) formulas TMVP-3 and TMVP-4 from Toom-3 and Toom-4 algo-

rithms using a similar technique explained in [33]. Moreover, we propose an algorithm for

multiplication in the ring R2m = Z2m [x]/〈x256 + 1〉 which is exploiting the new TMVP-4 for-

mula. The proposed multiplication algorithm includes the polynomial reduction step, unlike

the Toom-Cook and the Karatsuba algorithms. We implement the proposed algorithm on

ARM Cortex-M4 and integrate it into an existing implementation of Saber. Even though our
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implementation is not optimized specifically for Saber, the results indicate that TMVP-based

multiplication algorithms might be good alternatives to Toom-Cook and Karatsuba methods.

For an optimized implementation specifically for Saber, the scheme-specific adjustments can

be made using the block recombination method for matrices [15], like done in [27] using the

lazy interpolation method. Based on the outcomes of this work, we expect that TMVP-based

multiplication algorithms exploiting TMVP-3 and TMVP-4 formulas improve the efficiency

of lattice-based post-quantum schemes that are not NTT friendly.
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