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Abstract

Lattice-based finalists of the post-quantum cryptography competition need efficient

multiplication in polynomial quotient rings. The fastest multiplication algorithm known

is the number theoretic transform (NTT) which requires certain restrictions on parame-

ters. If the parameters of a scheme do not comply with these restrictions, NTT cannot

be used directly. In this case, other methods like Toom-Cook, Karatsuba, and the school-

book methods can be used. NIST also encourages the developement of the non-NTT style

of multiplications in the second-round report on the PQC standardization process. This

paper introduces fast new three- and four-way Toeplitz matrix-vector product (TMVP)

formulas with five and seven multiplications, respectively, for non-NTT multiplications.

Then, we use the new four-way TMVP formula to develop a TMVP-based multiplication

algorithm for the polynomial quotient ring that Saber uses. We implement the proposed

algorithm on ARM Cortex-M4 and compare the results to previous implementations

that use a combination of Toom-Cook, Karatsuba, and the schoolbook methods. The

TMVP-based multiplication algorithm we propose is 24.5% faster and requires 16.5% less

memory, and improves the overall performance of Saber between 3.2% and 11.9% while

decreasing stack memory usage between 20.5% and 44.2%. Moreover, Saber’s module

structure allows us to improve our algorithm by using a modified version of the block

recombination method. The improved algorithm we propose speeds up the key genera-

tion, encapsulation, and decapsulation algorithms of Saber between 8.7% and 15.6% and

consumes less stack memory than state-of-the-art speed optimized implementation using

a non-NTT multiplication algorithm.
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1 Introduction

Since the beginning of the NIST post-quantum standardization competition [31], lattice-based

cryptographic schemes have been compelling candidates. In July 2020 NIST announced the

third round finalists [30] and three out of four PKE/KEM finalists are lattice-based schemes:

CRYSTALS-Kyber [4], NTRU [20, 8], and Saber [12, 13]. These schemes are defined on

polynomial rings of the form Rq = Zq[x]/⟨f(x)⟩ where f(x) ∈ Z[x] is a degree n polynomial.

Multiplication in these rings has a major effect on the efficiency of the schemes. The most

efficient polynomial multiplication algorithm that can be used in implementations varies de-

pending on the values of the parameters n and q. The parameters of the schemes such as

CRYSTALS-Kyber [4] are convenient for using the Number Theoretic Transform (NTT)

[11], which is the most efficient polynomial multiplication algorithm known. The polynomial

rings that Saber [12, 13] and NTRU [8, 19, 20] operate on are not NTT-friendly. In such poly-

nomial rings, Toom-Cook [10, 33] and Karatsuba [24] were the most preferred algorithms for

multiplication before the NTT method [9] for these rings was proposed. Albeit not commonly

used in PQC schemes, Toeplitz matrix-vector product (TMVP) based algorithms are good

alternatives for residue polynomial multiplication [34]. Toeplitz matrices appear in various

cryptographic applications. For detailed information about the use of Toeplitz matrices in

cryptography, we refer to the reader to [26, 27, 15, 6, 7, 1, 32]. TMVP-based algorithms

include the polynomial reduction step inside the multiplication process, whereas Karatsuba

and Toom-Cook methods require additional reduction. This property makes TMVP-based

algorithms more advantageous in some cases, considering the high degree of the modulus

polynomials and the number of multiplications performed in schemes.

In this paper, we work on improving non-NTT multiplication in the polynomial ring Rq

with q = 2m by developing TMVP-based algorithms. The main objective of this work is

to speed up the cryptographic schemes that do not originally support NTT, such as Saber

and NTRU. Following this purpose, we present three- and four-way Toeplitz matrix-vector

product formulas TMVP-3 and TMVP-4 that we derive from Toom-3 and Toom-4 methods,

respectively, using the technique explained in [34]. Note that the previous TMVP algorithms

in [16, 17, 15, 7] are generally developed for binary extension fields, and they use three

multiplications for two-way and six multiplications for three-way methods. Recently, the use

of TMVP for prime field multiplication has been proposed in [1] and similar to the binary case,

it requires six multiplications for a three-way split. To the best of our knowledge, this is the

first time that a three-way formula with five multiplications and a four-way formula with seven

multiplications are proposed for residue polynomial multiplication. Moreover, we propose a
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TMVP-based algorithm for efficient multiplication in the ring Z2m [x]/⟨x256+1⟩ exploiting the

TMVP-4 formula. We implement the proposed algorithm on ARM Cortex-M4. The proposed

polynomial multiplication algorithm surpasses the one given in [21] that uses a combination of

Toom-4, Karatsuba, and schoolbook polynomial multiplication by 24.5%. As a case study, we

integrate this algorithm to Saber by replacing the assembly code for polynomial multiplication

in an existing implementation with ours. We speed up the key generation, encapsulation,

and decapsulation algorithms for all three variants of Saber between 3.2% and 11.9% and

reduce stack usage up to 44.2% compared to [29]. Furthermore, by exploiting the module

structure of Saber, we apply a technique similar to the block recombination method [17] and

improve the performance of our algorithm more. Our improved algorithm achieves speedups

between 8.7% and 15.6% compared to [29]. The results show that the proposed algorithms

in this paper are the fastest non-NTT multiplication algorithms for Saber on Cortex-M4.

Based on the results from our application to Saber, TMVP-based residue polynomial

multiplication algorithms seem to work well for the rings that are not initially NTT-friendly,

and they might be good alternatives to Karatsuba and Toom-Cook methods. Apparently,

lattice-based cryptosystems are very popular for post-quantum cryptography, and research

on the efficiency of lattice-based schemes will continue for a long time. To the best of

our knowledge, TMVP-based multiplication algorithms have not been used in post-quantum

cryptography applications before. Having non-NTT style options other than Karatsuba and

Toom-Cook methods for multiplication inRq with q = 2m would provide diversity in research.

Our Contribution We present new three- and four-way TMVP formulas with five and

seven multiplications. These formulas can be used for such multiplications over any ring.

The four-way formula yields the fastest non-NTT style of multiplication algorithm for Saber’s

ring Z2m [x]/⟨x256 + 1⟩ on Cortex-M4. Moreover, we show how we modify and use the block

recombination method in [17] for Saber and achieve further improvements on the performance.

Code Availability The source codes of our applications to Saber are publicly available at

https://github.com/iremkp/Saber-tmvp4-m4.

Organization of the Paper The remainder of this paper is organized as follows. In

Section 2, we provide preliminary information and describe the notations we use throughout

this paper. In Section 3, we explain the derivation of the new TMVP-3 and TMVP-4 formulas

in detail, and introduce the algorithm we propose for multiplication in Z2m [x]/⟨x256 + 1⟩.
Moreover, in Section 3 we introduce our modified version of the block recombination method

and how we use it to improve our algorithm. We also present the results of the implementation

of our algorithm on ARM Cortex-M4 and the applications to Saber in Section 3. Finally,

Section 4 summarizes our work and concludes the paper with future study ideas.
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2 Preliminaries

This section introduces some definitions and properties to build a background. Throughout

the paper, we use the notation MALG(n) to state the arithmetic complexity of the algorithm

ALG for dimension n, and M(n) to state the arithmetic complexity of the most efficient

algorithm for the computation in question for dimension n. The ring of polynomials modulo

xn + 1 is denoted by R = Z[x]/⟨xn + 1⟩ when the coefficients are integers, and is denoted

by Rq = Zq[x]/⟨xn + 1⟩ when the coefficients of the polynomials are integers from [0, q).

The multiplication of an n× n matrix by an n× 1 vector is referred to as an n-dimensional

matrix-vector multiplication. We denote the componentwise multiplication of two vectors V1

and V2 of the same length by V1 ◦ V2.

2.1 Toeplitz Matrix Vector Product

There are many cryptographic applications that utilize Toeplitz matrix-vector product (TMVP)

in the literature. The use of TMVP in cryptographic computations first appeared in [15]

for multiplying elements of binary extension fields. Many proposals were then suggested

[1, 15, 17, 18, 32]. Recently, in [1] and [32], the use of TMVP for integer modular multiplica-

tion is proposed to speed up the residue multiplication modulo the Mersenne prime 2521 − 1

and the prime 2255 − 19, respectively. TMVP can be used to calculate the product of two

polynomials modulo a polynomial as explained in [34].

2.1.1 Toeplitz Matrix

Let m and n be two positive integers. A Toeplitz matrix T is an m× n matrix whose entry

in i-th row and j-th column is defined as Ti,j = Ti−1,j−1 for i = 2, . . . ,m and j = 2, . . . n.

Throughout this paper, we focus only on square Toeplitz matrices:

T =



t0 t′1 t′2 . . . . . . . . . t′n-1

t1 t0 t′1 t′2 . . . . . .
...

t2 t1 t0 t′1
. . .

...
... t2 t1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . t′1 t′2
...

. . .
. . . t1 t0 t′1

tn-1 . . . . . . . . . t2 t1 t0


. (1)

The matrix T in (1) shows the special form of an n× n Toeplitz matrix. Clearly, specifying

only 2n−1 of its elements would suffice to identify T . Therefore, the addition of two Toeplitz

matrices requires only 2n − 1 additions, while two regular matrices require n2. Moreover,
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every submatrix of a Toeplitz matrix is also a Toeplitz matrix. These properties become very

handy when it comes to calculating a TMVP efficiently. Instead of using the naive matrix-

vector multiplication, the divide and conquer method works very well for TMVP for large

n. Suppose we want to compute the product of the Toeplitz matrix T in (1) by a vector V

where the transpose of V is V T = (v0, v1, . . . , vn). We may apply different splitting methods

[18] to compute the following TMVP:

T.V =



t0 t′1 . . . t′n-1
t1 t0 . . . t′n-2
...

...
. . .

...

tn-2 tn-3 . . . t′1
tn-1 tn-2 . . . t0





v0

v1
...

vn-2

vn-1


. (2)

For example, a two-way TMVP formula allows us to compute an n dimensional TMVP via

three n/2 dimensional TMVPs. For this, we use the half size partitions T0, T1, T2 of T , and

V0, V1 of V . The n dimensional Toeplitz matrix-vector product T.V can be calculated as

follows:

T.V =

(
T1 T0

T2 T1

)(
V0

V1

)
=

(
P0 + P1

P0 − P2

)
, (3)

where

P0 = T1(V0 + V1),

P1 = (T0 − T1)V1,

P2 = (T1 − T2)V0.

We refer to the formula in (3) as TMVP2. As any other TMVP split formulas, TMVP2 has

four independent phases. For TMVP2 formula given in (3), these phases and operations that

corresponds to them are as follows:

� Matrix evaluation of T = (T1, T0 − T1, T1 − T2)

� Vector evaluation of V = (V0 + V1, V1, V0),

� Component multiplication:

(P0, P1, P2)

=(T1, T0 − T1, T1 − T2) ◦ (V0 + V1, V1, V0)

=(T1(V0 + V1), (T0 − T1)V1, (T1 − T2)V0)
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� Recombination of P0, P1, P2 = (P0 + P1, P0 − P2)

The arithmetic complexity of the TMVP2 formula is MTMVP2(n) = 3M(n/2) + 3n − 1.

Similarly, a three-way TMVP formula over integers [32] allows us to compute an n dimensional

TMVP via six n/3 dimensional TMVPs as follows:T2 T1 T0

T3 T2 T1

T4 T3 T2


V0

V1

V2

 =

P1 + P4 + P5

P2 − P4 + P6

P3 − P5 − P6

 , (4)

where
P1 = (T0 + T1 + T2)V2,

P2 = (T1 + T2 + T3)V1,

P3 = (T2 + T3 + T4)V0,

P4 = T1(V1 − V2),

P5 = T2(V0 − V2),

P6 = T3(V0 − V1).

In this formula T0, T1, T2, T3, T4 are n
3 × n

3 Toeplitz matrices and V0, V1, V2 are n
3 × 1 vectors.

The arithmetic complexity of the given three-way formula above which we denote by TMVP3

is MTMVP3(n) = 6M(n/3) + 5n− 1.

The choice of the formula for efficiently calculating a TMVP differs depending on the size

of the Toeplitz matrix. Different split formulas for TMVPs can be derived from any given

polynomial multiplication algorithm. The technique of derivation is explained elaborately in

[34]. We use the same technique in [34] to derive a three-way TMVP formula from Toom-3

algorithm and a four-way TMVP formula from Toom-4 algorithm. These three- and four-way

formulas require five and seven multiplications, respectively. These formulas will be denoted

by TMVP-3 and TMVP-4. We explain the derivation technique in detail and present the

formulas in Section 3.

2.2 Polynomial Multiplication Modulo xn ± 1 via TMVP

Let c′(x) =
∑2n−2

i=0 c′ix
i ∈ Z[x] denote the product of the polynomials a(x) =

∑n−1
i=0 aix

i and

b(x) =
∑n−1

i=0 bix
i in Z[x] where

c′i =
∑

j+k=i
0≤j,k<n

ajbk. (5)

The product c(x) =
∑n−1

i=0 cix
i of the polynomials a(x) and b(x) in R can be calculated by

reducing c′(x) modulo xn ± 1. Clearly, ci = c′i ∓ c′i+n for i = 0, . . . , n − 2 and cn−1 = c′n−1.

Expanding these equalities according to (5) shows that the coefficients of the polynomial c(x)

can be calculated via the following TMVP:
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
c0

c1

c2
...

cn-2

cn-1

 =


a0 ∓an-1 . . . ∓a2 ∓a1

a1 a0 . . . ∓a3 ∓a2

a2 a1 . . . ∓a4 ∓a3
...

...
. . .

...
...

an-2 an-3 . . . a0 ∓an-1

an-1 an-2 . . . a1 a0




b0

b1

b2
...

bn-2

bn-1

 . (6)

Multiplication in Rq can be represented in the same way by assuming the coefficients aj , bk ∈
Zq, and arithmetic operations include reduction modulo q. The Toeplitz matrix in (6) has

a more special form than the one in (2). It contains only n different entries, which are the

coefficients of one of the multiplicand polynomials. Having n components instead of 2n − 1

means we can use more simplified versions of the TMVP formulas. Therefore, we can calculate

this type of TMVPs even more efficiently. To be more specific, if we use a k-split method

(TMVP-k formula), we would have k different components instead of 2k− 1. Thus, it allows

us to reduce the number of additions and memory usage.

It should also be noted that TMVP-based multiplications have lower delay complexities

than Karatsuba-like and Toom-Cook multiplications. The delay complexity comparison of

Karatsuba-like algorithms with TMVP-based algorithms for binary extension fields can be

seen in [7]. Therefore, using TMVP-based multiplications in hardware implementations is

expected to lead to better results than Karatsuba-like and Toom-Cook multiplications.

2.3 Saber

Saber [12, 13] is a lattice-based key encapsulation mechanism (KEM) and one of the final-

ists of the NIST PQC standardization competition. Its security relies on the conjectural

hardness of the Module Learning with Rounding (MLWR) problem [3, 28]. Saber defines

an IND-CPA secure public-key encryption scheme (Saber.PKE) consisting of key genera-

tion (Saber.PKE.Keygen), encryption (Saber.PKE.Enc), decryption (Saber.PKE.Dec) algo-

rithms. It uses a version of the Fujisaki-Okamoto transformation to have an IND-CCA se-

cure key encapsulation mechanism (Saber.KEM), which also consists of three algorithms

key generation (Saber.KEM.KeyGen), encapsulation (Saber.KEM.Encaps), decapsulation

(Saber.KEM.Decaps). The details of all algorithms of Saber.PKE and Saber.KEM can be

found in [14].

The scheme specifies three different values for the dimension ℓ of the module that deter-

mines the security level of the scheme. The values ℓ = 2 (LightSaber), ℓ = 3 (Saber), and ℓ = 4

(FireSaber) provide level 1, level 3, and level 5 security, respectively. Arithmetic operations

of Saber are performed in Rq = R213 = Z213 [x]/⟨x256+1⟩ and Rp = R210 = Z210 [x]/⟨x256+1⟩.
Like most of the lattice-based cryptosystems defined on polynomial rings, multiplication in

these rings directly affects the efficiency of the scheme. The rings Rq and Rp that Saber is

defined on are not suitable for using the Number Theoretic Transform (NTT) directly, which
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is the most efficient polynomial multiplication algorithm known. Regardless of the platform,

using a combination of Toom-Cook, Karatsuba, and schoolbook methods for efficient polyno-

mial multiplication together with a polynomial reduction is the most common method when

NTT is out of the question. Details of existing implementations that use Toom-Cook and

Karatsuba algorithms on different platforms can be found in [21, 25, 29].

2.4 Block Recombination

TMVP formulas can be used recursively or iteratively. The recursive use of two- and three-

way TMVP formulas in binary fields are given in [16]. Following this work, a new method

called block recombination is proposed in [17]. For simplicity, we explain this method on the

4-dimensional TMVP (7), using TMVP2 given in (3). Since we do not work in binary fields

in this work, we assume (7) is defined on integers.
t3 t2 t1 t0

t4 t3 t2 t1

t5 t4 t3 t2

t6 t5 t4 t3




v0

v1

v2

v3

 =


y0

y1

y2

y3

 (7)

In [17], decomposition of a TMVP formula is defined by four independent recursive calculation

steps.

� Component Matrix Formation (CMF): Corresponds to the recursive matrix evaluation

of the Toeplitz matrix. For (7), the first step of recursion on T computes CMF (T ) =

(T1, T0 − T1, T1 − T2), where

T0 =

(
t1 t0

t2 t1

)
, T1 =

(
t3 t2

t4 t3

)
, T2 =

(
t5 t4

t6 t5

)
.

The second step computes

CMF (T ) = (CMF (T1), CMF (T0 − T1), CMF (T1 − T2)).

Thus, the vector

CMF (T ) = (t3, t2 − t3, t3 − t4,

t1 − t3, t0 − t1 − t2 + t3,

t1 − t2 − t3 + t4,

t3 − t5, t2 − t3 − t4 + t5,

t3 − t4 − t5 + t6).

of length nine is the component matrix formation of T .
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� Component Vector Formation (CVF): Corresponds to the recursive vector evaluation

of V in (7). The first step of recursion on V computes CV F (V ) = (V0+V1, V1, V0), and

the second step computes CV F (V ) = (CV F (V0+V1), CV F (V1), CV F (V0)). Thus, the

vector

CV F (V ) = (v0 + v1 + v2 + v3, v1 + v3,

v0 + v2, v2 + v3, v3,

v2, v0 + v1, v1, v0, ).

of length nine is the component vector formation of V .

� Component Multiplication (CM): Corresponds to componentwise multiplication of CMF (T )

and CV F (V ) which is the vector

CMF (T ) ◦ CV F (V ) = (t3(v0 + v1 + v2 + v3),

(t2 − t3)(v1 + v3), (t3 − t4)(v0 + v2),

(t1 − t3)(v2 + v3), (t0 − t1 − t2 + t3)(v3), )

(t1 − t2 − t3 + t4)v2, (t3 − t5)(v0 + v1),

(t2 − t3 − t4 + t5)v1, (t3 − t4 − t5 + t6)v0)

= (s0, s1, s2︸ ︷︷ ︸
P0

, s3, s4, s5︸ ︷︷ ︸
P1

, s6, s7, s8︸ ︷︷ ︸
P2

)

of length nine.

� Reconstruction (R): Corresponds to the recombination of the product from the com-

ponent multiplication of CMF (T ) and CV F (V ). Let P = CMF (T ) ◦ CV F (V )

and split P = [P0, P1, P2] into three equal length vectors. Then we have R(P ) =

(R(P0) +R(P1), R(P0)−R(P2)). Thus,

R(P ) =(y0, y1, y2, y3)

=(s0 + s1 + s4 + s5,

s0 − s2 + s4 − s6,

s0 + s1 − s6 − s7,

s0 − s2 − s6 + s8)

In [17], they propose a technique using this decomposition to reduce the number of oper-

ations in the reconstruction step for the sum of two or more TMVPs, such as T.B + T ′.B′.

After component multiplication step of T.B and T ′.B′ they add CMF (T ) ◦ CV F (B)

and CMF (T ′) ◦CV F (B′) componentwise before performing reconstruction step. Therefore,

the computation is done with only one reconstruction step instead of performing for each

multiplication.
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2.5 Implementation Platform: ARM Cortex-M4

We choose the ARM Cortex-M4 microcontroller as the implementation platform. The Cortex-

M4 implements the ARMv7E-M instruction set, and NIST recommends it as a reference im-

plementation platform for the evaluation of PQC candidates on microcontrollers. It has

sixteen 32-bit registers, and aside from Program Counter (PC) and Stack Pointer (SP) regis-

ters, they are all available for development. We use the STM32F4DISCOVERY development

board, which is used in many implementations of PQC candidates [2, 5, 21, 22, 25]. The

ARM Cortex-M4 is designed especially for digital signal processing (DSP), and it supports

many useful single instruction multiple data (SIMD) instructions that can perform parallel

arithmetic operations on 16-bit halfwords of multiple registers in one cycle. These instruc-

tions allow us to implement the schoolbook matrix-vector multiplication for small dimensions

efficiently.

3 Our Work

We derive the new TMVP-3 and TMVP-4 formulas from Toom-3 and Toom-4 algorithms

using the same technique given in [34], which require five and seven smaller TMVPs, re-

spectively. We also propose a TMVP-based algorithm for multiplication in the ring R2m =

Z2m [x]/⟨x256 + 1⟩ which utilizes our TMVP-4 formula. An important note here is that

the proposed algorithm includes the polynomial reduction step and does not require ad-

ditional polynomial reduction outside of polynomial multiplication, unlike Karatsuba and

Toom-Cook. We implement our algorithm on the ARM Cortex-M4 microcontroller. We im-

prove the efficiency of multiplication in Rq and reduce the stack usage compared to [21]. We

integrate the assembly code of the proposed multiplication algorithm into an existing imple-

mentation of Saber [22]. Moreover, we optimize our multiplication algorithm and propose a

non-NTT style of multiplication algorithm that is unique to Saber. We achieve improvements

in the efficiency of the key generation, encapsulation, and decapsulation algorithms compared

to the results given in [23] and [29]. Our applications to Saber require less stack space in

some cases.

This section goes into detail about the derivation of our new three- and four-way TMVP

formulas, describes the proposed multiplication algorithm, and explains how we modify the

block recombination method to improve our algorithm for Saber. The benchmarking results

for the applications of our algorithms to Saber are also presented in this section.

3.1 A new three-way TMVP formula with five multiplications (TMVP-3)

Let v(x) = v0 + v1x + v2x
2 and w(x) = w0 + w1x + w2x

2 be two polynomials in Z[x].
The product of these polynomials v(x)w(x) = k(x) = k0 + k1x + k2x

2 + k3x
3 + k4x

4 can
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be calculated using different methods. The coefficients of the product polynomial k(x) are

computed using the schoolbook method as follows:

k0 = v0w0,

k1 = v0w1 + v1w0,

k2 = v0w2 + v1w1 + v2w0,

k3 = v1w2 + v2w1,

k4 = v2w2.

(8)

This computation requires nine multiplications and four additions. On the other hand,

the evaluations of k(x) at the points {0, 1,−1,−2,∞} leads to the following:

k(0) = v(0)w(0) = v0w0,

k(1) = v(1)w(1) = (v0 + v1 + v2)(w0 + w1 + w2),

k(-1) = v(-1)w(-1) = (v0 − v1 + v2)(w0 − w1 + w2),

k(-2) = v(-2)w(-2) = (v0 − 2v1 + 4v2)(w0 − 2w1 + 4w2),

k(∞) = v(∞)w(∞) = v2w2.

The coefficients ki of the product polynomial k(x) are interpolated and the following equalities

are obtained:

k0 = k(0),

k1 = k(0)/2 + k(1)/3− k(-1) + k(-2)/6− 2k(∞),

k2 = −k(0) + k(1)/2 + k(-1)/2− k(∞),

k3 = −k(0)/2 + k(1)/6 + k(-1)/2− k(-2)/6 + 2k(∞),

k4 = k(∞).

(9)

This method is known as Toom-3. Now, we derive a three-way TMVP formula from Toom-3.

To this end, we multiply each equation of both (8) and (9) that corresponds to ki by a symbolic

variable t4−i for i = 0, . . . , 4 and we take the sum of all equations. Then, we rearrange the

terms to obtain two equations of the form t4k0+t3k1+t2k2+t1k3+t0k4 = y2w0+y1w1+y0w2.

From (8) we get

y0 = t2v0 + t1v1 + t0v2,

y1 = t3v0 + t2v1 + t1v2,

y2 = t4v0 + t3v1 + t2v2,

(10)
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and from (9) we get

y0 =
1

6
(v0 + v1 + v2) (2t3 + 3t2 + t1)

+
1

2
(v0 − v1 + v2) (−2t3 + t2 + t1)

+
2

3
(t3 − t1) (v0 − 2v1 + 4v2)

+ (−2t3 − t2 + 2t1 + t0) v2,

y1 =
1

6
(2t3 + 3t2 + t1) (v0 + v1 + v2)

− 1

2
(−2t3 + t2 + t1) (v0 − v1 + v2)

− 1

3
(t3 − t1) (v0 − 2v1 + 4v2),

y2 =
1

2
(2t4 + t3 − 2t2 − t1) v0

+
1

6
(2t3 + 3t2 + t1) (v0 + v1 + v2)

+
1

2
(−2t3 + t2 + t1) (v0 − v1 + v2)

+
1

6
(t3 − t1) (v0 − 2v1 + 4v2).

(11)

Clearly, we may express the vector y as a TMVP using (10) where yT = (y0, y1, y2), which

gives the left-hand side of equation (12), whereas the right-hand side comes from (11). Finally,

we have the following formula, which we refer to as TMVP-3:t2 t1 t0

t3 t2 t1

t4 t3 t2


v0

v1

v2

 =

P1 + P2 + 4P3 + P4

P1 − P2 − 2P3

P0 + P1 + P2 + P3

 (12)

where

P0 =
(2t4 + t3 − 2t2 − t1) v0

2
,

P1 =
(2t3 + 3t2 + t1) (v0 + v1 + v2)

6
,

P2 =
(−2t3 + t2 + t1) (v0 − v1 + v2)

2
,

P3 =
(t3 − t1) (v0 − 2v1 + 4v2)

6
,

P4 = (−2t3 − t2 + 2t1 + t0) v2.

Therefore, with this formulation, an n dimensional TMVP can be calculated via five

smaller TMVPs of dimension n/3. In [34, 15], three-way formulas for TMVP which requires

six TMVPs of dimension n/3 can be seen.
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Algorithm 1 Matrix and Vector Evaluations of TMVP-3

1: S1 = v0 + v2

2: S2 = S1 + v1

3: S3 = S1 − v1

4: S4 = v0 − 2v1

5: S5 = S4 + 4v2

6: S6 = t3 − t1

7: S7 = t1 + t2

8: S8 = t4 − t2

9: S9 = S8 + S6/2

10: S10 = S6/3 + S7/2

11: S11 = S7/2− t3

12: S12 = −2S6 − t2

13: S13 = S12 + t0

14: S14 = S6/6

For the evaluation of matrices and the vectors needed to compute Pi, we use Algorithm 1.

Steps 1-5 perform additions of two vectors of length n/3; hence 5n/3 additions are required

in total. The remaining additions in the algorithm are of two Toeplitz matrices of dimension

n/3×n/3, which requires 2n/3−1 additions for each. So, for steps 6−13, we need 16n/3−8

additions. Therefore, the evaluation given in Algorithm 1 is completed via 7n− 8 additions.

Algorithm 2 Recombination of Pi for TMVP-3

1: S1 = P1 + P2

2: S2 = P1 − P2

3: S3 = S1 + 4P3

4: S4 = S3 + P4

5: S5 = S2 − 2P3

6: S6 = P0 + P3

7: S7 = S1 + S6

For recombination of Pi, we use Algorithm 2. Since every step of Algorithm 2 requires

n/3 additions, recombination is done via 7n/3 additions in total. Thus, the arithmetic

complexity of the new TMVP-3 formula is roughly MTMVP-3(n) = 5M(n/3)+28n/3−8. We

omit the scalar multiplication operations while calculating the computational complexity of

the algorithm.
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3.2 A new four-way TMVP formula with seven multiplications (TMVP-4)

Let v(x) = v0+ v1x+ v2x
2+ v3x

3 and w(x) = w0+w1x+w2x
2+w3x

3 be two polynomials in

Z[x]. The product of these polynomials v(x)w(x) = k(x) = k0 + k1x+ k2x
2 + k3x

3 + k4x
4 +

k5x
5 + k6x

6 can be calculated using different methods. The coefficients ki of the product

polynomial k(x) are computed using the schoolbook method as follows:

k0 = v0w0,

k1 = v0w1 + v1w0,

k2 = v0w2 + v1w1 + v2w0,

k3 = v0w3 + v1w2 + v2w1 + v3w0,

k4 = v1w3 + v2w2 + v3w1,

k5 = v2w3 + v3w2,

k6 = v3w3.

(13)

This computation requires sixteen multiplications and nine additions. On the other hand,

the evaluation of the product polynomial k(x) at the points {0, 1,−1, 2,−2, 3,∞} leads to

the following:

k(0) = v0w0,

k(1) = (v0 + v1 + v2 + v3)(w0 + w1 + w2 + w3),

k(-1) = (v0 − v1 + v2 − v3)(w0 − w1 + w2 − w3),

k(2) = (v0 + 2v1 + 4v2 + 8v3)(w0 + 2w1 + 4w2 + 8w3),

k(-2) = (v0 − 2v1 + 4v2 − 8v3)(w0 − 2w1 + 4w2 − 8w3),

k(3) = (v0 + 3v1 + 9v2 + 27v3)(w0 + 3w1 + 9w2 + 27w3),

k(∞) = v3w3.

Interpolating the coefficients ki, i = 0, . . . , 6 of the product polynomial gives us the fol-
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lowing equations:

k0 = k(0),

k1 = −k(0)/3 + k(1)− k(-1)/2− k(2)/4

+ k(-2)/20 + k(3)/30− 12k(∞),

k2 = −5k(0)/4 + 2k(1)/3 + 2k(-1)/3− k(2)/24

− k(-2)/24 + 4k(∞),

k3 = 5k(0)/12− 7k(1)/12− k(-1)/24 + 7k(2)/24

− k(-2)/24− k(3)/24 + 15k(∞),

k4 = k(0)/4− k(1)/6− k(-1)/6 + k(2)/24

+ k(-2)/24− 5k(∞),

k5 = −k(0)/12 + k(1)/12 + k(-1)/24− k(2)/24

− k(-2)/120 + k(3)/120− 3k(∞),

k6 = k(∞).

(14)

This method is known as Toom-4. To derive a four-way TMVP formula, first we multiply

each equation of both (13) and (14) that corresponds to ki by a symbolic variable t6−i for

i = 0, . . . , 6. Then, we take the sum of all equations to obtain two equations of the form

t6k0 + t5k1 + t4k2 + t3k3 + t2k4 + t1k5 + t0k6 = y3w0 + y2w1 + y1w2 + y0w3. From (13) we get
y0

y1

y2

y3

 =


t3 t2 t1 t0

t4 t3 t2 t1

t5 t4 t3 t2

t6 t5 t4 t3



v0

v1

v2

v3

 (15)

and from (14) we get


y0

y1

y2

y3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 (16)
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where

P0 =
(12t6 − 4t5 − 15t4 + 5t3 + 3t2 − t1) v0

12
,

P1 =
(12t5 + 8t4 − 7t3 − 2t2 + t1) (v0 + v1 + v2 + v3)

12
,

P2 =
(−12t5 + 16t4 − t3 − 4t2 + t1) (v0 − v1 + v2 − v3)

24
,

P3 =
(−6t5 − t4 + 7t3 + t2 − t1) (v0 + 2v1 + 4v2 + 8v3)

24
,

P4 =
(6t5 − 5t4 − 5t3 + 5t2 − t1) (v0 − 2v1 + 4v2 − 8v3)

120
,

P5 =
(4t5 − 5t3 + t1) (v0 + 3v1 + 9v2 + 27v3)

120
,

P6 = (−12t5 + 4t4 + 15t3 − 5t2 − 3t1 + t0) v3.

The equality of the right hand side of the equations (15) and (16) gives the new TMVP-4

formula. Therefore with this formulation, an n dimensional TMVP can be calculated via

seven smaller TMVPs whose sizes are 1/4-th of the original one.

For the matrix and vector evaluations needed to compute Pi we use Algorithm 3. Steps

1-11 are for vector evaluations and perform vector additions of length n/4; hence 11n/4

additions are required for these steps. The remaining steps of the algorithm performs n/4-

dimensional Toeplitz matrix additions, which of each require n/2 − 1 addition. Therefore,

steps 12-32 require 21n/2 − 21 additions. The matrix and vector evaluations are done by

performing 53n/4 − 21 additions. For the recombination of TMVP-4, we use Algorithm

4 that performs vector additions oflength n/4 in each step; hence 13n/4 additions in to-

tal. Therefore, the arithmetic complexity of TMVP-4 formula is roughly MTMVP-4(n) =

7M(n/4)+33n/2− 21. We ignore scalar multiplication and shifting operations in arithmetic

complexity calculations.
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Algorithm 3 Matrix and Vector Evaluations of TMVP-4

1: S1 = v0 + v2

2: S2 = v1 + v3

3: S3 = S1 + S2

4: S4 = S1 − S2

5: S5 = S1 + 3v2

6: S6 = 2(S2 + 3v3)

7: S7 = S5 + S6

8: S8 = S5 − S6

9: S9 = S5 + 5v2

10: S10 = 3(S1 + s6)

11: S11 = S9 + S10

12: S12 = 4t5 − 5t3

13: S13 = S12 + t1

14: S14 = t4 − t2

15: S15 = S13 − 5S14

16: S16 = S15 + 2t5

17: S17 = S14 + 4t4

18: S18 = 12t6 − 3S17

19: S19 = S18 − S13

20: S20 = t1 + 6t5

21: S21 = t2 − t0

22: S22 = 4S14 − S21

23: S23 = S22 − 3S13

24: S24 = 4t5 − t3

25: S25 = S13 + 2S24

26: S26 = 4t4 − t2

27: S27 = S25 + 2S26

28: S28 = t5 − t3

29: S29 = S13 + 2S28

30: S30 = −S29 − S14

31: S31 = S13 − 4S24

32: S32 = S31 + 4S26
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Algorithm 4 Recombination of Pi for TMVP-4

1: S1 = P1 + P2

2: S2 = P1 − P2

3: S3 = P3 + P4

4: S4 = P3 − P4

5: S5 = S1 + S3

6: S6 = P0 + P5

7: S7 = S5 + S6

8: S8 = S2 − 2S4

9: S9 = S8 + 3P5

10: S10 = S1 + 4S3

11: S11 = S10 + 9P5

12: S12 = S2 + 8S4

13: S13 = S12 + 27P5

3.3 A new TMVP-based algorithm for multiplication in Z2m[x]/⟨x256 + 1⟩

As explained in Section 2.2, polynomial multiplication modulo xn ± 1 can be expressed as a

TMVP. Therefore, developing efficient algorithms for Toeplitz matrix-vector multiplication

leads to efficient polynomial multiplication. We utilize the new TMVP-4 formula proposed

in Section 3.2 to develop an efficient residue polynomial multiplication algorithm.

Let a(x) =
∑255

i=0 aix
i and b(x) =

∑255
i=0 bix

i be two polynomials in the ring R2m =

Z2m [x]/⟨x256 + 1⟩. The coefficients of the product polynomial c(x) =
∑255

i=0 cix
i ∈ R2m can

be calculated via the following TMVP:

c0

c1
...

c254

c255


=



a0 −a255 . . . −a2 −a1

a1 a0 . . . −a3 −a2
...

...
. . .

...
...

a254 a253 . . . a0 −a255

a255 a254 . . . a1 a0





b0

b1
...

bn−2

bn−1


.

Applying a four-way split to this TMVP, we get the equation (17).
C0

C1

C2

C3

 =


A0 −A3 −A2 −A1

A1 A0 −A3 −A2

A2 A1 A0 −A3

A3 A2 A1 A0



B0

B1

B2

B3

 (17)

The Toeplitz matrix in (17) has a more special form than the Toeplitz matrix in (15).

The computation of Pi in the new TMVP-4 formula become even more simpler for (17)
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because the Toeplitz matrix has only four variables A0, A1, A2, A3 instead of seven variables

t0, t1, t2, t3, t4, t5, t6. If we rewrite the Pi evaluations of (16) for this case, we get the following:

P0 =
(5A0 − 15A1 − 3A2 + 9A3)B0

12
,

P1 =
(−7A0 + 8A1 + 11A2 + 2A3) (B0 +B1 +B2 +B3)

12
,

P2 =
(−A0 + 16A1 − 13A2 + 4A3) (B0 −B1 +B2 −B3)

24
,

P3 =
(7A0 −A1 − 5A2 −A3) (B0 + 2B1 + 4B2 + 8B3)

24
,

P4 =
(−5A0 − 5A1 + 7A2 − 5A3) (B0 − 2B1 + 4B2 − 8B3)

120
,

P5 =
(−5A0 + 3A2) (B0 + 3B1 + 9B2 + 27B3)

120
,

P6 = (15A0 + 3A1 − 9A2 + 5A3)B3, .

where the partitions Ai are regular Toeplitz matrices of dimension 64, and Bi, Ci are vectors

of length 64 for i = 0, . . . , 3. The number of additions required to compute Pi decreases by

4n = 1024.

Utilizing TMVP formulas allows us to split our computation into many similar compu-

tations of smaller sizes. We can use these splitting methods consecutively to reduce the

dimension to a level that the schoolbook matrix-vector multiplication is more efficient than

using the formulas. TMVP formulas are more efficient than schoolbook matrix-vector mul-

tiplication for large n values, but for small dimensions like n = 2, the schoolbook method

is more efficient than TMVP formulas. The level of switching the multiplication method to

the schoolbook, i.e., the threshold, might differ depending on the dimension n, the modulus

q, the formula being used, and the implementation platform. The threshold must be chosen

carefully depending on those factors to develop efficient algorithms.

In our case, we want to establish a TMVP-based multiplication algorithm utilizing the

TMVP-4 formula for Saber and implement it on the ARM Cortex-M4 microcontroller. To

make use of the benefits of SIMD instructions, we use the same strategy in [21] and place the

components of the matrices (or equivalently, the coefficients of the polynomials) into registers

pairwise. It means that we operate on modulo 216. In other words, we develop an algorithm

for multiplication in R216 , and then we apply a modular reduction to obtain a result in R2m

for m < 16, which can be done easily by masking the most significant 16 − m bits. One

caveat of working in Z216 is the division by powers of two. Since 2 has no inverse in Z216 ,

shifting right by r bits is the only way of performing a division by 2r. This may cause a loss

in the most significant bits. A formula that requires a division by 2r can work correctly if

m+ r ≤ 16 for the modulus 2m. To be more precise, for the modulus q = 213 = 2m of Saber,
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we have r ≤ 3; that is, any method that requires a division by 2r with r ≤ 3 works correctly.

So, we can afford to lose at most three bits. We already start our multiplication algorithm

with a layer of TMVP-4 formula, which requires divisions by 23 and obtain seven TMVPs

of dimension 64. For these 64-dimensional TMVP computations, we can not use a formula

that contains a division by a power of two because we lose the maximum number of bits we

can by applying the TMVP-4 formula. It leaves us only two options: the two-way TMVP

formula TMVP2 given in (3) or the schoolbook matrix-vector multiplication since none of

them require a division by a power of two.

At this point, we must determine the dimension for which the schoolbook matrix-vector

multiplication is faster than the TMVP2 formula. For this, we implement the schoolbook

matrix-vector multiplication and the TMVP2 formula for small dimensions and compare their

cycle counts. Since n = 256 and we use only four- and two-way split methods, we restrict

our search to powers of two. In Section 3.5, we explain how we determine 16 as the threshold

value for ARM Cortex-M4 and give the results of the application to Saber.

3.4 Further Improvement for Saber

For large dimensions using TMVP formulas is more efficient than the schoolbook method,

whereas the schoolbook is superior to TMVP formulas for small dimensions. Since Saber is

a scheme based on the MLWR problem, it requires matrix-vector multiplications (e.g., AT s

in line 5 of Algorithm 1 in [14]) and inner products of two vectors (e.g., bT s′ in line 6 of

Algorithm 2 in [14]) with polynomial components. The components of the matrices and the

vectors are from Rq or Rp. For example, for ℓ = 2, the matrix-vector multiplication in (18) is

used in key generation, encapsulation and decapsulation algorithms of SABER.KEM, where

aij and sj are polynomials in Z213 [x]/⟨x256 + 1⟩.(
a00 a01

a10 a11

)(
s0

s1

)
=

(
a00s0 + a01s1

a10s0 + a11s1

)
(18)

From Section 2.2, we know that each multiplication aijsj in Z213 [x]/⟨x256 + 1⟩ can be rep-

resented as a TMVP AijBj where Aij is the Toeplitz matrix formed with the coefficients of

the polynomial aij , and Bj is the vector representation of the coefficients of the polynomial

bj . So, the right hand side of (18) is equivalent to (19).(
A00S0 +A01S1

A10S0 +A11S1

)
(19)

where AijSj is a 256-dimensional TMVPs of the form (17). In the generic TMVP-based

algorithm for multiplication in Z213 [x]/⟨x256 + 1⟩ we propose in Section 3.3, we perform the

evaluation, multiplication, and recombination steps for each Aij .Sj calculation and we obtain

the final result with 256 additions. In our optimization, we use a non-recursive version of
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the block recombination method to reduce the number of operations, expecting to increase

efficiency.

Let us explain our modified version of the block recombination method on the TMVPs

in (19). CV F422 denotes the component vector formation step corresponds to the vector

evaluation of a layer formula (17) followed by two layers of formula (3) and is defined as

follows:

CV F422(V ) = (CV F22(V0),

CV F22(V0 + V1 + V2 + V3),

CV F22(V0 − V1 + V2 − V3),

CV F22(V0 + 2V1 + 4V2 + 8V3),

CV F22(V0 − 2V1 + 4V2 + 8V3),

CV F22(V0 + 3V1 − 9V2 + 27V3),

CV F22(V3)),

CV F22(W ) = (CV F2(W0) + CV F2(W1),

CV F2(W1),

CV F2(W0))

CV F2(B) = (B0 +B1, B1, B0),

where

V =


V0

V1

V2

V3

 ,W =

(
W0

W1

)
, B =

(
B0

B1

)

In the above definition, CV F2 denotes the vector evaluation corresponds to a layer of formula

(3) and CV F22 denotes two consecutive CV F2 evaluations. After applying CV F422 to a vector

of length 256, we end up with 63 vectors of length 16. Component matrix formation CMF422

and reconstruction R224 are defined similarly by using the formulas (3) and (17). The output

of CMF422(A) for a 256-dimensional Toeplitz matrix A is 63 Toeplitz matrices of dimension

16 × 16. The component multiplication step in our optimized algorithm is componentwise

multiplication of two vectors of length 63 which have 16-dimensional Toeplitz matrices and

vectors of length 16 as their components, respectively. We refer to this operation as CM422

which require 63 TMVPs of dimension 16 which are calculated via schoolbook matrix-vector

multiplication. With our generic algorithm proposed in Section 3.3, computation of (19)

requires 4 CMF422, 4 CV F422, 4 CM422, 4 R224, and 256 additions. With our optimized

algorithm that utilizes an altered version of the block recombination method, the computation

of (19) requires 4 CMF422, 2 CV F422, 4 CM16, 126 additions, and 2 R224. Therefore, our
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optimization reduces the number of operations. We also observe this improvement in our

implementation which we share the results in the next section.

3.5 Implementation Results

As explained in Section 3.3, to complete our multiplication algorithm, we need to determine

the maximum value of the dimension for which the schoolbook method is faster than the

TMVP2 formula. For this, we compare the cycle counts of the schoolbook method and the

TMVP2 formula for TMVPs of dimension n = 2t for small t values.

For t = 1, we implement both the schoolbook matrix-vector multiplication and TMVP2

formula, which require 10 and 16 clock cycles, respectively. We implement the schoolbook

matrix-vector multiplication and observe that it requires 23 clock cycles for t = 2. We know

that for t = 2, the TMVP2 formula calls three schoolbook matrix-vector multiplication of

dimension 2, which would take more than 3.10 = 30 cycles. We do not implement the TMVP2

formula for t = 2 and conclude that the schoolbook method is preferable for this dimension.

A similar observation shows that also for t = 3, the schoolbook is faster. Table 1 shows

the cycle counts of the schoolbook matrix-vector multiplication and the TMVP2 formula for

various n = 2t values.

Table 1: Schoolbook vs. TMVP-2

t n SB(n) TMV P2(n)

1 2 10 16

2 4 23 > 3× 10 = 30

3 8 67 > 3× 23 = 69

4 16 280 401

5 32 1313 1082

For t = 4, schoolbook method takes 280 cycles which is not less than 3 × 67 = 201. So,

we implement the TMVP2 method, which requires 401 clock cycles. Finally, for t = 5,

we implement both algorithms and observe that the TMVP2 formula is faster than the

schoolbook method. So, t = 4 is the maximum value that the schoolbook matrix-vector

multiplication is faster than the TMVP2 formula for the dimension 2t. Hence, 16 is the

threshold. Now that we determine the threshold, we know how many layers of the TMVP2

formula we apply before switching the multiplication method to the schoolbook.

So, our TMVP-based algorithm for multiplication in R213 = Z213 [x]/⟨x256 + 1⟩ uses the

TMVP-4 formula to split the computations into seven 64-dimensional TMVPs. Then, to each

of these seven TMVPs, we apply the TMVP2 formula twice successively and end up with

16-dimensional TMVPs. We perform sixty-three schoolbook matrix-vector multiplications

in total and recombine their results according to the formulas to obtain the final result.
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We implement this algorithm on the ARM Cortex-M4 to compare the results with [21]. To

make a fair comparison, we evaluate the polynomial multiplication algorithm in [21] with the

polynomial reduction step since our algorithm already includes it. As can be seen in Table

2, our algorithm for multiplication in R216 is 24.5% faster and requires 16.5% less memory

than the one in [21], which uses Toom-4 and the Karatsuba algorithms.

Table 2: Multiplication in R216

Cycles Stack

[21] This work [21] This work

37804 28520 (-24.5%) 3800 3172 (-16.5%)

In this work, we only focus on an efficient residue polynomial multiplication algorithm

and an improved version of this algorithm for Saber, not on a complete implementation of

Saber. So, we use the publicly available codes from [21] and [29] to compose software packages

for our applications to Saber. We make some adjustments to existing codes to integrate our

algorithm into these packages. We compare the results with speed optimized implementation

results given in [29].

As Saber is an MLWR based scheme, it performs polynomial matrix-vector multiplications

for the key generation, encapsulation, and decapsulation algorithms. Table 3 shows the cycle

counts of the polynomial matrix-vector multiplication (e.g., AT s in line 5 of Algorithm 1

in [14]) that Saber public-key encryption scheme use for the key generation and encryption

algorithms. Here, the matrix A is of dimension ℓ× ℓ and the vector s is of dimension ℓ× 1.

They both have polynomial components from the ring Rq.

Table 3: Polynomial Matrix-Vector Multiplication

[29](speed) TMVP Block Rec.

ℓ = 2 159 k 122 k(-23.3%) 106 k(-33.3%)

ℓ = 3 317 k 273 k (-13.9%) 231 k (-27.1%)

ℓ = 4 528 k 483 k(-8.5%) 403 k (-23.7%)

In Table 3, the comparison of cycle counts of matrix-vector multiplication using different

algorithms are given. The third and fourth columns of Table 3 represent the proposed generic

TMVP-based algorithm and the improved version explained in Section 2.2 and Section 3.4,

respectively. Our generic algorithm improves the polynomial matrix-vector multiplication

between 8.5% and 23.3% for all values of ℓ comparing the results from [29]. Moreover,

our improved algorithm outperforms the polynomial matrix-vector multiplication in [29] by

33.3%, 27.1%, 23.6% for ℓ = 2, 3, 4, respectively.
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Table 4: Results of application to Saber

[29] (speed) TMVP Block Rec.

LightSaber

KeyGen:
466 k 421 k (-9.6%) 409 k(12.2%) cycles

14208 7932(-44.2%) 12536(-11.8%) bytes

Encaps:
653 k 591 k (-9.5%) 572 k(-12.4%) cycles

15928 9668(-39.3%) 14248(-10.5%) bytes

Decaps:
678 k 597 k(-11.9%) 574 k(-15.6%) cycles

16672 10412(-37.5%) 14992(-10.1%) bytes

Saber

KeyGen:
853 k 810 k(-5%) 772 k(-9.5%) cycles

19824 12608(-36.4%) 18144(-8.5%) bytes

Encaps:
1103 k 1052 k (-4.6%) 996 k(-9.7%) cycles

22088 14872(-32.7%) 20392(-7.7%) bytes

Decaps:
1127 k 1058 k (-6.1%) 995 k(-11.7%) cycles

23184 15968(-31.1%) 21488(-7.3%) bytes

FireSaber

KeyGen:
1340 k 1297 k(-3.2%) 1224 k(-8.7%) cycles

26448 20120(-23.9%) 24776(-6.3%) bytes

Encaps:
1642 k 1590 k(-3.2%) 1499 k(-8.7%) cycles

29228 22968(-21.4%) 27592(-5.6%) bytes

Decaps:
1679 k 1606 k(-4.3%) 1508 k(-10.2%) cycles

30768 24448(-20.5%) 29072(-5.5%) bytes

The effect of our algorithms on the overall performance of Saber is also promising. Table

4 shows the cycle counts and the stack usage of different implementations on ARM Cortex-

M4 microcontroller of the key generation, encapsulation, and decapsulation algorithms of

LightSaber (ℓ = 2), Saber (ℓ = 3), and FireSaber (ℓ = 4). As can be seen in Table 4,

both of our algorithms improve the efficiency compared to the speed optimized version in

[29]. Table 4 also shows the percentage of the gain in terms of both the execution time

and stack usage that our algorithms achieve. We speed up the key generation between 3.2%

and 9.6%, encapsulation between 3.2% and 9.5%, decapsulation between 4.3% and 11.9%

with our generic TMVP-based algorithm. The enhancement in efficiency with our improved

algorithm are between 8.7% and 12.2% for key generation, 8.7% and 12.4% for encapsulation,

10.2% and 15.6% for decapsulation. Furthermore, our generic TMVP-based algorithm reduces

stack memory consumption between 20.5% and 44.2% while the improved algorithm reduces

between 5.5% and 11.82% compared to the speed optimized implementation in [29].
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4 Conclusion/Discussion

In this work, we focus on developing non-NTT-style multiplication algorithms for post-

quantum cryptographic schemes, utilizing the Toeplitz matrix-vector multiplication. We

derive two new TMVP formulas, TMVP-3 and TMVP-4, which require five and seven mul-

tiplications, respectively. Moreover, we propose an algorithm for multiplication in the ring

R213 = Z213 [x]/⟨x256 + 1⟩ which exploits the new TMVP-4 formula. Our algorithm is faster

than the state-of-the-art speed optimized implementation that uses Toom-Cook and Karat-

suba. Furthermore, we improve the multiplication algorithm we propose for Saber using a

non-recursive version of the block recombination method [17]. We implement the proposed

algorithms on the ARM Cortex-M4 microcontroller and integrate our code into an exist-

ing implementation of Saber. The results of both the generic and optimized algorithms we

propose indicate that TMVP-based multiplication algorithms might be good alternatives to

Toom-Cook and Karatsuba methods. Based on the outcomes of this work and our prelimi-

nary results of application to NTRU, we expect that TMVP-based multiplication algorithms

exploiting TMVP-3 and TMVP-4 formulas may improve the efficiency of lattice-based post-

quantum schemes that are not originally NTT-friendly.
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