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Abstract. We discuss how to efficiently utilize contemporary co-processors used for
public-key cryptography for polynomial multiplication in lattice-based cryptogra-
phy. More precisely, we focus on polynomial multiplication in rings of the form
Z[X]/(Xn + 1). We make use of the roots of unity in this ring and construct the
Kronecker+ algorithm, a variant of Nussbaumer designed to combine especially well
with the Kronecker substitution method, This is a symbolic NTT of variable depth
that can be considered a generalization of Harvey’s multipoint Kronecker substitution.
Compared to straightforwardly combining Kronecker substitution with the state-of-
the-art symbolic NTT algorithms Nussbaumer or Schönhage-Strassen, we halve the
number or the bit size of the multiplied integers, respectively. Kronecker+ directly
applies to the polynomial multiplication operations in the lattice-based cryptographic
schemes Kyber and Saber, and we provide a detailed implementation analysis for
the latter. This analysis highlights the potential of the Kronecker+ technique for
commonly available multiplier lengths on contemporary co-processors.
Keywords: Polynomial multiplication, Kronecker substitution, Schönhage-Strassen,
Nussbaumer, Co-processors.

1 Introduction
There are currently over 30 billion IoT (Internet of Things) devices installed world-
wide [Maa]: this number has steadily outgrown the number of humans living on this
planet and is expected to keep increasing. To secure these and many other devices,
Elliptic Curve Cryptography (ECC) [Kob87, Mil86] and the Rivest–Shamir–Adleman
(RSA) [RSA78] algorithm are vital components in our public-key infrastructure based
on secure key exchange and digital signatures. On these embedded (IoT) devices speed
is a key performance indicator. To enable them to securely and efficiently execute the
complex cryptographic algorithms, many have access to dedicated hardware accelerators
or so-called co-processors. Typically, for ECC and RSA these co-processors consist of
a hardware-supported instruction set that enables the device to compute large-integer
arithmetic routines efficiently.

With the steady progress in the development of a quantum computer, the security of
our public-key infrastructure is being threatened. When a full-scale quantum computer
would become a reality, Shor’s algorithm [Sho94] is able to recover private keys used
in ECC/RSA in polynomial time. To prepare for this threat, alternative cryptographic
algorithms are necessary; these are called post-quantum, or quantum-safe, cryptographic
algorithms. In an effort to standardize such algorithms the US National Institute of
Standards and Technology (NIST) put out a call for proposals [Nat] for cryptographers
to submit candidate algorithms in 2016. As of July 2020, seven out of fifteen remaining
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candidates are marked as finalists of which a subset is expected to be standardized in the
upcoming three years.

For embedded devices the migration to completely new public-key cryptography algo-
rithms results in multiple practical challenges. None of the seven finalists require large
integer arithmetic, which is the computationally expensive operation in both ECC and RSA
and exactly what is offered by existing public-key co-processors. Adding new dedicated
hardware support means a significant investment for new generations of devices that cannot
be started yet as it is not clear which candidate schemes will be standardized. Additionally,
the design, testing and (most prominently) the migration time for these co-processors is
expected to span many years.

Five of the finalist do have in common that they are so called ring-based lattice schemes.
For these schemes the primary bottleneck in terms of performance is to multiply polynomials
with integer coefficients: a typical example is to work with polynomials from Z[X]/(Xn+1)
where n is a power of two. At CHES 2019, Albrecht, Hanser, Hoeller, Pöppelmann,
Virdia and Wallner [AHH+18] proposed to apply Harvey’s improvements [Har09] to
Kronecker substitution [Kro82, Sch82] to convert polynomial multiplication to large integer
multiplication and thereby unlock the potential of the already existing co-processors. This
approach was explored by Wang, Gu and Yang for application to post-quantum crypto
scheme Saber [WGY20].

In this paper we expand on this line of research and present a new method to realize
fast polynomial arithmetic implementations on embedded devices which have access to
commonly used arithmetic co-processors. We show how one can generalize Harvey’s negated-
evaluation-points technique such that it works in polynomial rings as frequently used in
post-quantum cryptography. Our new method also be viewed as a variant of Nussbaumer
polynomial multiplication [Nus80] combined with Kronecker substitution, which we call
Kronecker+. It opens up the possibility to compute a symbolic Number Theoretic Transform
(NTT) in the polynomial rings used in the post-quantum cryptographic submissions, which
in turn can be computed by multiple smaller integer multiplications using Kronecker
substitution in a clever way. This allows, for example, schemes such as Saber, which due to
their parameter choices could not use NTTs, to compute symbolic NTTs. On contemporary
co-processors this results in a more efficient polynomial multiplication, compared to
existing approaches such as Schönhage-Strassen [SS71] and Nussbaumer [Nus80]. More
concretely, although the overhead of the forward and backward transforms is similar to
that of Nussbaumer and Schönhage-Strassen, Kronecker+ halves the number or the bitsize,
respectively, of the required multiplications when compared to the aforementioned methods.
In Table 1 an overview is presented of combining different approaches with Kronecker,
including the new approach from this paper: Kronecker+.

In the setting of the NIST finalist Kyber (which are almost identical to Saber for our
purposes), and more specifically for the parameters of Kyber-768 (n = 256 and ` = 32),
in [AHH+18] it is shown that one polynomial multiplication can be computed using the
standard Kronecker substitution approach with a single multiplications of 8197 bits, and
using Harvey’s negated-evaluation-points technique with two integer multiplication of 4097
bits each. Kronecker+ enables further division into exactly t = 2τ integer multiplications
of 8196/t+ 1 bits each, where τ < 6 is a positive integer, where the exact optimal choice
of τ will strongly depend on platform-specific details.

Of course one could use asymptotically faster multiplication methods for the one or two
large integer multiplications. For example, Karatsuba [KO62] replaces one multiplication of
b bits with three multiplications of b/2 bits plus some overhead in the form of additions (or
subtractions) and can be applied recursively. Moreover, r-way Toom-Cook [Too63, Coo66]
generalizes this multiplication approach and replaces one b-bit multiplication with 2r − 1
multiplications of approximately b/r bits plus some overhead for the evaluation and
interpolation formula used (r = 2-way Toom-Cook is approximately equivalent to one



Joppe W. Bos, Joost Renes and Christine van Vredendaal 3

Table 1: Comparison of number of multiplications of certain bit length required for
multiplying two polynomials with n coefficients each. Here ` is the parameter for Kronecker
substitution (i.e., evaluating at 2`) and t specifies the depth (if applicable) of the algorithm.

Algorithm # Muls # Bits
Kronecker (KS1) 1 `n+ 1
Harvey (KS2/KS3) 2 `n/2 + 1
Harvey (KS4) 4 `n/4 + 1
Kronecker + Karatsuba 3log t (`n+ 1)/t
Kronecker + Toom-Cook-t 2t− 1 (`n+ 1)/t
Kronecker + Schönhage-Strassen t 2`n/t+ t+ 1
Nussbaumer + Kronecker 2t `n/t+ 1
Kronecker+ (this work) t `n/t+ 1

layer of Karatsuba). This immediately highlights the potential of our new approach:
while r-way Toom-Cook can reduce one b-bit multiplication to 2r − 1 multiplications this
can be done with r multiplications using Kronecker+ (where both approaches reduce
to approximately b/r-bit multiplications). A high-level overview on how to perceive our
contribution in light of the many other available multiplication approaches one could try
with Kronecker (something which was not done or considered in case of Schönhage-Strassen
and Nussbaumer in previous work) is shown in Table 1.

It should be noted that the number of multiplications of course does not tell the full
story, since each of the methods is accompanied by transformational overhead (usually in
the form of additions or multiplications by small constants). However, the overhead of
Kronecker+ is comparable to that of a regular NTT and of complexity t log t by employing
the Cooley-Tukey butterfly approach [CT65]. In fact, because of the smaller sizes of
integers that we operate on, the overhead will be smaller than for Schönhage-Strassen and
Nussbaumer. Especially for small values of τ , the overhead of the transformations is even
small when compared to a layer of Karatsuba of Toom-Cook.

Lastly, we would like to emphasize that this paper introduces a new method to realize
fast polynomial arithmetic implementations using existing public-key co-processors: this is
not an implementation paper. We would like to point out that there is no standardized
interface to or standard functional behavior of public-key co-processors. This means each
co-processor is inherently vendor specific and has different bells and whistles one could
utilize. Moreover, external parties can not directly program these co-processors and hence
implementation results cannot be publicly verified. The proposed polynomial multiplication
technique in this paper can be applied to any co-processor which implements a large bit-size
multiply-and-add accelerator and §4 gives various implementation considerations for the
security engineer who wants to try this out (accompanied by Sage implementations of the
high-level approach combined with lower level optimizations).

2 Preliminaries
Let f =

∑n−1
i=0 fiX

i and g =
∑n−1
i=0 giX

i ∈ Z[X] be two polynomials of degree less than
n. In this section we describe various methods that exist in the literature to compute
the multiplication h = (f · g) mod (Xn + 1). For many algorithms the reduction modulo
Xn + 1 has little effect, as the reduction is only applied (in a straightforward manner)
after the more involved multiplication in Z[X]. However, we include it here as it is crucial
for some of the polynomial multiplication algorithms under discussion (e.g., Nussbaumer
and Schönhage-Strassen) and will be relevant for cryptographic applications that apply
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them (e.g., Kyber and Saber). For these algorithms we introduce an additional parameter
t, which is a positive integer dividing n.

Note that in this section we are assuming that the polynomial multiplications is
performed in (quotient rings of) Z[X]. Most algorithms however can be applied more
generally over other rings R. In this case there is an extra assumption that multiplication
by t and 2t are injective maps, and hence that they can be inverted. This holds of course
for Z, but does not necessarily hold for general rings R.

All algorithms that we describe are well known, so one could argue that a detailed
description is not necessary. We have opted to include it here for completeness, as they
appear scattered over the literature with varying notation and level of detail. We add
the relevant references in the respective sections. Moreover, presenting them in a single
framework with unified notation will make it easier to introduce our own contributions
(and, hopefully, highlight the elegance of its simplicity).

Finally, inspired by Harvey [Har09], we set up a small running example to ease the
comparison between different (relevant) multiplication methods.

Example 1. Let f and g be the two arbitrarily chosen polynomials

f(X) = −3− 3X2 −X3 − 2X5 +X6 − 3X7 ,

g(X) = 3 +X + 3X2 + 2X3 − 2X4 + 3X5 + 3X6 ,

whose coefficients can be represented with 3 bits in the interval [−3, 3]. The goal is to
compute the product h = (f · g) mod X8 + 1, which is easily checked to be the polynomial
h(X) = 7 + 3X − 4X2 − 15X3 + 2X4 − 15X5 − 4X6 − 21X7.

2.1 Polynomial Multiplication
2.1.1 Karatsuba and Toom-Cook

Karatsuba [KO62] and its generalization Toom-Cook [Too63, Coo66] are multiplication
methods which are asymptotically faster compared to the schoolbook algorithm, which
runs in O(N2) for N ×N → 2N bit multiplication. The idea behind k-way Toom-Cook
(where k = 1 is equal to schoolbook and k = 2 (essentially) to Karatsuba) is to split the
single N -bit multiplication into 2k− 1 multiplications of approximately N/k bits such that
the run-time is O(N log (2k−1)/ log (k)). This is done by evaluating the polynomials at 2k− 1
distinct points, and performing an interpolation after having performed 2k − 1 smaller
multiplications. See [BZ07] for more details on how to optimally compute the Toom-Cook
multiplication.

The 2-way (O(N1.585)), 3-way (O(N1.465)) or 4-way (O(N1.404)) version of Toom-Cook
are popular approaches to multiply medium-sized integers and have been applied in a variety
of settings in cryptography. For example, in the post-quantum secure key-exchange scheme
Saber [DKRV18] the 4-way version of Toom-Cook is used, followed by two applications
(i.e., layers) of Karatsuba for the polynomial multiplication.

2.1.2 Fast Fourier Transform in a Finite Field

Pollard showed how to define a transform in the finite field Zq of integers modulo a
prime q, analogous to the discrete Fourier transform, which can be computed using a Fast
Fourier Transform (FTT) algorithm [Pol71]. In cryptography this is often referred to as
the Number Theoretic Transform (NTT). In this case we want to compute a polynomial
product of f, g ∈ Zq[X]/(Xn + 1), where 2n | (q − 1), so that the multiplicative group
Z∗
q contains a principal 2n-th root of unity ζ. We can then use the Chinese remainder
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theorem to construct the isomorphism

Zq[X]/(Xn + 1) ∼=
∏n−1
i=0 Zq[X]/(X − ζ2i+1)

f 7→ (f(ζ1), f(ζ3), . . . , f(ζ2n−1)) .

By applying this isomorphism to f and g, their product can be reduced to to n multipli-
cations in Zq. As q is typically fairly small (e.g., 12 and 23 bits for the latest versions
of Kyber and Dilithium, respectively), this is not interesting for modern co-processors
which are aimed at hundreds or thousands of bits for ECC or RSA. Note that similar
constructions can be made with n-th principal roots of unity, requiring only that n | (q−1),
which is done for instance by Kyber. We do not elaborate on this further here.

2.1.3 Nussbaumer

This algorithm was designed in 1980 and is named after its creator [Nus80]. We base
our description on those of Bernstein [Ber97, §9] and the bachelor thesis of van der
Lubbe [vdL16, §3.1]. The first step is to apply the transformation

Ψ : Z[X]/(Xn + 1)→ (Z[Y ]/(Y n/t + 1))[X]/(Y −Xt) , (1)

f =
∑n−1
i=0 fiX

i 7→ Ψ(f) =
∑t−1
i=0
(∑n/t−1

j=0 fi+jtY
j
)
Xi .

As the polynomial Ψ(f) has degree less than t in X, we can trivially lift it to (Z[Y ]/(Y n/t+
1))[X] and view it as a polynomial in (Z[Y ]/(Y n/t+1))[X]/(X2t−1) where the coefficients
of Ψ(f) for the monomials Xi for i = t, . . . , 2t− 1 are 0. Similarly we obtain Ψ(g).

As the coefficient ring Z[Y ]/(Y n/t + 1) contains the 2t-th principal root of unity
ζ = Y n/t

2 , we can apply a cyclic convolution with respect to ζ. For this we require the
additional restriction on t that t2 | n, as opposed to only t | n. More concretely, we
compute

Ψ(h)(ζi) = Ψ(f)(ζi) ·Ψ(g)(ζi) , for i = 0, . . . , 2t− 1 , (2)

from which we can compute 2t ·Hj =
∑2t−1
i=0 Ψ(h)(ζi)ζ−ji. As Ψ(h) =

∑2t−1
j=0 Hj(Y )Xj ,

we can recover h by dividing by 2t (recall that multiplication by 2t was assumed to be
injective), reducing modulo Y −Xt and inverting Ψ.

The main cost of the algorithm is in Equation (2). The simultaneous evaluation of Ψ(f)
at all the roots of unity ζi can be computed with a Cooley-Tukey butterfly algorithm [CT65]
with complexity O(t log t). The multiplications are in the ring Z[Y ]/(Y n/t + 1), so consist
of 2t multiplications of polynomials with n/t coefficients each. Of course there is a clear
possibility for recursion, but such an analysis is not of interest for our purposes.

This algorithm was used in cryptographic context by van der Lubbe [vdL16], who applied
it to the post-quantum crypto scheme NewHope [PAA+19] in the ring Z[X]/(X1024 + 1)
with t = 32. In that case the 1024-coefficient polynomial multiplication is reduced to 64
multiplications of polynomials with 32 coefficients each. These can in turn be computed
with various methods, but on their platform of choice (Haswell) van der Lubbe demonstrates
that Karatsuba is the preferred choice. Nussbaumer has also been applied in the setting of
homomorphic encryption [BLLN13].

Example 2. Let f and g be as chosen in Example 1. As Nussbaumer requires that t2 | n,
the largest choice for n = 8 we can make is t = 2. Splitting the ring, we find

Ψ(f) = Y 3 − 3Y − 3 + (−3Y 3 − 2Y 2 − Y ) ·X ,

Ψ(g) = 3Y 3 − 2Y 2 + 3Y + 3 + (3Y 2 + 2Y + 1) ·X ,

as polynomials modulo Y − X2. Lifting to (Z[Y ]/(Y 4 + 1))[X] and viewing them as
polynomials modulo X4 − 1 by setting the coefficients of X2 and X3 to be zero, we can
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apply the cyclic convolution with respect to 4-th root of unity Y 2. In other words,

[Ψ(f)(1),Ψ(f)(Y 2),Ψ(f)(Y 4),Ψ(f)(Y 6)] = [−2Y 3 − 2Y 2 − 4Y − 3,−1,
4Y 3 + 2Y 2 − 2Y − 3, 2Y 3 − 6Y − 5] ,

[Ψ(g)(1),Ψ(g)(Y 2),Ψ(g)(Y 4),Ψ(g)(Y 6)] = [3Y 3 + Y 2 + 5Y + 4, 5Y 3 − Y 2 + 3Y,
3Y 3 − 5Y 2 + Y + 2, Y 3 − 3Y 2 + 3Y + 6] .

Multiplying pairwise modulo Y 4 + 1, we get [Ψ(h)(1),Ψ(h)(Y 2),Ψ(h)(Y 4),Ψ(h)(Y 6)] as

[−31Y 3−25Y 2−23Y+12,−5Y 3+Y 2−3Y,11Y 3+5Y 2+7Y+6,25Y 3−5Y 2−45Y−30] .

Inverting the transform with respect to Y 2 (i.e., applying the same convolution with Y 6),
we obtain

[−6Y 2 − 16Y − 3,−21Y 3 − 15Y 2 − 15Y + 3,−10Y 3 − 4Y 2 + 8Y + 12, 0] .

Finally setting Y = X2, viewing the tuple as the coefficients of a polynomial in X (where
0 is the coefficient of X3) and reducing modulo X8 + 1, we obtain h.

2.2 Polynomial Multiplication with Integer Multipliers
The problem of multiplying polynomials and that of integer multiplication are extremely
related. The two can be linked by way of Kronecker substitution, which we first expand on
in §2.2.1. This method has been further investigated by Harvey and applied to Kyber and
Saber, which we explain in §2.2.2. Finally we revisit the Schönhage-Strassen algorithm in
§2.2.3.

2.2.1 Kronecker Substitution

In 1882, Kronecker introduced a method to reduce computational problems related to
multivariate polynomials to those related to univariate polynomials [Kro82]. A hundred
years later, a similar technique was introduced by Schönhage to reduce polynomial multi-
plications in Z[X] to integer multiplication (multiplication in Z) [Sch82]. This approach is
known as the Kronecker substitution method.

The idea behind the method is to evaluate the polynomials at a sufficiently high
two-power 2` for a positive integer `, and use the resulting integers as input for a regular
integer multiplication by computing h(2`) = (2`) · g(2`). Finally, the resulting integer h(2`)
is converted back to its polynomial representation h. The result is correct if the coefficients
of the resulting polynomial did not “mix” with each other, i.e. if the parameter ` ∈ Z is
sufficiently large.

The main advantage of this approach, computing a polynomial multiplication by way
of an integer multiplication, is that well-studied and fast implementations of asymptotic in-
teger multiplication methods can be used. It allows contemporary co-processors containing
integer-multiplication acceleration for speeding up “classical” cryptography to be re-used
for the polynomial multiplications that appear in post-quantum cryptographic primitives.
This was first investigated by Albrecht, Hanser, Hoeller, Pöppelmann, Virdia and Wall-
ner [AHH+18], who used an RSA co-processor for the implementation of Kyber-768, and
subsequently applied by Wang, Gu and Yang to an implementation of Saber [WGY20].

Note that [AHH+18] applies this technique to polynomial multiplication modulo Xn+1,
as opposed to generic multiplication. Interestingly, although the coefficients of f · g and
(f · g) mod Xn + 1 differ, their upper and lower bound do not. Indeed, a coefficient of
f · g can be the sum of at most n products of coefficients of f and g, while a coefficient of
(f · g) mod Xn + 1 is the sum of exactly n such coefficient products. Therefore the choice
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of ` remains the same regardless of reduction modulo Xn + 1. In particular, this implies
that reduction modulo Xn + 1 can also be done as an intermediate step in the Kronecker
domain as reduction modulo 2n` + 1.

Example 3. Let f and g be as chosen in Example 1. As they have (at most) 8 coefficients
and they lie in the interval [−3, 3], the coefficients of h (modulo Xn + 1) lie in the interval
[−8 · 32, 8 · 32] and can therefore be represented with ` = 8 bits. Therefore, we find

f(28) = −215893506177302531 , g(28) = 847714908832003 ,

and compute the product h(28) ≡ 16932392214669820680 mod 264 + 1. Notice that here
we apply the intermediate reduction modulo X8 + 1 in the Kronecker domain as reduction
modulo 264 + 1. We retrieve the coefficients of h by converting to a base-256 representation.
As f and g have signed coefficients in [−3, 3], it is important to also take the signed
representation

h(28) = 7 + 3 · 28 − 4 · 216 − 15 · 224 + 2 · 232 − 15 · 240 − 4 · 248 − 21 · 256

with 8-bit limbs in [−8 · 32, 8 · 32]. Interestingly, one can also apply Kronecker substitution
to the intermediate multiplication in Nussbaumer (see Example 2). Evaluating Ψ(f)(Y i)
and Ψ(g)(Y i) for i = 0, 2, 4, 6 at 28 leads to the tuples

[−33686531,−1, 67239421, 33552891] , [50398468, 83821312, 50004226, 16581382] ,

which are pairwise multiplied to [−521737972,−83821312, 184878854, 419091170]. The
multiplications are to be reduced modulo Y 4 +1, and hence modulo 232 +1 in the Kronecker
domain. From here the regular Nussbaumer algorithm can be followed, with an additional
final recovery to polynomial representation. These are 4 multiplications of (approximately)
32 bits each, as opposed to 1 multiplication of 64 bits for regular Kronecker.

2.2.2 Multipoint Kronecker Substitution

The size of the integers that are multiplied when applying Kronecker substitution, which
impacts the efficiency of the algorithm, is strongly related to the size of `. Simply put, the
larger `, the larger the integers and the slower the multiplication. On the other hand, `
needs to be at least as large as the maximum bitlength of the coefficients of h in order to
recover the polynomial h from h(2`) correctly.

One of the main observations made by Harvey [Har09, §3.3] was that the size of `
can be reduced by splitting up the polynomial evaluation into two parts. Assuming for
simplicity that ` is even, Harvey computes

h(2`2) = f(2`2)g(2`2) , h(−2`2) = f(−2`2)g(−2`2) ,

where `2 = `/2. He then observes that

h(0)(2`) = (h(2`2) + h(−2`2))/2 , h(1)(2`) = (h(2`2)− h(−2`2))/(2 · 2`2) ,

where h(i) denotes the polynomial whose j-th coefficient equals the (2j + i)-th coefficient
of h. In other words,

h(0)(2`) =
∑n/2−1
j=0 h2j2j` , and h(1)(2`) =

∑n/2−1
j=0 h2j+12j` .

The coefficients of h can therefore be recovered as the `-bit limbs h(0)(2`) and h(1)(2`).
Denoting by M(b) the cost of multiplying two b-bit integers, this approach changes the

cost of the polynomial multiplication in Z[X] from M(`n) +O(`n) in the case of standard
Kronecker substitution, to 2 ·M(`n/2) + O(`n). Here the big-O terms incorporate the
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cost of packing and unpacking. This can lead to a significant speedup whenever the cost
of multiplying is (relatively) expensive. In particular, this approach was used in the ring
Z[X]/(X256 + 1) with applications to Kyber (see [AHH+18]) and Saber (see [WGY20]) to
speedup their respective implementations based on co-processors.

In fact, Harvey considers a second approach to split up the evaluation into four parts
by also evaluating at the reciprocal f(2−`), that gives rise to multiplication with a cost of
4 ·M(`n/4) +O(`n). We omit the details as we do not discuss it further. In particular, it
was not considered practical in the previously mentioned implementations of Kyber and
Saber.

Example 4. Let f and g be as chosen in Example 1 and choose ` = 8 as in Example 3.
We compute

[f(24), f(−24)] = [3504336126, 824184061] ,
[g(24), g(−24)] = [53355283, 47047411] ,

from which we obtain [h(24), h(−24)] ≡ [2870021177, 1290988502] with two multiplications
modulo 232 + 1. It follows that

h(0)(28) = 8 + 252 · 28 + 1 · 216 + 252 · 224 , h(1)(28) = 4 + 241 · 28 + 240 · 216 + 234 · 224 ,

or, in signed representation, that

h(0)(28) ≡ 7− 4 · 28 + 2 · 216 − 4 · 224 , h(1)(28) ≡ 3− 15 · 28 − 15 · 216 − 21 · 224

modulo 232 + 1. The coefficients from h can now simply be read off. Note that this requires
only 2 multiplications of (about) 32 bits each, compared to 4 for Nussbaumer combined
with Kronecker.

2.2.3 Schönhage-Strassen

For the description of the Schönhage-Strassen algorithm [SS71], we base ourselves on the
nice exposition of the implementation in the GMP library [GKZ07, §1] and Bernstein’s
paper [Ber97, §9]. We assume that the integers we multiply are outputs of Kronecker
substitution of the form F = f(2`) and G = g(2`), and we want to compute their product
H = h(2`) in Z[X]/(2`n + 1), i.e., modulo the polynomial modulus (Xn + 1) evaluated at
2`. Interestingly, we begin by viewing the integers as polynomials by applying the map

Φ : Z/(2`n + 1)→ Z[X]/(Xt + 1)
F =

∑t−1
i=0 Fi · 2`n/t 7→ Φ(F ) =

∑t−1
i=0 Fi ·Xi ,

in other words viewing the `n/t-bit limbs as coefficients of a polynomial of degree (at
most) t − 1. Note that here we can assume that Ft = 0, as F = f(2`) is a polynomial
with degree at most n − 1 evaluated at 2`, and hence is strictly smaller than 2n` (and
similarly for G). It can be shown that the coefficients of Φ(F )Φ(G) can be represented with
2`n/t+ t bits [GKZ07, §1], implying that it can be recovered as the unique representative
of the product of Φ(F ) and Φ(G) embedded in Z/(22`n/t+t + 1)[X]/(Xt + 1). The main
observation now is that the coefficient ring for this multiplication is Z/(22`n/t+t+ 1), which
contains a principal 2t-th root of unity ζt = 22`n/t2+1, under the additional assumption
that t2 | 2`n (note that this is weaker than Nussbaumer, which requires t2 | n). We can
use the (principal) t-th root of unity ζ2

t to construct a negacyclic convolution to reduce
this multiplication to t multiplications in Z/(22`n/t+t + 1), of approximately 2`n/t bits
each (assuming n� t), after which we can invert Φ to recover H.
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Example 5. Let f and g be as chosen in Example 1. As we require that t2 | 2`n = 128,
the largest choice we can take is t = 8. In that case

Φ(F ) = [254, 255, 252, 254, 255, 253, 0, 253] , Φ(G) = [3, 1, 3, 2, 254, 2, 3, 0] ,

representing polynomials in Z[X]/(X8 + 1). Applying a negacyclic convolution with 8-th
root of unity ζ2

8 = 64, we obtain the tuples

[3191766, 12617514, 13706294, 6361802, 15707175, 16751308, 5128135, 10424123] ,
[1893579, 12329652, 12869428, 336707, 1760443, 3940051, 4415315, 12786500] ,

that are multiplied pairwise to

[2864000, 10297389, 10680185, 15308322, 14753371, 6584086, 650929, 5442338],

modulo 224 + 1 (note that 24 here is the first multiple of 8 larger than 16). Inverting the
negacyclic convolution gives the tuple

[−66031,−65274,−4,−62734, 66295, 66799, 66806, 67813] .

Viewing these as the 8-bit limbs of an integer, we obtain the product 16932392214669820680
of F and G in Z/(264 + 1). This can be reverted to polynomial representation by inverting
the Kronecker map (see Example 3).

2.3 Public-key hardware co-processors
A typical hardware accelerator or cryptographic co-processor enhances the security and
performance of hash-functions, random number generation, symmetric key or public-key
cryptography. In the last category, the core of this accelerator is typically dedicated to
multiplication and accumulation of large integers. One possible way of thinking about
such hardware-supported instructions used to construct arbitrary length multiplication
routines, is that given w-bit inputs a, b, and c it computes

(a� c1)× (b	 c2) + c� d

where �, 	, and � are optional operations with optional inputs c1, c2 and d. Concrete
examples are

• the multiply-and-accumulate instruction present on many modern computer archi-
tectures (omitting all optional operations),

• the multiply-and-accumulate-accumulate (where � equals the “+” operation) as
present on the ARMv6 and above, and

• the ARM barrel shifter where 	 could be a shift or rotate instruction.

The multiply-and-accumulate-accumulate instruction can be used as a building block for
arbitrary length multiplication and therefore also Montgomery multiplication: making this
an essential building block for the most time-consuming operation in both RSA and ECC.
Given the word size w this then computes d = a · b+ c+ d where all inputs are < 2w and
the output is ≤ (w − 1)2 + 2(w − 1) < 22w.

Although the exact internal bit size of these co-processors is often kept secret, the word
size is expected to be larger than the native word size on the embedded device (which
is typically 8, 16, or even 32 bits). Typical examples of such co-processors are NXP’s
P71D321 [NXP], Infineon’s SLE 78 [Inf], or Espressif’s ESP32 [Esp]. The accompanying
technical document often state that these co-processors can be used to compute RSA
(often up to 4096 bits) and ECC. It should be noted that the upper bound on the number
of supported bits is often due to a restriction on the available memory.
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3 Kronecker+
In this section we discuss a new multiplication technique that can be viewed as a gener-
alization of the negated-evaluation-points idea by Harvey [Har09, §2.3] and as a variant
of Nussbaumer when combined with Kronecker substitution. Its main improvement with
respect to [Har09] is that there is less limitation on the depth: whereas Harvey’s method
reduces a polynomial multiplication to two integer multiplications that are half the length
compared to Kronecker substitution, we allow reducing to t multiplications of fraction
(1/t) of the length. For this we require that t | n and t | `, which in particular implies that
that t2 | 2`n (as was needed for Schönhage-Strassen). Hence t cannot be chosen completely
freely, but the degree of freedom is much larger than for Harvey.

Compared to Nussbaumer we reduce the number of multiplications that are necessary.
As can be seen in §2.1.3, Nussbaumer requires 2t multiplications of polynomials with
n/t coefficients each. Applying Kronecker (i.e., evaluating at 2`) we would compute 2t
multiplications of approximately `n/t bits each. Instead, Kronecker+ requires only t such
multiplications. The overhead of the forward and backward transformations is comparable.

3.1 An Alternative Convolution
We begin the description by revisiting the Nussbaumer algorithm, and proposing an
alternative version. Initially, this will seem to serve no purpose as it does not lead to a
reduced number of operations for polynomial multiplication. However, we show in §3.2
that this variant combines much better with Kronecker substitution and that Harvey’s
negated evaluation points technique can be considered a special case of our algorithm.

As usual, we assume that f and g are polynomials of degree (at most) n − 1 in
Z[X]/(Xn + 1). Our alternative convolution starts identical to Nussbaumer by applying
the map Ψ from Equation (1), obtaining Ψ(f) and Ψ(g) in the ring

(Z[Y ]/(Y n/t + 1))[X]/(Y −Xt) .

This map is also used by [AHH+18, §4], which they refer to as “splitting the ring”. They
view Ψ(f) and Ψ(g) as degree t − 1 polynomials in X, and multiply them through the
schoolbook or Karatsuba algorithm, leading to t2 or 3log t multiplications in Z[Y ]/(Y n/t+1)
respectively. Alternatively, the strategy of Nussbaumer could be taken: canonically lift
to (Z[Y ]/(Y n/t + 1))[X] and embed in (Z[Y ]/(Y n/t + 1))[X]/(X2t − 1) to apply a cyclic
convolution to [F0, . . . , F2t−1] and [G0, . . . , G2t−1] with respect to 2t-th principal root of
unity ζ2t = Y n/t

2 , where Ψ(f) =
∑t−1
i=0 Fi(Y )Xi and Ψ(g) =

∑t−1
i=0 Gi(Y )Xi. This leads

to the 2t multiplications

Ψ(h)(ζi2t) = Ψ(f)(ζi2t) ·Ψ(g)(ζi2t) , for i = 0, . . . , 2t− 1 ,

in Z[Y ]/(Y n/t + 1).
However, for Kronecker+ we deviate from both these approaches. As opposed to

Nussbaumer, we only consider the length-t tuples [F0, . . . , Ft−1] and [G0, . . . , Gt−1] and
take the principal t-th root of unity ζt = Y 2n/t2 . Further, we apply weight factors Xi to
the i-th element, i.e., apply a cyclic convolution with respect to ζt to the length-t tuples

[F0 ·X0 , . . . , Ft−1 ·Xt−1] , [G0 ·X0 , . . . , Gt−1 ·Xt−1] .

This results in the tuples[∑t−1
i=0 ζ

ij
t FiX

i
]
j
, and

[∑t−1
i=0 ζ

ij
t GiX

i
]
j
.

An interesting observation at this point is that we can combine the application of Ψ and the
convolution (including weight factors) in a single step, showing that the latter tuples are
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Algorithm 1 Pseudo-algorithmic simple description of Kronecker+.
Input: f, g ∈ Z[X]/(Xn + 1) for a positive integer n, the Kronecker parameter ` and a

positive integer t such that t | ` and t | n, and Mi = 22i`n/t2 · 2`/t for 0 ≤ i < t

Output: h =
∑n−1
i=0 hiX

i = f · g mod Xn + 1
1: Compute f(Mi) and g(Mi) for i = 0, . . . , t− 1.
2: Compute h(Mi) = f(Mi) · g(Mi) mod 2`n/t + 1 for i = 0, . . . , t− 1.
3: Compute

h(i) =
∑t−1
j=0 22i(t−j)`n/th(Mi)

t · 2i`/t
mod 2`n/t + 1

for i = 0, . . . , t− 1.
4: Recover hi+tj as the j-th `-bit limb of h(i) for 0 ≤ i < t and 0 ≤ j < n/t.

simply equal to [f(ζjt ·X)]j and [g(ζjt ·X)]j respectively. Although this is nice conceptually,
we expect that an implementation of this algorithm would most likely separate Ψ from
the convolution, making it easier to apply Cooley-Tukey-style butterflies [CT65] to the
computation (see §4).

Next we perform the t multiplications

h(ζit ·X) = f(ζit ·X) · g(ζit ·X) , for i = 0 , . . . , t− 1 . (3)

Inverting the convolution with respect to ζt (including dividing by t), removing the weight
factors, and possibly performing an explicit reduction modulo Y −Xt, gives the result
Ψ(h). From this we can recover h by inverting Ψ.

It should be noted at this point that the polynomials f(ζit · X) and g(ζit · X) do
not actually lie in Z[Y ]/(Y n/t + 1), but instead still in (Z[Y ]/(Y n/t + 1))[X]/(Y −Xt).
Therefore we have reduced a single multiplication in (Z[Y ]/(Y n/t + 1))[X]/(Y −Xt) to t
of them. This does not make any sense from a performance perspective, and we do not
suggest to use this method as described here for polynomial multiplication. However, in
the next section we show that this approach has significant advantages in combination
with Kronecker substitution.

3.2 Applying Kronecker
The true strength of reducing to the multiplications in Equation (3) comes from applying
the (slightly modified) Kronecker substitution

K : (Z[Y ]/(Y n/t + 1))[X]/(Y −Xt)→ Z/(2`n/t + 1)
F =

∑t−1
i=0 Fi(Y ) ·Xi 7→

∑t−1
i=0 Fi(2`) · 2i`/t .

The mapping K maps Y 7→ 2` and X 7→ 2`/t and ensures that the map is well-defined
modulo Y −Xt. In particular, this maps

ζt 7→ 22`n/t2 , f(ζit ·X) 7→ f(22`n/t2 · 2`/t) , g(ζit ·X) 7→ g(22`n/t2 · 2`/t) .

Hence, the multiplications in Equation (3) can be reduced to t multiplications in Z/(2`n/t+
1). This means computing t multiplications of `n/t + 1 bits each instead of a single
multiplication of `n bits. Recall that combining Nussbaumer with Kronecker substitution
leads to 2t such multiplications. For completeness, we summarize the proposed method in
Algorithm 1 which we refer to as Kronecker+.

We can now see that Algorithm 1 is a generalization of the method of Harvey [Har09,
§3.3]; setting t = 2 and ζ2 = 2`n/2 ≡ −1 mod 2`n/2 + 1 in Algorithm 1 is the same as
applying Harvey’s approach. In fact, we generalize his method by also considering the
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case t > 2, whereas Harvey does not go beyond t = 2 (at least not for negated evaluation
points). This generalization is made possible by the existence of t-th roots of unity in
Z[Y ]/(Y n/t + 1) via the map Ψ on Z[X]/(Xn + 1), which do not exist for generic integer
polynomial multiplication in Z[X]. Of course we can always embed any integer polynomial
of degree (at most) n− 1 into a ring of the form Z[X]/(X2n + 1) and apply Ψ to reduce to
t multiplications in Z[Y ]/(Y 2n/t + 1). This comes at the cost of approximately doubling
the bitsize for the multiplications.

To illustrate our algorithm, we provide an example. Note for comparison that in
Example 6 we reduce the polynomial multiplication to 8 multiplications, each of 9 bits,
using a transformation very similar to Schönhage-Strassen and Nussbaumer. However,
Nussbaumer (see Example 2) requires that t2 | n and therefore only allows t = 2, while
even in that case needing 4 multiplications (whereas Kronecker+ only uses 2). On the other
hand, Schönhage-Strassen (see Example 5) allows for t = 8, but reduces to 8 multiplications
of 25 bits each.

Example 6. Let f and g be as chosen in Example 1, where n = 8, and choose ` = 8 as in
Example 3. Therefore we can choose t = 8 as well, as it divides both n and `. As n = t,
splitting the ring simply gives Ψ(f) = f and Ψ(g) = g. Therefore, multiplying by the
weights Xi we get tuples

[−3, 0,−3X2,−X3, 0,−2X5, X6,−3X7] , [3, X, 3X2, 2X3,−2X4, 3X5, 3X6, 0] ,

respectively. Applying the map K that maps X 7→ 2`/t = 2 gives

[254, 0, 245, 249, 0, 193, 64, 130] , [3, 2, 12, 16, 225, 96, 192, 0] ,

where each entry is taken modulo 2`n/t + 1 = 28 + 1. We now take the cyclic convolution
with respect to the t-th root of unity ζt 7→ 22`n/t2 = 4 modulo 28 + 1, leading to the tuples

[107, 228, 53, 131, 248, 161, 94, 239] and [32, 116, 51, 47, 61, 105, 254, 129] .

These are multiplied pairwise to give [83, 234, 133, 246, 222, 200, 232, 248]. Inverting the
convolution leads to [7, 6, 241, 137, 32, 34, 1, 139], and undoing the weights Xi 7→ 2i`/t = 2i
in the Kronecker domain gives [7, 3, 253, 242, 2, 242, 253, 236]. Finally, converting to a signed
representation gives the tuple [7, 3,−4,−15, 2,−15,−4,−21], whose entries correspond to
the coefficients of h.

3.3 Efficient Implementation
Although the description in §3.2 is nice and compact, it is not immediately clear that this
can be efficiently implemented. Indeed, polynomial evaluations f(Mi) and g(Mi) initially
appear to be of quadratic complexity in t, while multiplications by roots of unity and
divisions by t and 2i`/t could be costly. Therefore we comment here on the circumstances
in which Kronecker+ could best be used and show that it can be used efficiently on modern
(embedded) computer platforms.

Although not technically necessary for Kronecker+, division by t is most efficient to
implement whenever it is a power of two t = 2τ . This means it can simply be computed
as a bit shift by τ bits, which can be done very cheaply. The same holds for division by
the weights 2i`/t. As the Kronecker parameter ` will commonly be chosen to be a power
of two as well (since it makes it easy to implement on modern platforms), the restriction
t | ` is equivalent to τ ≤ log(`). In particular, for polynomials with fairly small and few
coefficients for which ` can be chosen to be small, this implies that τ will not grow very
large. For example, for Kyber in the work of [AHH+18, §5.4], ` = 32 was set, which would
result in an upper bound of τ ≤ 5 for Kronecker+. We emphasize that in this case applying
τ = 2 would have reduced the 8192-bit multiplication to 4 multiplications of approximately
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2048 bits each, which can be handled by the RSA co-processor in [AHH+18]. Instead, they
resort to Harvey’s method with an additional layer of schoolbook multiplication, resulting
in 8 multiplications of 2048 bits each. In this case Kronecker+ therefore halves the number
of required multiplications: already showing its strength compared to alternatives.

There is further reason to set t to be a power of two. Line 1 of Algorithm 1 in §3.1 can
be decomposed into three steps:

1. Compute Fi(2`) and Gi(2`) for i = 0, . . . , t− 1,

2. Compute 2i`/t · Fi(2`) and 2i`/t ·Gi(2`) for i = 0, . . . , t− 1,

3. Compute f(Mi) =
∑t−1
j=0 22ij`n/t2Fj(2`)2j`/t and g(Mi) =

∑t−1
j=0 22ij`n/t2Gj(2`)2j`/t.

The first step is essentially free if the coefficients are positive (as they can be all be
represented with less than ` bits), since it is just a matter of reordering the coefficients of
f and g. It becomes much more complicated when the coefficients are signed, since we
have to take carries into account. We elaborate on this in more detail in §4.3.1.

The second step requires shifts by 2i`/t, which are cheap and often even free through
the use of (for example) barrel shifters. Moreover, if i`/t is a multiple of the word size
of the platform, then such shifts can be implemented by simply relabeling words. There
can potentially be an additional cost by adding a reduction modulo 2n`/t + 1, but this has
linear cost and can even be completely avoided by using lazy reduction techniques.

The main cost comes from the third step. However, the main advantage of decomposing
Line 1 of Algorithm 1 in this fashion should now be clear: computing the linear combi-
nations has naïve complexity of O(t2) operations, but can instead be implemented with
complexity O(t log t) by using Cooley-Tukey butterflies [CT65]. These are particularly
easy to implement when t is a power of two. Note that the butterfly algorithm also requires
several multiplications by roots of unity 22ij`n/t2 , but these are constructed to be powers
of two. Therefore these operations can be done with shifts, or by relabeling words if
2ij`n/t2 is a multiple of the word size. Completely analogous statements apply to Line 3
of Algorithm 1, which is in essence an inverse convolution.

Finally, since t and ` are powers of two, combined with the fact that t | n and ` | n,
makes the choice of n also being a power of two a natural one. Note in particular that there
are no restrictions on the coefficients of f and g themselves, besides the coefficients of their
product being representable with ` bits. For example, we do not need that 2n | (q− 1) and
can freely choose q according to cryptographic requirements (as opposed to algorithmic
ones). See, for example, [vdL16, §5.3] for further discussion in this direction. This implies
for instance that the above algorithm applies to Kyber (where q = 3329 is prime) as well
as Saber (where q = 213 is a power of two).

4 Cryptographic Application

The scenarios in which the described techniques can be applied are fairly clear: whenever
operations in rings of the form Z[X]/(Xn + 1) are used. In particular, we can consider
rings of the form Zq[X]/(Xn + 1) and lift the coefficients to Z. This still leaves many of
the proposals selected as finalists in the NIST standardization effort to be considered, as
all lattice-based submissions use rings of this form at one point or another. In this section
we focus on KEMs as the required operations are often simpler, and comparison with
existing work for Kyber [AHH+18] (with (n, q) = (256, 3329)) and Saber [WGY20] (where
(n, q) = (256, 213)) is possible. However, we emphasize that many analogous statements
can for example be made about Dilithium [DKL+18] (with (n, q) = (256, 8380417)).
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4.1 Polynomial Multiplication in Kyber and Saber
The arithmetic core in both Kyber and Saber is to multiply a k × k matrix A with a
k× 1 vector s, where the entries of the matrix and vectors are elements of Zq[X]/(Xn + 1).
More concretely, the main operation is to multiply and accumulate k polynomials as
bi =

∑k−1
j=0 ai,j ·sj , which in turn has to be performed for 0 ≤ i < k. When using Kronecker

substitution, from a performance point of view, it is beneficial to multiply and accumulate
these k polynomial in integer representation to avoid converting them back separately
(requiring only k as opposed to k2 inverse transformations of Kronecker substitution). In
order to determine the required precision in Kronecker (i.e. the parameter `), the bounds
on the input need to be determined. Recall from §2.2.1 that the bound ` is independent of
the modulus Xn + 1. The coefficients of the polynomial ai,j are uniform in Zq and can
be represented in the interval [−q/2, q/2 − 1] when q is even, or [−(q − 1)/2, (q − 1)/2]
when q is odd. The coefficients of sj are samples in [−2, 2] for Kyber, and in [−µ, µ] for
Saber where µ = 5, 4, 3 depending on the security level. This means that the product
of 2 coefficients lies in the interval [−3328, 3328] for Kyber, requiring 12.7 bits. As each
coefficient of the product is an accumulation of k · 256 of such coefficients, for a signed
version of Kronecker it is sufficient to set ` = d12.7+log(k ·256)e for Kyber. This results in
` = 23 for security levels 1 and 3, and ` = 24 for security level 5. Completely analogously,
` = 25 suffices for all security levels of Saber.

However, as also noted in [AHH+18], it is beneficial to use ` = 32 such that it aligns
nicely with the byte boundaries and 32-bit datatypes on modern computer architectures.
Moreover, many of the required steps in Kronecker simplify significantly as we outline
in the remainder of this section. As we focus on Kyber and Saber, we shall also assume
that n = 256 in the remainder of this section. As a result, evaluating a polynomial
f ∈ Zq[X]/(X256 + 1) at 2`/t = 232/t results in integers of at most ` · n/t = 8192/t bits.

4.2 Compatibility and Performance Impact
We begin with a discussion on the compatibility of Kronecker substitution with Kyber and
Saber. This is easy for Saber: as all elements are sampled directly into Zq[X]/(Xn + 1)
we can immediately apply the Kronecker+ algorithm whenever polynomial multiplication
is performed.

For Kyber the situation is different. The approach taken in the NIST submission
optimizes for polynomial multiplication with the proposed NTT approach described
in [SAB+19]. An example is that the large Kyber matrix A ∈ (Zq/(X256 + 1))k×k, for the
Kyber modulus q = 3329 and the parameter k ∈ {2, 3, 4} depending on the parameter set,
is sampled directly into the NTT domain. These design decisions have an impact on the
performance of alternative approaches. When considering the Kronecker approach, the
authors of [AHH+18] note that this “basically nullify all gains from a different and faster
algorithm for polynomial multiplication” and decide not to be compatible with the Kyber
specification.

We re-iterate that this comment is absolutely right. For the encryption in Kyber-768,
when using Kronecker, one needs 6 additional inverse NTTs, while saving 2 NTT and 3
inverse NTT operations. Unfortunately the cost of the inverse NTT (5248 multiplications)
is almost twice that of the forward NTT (2688 multiplications): hence, the additional cost
due to these extra inverse NTT operation nullifies any hope of a performance optimization.
In other words, no matter how fast the arithmetic co-processor, a Kyber specification-
compatible implementation using a Kronecker approach will always be slower.

Fortunately, in the setting of Saber the approach for encryption and decryption is
virtually the same (even the degree n = 256 and the number of polynomials k = 3 is the
same as in Kyber-768) with the exception that no NTT is used. Hence, the additional
cost to compute the inverse NTTs is not present and a performance speed-up can be
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expected. This is further investigated in §4.7 and was also considered by Wang, Gu
and Yang [WGY20] on the ESP32 platform [Esp], who apply Kronecker substitution and
Harvey’s negated point methods to Saber.

4.3 Polynomial to Integer Representation: “Snort”
The first step of Kronecker+ (see Line 1 of Algorithm 1) is to evaluate polynomials
f, g ∈ Zq[X]/(X256 + 1) at ζit · 2`/t for i = 0, . . . , t− 1, where ζt = ζt(232) = 216384/t2 as
defined in §3.2, and to reduce modulo 28192/t + 1. The analogous operation in [AHH+18,
Algorithm 7] is called “snorting”. As mentioned in §3.1, we split this operation up into
several parts which we will discuss separately. First, we apply the map Ψ from Equation (2),
which [AHH+18, §4] refers to as “splitting the ring”, to obtain t polynomials of degree t−1
in Z[Y ]/(Y 8192/t + 1). This step is essentially trivial, as we simply relabel the coefficients
of f and g. Then we evaluate all t polynomials at 232, which we elaborate on in §4.3.1.
Only afterwards do we apply an NTT with respect to the t-th root of unity, which is
discussed in §4.3.2.

4.3.1 Kronecker Substitution after Splitting the Ring

Let Ψ(f) =
∑t−1
i=0
(∑256/t−1

j=0 fi+jtY
j
)
Xi, such that splitting the ring leads to the t

polynomials
Fi(Y ) =

∑256/t−1
j=0 fi+jtY

j , for i = 0, . . . , t− 1 ,

that are to be evaluated at 232. It is important to distinguish the cases where the coefficients
fi+jt are signed, and where coefficients are unsigned. The unsigned case again leads to a
very straightforward application of Kronecker substitution: since all coefficients are strictly
less than 232 there is no overlap between coefficients and the 32-bit limbs are simply fi+jt.
If the word size of the co-processor is a multiple of ` = 32 (which is a plausible assumption),
this means we can simply put the coefficients in the right place in the processor words.
This can be done with only logical “or” operations. The same of course also applies to g.

Unfortunately, in Kyber and Saber polynomials with signed coefficients are used. More
specifically, the secret keys are polynomials whose coefficients are sampled from a centered
binomial distribution, i.e., from [−µ, µ] for some small (positive) µ < 6. This leads to
carries in the evaluation at 232, causing additional overhead [AHH+18, §5.3]. One possible
optimization to lower the number of required shift and additions is to divide the coefficients
into positive and negative values and then put as many 32-bit coefficients into “free slots”
of the large integer values and add / subtract them together. However, as the coefficients
for these polynomials in Kyber and Saber are secret, this is difficult to accomplish in a
constant-time manner without leaking the sign bits of the individual coefficients.

Alternatively, the coefficients can be converted to signed representation. As they are
elements of Zq, we can represent −µ as the positive integer q − µ and evaluate at 232.
However, this impacts the Kronecker parameter ` as the coefficients of the secret key would
lie in the interval [q − µ, q + µ] as opposed to [−µ, µ]. In the particular cases of Kyber
and Saber this would imply that the coefficients of products can no longer be represented
with 32 bits, and we would have to resort to ` = 64. This has significant impact on the
performance. Note that this already assumes we add q to both the negative as well as the
positive coefficients, as adding it to only the negatives ones could again leak information
about the secret.

To remedy the impact of signed coefficients on the Kronecker parameter `, we subtract
q again from the coefficients. We do this after the Kronecker substitution to get both
the advantage of not having carries, as well as not needing to increase `.. As Kronecker
substitution is commutative with respect to the subtraction of polynomials and integers,
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t = 2
(F0, F1) = (F0 + F1, F0 − F1).
t = 4
(F0, F1, F2, F3) = (F0 + F1, F0 − F1, F2 + F3, F2 − F3),
(F0, F2, F1, F3) = (F0 + F2, F0 − F2, F1 + (F3 � 1024), F1 − (F3 � 1024)).
t = 8
(F0, F1), (F2, F3) = (F0 + F1, F0 − F1), (F2 + F3, F2 − F3),
(F4, F5), (F6, F7) = (F4 + F5, F4 − F5), (F6 + F7, F6 − F7),
(F0, F2), (F1, F3) = (F0 + F2, F0 − F2), (F1 + (F3 � 512), F1 − (F3 � 512)),
(F4, F6), (F5, F7) = (F4 + F6, F4 − F6), (F5 + (F7 � 512), F5 − (F7 � 512)),
(F0, F4), (F1, F5) = (F0 + F4, F0 − F4), (F1 + (F5 � 256), F1 − (F5 � 256)),
(F2, F6) = (F2 + (F6 � 512), F2 − (F6 � 512)),
(F3, F7) = (F3 + (F7 � 768), F3 − (F7 � 768)).

Figure 1: Example operations required for the convolution with t-th root of unity 216384/t2

for choices τ = 1, 2, 3, where all operations take place in the ring Z/(28192/t + 1). Here we
write Fi = 232i/t · Fi(232) and compute the NTT in place.

this amounts to performing the same computation. In other words,

Fi(232) =
∑256/t−1
j=0 fi+jt · 232j =

∑256/t−1
j=0 (fi+jt + q) · 232j −

∑256/t−1
j=0 q · 232j

for i = 0, . . . , t − 1. Note that these are subtractions modulo 28192/t + 1 with the fixed
polynomial

∑256/t−1
j=0 q · 232j that can be stored in advance. Although this involves extra

additions and subtractions, these can easily be made independent of the secret key and
therefore leak no information. To finalize the Kronecker subtitution step we multiply
Fi(232) by 232i/t by left shifting with 32i/t bits.

4.3.2 Applying the NTT

Having obtained 232i/t · Fi(232) for i = 0, . . . , t− 1, we can apply the NTT with respect to
t-th root of unity 216384/t2 modulo 28192/t + 1, i.e., to compute

f(216384i/t2 · 232/t) =
∑t−1
j=0 216384ij/t2232j/tFj(232) mod 28192/t + 1

for i = 0, . . . , t− 1. At first glance this seems to require many multiplications by the roots
of unity 216384ij/t2 . However, one can see that many of them vanish modulo 28192/t + 1.
For example, for t = 1, 2 we have 216384ij/t2 ≡ 1 mod 28192/t + 1 for all i, j. For t = 4 we
have 216384ij/t2 = 21024ij which is non-trivial modulo 22048 only whenever both i and j
are odd. Similarly, for larger t many of the multiplications by roots of unity vanish.

We perform the NTT computation with typical Cooley-Tukey butterflies [CT65],
requiring t log t additions/subtractions [Sei18]. To make this more concrete, we summarize
the NTT operations for t = 2, 4, 8 in Figure 1. Recall that the requirement that t = 2τ |
32 = ` implies that τ < 6 in the case of Kyber and Saber. We omit t = 16, 32 in Figure 1
because they are tedious to write down (and read), but they are structured similarly. The
operations demonstrate that the number of additions/subtractions is simply t log t, as
expected. In particular, it shows that the case t = 2 reduces to the same operations as
computed by Harvey [Har09].

Although all operations here are performed modulo 28192/t+1, a standard lazy reduction
techniques can be applied to avoid any modular reductions until the very end. This will
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be particularly true when the co-processor has w-bit words with w | (8192/t), in which
case we need exactly 8192/(tw) + 1 registers with a total of 8192/t+ w bits to represent
(8192/t+ 1)-bit integers. In that case we would have w − 1 redundant bits that can be
used for lazy reduction.

Finally we make some remarks on implementing the multiplications (i.e., bit shifts)
by roots of unity. As a guiding example consider the operation F1 = F1 + (F3 � 1024)
from Figure 1 for t = 4. Writing F1 = FL1 + 21024FH1 and F3 = FL3 + 21024FH3 as a
decomposition of two (approximately) 1024-bit sequences, one can see that

F1 + (F3 � 1024) ≡ (FL1 − FH3 ) + 21024 · (FH1 + FL3 ) mod 22048 + 1 .

Ideally, we could implement this as two 1024-bit additions/subtractions, and therefore
having no overhead over a single 2048-bit addition/subtraction. The caveat is that FL1 −FH3
might produce a carry, which needs to be dealt with (in constant time). In the worst case
the carry is subtracted (and propagated) from 21024 · (FH1 + FL3 ) with the approximate
cost of a 1024-bit subtraction, but many platforms might be able to handle this much
more efficiently. More generally, bit shifts can in the worst case be implemented with
28192/(2t)-bit additions/subtractions (on average), and be (essentially) free in the best case.

4.4 Multiplication of Integers
The multiplications in Line 2 of Algorithm 1 are technically the most straightforward
operations: simply multiplying two integers modulo 28192/t+ 1. There are a few of remarks
that can be made about the size of the multiplier. As integers modulo 28192/t + 1 can be
represented in 8192/t+ 1 bits, while t is a power of 2, we will need a slightly awkward size
multiplier. For example, for t = 32 we need a 257-bit multiplier. A similar problem arises
in [AHH+18], who use a multiplier that can handle integers slightly larger than 2048 bits.

A particularly interesting case is where the internal word size w of the co-processor is
fairly small. As was the case for lazy reduction, we need exactly 8192/(tw) + 1 registers
with a total of 8192/t + w bits to represent the (8192/t + 1)-bit integers. As the w − 1
redundant bits should be more than enough to accumulate the values during the forward
NTT (e.g., when w = 64 or w = 128), no reductions modulo 28192/t + 1 are necessary
before multiplying values with 8192/(tw) + 1 limbs each.

Moreover, a typical co-processor will support multiply-and-accumulate operations that
do not need require dedicated additions to accumulate the intermediate products. In that
case the additions do not add to the complexity of the algorithm. Note that in the case of
Kyber and Saber we perform a k-way accumulation of polynomial products, which can
also be achieved with multiply-and-accumulate operations without explicit additions. On
the other hand, it will be necessary to reduce the products modulo 28192/t + 1. This can
be done with t subtractions of about 8192/t bits each. By accumulating before reducing
we require only k such reductions (as opposed to k2).

4.5 Inverting the NTT
The inverse NTT operation is essentially the same as the forward transformation described
in §4.3.2 (with inverted roots of unity). The main difference is that we do not need to split
the ring, i.e., do not need an application of Ψ. Furthermore, as we only invert the result of
the k × k matrix multiplication with a k × 1 vector, we only apply an inverse NTT to k
polynomials (as opposed to k2 + k forward transformations). This implies that the cost
of the inverse is much less significant. A similar statement applies to the dot products
performed in Saber and Kyber. Finally, we can implement division by t · 232i/t by another
application of bit shifting, since 2−32i/t ≡ −2(8192−32i)/t mod 28192/t + 1.
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Algorithm 2 Sneeze-Fast with modulus
m ∈ Z[X] where m is monic of degree n
from [AHH+18].

Input: ` ∈ Z (bit length); G ∈ Z/m(2`)
Output: h =

∑n−1
i=0 hiX

i ∈ Z[X]/(m)
with hi ∈ [−2`/2, 2`/2 − 1]

1: n← deg(m)
2: G−1 ← G
3: c← 0
4: for i = 0, 1, . . . , n− 1 do
5: ei ← Gi−1 mod 2`
6: Gi ← (Gi−1 − ei)/2`
7: ei ← ei + c
8: if ei > 2`−1 then
9: ei ← ei − 2`

10: c← 1
11: else
12: c← 0
13: hi ← ei
14: for i = 0, 1, . . . n− 1 do
15: hi ← hi −mi · (Gn−1 + c)

Algorithm 3 Optimized sneeze for m =
X256 + 1 (n = 256 and ` = 32).

Input: t integers ai =
∑256/t
j=0 ai,j · 232i with

ai,j ∈ [0, 232 − 1]
Output: h =

∑n−1
i=0 hiX

i ∈ Z[X]/(m) with
hi ∈ [−216, 216 − 1]

1: for i = 0, 1, . . . , t− 1 do
2: carry← 0
3: for j = 0, 1, . . . , 256/t− 1 do
4: limb← ai,j + carry
5: carry← (limb� 31) | (ai,j � 31)
6: hj·t+i ← limb
7: hi ← hi − (carry + ai,256/t)

4.6 Integer to Polynomial Representation: “Sneeze”
The final step in the Kronecker substitution (see Line 3 of Algorithm 1) is to convert the
integer(s) result of the inverse NTT back to the polynomial representation in Z[X]/(X256 +
1). This conversion is denoted as “sneeze” in [AHH+18] and also supports signed coefficients.
The basic approach behind this algorithm can be explained most easily by considering the
unsigned variant such that the output coefficients of h = f · g are all positive and when
the required precision matches the computer word size: ` = 32. The generic algorithm
as presented in Algorithm 2 from [AHH+18] then boils down to computing nothing: just
re-interpret the array of 32-bit words of the integer resulting from the inverse NTT when
written down in the radix-232 representation a =

∑
i ai · 232i, where 0 ≤ ai < 232, as the

array which represent the coefficients of h =
∑
i hi ·Xi, where 0 ≤ hi < 232: i.e., simply

use hi = ai. For the signed setting, where the output coefficients hi can be negative,
slightly more work is needed.

In the setting of Kyber and Saber, where we assume that ` = 32, this means that
even for the signed version of the conversion from integer to polynomial the algorithm
can be simplified significantly. For example, Line 9 checks if a 32-bit integer is greater
than 231 and, if so, subtracts 232: when using two’s complement to represent signed
integers (as is common on virtually all modern computer platforms) this operation can be
omitted. It checks if the most significant bit is set in the unsigned representation and if so
makes the number negative by setting the most significant bit in the signed representation.
Hence, this can be done by simply reinterpreting (or casting) the integer. Moreover, the
(potentially non-constant time) “if” statement to check for carries is implemented as a
simple “or” operation on two bits. These optimizations are shown in our generic setting in
Algorithm 3.

4.7 Performance Impact
In this section we give a crude estimate of the performance impact of Kronecker+ to
determine if and when our approach becomes beneficial in practice. We present here a
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Table 2: The number of required w-bit multiplication and addition instructions needed in
Saber encryption and decryption using a arithmetic co-processor working on w bits and
the Kronecker+ approach working with t integers.

t

w op. 1 2 4 8 16 32

32 #M 792 588 399 384 202 800 104 544 55 488 31 104
#A 0 4 902 10 507 16 663 23 579 32 015

64 #M 199 692 101 400 52 272 27 744 15 552 9 600
#A 0 2 470 5 339 8 607 12 559 17 993

128 #M 50 700 26 136 13 872 7 776 4 800 3 456
#A 0 1 254 2 755 4 579 7 049 10 982

256 #M 13 068 6 936 3 888 2 400 1 728 1 536
#A 0 646 1 463 2 565 4 294 7 011

(a) Saber encryption, the Toom-Cook/Karatsuba approach uses approximately 201 156 uint16_t
multiplications and 312 396 uint16_t additions.

t

w op. 1 2 4 8 16 32

32 #M 198 147 99 846 50 700 26 136 13 872 7 776
#A 0 1 806 3 871 6 139 8 687 11 795

64 #M 49 923 25 350 13 068 6 936 3 888 2 400
#A 0 910 1 967 3 171 4 627 6 629

128 #M 12 675 6 534 3 468 1 944 1 200 864
#A 0 462 1 015 1 687 2 597 4 046

256 #M 3 267 1 734 972 600 432 384
#A 0 238 539 945 1 582 2 583

(b) Saber decryption, the Toom-Cook/Karatsuba approach uses approximately 50 289 uint16_t
multiplications and 78 099 uint16_t additions.

simplistic analysis which will not reflect reality (at least not in all contexts) as this is
heavily vendor-specific. For this comparison we use the Saber security level 3 (n = 256
and k = 3) parameter set for Round 2 of the NIST PQC Standardization. As in §4.2,
we focus on the main arithmetic operations performed in encryption and decryption. In
Saber the use of two-power moduli precludes NTT-like multiplication algorithms, so the
designers resort to a combination of Toom-Cook and Karatsuba.

In Table 2 the number of addition and multiplication instructions are given by the
arithmetic co-processor when using the Kronecker approach with t ∈ {20, 21, . . . , 25} and
operating on w ∈ {32, 64, 128, 256} bit words. Hence, this considers the word length of
typical embedded ARM devices (w = 32), x86 platforms (w = 64) and wider lengths
of vendor specific arithmetic co-processors. Again, these numbers for the arithmetic
co-processor are overly simplistic; they ignore any load and store operations (which
can be significant), ignore some of the shifts and assume the additions done in the
large integer multiplications can be merged into calls to the multiply-and-accumulate
instructions. Moreover, for simplicity the lowest level multiplication approach is assumed
to be schoolbook irrespective of the size: this is most definitely sub-optimal for Kronecker+
for some small to medium w and t combinations but then only highlights that the cross-over
point to using this technique can be even lowered. However, the whole purpose of this
estimation is to give an indication if this approach makes sense in the presence of arithmetic
co-processors.

For the estimates in Table 2 we use that the number of additions needed for an (inverse)
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transform inside Kronecker+ is d(`n/t+ 1)/we · t log t (see §4.3.2), while the total number
of multiplications for the t integer multiplications is t · d(`n/t+ 1)/we2 (see §4.4). The bit
shifts within the transforms are counted as half-size additions of d(`n/(2t) + 1)/we words
each, of which there are 0, 1, 1, 5, 17, 49 for t = 1, 2, 4, 8, 16, 32 respectively (see §4.3.2).

The baseline counts for Saber, stated in the captions of Table 2a and Table 2b, are
obtained by counting the number of additions and multiplications (multiply-and-add
instructions are counted as a single multiplication) in the optimized implementation of
Saber.1 We note that the multiplications and additions in Saber are all for 16-bit data
types. These can be implemented directly on small (or large) platforms, but can be
improved on for various platforms through parallelization techniques. For example, the
Saber team also puts forward an implementation using the Advanced Vector Extensions
(AVX) of Intel, leading to up to a 45% improvement for decapsulation [DKRV19, §5] and
somewhat smaller improvements for key generation and encapsulation. Although an up
to 45% reduction of cycles counts on Intel platforms is of course non-negligible, it is by
no means several orders of magnitude. Therefore for a comparison with the optimized
implementation we can still draw meaningful conclusions. Furthermore, on many smaller
platforms (analogs of) AVX instructions will not be available. This is just one of the many
examples where the choice of platform can significantly impact the efficiency of the various
algorithms.

Finally, we turn to the numbers collected in Table 2. We first observe that the choice
of t is an important one. As is typical for (symbolic) NTT-based approaches growing t
will reduce the cost of the multiplications, but the resulting the overhead of the (inverse)
transformations is non-negligible. For smaller w (e.g., w = 32) larger values of t will be
more interesting as multiplications are relatively more costly initially. For w = 32 it seems
that t = 32 is likely to lead to an improvement (for both encryption as well as decryption)
even in the case where a w-word multiplication has the same cost as a w-word addition
(while it is even often more costly). For larger w (e.g., w = 256) the crossover point is more
likely to be earlier, as for example the sum of multiplications and additions is minimized
for t = 8 for Saber encryption.

Furthermore we see that Kronecker+ can lead to significant improvements for Saber
implementations. Even in the most basic scenario of standard Kronecker substitution
(t = 1) with schoolbook multiplication, just having a larger multiplier available can
significantly reduce the number of required additions and multiplications. This was also
demonstrated by Wang, Gu and Yang [Esp, Table 6], who show a factor larger than 7×
improvement compared to the reference implementation on the ESP32 platform. Instead
of directly using schoolbook multiplication, they do also employ a layer of Toom-Cook and
Karatsuba. However, Table 2 reveals that Kronecker+ with larger values of t could give
rise to even better performance improvements.
Remark 1. Note that a single polynomial in Saber consists of 256 coefficients that are
represented in 16-bit datatypes, hence require 512 bytes of memory. Applying Kronecker+
with ` = 32 leads to a representation of t integers of 8192/t bits each, which needs 1024
bytes of memory. Therefore memory requirements for Kronecker+ are slightly higher than
for regular Saber, which could pose challenges for smaller platforms (in particular when
multiple polynomials are stored simultaneously during matrix multiplication).

5 Conclusions
We introduced a more flexible way of computing polynomial multiplications in the ring
Z[X]/(Xn + 1) that can be combined particularly well with Kronecker substitution and
allows for efficient implementation using widely available arithmetic co-processors. This

1https://github.com/KULeuven-COSIC/SABER/tree/master/Reference_C

https://github.com/KULeuven-COSIC/SABER/tree/master/Reference_C
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algorithm, which we refer to as Kronecker+, makes use of the available roots of unity by
computing a symbolic NTT and can be seen as a variant of the Nussbaumer algorithm, as
well as a generalization of Harvey’s multipoint Kronecker substitution.

From a theoretical point of view this allows for faster polynomial multiplication in
the targeted ring Z[X]/(Xn + 1) on computer architectures with large multipliers. From
a practical point of view we outline implementation considerations when contemporary
co-processors are put to the task of accelerating post-quantum cryptography. We have
demonstrated the potential of Kronecker+ in this setting by implementing the finalist
scheme Saber using various instantiations of arithmetic co-processors.
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