
Post-Quantum Cryptography with Contemporary Co-Processors
Beyond Kronecker, Schönhage-Strassen & Nussbaumer

Joppe W. Bos
NXP Semiconductors

Joost Renes
NXP Semiconductors

Christine van Vredendaal
NXP Semiconductors

Abstract
There are currently over 30 billion IoT (Internet of Things)
devices installed worldwide. To secure these devices from
various threats one often relies on public-key cryptographic
primitives whose operations can be costly to compute on
resource-constrained IoT devices. To support such operations
these devices often include a dedicated co-processor for cryp-
tographic procedures, typically in the form of a big integer
arithmetic unit. Such existing arithmetic co-processors do
not offer the functionality that is expected by upcoming post-
quantum cryptographic primitives. Regardless, contemporary
systems may exist in the field for many years to come. In
this paper we propose the Kronecker+ algorithm for polyno-
mial multiplication in rings of the form Z[X]/(Xn +1): the
arithmetic foundation of many lattice-based cryptographic
schemes. We discuss how Kronecker+ allows for re-use of
existing co-processors for post-quantum cryptography, and
in particular directly applies to the various finalists in the
post-quantum standardization effort led by NIST. We pro-
vide a detailed implementation analysis which highlights the
potential of the Kronecker+ technique for commonly avail-
able multiplier lengths on contemporary co-processors. We
validate this approach with an implementation of the algo-
rithm running on an ARM Cortex-M4 core: the recommended
embedded target platform by NIST.

1 Introduction

The number of IoT devices has steadily outgrown the number
of humans living on this planet and is expected to keep in-
creasing [22]. To secure these and many other devices, Elliptic
Curve Cryptography (ECC) [19, 23] and the Rivest–Shamir–
Adleman (RSA) [31] algorithm are vital components in our
public-key infrastructure based on secure key exchange and
digital signatures. On these embedded (IoT) devices speed
is a key performance indicator. To enable them to securely
and efficiently execute the complex cryptographic algorithms,
many have access to dedicated hardware accelerators or so-

called co-processors. Typically, for ECC and RSA these co-
processors consist of a hardware-supported instruction set
that enables the device to compute large-integer arithmetic
routines efficiently and securely.

With the steady progress in the development of a quan-
tum computer, the security of our public-key infrastructure
is being threatened. When a full-scale quantum computer
would become a reality, Shor’s algorithm [35] is able to re-
cover private keys used in ECC/RSA in polynomial time. To
prepare for this threat, alternative cryptographic algorithms
are necessary; these are called post-quantum, or quantum-
safe, cryptographic algorithms. In an effort to standardize
such algorithms the US National Institute of Standards and
Technology (NIST) put out a call for proposals [25] for cryp-
tographers to submit candidate algorithms in 2016. As of July
2020, seven out of fifteen remaining candidates are marked
as finalists of which a subset is expected to be standardized
in the upcoming three years.

For embedded devices the migration to completely new
public-key cryptography algorithms results in multiple practi-
cal challenges. None of the seven finalists require large integer
arithmetic, which is the computationally expensive operation
in both ECC and RSA and exactly what is offered by existing
public-key co-processors. Adding new dedicated hardware
support means a significant investment for new generations of
devices that cannot be started yet as it is not clear which can-
didate schemes will be standardized. Additionally, the design,
testing and (most prominently) the migration time for these
co-processors is expected to span many years if not decades.

Five of the finalists do have in common that they are so
called ring-based lattice schemes. For these schemes the pri-
mary bottleneck in terms of performance is to multiply poly-
nomials with integer coefficients: a typical example is to work
with polynomials from Z[X]/(Xn + 1) where n is a power
of two. At CHES 2019, Albrecht, Hanser, Hoeller, Pöppel-
mann, Virdia and Wallner [1] proposed to apply Harvey’s
improvements [15] to Kronecker substitution [20, 33] to con-
vert polynomial multiplication to large integer multiplica-
tion and thereby unlock the potential of the already existing

1

co-processors. Subsequently, this approach was explored by
Wang, Gu and Yang for application to post-quantum crypto
scheme Saber [39].

In this paper we expand on this line of research and present
a new method to realize fast polynomial arithmetic implemen-
tations on embedded devices which have access to commonly
used arithmetic co-processors. We show how one can gen-
eralize Harvey’s negated-evaluation-points technique such
that it works in polynomial rings as frequently used in post-
quantum cryptography. Our new method can also be viewed as
a variant of Nussbaumer polynomial multiplication [26] com-
bined with Kronecker substitution, which we call Kronecker+.
It opens up the possibility to compute a symbolic Number
Theoretic Transform (NTT) in the polynomial rings used in
the post-quantum cryptographic submissions, which in turn
can be computed by multiple smaller integer multiplications
using Kronecker substitution in a clever way. On contem-
porary co-processors this results in a more efficient polyno-
mial multiplication, compared to existing approaches such as
Schönhage-Strassen [32] and Nussbaumer [26]. More con-
cretely, although the overhead of the forward and backward
transforms is similar to that of Nussbaumer and Schönhage-
Strassen, Kronecker+ halves the number or the bit size, re-
spectively, of the required multiplications when compared
to the aforementioned methods. In Table 1 an overview is
presented of combining different approaches with Kronecker,
including the new approach from this paper: Kronecker+.

In the setting of the NIST finalist Kyber [34] (which is
almost identical to Saber [12] for our purposes), and more
specifically for the parameters of Kyber-768 (n = 256 and
`= 32), in [1] it is shown that one polynomial multiplication
can be computed using the standard Kronecker substitution
approach with a single multiplication of 8197 bits, and using
Harvey’s negated-evaluation-points technique with two inte-
ger multiplications of 4097 bits each. Kronecker+ enables
further division into exactly t = 2τ integer multiplications
of 8196/t + 1 bits each, where τ < 6 is a positive integer,
where the exact optimal choice of τ will strongly depend on
platform-specific details.

Of course one could use asymptotically faster multiplica-
tion methods for the one or two large integer multiplications.
For example, Karatsuba [18] replaces one multiplication of b
bits with three multiplications of b/2 bits plus some overhead
in the form of additions (or subtractions) and can be applied
recursively. Moreover, r-way Toom-Cook [10,37] generalizes
this multiplication approach and replaces one b-bit multi-
plication with 2r− 1 multiplications of approximately b/r
bits plus some overhead for the evaluation and interpolation
formula used (r = 2-way Toom-Cook is approximately equiv-
alent to one layer of Karatsuba). This immediately highlights
the potential of our new approach: while r-way Toom-Cook
can reduce one b-bit multiplication to 2r−1 multiplications
this can be done with r multiplications using Kronecker+
(where both approaches reduce to approximately b/r-bit mul-

Algorithm # Muls # Bits

Kronecker (KS1) 1 `n+1
Harvey (KS2/KS3) 2 `n/2+1
Harvey (KS4) 4 `n/4+1
Kronecker + Karatsuba 3log t (`n+1)/t
Kronecker + Toom-Cook-t 2t−1 (`n+1)/t
Kronecker + Schön.-Strassen t 2`n/t + t +1
Nussbaumer + Kronecker 2t `n/t +1
Kronecker+ (this work) t `n/t +1

Table 1: Comparison of number of multiplications of certain
bit length required for multiplying two polynomials with n
coefficients each. Here ` is the parameter for Kronecker sub-
stitution (i.e., evaluating at 2`) and t specifies the depth (if
applicable) of the algorithm.

tiplications). A high-level overview on how to perceive our
contribution in light of the many other available multiplication
approaches one could try with Kronecker (something which
was not done or considered in case of Schönhage-Strassen
and Nussbaumer in previous work) is shown in Table 1.

It should be noted that the number of multiplications of
course does not tell the full story since each of the methods
is accompanied by transformational overhead, usually in the
form of additions or multiplications by small constants. How-
ever, the overhead of Kronecker+ is comparable to that of a
regular NTT and of complexity O(t log t) by employing the
Cooley-Tukey butterfly approach [11]. In fact, because of
the smaller sizes of integers that we operate on, the overhead
will be smaller than for Schönhage-Strassen and Nussbaumer.
Especially for small values of τ, the overhead of the transfor-
mations is small even when compared to layers of Karatsuba
or Toom-Cook. See Table 4 for a detailed comparison of
Kronecker+ against Karatsuba.

In short, we summarize our contributions as follows:

1. We design Kronecker+, a polynomial multiplication
method that generalizes the techniques of Harvey and
Nussbaumer to reduce polynomial to integer multiplica-
tions, enabling the use of contemporary co-processors.

2. We provide a detailed performance analysis of
Kronecker+. In doing so, we also analyze the efficiency
of the existing multipoint Kronecker substitution whose
runtime was only computed asymptotically.

3. We implement the algorithm on an ARM Cortex-M4
core to validate the theoretical runtime analysis, and in-
tegrate it into the NIST finalist Saber to demonstrate
its applicability to leading post-quantum cryptography
schemes. Based on this, we provide performance esti-
mates for Saber with the aid of co-processors and show
that Kronecker+ has huge potential to improve its effi-
ciency on a wide variety of co-processors.

2

For the benefit of the reader, we include high-level
Sage [36] code to simplify verification of the correctness
of Kronecker+.1 We shall also release the Cortex-M4 imple-
mentation in C and assembly that was used to generate the
various cycle counts.

2 Preliminaries

2.1 NIST PQC Candidates

Of the fifteen remaining candidates in the third round of the
NIST standardization effort, seven are lattice-based. These
are CRYSTALS-Kyber [34], NTRU [40], Saber [12] (KEM
finalists), CRYSTALS-Dilithium [21], Falcon [29] (digital sig-
nature finalists), FrodoKEM [24] and NTRU Prime [4] (KEM
alternates). For our purposes the most interesting candidates
are Kyber, Saber and Dilithium whose main ring operations
are performed in Zq[X]/(Xn +1) for some choice of q and n
fixed across all parameter sets. Many of our results can also
be applied to NTRU and NTRU Prime, though one would
have to change rings which in practice means doubling the
size of the involved polynomials. A similar statement holds
for the non-FFT operations in Falcon, while FrodoKEM does
not contain any polynomial multiplication at all.

2.2 Polynomial Multiplication

Let f = ∑
n−1
i=0 fiX i and g = ∑

n−1
i=0 giX i ∈ Z[X] be two poly-

nomials of degree less than n. In this section we describe
various methods that exist in the literature to compute the
multiplication h = (f ·g) mod (Xn+1). For many algorithms
the reduction modulo Xn + 1 has little effect, as it is only
applied (in a straightforward manner) after the more involved
multiplication in Z[X]. However, we include it here as it is
crucial for some of the polynomial multiplication algorithms
under discussion (e.g., Nussbaumer and Schönhage-Strassen)
and is relevant for cryptographic schemes that apply them
(e.g., Kyber and Saber). For these algorithms we introduce an
additional parameter t, which is a positive integer dividing n.

Note that in this section we are assuming that the polyno-
mial multiplications are performed in (quotient rings of) Z[X].
Most algorithms however can be applied more generally over
other rings R . In this case there is an extra assumption that
multiplication by t and 2t are injective maps, and hence that
they can be inverted. This holds of course for Z, but does not
necessarily hold for general rings R .

All algorithms that we describe are well known, so one
could argue that a detailed description is not necessary. We
have opted to include it here for completeness, as they appear
scattered over the literature with varying notation and level
of detail. We add the relevant references in the respective
sections. Moreover, presenting them in a single framework

1https://joostrenes.nl/software/kroneckerplus.tar.gz

with unified notation will make it easier to introduce our own
contributions (and, hopefully, highlight the elegance of their
simplicity). Finally, inspired by Harvey [15], we set up a small
running example to ease the comparison between different
(relevant) multiplication methods.

Example 1. Let f and g be the two arbitrarily chosen
polynomials f (X) =−3−3X2−X3−2X5 +X6−3X7 and
g(X) = 3+X +3X2 +2X3−2X4 +3X5 +3X6, whose coef-
ficients can be represented with 3 bits in the interval [−3,3].
The goal is to compute the product h = (f · g) mod X8 + 1,
which is easily checked to be the polynomial h(X) = 7+3X−
4X2−15X3 +2X4−15X5−4X6−21X7.

2.2.1 Karatsuba and Toom-Cook

Karatsuba [18] and its generalization Toom-Cook [10, 37]
are multiplication methods which are asymptotically faster
compared to the schoolbook algorithm, which runs in O(N2)
for N×N → 2N bit multiplication. The idea behind k-way
Toom-Cook (where k = 1 is equal to schoolbook and k = 2
essentially to Karatsuba) is to split the single N-bit multipli-
cation into 2k−1 multiplications of approximately N/k bits
such that the run-time is O(Nlog(2k−1)/ log(k)). This is done
by evaluating the polynomials at 2k−1 distinct points, and
performing an interpolation after having performed 2k− 1
smaller multiplications. See [6] for more details on how to
optimally compute the Toom-Cook multiplication.

The 2-way (O(N1.585)), 3-way (O(N1.465)) or 4-way
(O(N1.404)) version of Toom-Cook are popular approaches to
multiply medium-sized integers and have been applied in a
variety of settings in cryptography.

2.2.2 Fast Fourier Transform in a Finite Field

Pollard showed how to define a transform in the finite field
Zq of integers modulo a prime q, analogous to the dis-
crete Fourier transform, which can be computed using a Fast
Fourier Transform (FTT) algorithm [28]. In cryptography
this is often referred to as the Number Theoretic Transform
(NTT). In this case we want to compute a polynomial product
of f ,g ∈ Zq[X]/(Xn +1), where 2n | (q−1), so that the mul-
tiplicative group Z∗q contains a principal 2n-th root of unity ζ.
We can then use the Chinese remainder theorem to construct
the isomorphism

Zq[X]/(Xn +1)∼= ∏
n−1
i=0 Zq[X]/(X−ζ2i+1)

f 7→ (f (ζ1), f (ζ3), . . . , f (ζ2n−1)) .

By applying this isomorphism to f and g, their product can
be reduced to n multiplications in Zq. As q is typically fairly
small (e.g., 12 and 23 bits for the latest versions of Kyber
and Dilithium, respectively), this is not interesting for modern
co-processors which are aimed at hundreds or thousands of
bits for ECC or RSA. Note that similar constructions can be

3

https://joostrenes.nl/software/kroneckerplus.tar.gz

made with n-th principal roots of unity, requiring only that
n | (q−1), which is done for instance by Kyber. We do not
elaborate on this further here.

2.2.3 Nussbaumer

This algorithm was designed in 1980 and is named after its
creator [26]. We base our description on those of Bernstein [5,
§9] and the bachelor thesis of van der Lubbe [38, §3.1]. The
first step is to apply the transformation

Ψ : Z[X]/(Xn +1)→ (Z[Y]/(Y n/t +1))[X]/(Y −X t) , (1)

f = ∑
n−1
i=0 fiX i 7→Ψ(f) = ∑

t−1
i=0

(
∑

n/t−1
j=0 fi+ jtY j

)
X i .

As the polynomial Ψ(f) has degree less than t in X , we can
trivially lift it to (Z[Y]/(Y n/t +1))[X] and view it as a polyno-
mial in (Z[Y]/(Y n/t +1))[X]/(X2t−1) where the coefficients
of Ψ(f) for the monomials X i for i = t, . . . ,2t−1 are 0. Sim-
ilarly we obtain Ψ(g).

As the coefficient ring Z[Y]/(Y n/t +1) contains the 2t-th
principal root of unity ζ = Y n/t2

, we can apply a cyclic NTT
with respect to ζ. For this we require the additional restriction
on t that t2 | n, as opposed to only t | n. More concretely, we
compute

Ψ(h)(ζi) =Ψ(f)(ζi) ·Ψ(g)(ζi) , for i= 0, . . . ,2t−1 , (2)

from which we can compute 2t ·H j = ∑
2t−1
i=0 Ψ(h)(ζi)ζ− ji. As

Ψ(h) = ∑
2t−1
j=0 H j(Y)X j, we can recover h by dividing by 2t

(recall that multiplication by 2t was assumed to be injective),
reducing modulo Y −X t and inverting Ψ.

The main cost of the algorithm is in Equation (2). The si-
multaneous evaluation of Ψ(f) at all the roots of unity ζi can
be computed with a Cooley-Tukey butterfly algorithm [11]
with complexity O(t log t). The multiplications are in the ring
Z[Y]/(Y n/t + 1), so consist of 2t multiplications of polyno-
mials with n/t coefficients each. Of course there is a clear
possibility for recursion, but such an analysis is not of interest
for our purposes.

This Nussbaumer algorithm was applied [38] to to the post-
quantum crypto scheme NewHope [2, 7] and in the setting of
homomorphic encryption [8].

Example 2. Let f and g be as chosen in Example 1. As
Nussbaumer requires that t2 | n, the largest choice for n = 8
we can make is t = 2. Splitting the ring, we find

Ψ(f) = Y 3−3Y −3+(−3Y 3−2Y 2−Y) ·X ,

Ψ(g) = 3Y 3−2Y 2 +3Y +3+(3Y 2 +2Y +1) ·X ,

as polynomials modulo Y −X2. Lifting to (Z[Y]/(Y 4 +1))[X]

and viewing them as polynomials modulo X4−1 by setting
the coefficients of X2 and X3 to be zero, we can apply the
cyclic NTT with respect to 4-th root of unity Y 2. In other

words,

[Ψ(f)(1),Ψ(f)(Y 2),Ψ(f)(Y 4),Ψ(f)(Y 6)] =

[−2Y 3−2Y 2−4Y −3,−1,4Y 3 +2Y 2−2Y −3,2Y 3−6Y −5] ,

[Ψ(g)(1),Ψ(g)(Y 2),Ψ(g)(Y 4),Ψ(g)(Y 6)] =

[3Y 3 +Y 2 +5Y +4,5Y 3−Y 2 +3Y,3Y 3−5Y 2 +Y +2,Y 3−3Y 2 +3Y +6] .

Multiplying pairwise modulo Y 4 + 1, we get
[Ψ(h)(1),Ψ(h)(Y 2),Ψ(h)(Y 4),Ψ(h)(Y 6)] as −31Y 3 −
25Y 2 − 23Y + 12,−5Y 3 + Y 2 − 3Y,11Y 3 + 5Y 2 + 7Y + 6,
25Y 3 − 5Y 2 − 45Y − 30]. Inverting the transform with
respect to Y 2 (i.e., applying the same NTT with Y 6),
we obtain [−6Y 2 − 16Y − 3,−21Y 3 − 15Y 2 − 15Y + 3,
−10Y 3 − 4Y 2 + 8Y + 12,0]. Finally setting Y = X2, view-
ing the tuple as the coefficients of a polynomial in X (where
0 is the coefficient of X3) and reducing modulo X8 + 1, we
obtain h.

2.3 Utilizing Integer Multipliers
The problem of multiplying polynomials and the problem
of integer multiplication are extremely related. The two can
be linked by way of Kronecker substitution, which we first
expand on in §2.3.1. This method has been further investi-
gated by Harvey and afterwards been applied to Kyber and
Saber, which we explain in §2.3.2. Finally we consider the
Schönhage-Strassen algorithm in §2.3.3.

2.3.1 Kronecker Substitution

In 1882, Kronecker introduced a method to reduce computa-
tional problems related to multivariate polynomials to those
related to univariate polynomials [20]. A hundred years later,
a similar technique was introduced by Schönhage to reduce
polynomial multiplications in Z[X] to integer multiplication
(multiplication in Z) [33]. This approach is known as the
Kronecker substitution method.

The idea behind the method is to evaluate the polynomials
at a sufficiently high two-power 2` for a positive integer `,
and use the resulting integers as input for a regular integer
multiplication by computing h(2`) = f (2`) · g(2`). Finally,
the resulting integer h(2`) is converted back to its polynomial
representation h. The result is correct if the coefficients of the
resulting polynomial did not “mix” with each other, i.e. if the
parameter ` ∈ Z is sufficiently large.

The main advantage of this approach, computing a polyno-
mial multiplication by way of an integer multiplication, is that
well-studied and fast implementations of asymptotic integer
multiplication methods can be used. It allows contemporary
co-processors containing integer-multiplication acceleration
for speeding up “classical” cryptography to be re-used for
the polynomial multiplications that appear in post-quantum
cryptographic primitives. This was first investigated by Al-
brecht, Hanser, Hoeller, Pöppelmann, Virdia and Wallner [1],
who used an RSA co-processor for the implementation of

4

Kyber-768, and subsequently applied by Wang, Gu and Yang
to an implementation of Saber [39].

Note that [1] applies this technique to polynomial mul-
tiplication modulo Xn + 1, as opposed to generic multipli-
cation. Interestingly, although the coefficients of f · g and
(f · g) mod Xn + 1 differ, their upper and lower bound do
not. Indeed, a coefficient of f · g can be the sum of at most
n products of coefficients of f and g, while a coefficient of
(f · g) mod Xn + 1 is the sum of exactly n such coefficient
products. Therefore the choice of ` remains the same regard-
less of reduction modulo Xn + 1. In particular, this implies
that reduction modulo Xn + 1 can also be done as an inter-
mediate step in the Kronecker domain as reduction modulo
2n`+1.

Example 3. Let f and g be as chosen in Example 1. As
they have (at most) 8 coefficients and they lie in the interval
[−3,3], the coefficients of h (modulo Xn+1) lie in the interval
[−8 · 32,8 · 32] and can therefore be represented with ` = 8
bits. Therefore, we find

f (28) =−215893506177302531,g(28) = 847714908832003,

and compute the product h(28)≡ 16932392214669820680 mod
264 +1 . Notice that here we apply the intermediate reduction
modulo X8 +1 in the Kronecker domain as reduction modulo
264 + 1. We retrieve the coefficients of h by converting to a
base-256 representation. As f and g have signed coefficients
in [−3,3], it is important to also take the signed representation

h(28) = 7+3 ·28−4 ·216−15 ·224 +2 ·232

−15 ·240−4 ·248−21 ·256

with 8-bit limbs in [−8 · 32,8 · 32]. Interestingly, one
can also apply Kronecker substitution to the interme-
diate multiplication in Nussbaumer (see Example 2).
Evaluating Ψ(f)(Y i) and Ψ(g)(Y i) for i = 0,2,4,6 at
28 leads to the tuples [−33686531,−1,67239421,33552891],
[50398468,83821312,50004226,16581382], which are pairwise
multiplied to [−521737972,−83821312,184878854,419091170].
The multiplications are to be reduced modulo Y 4 + 1, and
hence modulo 232 + 1 in the Kronecker domain. From here
the regular Nussbaumer algorithm can be followed, with an
additional final recovery to polynomial representation. These
are 4 multiplications of (approximately) 32 bits each, as op-
posed to 1 multiplication of 64 bits for regular Kronecker.

2.3.2 Multipoint Kronecker Substitution

The size of the integers that are multiplied when applying
Kronecker substitution, which impacts the efficiency of the
algorithm, is strongly related to the size of `. Simply put, the
larger `, the larger the integers and the slower the multipli-
cation. On the other hand, ` needs to be at least as large as
the maximum bit length of the coefficients of h in order to
recover the polynomial h from h(2`) correctly.

One of the main observations made by Harvey [15, §3.3]
was that the size of ` can be reduced by splitting up the poly-
nomial evaluation into two parts. Assuming for simplicity
that ` is even, Harvey computes

h(2`2) = f (2`2)g(2`2) , h(−2`2) = f (−2`2)g(−2`2) ,

where `2 = `/2. He then observes that

h(0)(2`) = (h(2`2)+h(−2`2))/2 ,

h(1)(2`)=(h(2`2)−h(−2`2))/(2 ·2`2) ,

where h(i) denotes the polynomial whose j-th coefficient
equals the (2 j+ i)-th coefficient of h. In other words,

h(0)(2`) = ∑
n/2−1
j=0 h2 j2 j` , and h(1)(2`) = ∑

n/2−1
j=0 h2 j+12 j` .

The coefficients of h can therefore be recovered as the `-bit
limbs h(0)(2`) and h(1)(2`).

Denoting by M(b) the cost of multiplying two b-bit inte-
gers, this approach changes the cost of the polynomial multi-
plication in Z[X] from M(`n)+O(`n) in the case of standard
Kronecker substitution, to 2 ·M(`n/2)+O(`n). Here the big-
O terms incorporate the cost of packing and unpacking. This
can lead to a significant speedup whenever the cost of multi-
plying is (relatively) expensive. In particular, this approach
was used in the ring Z[X]/(X256 +1) with applications to Ky-
ber (see [1]) and Saber (see [39]) to speedup their respective
implementations based on co-processors.

In fact, Harvey considers a second approach to split up the
evaluation into four parts by also evaluating at the reciprocal
f (2−`), that gives rise to multiplication with a cost of 4 ·
M(`n/4)+O(`n). We omit the details as we do not discuss
it further. In particular, it was not considered practical in the
previously mentioned implementations of Kyber and Saber.

Example 4. Let f and g be as chosen in Example 1 and
choose `= 8 as in Example 3. We compute

[f (24), f (−24)] = [3504336126,824184061] ,

[g(24),g(−24)] = [53355283,47047411] ,

from which we obtain [h(24),h(−24)] ≡
[2870021177,1290988502] with two multiplications mod-
ulo 232 +1. It follows that

h(0)(28) = 8+252 ·28 +1 ·216 +252 ·224 ,

h(1)(28) = 4+241 ·28 +240 ·216 +234 ·224 ,

or, in signed representation, that

h(0)(28)≡ 7−4 ·28 +2 ·216−4 ·224 ,

h(1)(28)≡ 3−15 ·28−15 ·216−21 ·224

modulo 232 + 1. The coefficients from h can now simply be
read off. Note that this requires only 2 multiplications of
(about) 32 bits each, compared to 4 for Nussbaumer combined
with Kronecker.

5

2.3.3 Schönhage-Strassen

For the description of the Schönhage-Strassen algorithm [32],
we base ourselves on the nice exposition of the implemen-
tation in the GMP library [14, §1] and Bernstein’s paper [5,
§9]. We assume that the integers we multiply are outputs
of Kronecker substitution of the form F = f (2`) and G =
g(2`), and we want to compute their product H = h(2`) in
Z[X]/(2`n+1), i.e., modulo the polynomial modulus (Xn+1)
evaluated at 2`. Interestingly, we begin by viewing the integers
as polynomials by applying the map

Φ : Z/(2`n +1)→ Z[X]/(X t +1)

F = ∑
t−1
i=0 Fi ·2`n/t 7→Φ(F) = ∑

t−1
i=0 Fi ·X i ,

in other words viewing the `n/t-bit limbs as coefficients of
a polynomial of degree (at most) t − 1. Note that here we
can assume that Ft = 0, as F = f (2`) is a polynomial with
degree at most n− 1 evaluated at 2`, and hence is strictly
smaller than 2n` (and similarly for G). It can be shown
that the coefficients of Φ(F)Φ(G) can be represented with
2`n/t + t bits [14, §1], implying that it can be recovered as
the unique representative of the product of Φ(F) and Φ(G)
embedded in Z/(22`n/t+t +1)[X]/(X t +1). The main obser-
vation now is that the coefficient ring for this multiplication is
Z/(22`n/t+t +1), which contains a principal 2t-th root of unity
ζt = 22`n/t2+1, under the additional assumption that t2 | 2`n
(note that this is weaker than Nussbaumer, which requires
t2 | n). We can use the (principal) t-th root of unity ζ2

t to
construct a negacyclic NTT to reduce this multiplication to
t multiplications in Z/(22`n/t+t +1), of approximately 2`n/t
bits each (assuming n� t), after which we can invert Φ to
recover H.

Example 5. Let f and g be as chosen in Example 1. As we
require that t2 | 2`n = 128, the largest choice we can take is
t = 8. In that case

Φ(F) = [254,255,252,254,255,253,0,253] ,

Φ(G) = [3,1,3,2,254,2,3,0] ,

representing polynomials in Z[X]/(X8 + 1). Applying a
negacyclic NTT with 8-th root of unity ζ2

8 = 64, we obtain
the tuples [3191766,12617514,13706294,6361802,15707175,
16751308,5128135,10424123], [1893579,12329652,12869428,
336707,1760443,3940051,4415315,12786500], that are mul-
tiplied pairwise to [2864000,10297389,10680185,15308322,
14753371,6584086,650929,5442338], modulo 224 + 1 (note
that 24 here is the first multiple of 8 larger than 16).
Inverting the negacyclic NTT gives the tuple [−66031,
−65274,−4,−62734,66295,66799,66806,67813]. Viewing
these as the 8-bit limbs of an integer, we obtain the product
16932392214669820680 of F and G in Z/(264 + 1). This
can be reverted to polynomial representation by inverting the
Kronecker map (see Example 3).

2.4 Public-key Hardware Co-processors
A typical hardware accelerator or cryptographic co-processor
enhances the security and performance of hash-functions, ran-
dom number generation, symmetric key or public-key cryptog-
raphy. In the last category, the core of this accelerator is typi-
cally dedicated to multiplication and accumulation of large
integers. One possible way of thinking about such hardware-
supported instructions used to construct arbitrary length mul-
tiplication routines, is that given w-bit inputs a, b, and c it
computes

(a� c1)× (b	 c2)+ c�d

where �, 	, and � are optional operations with optional in-
puts c1, c2 and d. Concrete examples include (1) the multiply-
and-accumulate instruction present on many modern com-
puter architectures (omitting all optional operations), (2) the
multiply-and-accumulate-accumulate (where� equals the “+”
operation) as present on the ARMv6 and above, and (3) the
ARM barrel shifter where 	 could be a shift or rotate instruc-
tion. The multiply-and-accumulate-accumulate instruction
can be used as a building block for arbitrary length multiplica-
tion and therefore also Montgomery multiplication: making
this an essential building block for the most time-consuming
operation in both RSA and ECC. Given the word size w, the
instruction then computes d = a ·b+ c+d where all inputs
are < 2w and the output is ≤ (w−1)2 +2(w−1)< 22w.

Although the exact internal bit size of these co-processors
is often kept secret, the word size is expected to be larger
than the native word size on the embedded device (which is
typically 8, 16, or even 32 bits). Typical examples of such co-
processors are NXP’s P71D321 [27], Infineon’s SLE78 [16],
or Espressif’s ESP32 [13]. The accompanying technical doc-
ument often state that these co-processors can be used to
compute RSA (often up to 4096 bits) and ECC. It should be
noted that the upper bound on the number of supported bits is
often due to a restriction on the available memory.

3 Kronecker+

In this section we discuss a new multiplication technique that
can be viewed as a generalization of the negated-evaluation-
points idea by Harvey [15, §2.3] and as a variant of Nuss-
baumer when combined with Kronecker substitution. Its main
improvement with respect to [15] is that there is less limitation
on the depth: whereas Harvey’s method reduces a polynomial
multiplication to two integer multiplications that are half the
length compared to Kronecker substitution, we allow reduc-
ing to t multiplications of fraction (1/t) of the length. For this
we require that t | n and t | `, which in particular implies that
that t2 | 2`n (as was needed for Schönhage-Strassen). Hence t
cannot be chosen completely freely, but the degree of freedom
is much larger than for Harvey.

Compared to Nussbaumer we reduce the number of re-
quired multiplications. As can be seen in §2.2.3, Nussbaumer

6

requires 2t multiplications of polynomials with n/t coeffi-
cients each. Applying Kronecker (i.e., evaluating at 2`) we
would compute 2t multiplications of approximately `n/t bits
each. Instead, Kronecker+ requires only t such multiplica-
tions. The overhead of the forward and backward transforma-
tions is comparable.

3.1 An Alternative Transformation
We begin the description by revisiting the Nussbaumer al-
gorithm, and proposing an alternative version. Initially, this
will seem to serve no purpose as it does not lead to a reduced
number of operations for polynomial multiplication. How-
ever, we show in §3.2 that this variant combines much better
with Kronecker substitution and that Harvey’s negated evalu-
ation points technique can be considered a special case of our
algorithm.

As usual, we assume that f and g are polynomials of degree
(at most) n−1 in Z[X]/(Xn +1). Our alternative transforma-
tion starts identical to Nussbaumer by applying the map Ψ

from Equation (1), obtaining Ψ(f) and Ψ(g) in the ring

(Z[Y]/(Y n/t +1))[X]/(Y −X t) .

This map is also used by [1, §4], which they refer to as “split-
ting the ring”. They view Ψ(f) and Ψ(g) as degree t − 1
polynomials in X , and multiply them through the schoolbook
or Karatsuba algorithm, leading to t2 or 3log t multiplications
in Z[Y]/(Y n/t +1) respectively. Alternatively, the strategy of
Nussbaumer could be taken: canonically lift to (Z[Y]/(Y n/t +
1))[X] and embed in (Z[Y]/(Y n/t + 1))[X]/(X2t − 1) to ap-
ply a cyclic NTT to [F0, . . . ,F2t−1] and [G0, . . . ,G2t−1] with
respect to 2t-th principal root of unity ζ2t = Y n/t2

, where
Ψ(f) = ∑

t−1
i=0 Fi(Y)X i and Ψ(g) = ∑

t−1
i=0 Gi(Y)X i. This leads

to the 2t multiplications

Ψ(h)(ζi
2t) = Ψ(f)(ζi

2t) ·Ψ(g)(ζi
2t) , for i = 0, . . . ,2t−1 ,

in Z[Y]/(Y n/t +1).
However, for Kronecker+ we deviate from both these ap-

proaches. As opposed to Nussbaumer, we only consider the
length-t tuples [F0, . . . ,Ft−1] and [G0, . . . ,Gt−1] and take the
principal t-th root of unity ζt = Y 2n/t2

. Further, we apply
weight factors X i to the i-th element, i.e., apply a cyclic NTT
with respect to ζt to the length-t tuples

[F0 ·X0 , . . . ,Ft−1 ·X t−1] , [G0 ·X0 , . . . ,Gt−1 ·X t−1] .

This results in the tuples[
∑

t−1
i=0 ζ

i j
t FiX i

]
j , and

[
∑

t−1
i=0 ζ

i j
t GiX i

]
j .

An interesting observation at this point is that we can combine
the application of Ψ and the NTT (including weight factors)
in a single step, showing that the latter tuples are simply

equal to [f (ζ j
t ·X)] j and [g(ζ j

t ·X)] j respectively. Although
this is nice conceptually, we expect that an implementation of
this algorithm would most likely separate Ψ from the NTT,
making it easier to apply Cooley-Tukey-style butterflies [11]
to the computation (see §3.3.2).

Next we perform the t multiplications

h(ζi
t ·X) = f (ζi

t ·X) ·g(ζi
t ·X) , for i = 0 , . . . , t−1 . (3)

Inverting the NTT with respect to ζt (including dividing by
t), removing the weight factors, and possibly performing an
explicit reduction modulo Y −X t , gives the result Ψ(h). From
this we can recover h by inverting Ψ.

It should be noted at this point that the polynomials f (ζi
t ·X)

and g(ζi
t ·X) do not actually lie in Z[Y]/(Y n/t +1), but instead

still in (Z[Y]/(Y n/t +1))[X]/(Y −X t). Therefore we have re-
duced a single multiplication in (Z[Y]/(Y n/t +1))[X]/(Y −
X t) to t of them. This does not make any sense from a perfor-
mance perspective, and we do not suggest to use this method
as described here for polynomial multiplication. However, in
the next section we show that this approach has significant
advantages in combination with Kronecker substitution.

3.2 Applying Kronecker
The true strength of reducing to the multiplications in Equa-
tion (3) comes from applying the (slightly modified) Kro-
necker substitution

K : (Z[Y]/(Y n/t +1))[X]/(Y −X t)→ Z/(2`n/t +1)

F = ∑
t−1
i=0 Fi(Y) ·X i 7→ ∑

t−1
i=0 Fi(2`) ·2i`/t .

The mapping K maps Y 7→ 2` and X 7→ 2`/t and ensures that
the map is well-defined modulo Y −X t . In particular, this
maps

ζt 7→ 22`n/t2
,

f (ζi
t ·X) 7→ f (22`n/t2 ·2`/t) , g(ζi

t ·X) 7→ g(22`n/t2 ·2`/t) .

Hence, the multiplications in Equation (3) can be reduced
to t multiplications in Z/(2`n/t +1). This means computing
t multiplications of `n/t + 1 bits each instead of a single
multiplication of `n bits. Recall that combining Nussbaumer
with Kronecker substitution leads to 2t such multiplications.
For completeness, we summarize the proposed method in
Algorithm 1 which we refer to as Kronecker+.

We can now see that Algorithm 1 is a generalization of the
method of Harvey [15, §3.3]; setting t = 2 and ζ2 = 2`n/2 ≡
−1 mod 2`n/2 + 1 in Algorithm 1 is the same as applying
Harvey’s approach. In fact, we generalize his method by also
considering the case t > 2, whereas Harvey does not go be-
yond t = 2 (at least not for negated evaluation points). This
generalization is made possible by the existence of t-th roots
of unity in Z[Y]/(Y n/t +1) via the map Ψ on Z[X]/(Xn +1),

7

Algorithm 1 Pseudo-algorithmic simple description of
Kronecker+.
Input: f ,g∈Z[X]/(Xn+1) for a positive integer n, the Kro-

necker parameter ` and a positive integer t such that t | `
and t | n, and Mi = 22i`n/t2 ·2`/t for 0≤ i < t

Output: h = ∑
n−1
i=0 hiX i = f ·g mod Xn +1

1: Compute f (Mi) and g(Mi) for i = 0, . . . , t−1.
2: Compute h(Mi) = f (Mi) · g(Mi) mod 2`n/t + 1 for i =

0, . . . , t−1.
3: Compute

h(i) =
∑

t−1
j=0 22i(t− j)`n/th(Mi)

t ·2i`/t mod 2`n/t +1

for i = 0, . . . , t−1.
4: Recover hi+t j as the j-th `-bit limb of h(i) for 0 ≤ i < t

and 0≤ j < n/t.

which do not exist for generic integer polynomial multipli-
cation in Z[X]. Of course we can always embed any integer
polynomial of degree (at most) n−1 into a ring of the form
Z[X]/(X2n + 1) and apply Ψ to reduce to t multiplications
in Z[Y]/(Y 2n/t +1). This comes at the cost of approximately
doubling the bit size for the multiplications.

To illustrate our algorithm, we provide an example. Note
for comparison that in Example 6 we reduce the polynomial
multiplication to 8 multiplications, each of 9 bits, using a
transformation very similar to Schönhage-Strassen and Nuss-
baumer. However, Nussbaumer (see Example 2) requires that
t2 | n and therefore only allows t = 2, while even in that case
needing 4 multiplications (whereas Kronecker+ only uses
2). On the other hand, Schönhage-Strassen (see Example 5)
allows for t = 8, but reduces to 8 multiplications of 25 bits
each.

Example 6. Let f and g be as chosen in Example 1,
where n = 8, and choose ` = 8 as in Example 3. There-
fore we can choose t = 8 as well, as it divides both n
and `. As n = t, splitting the ring simply gives Ψ(f) =
f and Ψ(g) = g. Therefore, multiplying by the weights
X i we get tuples [−3,0,−3X2,−X3,0,−2X5,X6,−3X7], [3,X ,

3X2,2X3,−2X4,3X5,3X6,0], respectively. Applying the map
K that maps X 7→ 2`/t = 2 gives [254,0,245,249,0,193,64,
130], [3,2,12,16,225,96,192,0], where each entry is taken mod-
ulo 2`n/t + 1 = 28 + 1. We now take the cyclic NTT with
respect to the t-th root of unity ζt 7→ 22`n/t2

= 4 mod-
ulo 28 + 1, leading to the tuples [107,228,53,131,248,161,
94,239], [32,116,51,47,61,105,254,129]. These are multiplied
pairwise to give [83,234,133,246,222,200,232,248]. Invert-
ing the NTT leads to [7,6,241,137,32,34,1,139], and undoing
the weights X i 7→ 2i`/t = 2i in the Kronecker domain gives
[7,3,253,242,2,242,253,236]. Finally, converting to a signed
representation gives the tuple [7,3,−4,−15,2,−15,−4,−21],

whose entries correspond to the coefficients of h.

3.3 Algorithmics
Although the description in Algorithm 1 is nice and com-
pact, it is not immediately clear how efficiently it can be im-
plemented. Indeed, polynomial evaluations f (Mi) and g(Mi)
initially appear to be of quadratic complexity in t, while mul-
tiplications by roots of unity and divisions by t and 2i`/t could
be costly. In this section we make some comments on algo-
rithmic choices to implement Kronecker+ most optimally on
modern (embedded) platforms.

3.3.1 Parameter choices

Even though it is not technically necessary for Kronecker+,
division by t is most efficient to implement whenever it is a
power of two t = 2τ. This means it can simply be computed as
a bit shift by τ bits. The same holds for division by the weights
2i`/t . As it is very common to set ` to a power of two (since it
makes Kronecker substitution easy to implement on modern
platforms), this is not serious restriction. The requirement on
Kronecker+ that t | ` then can be rewritten as the equivalent
condition τ≤ log(`). Finally, since we must satisfy t | n, the
choices of n most suitable for Kronecker+ are those that are
divisible by a power of two.

These constraints appear very naturally in the context of
cryptographic primitives. For example, the NIST KEM final-
ists Kyber (q= 3329) and Saber (q= 213) perform polynomial
multiplication in Zq[X]/(X256 +1). In that case n = 256 and
one can show that ` = 32 suffices (see §4.1), in which case
we will have τ ≤ 5. We emphasize that in this case apply-
ing τ = 2 reduces the 8192-bit multiplication (by Kronecker
substitution) to 4 multiplications of approximately 2048 bits
each, which can be handled by the RSA co-processor in [1].
Instead, in their work they resort to Harvey’s method with
an additional layer of schoolbook multiplication, resulting in
8 multiplications of 2048 bits each. In this case Kronecker+
therefore halves the number of required multiplications: al-
ready showing its strength compared to alternatives.

Although the description in §3.2 is nice and compact, it is
not immediately clear that this can be efficiently implemented.
Indeed, polynomial evaluations f (Mi) and g(Mi) initially ap-
pear to be of quadratic complexity in t, while multiplications
by roots of unity and divisions by t and 2i`/t could be costly.
Therefore we comment here on the circumstances in which
Kronecker+ could best be used.

3.3.2 Butterfly operations

There is further reason to set t to be a power of two. Line 1 of
Algorithm 1 can be decomposed into three steps:

1. Compute Fi(2`) and Gi(2`) for i = 0, . . . , t−1,

2. Compute 2i`/tFi(2`) and 2i`/tGi(2`) for i = 0, . . . , t−1,

8

3. Compute f (Mi) =∑
t−1
j=0 22i j`n/t2

Fj(2`)2 j`/t and g(Mi) =

∑
t−1
j=0 22i j`n/t2

G j(2`)2 j`/t .

The first step is essentially free if the coefficients are posi-
tive (as they can be all be represented with less than ` bits),
since it is just a matter of reordering the coefficients of f and
g. It becomes more complicated when the coefficients are
signed, since we have to take carries into account. This be-
comes particularly tedious when attempting to compute this
in constant time, as f and g can contain secret information in
certain settings (e.g., for Kyber and Saber). It is mentioned
by [1, §5.3] that this costs some performance, but no further
details are given. We propose a fairly simple solution in the
case that all coefficients are greater than −q for some integer
q, for example when sampled from Zq in an interval of size q
centered around 0. Letting Q = ∑

n/t−1
j=0 qX j, we compute

Fi(2`) = (Fi +Q)(2`)−Q(2`) ,

Gi(2`) = (Gi +Q)(2`)−Q(2`) ,
(4)

noting that Fi +Q and Gi +Q are polynomials with positive
coefficients. In settings where q is known in advance (which
is the case for all relevant cryptographic schemes such as
Kyber and Saber), the polynomial Q(2`) can be precomputed.
The additional cost is therefore t additions of polynomials
of degree n/t−1 and t subtractions in Z/(2`n/t +1), both of
which are very easily implemented in constant time.

The second step requires shifts by 2i`/t , which are cheap
and often even free through the use of (for example) barrel
shifters. Moreover, if i`/t is a multiple of the word size of
the platform, then such shifts can be implemented by simply
relabeling words. There can potentially be an additional cost
by adding a reduction modulo 2n`/t +1, but this has linear cost
and can even be completely avoided by using lazy reduction
techniques.

The main cost comes from the third step. However, the
main advantage of decomposing Line 1 of Algorithm 1 in
this fashion should now be clear: computing the linear com-
binations has naïve complexity of O(t2) operations, but can
instead be implemented with complexity O(t log t) by using
Cooley-Tukey butterflies [11]. These are particularly easy to
implement when t is a power of two. Note that the butterfly al-
gorithm also requires several multiplications by roots of unity
22i j`n/t2

, but these are constructed to be powers of two. There-
fore these multiplication operations can be computed with
simple shifts, or by relabeling words if 2i j`n/t2 is a multiple
of the word size. In addition, one can see that many of them
vanish modulo 2`n/t + 1. Completely analogous statements
apply to Line 3 of Algorithm 1, which is in essence an inverse
NTT. By way of example, we summarize the required opera-
tions for n = 256 and `= 32 (the setting of Kyber and Saber)
for τ = 1,2,3 in Figure 1. A similar structure is preserved for
larger τ, but becomes more tedious to write down. The opera-
tions demonstrate that the number of additions/subtractions

t = 2

(F0,F1) = (F0 +F1,F0−F1).
t = 4

(F0,F1,F2,F3) = (F0 +F1,F0−F1,F2 +F3,F2−F3),
(F0,F2,F1,F3) = (F0 +F2,F0−F2,F1 +(F3� 1024),F1− (F3� 1024)).
t = 8

(F0,F1),(F2,F3) = (F0 +F1,F0−F1),(F2 +F3,F2−F3),
(F4,F5),(F6,F7) = (F4 +F5,F4−F5),(F6 +F7,F6−F7),
(F0,F2),(F1,F3) = (F0 +F2,F0−F2),(F1 +(F3� 512),F1− (F3� 512)),
(F4,F6),(F5,F7) = (F4 +F6,F4−F6),(F5 +(F7� 512),F5− (F7� 512)),
(F0,F4),(F1,F5) = (F0 +F4,F0−F4),(F1 +(F5� 256),F1− (F5� 256)),
(F2,F6) = (F2 +(F6� 512),F2− (F6� 512)),
(F3,F7) = (F3 +(F7� 768),F3− (F7� 768)).

Figure 1: Example operations required for the NTT with t-
th root of unity 216384/t2

for choices τ = 1,2,3, where all
operations take place in the ring Z/(28192/t + 1). Here we
write Fi = 232i/t ·Fi(232) and compute the NTT in place.

is simply t log t, as expected. In particular, it shows that the
case t = 2 reduces to the same operations as computed by
Harvey [15].

3.3.3 Multiplication

The multiplications in Line 2 of Algorithm 1 are technically
the most straightforward operations: simply multiplying t
pairs of integers modulo 2`n/t +1. The reduction can be per-
formed by observing that 2`n/t ≡−1 mod 2`n/t +1 and sub-
tracting the top half from the bottom. An interesting remark
can be made about the size of the multiplier. As integers mod-
ulo 2`n/t +1 can be represented in `n/t +1 bits, while t is a
power of 2, we will need a slightly awkward size. For exam-
ple, for n = 256 and `= t = 32 we need a 257-bit multiplier.
A similar problem arises in [1], who use a multiplier that can
handle integers slightly larger than 2048 bits.

A particularly interesting case is where the internal word
size w of the co-processor is fairly small. In that case, as-
suming for simplicity that wt | `n, we need exactly d(`n/t +
1)/we registers with a total of `n/t +w bits to represent the
(`n/t +1)-bit integers. As the w−1 redundant bits should be
more than enough to accumulate the values during the for-
ward butterfly (e.g., when w = 64 or w = 128), no reductions
modulo 2`n/t +1 are necessary before multiplying values with
d(`n/t+1)/we limbs each. This application of lazy reduction
simplifies the computations of the butterflies.

3.3.4 Recovering polynomials

The final step in Kronecker+ (see Line 4 of Algorithm 1) is
to convert the integer(s) result of the inverse NTT back to the
polynomial representation in Z[X]/(Xn +1). This conversion
is denoted as “sneeze” in [1, Algorithm 8] and also supports
signed coefficients. This operation would be particularly sim-
ple if the coefficients hi of h = f · g are guaranteed to be

9

positive, but this will not always be the case in cryptographic
contexts. We make two simplifications compared to [1]: first,
we remove the variable-time if-statement that depends on
the (potentially secret) input that checks whether a limb is
larger than 2`−1. We replace this by Line 5 in Algorithm 2
that computes the carry bit as a simple “or” operation of two
bits. Second, we remove the explicit subtraction of 2` to move
the values hi from the interval [0,2`−1] to [−2`/2,2`/2−1]
since this can be achieved with a cast to a signed value, i.e., by
simply interpreting the bit representation in a different way.
The full algorithm is summarized in Algorithm 2.

Algorithm 2 Coefficient recovery in Z[X]/(Xn +1).

Input: t integers h(i) = ∑
n/t
j=0 ai, j ·2 j` with ai, j ∈ [0,2`−1]

Output: h = ∑
n−1
i=0 hi ·X i with hi ∈ [−2`/2,2`/2−1]

1: for i = 0,1, . . . , t−1 do
2: carry← 0
3: for j = 0,1, . . . ,n/t−1 do
4: limb← ai, j + carry
5: carry← (limb� (`−1)) | (ai, j� (`−1))
6: h j·t+i← limb
7: hi← hi− (carry+ai,n/t)

4 Implementation Results

The goal of this section is to support the claims on run-
time made in §3.3 and to extrapolate these results to pro-
vide runtime estimates on platforms that are most relevant
for Kronecker+. For this purpose we focus on the context of
cryptographic implementations with the help of contemporary
co-processors that support integer multiply or multiply-and-
accumulate operations. In particular, we implement the Saber
proposal and begin with a brief explanation on this setting in
§4.1. Then we provide operation counts for this implemen-
tation in terms of multiply-and-accumulate and addition op-
erations (where subtractions are counted as additions) based
on the analysis of §3.3. We provide cycle counts for the var-
ious parts of our implementation on an ARM Cortex-M4
core: the recommended embedded target platform selected
by NIST. For testing and benchmarking we used the pqm4
framework [17]: the de facto standard benchmarking and
testing framework for embedded post-quantum cryptography.
This framework allows us to relatively accurately predict the
runtime of the Kronecker+ procedures based on the cycle
counts for multiply-and-accumulate and addition operations.
After demonstrating the effectiveness of this approach on the
Cortex-M4 core, we then extrapolate this to predict the run-
time of Saber routines on co-processors with larger multiplier
and adder widths and show the feasibility of Kronecker+ on
such platforms.

We emphasize that this approach is somewhat different
from existing works that directly implement Kronecker vari-
ants on a fixed choice of co-processor. For example, [1] im-
plement Kyber on the SLE78 with a (approximately) 2048-
bit multiplier, while Wang, Gu and Yang implement Saber
on the ESP32 with a big integer multiplier of 1536 or 2048
bits [39]. Our approach is much more theoretic: we provide
an accurate complexity analysis of Kronecker+ based on
multiply-and-accumulate and addition operations that does
not rely on asymptotics (Harvey did provide asymptotics in
his initial paper on multipoint Kronecker substitution [15],
but they are not useful for practical performance). This al-
lows to characterize the runtime of Kronecker+ much more
accurately compared to [1] and [39]. The main drawback is
that by relying on a computational model, one might question
the appropriateness of the chosen model. However, as we
show with the proof of concept Cortex-M4 implementation
in §4.3, the performance of Kronecker+ is indeed dominated
by multiply-and-accumulate and addition operations. Further,
by abstracting away the platform we are also able to remove
unwanted implementation specific details that muddy the effi-
ciency analysis of Kronecker+. This is especially useful in
scenarios where the co-processor is closed off, as is the case
for SLE78, hindering reproducibility of the cycle counts. In
our case, the resulting detailed complexity analysis is com-
pletely platform-independent and can be used to estimate the
runtime on a variety of systems much more easily.

4.1 Kronecker+ for Saber

In this section we discuss the application of Kronecker+ to
the Round 3 version of Saber. The arithmetic core in Saber is
to multiply a k×k matrix A with a k×1 vector s, where the en-
tries of the matrix and vectors are elements of Zq[X]/(X256 +
1) for q = 213. This operation is typically referred to as
MatrixVectorMul. A similar operation called InnerProd
performs an inner product of two k× 1 vectors. More con-
cretely, the main operation is to multiply and accumulate k
polynomials as bi = ai,0 · s0 + . . .+ai,k−1 · sk−1 which in turn
has to be performed for 0≤ i < k for MatrixVectorMul, and
for i = 0 for InnerProd. When using Kronecker substitution,
from a performance point of view, it is beneficial to multiply
and accumulate these k polynomials in integer representation
to avoid converting them back separately (requiring k times
fewer inverse transformations of Kronecker substitution).

In order to determine the required precision in Kronecker
(i.e. the parameter `), the bounds on the input need to be de-
termined. Recall from §2.3.1 that the bound ` is independent
of the modulus X256 +1. The coefficients of the polynomial
ai, j are uniform in Zq and can be represented in the inter-
val [−q/2,q/2− 1] = [−212,212 − 1] since q is even. The
coefficients of s j are samples in [−ν,ν], where ν = 5,4,3 de-
pending on the security level (here ν = µ/2 where µ = 10,8,6
in the Saber specification). This means that the product of

10

2 coefficients lies in the interval [−212ν,(212−1)ν], requir-
ing at most dlog(213ν− ν+ 1)e bits to represent. As each
coefficient of the product is an accumulation of k ·256 such
coefficients, for a signed version of Kronecker it is sufficient
to set ` = dlog(213ν−ν+1)+ log(k ·256)e. This results in
`= 25 for all security levels of Saber. However, as also noted
in [1], it is beneficial to use `= 32 such that it aligns nicely
with the byte boundaries and 32-bit datatypes on modern com-
puter architectures. Moreover, many of the required steps in
Kronecker simplify significantly.

A completely analogous analysis can be made for Kyber
and Dilithium, whose polynomial rings are very similar to
that of Saber from the perspective of Kronecker+. However,
for Kyber and Dilithium the situation is different. The ap-
proach taken in the NIST submission by Kyber optimizes for
polynomial multiplication with the proposed NTT approach
described in [34]. An example is that the large Kyber matrix
A ∈ (Zq/(X256 + 1))k×k, for the Kyber modulus q = 3329
and the parameter k ∈ {2,3,4} depending on the parameter
set, is sampled directly into the NTT domain. These design
decisions have an impact on the performance of alternative
approaches. When considering the Kronecker approach, the
authors of [1] note that this “basically nullify all gains from a
different and faster algorithm for polynomial multiplication”
and decide not to be compatible with the Kyber specification.
We re-iterate that this comment is absolutely right, prohibiting
efficient implementation of Kronecker+ for those schemes in
their current shape.

4.2 Theoretical Model
In this section we give a theoretical estimate for the runtime
of Kronecker+. For this purpose we subdivide the algorithm
into various subroutines according to the description of §3.3,
creating simple and small steps that allow for straightfor-
ward counting of multiply-and-accumulate and additions (or
subtractions). Recall that Kronecker+ mostly works in the
ring Z/(2`n/t +1), meaning that all counted operations are of
`n/t+1 bits. The operation counts are summarized in Table 2
and are exactly as performed in our implementation.

The first step is Line 1 of Algorithm 1, which we divide
up into the three steps listed in §3.3.2. The combination of
the first two is referred to as phi_and_shift, while the third
operation is a butterfly routine called forward_bfly. The
butterfly can be implemented with t log t additions and T (τ)
multiplications by roots of unities, where T (τ) = 0,0,1,5,17
for τ = 0,1,2,3,4 (see Figure 1 for examples). The roots
of unities 22i j`n/t2

(for 0 ≤ i, j < t) are powers of two; even
better for τ≤ 4 (recall that t = 2τ) one always has 2i j`n/t2 ≡
0 (mod 32) which means that all shifts come for free by
relabeling and one just has to compute a modular reduction
which can be implemented as an addition (even as a half
addition on average, though we choose to be conservative
here). The phi_and_shift routine does not require explicit

Function # Muls # Adds

phi_and_shift – –
make_signed – t
forward_bfly – t log t +T (τ)
make_positive – t
multiply t 2t
backward_bfly – t log t +T (τ)
divide_twos – 2t
recover_coeffs – –

Table 2: Number of (`n/t + 1)-bit multiplications and addi-
tions used in our implementation for the various parts of the
Kronecker+ algorithm where T = [0,0,1,5,17,49, . . .] is a
lookup table containing the number of required multiplica-
tions by roots of unity in the butterfly operations which boil
down to additions in practice.

multiplications or additions, but we mention it as it reveals an
interesting step of the algorithm requiring memory operations.
If a co-processor is employed, this would be the step where the
data is loaded onto it. Although it does not contribute to the
arithmetic cost, we decide to include it anyway as it should not
be forgotten. Additionally, if one considers signed coefficients,
one will have to follow up the routine with t subtractions by
Q(2`) as described in Equation (4). This operation is referred
to as make_signed.

The next operation is the multiplication in Line 2 of Al-
gorithm 1, called multiply, which requires t multiplications
and 2t additions for the reduction modulo 2`n/t +1. To sim-
plify its implementation we assume that the inputs are positive,
which is not necessarily true after the butterfly. Therefore we
include the function make_positive that adds a fixed multi-
ple of 2`n/t +1 large enough to make all values positive. This
costs t additions.

Line 3 of Algorithm 1 starts with another butterfly opera-
tion backward_bfly with the same cost as forward_bfly.
Afterwards the operation divide_twos divides by t · 2i`/t

for i = 0,1, . . . , t− 1. As i`/t will be small, this can be im-
plemented as a very small shift followed by two additions.
Finally, Line 4 performs the steps laid out in Algorithm 2.
Analogously to phi_and_shift, this has no arithmetic cost
but can interpreted as loading the coefficients from the co-
processor back to the host device (with some minor overhead).
This operation is named recover_coeffs.

4.3 Cortex-M4 Implementation
We present cycle counts for the various routines of
Kronecker+ defined in the previous section. The platform
of choice is the STM32F4DISCOVERY development board
containing a Cortex-M4 core. This enables us to use the pqm4
benchmark framework [17]. All measurements were taken
with the arm-none-eabi-gcc cross compiler version 10.2.1.

11

Until now we have discussed the subroutines as a sequence
of calls to (`n/t + 1)-bit multiplications and additions, but
it remains to discuss how to implement those themselves.
For additions this is straightforward: with a w-bit multiplier
(where w = 32 on the Cortex-M4) we use d(`n/t + 1)/we
additions (with carry) of word size w. For multiplications,
several choices can be made. We make the pragmatic choice
for schoolbook multiplication, whose complexity is easy to
analyze. That is, it requires d(`n/t + 1)/we2 multiply-and-
accumulate operations on words of w bits. This does not
necessarily lead to the fastest implementation on the Cortex-
M4, as larger multiplications (for smaller choices of t) would
definitely benefit from applying Karatsuba or Toom-Cook.
However, we re-iterate that the goal is not to set a speed
record on this particular platform, but rather to investigate
the runtime of Kronecker+ in order to make realistic and
meaningful predictions on platforms which are equipped with
an arithmetic co-processor.

The implementation is derived from the C reference imple-
mentation of Saber,2 where the calls to poly_mul_acc are
replaced by Kronecker+. The implementation of Kronecker+
is written in C except the calls to multiplications and additions,
for which assembly routines were taken from the GMP library
version 6.2.1. More precisely, a multiplication of `n/t+1 bits
integers requires approximately 286006, 73476, 19364, 5352,
1608 cycles for τ = 0, . . . ,4 respectively, while an addition
requires 1518, 781, 416, 232, 139 cycles. In particular, the
cycle counts for multiplications and addition allow us to re-
construct the cycle counts for more involved routines fairly
accurately. For example, looking at Table 2, a multiplication
for τ = 2 requires 4 multiplications and 8 additions with a
total cost of 4 · 19364+ 8 · 416 = 80784 cycles. Analogous
computations can be done for other operations, where the
difference between the actual cycle count and the estimate
would reveal a disconnect between theory and practice.

Finally, we also include cycle counts for the main Saber
operations MatrixVectorMul and InnerProd. We select the
NIST Level 3 security level variant (itself called Saber) in
which MatrixVectorMul performs a 3× 3 matrix-vector
multiplication where the matrix elements lie in Z213 and
the vector elements are in [−4,4]. It is important to note
that the polynomial products can be accumulated in the
Kronecker domain. That is, we need to apply 9 + 3 = 12
forward transformations for the matrix and the vector, but
only 3 backwards transformations for the resulting 3× 1
vector. For τ > 0 (τ = 0 is special as some operations
can be completely ignored) we call 12×phi_and_shift,
12×forward_bfly, 3×make_signed, 12×make_positive,
9×multiply, 3×backward_bfly, 3×divide_twos and
3×recover_coeffs. Moreover, the accumulation itself re-
quires a further 9t additions. Adding the respective cycle
counts together from Table 3, we obtain a total of 1479k,

2https://github.com/KULeuven-COSIC/SABER/tree/master/
Reference_Implementation_KEM

Function τ

0 1 2 3 4

phi_and_shift 1.5 1.8 2.3 2.5 1.7
make_signed 1.5 1.6 1.7 1.9 2.2
forward_bfly 0 2.0 4.4 7.6 12.5
make_positive 2.3 2.4 2.4 2.5 2.9
multiply 290 151 82 48 30
backward_bfly 0 2.0 4.7 7.8 12.5
divide_twos 0 4.0 4.6 4.1 5.1
recover_coeffs 2.3 2.8 2.9 3.2 1.6

MatrixVectorMul 2672 1486 907 652 568
Bermudo et al. [3] 317
Chung et al. [9] 125

InnerProd 905 513 326 249 230
Bermudo et al. [3] 99
Chung et al. [9] 57

Table 3: Cycle counts of Kronecker+ operations in 1000s of
cycles, where all operations are rounded up to 100s of cycles
except multiplications, which are rounded up to 1000s.

901k, 646k, 563k cycles for τ = 1,2,3,4. Completely anal-
ogous computations can be done for τ = 0 and InnerProd.
This demonstrates that the cost of MatrixVectorMul and
InnerProd is accurately described as a combination of the
subroutines as described above. Note that compared to lead-
ing works on the Cortex-M4 [3, 9], we are indeed quite a
bit slower. Again, the goal is not to provide speed records
on this specific platforms, but rather to use it for estimating
performance on more interesting systems.

4.4 Kronecker+ on Co-processors

Having determined how to divide MatrixVectorMul up into
several subroutines, and how to approximate the costs of those
routines by the number of multiplications and additions they
require, we can now put those two together. For simplicity we
focus on the main arithmetic operation of Saber (with k = 3),
for which we present the operation counts in Table 4. For ex-
ample, for τ= 1 a 4097-bit multiplication and addition require
73476 and 781 cycles respectively, which leads to a predicted
142k cycles for MatrixVectorMul. This can be compared
to the actual value in Table 3, showing it is extremely close.
In general the predictions are more accurate for smaller τ,
which appears to be due to an underestimation of the cost
of the butterfly operations as τ grows (these require quite a
few memory operations in the current implementation). How-
ever, even for τ = 4 the difference is less than 11% so still
allows to give fairly accurate estimations. For completeness
we also include the operation counts if one were to do sim-
ple Kronecker substitution and applied recursive Karatsuba

12

https://github.com/KULeuven-COSIC/SABER/tree/master/Reference_Implementation_KEM
https://github.com/KULeuven-COSIC/SABER/tree/master/Reference_Implementation_KEM

τ

op. 0 1 2 3 4

This #M 9 18 36 72 144
#A 33 126 327 819 1983

Karatsuba #M 9 27 81 243 729
#A 33 129 447 1461 4623

Table 4: Number of multiplications and additions for
MatrixVectorMul for Saber using Kronecker+ or recursive
Karatsuba (applied τ times) with Kronecker substitution. In
each column the operations are performed on integers of
`n/t +1 = 8192/t +1 bits, where t = 2τ.

τ times, showing that Kronecker+ is strongly favored in the
context of Saber. Here a single layer of Karatsuba is assumed
to split a single multiplication into 3 multiplications and 7
additions/subtractions of half its original size [30, §1.3.2]. Of
course, a combination of the two is also possible.

By constructing Table 4, we can now estimate the perfor-
mance of Kronecker+ on any platform by providing the cost
of a multiplication and an addition. Let us consider the case of
an arithmetic co-processor that contains w-bit multiply-and-
accumulate, addition and subtraction (with carry) instructions.
As such co-processors are created precisely for the purpose of
performing these operations, we can expect them all to require
1 cycle (or a small constant number of cycles). Moreover, as
such processors are much simpler devices than a Cortex-M4
(for example) with memory that is directly addressable by
the instructions, we do not expect any overhead from loading
and storing limbs from and to memory. Finally, let us assume
that multiplication is simply implemented via the schoolbook
method using d(`n/t +1)/we2 multiply-and-accumulate in-
structions.

The estimated cycle counts for such a platform are dis-
played in Table 5. Note that these assumptions do not nec-
essarily hold for each platform: similar tables can easily be
generated for a different set of assumptions (e.g., different cy-
cle counts per limb or the ability to use the Karatsuba method).
Multiplier lengths are typically powers of two, though might
also be somewhat larger to allow techniques such as lazy re-
duction. For example, the work by Albrecht et al. [1] uses a
multiplier slightly larger than 2048 bits. Having an additional
bit works especially well with the (8192/t+1)-bit operations
in Kronecker+, as can be seen in Table 5. The multiplier
sizes are inspired by those used for implementing elliptic-
curve cryptography or RSA. In general, we see that the cycle
counts are significantly lower than 125k reported by Chung
et al. [9] and the 317k by Bermudo et al. [3]. We believe
this demonstrates the potential of employing a contemporary
co-processor for polynomial multiplication. Though this con-
clusion initially only holds true when using a co-processor
in combination with a Cortex-M4 core, the result will only

τ

w 0 1 2 3 4

128 40k 24k 16k 13k 14k
129 39k 22k 14k 11k 10k

256 11k 7.3k 5.9k 5.9k 7.2k
257 10k 6.6k 4.9k 4.4k 4.5k

512 3.2k 2.6k 2.5k 3.1k 4.5k
513 2.8k 2.1k 1.9k 1.9k 2.1k

1024 1.0k 1.1k 1.3k 1.9k –
1025 840 792 798 891 –

2048 390 540 798 – –
2049 276 324 363 – –

Table 5: Number of cycles required to execute
MatrixVectorMul on an arithmetic co-processor with w-bit
words and multiply-and-accumulate and addition/subtraction
instructions that take 1 cycle each.

be further amplified when pairing a co-processor with a less
efficient core.

A few remarks can be made about Table 5. First, these cycle
counts exclude the phi_and_shift and recover_coeffs
functions. These routines essentially load the polynomi-
als onto the co-processor, and retrieve them at the end of
Kronecker+. This cost is fixed across all τ and depends on
the communication costs of the co-processor. Especially in
the case of large word sizes w, where the number of oper-
ations on the co-processor becomes almost negligible, the
total cost might be completely determined by communication.
This says more about how few operations are necessary on the
co-processor rather than how much communication is needed.

Secondly, a dedicated co-processor is separated from the
main processor and can therefore perform unrelated opera-
tions concurrently. Much of Kronecker+ could therefore be
computed while other operations are in progress (e.g., the
pseudo-random generation of the matrix), making much of it
“free”. The lower the latency on the co-processor, the easier it
will be to run it in parallel with other operations.

Finally, a polynomial in Kronecker domain consists of at
least 1024 bytes, which could pose challenges for smaller plat-
forms. In the simplest case 3 polynomials can be stored simul-
taneously to allow a straightforward multiply-and-accumulate
operation, requiring 3072 bytes of memory. If less memory is
available, one can perform time-memory trade-offs to be able
to fit the computation onto the device.

5 Conclusions

We introduced a more flexible way of computing polyno-
mial multiplications in the ring Z[X]/(Xn +1) that can be

13

combined particularly well with Kronecker substitution and
allows for efficient implementation using widely available
arithmetic co-processors. This algorithm, which we refer to
as Kronecker+, makes use of the available roots of unity
by computing a symbolic NTT and can be seen as a variant
of the Nussbaumer algorithm, as well as a generalization of
Harvey’s multipoint Kronecker substitution.

From a theoretical point of view this allows for faster poly-
nomial multiplication in the targeted ring Z[X]/(Xn +1) on
computer architectures with large multipliers. From a practi-
cal point of view we outline implementation considerations
when contemporary co-processors are put to the task of accel-
erating post-quantum cryptography. We have demonstrated
the potential of Kronecker+ in this setting by implementing
the post-quantum finalist scheme Saber.

References

[1] Martin R. Albrecht, Christian Hanser, Andrea Hoeller,
Thomas Pöppelmann, Fernando Virdia, and Andreas
Wallner. Implementing RLWE-based schemes using
an RSA co-processor. IACR TCHES, 2019(1):169–
208, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/7338.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and
Peter Schwabe. Post-quantum key exchange – a new
hope. In Proceedings of the 25th USENIX Security
Symposium. USENIX Association, 2016.

[3] Jose Maria Bermudo Mera, Angshuman Karmakar, and
Ingrid Verbauwhede. Time-memory trade-off in Toom-
Cook multiplication: an application to module-lattice
based cryptography. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(2):222–
244, Mar. 2020.

[4] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing
Chen, Chitchanok Chuengsatiansup, Tanja Lange,
Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Chris-
tine van Vredendaal, and Bo-Yin Yang. NTRU Prime.
Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[5] D.J. Bernstein. Multidigit Multiplication For Mathemati-
cians. 1997. https://cr.yp.to/papers/m3.pdf.

[6] Marco Bodrato and Alberto Zanoni. Integer and Poly-
nomial Multiplication: Towards Optimal Toom-Cook
Matrices. In Christopher W. Brown, editor, ISSAC 2007,
pages 17–24. ACM press, July 2007.

[7] Joppe W. Bos, Craig Costello, Michael Naehrig, and
Douglas Stebila. Post-quantum key exchange for the

TLS protocol from the ring learning with errors problem.
In 2015 IEEE Symposium on Security and Privacy – SP,
pages 553–570. IEEE Computer Society, 2015.

[8] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael
Naehrig. Improved security for a ring-based fully ho-
momorphic encryption scheme. In Martijn Stam, editor,
Cryptography and Coding 2013, volume 8308 of Lec-
ture Notes in Computer Science, pages 45–64. Springer,
2013.

[9] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J.
Kannwischer, Gregor Seiler, Cheng-Jhih Shih, and Bo-
Yin Yang. NTT Multiplication for NTT-unfriendly
Rings. Cryptology ePrint Archive, Report 2020/1397,
2020. https://eprint.iacr.org/2020/1397.

[10] S. A. Cook. On the minimum computation time of
functions. PhD thesis, Harvard University, 1966.

[11] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex Fourier series. Mathe-
matics of Computation, 19:297–301, 1965.

[12] Jan-Pieter D’Anvers, Angshuman Karmakar,
Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel van Beirendonck,
and Andrea Basso. SABER. Technical report,
National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[13] Espressif Systems. ESP32 Technical Refer-
ence Manual. https://www.espressif.com/
sites/default/files/documentation/esp32_
technical_reference_manual_en.pdf.

[14] Pierrick Gaudry, Alexander Kruppa, and Paul Zimmer-
mann. A GMP-based implementation of Schönhage-
Strassen’s large integer multiplication algorithm. Pro-
ceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC, 07 2007.

[15] David Harvey. Faster polynomial multiplication via
multipoint Kronecker substitution. Journal of Symbolic
Computation, 44(10):1502–1510, 2009.

[16] Infineon. SLE 78CAFX1M1SPHM.
https://www.infineon.com/cms/en/
product/security-smart-card-solutions/
security-controllers/sle-78/
sle-78cafx1m1sphm.

[17] Matthias J. Kannwischer, Joost Rijneveld, Peter
Schwabe, and Ko Stoffelen. pqm4: Testing and bench-
marking NIST PQC on ARM Cortex-M4. Cryptol-
ogy ePrint Archive, Report 2019/844, 2019. https:
//eprint.iacr.org/2019/844.

14

https://tches.iacr.org/index.php/TCHES/article/view/7338
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://cr.yp.to/papers/m3.pdf
https://eprint.iacr.org/2020/1397
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.infineon.com/cms/en/product/security-smart-card-solutions/security-controllers/sle-78/sle-78cafx1m1sphm
https://www.infineon.com/cms/en/product/security-smart-card-solutions/security-controllers/sle-78/sle-78cafx1m1sphm
https://www.infineon.com/cms/en/product/security-smart-card-solutions/security-controllers/sle-78/sle-78cafx1m1sphm
https://www.infineon.com/cms/en/product/security-smart-card-solutions/security-controllers/sle-78/sle-78cafx1m1sphm
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844

[18] Anatoly Karatsuba and Yuri Ofman. Multiplication of
Many-Digital Numbers by Automatic Computers. Dok-
lady Akad. Nauk SSSR, 145:293–294, 1962. Translation
in Physics-Doklady 7, 595–596, 1963.

[19] N. Koblitz. Elliptic curve cryptosystems. Mathematics
of Computation, 48:203–209, 1987.

[20] L. Kronecker. Grundzüge einer arithmetischen Theorie
der algebraischen Grössen. Journal für die reine und
angewandte Mathematik, 92:1–122, 1882.

[21] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Peter Schwabe, Gregor Seiler, Damien
Stehlé, and Shi Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[22] Gilad David Maayan. The IoT rundown
for 2020: Stats, risks, and solutions. https:
//securitytoday.com/Articles/2020/01/13/
The-IoT-Rundown-for-2020.aspx.

[23] Victor S. Miller. Use of elliptic curves in cryptography.
In Hugh C. Williams, editor, CRYPTO’85, volume 218
of LNCS, pages 417–426. Springer, Heidelberg, August
1986.

[24] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas,
Karen Easterbrook, Brian LaMacchia, Patrick Longa,
Ilya Mironov, Valeria Nikolaenko, Christopher Peikert,
Ananth Raghunathan, and Douglas Stebila. FrodoKEM.
Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[25] National Institute of Standards and Tech-
nology. Post-quantum cryptography stan-
dardization. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[26] H. Nussbaumer. Fast polynomial transform algorithms
for digital convolution. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(2):205–215, 1980.

[27] NXP Semiconductors. NXP secure microcontroller
SmartMX P71D321. https://www.nxp.com/docs/
en/fact-sheet/P71D321.pdf.

[28] John M. Pollard. The fast Fourier transform in a finite
field. Mathematics of computation, 25(114):365–374,
1971.

[29] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoff-
stein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[30] Paul Zimmerman Richard Brent. Modern Computer
Arithmetic. 2010.

[31] R. L. Rivest, A. Shamir, and L. Adleman. A Method
for Obtaining Digital Signatures and Public-Key Cryp-
tosystems. Commun. ACM, 21(2):120–126, February
1978.

[32] A. Schönhage and V. Strassen. Schnelle Multiplikation
großer Zahlen. Computing, 7:281–292, 1971.

[33] Arnold Schönhage. Asymptotically fast algorithms for
the numerical multiplication and division of polynomi-
als with complex coefficients. In Jacques Calmet, editor,
Computer Algebra, pages 3–15. Springer Berlin Heidel-
berg, 1982.

[34] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo
Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Gregor Seiler, and
Damien Stehlé. CRYSTALS-KYBER. Technical
report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[35] Peter W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In 35th FOCS, pages
124–134. IEEE Computer Society Press, November
1994.

[36] The Sage Developers. SageMath, the Sage Mathematics
Software System (Version 8.1), 2020. https://www.
sagemath.org.

[37] A.L. Toom. The complexity of a scheme of functional
elements realizing the multiplication of integers. In
Soviet Mathematics Doklady, volume 3, pages 714–716,
1963.

[38] G. van der Lubbe. A New Hope for Nussbaumer.
2016. https://www.cs.ru.nl/bachelors-theses/
2016/Gerben_van_der_Lubbe___4389026___A_
New_Hope_for_Nussbaumer.pdf.

[39] Bin Wang, Xiaozhuo Gu, and Yingshan Yang. Saber on
ESP32. In Mauro Conti, Jianying Zhou, Emiliano Casal-
icchio, and Angelo Spognardi, editors, Applied Cryp-
tography and Network Security - ACNS 2020, volume
12146 of LNCS, pages 421–440. Springer, 2020.

15

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx
https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx
https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://www.nxp.com/docs/en/fact-sheet/P71D321.pdf
https://www.nxp.com/docs/en/fact-sheet/P71D321.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.sagemath.org
https://www.sagemath.org
https://www.cs.ru.nl/bachelors-theses/2016/Gerben_van_der_Lubbe___4389026___A_New_Hope_for_Nussbaumer.pdf
https://www.cs.ru.nl/bachelors-theses/2016/Gerben_van_der_Lubbe___4389026___A_New_Hope_for_Nussbaumer.pdf
https://www.cs.ru.nl/bachelors-theses/2016/Gerben_van_der_Lubbe___4389026___A_New_Hope_for_Nussbaumer.pdf

[40] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, William
Whyte, John M. Schanck, Andreas Hulsing, Joost Rijn-
eveld, Peter Schwabe, Oussama Danba, Tsunekazu Saito,
Takashi Yamakawa, and Keita Xagawa. NTRUEncrypt.
Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

16

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	Introduction
	Preliminaries
	NIST PQC Candidates
	Polynomial Multiplication
	Karatsuba and Toom-Cook
	Fast Fourier Transform in a Finite Field
	Nussbaumer

	Utilizing Integer Multipliers
	Kronecker Substitution
	Multipoint Kronecker Substitution
	Schönhage-Strassen

	Public-key Hardware Co-processors

	Kronecker+
	An Alternative Transformation
	Applying Kronecker
	Algorithmics
	Parameter choices
	Butterfly operations
	Multiplication
	Recovering polynomials

	Implementation Results
	Kronecker+ for Saber
	Theoretical Model
	Cortex-M4 Implementation
	Kronecker+ on Co-processors

	Conclusions

