
On the Compressed-Oracle Technique, and Post-Quantum Security
of Proofs of Sequential Work∗

Kai-Min Chung1, Serge Fehr2, Yu-Hsuan Huang3, and Tai-Ning Liao4

1Academia Sinica, Taiwan (kmchung@iis.sinica.edu.tw)
2CWI Cryptology Group and Leiden University, The Netherlands (serge.fehr@cwi.nl)

3National Chiao-Tung University, Taiwan (asd00012334.cs04@nctu.edu.tw)
4National Taiwan University, Taiwan (tonyliao8631@gmail.com)

Abstract

We revisit the so-called compressed oracle technique, introduced by Zhandry for analyzing quantum algorithms
in the quantum random oracle model (QROM). This technique has proven to be very powerful for reproving known
lower bound results, but also for proving new results that seemed to be out of reach before. Despite being very useful,
it is however still quite cumbersome to actually employ the compressed oracle technique.

To start off with, we offer a concise yet mathematically rigorous exposition of the compressed oracle technique.
We adopt a more abstract view than other descriptions found in the literature, which allows us to keep the focus
on the relevant aspects. Our exposition easily extends to the parallel-query QROM, where in each query-round the
considered quantum oracle algorithm may make several queries to the QROM in parallel. This variant of the QROM
allows for a more fine-grained query-complexity analysis of quantum oracle algorithms.

Our main technical contribution is a framework that simplifies the use of (the parallel-query generalization of)
the compressed oracle technique for proving query complexity results. With our framework in place, whenever
applicable, it is possible to prove quantum query complexity lower bounds by means of purely classical reasoning.
More than that, we show that, for typical examples, the crucial classical observations that give rise to the classical
bounds are sufficient to conclude the corresponding quantum bounds.

We demonstrate this on a few examples, recovering known results (like the optimality of parallel Grover), but also
obtaining new results (like the optimality of parallel BHT collision search). Our main application is to prove hardness
of finding a q-chain, i.e., a sequence x0, x1, . . . , xq with the property that xi = H(xi−1) for all 1 ≤ i ≤ q, with
fewer than q parallel queries.

The above problem of producing a hash chain is of fundamental importance in the context of proofs of sequential
work. Indeed, as a concrete cryptographic application, we prove that the “Simple Proofs of Sequential Work” pro-
posed by Cohen and Pietrzak remains secure against quantum attacks. Such proof is not simply a matter of plugging
in our new bound; the entire protocol needs to be analyzed in the light of a quantum attack, and substantial additional
work is necessary. Thanks to our framework, this can now be done with purely classical reasoning.

1 Introduction
Background. The random oracle methodology [3] has proven to be a successful way to design very efficient
cryptographic protocols and arguing them secure in a rigorous yet idealized manner. The considered idealization
treats a cryptographic hash function H : {0, 1}n → {0, 1}m as an external oracle that the adversary needs to query on
x ∈ {0, 1}n in order to learn H(x). Furthermore, this oracle, called random oracle (RO) then, answers these queries
by means of a uniformly random function H : {0, 1}n → {0, 1}m. Even though it is known that in principle the

∗This is the full version of an article submitted by the authors to the IACR and to Springer Verlag in March 2021. The published version is
available from the proceedings of Advances in Cryptology – EUROCRYPT 2021.

1

methodology can break down [8] and a “proven secure” protocol may become insecure in the actual (non-idealized)
setting, experience has shown that for natural protocols this does not seem to happen.

In case of a quantum adversary that may locally run a quantum computer, the RO needs to be modeled as a
quantum operation that is capable of answering queries in superposition, in order to reasonably reflect the capabilities
of an attacker in the non-idealized setting [6]. This is then referred to as the quantum random oracle model (QROM).
Unfortunately, this change in the model renders typical RO-security proofs invalid. One reason is that in the ordinary
RO model the security reduction can inspect the queries that the adversary makes to the RO, while this is not possible
anymore in the quantum setting when the queries are quantum states in superposition — at least not without disturbing
the query state significantly and, typically, uncontrollably.

The Compressed Oracle. A very powerful tool to deal with the QROM is the so-called compressed oracle tech-
nique, introduced by Zhandry [20]. On a conceptual level, the technique very much resembles the classical ”lazy
sampling” technique; on a technical level, the idea is to consider a quantum purification of the random choice of the
function H , and to analyze the internal state of the RO then in the Fourier domain.

This idea has proven to be very powerful. On the one hand, it gives rise to new and shorter proofs for known lower
bound results on the query complexity of quantum algorithms (like Grover [13, 4]); on the other hand, it allows for
proving new cryptographic security results that seemed to be out of reach before, like in the context of indifferentiabil-
ity [20, 11], or, more recently, the Fiat-Shamir transformation [17], when considering a quantum adversary. Despite
being very useful, it is however still quite cumbersome to actually employ the compressed oracle technique. Proofs
tend to be hard to read, and they require a good understanding of quantum information science.

Our Results. We first present a concise yet mathematically rigorous exposition of the compressed oracle technique.
Our exposition differs from other descriptions found in the literature (e.g. [20, 15, 11, 9, 14]) in that we adopt a more
abstract view in terms of Fourier transform for arbitrary finite Abelian groups, i.e., by considering the range of H to
be an arbitrary finite Abelian group. Some readers may, to start with, feel uncomfortable with this approach, but it
allows us to keep the focus on the relevant aspects, and, on the long run, abstraction simplifies matters and improves
the understanding.

We also consider a generalization of the compressed-oracle technique to the parallel-query QROM. In this vari-
ation of the standard QROM, the considered quantum oracle algorithm may make several queries to the QROM in
parallel in each query-round. The main difference between parallel and sequential queries is of course that sequential
queries may be adaptive, i.e., the queried value x may depend on the hash learned in a previous query, while paral-
lel queries are limited to be non-adaptive, i.e., the queries are independent of the hash values that are to be learned.
This variation of the QROM allows for a more fine-grained query-complexity analysis that distinguishes between the
number q of query rounds, and the number k of queries made per round; the total number of queries made is then
obviously given by Q = kq. This way of studying the query complexity of quantum oracle algorithms is in particular
suited for analyzing how well a computational task can or cannot be parallelized (some more on this below).

As our first main technical contribution, we propose an abstract framework that simplifies the use of (our gener-
alized version of) the compressed oracle technique in certain cases. In particular, with our new framework in place
and whenever it is applicable, it is possible to prove quantum query complexity lower bounds by means of purely
classical reasoning: all the quantum aspects are abstracted away by our framework. This means that no knowledge
about quantum information science is actually necessary in order to apply our framework. If applicable, the reasoning
is purely by means of identifying some classical property of the problem at hand and applying our meta-theorems.
More than that, the necessary classical property can typically be extracted from the — typically much simpler — proof
for the classical query complexity bound.

We demonstrate the workings and the power of our framework on a few examples, recovering known and finding
new bounds. For example, with q, k,m as above, we show that the success probability of finding a preimage is upper
bounded by O(kq2/2m), compared to the coarse-grained bound O(Q2/2m) [4] that does not distinguish between se-
quential and parallel queries; this recovers the known fact that the naive way to parallelize a preimage search (by doing
several executions of Grover [13] in parallel) is optimal [19].1 We also show that the success probability of finding a
collision is bounded by O(k2q3/2m), compared to the coarse-grained bound O(Q3/2m) [1] that does not distinguish

1This parallel lower bound can be improved for “unbalanced” algorithms for which k varies from query to query; see e.g. [2, Lemma 2].

2

between sequential and parallel queries. Like for Grover, this shows optimality for the obvious parallelization of the
BHT collision finding algorithm [7], which makes k-parallel queries in the first phase to collect kq/2 function values
and then runs a parallel Grover in the second phase, which gives a factor k2 improvement. We are not aware of any
prior optimality result on parallel collision search; [16] shows a corresponding bound for element distinctness, but that
bound does not apply here when considering a hash function with many collisions. Finally, our main example applica-
tion is to the problem of finding a q-chain, i.e., a sequence x0, x1, . . . , xq with the property that xi = H(xi−1) for all
1 ≤ i ≤ q (or, more generally, thatH(xi−1) is a substring of xi, or yet satisfies some other relation). While classically
it is well known and not too hard to show that q parallel queries are necessary to find a q-chain, there has been no
proven bound in the quantum setting — at least not until very recently (see the recent-related-work paragraph below).2

Here, we show that the same does hold in the quantum setting. Formally, we prove that the success probability of
finding a q-chain using fewer than q queries is upper bounded by O(k3q3/2m). The proof is by means of recycling an
observation that is crucial to the classical proof, and plugging it into the right theorem(s) of our framework.

The problem of producing a hash chain is of fundamental importance in the context of proofs of sequential work
(PoSW); indeed, a crucial ingredient of a PoSW is a computational problem that is hard/impossible to parallelize.
Following up on this, our second main technical contribution is to show that the “Simple Proofs of Sequential Work”
proposed by Cohen and Pietrzak [10] remain secure against quantum attacks. One might hope that this is simply a
matter of plugging in our bound on the chain problem; unfortunately, it is more complicated than that: the entire
protocol needs to be analyzed in the light of a quantum attack, and substantial additional work is necessary to reduce
the security of the protocol to the hardness of finding a chain. As a matter of fact, we enrich our framework with
a “calculus” that facilitates the latter. In return, relying on our framework, the proof of the quantum security of the
PoSW scheme is purely classical, with no need to understand anything about quantum information science.

Related Work. Independently and concurrently to the preparation of our work, the hardness of finding a q-chain
with fewer than q queries and the security of the Cohen and Pietrzak PoSW scheme [10] against quantum attacks
have also been analyzed and tackled by Blocki, Lee and Zhou in [5].3 Their bounds are comparable to ours, and
both works are exploiting the compressed oracle idea; however, the actual derivations and the conceptual contributions
are quite different. Indeed, Blocki et al.’s work is very specific to the q-chain problem and the PoSW scheme, and
verifying the proofs requires a deep understanding of quantum information science in general and of the compressed
oracle technique in particular. In contrast, in our work we provide a general framework for proving quantum query
complexity bounds by means of classical reasoning. Verifying our framework also requires a deep understanding
of quantum information science and of the compressed oracle, but once our framework is place, the proofs become
purely classical and thus accessible to a much broader audience. Furthermore, even though our original targets were
the q-chain problem and the PoSW scheme, our framework provides means to tackle other quantum query complexity
bounds as well, as is demonstrated with our new collision finding bound. Thus, our framework opens the door for
non-quantum-experts to derive quantum query complexity bounds for their problems of merit.

In the same spirit, Chiesa, Manohar and Spooner [9] also offer means to apply the compressed oracle technique
using purely classical combinatorial reasoning. A major difference is that in our work we allow parallel queries
(which is crucial for our PoSW application), which confronted us with the main technical challenges in our work. Our
framework easily applies to the main application of the Chiesa et al. paper (post-quantum secure SNARGs), but not
vice versa.

2 Warm-up: Proving Classical Query Complexity Lower Bounds
In this section, we discuss lower bounds on the classical query complexity in the classical ROM for a few example
problems. This serves as a warm-up and as a reminder of how such classical bounds are (or can be) rigorously proven.

2The problem of finding a q-chain looks very similar to the iterated hashing studied by Unruh in [18]; however, a crucial difference is that the
start of the chain, x0, can be freely chosen here.

3An early version of [5] with weaker results (a weaker bound on the q-chain problem and no PoSW proof) appeared before our work, a newer
version with results comparable to ours then appeared almost simultaneously to our work, and an update of the newer version that fixed certain
technical issues appeared after our work.

3

Additionally, it demonstrates that, when it then comes to analyzing the quantum query complexity of these problems,
it is simply a matter of recycling certain observations from the classical proofs and plugging them into our framework.

2.1 The Lazy-Sampling Technique
First, let us briefly recall the lazy sampling technique, which allows us to efficiently simulate the random oracle.
Instead of choosing a uniformly random function H : X → Y and answering each query x to random oracle as
y = H(x), one can build up the hash function H “on the fly”. Introduce a special symbol ⊥, which stands for “not
defined (yet)”, and initiate D0 to be the constant-⊥ function. Then, inductively for i = 1, 2, . . ., on receiving the
i-th query xi, check if this query has been made before, i.e., if xi = xj for some j < i. If this is the case then set
Di := Di−1; else, do the following: choose a uniformly random yi ∈ Y and set Di to Di := Di−1[xi 7→ yi], where
in general D[x 7→y] is defined by D[x 7→y](x) = y and D[x 7→y](x̄) = D(x̄) for x̄ 6= x.4 In either case, answer the
query then with yi = Di(xi). We refer to such a function Di : X → Y ∪ {⊥} as a database.

As it is easy to see, the lazy-sampling only affects the “internal workings” of the random oracle; any algorithm
making queries to the standard random oracle (which samples H as a random function at the beginning of time), or to
the lazy-sampled variant (which builds up D0, D1, . . . as explained above), cannot see any difference.

For below, it will be convenient to write Di, the “update” of Di−1 in response to query xi, as Di = D	xi
i−1 . Note

that since Di(x) = yi is chosen in a randomized way, D	xi
i−1 is a random variable, strictly speaking.

2.2 Efficient Representation
One important feature of the lazy-sampling technique is that it allows for an efficient simulation of the random oracle.
Indeed, compared to a uniformly random function H : X → Y , the databases D0, D1, . . . can be efficiently repre-
sented by means of an encoding function enc that maps any database D : X → Y ∪ {⊥} to (a suitable representation
of) the list of pairs

(
x,D(x)

)
for which D(x) 6= ⊥.5 Obviously, for a bounded number of queries, the list enc(Di)

remains bounded in size. Furthermore, the update enc(Di) 7→ enc(Di+1) = enc(Di[xi 7→ yi]) can be efficiently
computed (for any choice of yi).

2.3 Proving Classical Lower Bounds
In the work here, we are more interested in the fact that the lazy sampling idea is useful for showing lower bounds on
the query complexity for certain tasks. Our goal here is to show on a few examples that the well-understood classical
reasoning is very close to the reasoning that our framework will admit for proving bounds in the quantum setting. In
order to align the two, certain argumentation below may appear overkill given the simplicity of the classical case.

Finding a Preimage. We first consider the example of finding a preimage of the random oracle, say, without loss
of generality, finding x ∈ X with H(x) = 0. Thus, let A be an algorithm making q queries to the random oracle and
outputting some x at the end, with the goal of x being a zero-preimage. A first simple observation is the following:
if in the lazy-sampling picture after q queries the built-up database Dq : X → Y ∪ {⊥} does not map A’s output
x to 0, then H(x) is unlikely to vanish, where H(x) is understood to be obtained by making one more query to the
oracle, i.e., H(x) = Dq+1(x). More formally, if p is the probability that H(x) = 0 when A is interacting with the
standard oracle, and p′ is the probability that Dq(x) = 0 when A is interacting with the lazy-sampled oracle, then
p ≤ p′ + 1/|Y|. Looking ahead, this trivial observation is the classical counterpart of Corollary 4.2 (originally by
Zhandry) that we encounter later.

The above observation implies that it is sufficient to show that P [∃x : Dq(x) = 0] is small. Furthermore, writing
PRMG := {D : X → Y ∪ {⊥} | ∃x : D(x) = 0}, we can write and decompose

P [∃x : Dq(x)=0] = P [Dq∈PRMG] ≤
∑
i

P [Di∈PRMG |Di−1 6∈PRMG] .

4We stress that we define D[x 7→y] also for x with D(x) 6= ⊥, which then means that D is redefined at point x; this will be useful later.
5This representation as a list of pairs somewhat justifies the terminology ”database” for D.

4

In order to align the reasoning here with our framework, which relies on the notion of a quantum transition capacity,
we introduce here the classical transition capacity[

¬PRMG→ PRMG
]

:= max
D 6∈PRMG
x∈X

P [D	x∈ PRMG]

as the maximal probability that a database D : X → Y ∪ {⊥} with no zero-preimage will be turned into a database
with a zero-preimage as a result of a query. Combining the above observations, we obtain that

p ≤ q ·
[
¬PRMG→ PRMG

]
+

1

|Y|
. (1)

Looking ahead, this is the classical counterpart to Theorem 5.7 (with Ps set to PRMG), which is in terms of the
(appropriately defined) quantum transition capacity

q
· → ·

y
.

The reader probably already sees that
[
¬PRMG → PRMG

]
= 1/|Y|, leading to the (well-known) bound p ≤

(q + 1)/|Y|. However, in order to better understand the general reasoning, we take a more careful look at bounding
this transition capacity. For every D 6∈ PRMG and x ∈ X , we identify a “local” property LD,x ⊆ Y that satisfies

D[x 7→y] ∈ PRMG ⇐⇒ y ∈ LD,x ;

therefore, P [D	x∈ PRMG] ≤ P
[
D[x 7→U]∈PRMG

]
= P [U ∈LD,x] where U is defined to be uniformly random

in Y . Here, we can simply set LD,x := {0} and thus obtain
[
¬PRMG→ PRMG

]
= P [U=0] = 1/|Y| as claimed.

The point of explicitly introducing LD,x is that our framework will offer similar connections between the quantum
transition capacity

q
· → ·

y
and the purely classically defined probability P [U ∈LD,x]. Indeed, by means of the very

same choice of local property LD,x, but then applying Theorem 5.16, we obtain

q
¬PRMG→ PRMG

y
≤ max

D,x

√
10P

[
U ∈LD,x

]
≤

√
10

|Y|
.

By Theorem 5.7, this implies that the success probability p of a quantum algorithm to find a preimage is bounded by

p ≤

(
q
q
¬PRMG→ PRMG

y
+

1√
|Y|

)2

≤

(
q

√
10

|Y|
+

1√
|Y|

)2

= O

(
q2

|Y|

)
,

confirming the optimality of the quadratic speed-up of Grover.

Finding a Preimage with Parallel Queries. The above (classical and quantum) reasoning can be extended to the
parallel query model, where with each interaction with the random oracle, a query algorithm can make k queries in
one go. The lazy-sampling technique then works in the obvious way, with the function update Di := D	xi

i−1 now
involving a query vector xi ∈ X k. This then gives rise to

[
¬PRMG k→ PRMG

]
, and (1) generalizes accordingly.

For D 6∈ PRMG and x = (x1, . . . , xk) ∈ X k, we then identify a family of k local properties LD,x1 , . . . , LD,xk ⊆ Y so
that

D[x 7→y] ∈ PRMG ⇐⇒ ∃ i : yi ∈ LD,xi , (2)

and therefore, by the union bound, P [D	x ∈ PRMG] ≤
∑
i P [U ∈ LD,xi]. Setting LD,x1 = . . . = LD,xk := {0},

we now obtain
[
¬PRMG k→ PRMG

]
= kP [U=0] = k/|Y|, showing a factor-k increase in the bound as expected.

More interesting is that Theorem 5.16 still applies, implying that for the quantum version we have

q
¬PRMG k→ PRMG

y
≤ max

D,x

√
10
∑
i

P
[
U ∈LD,xi

]
≤

√
10k

|Y|
.

Plugging this into Theorem 5.7, we then get the bound

p ≤

(
q

√
10k

|Y|
+

1√
|Y|

)2

= O

(
q2k

|Y|

)
,

showing optimality of running k parallel executions of Grover.

5

Finding a Chain (with Parallel Queries). Another example we want to discuss here, where we now stick to the
parallel query model, is the problem of finding a (q + 1)-chain, i.e., a sequence x0, x1, . . . , xq+1 with H(xi−1) / xi,
with no more than q (parallel) queries. Here, / refers to an arbitrary relation among the elements of X and Y; typical
examples are: y / x if x = y, or if y is a prefix of y, or if y is an arbitrary continuous substring of x. Below, we set
Y/x := {y ∈ Y | y / x} and T := maxx |Y/x|.

Using the same kind of reasoning as above, we can argue that

p ≤
q∑
s=1

[
¬CHNs k→ CHNs+1

]
+

2

|Y|
,

where CHNs = {D | ∃x0, x1, . . . , xs ∈ X : D(xi−1) / xi ∀i}. Here, it will be useful to exploit that after s (parallel)
queries, Ds ∈ SZ≤ks := {D | |{x|D(x) 6=⊥}| ≤ ks}, i.e., that the size of the database Ds, measured as the number
of x’s for which Ds(x) 6= ⊥, is at most ks . Thus, the above extends to

p ≤
q∑
s=1

[
SZ≤k(s−1)\CHNs

k→ CHNs+1
]

+
2

|Y|
, (3)

with the (classical) transition capacity here given by maxP [D	x ∈ CHNs+1], maximized over all x ∈ X k and
D ∈ SZ≤k(s−1) \ CHNs. To control the considered (classical and quantum) transition capacity, for any D and any
x = (x1, . . . , xk) ∈ X k, we introduce the following local properties LD,xi ⊆ Y with i = 1, . . . , k:

LD,xi =
⋃
x∈X

D(x) 6=⊥

Y/x ∪
k⋃
j=1

Y/xj , (4)

so that yi ∈ LD,xi if yi /x for some x ∈ X with D(x) 6= ⊥ or x ∈ {x1, . . . , xk}. They satisfy the following condition,
which is slightly weaker than (2) used above.

Lemma 2.1. D[x 7→r] 6∈ CHNs ∧ D[x 7→u] ∈ CHNs+1 =⇒ ∃ i : ri 6= ui ∧ ui ∈ LD,xi .

Proof. Write D◦ for D[x 7→ r] and D′ for D[x 7→u]. Assume that D′ ∈ CHNs+1, and let x̂0, x̂1, . . . , x̂s+1 ∈ X be
such a chain, i.e., so that D′(x̂j) / x̂j+1 for j = 0, . . . , s. Let s◦ be the smallest j so that D◦(x̂j) 6= D′(x̂j); if s◦ ≥ s
(or no such j exists) then D◦(x̂j) = D′(x̂j) / x̂j+1 for j = 0, . . . , s − 1, and thus D◦ ∈ CHNs and we are done.
Therefore, we may assume s◦ < s. Furthermore, since D◦(x̄) = D′(x̄) for x̄ 6∈ {x1, . . . , xk}, we must have that
x̂s◦ = xi for some i ∈ {1, . . . , k}, and therefore ri = D◦(xi) = D◦(x̂s◦) 6= D′(x̂s◦) = D′(xi) = ui. Also, we have
that ui = D′(xi) = D′(x̂s◦) / x̂s◦+1 where x̂s◦+1 is such that D′(x̂s◦+1) / x̂s◦+2 and thus 6= ⊥. The latter means
that either D(x̂s◦+1) 6= ⊥ or x̂s◦+1 ∈ {x1, . . . , xk} (or both). In either case we have that ui ∈ LD,xi .

Applied to r := D(x) so that D[x 7→ r] = D, we obtain P [D	x ∈ CHNs+1] ≤
∑
i P [U ∈ LD,xi]. Given that,

for D ∈ SZ≤k(s−1), the set {x|D(x) 6= ⊥} is bounded in size by k(s − 1), and |Y/x|, |Y/xj | ≤ T , we can bound
the relevant probability P [U ∈LD,xi] ≤ ksT/|Y|. Hence, the considered classical transition capacity is bounded by
k2sT/|Y|. By (3), we thus have p = O(k2q2T/|Y|), which is in line with the bound given by Cohen-Pietrzak [10].

Also here, our framework allows us to lift the above reasoning to the quantum setting, simply by plugging the core
elements of the above reasoning for the classical case into our framework. Concretely, choosing the local properties
LD,xi as above whenever D ∈ SZ≤k(s−1), and to be constant-false otherwise, Lemma 2.1 ensures that we can apply
Theorem 5.22 to bound the quantum transition capacity as

q
SZ≤k(s−1)\CHNs

k→ CHNs+1
y
≤ emax

x,D

∑
i

√
10P

[
U ∈LD,xi

]
≤ ek

√
10k(q + 1)T

|Y|
,

where e is Euler’s number. Plugging this into Theorem 5.7, we then get the bound

p ≤

(
qek

√
10k(q + 1)T

|Y|
+
q + 2

|Y|

)2

= O

(
q3k3T

|Y|

)

6

on the success probability of a quantum oracle algorithm in finding a (q+1)-chain with no more than q k-parallel
queries. Recall, T depends on the considered relation y / x; T = 1 if y is required to be equal to x, or a prefix of x,
and T = m− n if y and x are n- and m-bit strings, respectively, and y is required to be a continuous substring of x.

Finding a Collision (with Parallel Queries). In the same spirit, for the query complexity of finding a collision, it
is sufficient to control the transition capacity for CL := {D | ∃x 6= x′ : D(x) = D(x′) 6= ⊥}. Indeed, using the same
kind of reasoning as above, we can argue that

p ≤
q∑
s=1

[
SZ≤k(s−1)\CL

k→ CL
]

+
2

|Y|
,

with the (classical) transition capacity here given by maxP [D	x ∈ CL], maximized over all D ∈ SZ≤k(s−1) \ CL
and x ∈ X k. In order to analyze this transition capacity, for given D and x = (x1, . . . , xk) ∈ X k, we consider the
following family of 1-local and 2-local properties:

CLi,j = {(y, y) | y ∈ Y} ⊆ Y × Y and CLi = {D(x̄) | x̄ 6∈ {x1, . . . , xk} : D(x̄) 6= ⊥} ⊆ Y ,

indexed by i 6= j ∈ {1, . . . , k} and i ∈ {1, . . . , k}, respectively, and where were we leave the dependency on D and
x implicit. Similar to (2), here we have that for any x ∈ X k and D ∈ SZ≤k(s−1) \ CL

D[x 7→ y] ∈ CL ⇐⇒
(
∃ i 6=j : (yi, yj) ∈ CLi,j

)
∨
(
∃ i : yi ∈ CLi

)
,

i.e., a collision can only happen for D[x 7→ y] if yi = yj for i 6= j, or yi = D(x̄) for some i and some x̄ outside of x.
It then follows that[

SZ≤k(s−1)\CL
k→ CL

]
=
∑
i 6=j

P [(U,U ′)∈CLi,j] +
∑
i

P [U ∈CLi] ≤
k(k − 1)

|Y|
+
k2(s− 1)

|Y|
,

where we exploited that CLi is bounded in size by assumption on D. This then amounts to the classical bound

p ≤ O
(
q2k2

|Y|

)
on the success probability of finding a collision with no more than q k-parallel queries.

Here, due to the 2-locality of CLi,j , there is an additional small complication for deriving the corresponding
quantum bound, since in such a case our framework does not relate the corresponding quantum transition capacity to
the probability P [(U,U ′)∈CLi,j] of a random pair in Y ×Y satisfying the 2-local property CLi,j . Instead, we have to
consider the following derived 1-local properties. For any i 6= j and D′, let

CLi,j |D′|xi := CLi,j ∩
(
(Y ∪ {⊥})× {D′(xj)}

)
= {D′(xj)} and CLi|D′|xi := CLi .

Then, the considered quantum transition capacity is given in terms of

P
[
U ∈CLi,j |D′|xi

]
=

1

|Y|
and P

[
U ∈CLi|D′|xi

]
≤ kq

|Y|
.

Namely, by Theorem 5.25,

q
SZ≤ks\CL

k→ CL
y
≤ 2e

√√√√10

(∑
i 6=j

P
[
U ∈CLi,j |D′|xi

]
+
∑
i

P
[
U ∈CLi|D′|xi

])
≤ 2ek

√
10
q + 1

|Y|
.

By Theorem 5.7, this then amounts to the bound

p ≤ O
(
q3k2

|Y|

)
on the success probability of a quantum oracle algorithm in finding a collision with no more than q k-parallel queries.

7

3 Notation

3.1 Operators and Their Norms
Let H be a finite-dimensional complex Hilbert space; by default, H = Cd for some dimension d. We use the standard
bra-ket notation for covariant and contravariant vectors in H, i.e., for column and row vectors Cd. We write L(H,H′)
for the linear maps, i.e., operators (or matrices), A : H → H′, and we use L(H) as a short hand for L(H,H). We
write I for the identity operator in L(H). It is understood that pure states are given by norm-1 ket vectors |ψ〉 ∈ H and
mixed states by density operators ρ ∈ L(H).

A (possibly) mixed state ρ ∈ L(H) is said to be supported by subspace H◦ ⊆ H if the support of the operator ρ
lies in H◦, or, equivalently, if any purification |Ψ〉 ∈ H ⊗H of ρ lies in H◦ ⊗H. A state is said to be supported by a
family of (orthonormal) vectors if it is supported by the span of these vectors.

We write ‖A‖ for the operator norm of A ∈ L(H,H′) and recall that it is upper bounded by the Frobenius norm.
Special choices of operators in L(H) are projections and unitaries. We assume familiarity with these notions, as well
as with the notion of an isometry in L(H,H′).

If H◦ is a subspace of H and A ∈ L(H◦) then we can naturally understand A as a map A ∈ L(H) by letting A act
as zero-map on any |ψ〉 ∈ H that is orthogonal to H◦. We point out that this does not cause any ambiguity in ‖A‖. Vice
versa, for any A ∈ L(H) we can consider its restriction to H◦. Here, we have the following. If H = H1 ⊕ . . .⊕Hm

is a decomposition of H into orthogonal subspaces Hi ⊆ H, and A ∈ L(H) is such that its restriction to Hi is a map
Hi → Hi and coincides with Bi ∈ L(Hi) for any i ∈ {1, . . . ,m}, then

‖A‖ = max
1≤i≤m

‖Bi‖ .

This is a property we are exploiting multiple times, typically making a reference then to “basic properties” of the
operator norm.

3.2 The Computational and the Fourier Basis
Let Y be a finite Abelian group of cardinality M , and let {|y〉}y∈Y be an (orthonormal) basis of H = CM , where the
basis vectors are labeled by the elements of Y . We refer to this basis as the computational basis, and we also write
C[Y] for H = CM to emphasize that the considered space is spanned by basis vectors that are labeled by the elements
in Y . Let Ŷ be the dual group of Y , which consists of all group homomorphisms Y → {ω ∈ C | |ω| = 1} and is
known to be isomorphic to Y , and thus to have cardinality M as well. Up to some exceptions, we consider Ŷ to be
an additive group; the neutral element is denoted 0̂. We stress that we treat Y and Ŷ as disjoint sets, even though in
certain (common) cases they are naturally isomorphic and thus considered to be equal. The Fourier basis {|ŷ〉}ŷ∈Ŷ of
H is defined by the basis transformations

|ŷ〉 =
1√
M

∑
y

ŷ(y)∗|y〉 and |y〉 =
1√
M

∑
ŷ

ŷ(y)|ŷ〉 , (5)

where (·)∗ denotes complex conjugation.6 With the above convention on the notation, we have C[Y] = C[Ŷ] = H.7

An elementary property of the Fourier basis is that the operator in L(C[Y] ⊗ C[Y]) defined by |y〉|y′〉 7→ |y+y′〉|y′〉
for y, y′ ∈ Y acts as |ŷ〉|ŷ′〉 7→ |y〉|ŷ−ŷ′〉 for ŷ, ŷ′ ∈ Ŷ .

We will also consider extensions Y ∪ {⊥} and Ŷ ∪ {⊥} of the sets Y and Ŷ by including a special symbol ⊥. We
will then fix a norm-1 vector |⊥〉 ∈ CM+1 that is orthogonal to C[Y] = C[Ŷ], given a fixed embedding of C[Y] = CM
into CM+1. In line with our notation, CM+1 is then referred to as C[Y ∪ {⊥}] = C[Ŷ ∪ {⊥}].

6By fixing an isomorphism Y → Ŷ, y 7→ ŷ we obtain a unitary map |y〉 7→ |ŷ〉, called quantum Fourier transform (QFT). However, we point
out that in general there is no natural choice for the isomorphism, and thus for the QFT — but in the common cases there is. We note that in this
work we do not fix any such isomorphism and do not make use of a QFT; we merely consider the two bases.

7The reader that feels uncomfortable with this abstract approach to the Fourier basis may stick to Y = {0, 1}m and replace |ŷ〉 by H⊗m|y〉
with y ∈ {0, 1}m and H the Hadamard matrix.

8

3.3 Functions and Their (Quantum) Representations
For an arbitrary but fixed non-empty finite set X , we let H be the set of functions H : X → Y . Similarly, Ĥ
denotes the set of all functions Ĥ : X → Ŷ . Given that we can represent H by its function table {H(x)}x∈X , and
|y〉 ∈ C[Y] is understood as a “quantum representation” of y ∈ Y , we consider |H〉 =

⊗
x |H(x)〉 to be the “quantum

representation” of H , where in such a tensor product we implicitly consider the different registers to be labeled by
x ∈ X in the obvious way. By our naming convention, the space

⊗
x C[Y] spanned by all vectors |H〉 =

⊗
x |H(x)〉

with H ∈ H is denoted C[H]. Similarly, |Ĥ〉 =
⊗

x |Ĥ(x)〉 is the “quantum representation” of Ĥ ∈ Ĥ. By applying
(5) register-wise, any |H〉 decomposes into a linear combination of vectors |Ĥ〉 with Ĥ ∈ Ĥ, and vice versa. Thus,
C[H] = C[Ĥ].

Extending Y to Ȳ := Y ∪ {⊥}, we also consider the set D of functions (referred to as databases) D : X → Ȳ . In
line with the above, the “quantum representation” of a databaseD is given by |D〉 =

⊗
x |D(x)〉 ∈

⊗
x C[Ȳ] = C[D].

We also consider the set D̂ of functions D̂ : X → Ŷ ∪ {⊥} and have C[D] = C[D̂].
For D ∈ D and x = (x1, . . . , xk) ∈ X k, we write D(x) for

(
D(x1), . . . , D(xk)

)
∈ Ȳk; similarly for H ∈ H.

Furthermore, if x has pairwise distinct entries and r = (r1, . . . , rk) ∈ Ȳk, we define D[x 7→r] ∈ D to be the database

D[x 7→r](xi) = ri and D[x 7→r](x̄) = D(x̄) ∀ x̄ 6∈ {x1, . . . , xk} .

4 Zhandry’s Compressed Oracle - Refurbished
We give a concise yet self-contained and mathematically rigorous introduction to the compressed-oracle technique.
For the reader familiar with the compressed oracle, we still recommend to browse over the section to familiarize with
the notation we are using, and for some important observations, but some of the proofs can well be skipped then.

4.1 The Compressed Oracle
The core ideas of Zhandry’s compressed oracle are, first, to consider a superposition

∑
H |H〉 of all possible functions

H ∈ H, rather than a uniformly random choice; this purified oracle is indistinguishable from the original random
oracle for any (quantum) query algorithm since the queries commute with measuring the superposition. Second, to
then analyze the behavior of this purified oracle in the Fourier basis. Indeed, the initial state of the oracle is given by

|Π0〉 =
∑
H

|H〉 =
⊗
x

(∑
y

|y〉
)

=
⊗
x

|0̂〉 = |0̂〉 ∈ C[H] , (6)

with 0̂ ∈ Ĥ the constant-0̂ function. Furthermore, an oracle query invokes the unitary map O given by

O : |x〉|y〉 ⊗ |H〉 7→ |x〉|y +H(x)〉 ⊗ |H〉

in the computational basis; in the Fourier basis, this becomes

O : |x〉|ŷ〉 ⊗ |Ĥ〉 7→ |x〉|ŷ〉 ⊗ Oxŷ|Ĥ〉 = |x〉|ŷ〉 ⊗ |Ĥ − ŷ · δx〉 , (7)

where the equality is the definition of Oxŷ , and δx : X → {0, 1} satisfies δx(x) = 1 and δx(x′) = 0 for all x′ 6= x.
Note that Oxŷ acts on register x only, and OxŷOxŷ′ = Ox,ŷ+ŷ′ ; thus, Oxŷ and Ox′ŷ′ all commute. As an immediate
consequence of (6) and (7) above, it follows that the internal state of the oracle after q queries is supported by state
vectors of the form |Ĥ〉 = |ŷ1δx1

+ · · ·+ ŷqδxq 〉.
The actual compressed oracle (respectively some version of it) is now obtained by applying the isometry

Compx = |⊥〉〈0̂|+
∑
ẑ 6=0̂

|ẑ〉〈ẑ| : C[Y]→ C[Ȳ], |ŷ〉 7→

{
|⊥〉 if ŷ = 0̂

|ŷ〉 if ŷ 6= 0̂

9

to register x for all x ∈ X (and then viewing the result in the computational basis). This “compression” operator
Comp :=

⊗
x Compx : C[H]→ C[D] maps |Π0〉 to

|∆0〉 := Comp |Π0〉 =
(⊗

x

Compx

)(⊗
x

|0̂〉
)

=
⊗
x

Compx|0̂〉 =
⊗
x

|⊥〉 = |⊥〉 ,

which is the quantum representation of the trivial database ⊥ that maps any x ∈ X to ⊥. More generally, for any
Ĥ ∈ Ĥ, Comp |Ĥ〉 = |D̂〉 where D̂ ∈ D̂ is such that D̂(x) = Ĥ(x) whenever Ĥ(x) 6= 0, and D̂(x) = ⊥ whenever
Ĥ(x) = 0. As a consequence, the internal state of the compressed oracle after q queries is supported by state vectors
|D〉 in the computational basis (respectively |D̂〉 in the Fourier basis) for which D(x) = ⊥ (respectively D̂(x) = ⊥)
for all but (at most) q choices of x.

This representation of the internal state of the purified random oracle is referred to as the compressed oracle
because, for a bounded number of queries, these state vectors |D〉 can be efficiently represented in terms of the
number of qubits, i.e., can be compressed, as |enc(D)〉, i.e., by employing a classical efficient representation, similar
to the one mentioned in Section 2.2. Furthermore, the unitary that implements an oracle call (see cO below) can then
be efficiently computed by a quantum circuit. In this work, we are not concerned with such computational efficiency
aspect; nevertheless, for completeness, we formally discuss this in Appendix A.

4.2 Linking the Compressed and the Original Oracle
The following result (originally by Zhandry [20]) links the compressed oracle with the original standard oracle. Intu-
itively, it ensures that one can extract useful information from the compressed oracle. Recall that M = |Y|.

Lemma 4.1. Consider an arbitrary (normalized) |Π〉 ∈ C[H] , and let |∆〉 = Comp |Π〉 in C[D] be the corresponding
“compressed database”. Let x = (x1, . . . , x`) consist of pairwise distinct xi ∈ X , let y = (y1, . . . , y`) ∈ Y`, and set
Px := |y1〉〈y1| ⊗ · · · ⊗ |y`〉〈y`| with the understanding that |yi〉〈yi| acts on register xi. Then

‖Px|Π〉‖ ≤ ‖Px|∆〉‖+

√
`

M
.

This somewhat technical statement directly translates to the following statement in terms of algorithmic language.

Corollary 4.2 (Zhandry). LetR ⊆ X `×Y` be a relation. LetA be an oracle quantum algorithm that outputs x ∈ X `
and y ∈ X `. Let p be the probability that y = H(x) and (x,y) ∈ R when A has interacted with the standard
random oracle, initialized with a uniformly random function H . Similarly, let p′ be the probability that y = D(x) and
(x,y) ∈ R when A has interacted with the compressed oracle instead and D is obtained by measuring its internal
state (in the computational basis). Then

√
p ≤

√
p′ +

√
`

M
.

Proof (of Corollary 4.2). Consider an execution ofA when interacting with the purified oracle. For technical reasons,
we assume that, after having measured and output x,y, A measures its internal state in the computational basis to
obtain a string w, which he outputs as well. We first observe that

p =
∑
x,y,w

(x,y)∈R

qx,y,w px,y,w and p′ =
∑
x,y,w

(x,y)∈R

qx,y,w p
′
x,y,w

where qx,y,w is the probability that A outputs the triple x,y, w, and px,y,w is the probability that y = H(x) con-
ditioned on the considered output of A, and correspondingly for p′x,y,w. More technically, using the notation from
Lemma 4.1, px,y,w = ‖Px|Π〉‖2 with |Π〉 the internal state of the purified oracle, post-selected on x,y and w. Simi-
larly, p′x,y,w = ‖PxComp |Π〉‖2. Thus, applying Lemma 4.1 and squaring, we obtain

px,y,w ≤
(√

p′x,y,w + ε
)2

= p′x,y,w + 2
√
p′x,y,w ε+ ε2 .

Averaging with the qx,y,w’s, applying Jensen’s inequality, and taking square-roots, then implies the claim.

10

Proof (of Lemma 4.1). We set Compx :=
⊗

i Compxi ; the subscript x again emphasizing that Compx acts on the
registers x1, . . . , x` only. In line with this, we write Ix̄ for the identity acting on the registers x 6∈ {x1, . . . , x`}. Then8

‖Px|Π〉‖ − ‖PxComp|Π〉‖ = ‖Px|Π〉‖ − ‖PxCompx|Π〉‖ (since the Compx’s are isometries)
≤ ‖(Px − PxCompx)|Π〉‖ (by triangle inequality)
≤ ‖(Px − PxCompx)⊗ Ix̄‖ (by definition of the operator norm)
= ‖Px − PxCompx‖ (by basic property of the operator norm)

We will work out the above operator norm. For this, recall that in the Fourier basis

Px =
⊗
i

(
1

M

∑
ŷ∈Ŷ
ẑ∈Ŷ

ωẑ/ŷ(yi)|ẑ〉〈ŷ|

)
and Compx =

⊗
i

(
|⊥〉〈0|+

∑
06=ŷ∈Ŷ

|ŷ〉〈ŷ|

)
,

with the understanding that in the above respective tensor products the i-th component acts on register xi, and where
the ωẑ/ŷ(yi) are suitable phases, i.e., norm-1 scalars, which will be irrelevant though.9 By multiplying the two, we get

PxCompx =
⊗
i

(
1

M

∑
06=ŷ∈Ŷ
ẑ∈Ŷ

ωẑ/ŷ(yi)|ẑ〉〈ŷ|

)
.

Multiplying out the respective tensor products in Px and PxCompx, and subtracting the two expressions, we obtain

Px − PxCompx =
1

M `

∑
ŷ1,...,ẑ`∈Ŷ
∃i:ŷi=0

⊗
i

ωẑi/ŷi(yi)|ẑi〉〈ŷi| =
1

M `

∑
ŷ,ẑ

∃i:ŷi=0

ωẑ/ŷ|ẑ〉〈ŷ| ,

where the sum is over all ŷ = (ŷ1, . . . , ŷ`) and ẑ = (ẑ1, . . . , ẑ`) in Ŷ` subject to that at least one ŷi is 0, and where
ωẑ/ŷ is the phase ωẑ/ŷ :=

∏
i ωẑi/ŷi(yi). Bounding the operator norm by the Frobenius norm, we thus obtain that

‖Px − PxCompx‖2 ≤
∑
ŷ,ẑ

|〈ẑ|(Px − PxCompx)|ŷ〉|2

=
1

M2`

∑
ŷ,ẑ

∃i:ŷi=0

|ωẑ/ŷ|2 ≤
1

M2`
`M2`−1 =

`

M
,

where the inequality is a standard counting argument: there are ` choices for i, and for each i there are M `−1 choices
for ŷ ∈ Ŷ` with ŷi = 0 (however, ŷ’s with multiple zeros are counted multiple times this way).

4.3 Working Out the Transition Matrix
Here, we explicitly work out the matrix (in the computational basis) that describes the evolution that the compressed
oracle undergoes as a result of an oracle query. For this, it is necessary to extend the domain C[Y] of Compx to C[Ȳ]
by declaring that Compx|⊥〉 = |0̂〉. This turns Compx into a unitary on C[Ȳ], and correspondingly then for Comp.
Formally, we are then interested in the unitary

cO := Comp ◦ O ◦ Comp† ∈ L
(
C[X]⊗ C[Y]⊗ C[D]

)
,

8In line with the discussion in Section 3.1, since it maps any |⊥〉-component to 0, Px can be understood to have domain C[Y]⊗` or C[Ȳ]⊗`;
the same for its range. Thus, below, in Px|Π〉 it is understood as C[Y]⊗` → C[Y]⊗` ⊆ C[Ȳ]⊗`, while in PxCompx|Π〉 as C[Ȳ]⊗` → C[Ȳ]⊗`.

9For the record, switching back to multiplicative notation for the elements in the dual group Ŷ , we have ωẑ/ŷ(yi) = (ẑ/ŷ)(yi).

11

which maps |x〉|ŷ〉 ⊗ |D〉 to |x〉|ŷ〉 ⊗ cOxŷ|D〉 for any D ∈ D, where cOxŷ := Compx ◦ Oxŷ ◦ Comp†x ∈ L(C[Ȳ])
acts on the x-register only. In the form of a commuting diagram, we thus have

C[H]
Comp−−−−→ C[D]

Oxŷ

y y cOxŷ

C[H]
Comp−−−−→ C[D]

Lemma 4.3. For any ŷ 6= 0, in the computational basis the unitary cOxŷ on CM+1 is represented by the matrix given
in Figure 1; i.e, for all r, u ∈ Ȳ := Y ∪ {⊥} it holds that 〈u|cOxŷ|r〉 = γŷu,r. Furthermore, cOx,0̂ = I.

⊥ r ∈ Y

⊥ γŷ⊥,⊥=0 γŷ⊥,r =
ŷ∗(r)√
M

u
∈
Y ŷ(u)√

M
γŷu,r =

(

1− 2

M

)
ŷ(u) +

1

M
if u = r ∈ Y

1− ŷ(r)− ŷ(u)

M
if u 6= r, both in Y

Figure 1: The matrix describing the evolution of the compressed oracle in the computational basis.

Proof. From simple but somewhat tedious manipulations, using basic properties of the Fourier transform, we obtain
the following. For any r 6= ⊥ (and ŷ 6= 0̂), we have

√
M |r〉 =

∑
r̂

r̂(r)|r̂〉 = |0〉+
∑
r̂ 6=0̂

r̂(r)|r̂〉 ,

which gets mapped to
Comp†7−−−→ |⊥〉+

∑
r̂ 6=0̂

r̂(r)|r̂〉 ,

which gets mapped to

Oxŷ7−−→ |⊥〉+
∑
r̂ 6=0̂

r̂(r)|r̂−ŷ〉 = |⊥〉 − |−ŷ〉+
∑
r̂

r̂(r)|r̂−ŷ〉

= |⊥〉 − |−ŷ〉+ ŷ(r)
∑
r̂

r̂(r) |r̂〉 = |⊥〉 − |−ŷ〉+ ŷ(r)|0̂〉+ ŷ(r)
∑
r̂ 6=0̂

r̂(r) |r̂〉 ,

which gets mapped to

Comp7−−−→ |0̂〉 − |−ŷ〉+ ŷ(r)|⊥〉+ ŷ(r)
∑
r̂ 6=0̂

r̂(r)|r̂〉

= |0̂〉 − |−ŷ〉+ ŷ(r)|⊥〉 − ŷ(r)|0̂〉+ ŷ(r)
∑
r̂

r̂(r) |r̂〉

=
1√
M

∑
u

|u〉 − 1√
M

∑
u

ŷ(u)|u〉+ ŷ(r)|⊥〉 − ŷ(r)√
M

∑
u

|u〉+
√
Mŷ(r)|r〉 .

12

From this expression, one can now easily read out the coefficients γŷu,r for r 6= ⊥. Finally, from

|⊥〉 Comp†7−−−→ |0̂〉 Oxŷ7−−→ |−ŷ〉 Comp7−−−→ |−ŷ〉 =
1√
M

∑
u

ŷ(u)|u〉

we obtain the coefficients for r = ⊥ (with ŷ 6= 0). The case ŷ = 0 follows from the fact that Ox,0̂ = I.

Since, for any fixed ŷ, this matrix is unitary, the squares of the absolute values of each column add up to 1. Thus,
for any ŷ and r we can consider the (conditional) probability distribution defined by P̃ [U = u|r, ŷ] := |γŷu,r|2. This
offers us a convenient notation, like P̃ [U ∈ S|r, ŷ] for

∑
u∈S |γŷu,r|2 or P̃ [U 6= r|r, ŷ] for

∑
u6=r |γŷu,r|2. For later

purposes, it is useful to observe that, for any L ⊆ Y (i.e., ⊥ 6∈ L),∑
r

P̃ [r 6=U ∈L|r, ŷ] ≤ P̃ [U ∈L|⊥, ŷ] +
∑
r 6=⊥

P̃ [r 6=U ∈L|r, ŷ] ≤ |L| 1

M
+M |L| 9

M2
= 10P [U ∈L] (8)

where P [U ∈L] = |L|
M is the probability for a uniformly random U in Y to be in L.

4.4 The Parallel-Query (Compressed) Oracle
Here, we extend the above compressed-oracle technique to the setting where a quantum algorithm may make several
queries to the random oracle in parallel. We recall that distinguishing between parallel and sequential queries allows
for a more fine-grained query-complexity analysis of quantum algorithms. In particular, by showing a lower bound
on the number of necessary sequential queries (with each sequential query possibly consisting of a large number of
parallel queries), one can show the impossibility (or bound the possibility) of parallelizing computational tasks.

Formally, for any positive integer k, a k-parallel query is given by k parallel applications of O, with the understand-
ing that each application acts on a different input/output register pair. More explicitly, but slightly abusing notation of
writing a k-th power, a k-parallel query is given by

Ok : |x〉|y〉 ⊗ |H〉 7→ |x〉|y+H(x)〉 ⊗ |H〉

for any x = (x1, . . . , xk) ∈ X k and y = (y1, . . . , yk) ∈ Yk. The operator cOk := Comp ◦ Ok ◦ Comp†, which
described the evolution of the compressed oracle under such a k-parallel query, then acts as

cOk : |x〉|ŷ〉 ⊗ |∆〉 7→ |x〉|ŷ〉 ⊗ cOxŷ|∆〉

for any |∆〉 ∈ C[D], where cOxŷ is the product cOx1ŷ1 · · · cOxkŷk . We recall that cOxiŷi acts on register xi (only),
and cOxiŷi and cOxj ŷj commute (irrespectively of xi and xj being different or not).

5 A Framework for Proving Quantum Query Lower Bounds
In this section we set up a framework for proving lower-bounds on the query complexity (actually, equivalently, upper
bounds on the success probability) of quantum algorithms in the (quantum) random oracle model. Our framework
closely mimics the reasoning for classical algorithms and allows to easily “lift” the typical kind of reasoning to the
quantum setting.

5.1 Setting Up the Framework
Definition 5.1. A database property on D is a subset P ⊆ D of the set of databases D.

Remark 5.2. As the naming suggests, we think of P as a property that is either true or false for any D ∈ D; we
thus also write P(D) to denote that D ∈ P, i.e., to express that “D satisfies P”. Furthermore, by convention, for any
database property P ∈ D, we overload notation and use P also to refer to the projection

∑
D∈P |D〉〈D| ∈ L(C[D]).

13

Examples that we will later consider are

PRMG := {D |∃x : D(x) = 0} and CL := {D | ∃x, x′ : D(x) = D(x′) 6= ⊥}

as well as
CHNq := {D | ∃x0, x1, . . . , xq ∈ X : D(xi−1) / xi ∀i} ,

where / denotes an arbitrary relation, e.g., y / x if y is a prefix of x.
We introduce the following notation. For any tuple x = (x1, . . . , xk) of pairwise distinct xi ∈ X and for any

D : X → Ȳ we let
D|x :=

{
D[x 7→ r] | r ∈ Ȳk

}
⊆ D

be the set of databases that coincide with D outside of x. Furthermore, for any database property P ⊆ D, we then let

P|D|x := P ∩D|x

be the restriction of P to the databases in D|x. We then typically think of P|D|x as a property of functions D′ ∈ D|x.

Remark 5.3. For fixed choices of x and D, we can, and often will, identify D|x with Ȳk by means of the obvious
identification map r 7→ D[x 7→ r]. The property P|D|x can then be considered to be a property/subset of Ȳk, namely
{r ∈ Ȳk |D[x 7→ r] ∈ P}. Accordingly, we do not distinguish between the projections∑

D′∈P|D|x

|D′〉〈D′| ∈ L(C[D|x]) ⊆ L(C[D]) and
∑
r∈Ȳk

D[x7→r]∈P

|r〉〈r| ∈ L(C[Ȳk])

but refer to both as P|D|x , using our convention to use the same variable for a property and the corresponding projec-
tion. This is justified by the fact that on the space spanned by |D[x 7→ r]〉 with r ∈ Ȳk, both act identically (with the
understanding that the latter acts on the registers labeled by x.). In particular, they have the same operator norm.

Example 5.4. For a given x and D, as a subset of Ȳk, we have

PRMG|D|x =

{
Ȳk if D(x̄) = 0 for some x̄ 6∈ {x1, . . . , xk}
{r | ∃ i : ri = 0} else

In words: if D has a zero outside of x then D[x 7→ r] has a zero for any r ∈ Ȳk; otherwise, D[x 7→ r] has a zero if
and only if one of the coordinates of r is zero.

The following definition is the first main ingredient of our framework. The subsequent theorem, which relates the
success probability of a quantum algorithm to the quantum transition capacity, then forms the second main ingredient.

Definition 5.5 (Quantum transition capacity). Let P,P′ be two database properties. Then, the quantum transition
capacity (of order k) is defined as

q
P

k→ P′
y

:= max
x,ŷ,D

‖P′|D|x cOxy P|D|x‖ .

Furthermore, we define
q
P

k,q
=⇒ P′

y
:= sup

U2,...,Uq

‖P′cOk Uq cO · · · cOk U2 cO
k P‖ .

where the supremum is over all positive d ∈ Z and all unitaries U2, . . . , Uq acting on C[X]⊗ C[Y]⊗ Cd.

By definition, the notion
q
P

k,q
=⇒ P′

y
equals the square-root of the maximal probability that the internal state of

the compressed oracle, when supported by databases D ∈ P, turns into a database D′ ∈ P′ by means of a quantum
query algorithm that performs q k-parallel queries, and when we then measure the internal state. In particular, for p′

as in Corollary 4.2 and PR as below in Theorem 5.7, it holds that
q
⊥ k,q

=⇒ PR
y

=
√
p′.

14

Similarly, but on a more intuitive level so far,
q
P

k→ P′
y

represents a measure of how likely it is that, as a result
of one k-parallel query, a database D ∈ D that satisfies P turns into a database D′ that satisfies P′. In the context
of these two notations, ⊥ is understood to be the database property that is satisfied by ⊥ ∈ D only, and ¬P is the
complement of P, i.e., ¬P = I − P (as projections). We also write P → P′ and refer to this as a database transition
when considering two database properties P and P′ in the context of the above two notions. Formally, they are related
as follows.

Lemma 5.6. For any sequence of database properties P0,P1, . . . ,Pq ,

q
¬P0

k,q
=⇒ Pq

y
≤

q∑
s=1

q
¬Ps−1

k→ Ps
y
.

Proof. By means of inserting I = Pq + (I− Pq) before Uq and using properties of the norm, we obtain

‖Pq cOk Uq cOk · · · cOk (I− P0)‖ ≤ ‖Pq−1 cO
k · · · cOk (I− P0)‖+ ‖Pq cOk Uq (I− Pq−1)‖ .

To the first term, we apply induction; so it remains to bound the second term by
q
¬Pq−1

k→ Pq
y

. Using that Uq and
Pq−1 commute (as they act on different subsystems) and setting P = ¬Pq−1 and P′ = Pq , this follows from10

‖P′cOk P‖ ≤ max
x,ŷ
‖P′cOxŷ P‖ ≤ max

x,ŷ,D
‖P′|D|x cOxy (I− P|D|x)‖ ,

where for the first inequality we observe that P′cOkP maps |x〉|ŷ〉 ⊗ |Γ〉 to |x〉|ŷ〉 ⊗ P′cOxŷP|Γ〉, and so the first
inequality holds by basic properties of the operator norm. Similarly for the second inequality: For any fixed D,
consider the subspace of C[D] spanned by |D[x 7→ r]〉 with r ∈ Ȳk. On this subspace, P and P|D|x are identical
projections (and similarly for P′). Also, cOxy is a unitary on this subspace. The claim then again follows again by
basic properties of the operator norm.

The following is now an direct consequence of Corollary 4.2, the definition of
q
⊥ k,q

=⇒ PR
y

, and the above lemma.

Theorem 5.7. Let R be a relation, and let A be a k-parallel q-query quantum oracle algorithm with success proba-
bility p, as considered in Corollary 4.2. Consider the database property

PR =
{
D ∈ D | ∃x ∈ X ` :

(
x, D(x)

)
∈ R

}
induced by R. Then, for any database properties P0, . . . ,Pq with P0 = ¬⊥ and Pq = PR:

√
p ≤

q
⊥ k,q

=⇒ PR
y

+

√
`

M
≤

q∑
s=1

q
¬Ps−1

k→ Ps
y

+

√
`

M
.

Remark 5.8. This result implies that in order to bound p, it is sufficient to find a sequence ⊥ 6∈ P0, . . . ,Pq = PR of
properties for which all quantum transition capacities

q
¬Ps−1→ Ps

y
are small. Often, it is good to keep track of the

(growing but bounded) size of the database and instead bound the capacities
q
SZ≤k(s−1)\Ps−1→ Ps

y
=

q
SZ≤k(s−1)\Ps−1→ Ps ∪ ¬SZ≤ks

y
,

where the equality is due to the fact that the size of a database cannot grow by more than k with one k-parallel query.
Formally, we would then consider the database properties P′s = ¬(SZ≤ks \ Ps) = Ps ∪ ¬SZ≤ks.

In the following section, we offer techniques to bound the quantum transition capacities (in certain cases) using
purely classical reasoning. In connection with Theorem 5.7, this then allows to prove lower bounds on the quantum
query complexity (for certain computational problem in the random oracle model) using purely classical reasoning.

10In line with Remark 5.3, we consider P|D|x to be a projection acting on C[Ȳk], and thus I in the last term is the identity in L(C[Ȳk]).

15

5.2 Bounding Quantum Transition Capacities Using Classical Reasoning Only
The general idea is to “recognize” a database transition ¬P → P in terms of local properties L, for which the truth
value L(D) only depends on the function value D(x) at one single point x (or at few points), and then to exploit
that the behavior of the compressed oracle at a single point x is explicitly given by Lemma 4.3. In the following two
sections, we consider two possible ways to do this, but first we provide the formal definition for local properties.

Definition 5.9. A database property L ⊆ D is `-local if ∃x = (x1, . . . , x`) ∈ X ` so that

1. the truth value of L(D) is uniquely determined by D(x), and

2. if D ∈ L ∧ (∃ i ∈ {1, . . . , `} : D(xi) = ⊥) then D[xi 7→ri] ∈ L ∀ ri ∈ Y .

The set {x1, . . . , x`} is then called the support of L, and denoted by Supp(L).

Remark 5.10. We observe that, as defined above, the support of an `-local property is not necessarily uniquely defined:
if ` is not minimal with the required property then there are different choices. A natural way to have a unique definition
for Supp(L) is to require it to have minimal size. For us, it will be more convenient to instead consider the choice of the
support to be part of the specification of L.11 Furthermore, we then declare that Supp(L∪M) = Supp(L)∪ Supp(M),
and Supp(L|D|x) = Supp(L) ∩ {x1, . . . , xk} for any D ∈ D and x = (x1, . . . , xk).12

Remark 5.11. Condition 2 captures that ⊥ is a dummy symbol with no more “value” than any other r ∈ Y .

For example, for any database property P, and for any x = (x1, . . . , x`) and D, the property P|D|x satisfies
requirement 1. of Definition 5.9. In line with this, Remark 5.3 applies here as well: we may identify an `-local
property L with a subset of Ȳ`.

5.2.1 Reasoning via Strong Recognizability

Definition 5.12. A database transition ¬P → P′ is said be (uniformly) strongly recognizable by `-local properties if
there exists a family of `-local properties {Li}i so that

P′ ⊆
⋃
i

Li ⊆ P . (9)

We also consider the following weaker but somewhat more intricate version.

Definition 5.13. A database transition ¬P→ P′ is said be k-non-uniformly strongly recognizable by `-local proper-
ties if for every x = (x1, . . . , xk) ∈ X k with disjoint entries, and for every D ∈ D, there exist a family {Lx,Di }i of
`-local properties Lx,Di with supports in {x1, . . . , xk} so that

P′|D|x ⊆
⋃
i

Lx,Di ⊆ P|D|x . (10)

It is easiest to think about these definitions for the case P = P′, where (9) and (10) become equalities. Requirement
(9) then means that for D to satisfy P it is necessary and sufficient that D satisfies one of the local properties.

Remark 5.14. In the above definitions, as long as the support-size remains bounded by `, one can always replace two
properties by their union without affecting (9), respectively (10). Thus, we may — and by default do — assume the
Li’s to have distinct (though not necessarily disjoint) supports in Definition 5.12, and the same we may assume for the
Lx,Di ’s for every x and D in Definition 5.13.

Remark 5.15. It is easy to see that Definition 5.12 implies Definition 5.13 with Lx,Di := Li|D|x .
11E.g., we may consider the constant-true property L with support Supp(L) = ∅, in which case it is `-local for any ` ≥ 0, or we may consider

the same constant-true property L but now with the support set to Supp(L) = {x◦} for some x◦ ∈ X , which then is `-local for ` ≥ 1.
12The above mentioned alternative approach would give ⊆.

16

Theorem 5.16. Let ¬P → P′ be k-non-uniformly strongly recognizable by 1-local properties {Lx,D1 , . . . , Lx,Dk },
where, without loss of generality, the support of Lx,Di is {xi}. Then

q
¬P k→ P′

y
≤ max

x,D

√
10
∑
i

P
[
U ∈Lx,Di

]
with the convention that P

[
U ∈Lx,Di

]
= 0 if Lx,Di is trivial (i.e. constant true or false).

Before doing the proof, let us show how the above can be used to bound the probability of finding a 0-preimage.

Example 5.17. P′ = P = PRMG is uniformly strongly recognized by the 1-local properties Lx = {D|D(x) = 0}.
Furthermore, as a subset of Ȳ , the property Lx,Dx := Lx|D|x is either {0} or trivial.13 In the non-trivial case, we
obviously have P

[
U ∈Lx,Di

]
= P [U=0] = 1/M . It then follows from Theorem 5.16 that

q
¬PRMG k→ PRMG

y
≤
√

10k

M
,

and thus from Theorem 5.7, setting Pi = PRMG for all i, that the probability p of any k-parallel q-query algorithm
outputting a 0-preimage x is bounded by

p ≤
(
q

√
10k

M
+

1√
M

)2

= O

(
kq2

M

)
.

Proof (of Theorem 5.16). Consider arbitrary x and D. To simplify notation, we then write Li for Lx,Di . We introduce
the properties Mi := Li \ (

⋃
j<i Lj) for i ∈ {1, . . . , k}. By assumption (10), as projectors they satisfy

P′|D|x ≤
∑
i

Mi ≤
∑
i

Li and ∀i : Mi ≤ Li ≤ P|D|x ,

where, additionally, the Mi’s are mutually orthogonal. Then, exploiting the various properties, for any ŷ we have

‖P′|D,x cOxŷ (I− P|D,x)‖2 ≤
∥∥∥∥∑

i

Mi cOxŷ (I− P|D|x)

∥∥∥∥2

=
∑
i

‖Mi cOŷ (I− P |D|x)‖2

≤
∑
i

‖Li cOxŷ (I− Li)‖2 =
∑
i

‖Li cOxiŷi (I− Li)‖2 ,

where, by considering the map as a map on C[Ȳ] and bounding operator norm by the Frobenius norm,

‖Li cOxiŷi (I− Li)‖2 ≤
∑

ri,ui∈Ȳ

|〈ui|Li cOxiŷi (I− Li)|ri〉|2 =
∑
ri 6∈Li
ui∈Li

|〈ui|cOxiŷi |ri〉|2 =
∑
ri 6∈Li

P̃ [U ∈Li|ri, ŷi] .

The claim now follows from (8), with the additional observations that if ⊥ ∈ Li (in which case (8) does not apply)
then Li is constant-true (by property 2 of Definition 5.9), and that the sum vanishes if Li is constant-true.

5.2.2 Reasoning via Weak Recognizability

Here, we consider a weaker notion of recognizability, which is wider applicable but results in a slightly worse bound.
Note that it will be more natural here to speak of a transition P → P′ instead of ¬P → P′, i.e., we now write P for
what previously was its complement.

13In more detail, Lx|D|x = {0} whenever x ∈ {x1, . . . , xk}, and otherwise it is constant true if D(x) = 0 and constant false if D(x) 6= 0.

17

Definition 5.18. A database transition P → P′ is said be (uniformly) weakly recognizable by `-local properties if
there exists a family of `-local properties {Li}i so that

D ∈ P ∧ D′ ∈ P′ =⇒ ∃ i : D′ ∈ Li ∧
(
∃x∈Supp(Li) : D(x) 6= D′(x)

)
.

Also here, we have a non-uniform version (see below). Furthermore, Remarks 5.14 and 5.15 apply correspond-
ingly;14 in particular, we may assume the supports in the considered families of local properties to be distinct.

Definition 5.19. A database transition P→ P′ is said be k-non-uniformly weakly recognizable by `-local properties if
for every x = (x1, . . . , xk) ∈ X k with disjoint entries, and for every D ∈ D, there exist a family of `-local properties
{Lx,Di }i with supports in {x1, . . . , xk} so that

D◦ ∈ P|D|x ∧ D′ ∈ P′|D|x =⇒ ∃ i : D′ ∈ Lx,Di ∧
(
∃x∈Supp(Lx,Di) : D◦(x) 6= D′(x)

)
. (11)

Remark 5.20. Viewing Lx,Di as subset of Ȳk, and its support Lx,Di = {xi1 , . . . , xi`} then as subset {i1, . . . , i`} of
{1, . . . , k}, (11) can equivalently be written as follows, which is in line with Lemma 2.1 (where Supp(Lx,Di) = {i}):

D[x 7→ r] ∈ P ∧ D[x 7→ u] ∈ P′ =⇒ ∃ i : u ∈ Lx,Di ∧
(
∃ j ∈ Supp(Lx,Di) : rj 6= uj

)
.

Example 5.21. Consider CHNq = {D | ∃x0, x1, . . . , xq ∈ X : D(xi−1) / xi ∀i} for an arbitrary positive integer q.
For any x and D, we let Li = Lx,Di be the 1-local property that has support {xi} and, as a subset of Ȳ , is defined
as (4), i.e., so that u ∈ Li if and only if u / x for some x with D(x) 6= ⊥ or x ∈ {x1, . . . , xk}. Lemma 2.1 from
the classical analysis shows that condition (11) is satisfied for the database transition ¬CHNq → CHNq+1. This in
particular implies that (11) is satisfied for the database transition SZ≤k(q−1) \ CHNq → CHNq+1; in this latter case
however, whenever D is not in SZ≤kq , which then means that the left hand side of (11) is never satisfied, we may
simply pick the constant-false property as family of local properties satisfying (11).

Theorem 5.22. Let P→ P′ be k-non-uniformly weakly recognizable by 1-local properties Lx,Di , where the support of
Lx,Di is {xi} or empty. Then

q
P

k→ P′
y
≤ max

x,D
e
∑
i

√
10P

[
U ∈Lx,Di

]
,

where e is Euler’s number.15

Example 5.23. In the above example regarding CHNq with the considered Li’s for D ∈ SZ≤kq , as in the derivation of
the classical bound in Section 2.3, it holds that P [U ∈Li] ≤ kqT/M , where T denotes the maximal number of y ∈ Y
with y / x (for any x).16 Thus,

q
SZ≤k(q−1)\CHNq

k→ CHNq+1
y
≤ ek

√
10kqT

M
,

and applying Theorem 5.7 (and the subsequent remark) to the database transitions SZ≤k(s−1) \CHNs → CHNs+1 for
s = 1, . . . , q, we obtain the following bound, which we state as a theorem here given that this is a new bound.

Theorem 5.24. Let / be a relation over Y and X . The probability p of any k-parallel q-query oracle algorithm A
outputting x0, x1, . . . , xq+1 ∈ X with the property that H(xi) / xi+1 for all i ∈ {0, . . . , q} is bounded by

p ≤
(
qk

√
10qkT

M
e+

√
q + 2

M

)2

= O

(
q3k3T

M

)
,

where T := maxx |{y ∈ Y | y / x}|, and M is the size of the range Y of H : X → Y .
14We point out that this is thanks to our convention on the definition of the support, as discussed in Remark 5.10.
15Unlike Theorem 5.16, here is no convention that P

[
U ∈ Lx,Di

]
= 0 if Lx,Di is constant-true. This has little relevance since Lx,Di being

constant-true can typically be avoided via Remark 5.14.
16For D 6∈ SZ≤kq we get the trivial bound 0 since we may then choose Li to be constant false.

18

Proof (of Theorem 5.22). We consider fixed choices of x and D, and we then write Li for Lx,Di . For arbitrary but
fixed ŷ, we introduce

Ai :=
∑
ui,ri s.t.

ui∈Li∧ri 6=ui

|ui〉〈ui| cOxiŷi |ri〉〈ri| and Bi := cOxiŷi −Ai =
∑
ui,ri s.t.

ui 6∈Li∨ri=ui

|ui〉〈ui| cOxiyi |ri〉〈ri|

and observe that, taking it as understood that the operators cOx1ŷ1
, . . . , cOxkŷk act on different subsystems,17

cOxŷ =

k∏
j=1

cOxj ŷj =

k−1∏
j=1

cOxj ŷjAk +

k−1∏
j=1

cOxj ŷjBk

=

k−1∏
j=1

cOxj ŷjAk +

k−2∏
j=1

cOxj ŷjAk−1Bk +

k−2∏
j=1

cOxj ŷjBk−1Bk

= · · · =
k∑
i=0

(∏
j<k−i

cOxj ŷj

)
Ak−i

(∏
j>k−i

Bj

)
with the convention that A0 = I. Furthermore, by assumption on the Li’s, it follows that

Q := P′|D|x
(∏
j>0

Bj

)
P|D|x = 0 .

Indeed, by definition of P′|D|x and P|D|x (considering them as subsets of Ȳk now), for 〈u|Q|r〉 not to vanish, it is
necessary that r ∈ P|D|x and u ∈ P′|D|x . But then, by assumption, for such r and u there exists i so that ui ∈ Li and
ri 6= ui, and thus for which 〈ui|Bi|ri〉 = 0. Therefore, 〈u|Q|r〉 = 〈u|

∏
j Bj |r〉 =

∏
j〈uj |Bj |rj〉 still vanishes. As a

consequence, we obtain

‖P′|D|x cOxŷ P|D|x‖ ≤

∥∥∥∥∥
k−1∑
i=0

(∏
j<k−i

cOxj ŷj

)
Ak−i

(∏
j>k−i

Bj

)∥∥∥∥∥ ≤
k−1∑
i=0

(
‖Ak−i‖

∏
j>k−i

‖Bj‖
)
.

Using that ‖Bi‖ = ‖cOxiŷi −Ai‖ ≤ 1 + ‖Ai‖, this is bounded by

≤
k∑
i=1

‖Ai‖
k∏
j=1

(1 + ‖Aj‖) ≤
∑
i

‖Ai‖ e
∑
j ln(1+‖Aj‖) ≤

∑
i

‖Ai‖ e
∑
j ‖Aj‖ ≤

∑
i

‖Ai‖ e

where the last inequality holds if
∑
j ‖Aj‖ ≤ 1, while the final term is trivially an upper bound on the figure of merit

otherwise. Using the fact that the operator norm is upper bounded by the Frobenius norm, we observe that

‖Ai‖2 ≤
∑
ri,ui

|〈ui|Ai|ri〉|2 =
∑
ui,ri s.t.

ui∈Li∧ri 6=ui

|〈ui|cOxiyi |ri〉|2 =
∑
ri

P̃ [ri 6=U ∈Li|ri, yi] ≤ 10P [U ∈Li] ,

where the last inequality is due to (8), here with the additional observation that if ⊥ ∈ Li (and so (8) does not apply)
then, by condition 2 of Definition 5.9, Li = Ȳ , and hence the bound holds trivially.

5.2.3 General `-Locality and Collision Finding

We now remove the limitation on the locality being ` = 1. The bound then becomes a bit more intricate, and we only
have a version for strong recognizability.

17I.e., strictly speaking, we have cOxŷ =
⊗k

j=1 cOxj ŷj .

19

Theorem 5.25. Let P→ P′ be a database transition that is k-non-uniformly strongly recognizable by `-local proper-
ties Lt, where we leave the dependency of Lt = Lx,Dt on x and D implicit. Then

q
P

k→ P′
y
≤ max

x,D
e`

√
10
∑
t

max
x∈Supp(Lt)

max
D′∈D|Supp(Lt)

P
[
U ∈Lt|D′|x

]
.

with the convention that P
[
U ∈Lt|D′|x

]
vanishes if Lt|D′|x is trivial.

In case of uniform recognizability, where there is no dependency of Lt on x and D, the quantification over first D
and then over D′ ∈ D|Supp(Lt) collapses to a single quantification over D, simplifying the statement again a bit.

Corollary 5.26. Let P→ P′ be a database transition that is uniformly strongly recognizable by `-local properties Lt.
Then

q
P

k→ P′
y
≤ max

x,D
e`

√
10
∑
t

max
x∈Supp(Lt)

P
[
U ∈Lt|D|x

]
.

with the convention that P
[
U ∈Lt|D|x

]
vanishes if Lt|D|x is trivial.

Example 5.27. Consider CL = {D | ∃x, x′ : D(x) = D(x′) 6= ⊥}. For any D ∈ D and x = (x1, . . . , xk), consider
the family of 2-local properties consisting of

CLi,j := {D◦ ∈ D|x |D◦(xi) = D◦(xj) 6= ⊥} and
CLi := {D◦ ∈ D|x | ∃ x̄ 6∈ {x1, . . . , xk} : D◦(xi) = D(x̄) 6= ⊥}

for i 6= j ∈ {1, . . . , k}, with respective supports {xi, xj} and {xi}.
It is easy to see that this family of 2-local properties satisfies (10) for the database transition ¬CL → CL. Indeed,

if D and D′ are identical outside of x, and D has no collision while D′ has one, then D′’s collision must be for xi, xj
inside x, or for one xi inside and one x̄ outside. As an immediate consequence, the family also satisfies (10) for the
database transition (SZ≤ks \ CL) → CL. In this case though, whenever D 6∈ SZ≤k(s+1) the left hand side of (10) is
never satisfied and so we may replace the family of local properties to consist of (only) the constant-false property.

Consider x = (x1, . . . , xk) and D ∈ SZ≤k(s+1) with s ≤ q. Then, for i 6= j, as subsets of Ȳ we have that

CLi,j |D′|xi = {D′(xj)} and CLi|D′|xi = {D′(x̄) | x̄ 6∈ {x1, . . . , xk} : D′(x̄) 6= ⊥}

for any D′ ∈ D|(xi,xj) and D′ ∈ D|xi , respectively, and therefore

P
[
U ∈CLi,j |D′|xi

]
=

1

M
and P

[
U ∈CLi|D′|xi

]
≤ kq

M
.

So, by Theorem 5.25,
q
SZ≤ks\CL

k→ CL
y
≤ 2e

√
10

(
k2

M
+
k2q

M

)
= 2ek

√
10
q + 1

M

and hence, by Theorem 5.7, we obtain the following bound.

Theorem 5.28. The probability p of any k-parallel q-query algorithm outputting a collision is bounded by

p ≤
(

2qek

√
10
q + 1

M
+

2√
M

)2

= O

(
k2q3

M

)
.

The above easily generalizes to a more general notion of collision, where the goal is to find x and x′ for which
f
(
x,H(x)

)
= f

(
x′, H(x′)

)
for a given function f : X ×Y → Z . Here, writing fD(x) as a shorthand of f

(
x,D(x)

)
with fD(x) = ⊥ if D(x) = ⊥, one would then consider

CLi,j := {D◦ ∈ D|x fD◦(xi) = fD◦(xj) 6= ⊥} and
CLi := {D◦ ∈ D|x | ∃ x̄ 6∈ {x1, . . . , xk} : fD◦(xi) = fD(x̄) 6= ⊥}

20

where then, as subsets of Ȳ ,

CLi,j |D′|xi = {yi ∈ Y | f(xi, yi) = fD′(xj)} and CLi|D′|xi =
⋃

x̄6∈{x1,...,xk}

{yi ∈ Y | f(xi, yi) = fD′(x̄)}

for any D′ ∈ D|(xi,xj) and D′ ∈ D|xi , respectively, and therefore

P
[
U ∈CLi,j |D′|xi

]
=

Γ

M
and P

[
U ∈CLi|D′|xi

]
≤ kqΓ

M

with Γ := maxx 6=x′,y′ |{y ∈ Y | f(x, y) = f(x′, y′)}|. So, by Theorem 5.25, with the obvious generalization of CL,

q
SZ≤ks\CL

k→ CL
y
≤ 2e

√
10

(
k2Γ

M
+
k2qΓ

M

)
= 2ek

√
10Γ

q + 1

M

and so we obtain the following generalization of the collision finding bound.

Theorem 5.29. For any function f : X × Y → Z , the probability p of any k-parallel q-query algorithm outputting
x, x′ ∈ X with f

(
x,H(x)

)
= f

(
x′, H(x′)

)
is bounded by

p ≤
(

2qek

√
10Γ

q + 1

M
+

2√
M

)2

= O

(
k2q3Γ

M

)
for Γ := maxx 6=x′,y′ |{y ∈ Y | f(x, y) = f(x′, y′)}|.

Proof (of Theorem 5.25) . We first observe that one can recycle the proof of Theorem 5.16 to bound

‖P′|D,x cOxŷ P|D,x‖2 ≤
∑
t

‖Lt cOxtŷt (I− Lt)‖2 ,

where xt is the restriction of x to those coordinates that are in Supp(Lt), and the same for ŷt.
We now consider an arbitrary but fixed choice of t and write L for Lt. We write {x1, . . . , x`} for its support and set

x′ := (x1, . . . , x`). In order to control ‖L cOx′ŷ′ (I−L)‖, we use a similar technique as in the proof of Theorem 5.22.18

For any xi ∈ Supp(L), we set

Ai := L cOxiŷi(I− L) and Bi := cOxiŷi −Ai .

By means of the same generic manipulations as in the proof of Theorem 5.22, we have

cOx′ŷ′ =
∏̀
i=1

cOxiŷi =
∑̀
i=0

(∏
j<`−i

cOxj ŷj

)
A`−i

(∏
j>`−i

Bj

)

with the convention that A0 = I. Furthermore, using Bi(I− Lt) = (I− Lt)cOxλi ŷλi (I− Lt), we see that

Lt

(∏
j>0

Bj

)
(I− Lt) = 0 .

As a consequence, verbatim as in the proof of Theorem 5.22, we obtain

‖L cOx′ŷ′ (I− L)‖ ≤
`−1∑
i=0

(
‖A`−i‖

∏
j>`−i

‖Bj‖
)
≤
∑̀
i=1

‖Ai‖ e .

18We point out that L(D′) is determined by D′(x′); thus, we may consider L as a property of functions D′ ∈ D|x′ ⊆ D|x.

21

Furthermore, for any D′ ∈D|x and i ∈ {1, . . . , `}, on the subspace spanned by D′|xi , the map Ai acts identically to
L|D′|xi cOxiŷi (I−L|D′|xi), and thus, by basic properties of the operator norm, the norm of Ai equals the largest norm
of these restrictions:

‖Ai‖ ≤
∥∥L|D′|xi cOxλi ŷi (I− L|D′|xi)

∥∥ .
Bounding the operator norm by the Frobenius norm, we then obtain

‖Ai‖2 ≤
∑

r 6∈L|
D′|xi

u∈L|
D′|xi

|〈u|cOxiŷi |r〉|2 ≤
∑
r

P̃ [r 6=U ∈L|D′|xi |r, yi] ≤ 10P
[
U ∈L|D′|xi

]
.

where the last inequality is due to (8), with the additional observation that if ⊥ ∈ Li then, by condition 2 of Defini-
tion 5.9, L|D′|xi = Ȳ , and thus the sum vanishes.

Putting things together, we obtain

‖P′|D,x cOxŷ P|D,x‖ ≤

√√√√∑
t

(∑̀
i=1

‖Ai‖ e
)2

≤ e
√∑

t

10`2P
[
U ∈L|D′|xi

]
which proves the claimed bound.

5.3 Some Rules for the Quantum Transition Capacity
As we have seen, certain “simple” lower bounds on the query complexity (respectively upper bound on the success
probability) can be obtained rather directly by bounding the quantum transition capacity by the means discussed
above. In more complex scenarios, as we will encounter in the next section, it will be convenient to first manipulate
the quantum transition capacity, e.g., to decompose it into different cases that can then be analyzed individually. We
thus show some useful manipulation rules here.

To start with, since cO†xŷ = cOxŷ∗ , we note that the quantum transition capacity is symmetric:

q
P

k→ P′
y

=
q
P′

k→ P
y
.

Therefore, the following bounds hold correspondingly also for
q
P

k→ P′ ∩ Q
y

etc.

Lemma 5.30. For any database properties P,P′ and Q,

q
P ∩ Q

k→ P′
y
≤ min

{q
P

k→ P′
y
,
q
Q

k→ P′
y}

and

max
{q

P
k→ P′

y
,
q
Q

k→ P′
y}
≤

q
P ∪ Q

k→ P′
y
≤

q
P

k→ P′
y

+
q
Q

k→ P′
y
.

In particular, we have the following intuitive rule.

Corollary 5.31. If P ⊆ Q then
q
P

k→ P′
y
≤

q
Q

k→ P′
y

and
q
P′

k→ P
y
≤

q
P′

k→ Q
y

.

Proof (of Lemma 5.30). As subsets, (P ∩ Q)|D|x = (P ∩ Q) ∩ D|x = (P ∩ D|x) ∩ (Q ∩ D|x) = P|D|x ∩ Q|D|x ,
and, as projections, P|D|x and Q|D|x commute, and P|D|x ∩ Q|D|x = P|D|xQ|D|x = Q|D|xP|D|xQ|D|x ≤ P|D|x and
similarly ≤ Q|D|x . This implies that

‖P′|D|x cOxŷ (P ∩ Q)|D|x‖ ≤ min
{
‖P′|D|x cOxŷ P|D|x‖, ‖P′|D|x cOxŷ Q|D|x‖

}
,

and thus proves the first claim. Similarly, but now using that, as projections,

P|D|x ,Q|D|x ≤ P|D|x ∪ Q|D|x ≤ P|D|x + Q|D|x ,

we obtain the second claim.

22

In the following, we extend the definition of the quantum transition capacity as follows, which captures a restriction
of the query vector x = (x1, . . . , xk) to entries xi in X ⊆ X .

q
P

k→ P′
∣∣Xy

:= max
x∈Xk
ŷ,D

‖P′|D|x cOxŷ P|D|x‖ . (12)

where the max is restricted to x ∈ Xk. Obviously,
q
P

k→ P′
y

=
q
P

k→ P′
∣∣X y

.

Lemma 5.32. Let X = X ′ ∪X ′′ ⊆ X and k = k′ + k′′. Furthermore, let P,P′,P′′ and Q be database properties.
Then q

P
k→ P′′

∣∣Xy
≤

q
P

k→ P′′\Q
∣∣Xy

+
q
P

k→ Q ∩ P′′
∣∣Xy

, (13)

where furthermore
q
P

k→ Q ∩ P′′
∣∣Xy

≤
q
P
k′→¬Q

∣∣Xy
+

q
P
k′→ Q ∩ P′

∣∣Xy
+

q
Q\P′ k

′′

→ Q ∩ P′′
∣∣Xy

(14)

as well as q
P

k→ Q ∩ P′′
∣∣Xy

≤
q
P

k→¬Q
∣∣X ′y +

q
P

k→ Q ∩ P′
∣∣X ′y +

q
Q\P′ k→ Q ∩ P′′

∣∣X ′′y. (15)

Proof. The first inequality follows immediately from Lemma 5.30, using that (P′′ \Q)∪ (Q∩P′′) = P′′. For the other
two, let x ∈ Xk, ŷ ∈ Ŷk,D ∈ D be the choices that achieve the maximal value in the definition of

q
P

k→ Q ∩ P′′
∣∣Xy

.
We may assume without loss of generality that x consists of pairwise distinct entries. For proving the first inequality,
we split up x into (x′,x′′) ∈ Xk′ ×Xk′′ , and correspondingly then for ŷ ∈ Ŷk. For proving the second inequality,
we let x′ consist of all coordinates of x that lie in X ′, and we let x′′ consist of all coordinates of x that lie in X ′′ but
not in X ′, and ŷ′ and ŷ′′ consists of the corresponding coordinates of ŷ; in this case, (x′,x′′) ∈ X ′`′ ×X ′′`

′′
with

`′ + `′′ = k. In both cases, we have cOxŷ = cOx′ŷ′cOx′′ŷ′′ , and, writing Px for P|D|x etc., we obtain
q
P

k→ Q ∩ P′′
∣∣Xy

= ‖P′′xQx cOx′′ŷ′′cOx′ŷ′ Px‖
≤ ‖P′′xQx cOx′′ŷ′′QxcOx′ŷ′ Px‖+ ‖(I− Qx)cOx′ŷ′ Px‖
≤ ‖P′xQxcOx′ŷ′ Px‖+ ‖P′′xQx cOx′′ŷ′′(I− P′x)Qx‖+ ‖(I− Qx)cOx′ŷ′ Px‖
≤ ‖P′x′Qx′cOx′ŷ′ Px′‖+ ‖P′′x′′Qx′′ cOx′′ŷ′′(I− P′x′′)Qx′′‖+ ‖(I− Qx′)cOx′ŷ′ Px′‖ ,

where the last equality follows from basic properties of the operator norm. The first of the two remaining bounds is
now obtained by maximizing the individual terms on the right hand side over x′ ∈ Xk′ and x′′ ∈ Xk′′ (as well as
over ŷ′, ŷ′′ and D). For the other case, we maximize over x′ ∈ X ′`′ and x′′ ∈ X ′′`

′′
and exploit that, for instance,

q
P

`′→¬Q
∣∣X ′y ≤ q

P
k→¬Q

∣∣X ′y, given that `′ ≤ k.

By recursive application of Lemma 5.32, we obtain the following.

Corollary 5.33 (Parallel Conditioning). Let X = X1 ∪ . . .∪Xh ⊆ X and k = k1 + · · ·+ kh, and let P0,P1, . . . ,Ph
and ¬P0 ⊆ Q be database properties. Then

q
¬P0

k→ Ph
∣∣Xy

≤
h∑
i=1

q
¬P0

k̄i→¬Q
∣∣Xy

+

h∑
i=1

q
Q\Pi−1

ki→ Q ∩ Pi
∣∣Xy

and

q
¬P0

k→ Ph
∣∣Xy

≤
h∑
i=1

q
¬P0

k→¬Q
∣∣X̄i

y
+

h∑
i=1

q
Q\Pi−1

k→ Q ∩ Pi
∣∣Xi

y
,

where k̄i = k1 + · · ·+ ki and X̄i = X1 ∪ . . . ∪Xi.

Proof. Applying (13) and (14) with P := ¬P0, P′ := Ph−1 and P′′ := Ph, and omitting the “conditioning” on X for
simplicity, we get

q
¬P0

k→ Ph
y
≤

q
¬P0

k→¬Q
y

+
q
¬P0

k̄h−1−→ ¬Q
y

+
q
¬P0

k̄h−1−→ Q ∩ Ph−1

y
+

q
Q\Ph−1

kh−→ Q ∩ Ph
y
.

Recursively applying (14) to
q
¬P0

k̄h−1−→ Q ∩ Ph−1

y
gives the first claim. The second is argued correspondingly.

23

The quantum transition capacity with restricted input, defined in (12), is just the original definition of the quantum
transition capacity (Definition 5.5) but with the considered set X replaced by X . As a consequence, properties forq
P→ P′

y
carry over to

q
P→ P′

∣∣Xy
. For instance, it is still symmetric, and Lemma 5.30 carries over to

q
P ∩ Q

k→ P′
∣∣Xy

≤ min
{q

P
k→ P′

∣∣Xy
,
q
Q

k→ P′
∣∣Xy}

etc. For completeness we spell out here the definition of non-uniform recognizability as well as Theorem 5.22 for such
input-restricted database transitions P→ P′ |X (the other types of recognizability can be generalized similarly).

Definition 5.34. A database transition P→ P′ with input restricted in X ⊆ X is said to be k-non-uniformly weakly
recognizable by `-local properties if for every x = (x1, . . . , xk) ∈ Xk with disjoint entries, and for every D ∈ D,
there exist a family of `-local properties {Lx,Di }i with supports in {x1, . . . , xk} so that

D◦∈P|D|x ∧ D′∈P′|D|x =⇒ ∃ i : D′ ∈ Lx,Di ∧
(
∃x∈Supp(Lx,Di) : D◦(x) 6=D′(x)

)
Theorem 5.35. Let P→ P′ with input restricted in X be k-non-uniformly weakly recognizable by 1-local properties
Lx,Di , where the support of Lx,Di is {xi} or empty. Then

q
P

k→ P′
∣∣Xy

≤ max
x,D

e
∑
i

√
10P

[
U ∈Lx,Di

]
,

where the max now is over all x = (x1, . . . , xk) ∈ Xk.

6 Post-Quantum Proof of Sequential Works
In this section, we prove post-quantum security of the proof of sequential work (PoSW) construction by Cohen and
Pietrzak [10] (referred to as Simple PoSW) using our framework developed in the last section. As a matter of fact, we
directly analyze the non-interactive variant of their construction after applying the Fiat-Shamir transformation [12]. As
we shall see, the proof is by means of purely classical reasoning, recycling observations that are relevant for arguing
classical security and combining them with results provided by our framework.

6.1 Simple Proof of Sequential Works
For readers not familiar with PoSW, we review the definition in Appendix B. Typically, underlying the construction
of a PoSW is a directed acyclic graph (DAG) G with certain “depth-robust” properties, and a graph labeling that the
prover P is required to compute using a hash function H . We proceed to describe the DAG used in Simple PoSW and
the graph labeling.

Simple PoSW DAG and Graph Labeling. Let n ∈ N and N = 2n+1 − 1. Consider the (directed) complete binary
tree Bn = (Vn, E

′
n) of depth n, where Vn := {0, 1}≤n and E′n consists of the edges directed towards the root (black

edges in Fig. 2). The Simple PoSW DAG, denoted by GPoSW
n , is obtained by adding some additional edges to Bn (red

edges in Fig. 2). Before giving the formal definition of GPoSW
n (Definition 6.2), we recall some basic terminology and

notation in the context of the complete binary tree Bn, which we will then also use in the context of GPoSW
n .

Definition 6.1. We write rt := ε for the root, and we write leaves(Vn) := {0, 1}n for the leaves in Vn. For T ⊆ Vn,
we set leaves(T) := T ∩ {0, 1}n. For v /∈ leaves(Vn), let left(v) := v‖0 and right(v) := v‖1. For b ∈ {0, 1} and
v ∈ {0, 1}<n, let par(v‖b) := v and sib(v‖b) := v‖¬b (see Fig. 2, right).

Finally, for a leaf v ∈ leaves(Vn), we define the ancestors of v as anc(v) = {pari(v) | 0 ≤ i ≤ n} and the authen-
tication path of v (as in the Merkle tree) as ap(v) = (anc(v)\{rt}) ∪ {sib(u) | rt 6= u ∈ anc(v)}.

Definition 6.2. For n ∈ N, define the Simple PoSW DAG GPoSW
n := (Vn, E

′
n ∪ E′′n) with vertex set Vn and edges

E′n := {(left(v), v), (right(v), v) | v ∈ Vn \ leaves(Vn)} and

E′′n := {(sib(u), v) | v ∈ Vn, u ∈ anc(v) s.t. u = right(par(u))} .

24

Figure 2: Illustration of the Simple PoSW DAG GPoSW
n for n = 3.

For v ∈ Vn, we write in(v) := {u ∈ Vn | (u, v) ∈ E′n ∪ E′′n} to denote the inward neighborhood of v. We
consider a fixed ordering of the vertices (e.g. lexicographic), so that for any set {v1, . . . , vd} ∈ Vn of vertices, the
corresponding ordered list (v1, . . . , vd) is well defined.

We proceed to define the graph labeling for GPoSW
n with respect to a hash function H : {0, 1}≤B → {0, 1}w, were

w is a security parameter, and B is arbitrary large (and sufficiently large for everything below being well defined).

Definition 6.3 (Graph Labeling). A function ` : Vn → {0, 1}w, v 7→ `v is a labeling of GPoSW
n with respect to H if

`v = H(v, `in(v)) (16)

for all v ∈ Vn, were `in(v) is shorthand for (`v1 , . . . , `vd) with {v1, . . . , vd} = in(v). Similarly, for a subtree19 T of
GPoSW
n , a function ` : T → {0, 1}w, v 7→ `v is a called a labeling of T with respect to H if `v = H(v, `in(v)) for all

v ∈ Vn for which in(v) ⊆ T .

By the structure of the graph, GPoSW
n admits a unique labeling, which can be computed by making N = 2n+1 − 1

sequential queries to H , starting with the leftmost leaf. We sometimes speak of a consistent labeling (of GPoSW
n or T)

when we want to emphasize the distinction from an arbitrary function `. The definition also applies when replacing
the function H by a database D : {0, 1}≤B → {0, 1}w ∪ {⊥}, where the requirement (16) then in particular means
that H(v, `in(v)) 6= ⊥.

We also make the following important remark.

Remark 6.4. Let T be a subtree of GPoSW
n with a consistent labeling `. Then, any path P = (v0, . . . , vr) of length

|P | = r in T induces an r-chain (x0, . . . , xr), where xi = (vi, `v′1 , . . . , `v′d) with {v′1, . . . , v′d} = in(vi), and where
the relation / is defined as follows. y / x if and only if x is of form (v, `1, `2, . . . , `d) with v ∈ Vn, `j ∈ {0, 1}w,
|d| = |in(v)| ≤ n, and y = `j for some j.

Simple PoSW Construction. We are ready to describe the (non-interactive) Simple PoSW construction, which
amounts to asking the prover P to compute the root label of GPoSW

n with respect to the hash function Hχ defined by
Hχ(·) := H(χ, ·) for a random χ ∈ {0, 1}w sampled by the verifier V , and open the labels of the authentication paths
of the challenge leaves.

Specifically, given parameters w, t and N = 2n+1 − 1, and a random oracel H : {0, 1}≤B → {0, 1}w, the Simple
PoSW protocol is defined as follows.

• (φ, φP) := PoSWH(χ,N): P computes the unique consistent labeling ` ofGPoSW
n with respect to hash function

Hχ defined by Hχ(·) := H(χ, ·), and stores it in φP . P sets φ = `rt as the root label.

19By a subtree of GPoSW
n we mean a subgraph of GPoSW

n that is a subtree of the complete binary tree Bn when restricted to edges in E′n. We
are also a bit sloppy with not distinguishing between the graph T and the vertices of T .

25

• The opening challenge: γ := HChQ
χ (φ) :=

(
Hχ(φ, 1), . . . ,Hχ(φ, d)

)
∈ {0, 1}dw for sufficiently large d, parsed

as t leaves {v1, . . . , vt} ⊆ leaves(Vn).

• τ := openH(χ,N, φP , γ) : For challenge γ = {v1, . . . , vt}, the opening τ consists of the labels of vertices in
the authentication path ap(vi) of vi for i ∈ [t], i.e., τ = {`ap(vi)}i∈[t].

• verifyH(χ,N, φ, γ, τ): V verifies if the ancestors of every vi are consistently labeled by τ . Specifically, for each
i ∈ [t], V checks if `u = Hχ(u, `in(u)) for all u ∈ anc(vi). V outputs accept iff all the consistency checks pass.

Note that since we consider the non-interactive version of Simple PoSW after applying the Fair-Shamir transfor-
mation, the random oracle H is used to compute both the labels (as Hχ(v, `in(v))) and the challenge (as HChQ

χ (φ)).
We silently assume that the respective inputs are specially formatted so as to distinguish a label query from a chal-
lenge query. E.g., a label query comes with a prefix 0 and a challenge query with prefix 1. We then denote the set of
inputs for label and challenge queries by LbQ and ChQ ⊆ {0, 1}≤B , respectively. Also, for simplicity, we will treat
HChQ
χ (φ) as one oracle query, i.e., “charge” only one query for a challenge query; however, we keep the superscript

ChQ to remind that the query response is (understood as) a set of leaves.

Classical Security Analysis of Simple PoSW. Before presenting our proof of post-quantum security for Simple
PoSW, we first review the classical security analysis in [10]. For simplicity, here we consider the original (interactive)
Simple PoSW (i.e., P first sends φ, receives random γ from V , and then sends τ to V). Also, to start with, we
assume that P does not make further oracle queries after sending φ. We review the argument of [10] for bounding the
probability that a k-parallel q-query classical oracle algorithm A with q < N makes V accept, using the terminology
we introduced in Section 2.

Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be the database at the point that A sends φ to V (after having made the q
k-parallel queries). Following the argument in Section 2, we can bound the success probability of A by bounding
the probability that a random challenge γ = {vi}i∈[t] can be opened based on the information in the database D. As
argued in Section 2 , the probability that the database D contains collisions, or a (q + 1)-chain with respect to the
relation defined in Remark 6.4, is small. Thus, by a union bound, we can assume that D contains no collisions nor
(q + 1)-chains.

Next, given the database D and the “commitment” φ, claimed to be the root label `rt, we need to analyze the set
of leaves v that A can open. One of the key observations in [10] is that, for a database D with no collisions, there
exists a maximal subtree T of GPoSW

n that contains rt and admits a consistent labeling ` with `rt = φ. As observed
in [10], this subtree T then contains all leaves that one can open given D. Thus, A can correctly answer a challenge
γ = {v1, . . . , vt} if γ ⊆ leaves(T), while otherwise it is unlikely that he succeeds.

The subtree T , together with the labeling ` of T , can be extracted using ExtractDn (φ), described in Algorithm 1
in the Appendix C. Roughly speaking, starting with T := {rt}, consider v := rt and `rt := φ, and add left(v) and
right(v) to T if (and only if) there exist `left(v) and `right(v) such that `v = D

(
v, `left(v), `right(v)

)
, and repeat inductively

with the newly added elements in T . In the end, for the leaves v ∈ T check if `v = D(v, `in(v)) and remove v from T
if this is not the case; we note here that v ∈ leaves(T)⇒ in(v) ⊆ T .

In summary:

Lemma 6.5. Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be a database with no collisions (beyond ⊥). Then, for any
φ ∈ {0, 1}w, the subtree T and the labeling ` produced by ExtractDn (φ) are such that ` is a consistent labeling of T
with respect to D, having root label `rt = φ. Furthermore, for any leave v of Vn, if v ∈ T then `u = D(u, `in(u)) for
all u ∈ anc(vi), and if v 6∈ T then there exists no labeling `′ with `′rt = φ and `′u = D(u, `′in(u)) for all u ∈ anc(vi).

The last step is to bound the number of leaves in T . Another key argument in [10] uses a certain “depth-robust”
property of GPoSW

n to show that for any subtree T ⊆ Vn with rt ∈ T , there exists a path P in T with length |P | ≥
2 · |leaves(T)| − 2. Recall we argued above that the graph labeling of a path P ∈ GPoSW

n induces a |P |-chain in H .
The same argument applies here to show that there exists a |P |-chain in D since the extracted labels in P ⊆ T are
consistent (i.e., satisfyingD(v, `in(v)) = `v). Combining these with the assumption thatD contains no q+1-chain, we
have |leaves(T)| ≤ (q + 2)/2. Therefore, the probability that A can open labels for a random challenge γ = {vi}i∈[t]

26

is at most (
|leaves(T)|

2n

)t
≤
(
q + 2

2n+1

)t
.

Lemma 6.6. Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be a database with no (q + 1)-chain. Let T be a subtree of GPoSW
n

admitting a consistent labeling with respect to D. Then, |leaves(T)| ≤ (q + 2)/2.

Finally, we briefly discuss here how to handle the case that A can make additional queries after sending φ, as a
similar argument is required in the analysis of the non-interactive Simple PoSW in the next section. As before, let D
be the database right after A has sent φ = `rt, but now A can make additional queries after seeing γ, which adds new
entries to D and may help A to open labels for more challenges γ.

The main observation to analyze whether additional queries are helpful is as follows. Recall that T contains all
leaves v that admit consistently labeled ancestors. Thus for the additional queries to be helpful, they must enlarge the
extracted subtree T . More precisely, let D′ be the database after the additional queries and let T ′ and `′ be extracted
by ExtractD

′

n (φ). It must be that T (T ′ and `′|T = `, and there must exist x with D(x) = ⊥ while D′(x) = `v for
some v ∈ T . This happens with probability at most O(qk/2w) for each query since ` has support size at most O(qk).
We capture the above crucial observation by means of the following formal statement, which, in this form, will then
be useful in the security proof against quantum attacks.

Lemma 6.7. Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be a database with no collisions (beyond ⊥). Let φ ∈ {0, 1}w and
(T, `) = ExtractDn (φ). Furthermore, let D′ = D[x 7→u] and (T ′, `′) = ExtractD

′

n (φ), and let v be a leave of Vn. If
v ∈ T ′ \ T then there exist j ∈ {1, . . . , k} and z ∈ anc(v) so that D(xj) 6= D′(xj) = `′z .

Proof. Given that v ∈ T ′, the labeling `′ labels the ancestors of v consistently with respect to D′, i.e., `′z =
D′(z, `′in(z)) for all z ∈ anc(v). On another hand, since v is not in T , it must be that `′ does not label the ances-
tors of v consistently with respect to D, i.e., there must exist z ∈ anc(v) such that D(z, `′in(z)) 6= `′z = D′(z, `′in(z)).
Since D and D′ differ only within x, there exists j ∈ {1, . . . , k} with xj = (z, `′in(z)).

6.2 Post-Quantum Security of Simple PoSW
In this section, we prove post-quantum security of the (non-interactive) Simple PoSW protocol. As we shall see,
relying on the framework we developed in Section 5, the proof uses purely classical reasoning only, and somewhat
resembles the arguments in the classical analysis.

Theorem 6.8 (Post-Quantum Simple PoSW Security). Consider the Simple PoSW protocol with parameters w, t and
N = 2n+1 − 1 with w ≥ tn. Let P̃ be a k-parallel q-query quantum oracle algorithm acting as a prover. The
probability p that P̃ can make the verifier V accept is at most

p = O

(
k2q2

(
q + 2

2n+1

)t
+
k3q3n

2w
+
tn

2w

)
.

The first step towards the proof is to invoke Corollary 4.2 (using the notation from Theorem 5.7), which, in the
case here, bounds the success probability p of a dishonest prover P̃ by

√
p ≤

q
⊥ k,q

=⇒ PR
y

+

√
t · (n+ 1) + 1

2w
,

where R is the relation that checks correctness of P̃’s output according to the scheme. In the following, we write
Suc := PR and Fail = ¬Suc. Also, recall the database properties CL, SZ≤s and CHNs defined previously, where the
latter is with respect to the hash chain relation / considered in Remark 6.4. By the properties of (the subtree extracted
with) ExtractDn (·), we have

Suc \ CL =
{
D ∈ ¬CL

∣∣ ∃ `rt ∈ {0, 1}w s.t. DChQ(`rt) ⊆ ExtractDn (`rt)
}
. (17)

27

To bound
q
⊥ k,q

=⇒ PR
y

=
q
⊥ k,q

=⇒ Suc
y

, we consider database properties P0, . . . ,Pq with P0 = ⊥ and Ps =

Suc ∪ CL ∪ CHNs+1 for 1 ≤ s ≤ q. Using Lemma 5.6, Remark 5.8 and Corollary 5.31,

q
⊥ k,q

=⇒ Suc
y
≤
∑

1≤s≤q

q
SZ≤k(s−1)\Ps−1

k→ Ps
y
.

Thus, the proof of Theorem 6.8 follows immediately from the following bound on the considered transition capacity.

Proposition 6.9. For integers 0 ≤ s ≤ q, and for the database properties P0, . . . ,Pq as defined above

q
SZ≤k(s−1)\Ps−1

k→ Ps
y
≤ 4ek

√
10
q + 1

2w
+ 3ek

√
10kqn

2w
+ ek

√
10

(
q + 2

2n+1

)t
.

Intuitively, we consider the transition from a database that is bounded in size, has no collision, no s-chain and does
not have a successful output for P̃ , into one that contains a collision or an (s+ 1)-chain or a successful output for P̃ .

Proof. Applying Corollary 5.33 with h := 2, X1 := LbQ and X2 := ChQ, and with P0,P1,P2 and Q in Corol-
lary 5.33 set to20

¬P0 := SZ≤k(s−1) \ Ps−1 , P1 := Suc , P2 := Suc ∪ CL ∪ CHNs+1 = Ps and Q := ¬(CL ∪ CHNs+1) ,

we can bound
q
SZ≤k(s−1)\Ps−1

k→ Ps
y

=
q
¬P0

k→ P2

y
by

≤
q
¬P0

k→¬Q
∣∣LbQy

+
q
¬P0

k→¬Q
∣∣ChQ ∪ LbQ

y
+

q
Q\P0

k→ Q ∩ P1

∣∣LbQy
+

q
Q\P1

k→ Q ∩ P2

∣∣ChQy

≤ 2
q
¬P0

k→¬Q
y

+
q
Q\P0

k→ Q ∩ P1

∣∣LbQy
+

q
Q\P1

k→ Q ∩ P2

∣∣ChQy

= 2
q
SZ≤k(s−1)\Ps−1

k→ CL ∪ CHNs+1
y

+
q
SZ≤k(s−1)\Ps−1\CL\CHNs+1 k→ Suc\CL\CHNs+1

∣∣LbQy

+
q
¬(Suc ∪ CL ∪ CHNs+1)

k→ Suc\CL\CHNs+1
∣∣ChQy

≤ 2
q
SZ≤k(s−1)\Ps−1

k→ CL ∪ CHNs+1
y

+
q
SZ≤k(s−1)\Ps−1

k→ Suc\CL
∣∣LbQy

+
q
¬Ps

k→ Suc\CL
∣∣ChQy

.

By means of Lemma 5.30 (and Corollary 5.31), and recalling that Ps−1 = Suc ∪ CL ∪ CHNs, the first capacity in
the term can be controlled as

q
SZ≤k(s−1)\Ps−1

k→ CL ∪ CHNs+1
y
≤

q
SZ≤k(s−1)\Ps−1

k→ CL
y

+
q
SZ≤k(s−1)\Ps−1

k→ CHNs+1
y

≤
q
SZ≤k(s−1)\CL

k→ CL
y

+
q
SZ≤k(s−1)\CHNs

k→ CHNs+1
y

≤ 2ek

√
10
q + 1

2w
+ ek

√
10kqn

2w

using earlier derived bounds. It remains to bound the remaining two capacities appropriately, which we do below.

Intuitively,
q
¬Ps

k→ Suc\CL
∣∣ChQy

captures the likelihood that a database D 6∈ Suc (and with no collision and
chain) is turned into one that does satisfy Suc by (re)defining D on k values that correspond to challenge queries. For
this to happen, one of the newly defined function values of D, corresponding to a challenge query and thus specifying
a set of leaves, must “hit” the set of leaves that can be answered, which is bounded in size.

Lemma 6.10. For any positive integer q, it holds that
q
¬Pq

k→ Suc\CL
∣∣ChQy

≤ ek ·
√

10
(
q+2
2n+1

)t
.

20Note that we have slight collision of notation here: P0,P1,P2 correspond to the choice of properties for applying Corollary 5.33, and should
not be confused with Ps with s set to 0, 1, 2, respectively.

28

Proof. For convenience, we will denote D[x 7→y] by Dx,y. In order to bound the above capacity, we define 1-local
properties Lx,Dj and show that Lx,Dj (weakly) recognize the considered transition (with input restricted to ChQ).

For any D and x = (`1rt, . . . , `
k
rt) ∈ ChQk, we set

Lx,Dj :=
{
D◦ ∈ D|x

∣∣∣DChQ
◦ (xj) ⊆ leaves

(
ExtractDx,⊥

n (`jrt)
)}

Suppose Dx,r ∈ ¬Pq = Fail \ CL \ CHNq+1 but Dx,u ∈ Suc \ CL. Thus, by (17), there exists `rt ∈ {0, 1}w with

DChQ
x,u (`rt) ⊆ leaves

(
ExtractDx,u

n (`rt)
)
, (18)

while
DChQ

x,r (`rt) 6⊆ leaves
(
ExtractDx,r

n (`rt)
)
. (19)

Since the output of the extraction procedure ExtractDn (·) only depends on those function values of D that correspond
to label queries (x here consists of challenge queries), we have

ExtractDx,r
n (`rt) = ExtractDx,⊥

n (`rt) = ExtractDx,u
n (`rt).

If `rt is different from all `jrt, then equations (18) and (19) contradict. So there is some j such that `jrt = `rt. Equations
(18) and (19) thus become

uj ⊆ leaves
(
ExtractDx,⊥

n (`rt)
)

and rj 6⊆ leaves
(
ExtractDx,⊥

n (`rt)
)
,

understanding that uj and rj represent lists/sets of t (challenge) leaves. Hence rj 6= uj . This concludes that Lx,Dj
indeed weakly recognizes the considered database transition.

We note that, for each x ∈ ChQk and D ∈ Fail \ CL \ CHNq+1, since the longest hash chain in D is of length no
more than q and T := ExtractDx,⊥

n (`jrt) admits a consistent labeling (Lemma 6.5), it follows from Lemma 6.6 that∣∣∣leaves(ExtractDx,⊥
n (`jrt)

)∣∣∣ ≤ q + 2

2
.

Therefore,

P
[
U ∈ Lx,Dj

]
≤

(
leaves

(
ExtractDx,⊥

n (`jrt)
)

2n

)t
≤
(
q + 2

2n+1

)t
,

and so the claimed bound follows by applying Theorem 5.35.

Similarly here, the intuition is that
q
¬Ps

k→ Suc\CL
∣∣LbQy

captures the likelihood that a database D 6∈ Suc (and
with no collision and chain) is tuned into one that does satisfy Suc by (re)defining D on k values that correspond to
label queries. For this to happen, one of the newly defined function values ofD, corresponding to a label, must “match
up” with the other labels.

Lemma 6.11. For any positive integer q, it holds that
q
SZ≤k(q−1)\Pq−1

k→ Suc\CL
∣∣LbQy

≤ ek
√

10nkq
2w .

Proof. Define the notion of labeling support LSupp(D) of a database D ∈ D as follows.

LSupp(D) :=

{
λ ∈ {0, 1}w

∣∣∣∣ ∃ 0≤ i≤d≤n, v∈Vn, `1, . . . , `d∈{0, 1}w
s.t. D(v, `1, . . . , `i−1, λ, `i+1, . . . `d) 6= ⊥

}
∪
{
`rt ∈ {0, 1}w

∣∣∣DChQ(`rt) 6= ⊥
}
.

We note that since LSupp is defined only in terms of where D is defined, but does not depend on the actual function
values (beyond being non-⊥), LSupp(D) ⊆ LSupp(Dx,0) for any x ∈ X k, where 0 ∈ {0, 1}k is the all-0 string.

In order to bound above capacity, we define 1-local properties and show that they (weakly) recognize the considered
transition (with input restricted to LbQ). For any D and x ∈ LbQk, consider the local properties

Lx,Dj :=
{
D◦ ∈ D|x

∣∣D◦(xj) ∈ LSupp(Dx,0)
}
.

29

Let Dx,r ∈ ¬Pq−1 = Fail \ CL \ CHNq yet Dx,u ∈ Suc \ CL. By (17), there exists `rt so that DChQ
x,u (`rt) ⊆

ExtractDx,u
n (`rt), while, on the other hand, there exists some v ∈ DChQ

x,r (`rt) \ leaves
(
ExtractDx,r

n (`rt)
)
. Given that

here x ∈ LbQk, we have Dx,r(`rt) = Dx,u(`rt), and thus, by (18), we have

v ∈ leaves
(
ExtractDx,u

n (`rt)
)
\ leaves

(
ExtractDx,r

n (`rt)
)
.

Writing `′ for the labeling extracted by ExtractDx,u
n (`rt), it then follows from Lemma 6.7 that there exist j ∈

{1, . . . , k} and z ∈ anc(v) such that uj = Dx,u(xj) = `′z 6= Dx,r(xj) = rj . Furthermore, since DChQ
x,u (`′z) =

DChQ
x,u (`rt) 6= ⊥ in case z = rt, and `′z is part of the input that is mapped to `′par(z) under Dx,u in all other cases,

we also have uj = `′z ∈ LSupp(Dx,u) ⊆ LSupp(Dx,0). Therefore, the local properties Lx,Dj do indeed weakly
recognize the considered transition for input restricted to LbQ.

For D ∈ SZ≤k(q−1) \ Pq−1, since there are only k(q − 1) entries in D, we have

P [U ∈ Lx,Dj] ≤ |LSupp(Dx,0)|
2w

≤ nkq

2w
. ,

and thus the claimed bound follows from applying Theorem 5.35.

Acknowledgements
We thank Jeremiah Blocki, Seunghoon Lee, and Samson Zhou for the open discussion regarding their work [5], which
achieves comparable results for the hash-chain problem and the Simple PoSW scheme.

References
[1] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and element distinctness with small

range. Theory of Computing, 1(1):37–46, 2005.

[2] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical oracles. In Boldyreva
A. and Micciancio D., editors, Advances in Cryptology - CRYPTO 2019, volume 11693 of Lecture Notes in Computer Science,
pages 269–295. Springer, 2019.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In First ACM
Conference on Computer and Communications Security, pages 62–73. ACM, 1993.

[4] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of quantum computing.
SIAM journal on Computing, 26(5):1510–1523, 1997.

[5] Jeremiah Blocki, Seunghoon Lee, and Samson Zhou. On the security of proofs of sequential work in a post-quantum world.
arXiv/cs.CR, Report 2006.10972, 2020. https://arxiv.org/abs/2006.10972.

[6] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Random oracles in a
quantum world. In Lee D.H. and Wang X., editors, Advances in Cryptology ASIACRYPT 2011, volume 7073 of Lecture Notes
in Computer Science, pages 41–69. Springer, 2011.

[7] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum algorithm for the collision problem. arXiv/quant-ph, Report 9705002,
1997. https://arxiv.org/abs/quant-ph/9705002.

[8] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. Journal of the ACM (JACM),
51(4):557–594, 2004.

[9] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random oracle model. In
Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - TCC 2019, volume 11892 of Lecture Notes in Computer
Science. Springer, 2019.

[10] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 451–467. Springer, 2018.

[11] Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur. Quantum lazy sampling and game-playing proofs
for quantum indifferentiability. arXiv/quant-ph, Report 1904.11477, 2019. https://arxiv.org/abs/1904.11477.

30

https://arxiv.org/abs/2006.10972
https://arxiv.org/abs/quant-ph/9705002
https://arxiv.org/abs/1904.11477

[12] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In Conference
on the Theory and Application of Cryptographic Techniques, pages 186–194. Springer, 1986.

[13] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pages 212–219, 1996.

[14] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoffs by recording queries. arXiv/quant-ph, Report
2002.08944, 2020. https://arxiv.org/abs/2002.08944.

[15] Akinori Hosoyamada and Tetsu Iwata. 4-round luby-rackoff construction is a qprp. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer Science, pages 145–174.
Springer, 2019.

[16] Stacey Jeffery, Frédéric Magniez, and Ronald de Wolf. Optimal parallel quantum query algorithms. Algorithmica, 79(2):509–
529, 2017.

[17] Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019, volume 11693 of Lecture Notes in Computer Science, pages 326–355. Springer,
2019.

[18] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 129–146. Springer,
2014.

[19] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A, 60:2746–2751, Oct 1999.

[20] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019, volume 11693 of Lecture Notes in Computer Science,
pages 239–268. Springer, 2019.

A Efficient Simulation of the Compressed Oracle
In order to complete our exposition of the compressed oracle, we show here another aspect of the technique, which
is not relevant in our context but an important feature in other applications: similarly to the classical lazy-sampling
technique, the evolution of the compressed oracle can be efficiently computed, and useful information can be efficiently
extracted from the compressed oracle.

For concreteness, we assume here that Y = {0, 1}m. This in particular means that Ŷ = Y , and that there is
a designated and efficiently computable quantum Fourier transform QFT : |y〉 7→ |ŷ〉 = H⊗m|y〉. This then also
means that D = D̂, but we still distinguish between |D〉 =

⊗
x |D(x)〉 and |D̂〉 =

⊗
xQFT|D(x)〉 for any D ∈ D.

Additionally, we assume that X comes with an efficiently computable total order, say X = {0, 1}n.
Consider the classical encoding function Enc : D → L := ((X × Y) ∪ {⊥})|X | that maps D ∈ D to the list

L =
[
(x1, y1), . . . , (xs, ys),⊥, . . . ,⊥

]
of pairs (xi, yi) for which yi = D(xi) 6= ⊥, sorted as x1 < · · · < xs and

padded with ⊥’s. Recall the unitary cO, defined in Section 4.3 and which describes the evolution of the compressed
oracle, and consider the corresponding “update function” Upd : X × Y × L→ X × Y × L, defined to satisfy

Upd
(
x, y, Enc(D)

)
=
(
x, y, Enc(D′)

)
⇐⇒ |x〉|ŷ〉|D̂′〉 = cO|x〉|ŷ〉|D̂〉 = |x〉|ŷ〉 ⊗ cOxŷ|D̂〉

for any x ∈ X , y ∈ Y andD ∈ D. By construction, and exploiting (7), it turns out that Upd is a rather simple function.
Applied to x ∈ X , y ∈ Y and L = [(x1, y1), . . . , (xs, ys),⊥, . . . ,⊥] ∈ L, it acts as follows. If yi = 0 for some i
then it acts as identity,21 otherwise, the following two cases are distinguished: if x 6∈ {x1, . . . , xs} and y 6= 0 then
Upd inserts the pair (x, y) to the list, while if x = xi and y 6= yi for some i then Upd replaces (xi, yi) by (xi, yi ⊕ y).
In particular, for lists L of bounded size s ≤ Q, the classical function Upd can be efficiently computed, i.e., in time
polynomial in Q and in the size of the bit representations of the elements of X and Y .

Formally, for a fixed Q, let D≤Q := {D ∈ D : |{x ∈ X : D(x) =⊥}| ≤ Q}, and let enc : D≤Q → L≤Q :=
((X × Y) ∪ {⊥})Q be defined in the obvious way, i.e., so that enc(D) is obtained from Enc(D) by removing the

21This is the “artificial” case, which was introduced to have cO defined on the entire space C[X]⊗ C[Y]⊗ C[D]

31

https://arxiv.org/abs/2002.08944

rightmost ⊥-paddings. Similarly, upd : X × Y × L≤Q → X × Y × L≤Q is defined in the obvious way to coincide
with Upd except for the shorter ⊥-padding, and except for the following additional modification: upd is declared to
act as identity on (x, y, L) whenever s = Q and x 6= {x1, . . . , xs}, i.e., when there would be an “overflow”. It
then follows that upd is an efficiently computable permutation. Thus, by basic theory of quantum computation, the
corresponding unitary |x, y, L〉 7→ |upd(x, y, L)〉 can be efficiently computed by means of a polynomial sized quantum
circuit. Hence, by means of the encoding

ênc : |D̂〉 7→ |enc(D)〉 = |x1〉|y1〉 · · · |xs〉|ys〉|⊥〉 · · · |⊥〉 ,

the unitary cO can be efficiently computed, as long as it acts on C[X]⊗C[Y]⊗C[D<Q], i.e., as long as fewer than Q
queries are being made.

Alternatively, we can also consider the following variant, where |D〉, rather than |D̂〉, is encoded as |enc(D)〉:

enc : |D〉 7→ |enc(D)〉 = |x1〉|y1〉 · · · |xs〉|ys〉|⊥〉 · · · |⊥〉

This encoding offer the following useful property. Consider a unitary Uf on C[D], plus an ancilla, that computes a
classical function f , meaning that Uf : |D〉|w〉 7→ |D〉|w⊕f(D)〉, and for which the classical function f is efficiently
computable for D ∈ D≤Q and given that D is represented by enc(D). Then, the unitary Uf is efficiently computable
with the considered encoding enc. This allows for efficient extraction of useful information from the compressed
oracle. Typical examples would be to check whether a certain preimage x◦ ∈ X is in the database, i.e., whether
D(x◦) 6= ⊥, or to check whether there is a 0-preimage in the database, i.e. whether ∃x : D(x) = 0, etc.

The final, simple yet crucial, observation is that one can efficiently switch between these two encodings. Indeed,
it is easy to see that, say, enc commutes with applying the quantum Fourier transform QFT in the obvious way, i.e.,

enc|D̂〉 = |x1〉|ŷ1〉 · · · |xs〉|ŷs〉|⊥〉 · · · |⊥〉 .

Thus, enc equals ênc up to some QFT’s to be applied (controlled by the corresponding register not being⊥), which can
be efficiently done. Hence, by a suitable encoding, both the evolution of the compressed oracle as well as efficiently
computable classical functions on the (suitably encoded) databaseD, can be efficiently computed by a quantum circuit.

B PoSW Definition
Informally, a (non-interactive) PoSW allows a prover P to generate an efficiently verifiable proof showing that some
computation was going on for N sequential steps since some “statement” χ was received, in the sense that even
a powerful adversary with parallel computation power cannot compute a valid proof with much less than N steps.
PoSW is typically constructed in the random oracle model. We recall its formal definition from [10] (after applying
the Fiat-Shamir transformation) as follows (see Figure 3 for an illustration).

H : {0, 1}≤B → {0, 1}w

Prover P(N, t, w) Verifier V(N, t, w)

statement χ← {0, 1}w
(φ, φP) := PoSW(χ,N)

γ := Hχ(φ)

τ := open(χ,N, φP , γ)
π := (φ, τ)

verify authentication path
If both succeed,

verify(χ,N,φ,γ,τ)=accept

Figure 3: Non-interactive PoSW.

32

• Common Inputs: The prover P and the verifier V get as common input two statistical security parameters
w, t ∈ N and a time parameter N ∈ N. They have access to a random oracle H : {0, 1}≤B → {0, 1}w, where
B is sufficiently large but otherwise arbitrary.22

• Statement: V samples a random χ← {0, 1}w and sends it to P .

• Compute PoSW: P computes (φ, φP) := PoSWH(χ,N), where φ is a proof and φP is a state P uses to compute
the opening.

• Opening Challenge: The opening challenge γ is determined by γ := H(χ, φ) ∈ {0, 1}w.

• Open: P computes τ := openH(χ,N, φP , γ). P sends π := (φ, τ) to V .

• Verify: V computes and outputs verify(χ,N, φ, γ, τ) ∈ {accept, reject}.

Since our goal is to analyze post-quantum security of Simple PoSW [10], we will not present the formal security
properties for PoSW here. Instead, we will prove concrete upper bounds on the probability that a k-parallel q-query
quantum oracle algorithm A with q < N can generate a valid proof.

C The Extraction Algorithm

Algorithm 1 ExtractDn (`rt)

Input: `rt ∈ {0, 1}w
Output: a subtree T ⊆ Vn
Initialize:
Set `ext : Vn → {0, 1}w ∪ {⊥} with `extrt ← `rt and `extv ←⊥ for all v ∈ Vn \ {rt};
Set all vertex v ∈ Vn as unmarked;
Notation: Define the support of a labeling as Supp(`ext) := {v ∈ Vn : `extv 6=⊥}
Labeling extraction:
while there is an unmarked v ∈ Supp(`ext) \ leaves(Vn) do

mark the vertex v;
if there exists some x, y ∈ {0, 1}w such that `extv = D(v, x, y) then

`extleft(v) ← x;
`extright(v) ← y;

end
end
Consistency check:
T ← Supp(`ext);
for v ∈ leaves(T) do

if `extv 6= D(v, `extin(v)) then
T ← T \ {v};

end
end
output T ;

22The original paper [10] considers X = {0, 1}∗; however, we want X to be finite so that our results from the previous sections apply. Thus, we
simply choose B large enough, so that the scheme is well defined, but also larger than any query that an arbitrary but fixed attacker will make.

33

	Introduction
	Warm-up: Proving Classical Query Complexity Lower Bounds
	The Lazy-Sampling Technique
	Efficient Representation
	Proving Classical Lower Bounds

	Notation
	Operators and Their Norms
	The Computational and the Fourier Basis
	Functions and Their (Quantum) Representations

	Zhandry's Compressed Oracle - Refurbished
	The Compressed Oracle
	Linking the Compressed and the Original Oracle
	Working Out the Transition Matrix
	The Parallel-Query (Compressed) Oracle

	A Framework for Proving Quantum Query Lower Bounds
	Setting Up the Framework
	Bounding Quantum Transition Capacities Using Classical Reasoning Only
	Reasoning via Strong Recognizability
	Reasoning via Weak Recognizability
	General -Locality and Collision Finding

	Some Rules for the Quantum Transition Capacity

	Post-Quantum Proof of Sequential Works
	Simple Proof of Sequential Works
	Post-Quantum Security of Simple PoSW

	Efficient Simulation of the Compressed Oracle
	PoSW Definition
	The Extraction Algorithm

