
Simulation Extractable Versions of Groth’s
zk-SNARK Revisited

Karim Baghery1, Zaira Pindado2 and Carla Ràfols2

1 imec-COSIC, KU Leuven, Leuven, Belgium,
karim.baghery@kuleuven.be

2 Universitat Pompeu Fabra, Barcelona, Spain,
zaira.pindado@upf.edu,carla.rafols@upf.edu

Abstract. Among various NIZK arguments, zk-SNARKs are the most
efficient constructions in terms of proof size and verification which are
two critical criteria for large scale applications. Currently, Groth’s con-
struction, Groth16, from Eurocrypt’16 is the most efficient and widely
deployed one. However, it is proven to achieve only knowledge soundness,
which does not prevent attacks from the adversaries who have seen simu-
lated proofs. There has been considerable progress in modifying Groth16
to achieve simulation extractability to guarantee the non-malleability of
proofs. We revise the Simulation Extractable (SE) version of Groth16
proposed by Bowe and Gabizon that has the most efficient prover and
crs size among the candidates, although it adds Random Oracle (RO)
to the original construction. We present a new version which requires 4
parings in the verification, instead of 5. We also get rid of the RO at the
cost of a collision resistant hash function and a single new element in the
crs. Our construction is proven in the generic group model and seems to
result in the most efficient SE variant of Groth16 in most dimensions.

Keywords: zk-SNARK, Simulation Extractability, Generic Group Model

1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proof systems are a fundamental fam-
ily of cryptographic primitives that has appeared recently in a wide range of
practical applications. A NIZK proof system allows a party to prove that for
a public statement ~x, she knows a witness ~w such that (~x, ~w) ∈ R, for some
relation R, without leaking any information about ~w and without interaction
with the verifier. Due to their impressive advantages, NIZK proof systems are
used ubiquitously to build larger cryptographic protocols and systems.

Zero-knowledge Succinct Arguments of Knowledge (zk-SNARKs) are among
the most interesting NIZK proof systems in practice, as they allow to generate
very short proofs and very efficient verification for NP complete languages [6].
Zk-SNARKs have had a tremendous impact in practice and they have found
numerous applications, including verifiable computation systems [11], privacy-
preserving cryptocurrencies [3] and smart contracts [9] and private proof-of-stake

protocols [8] are few of known applications that use zk-SNARKs to prove differ-
ent statements while guaranteeing privacy of the users. Because of their practical
importance, particularly in large-scale applications like blockchains, even min-
imal savings (in proof size or verification cost) are considered to be relevant.
In practice, the zk-SNARK is used to prove the correctness of some computa-
tions without leaking any information about the secret inputs that are used to
complete it. To do so, the computation should be encoded to one of the NP
characterizations which currently Quadratic Arithmetic Program (QAP) is the
most popular one. The basic idea is that the correctness of all the computations
of the circuit is expressed as a divisibility relation among certain polynomials
which define the program. Then the characterization can be compiled into a zk-
SNARK where the prover gives a proof of knowledge of a witness ~a for which the
divisibility relation holds for the polynomials which define the QAP combined
with the input ~a. The succinctness of the argument comes precisely from the
fact that the correctness of all the gates is aggregated into just one relation, and
that this relation of polynomials is proven in one secret point.

In 2016, Groth [6] introduced the most efficient zk-SNARK in the Generic
Group Model (GGM) for QAPs, Groth16, which is still the state-of-the-art. Its
proof is 3 group elements and its verification is dominated by 3 pairings. The
proof in Groth16 is malleable. Generating non-malleable proofs is a necessary re-
quirement in building various cryptographic schemes, including universally com-
posable protocols [9, 8], cryptocurrencies (e.g. Zcash) [3], signature-of-knowledge
schemes [7], etc.

Therefore, in practice, it is important to have a stronger notion of security,
namely, Simulation Extractability (SE). This notion guarantees that a valid
witness can be extracted from any adversary producing a proof accepted by
the verifier, even after seeing an arbitrary number of simulated queries. For this
reason, in Crypto 2017, Groth and Maller [7] proposed a SE zk-SNARK, which
is very efficient in terms of proof size but very inefficient in terms of common
reference string (crs) size and prover time. Bowe and Gabizon [4] proposed a
less efficient construction (5 group elements vs 3) based on Groth16 which adds
a Random Oracle (RO) to it but with almost no overhead in crs size or cost
for the prover. Recently, Lipmaa [10] proposed several constructions, including
the most efficient QAP-based SE zk-SNARK in terms of proof size and with the
same verification complexity as [7, 4], but less efficient in terms of crs size and
prover time compared to [4]. In [1], Atapoor and Baghery used the traditional
OR technique to achieve SE in Groth16. Their variant requires 1 paring less
for verification in comparison with previous SE constructions, however it comes
with an overhead in proof generation, crs, and even larger overhead in proof size.
For a particular instantiation they add ≈ 52.000 constrains to the underlying
QAP instance, which adds fixed overhead to the prover and crs, that can be
considerable for mid-size circuits. They show that for a circuit with 10 × 106

Multiplication (Mul) gates, their prover is about 10% slower, but it can be
slower for circuits with less than 10× 106 gates [1].

2

1.1 Our Contributions

The core of our contribution is revisiting two SE variants of Groth16, presented
in [4] and [1], to get the best of both constructions. Our focus is manly on Bowe
and Gabizon’s variation [4] which has the most efficient prover and the shortest
crs among all SE zk-SNARKs [7, 4, 10, 1], while requires a RO. To achieve sim-
ulation extractability, their prover replaces all the original computations which
depend on some parameter δ given in the crs by some δ′ and the prover must
give [δ′]2 and a NIZK PoK of DLOG of [δ′]2 w.r.t [δ]2.

We propose a new SE variant of Groth16 based on Bowe and Gabizon’s
scheme [4] without ROs. Our variant uses some sophisticated modification of
Boneh-Boyen signatures to prove knowledge of the DLOG of δ′ and relies only
on the collision-resistant properties of a hash function, apart from the GGM. In
terms of efficiency, in comparison with [4], our construction requires 1 paring less
in the verification, while retaining all the other properties of their construction.
More specifically, the most interesting features of Bowe and Gabizon’s scheme
are that the crs size and the prover complexity that are almost the same as
Groth16 (except for a few exponentiations). Our construction inherits these nice
features and avoids using ROs, in the cost of a single new element in the crs
which is negligible 3). In comparison with [1], our variant does not have an over-
head in proof generation and crs size and it also comes with smaller overhead in
proof size. 4

Tab. 1 presents a comparison of our proposed variant of Groth16 with several
related constructions for a particular instance of arithmetic circuit satisfiability.
Our construction gets rid of the RO in cost of adding one element to the crs.

2 Preliminaries

We let BGgen be a probabilistic polynomial time algorithm which on input 1λ,
where λ is the security parameter, returns the description of an asymmetric
bilinear group gk = (p,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of
prime order p, the elements P1,P2 are generators of G1,G2 respectively, e : G1×
G2 → GT is an efficiently computable, non-degenerate bilinear map, and there is
no efficiently computable isomorphism between G1 and G2. Elements in Gγ , are
denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and PT = e(P1,P2). With
this notation, e([a]1, [b]2) = [ab]T . We extend this notation naturally to vectors
and matrices. We denote by negl(λ) an arbitrary negligible function in λ.

Security for zk-SNARKs. We use the definitions of NIZK arguments from [6,
7]. Our argument is perfectly complete (honest arguments will be accepted with

3 In the full version, we show that using a RO we can set γ = 0 and do not need to
add any new element.

4 Our changes add only one element to the crs of Groth16 and since the original
version is proven to achieve subversion ZK (ZK without trusting a third party) [5],
our variant also can be proven to achieve Sub-ZK using the technique proposed in [2].

3

Table 1. A comparison of our proposed variant of Groth16 along with other SE
zk-SNARKs for arithmetic circuit satisfiability with n Mul gates (constraints) and m
wires (variables), of which l are public input wires (variables). In the case of crs size and
Prover’s computation constants are omitted. In [7], n Mul gates and m wires translate
to 2n squaring gates and 2m wires. In [1], n′ ≈ n + 52.000 and m′ ≈ m + 52.000. G1

and G2: group elements, Ei: exponentiation in group Gi, Mi: multiplication in group
Gi, P : pairings, ROM: Random Oracle Model, CRH: Collision Resistant Hash.

SNARK Security Model crs Prover Proof Verifier

Groth [6]
Knowledge

Sound
GGM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

2 G1

1 G2

l E1

3 P

GM [7]
Simulation
Extractable

GGM
2m+ 4n G1

2n G2

2m+ 4n− l E1

2n E2

2 G1

1 G2

l E1

5 P

BG [4]
Simulation
Extractable

GGM,
ROM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1

5 P

AB [1]
Simulation
Extractable

GGM
m′ + 2n′ − l G1

n′ G2

m′ + 3n′ − l E1

n′ E2

4 G1

2 G2 + 2 λ
l E1

4 P

Lipmaa [10]
Simulation
Extractable

AGM,
Tag-based

m+ 3n− l G1

n G2

m+ 4n− l E1

n E2

3 G1

1 G2

l E1

5 P

This paper
Simulation
Extractable

GGM,
CRH

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1

4 P

probability 1), perfect zero-knowledge (simulated proofs have the same distribu-
tion as honest proofs) and SE (even after seeing v simulated proofs, from any
accepting proof output by the adversary it is possible to extract a valid witness).

3 Simulation Extractability without Random Oracles

In this section, we propose a variation of Groth16 inspired on its Bowe and
Gabizon [4] SE version. To achieve so, their prover replaces all the computations
which depend on δ given in the crs by some δ′ of its choice, that it must give
as part of the proof, together with a proof of knowledge of the DLOG of δ′

w.r.t to δ, which given some element [Y]1 = H([A]1||[B]2||[C]1||[δ′]2), consists
of [π]1 such that e([Y]1, [δ

′]2) = e([π]1, [δ]2). In their analysis, H is an RO and
their proof requires 2 pairings for verification. Our contribution is to give an
alternative argument of knowledge for the DLOG, with a novel use of Boneh-
Boyen signatures along with a proof in the GGM.

Scheme definition. In Fig. 1, we present our version of Groth16 and we explain
in the following how we avoid the use of RO.

Avoiding RO. Our proof uses the collision resistance property of the hash
function and the GGM. Very roughly, the new variable γ gives some additional

guarantees because to compute t(x) (γ+m)
(δ′+δm) from Dj such that mj 6= m, it is

necessary to know both 1
(δ′+δm) and γ

(δ′+δm) , but this is only possible when

δ′ + δm = ζδ.

4

Setup, crs← K(R, zR): Pick x, α, β, δ ← Z∗p, H ← H and returns crs, where

(crsP, crsV) := crs←

[
α, β, δ, {xi}n−1

i=0 , {uj(x)β + vj(x)α+ wj(x)}lj=0,
γt(x)
δ{

uj(x)β + vj(x)α+ wj(x)

δ

}m
j=l+1

,

{
xit(x)

δ

}n−2

i=0

]
1
,

[β, δ, {xi}n−1
i=0]2, [αβ, t(x), γt(x)]T , H

 .

Prover, π ← P(R, zR, crsP, ~x = (a1, . . . , al), ~w = (al+1, . . . , am)): with a0 = 1:
1. Select a random element ζ ← Z∗p, and set [δ′]2 := ζ[δ]2
2. Let A†(X) ←

∑m
j=0 ajuj(X), B†(X) ←

∑m
j=0 ajvj(X), C†(X) ←∑m

j=0 ajwj(X),

3. Set h(X) =
∑n−2
i=0 hiX

i ← (A†(X)B†(X)− C†(X))/t(X),
4. Set [h(x)t(x)/δ′]1 ← (1/ζ)(

∑n−2
i=0 hi[x

it(x)/δ]1),

5. Set ra ←r Zp; Set [A]1 ←
∑m
j=0 aj [uj(x)]1 + [α]1 + ra [δ′]1 ,

6. Set rb ←r Zp; Set [B]2 ←
∑m
j=0 aj [vj(x)]2 + [β]2 + rb [δ′]2 ,

7. Set [C]1 ← rb[A]1 + ra
(∑m

j=0 aj [vj(x)]1 + [β]1
)

+

(1/ζ)
∑m
j=l+1 aj([(uj(x)β + vj(x)α+ wj(x))/δ]1) + [h(x)t(x)/δ′]1,

8. Sets m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) ,

9. Compute [D]1 = m
ζ+m

[t(x)
δ

]1 + 1
ζ+m

[γt(x)
δ

]1 = [(m+γ)t(x)
δ′+mδ]1

10. Return π := ([A,C, D]1, [B, δ
′]2).

Verifier, {1, 0} ← V(R, zR, crsV, ~x = (a1, . . . , al), π = ([A,C,D]1, [B, δ
′]2)):

assuming a0 = 1, and setting m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) check if

1. [A]1[B]2 = [C]1 [δ′]2 +
(∑l

j=0 aj [uj(x)β + vj(x)α+ wj(x)]1

)
[1]2 +[αβ]T

2. [D]1[δ′ + δm]2 = m[t(x)]T + [γt(x)]T
and return 1 if both checks pass, otherwise return 0.

Simulator, π ← Sim(R, zR, crsV, ~x = (a1, . . . , al), ~ts): Given the simulation trap-
doors ~ts := (x, α, β, δ) act as follows,
1. Choose random ζ ←r Z∗p and set δ′ := ζδ

2. Choose A,B ←r Zp and let C = (A · B −
∑l
j=0 aj(uj(x)β + vj(x)α +

wj(x))− αβ)/δ′

3. Let m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2)

4. [D]1 = m
ζ+m

[t(x)
δ

]1 + 1
ζ+m

[γt(x)
δ

]1 = [(m+γ)t(x)
δ′+mδ]1

Fig. 1. The proposed variation of Groth16 for R.H is a family of collision resistant hash
functions that map to Z∗p. The elements [αβ, t(x), γt(x)]T are redundant and can in
fact be computed from the rest of the elements in the crs. Differences with Groth16 are
highlighted. Alternatively, one can describe Groth16 as corresponding to ζ = 1, γ = 0
and where the proof consists only of [A,C]1, [B]2.

Security. We prove security of new scheme (Fig. 1) in Theorem 1.

Theorem 1 (Completeness, ZK, SE). The variation of Groth16 described
in Fig. 1, guarantees (1) perfect completeness, 2) perfect zero-knowledge and 3)
simulation-extractability in the asymmetric Generic Group Model.

5

Proof. Perfect completeness and perfect zero-knowledge are obvious and the
proof is omitted. Knowledge extractability is proven by reduction (in the GGM)
to the knowledge soundness of Groth16. The reduction works in two steps (sim-
ilarly to [4], although the proof of each of these steps is different):

Step 1 Extraction of the DLOG of δ′.
Step 2 Reduction to the Knowledge Soundnesss of Groth16.

Proof of Step 1) Suppose A has made queries ~x1, · · · , ~xv to Sim(~ts, ·), and
received answers {πj = ([Aj]1, [Bj]2, [Cj]1, [Dj]1, [δj]2)}vj=1. Let Q′ be the union

of elements in the crs together with those from the replies of Sim(~ts, ·); namely,

Q′ :=

[α, β, δ, {xi}n−1i=0 ,

{uj(x)β + vj(x)α+ wj(x)}lj=0,

{uj(x)β + vj(x)α+ wj(x)

δ
}mj=l+1,

{xit(x)/δ}n−2i=0 , γt(x)/δ]1, [β, δ, {xi}n−1i=0]2

 ∪

{[
Aj , Cj :=

AjBj−icj−αβ
δj

,

Dj :=
t(x)(γ +mj)

δj +mjδ

]
1

[Bj , δj]2,mj}vj=1

where icj =

∑l
i=0 a

j
i (ui(x)β+vi(x)α+wi(x)), ~xj = (aj1, . . . , a

j
l), and mj ∈ Zp the

message that simulator receives from the hash function for each Aj , Bj , Cj , δj .
We assume A has produced the elements (A,B,C,D, δ′) such that A · B ≡

C · δ′ +
(∑l

j=0 aj(uj(x)β + vj(x)α+ wj(x))
)

+ αβ , for m := H([A]1 ‖ [B]2 ‖
[C]1 ‖ [δ′]2), D(δ′+ δm) = t(x)(m+ γ). Let Q′1 be the elements of Q′ in G1 and
Q′2 the elements in G2. Since the adversary is generic it has constructed these
elements as a linear combination of the elements in Q′ which are in the relevant
group (i.e. element of Q′1 in G1 for A,C,D and Q′2 for B, δ′) and we can extract
the coefficients of this linear combination.

First, we prove that A has knowledge of the DLOG of δ′ w.r.t. δ. From the
second verification equation we know that D = t(x) γ+m

δ′+mδ . On the other hand,

from adversary A we can recover a vector ~kD with the coefficients that it has
used to construct D, that is, D =

∑
q∈Q′1

kD,q q. Equating these two expressions,

t(x)(m+ γ) = (
∑
q∈Q′1

kD,q q)(δ
′ +mδ), (1)

where δ′ =
∑
q∈Q′2

kδ′,q q for another vector of coefficients ~kδ′ . The terms which

include γ in both sides of the equation must be the same.
On the other hand, by assumption, in the asymmetric GGM, the term δ′ is

constructed as a linear combination of elements in Q′2 and therefore δ′ + δm is
independent of γ. Then, keeping only the terms with γ in Eq. (1), we obtain

t(x)γ = kD
γt(x)
δ (δ′ +mδ) +

∑v
j=1 kD,j

γt(x)
δj+mjδ

(δ′ +mδ). (2)

Dividing both sides of the equation by t(x)γ and defining kD,0 = kD, δ0 = δ′,
m0 = 0, we obtain the following equivalent equation:

1 =
(∑v

j=0 kD,j
1

δj+mjδ

)
(δ′ +mδ) =

∑v
j=0 kD,j

∏v
i=0,i 6=j(δi+miδ)∏v

i=0(δi+miδ)
(δ′ +mδ)

6

⇔
∏v
i=0(δi +miδ) = (δ′ +mδ)

(∑v
j=0 kD,j

∏v
i=0,i6=j(δi +miδ)

)
. (3)

It follows that the term δ′ +mδ must divide the left side of Eq. (3). Therefore,
there exists some index j∗ and k ∈ Zp such that δ′ +mδ = k(δj∗ +mj∗δ). Now,
dividing Eq. (3) by (δj∗ +mj∗δ), we come to the following expression:

0 = (1− k · kD,j∗)
∏v
i=0,i6=j∗(δi +miδ)− k ·

∑v
j=0,j 6=j∗ kD,j

∏v
i=0,i6=j(δi +miδ).

Since all summands are linearly independent polynomials, k = k−1D,j∗ , and
kD,j = 0 if j 6= j∗. We distinguish two cases: (1) δ′ + δm = kδ, in which case we
can extract the DLOG of δ′ as k−m as wanted, or (2) δ′+ δm = k(δj∗ +mj∗δ),
in which case, from Eq. (1) and putting everything together, we have that:

t(x)(m+γ) = kD,j∗
(γ +mj∗)

(δj∗ +mj∗δ)
(δ′+mδ) = kD,j∗k

−1(γ+mj∗)t(x) = (γ+mj∗)t(x).

This implies that m∗j = m is a collision of H.
Proof of Step 2) We show that the elements A,B,C do not use the elements

of the simulated proofs, say V := {[Aj]1, [Bj]2, [Cj]1, [Dj]1, [δj]2}vj=1, and then,
with the knowledge of ζ such that δ′ = ζδ, we can reduce our proof to the
knowledge soundness proof of Groth16 [6], since [A]1, [B]2, [Cζ]1 is a valid proof
of Groth16. For this, we need to argue that A,B,C cannot have been constructed
from any of the elements of the queries. To prove that A,B,C are not constructed
from the elements [Aj]1, [Bj]2, [Cj]1, [δj]2, we follow the exact same reasoning as
Bowe and Gabizon [4] in the GGM and we omit the details. Next, we prove that
to construct A,C the prover cannot have used any of the Dj terms, which are
the new elements in our proof.

Assume A has been generated from some Dj , so the term
t(x)(mj+γ)
δj+mjδ

appears

in the expression of A generated from Q′1 with the corresponding coefficient
different from 0. Observe that the verification equation contains the term αβ
that cannot be manipulated because it is fixed in the crs, and it should be
produced by the term AB because β ∈ Q′2 and β is independent of δ′ = ζδ. In

that case, the product AB would contain a term
t(x)(mj+γ)
δj+mjδ

β, but this cannot be

cancelled out by any of the other terms in the equation. Indeed, this term cannot
appear in αβ, or in the sum of public values of ai. Thus, the only possibility is
that it appears in Cδ′. However, since β is independent of δ′, it should appear

in C, but
t(x)(mj+γ)
δj+mjδ

β cannot be computed from elements in Q′1.

If Dj appears in C, then the term Cδ′ includes
t(x)(mj+γ)
δj+mjδ

δ′. Neither the term

αβ nor the sum of public values can include it, so it can only appear in AB.
Since δ′ ∈ Q′2, then A would contain Dj , which we ruled out previously. ut

4 Conclusion

Over the last few years, various zk-SNARKs have been proposed that achieve
simulation extractability [7, 4, 10, 1], which is a requirement for zk-SNARKs

7

to generate non-malleable proofs. In this paper, we revised the SE variation of
Groth16 proposed in [4] and presented a new one. Our construction requires 4
pairings in verification, instead of 5 in [4], and also avoids ROs in exchange for
using a collision resistant hash function. It has a more efficient prover, crs size,
and proof size in comparison with [1], that has also 4 pairings in verification.

Acknowledgements. The research leading to this article was partially sup-
ported by Project RTI2018-102112-B-I00 (AEI/FEDER, UE), Defense Advanced
Research Projects Agency(DARPA) under Contract No. HR001120C0085, and
by Cyber Security Research Flanders with reference number VR20192203.

References

1. S. Atapoor and K. Baghery. Simulation extractability in Groth’s zk-SNARK. In
Data Privacy Management, Cryptocurrencies and Blockchain Technology - ES-
ORICS 2019 International Workshops, DPM 2019 and CBT 2019, volume 11737
of LNCS, pages 336–354. Springer, 2019. 2, 3, 4, 7, 8

2. K. Baghery. Subversion-resistant simulation (knowledge) sound NIZKs. In 17th
IMA International Conference on Cryptography and Coding, LNCS, pages 42–63.
Springer, Heidelberg, Dec. 2019. 3

3. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
sium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May
2014. 1, 2

4. S. Bowe and A. Gabizon. Making groth’s zk-SNARK simulation extractable in
the random oracle model. Cryptology ePrint Archive, Report 2018/187, 2018.
https://eprint.iacr.org/2018/187. 2, 3, 4, 6, 7, 8

5. G. Fuchsbauer. Subversion-zero-knowledge SNARKs. In M. Abdalla and R. Da-
hab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer,
Heidelberg, Mar. 2018. 3

6. J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin
and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Heidelberg, May 2016. 1, 2, 3, 4, 7

7. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–612. Springer, Hei-
delberg, Aug. 2017. 2, 3, 4, 7

8. T. Kerber, A. Kiayias, M. Kohlweiss, and V. Zikas. Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In 2019 IEEE Symposium on Security and Privacy, pages
157–174. IEEE Computer Society Press, 2019. 2

9. A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In 2016
IEEE Symposium on Security and Privacy, pages 839–858. IEEE Computer Society
Press, May 2016. 1, 2

10. H. Lipmaa. Simulation-extractable SNARKs revisited. Cryptology ePrint Archive,
Report 2019/612, 2019. http://eprint.iacr.org/2019/612. 2, 3, 4, 7

11. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages
238–252. IEEE Computer Society Press, May 2013. 1

8

https://eprint.iacr.org/2018/187
http://eprint.iacr.org/2019/612

	Simulation Extractable Versions of Groth's zk-SNARK Revisited

