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Abstract. Among various Non-Interactive Zero-Knowledge (NIZK) arguments,
zk-SNARKs are the most efficient in terms of proof size and verification, which are
two important criteria for large scale applications. Currently, Groth’s construc-
tion from Eurocrypt’16, Groth16, is the most efficient and widely deployed one.
However, it is proven to achieve only knowledge soundness, which does not pre-
vent attacks from the adversaries who have seen simulated proofs. There has been
considerable progress in modifying Groth16 to achieve simulation extractability to
guarantee the non-malleability of proofs.
We revise the Simulation Extractable version of Groth16 proposed by Bowe and
Gabizon in the Random Oracle Model, the most efficient one in terms of prover
efficiency and common reference string size among the candidates. We present
two variations of their construction which require 4 pairings in the verification,
instead of 5. The first one has the same performance as Bowe and Gabizon’s in all
other parameters. The second one gets rid of the Random Oracle at the cost of
a collision-resistant hash function, a single new element in the common reference
string, and one exponentiation in the target group for the verifier. Both of our
variants are among the most efficient simulation extractable versions of Groth16 in
most dimensions.
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1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proof systems are a fundamental family of cryp-
tographic primitives that has appeared recently in a wide range of practical applications.
A NIZK proof system allows a party to prove that for a public statement ~x, she knows
a witness ~w such that (~x, ~w) ∈ R, for some relation R, without leaking any information
about ~w and without interaction with the verifier. Due to their impressive advantages,
NIZK proof systems are used ubiquitously to build larger cryptographic protocols and
systems.

Zero-knowledge Succinct Arguments of Knowledge (zk-SNARKs) are among the most
interesting NIZK proof systems in practice, as they allow to generate very short proofs for
NP complete languages and, consequently, they are also very efficient to verify ([15, 17]).
zk-SNARKs have had a tremendous impact in cryptographic practice and they have
found numerous applications, including verifiable computation systems [22], privacy-
preserving (PP) cryptocurrencies [7], PP smart contract systems [20], PP proof-of-stake



protocols [19], and efficient ledger verification protocols [10], are some of the best known
applications that use zk-SNARKs to prove different statements very efficiently while guar-
anteeing the privacy of the prover. Because of their practical importance, particularly in
large-scale applications like blockchains, even minimal savings (especially in proof size or
verification cost) are considered to be relevant.

In 2016, Groth [17] introduced the most efficient zk-SNARK for Quadratic Arithmetic
Programs or QAPs, which is still the state-of-the-art, Groth16. Its proof is 3 group ele-
ments and the cost of verification is dominated by 3 pairing computations. In the original
paper, it is proven to achieve knowledge soundness in the generic group model (GGM).
The proof of Groth16 is malleable, as it is shown in [18]. Generating non-malleable proofs is
a necessary requirement in building various cryptographic schemes, including universally
composable protocols [20, 19], cryptocurrencies (e.g. Zcash) [7], signature-of-knowledge
schemes [18], etc. Therefore, in practice, it is important to have a stronger notion of knowl-
edge soundness, known as (strong) simulation extractability (SE). This notion guarantees
that a valid witness can be extracted from any adversary producing a proof accepted by
the verifier, even after seeing an arbitrary number of simulated proofs.

There have been considerable efforts to refine Groth’s zk-SNARK to achieve SE and
guarantee the non-malleability of proofs. Firstly, in 2017 Groth and Maller [18] proposed
a SE zk-SNARK, which is very efficient in terms of proof size but very inefficient in
terms of Common Reference String (crs) size and prover time. They also showed how
one can use SE zk-SNARKs to build Signature of Knowledge (SoK) schemes [13] with
succinct signatures. In 2018 Bowe and Gabizon [11] proposed a less efficient construction
in terms of proof size (5 group elements vs 3 in the original version) based on Groth16
which needs a Random Oracle (RO) (apart from GGM), but with almost no overhead
in the crs size or additional cost for the prover. Last year, Lipmaa [21] proposed several
constructions, including the most efficient QAP-based SE zk-SNARK in terms of proof
size and with the same verification complexity as [18, 11], but less efficient in terms of crs
size and prover time compared to [11]. In [2], Atapoor and Baghery used the traditional
OR technique to achieve SE in Groth16. Their variant requires 1 paring less for verification
in comparison with previous SE constructions, however it comes with an overhead in proof
generation, crs, and even larger overhead in proof size. For a particular instantiation they
add ≈ 52.000 constrains to the underlying QAP instance, which adds fixed overhead to
the prover and crs, that can be considerable for mid-size circuits. They show that for a
circuit with 10× 106 Multiplication (Mul) gates, their prover is about 10% slower, but it
can be slower for circuits with less than 10× 106 gates.

Recently, Baghery, Kohlweiss, Siim, and Volkhov [6] explore another direction. Instead
of modifying Groth16 to achieve strong SE, they first show that the original construction
of Groth16 achieves weak SE with white-box extraction. Weak SE allows proof random-
ization, while it guarantees that a proof cannot be changed to prove a new statement.
Then, considering the first result, they propose two efficient constructions of Groth16
that achieve weak SE with black-box extraction which is shown to be necessary for UC-
security. Both weak and strong SE zk-SNARKs can be lifted to achieve black-box simu-
lation extractability with a simple compiler [3, 6]. However, to realize the standard ideal
functionality defined for NIZK arguments, one would need to use a strong SE NIZK with
black-box extraction [16].
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Table 1. A comparison of our proposed variations of Groth16 along with the other SE zk-
SNARKs for arithmetic circuit satisfiability with n Mul gates (constraints) and m wires (vari-
ables), of which l are public input wires (variables). A typical set of values is n = m = 106

and l = 10. In the case of crs size and prover’s computation we omit constants. In [18], n Mul
gates and m wires translate to 2n squaring gates and 2m wires. In [2], SE is achieved with
an OR approach which requires to add constraints and variables, resulting in n′ ≈ n + 52.000,
m′ ≈ m + 52.000, and l′ = l + 4. G1,G2 and GT : group elements, Ei: exponentiation in group
Gi, Mi: multiplication in group Gi, P : pairings. GGM: Generic Group Model, ROM: Random
Oracle Model, AGM: Algebraic Group Model, CRH: Collision Resistant Hash.

SNARK Security Model crs Prover Proof Verifier

Groth16 [17]
Knowledge

Sound
GGM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

2 G1

1 G2

l E1

3 P

GM [18]
Simulation
Extractable

GGM
2m+ 4n G1

2n G2

2m+ 4n− l E1

2n E2

2 G1

1 G2

l E1

5 P

BG [11]
Simulation
Extractable

GGM,
ROM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1

5 P

AB [2]
Simulation
Extractable

GGM
m′ + 2n′ − l G1

n′ G2

m′ + 3n′ − l E1

n′ E2

4 G1

2 G2 + 2 λ
l′ + 2 E1

4 P

Lipmaa [21]
Simulation
Extractable

AGM,
Tag-based

m+ 3n− l G1

n G2

m+ 4n− l E1

n E2

3 G1

1 G2

l + 1 E1

5 P

Section 3
Simulation
Extractable

GGM,
ROM

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1, 1 E2

4 P

Section 4
Simulation
Extractable

GGM,
CRH

m+ 2n− l G1

n G2

m+ 3n− l E1

n E2

3 G1

2 G2

l E1, 1 E2

1 ET , 4 P

1.1 Our Contributions

In this work, we revise the simulation extractable variants of Groth16, presented in [11]
and [2], to get the best of both constructions.

Our focus is mainly on Bowe and Gabizon’s variation [11] which has the most efficient
prover and the shortest crs among other SE zk-SNARKs [18, 11, 21, 2], while requires a
RO. To achieve (strong) simulation extractability, their prover replaces all the original
computations which depend on some parameter δ given in the crs by some δ′ and the
prover must give [δ′]2 and a proof of knowledge (PoK) of the DLOG of [δ′]2 w.r.t [δ]2.

Using the same approach [11], we construct two strong SE zk-SNARKs that are the
most efficient simulation extractable variants of Groth16 in terms of crs size, prover com-
plexity, and verification. Both zk-SNARKs use some sophisticated modification of Boneh-
Boyen signatures [9] to prove knowledge of the DLOG of δ′ which require 1 pairing less
in the verification in comparison with the argument in Bowe and Gabizon’s construction.
The first construction uses non-programmable RO, while in the second construction, in
the cost of a single new element in the crs and a collision-resistant hash function, we get
rid of the RO and similar to Groth16, prove the security of construction in the GGM
model.

Tab. 1 presents a comparison of our proposed variants of Groth16 with several other
constructions for a particular instance of arithmetic circuit satisfiability. As it can be seen,
in comparison with [11], both our constructions require 1 paring less in the verification,
while retaining all the other properties of their construction. The second construction
avoids using ROs, in the cost of a single new element in the crs which is negligible in
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practice. In comparison with [2], both of our variants have a negligible overhead in the
proof generation and crs size, and they both also come with smaller overhead in proof
size. 3 Among two proposed variants, both constructions require 4 parings in the verifi-
cation, however considering the number of exponentiations, we expect to have a slightly
faster verification in the first construction, presented in Section 3.

Finally, we highlight that using the technique proposed in [18], both the proposed SE
zk-SNARKs can be used to build succinct SoK schemes, which would be more efficient
than previous constructions. In general, due to relying on non-falsifiable assumptions,
succinct SoK schemes have better efficiency in comparison with the constructions that
are built under standard assumptions [13, 8, 5]. We also note that to achieve strong
(white-box) SE, our proposed zk-SNARKs require minimal changes in comparison with
the original Groth16, particularly the proof generation and proof verification of Groth16
is a part of the proof generation and verification in our protocols. Therefore, one can use
the same compiler or ad-hoc approach proposed in [3] and [6], respectively, to construct
a more efficient strong black-box SE zk-SNARK for UC-protocols [16].

1.2 Organization

In Section 2, we introduce notation, the relevant security definitions, and recall the
Boneh-Boyen signature scheme. In Section 3, we give our first SE zk-SNARK from non-
programmable RO in the GGM, and in Section 4 our second SE zk-SNARK in GGM
without RO.

1.3 Novelty

This note is the full version of a short paper with the same title appearing in CANS 20.
The first construction in Section 3 only appears in this full version.

2 Preliminaries

2.1 Notation and bilinear groups

We let BGgen be a probabilistic polynomial time algorithm which on input 1λ, where λ
is the security parameter, returns the description of an asymmetric bilinear group gk =
(p,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of prime order p, the elements
P1,P2 are generators of G1,G2 respectively, e : G1×G2 → GT is an efficiently computable,
non-degenerate bilinear map, and there is no efficiently computable isomorphism between
G1 and G2.

Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and PT =
e(P1,P2). With this notation, e([a]1, [b]2) = [ab]T . We extend this notation naturally to
vectors and matrices. We denote by negl(λ) an arbitrary negligible function in λ.

3 In the worst case, our changes add only one element to the crs of Groth16 and since Groth16
is already proven to achieve subversion ZK (ZK without trusting a third party) [1, 14], our
variants also can be proven to achieve Sub-ZK using the technique proposed in [4].
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2.2 Definitions

For algorithms A and EA, we write (y ‖ y′) ← (A‖EA)(x; r) as a shorthand for “y ←
A(x; r), y′ ← EA(x; r)”. For an algorithm A, let Im(A) be the image of A, i.e. the set of
valid outputs of A, let RND(A) denote the random tape of A. By y ← A(x; r) we denote
the fact that A, given an input x and a randomizer r, outputs y.

We use the definitions of NIZK arguments from [17]. Let R be a relation generator,
such that R(1λ) returns a polynomial-time decidable binary relation R = {(~x, ~w)}. Here,
~x is the statement and ~w is the witness. Security parameter λ can be deduced from the
description of R. The relation generator also outputs auxiliary information zR that will
be given to the honest parties and the adversary. As in [17], zR is the value returned by
BGgen(1λ), and is given as an input to the parties.

Let LR = {~x : ∃~w, (~x, ~w) ∈ R} be an NP-language. A NIZK argument system Ψ for
R consists of tuple of PPT algorithms (K,P,V,Sim), such that:

CRS Generator: K is a PPT algorithm that, given (R, zR) where (R, zR) ∈ Im(R(1λ)),
outputs crs := (crsP, crsV) and stores trapdoors of crs as ~ts. We distinguish crsP (needed
by the prover) from crsV (needed by the verifier).

Prover: P is a PPT algorithm that, given (R, zR, crsP, ~x, ~w), where (~x, ~w) ∈ R, outputs
an argument π. Otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, zR, crsV, ~x, π), returns either 0 (reject) or
1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, zR, crs, ~ts, ~x), outputs a simulated
argument π.

Besides succinct proofs, i.e. polynomial in λ, an SE zk-SNARK is required to satisfy
completeness, simulation extractability, and zero-knowledge.

Definition 1 (Perfect Completeness). A non-interactive argument Ψ is perfectly
complete for R, if for all λ, all (R, zR) ∈ Im(R(1λ)), and (~x, ~w) ∈ R,

Pr
[
crs← K(R, zR), π ← P(R, zR, crsP, ~x, ~w) : V(R, zR, crsV, ~x, π) = 1

]
= 1.

Here, zR can be seen as a common auxiliary input to A that is generated by using a
benign relation generator.

Definition 2 ((White-box) Simulation Extractability [18]). Let RND(A) denote
the random tape of A. A non-interactive argument Ψ is (strong) simulation-extractable
for R, if for any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

(R, zR)← R(1λ), (crs ‖ ~ts)← K(R, zR), r ←r RND(A),

((~x, π) ‖ ~w)← (AO(~ts,.) ‖ExtA)(R, zR, crs; r) :

(~x, π) 6∈ Q ∧ (~x, ~w) 6∈ R ∧ V(R, zR, crsV, ~x, π) = 1

 = negl(λ).

Here, Q is the set of simulated statement-proof pairs. Note that simulation extractability
implies knowledge soundness.
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Definition 3 (Zero-Knowledge (ZK) [17]). A non-interactive argument Ψ is com-
putationally ZK for R, if for all λ, all (R, zR) ∈ Im(R(1λ)), and for all NUPPT A,
ε0 ≈c ε1, where

εb = Pr[(crs ‖ ~ts)← K(R, zR) : AOb(·,·)(R, zR, crs) = 1].

Here, the oracle O0(~x, ~w) returns ⊥ (reject) if (~x, ~w) 6∈ R, and otherwise it returns
P(R, zR, crsP, ~x, ~w). Similarly, O1(~x, ~w) returns ⊥ (reject) if (~x, ~w) 6∈ R, otherwise it
returns Sim(R, zR, crs, ~ts, ~x). Ψ is perfect ZK for R if one requires that ε0 = ε1.

2.3 Boneh-Boyen signatures

We briefly recall Boneh-Boyen signatures [9]. Let G1,G2,GT , e : G1 × G2 → GT be
a bilinear group. Messages are elements of Zp, and signatures are elements of G1. The
secret key is sk ∈ Zp, and the public key (verification key) is [sk]2 ∈ G2. To sign a message
m ∈ Zp, the signer computes

[σ]1 =

[
1

sk + m

]
1

.

The verifier accepts the signature if the equation e([σ]1, [sk]2 + [m]2) = [1]T holds.
Boneh-Boyen signatures are existentially unforgeable under the q-SDH assumption.

We use them in our constructions as proofs of knowledge of the secret key in the generic
group model.

3 A Simulation Extractable zk-SNARK in the ROM

As we discussed, the main idea in Bowe and Gabizon’s [11] work to achieve simulation
extractability is to replace all the computations which depend on some parameter δ given
in the crs by some randomization of it, say δ′, and the prover must give [δ′]2 and a Proof
of Knowledge (PoK) in the ROM of the Discrete Logarithm (DLOG) of [δ′]2 w.r.t [δ]2.
This makes it harder for the adversary to re-use elements from the simulated proofs that
are created with the original parameter δ.

Our idea is to replace the PoK with a Boneh-Boyen signature. A nice feature of this
construction inherited from [11] is that SE is achieved essentially without modifications in
the crs or the prover complexity, or changes in the security model (which is still Generic
Group Model and Random Oracle Model).

3.1 Scheme definition

In Fig. 1, we describe the proposed variation of Groth16 that can achieve SE. We highlight
the changes in the new construction with gray background.

Our modification follows closely the one of Bowe and Gabizon [11], except that in
their scheme [d]1 = [y]1ζ where [y]1 = H(A ‖ B ‖ C ‖ δ′) and their verification checks
that [δ′]1[y]2 = [d]1[δ]2, which requires 2 pairings. The security proof shows that this is
a simulation extractable PoK of the DLOG of [δ′]2 with respect to [δ]2. We follow the
same idea but our approach embeds a Boneh-Boyen signature in the proof as argument
of knowledge for this DLOG, which requires 1 pairing, instead of 2.
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Setup, crs← K(R, zR): Similar to the original scheme it picks x, α, β, δ ← Z∗p, H ← H,
and returns crs defined as the following (by considering the observation in [12] that γ
in the original scheme can be set 1),

(crsP, crsV) := crs←


[α, β, δ, {xi}n−1

i=0 , {uj(x)β + vj(x)α+ wj(x)}lj=0,{
uj(x)β + vj(x)α+ wj(x)

δ

}m
j=l+1

, {xit(x)/δ}n−2
i=0 ]1,

[β, δ, {xi}n−1
i=0 ]2, [αβ, t(x)]T , H

 .

Prover, π ← P(R, zR, crsP, ~x = (a1, . . . , al), ~w = (al+1, . . . , am)): assuming a0 = 1, it acts
as follows,
1. Selects a random element ζ ← Z∗p, and sets [δ′]2 := ζ[δ]2
2. Let A†(X)←

∑m
j=0 ajuj(X), B†(X)←

∑m
j=0 ajvj(X), C†(X)←

∑m
j=0 ajwj(X),

3. Set h(X) =
∑n−2
i=0 hiX

i ← (A†(X)B†(X)− C†(X))/t(X),

4. Set [h(x)t(x)/δ]1 ←
∑n−2
i=0 hi [x

it(x)/δ′]1 ,

5. Set ra ←r Zp; Set [A]1 ←
∑m
j=0 aj [uj(x)]1 + [α]1 + ra [δ′]1 ,

6. Set rb ←r Zp; Set [B]2 ←
∑m
j=0 aj [vj(x)]2 + [β]2 + rb [δ′]2 ,

7. Set [C]1 ← rb[A]1 + ra
(∑m

j=0 aj [vj(x)]1 + [β]1
)

+
∑m
j=l+1 aj [(uj(x)β + vj(x)α +

wj(x))/δ′ ]1 + [h(x)t(x)/δ′ ]1,
8. Sets m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) , where H : {0, 1}∗ → Z∗p is a secure hash

function,

9. Computes [D]1 = 1
ζ+m

[t(x)/δ]1 = [ t(x)
δ′+mδ ]1

10. Return π := ([A,C, D ]1, [B, δ
′ ]2).

Verifier, {1, 0} ← V(R, zR, crsV, ~x = (a1, . . . , al), π = ([A,C,D]1, [B, δ
′]2)): assuming

a0 = 1, and setting m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) checks if

1. [A]1[B]2 = [C]1 [δ′]2 +
(∑l

j=0 aj [uj(x)β + vj(x)α+ wj(x)]1

)
[1]2 + [αβ]T

2. [D]1[δ′ + δm]2 = [t(x)]T (Note that:[t(x)/δ]1[δ]2 = [t(x)]T )
and return 1 if both checks pass, otherwise return 0.

Simulator, π ← Sim(R, zR, crsV, ~x = (a1, . . . , al), ~ts): Given the simulation trapdoors
~ts := (β, δ) acts as follows,
1. Choose random ζ ←r Z∗p and set δ′ := ζδ
2. Choose A,B ←r Zp
3. Let [C]1 =

[
(A ·B −

∑l
j=0 aj(uj(x)β + vj(x)α+ wj(x))− αβ)/δ′

]
1

4. Let m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2)

5. Set [D]1 =
t(x)

δ′ +mδ
[1]1

6. Return π := ([A]1, [B]2, [C]1, [D]1 , [δ′]2 )

Fig. 1. The proposed simulation-extractable variation of Groth16 for R along with a Boneh-Boyen
signature. H is a family of collision resistant hash functions that map to Z∗p. The element [t(x)]T
is redundant and can be computed from the rest of the elements in the crs. Alternatively, one can
describe Groth16 as corresponding to ζ = 1 and where the proof consists only of [A,C]1, [B]2.

7



3.2 Security

A part from saving one pairing on verification with respect to [11], our scheme also has
the nice property that the RO maps to elements in Zp and it does not need the property
that H can sample elements of G obliviously (i.e. soundness does not use that the DLOG
of image elements is hard).

In a nutshell, we show that we can embed a Boneh-Boyen signature in the proof and
this results in a SE argument of knowledge in the GGM and the ROM. Namely, the
element [1/(δ′ + δm)]1, which is a Boneh-Boyen signature of δm for public key [δ′]2 can
be constructed from [1/δ]1 for all m ∈ Zp, if and only if, the DLOG of δ′ w.r.t δ is known.
The adversary might be able to cheat for a specific m (i.e. if it sets δ′ = kδ − m∗δ it
can cheat for m∗) but the RO ensures that δ′ cannot be set as a function of m. Given
knowledge of the DLOG of δ′, following the same blueprint as the proof of Bowe and
Gabizon, we prove that the simulated queries are useless to the adversary. Then, we can
easily conclude that the scheme is SE if Groth16 is knowledge sound.

Theorem 1 (Completeness, ZK, SE). The variation of Groth16 described in Fig. 1,
guarantees 1) perfect completeness, 2) perfect zero-knowledge and 3) simulation-extractability
in the asymmetric Generic Group Model and the Random Oracle Model.

Proof. Perfect completeness and perfect zero-knowledge are obvious and the proof is
omitted. Knowledge extractability is proven by reduction (in the GGM) to the knowledge
soundness of Groth16. The reduction works in two steps (similarly to [11], although the
proof of each of these steps is different):

Step 1 Extraction of the DLOG of δ′.
Step 2 Reduction to the Knowledge Soundnesss of Groth16.

Proof of Step 1) Suppose A has made a sequence of queries ~x1, · · · , ~xv to Sim(~ts, ·),
and received answers {πj = (Aj , Bj , Cj , Dj , δj)}vj=1. Let Q′ be the union of elements in

the crs together with those from the replies of Sim(~ts, ·); namely,

Q′ :=



[
α, β, δ, {xi}n−1i=0 ,

{uj(x)β + vj(x)α+ wj(x)}lj=0,{
uj(x)β + vj(x)α+ wj(x)

δ

}m
j=l+1

,

{xit(x)/δ}n−2i=0

]
1
, [β, δ, {xi}n−1i=0 ]2

 ∪

{[
Aj , Cj :=

AjBj−icj−αβ
δj

,

Dj :=
t(x)

δj +mjδ

]
1

[Bj , δj ]2,mj}vj=1



where icj =
∑l
i=0 a

j
i (ui(x)β+vi(x)α+wi(x)), ~xj = (aj1, . . . , a

j
l ), and mj ∈ Zp the message

that simulator receives from the RO for each Aj , Bj , Cj , δj .
Now, assume A has produced elements (A,B,C,D, δ′) such that

A ·B ≡ C · δ′ +
(∑l

j=0 aj(uj(x)β + vj(x)α+ wj(x))
)

+ αβ

and, for m := H(A ‖ B ‖ C ‖ δ′), D(δ′+ δm) = t(x). Let Q′1 be the set with the elements
of Q′ in G1 and Q′2 the elements in G2. Since the adversary is generic it has constructed
these elements as a linear combination of the elements in Q′ which are in the relevant
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group (i.e. element of Q′1 in G1 for A,C,D and of Q′2 for B, δ′) and we can extract the
coefficients of this linear combination.

First, we prove that the adversary has knowledge of the discrete logarithm of δ′ w.r.t.

δ. From the second verification equation, D = t(x)
δ′+δm . On the other hand, from adversary

A we can recover a vector ~kD with the coefficients that it has used to construct D, that
is, D =

∑
q∈Q′1

kD,q q, and a vector ~kδ′ with the coefficients that it has used to construct

δ′ =
∑
q∈Q′2

kδ′,q q.

We argue that δ′+δm cannot be a polynomial in x, i.e. δ′+δm is a linear combination
of terms in Q1 without x. Indeed, if δ′ + δm is a polynomial in x, then this polynomial
must divide t(x) because the adversary does not see any rational functions with x. Then,
there exists a polynomial ν such that δ′+δm = (x−r)ν, for some r root of t(x). However,
since δ′+ δm cannot have any terms xδ (xδ 6∈ Q′2), the only possibility is that ν does not
have any term with δ, and neither δ′ + δm. This means that δ′ = δ′′ − δm, for some δ′′

independent of δ. But since H is a RO, the probability that given δ′ and δ′′, m satisfies
this relation, is 1/p.

Therefore, x only appears in the numerator of the expression D = t(x)
δ′+δm , and thus,

we have
t(x)

δ′ + δm
= kD,0

t(x)

δ
+

v∑
j=1

kD,j
t(x)

δj +mj
(1)

where, to simplify the notation, we define kD,0 = k
D,

t(x)
δ

. kD,j = k
D,

t(x)
δj+mjδ

. Defining

δ0 = δ, m0 = m, then

t(x)

δ′ + δm
=

v∑
j=0

kD,j
t(x)

δj +mjδ
⇐⇒ 1

δ′ + δm
=

v∑
j=0

kD,j

∏v
i=0,i6=j(δi +miδ)∏v
i=0(δi +miδ)

(2)

⇐⇒
v∏
i=0

(δi +miδ) = (δ′ + δm)
( v∑
j=0

kD,j

v∏
i=0,i6=j

(δi +miδ)
)
. (3)

It follows that the term δ′+mδ must divide the left side of the equation (2). Therefore,
there exists some index j∗ and k ∈ Zp such that δ′ +mδ = k(δj∗ +mj∗δ). Now, dividing
Eq. (2) by (δj∗ +mj∗δ), we come to the following expression∏v
i=0,i6=j∗(δi+miδ) = k·

(
kD,j∗

∏v
i=0,i6=j∗(δi +miδ) +

∑v
j=0,j 6=j∗ kD,j

∏v
i=0,i6=j(δi +miδ)

)
,

which is equivalent to

0 = (1− k · kD,j∗)
∏v
i=0,i6=j∗(δi +miδ)−

∑v
j=0,j 6=j∗ k · kD,j

∏v
i=0,i6=j(δi +miδ).

Since all summands are linearly independent polynomials, k = k−1D,j∗ , and kD,j = 0 if
j 6= j∗. We distinguish two cases: (1) δ′+mδ = kδ (j∗ = 0) or (2) δ′+mδ = k(δj∗+mj∗δ)
(j∗ 6= 0).

In case (1), we are done, as we can extract the DLOG of δ′ as k −m.
In case (2), there exists some k′ ∈ Zp such that δ′ = kδj∗ + k′δ and m = kmj∗ − k′.

Since H is a RO, m is a uniform random element given δ′, (and thus, given k, k′,) and
therefore the probability of this event is 1/p.
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Thus, the adversary cannot compute the elements of such a proof belonging to the
Span(Q′) unless it knows ζ.

Proof of Step 2) We show that the elements A,B,C do not use the elements of
the simulated proofs, say V := {[Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2}vj=1, and then, with the
knowledge of ζ such that δ′ = ζδ, we can reduce our proof to the knowledge soundness
proof of Groth16 [17], since [A]1, [B]2, [Cζ]1 is a valid proof of it.

For this, we need to argue that A,B,C cannot have been constructed from any of
the elements of the queries. To prove that A,B,C are not constructed from the elements
[Aj ]1, [Bj ]2, [Cj ]1, [δj ]2, we follow the exact same reasoning as Bowe and Gabizon [11] in
the GGM and we omit the details. Next, we prove that to construct A,C the prover
cannot have used any of the Dj terms, which are the new elements in our proof.

Assume A has been generated from some Dj , so the term t(x)
δj+mjδ

appears in the

expression of A generated from Q′1 with the corresponding coefficient different than 0.
Observe that the verification equation contains the term αβ that cannot be manipulated
because it is fixed in the crs, and it should be produced by the term AB because β ∈ Q′2
and β is independent of δ′ = ζδ. In that case, the product AB would contain a term
t(x)

δj+mjδ
β, but this cannot be cancelled out by any of the other terms in the equation.

Indeed, this term cannot appear in αβ, or in the sum of public values of ai. Thus, the
only possibility is that it appears in Cδ′. However, since β is independent of δ′, it should

appear in C, but t(x)
δj+mjδ

β cannot be computed from elements in Q′1.

Now, assume Dj appears in C, then the term Cδ′ of the verification includes t(x)
δj+mjδ

δ′.

Neither the term αβ nor the sum of public values can include it, so the only possibility
is that it appears in AB. Since δ′ ∈ Q′2, then A would contain Dj , which we ruled out
previously.

Note that we make the proof in the asymmetric GGM for simplicity, but the analogous
proof in the symmetric model gives very similar impossible terms. The difference is that
in the second part of the proof we have to analyse more possible cases (considering α, β
in any of the groups).

4 A Simulation Extractable zk-SNARK without RO

In this section, we present another variation of the Groth16 which is very similar to the
construction in Section 3. It also offers simulation extractability in the Generic Group
Model, but without involving the Random Oracle. This is done in exchange for adding
one element in the crs.

4.1 Scheme definition

In Fig. 2, we propose our second variation of Groth16 for QAP. It is inspired by the
simulation extractable version of Bowe and Gabizon [11] and is very similar to the first
construction of this work (see Section 3 for intuition).

In this approach, we change the Proof of Knowledge (PoK) of the DLOG of [δ′]2
w.r.t. [δ]2 to another PoK in the GGM without using random oracles with a variation of
Boneh-Boyen signatures, where we just use the collision resistance property of the hash
function. We briefly give an intuition in the following.
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Setup, crs← K(R, zR): Similar to the original scheme pick x, α, β, δ ← Z∗p, H ← H, and
returns crs defined as the following,

(crsP, crsV) := crs←


[
α, β, δ, {xi}n−1

i=0 , {uj(x)β + vj(x)α+ wj(x)}lj=0,
γt(x)
δ{

uj(x)β + vj(x)α+ wj(x)

δ

}m
j=l+1

,

{
xit(x)

δ

}n−2

i=0

]
1
,

[β, δ, {xi}n−1
i=0 ]2, [αβ, t(x), γt(x) ]T , H

 .

Prover, π ← P(R, zR, crsP, ~x = (a1, . . . , al), ~w = (al+1, . . . , am)): assuming a0 = 1, it acts
as follows,
1. Selects a random element ζ ← Z∗p, and sets [δ′]2 := ζ[δ]2
2. Let A†(X)←

∑m
j=0 ajuj(X), B†(X)←

∑m
j=0 ajvj(X),

3. Let C†(X)←
∑m
j=0 ajwj(X),

4. Set h(X) =
∑n−2
i=0 hiX

i ← (A†(X)B†(X)− C†(X))/t(X),
5. Set [h(x)t(x)/δ′]1 ← (1/ζ)(

∑n−2
i=0 hi[x

it(x)/δ]1),

6. Set ra ←r Zp; Set [A]1 ←
∑m
j=0 aj [uj(x)]1 + [α]1 + ra [δ′]1 ,

7. Set rb ←r Zp; Set [B]2 ←
∑m
j=0 aj [vj(x)]2 + [β]2 + rb [δ′]2 ,

8. Set [C]1 ← rb[A]1 + ra
(∑m

j=0 aj [vj(x)]1 + [β]1
)

+

(1/ζ)
∑m
j=l+1 aj([(uj(x)β + vj(x)α+ wj(x))/δ]1) + [h(x)t(x)/δ′ ]1,

9. Set m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) , where H : {0, 1}∗ → Z∗p is a secure hash
function,

10. Compute [D]1 = m
ζ+m

[ t(x)
δ

]1 + 1
ζ+m

[ γt(x)
δ

]1 = [ (m+γ)t(x)
δ′+mδ ]1

11. Return π := ([A,C, D ]1, [B, δ
′ ]2).

Verifier, {1, 0} ← V(R, zR, crsV, ~x = (a1, . . . , al), π = ([A,C,D]1, [B, δ
′]2)): assuming

a0 = 1, and setting m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2) checks if

1. [A]1[B]2 = [C]1 [δ′]2 +
(∑l

j=0 aj [uj(x)β + vj(x)α+ wj(x)]1

)
[1]2 + [αβ]T

2. [D]1[δ′ + δm]2 = m[t(x)]T + [γt(x)]T
and returns 1 if both checks pass, otherwise return 0.

Simulator, π ← Sim(R, zR, crsV, ~x = (a1, . . . , al), ): Given the simulation trapdoors ~ts :=
(β, δ) acts as follows,
1. Choose random ζ ←r Z∗p and set δ′ := ζδ
2. Choose A,B ←r Zp
3. Let [C]1 = [(A ·B −

∑l
j=0 aj(uj(x)β + vj(x)α+ wj(x))− αβ)/δ′]1

4. Let m = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2)

5. [D]1 = m
ζ+m

[ t(x)
δ

]1 + 1
ζ+m

[ γt(x)
δ

]1 = [ (m+γ)t(x)
δ′+mδ ]1

6. Return π := ([A,C, D ]1, [B, δ
′ ]2).

Fig. 2. The proposed simulation-extractable variation of Groth16 for R along with a modification
of the Boneh Boyen signature. H is a family of collision resistant hash functions that map to Z∗p.
The elements [αβ, t(x), γt(x)]T are redundant and can in fact be computed from the rest of the
elements in the crs. Alternatively, one can describe Groth16 as corresponding to ζ = 1, γ = 0 and
where the proof consists only of [A,C]1, [B]2. Differences with Groth16 are highlighted.

Avoiding Random Oracle. Our proof uses the collision resistance property of the
hash function and the generic group model. Very roughly, the new variable γ gives some
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additional guarantees because to compute t(x) (γ+m)
(δ′+δm) from Dj such that mj 6= m, it is

necessary to know both 1
(δ′+δm) and γ

(δ′+δm) , but this is only possible when δ′+ δm = kδ.

Then, either we have the knowledge of the DLOG of δ′ respect to δ (k − m), which is
straightforward, or either we have re-used δ′j and mj from some jth query. The last case
is discarded when we reach that same message had to be re-used, m = mj , which breaks
collision resistance of the hash.

4.2 Security

We prove security of our construction (in Fig. 2) in the following theorem.

Theorem 2 (Completeness, ZK, SE). The variation of Groth16 described in Fig. 2,
guarantees (1) perfect completeness, 2) perfect zero-knowledge and 3) simulation-extractability
in the asymmetric Generic Group Model.

Proof. Perfect completeness and perfect zero-knowledge are obvious and the proof is
omitted. Knowledge extractability is proven in the same way as the proof of Section 3 by
reduction (in the GGM) to the knowledge soundness of Groth16, the reduction works in
these two steps:

Step 1 Extraction of the DLOG of δ′.
Step 2 Reduction to the Knowledge Soundnesss of Groth16.

Proof of Step 1) Suppose A has made a sequence of queries x1, · · · , xv to Sim(~ts, ·),
and received answers {πj = ([Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2)}vj=1. Let Q′ be the union of

elements in the crs together with those from the replies of Sim(~ts, ·); namely,

Q′ :=


[α, β, δ, {xi}n−1i=0 , γt(x)/δ

{uj(x)β + vj(x)α+ wj(x)}lj=0,

{uj(x)β + vj(x)α+ wj(x)

δ
}mj=l+1,

{xit(x)/δ}n−2i=0 ]1, [β, δ, {xi}n−1i=0 ]2

 ∪

{[
Aj , Cj :=

AjBj−icj−αβ
δj

,

Dj :=
t(x)(γ +mj)

δj +mjδ

]
1

[Bj , δj ]2,mj}vj=1


where icj =

∑l
i=0 a

j
i (ui(x)β+vi(x)α+wi(x)), ~xj = (aj1, . . . , a

j
l ), and mj ∈ Zp the message

that simulator receives from the hash function for each Aj , Bj , Cj , δj .
We assume the adversary A has produced elements (A,B,C,D, δ′) such that

A ·B ≡ C · δ′ +
(∑l

j=0 aj(uj(x)β + vj(x)α+ wj(x))
)

+ αβ

and, for m := H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2), D(δ′+δm) = t(x)(m+γ). Let Q′1 the elements
in Q′ in G1 and Q′2 the elements in G2. Since the adversary is generic it has constructed
these elements as a linear combination of the elements in Q′ which are in the relevant
group (i.e. element of Q′1 in G1 for A,C,D and of Q′2 for B, δ′) and we can extract the
coefficients of this linear combination.

First, we prove that the adversary has knowledge of the discrete logarithm of δ′ w.r.t.
δ. From the second verification equation we know that D = t(x) γ+m

δ′+mδ . On the other
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hand, from adversary A we can recover a vector ~kD with the coefficients that it has used
to construct D, that is, D =

∑
q∈Q′1

kD,q q. Equating these two expressions,

t(x)(m+ γ) = (
∑
q∈Q′1

kD,q q)(δ
′ +mδ), (4)

where δ′ =
∑
q∈Q′2

kδ′,q q for another vector of coefficients ~kδ′ . The terms which include

γ in both sides of the equation must be the same.
On the other hand, by assumption, in the asymmetric GGM, the term δ′ is constructed

as a linear combination of elements in Q′2 and therefore δ′+δm is independent of γ. Then,
keeping only the terms with γ in equation (4), we obtain the following relation:

t(x)γ = kD,0
γt(x)
δ (δ′ +mδ) +

∑v
j=1 kD,j

γt(x)
δj+mjδ

(δ′ +mδ), (5)

where we have set kD,0 = k
D,

γt(x)
δ

and kD,j = k
D,

γt(x)
δj+mjδ

to simplify the notation.

Dividing both sides of the equation by t(x)γ and defining δ0 = δ′, m0 = 0, we obtain
the following equivalent equation:

1 =
(∑v

j=0 kD,j
1

δj+mjδ

)
(δ′ +mδ) =

∑v
j=0 kD,j

∏v
i=0,i 6=j(δi+miδ)∏v
i=0(δi+miδ)

(δ′ +mδ)

⇔
∏v
i=0(δi +miδ) = (δ′ +mδ)

(∑v
j=0 kD,j

∏
i=0,i6=j(δi +miδ)

)
. (6)

From the last equation it follows that the term δ′ + mδ must divide the left side of the
equation (6). Therefore, there exists some index j∗ and k ∈ Zp such that δ′ + mδ =
k(δj∗+mj∗δ). Now, dividing Eq. (6) by (δj∗+mj∗δ), we come to the following expression

0 = (1− k · kD,j∗)
∏v
i=0,i6=j∗(δi +miδ)−

∑v
j=0,j 6=j∗ kD,j

∏v
i=0,i6=j(δi +miδ).

Since all summands are linearly independent polynomials, k = k−1D,j∗ , and kD,j = 0 if
j 6= j∗. We distinguish two cases: (1) δ′+δm = kδ (j∗ = 0) or (2) δ′+δm = k(δj∗+mj∗δ)
(j∗ 6= 0).

In case (1), we are done, as we can extract the DLOG of δ′ as k −m.
In case (2), from equation (4) and putting everything together, we have that:

t(x)(m+ γ) = kD,j∗
(γ +mj∗)

(δj∗ +mj∗δ)
(δ′ +mδ) = kD,j∗k

−1(γ +mj∗)t(x) = (γ +mj∗)t(x).

This implies that mj∗ = m is a collision of H.
Proof of Step 2) We show that the elements A,B,C do not use the elements of

the simulated proofs, say V := {[Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2}vj=1, and then, with the
knowledge of ζ such that δ′ = ζδ, we can reduce our proof to the knowledge soundness
proof of Groth16 [17], since [A]1, [B]2, [Cζ]1 is a valid proof of Groth16.

For this, we need to argue that A,B,C cannot have been constructed from any of
the elements of the queries. To prove that A,B,C are not constructed from the elements
[Aj ]1, [Bj ]2, [Cj ]1, [δj ]2, we follow the exact same reasoning as Bowe and Gabizon [11] in
the GGM and we omit the details. Next, we prove that to construct A,C the prover
cannot have used any of the Dj terms, which are the new elements in our proof.

Analogously to proof in Section 3, assume A has been generated from some Dj , so the

term
t(x)(mj+γ)
δj+mjδ

appears in the expression of A generated from Q′1 with the corresponding
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coefficient different than 0. Observe that the verification equation contains the term αβ
that cannot be manipulated because it is fixed in the crs, and it should be produced by
the term AB because β ∈ Q′2 and β is independent of δ′ = ζδ. In that case, the product

AB would contain a term
t(x)(mj+γ)
δj+mjδ

β, but this cannot be cancelled out by any of the

other terms in the equation. Indeed, this term cannot appear in αβ, or in the sum of
public values of ai. Thus, the only possibility is that it appears in Cδ′. However, since

β is independent of δ′, it should appear in C, but
t(x)(mj+γ)
δj+mjδ

β cannot be computed from

elements in Q′1.

Now, assumeDj appears in C, then the term Cδ′ of the verification includes
t(x)(mj+γ)
δj+mjδ

δ′.

Neither the term αβ nor the sum of public values can include it, so the only possibility
is that it appears in AB. Since δ′ ∈ Q′2, then A would contain Dj , which we ruled out
previously.
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