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Abstract. Zero-knowledge Succinct Non-interactive Arguments of Knowledge
(zk-SNARKs) are the most efficient proof systems in terms of proof size and ver-
ification. Currently, Groth’s scheme from EUROCRYPT 2016, Groth16, is the
state-of-the-art and is widely deployed in practice. Groth16 is originally proven
to achieve knowledge soundness, which does not guarantee the non-malleability
of proofs. There has been considerable progress in presenting new zk-SNARKs or
modifying Groth16 to efficiently achieve strong Simulation Extractability (SE),
which is shown to be a necessary requirement in some applications. In this pa-
per, we revise the Random Oracle (RO) based variant of Groth16 proposed by
Bowe and Gabizon, BG18, the most efficient one in terms of prover efficiency
and CRS size among the candidates, and present a more efficient variant that
saves 2 pairings in the verification and 1 group element in the proof. This su-
persedes our preliminary construction, presented in CANS 2020 [BPR20], which
saved 1 pairing in the verification, and was proven in the Generic Group Model
(GGM). Our new construction also improves on BG18 in that our proofs are in
the Algebraic Group Model (AGM) with Random Oracles and reduces security to
standard computational assumptions in bilinear groups (as opposed to using the
full power of the GGM). We implement our proposed SE zk-SNARK along with
BG18 in the Arkworks library, and compare the efficiency of our scheme with
some related works. Our empirical experiences confirm that our SE zk-SNARK
is more efficient than all previous SE schemes in most dimensions and it has very
close efficiency to the original Groth16 5.

Keywords: NIZK, zk-SNARK, Strong Simulation Extractability, Algebraic Group
Model, Random Oracle Model

1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proof systems [BFM88] are a funda-
mental family of cryptographic primitives that have appeared recently in a wide

5 A preliminary version of this paper appeared in the Proceedings of 19th International Confer-
ence on Cryptology and Network Security, CANS 2020 [BPR20].



range of practical applications. A NIZK proof system allows a party to prove
that for a public statement x⃗, she knows a witness w⃗ such that (⃗x, w⃗) ∈ R, for
some relation R, without leaking any information about w⃗ and without interac-
tion with the verifier. Due to their impressive advantages, NIZK proof systems
are used ubiquitously to build larger cryptographic protocols and systems.

Zero-knowledge Succinct Arguments of Knowledge (zk-SNARKs) are among
the most interesting NIZK proof systems in practice, as they allow to gen-
erate very short proofs for NP complete languages, which can be verified in
less than 10 milliseconds [GGPR13, Gro16]. Zk-SNARKs have had a tremen-
dous impact in practice and they have found numerous applications, including
verifiable computation systems [PHGR13], privacy-preserving (PP) cryptocur-
rencies [BCG+14], PP smart contract systems [KMS+16], PP proof-of-stake
protocols [KKKZ19], and efficient ledger verification protocols [BMRS20], are
some of the best known applications that use zk-SNARKs to prove different
statements very efficiently while guaranteeing the privacy of the prover. Be-
cause of their practical importance, particularly in large-scale applications like
blockchains, even minimal savings especially in proof size or verification cost
are considered to be relevant.

In 2016, Groth [Gro16] introduced the most efficient zk-SNARK for Quadratic
Arithmetic Programs or QAPs, which is still the state-of-the-art construction,
Groth16. It is constructed using bilinear groups and its proof is 3 group ele-
ments (2 from G1 and 1 from G2) and the cost of verification is dominated by
3 pairing computations. In the original paper, it is proven to achieve knowledge
soundness in the generic group model (GGM). In 2018, Fuchsbauer, Kiltz, and
Loss [FKL18] defined the Algebraic Group Model (AGM) and reproved its se-
curity in this weaker model. The proof of Groth16 is malleable, as it is shown in
[GM17]. Generating non-malleable proofs is a necessary requirement in build-
ing various cryptographic schemes, including universally composable proto-
cols [KMS+16, KKKZ19], cryptocurrencies (e.g. Zcash) [BCG+14], signature-
of-knowledge schemes [GM17], etc. Practical systems like Zcash cryptocur-
rency [BCG+14] that uses the original Groth16 [Gro16] make extra efforts to
ensure the non-malleability of transactions and the proof of underlying proof
system. Considering such concerns, in practice, it is important to have a stronger
notion of knowledge soundness, known as (strong) Simulation Extractability
(SE). This notion guarantees that a valid witness can be extracted from any ad-
versary producing a proof accepted by the verifier, even after seeing an arbitrary
number of simulated proofs.

There have been considerable efforts to construct new SE zk-SNARKs or
refine Groth’s zk-SNARK to achieve SE and guarantee the non-malleability of
proofs. Firstly, in 2017 Groth and Maller [GM17] proposed an SE zk-SNARK,



which is very efficient in terms of proof size but very inefficient in terms of Com-
mon Reference String (crs) size and prover time. They also showed how one can
use SE zk-SNARKs to build Signature of Knowledge (SoK) schemes [CL06]
with succinct signatures. In 2018 Bowe and Gabizon [BG18] proposed a less
efficient construction in terms of proof size (5 group elements vs 3 in the origi-
nal version) based on Groth16 which needs a Random Oracle (RO) (apart from
GGM) which returns group elements, but with almost no overhead in the crs
size or additional cost for the prover. In [Lip22], Lipmaa proposed several con-
structions, including an efficient QAP-based SE zk-SNARK in terms of proof
size and with the same verification complexity as [GM17, BG18], but less ef-
ficient in terms of crs size and prover time compared to [BG18] and Groth16.
In [AB19], Atapoor and Baghery used the traditional OR technique to achieve
SE in Groth16. Their variant requires 1 pairing less for verification in compari-
son with previous SE constructions, however it comes with an overhead in proof
generation, crs size, and even larger overhead in the proof size. For a particu-
lar instantiation they add ≈ 52.000 constrains to the underlying QAP instance,
which adds fixed overhead to the prover and crs size, that can be considerable
for mid-size circuits. They show that for a circuit with 10× 106 Multiplica-
tion (Mul) gates, their prover is about 10% slower, but it can be slower for
circuits with less than 10×106 gates. In [KLO20], Kim, Lee, and Oh proposed
a QAP-based SE zk-SNARK with the same crs size and prover time compared
to [Lip22], but with slightly shorter proofs and more efficient verification.

These works also differ significantly in the assumptions they make for secu-
rity. The scheme of Groth and Maller [GM17] is based on a knowledge assump-
tion and other falsifiable computational assumptions, and they are all q-type
assumptions where q is the size of the circuit. In this work, the authors avoid the
generic group model by making a concrete knowledge assumption that is essen-
tial for extracting the witness. On the other hand, the work of Bowe and Gabi-
zon [BG18] uses the full power of the generic group model to prove the security.
The construction of Bowe and Gabizon uses the generic group model plus the
assumption that a certain hash function to group elements is a random oracle.
All the constructions of Lipmaa [Lip22] are proven secure in a weaker notion
of the AGM, where the adversary has access to a random oracle that allows it
to sample random elements obliviously in the group, i.e. without knowing the
random oracles.

Recently, Baghery, Kohlweiss, Siim, and Volkhov [BKSV21] explore an-
other direction. Instead of modifying Groth16 to achieve strong SE, they first
show that the original construction of Groth16 achieves weak SE with non-
black-box extraction. Weak SE allows proof randomization, therefore the proof
is malleable, while it guarantees that a proof cannot be changed to prove a new



Table 1. A comparison of our proposed variations of Groth16 along with the other SE zk-
SNARKs for arithmetic circuit satisfiability with n Mul gates (constraints) and m wires (vari-
ables), of which l are public input wires (variables). A typical set of values is n = m = 106 and
l = 10. In the case of crs size and prover’s computation we omit constants. In [GM17], n Mul
gates and m wires translate to 2n squaring gates and 2m wires. In [AB19], SE is achieved with
an OR approach which requires to add constraints and variables, resulting in n′ ≈ n+ 52.000,
m′ ≈m+52.000, and l′ = l+4. G1,G2 and GT : group elements, Ei: exponentiation in group Gi,
Mi: multiplication in group Gi, P: pairings. GGM: Generic Group Model, ROM: Random Ora-
cle Model, AGM: Algebraic Group Model, HAK: Hash Algebraic Knowledge assumption, LCR:
Linear Collision Resistance hash functions, CRH: Collision Resistant Hash, VE: Number of ver-
ification equations, WSE: Weak Simulation Extractable, SSE: Strong Simulation Extractable.

SNARK SE Model CRS size Prover Proof Verifier VE

[Gro16, FKL18] WSE AGM
m+2n− l G1

n G2

m+3n− l E1
n E2

2 G1
1 G2

l E1
3 P

1

[GM17] SSE GGM
2m+4n G1

2n G2

2m+4n− l E1
2n E2

2 G1
1 G2

l E1
5 P

2

[BG18] SSE
GGM,
ROM

m+2n− l G1
n G2

m+3n− l E1
n E2

3 G1
2 G2

l E1
5 P

2

[AB19] SSE GGM
m′+2n′− l G1

n′ G2

m′+3n′− l E1
n′ E2

4 G1
2 G2
+ 2 λ

l′+2 E1
4 P

2

[Lip22] SSE
AGM,

tag-based
m+3n− l G1

n G2

m+4n− l E1
n E2

3 G1
1 G2

l +1 E1
5 P

2

[KLO20] SSE
HAK,
LCR

m+3n− l G1
n G2

m+4n− l E1
n E2

2 G1
1 G2

l +1 E1, 1 E2
3 P

1

[BPR20], A SSE
GGM,
CRH

m+2n− l G1
n G2

m+3n− l E1
n E2

3 G1
2 G2

l E1, 1 E2
1 ET , 4 P

2

Section 3 SSE
AGM,
ROM

m+2n− l G1
n G2

m+3n− l E1
n E2

2 G1
2 G2

l E1, 1 E2
3 P

1

statement. Then, considering the first result, they propose two efficient con-
structions of Groth16 that achieve weak SE with black-box extraction which is
shown to be necessary for UC-security. Both weak and strong SE zk-SNARKs
can be lifted to achieve black-box simulation extractability with a simpler com-
piler [Bag19a, BKSV21], rather than with the COCO framework [KZM+15]
which is constructed to lift (knowledge) sound NIZK proofs systems to achieve
black-box SE. However, to realize the standard ideal functionality defined for
NIZK arguments, one would need to use a strong SE NIZK with black-box ex-
traction [Gro06]. Therefore, constructing a more efficient strong SE zk-SNARK,
would also allow to build more efficient black-box SE zk-SNARK to be used in
UC-secure protocols.

Our Contributions. Our main contribution is to revise the simulation extractable
variants of Groth16, presented in [BG18] and [AB19], to achieve a better effi-



ciency and get the best of both constructions. Namely, achieving strong simula-
tion extractability in Groth16 with minimal overhead.

Our focus is mainly on Bowe and Gabizon’s variation [BG18] which has the
most efficient prover and the shortest crs among other (strong) SE zk-SNARKs
[GM17, BG18, AB19, Lip22, KLO20], while it uses a RO which returns group
elements. To achieve (strong) simulation extractability, their prover replaces all
the original computations which depend on some parameter δ given in the crs
by some δ ′ and the prover must give [δ ′]2 and a proof of knowledge (PoK) of the
DLOG of [δ ′]2 w.r.t [δ ]2. Using this technique, they present a variation that has
the same CRS as Groth16, almost the same prover as Groth16, 2 new elements
in the proof (one from G1 and the other from G2), and an additional verification
equation that adds 2 pairing operations to the verification of Groth16.

In this paper, using the same approach [BG18] and some subtle modifica-
tions, we construct a strong SE zk-SNARK that results in the most efficient
(strong) simulation extractable variant of Groth16 in terms of crs size, prover
complexity, and verification time. Our SE zk-SNARK uses some sophisticated
modification of Boneh-Boyen signatures [BB08] to prove knowledge of the
DLOG of δ ′ which requires 1 less G1 element in the proof, and 2 pairings less in
the verification in comparison with the argument of Bowe and Gabizon [BG18],
but at the cost of one additional exponentiation in the verification. Our con-
struction supersedes and improves a preliminary version of this work presented
at CANS 2020 [BPR20], where in all constructions verification required at least
one additional pairing and proofs were in the Generic Group Model (GGM).

Our construction modifies the proof generation of Groth16 slightly and in-
clude the PoK of the DLOG of [δ ′]2 w.r.t [δ ]2 inside the original proof of
Groth16. Using this, we manage to save 1 element in the proof, and 2 pair-
ings in the verification of Bowe and Gabizon’s construction [BG18], at the cost
of a single exponentiation in G2 in the verification. This construction shows that
using a random oracle, we can achieve strong SE in Groth16, at the cost of one
additional G2 element in the proof, and one new exponentiation in G2 in the
verification. In the case of verifying a larger number of proofs where verifiers
of our constructions gain efficiency by using multi-scalar exponentiations, our
construction achieves almost the same efficiency as Groth16.

Tab. 1 presents a comparison of our proposed variant of Groth16 with sev-
eral other constructions for a particular instance of arithmetic circuit satisfia-
bility. As it can be seen, in comparison with Bowe and Gabizon’s construc-
tion [BG18], our construction retains most of the properties requires 2 less pair-
ing in the verification, at the cost of 1 additional exponentiation in the verifica-
tion. We also compare our construction with the results initially obtained and
presented in CANS 2020 [BPR20]. We note that in both our constructions, the



hash function maps into Zp and not to a source group as in [BG18], which is an
additional practical advantage. In comparison with Atapoor and Baghery’s con-
struction [AB19], both of our variants have a negligible overhead in the proof
generation and crs size, and a smaller overhead in proof size. Above all, our best
construction, requires 3 parings in the verification, instead of 4. 6 We reduce se-
curity to a q-DLOG in the AGM with random oracles, where q is the size of the
circuit. In contrast, our preliminary result [BPR20] was in the GGM but only
required the hash function to be collision resistant.

As a part of our contribution, we also present an open-source prototype im-
plementation of our presented constructions and Bowe and Gabizon’s scheme
in the Arkworks library, which currently is one of the most popular ecosystems
written in Rust for developing and programming with zk-SNARKs. Then, we
use our implementations along with the implementations of Groth16 [Gro16]
and Groth-Maller [GM17], which already exist in Arkworks library, and present
a comprehensive benchmark for the relevant simulation extractable zk-SNARKs
[Gro16, GM17, BG18]. Full details of our empirical analysis are reported in
Section 4, in Table 2. As we expected, the implementation results show that, our
new construction is more efficient than the first one, and also it is more efficient
than all previous SE zk-SNARKs in most dimensions and more importantly it
has a very close efficiency profile to the original Groth16, particularly when we
need to verify a large number of proofs.

Finally, we highlight that using the technique proposed in [GM17], both of
or proposed SE zk-SNARKs can be turned into succinct SoK schemes, which
would be more efficient than previous constructions. In general, due to relying
on non-falsifiable assumptions, succinct SoK schemes have better efficiency in
comparison with constructions that are built under standard assumptions [CL06,
BFG13, BGPR20]. We also note that to achieve strong (non-black-box) SE, our
proposed zk-SNARKs require minimal changes in comparison with the original
Groth16. Therefore, one can use the same compiler or ad-hoc approach pro-
posed in [Bag19a] and [BKSV21], respectively, to construct a more efficient
strong black-box SE zk-SNARK for UC-protocols [Gro06].

Organization. In Section 2, we introduce notation, the relevant security defini-
tions, and recall the Boneh-Boyen signature scheme. In Section 3, we present
our new and the most efficient SE zk-SNARK, that has very close efficiency to
the Groth16. We evaluate the practical efficiency of both presented construc-
tions in Section 4 using a prototype Rust implementation in Arkworks library.

6 In the worst case, our changes add only one element to the crs of Groth16 and since Groth16
is already proven to achieve subversion ZK (ZK without trusting a third party) [ABLZ17,
Fuc18], our variants also can be proven to achieve Sub-ZK using the technique proposed
in [Fuc18, Bag19b].



We also compare the efficiency of our constructions with several relevant SE zk-
SNARKs in the same section. Finally we conclude the paper in Section 5. For
the sake of completeness, in A, we also recall our first SE zk-SNARK [BPR20]
that relaxes the RO in Bowe and Gabizon’s scheme [BG18] to a collision resis-
tant hash function, and also saves 1 pairing in the verification. We implement
that scheme as well and include it in our benchmarks.

Novelty. Compared to the conference version published in CANS 2020 [BPR20],
this version includes a more efficient construction presented in Section 3, a pro-
totype Rust implementation of our presented constructions along with Bowe and
Gabizon’s scheme [BG18] in Arkworks library, followed by a comprehensive ef-
ficiency comparison of relevant SE zk-SNARKs that are reported with details in
Section 4.

2 Preliminaries

2.1 Notation and bilinear groups

We let BGgen be a probabilistic polynomial time algorithm which on input 1λ ,
where λ is the security parameter, returns the description of an asymmetric bi-
linear group gk= (p,G1,G2,GT ,e,P1,P2), where G1,G2 and GT are groups
of prime order p, the elements P1,P2 are generators of G1,G2 respectively,
e : G1×G2 → GT is an efficiently computable, non-degenerate bilinear map,
and there is no efficiently computable isomorphism between G1 and G2.

Elements in Gi, are denoted implicitly as [a]i = aPi, where i ∈ {1,2,T}
and PT = e(P1,P2). With this notation, e([a]1, [b]2) = [a]1[b]2 = [ab]T . We
extend this notation naturally to vectors and matrices. We denote by negl(λ ) an
arbitrary negligible function in λ .

2.2 Definitions

For an algorithm A , let Im(A ) be the image of A , i.e. the set of valid outputs of
A . By y←A (x;r) we denote the fact that A , given an input x and a randomizer
r, outputs y.

We use the definitions of NIZK arguments from [Gro16]. Let R be a re-
lation generator, such that R(1λ ) returns a polynomial-time decidable binary
relation R = {(⃗x, w⃗)}. Here, x⃗ is the statement and w⃗ is the witness. Security pa-
rameter λ can be deduced from the description of R. The relation generator also
outputs auxiliary information zR that will be given to the honest parties and the
adversary. In our constructions, zR will be the description of a bilinear group.



As in [Gro16], zR is the value returned by BGgen(1λ ), and is given as an input
to the parties.

Let LR = {⃗x : ∃w⃗, (⃗x, w⃗)∈R} be an NP-language. A NIZK argument system
Ψ for R consists of tuple of PPT algorithms (K,P,V,Sim), such that:

CRS Generator: K is a PPT algorithm that, given (R,zR) where (R,zR) ∈
Im(R(1λ )), outputs crs := (crsP,crsV) and stores trapdoors of crs as t⃗s. We
distinguish crsP (needed by the prover) from crsV (needed by the verifier).

Prover: P is a PPT algorithm that, given (R,zR,crsP, x⃗, w⃗), where (⃗x, w⃗) ∈ R,
outputs an argument π . Otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R,zR,crsV, x⃗,π), returns either 0
(reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R,zR,crs, t⃗s, x⃗), outputs a sim-
ulated argument π .

Besides succinct proofs, i.e. polynomial in λ , an SE zk-SNARK is required
to satisfy completeness, simulation extractability, and zero-knowledge.

Definition 2.1 (Perfect Completeness). A non-interactive argument Ψ is per-
fectly complete for R, if for all λ , all (R,zR) ∈ Im(R(1λ )), and (⃗x, w⃗) ∈ R,

Pr

[
crs← K(R,zR), π ← P(R,zR,crs, x⃗, w⃗) :

V(R,zR,crs, x⃗,π) = 1

]
= 1.

Intuitively, perfect completeness states that an honest prover P always con-
vinces an honest verifier V.

Definition 2.2 (Computationally Knowledge-Soundness [Gro16]). A non-interactive
argument Ψ is computationally (adaptively) knowledge-sound for R, if for ev-
ery non-uniform PPT A , there exists a non-uniform PPT extractor ExtA , s.t. for
all λ , the following probability is negl(λ ),

Pr

(R,zR)←R(1λ ),(crs∥ t⃗s)← K(R,zR),

(⃗x,π)←A (R,zR,crs), w⃗← ExtA (transA ) :

(⃗x, w⃗) ̸∈ R∧V(R,zR,crs, x⃗,π) = 1

 .

Here, transA is a list containing all of A ’s inputs and outputs. Intuitively, the
definition states that if an adversary can convince the verifier, she knows the
witness. A knowledge-sound Ψ also is called an argument of knowledge.

Definition 2.3 (Weak Simulation Extractability [KZM+15]). A non-interactive
argument Ψ is (non-black-box) weak simulation-extractable for R, if for any



non-uniform PPT A , there exists a non-uniform PPT extractor ExtA s.t. for all
λ , the following probability is negl(λ ),

Pr

(R,zR)←R(1λ ),(crs∥ t⃗s)← K(R,zR),

(⃗x,π)←A O(t⃗s,.)(R,zR,crs), w⃗← ExtA (transA ) :

x⃗ ̸∈ Q∧ (⃗x, w⃗) ̸∈ R∧V(R,zR,crs, x⃗,π) = 1

 .
Here, Q is the set of statements queried by adversary to the simulation oracle
O, and transA is a list containing all of A ’s inputs and outputs. Note that this
variant of simulation extractability allows proof randomization, while it ensures
that a proof cannot be changed to prove a new statement.

Definition 2.4 (Simulation Extractability [GM17]). A non-interactive argu-
ment Ψ is (non-black-box strong) simulation-extractable for R, if for any non-
uniform PPT A , there exists a non-uniform PPT extractor ExtA s.t. for all λ ,
the following probability is negl(λ ),

Pr

(R,zR)←R(1λ ),(crs∥ t⃗s)← K(R,zR),

(⃗x,π)←A O(t⃗s,.)(R,zR,crs), w⃗← ExtA (transA ) :

(⃗x,π) ̸∈ Q∧ (⃗x, w⃗) ̸∈ R∧V(R,zR,crs, x⃗,π) = 1

 .
Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to the simulation oracle O, and transA is a list containing all of A ’s
inputs and outputs.

Note that both variants of simulation extractability implies knowledge sound-
ness (given in Def. 2.2), as the earlier is a strong notion of the later which addi-
tionally the adversary is allowed to send query to the proof simulation oracle.

Definition 2.5 (Zero-Knowledge (ZK) [Gro16]). A non-interactive argument
Ψ is computationally ZK for R, if for all λ , all (R,zR) ∈ Im(R(1λ )), and for
all non-uniform PPT A , ε0 ≈c ε1, where

εb = Pr[(crs∥ t⃗s)← K(R,zR) : A Ob(·,·)(R,zR,crs) = 1].

Here, the oracle O0(⃗x, w⃗) returns ⊥ (reject) if (⃗x, w⃗) ̸∈ R, and otherwise it re-
turns P(R,zR,crsP, x⃗, w⃗). Similarly, O1(⃗x, w⃗) returns ⊥ (reject) if (⃗x, w⃗) ̸∈ R,
otherwise it returns Sim(R,zR,crs, t⃗s, x⃗). Ψ is perfect ZK for R if one requires
that ε0 = ε1.

Intuitively, a non-interactive argument is ZK if it does not leak extra infor-
mation beyond the truth of the statement.



2.3 Boneh-Boyen signatures

We briefly recall one of the constructions of Boneh-Boyen signatures [BB08],
that is used implicitly in our constructions. Let G1,G2,GT ,e : G1×G2 → GT

be a bilinear group. Messages are elements of Zp, and signatures are elements of
G1. The secret key is sk∈Zp, and the public key (verification key) is [sk]2 ∈G2.
To sign a message m ∈ Zp, the signer computes

[σ ]1 =

[
1

sk+m

]
1
.

The verifier accepts the signature if the equation e([σ ]1, [sk]2 + [m]2) = [1]T
holds.

Boneh-Boyen signatures are existentially unforgeable under the q-SDH as-
sumption. We use them in our constructions as proofs of knowledge of the secret
key in the AGM.

2.4 Algebraic Group Model

The Algebraic Group Model or AGM for short [FKL18] assumes that adver-
saries are algebraic, i.e. they construct their output group elements as a linear
combination of previously seen group elements. This model is a weakening of
the Generic Group Model (GGM, [Nec94, Sho97]), since algebraic adversaries
have direct access to group elements and can use their representation. In the
asymmetric algebraic group model, it is assumed that, for every element π in
G1,G2 output by the adversary, it also outputs a set of coefficients in the field
that express π as a linear combination of previously received group elements
in the same source group. For elements in GT , the adversary also outputs the
coefficients that express every element output by the adversary as a linear com-
bination of elements in GT that the adversary has received or can compute as
the pairing of elements in G1 and G2 it has received.

Several works (e.g. [CHM+20]) have proven security in the AGM with ran-
dom oracles. In this case, the adversary has oracle access to a certain function
H : {0,1}∗→ R, and the assumption is that for every element π output by the
adversary in G1,G2, also outputs a set of coefficients in the field that express
π as a linear combination of all previously received group elements, including
those obtained as a response to a hash query if the range R is a group.

Note that when when the range of the hash function R is a group, the or-
acle allows the adversary to sample obliviously from it, i.e. without knowing
the discrete logarithm. In our case, the range of the RO is a field (of size of
the order of the elliptic curve) and therefore in our model, the adversary can-
not obliviously sample in the group. As discussed by Lipmaa [Lip22], we could



consider strengthening our model and give the adversary access to another ora-
cle H2 mapping to group elements to give this additional power to the adversary.
This model is more realistic since in practice there usually exist hash to group
algorithms that allow to sample in the curve without knowing the discrete loga-
rithm.

Although the strengthened model is very meaningful and is a more realistic
idealization of elliptic curves, we have not considered since it complicates the
proof significantly although these additional uniformly and randomly chosen
elements that are chosen independently of the input of the adversary, intuitively,
cannot help the adversary except with negligible probability.7

Following the work of Fuchsbauer et al. [FKL18], we will prove that the
security of our scheme reduces to the (q1,q2)-DLOG Assumption, for a certain
(q1,q2) that depends on the size of supported instances. We note that to improve
efficiency, as [Lip22] we rely on the asymmetric AGM, as opposed to the proof
of Groth16 in [Gro16, FKL18].

Definition 2.6. The (q1,q2)-DLOG Assumption holds relative to BGgen(1λ ) if
for all PPT adversaries A , the following probability is negl(λ ),

Pr

[
gk← BGgen(1λ ), z← Zp :

z←A (gk,
{
[zi]1

}q1

i=0 ,
{
[zi]2

}q2

i=0)

]
.

3 SE Variant of Groth16 in the ROM

To achieve (strong) simulation extractability, the prover of Bowe and Gabizon’s
construction [BG18] replaces all the computations which depend on δ given
in the crs by some δ ′ of its choice, that it must give as part of the proof, to-
gether with a proof of knowledge of the DLOG of δ ′ w.r.t to δ , which given
some element [Y ]1 = H([A]1 ∥ [B]2 ∥ [C]1 ∥ [δ ′]2), consists of [π]1 such that
e([Y ]1, [δ ′]2) = e([π]1, [δ ]2). In their analysis, H is an RO and their proof re-
quires 2 pairings for verification.

In Fig. 1, we describe a SE variant of Groth16 that uses a new technique
to shorten the proof and verifies it with a single verification equation which
requires 3 pairings, just as Groth16. The security analysis is done in the AGM
assuming the underlying hash function is a random oracle. The SE proof is built
using a sequence of games. As part of the reduction we need to rewrite in the

7 These new group elements can be seen as additional independent variables. Using the same
trick as [FKL18], the multivariate case can be reduced to the univariate one by writing each
new variable as a degree one polynomial of the same variable. These additional variables
ultimately do not change the total degree of the polynomial that the adversary constructs as
his output, which is what determines the loss in the reduction.



AGM part of the same proof as Bowe and Gabizon’s construction [BG18], that
is also in the random oracle but in the generic group model.

A part from the efficiency gain, from a security point of view one additional
advantage of our construction is that the RO maps to elements in Zp and it
does not need the property that H can sample elements of G obliviously (i.e.
soundness does not use that the DLOG of image elements is hard).

The idea of Bowe and Gabizon of using a POK of the DLOG of δ ′ was
also used in our preliminary results presented in [BPR20], included in A. The
construction we present below improves on both previous works by choosing δ ′

as before but then replacing it by δ ′+δm to create and verify the proof at once,
where, m :=H (⃗x ∥ [A]1 ∥ [B]2 ∥ [δ ′]2). The intuition is that the adversary needs to
know the division in the exponent of C by δ ′+δm. However, this is a degree one
polynomial in δ , and this is hard to do unless δ ′ = ζ δ . The verification of this
variant requires one additional exponentiation in G2. In the description of the
new construction, we highlight the changes to Groth16 with gray background.
We emphasize that the original scheme corresponds to m = 0 and ζ = 1.

Theorem 3.1 (Completeness, ZK, strong SE). The variant of Groth16 de-
scribed in Fig. 1, is a non-interactive zero-knowledge argument that guarantees
1) perfect completeness, 2) perfect zero-knowledge and 3) strong simulation-
extractability in the asymmetric Generic Group Model and the RO Model.

Proof. To see why perfect completeness holds, the easiest is to rewrite this
scheme in such a way so that the terms A,B,C correspond exactly to Groth16,
except that the original term δ is replaced by δ ′+ δm. The prover creates A,B
with the randomizer raδ ′,rbδ ′, ra,rb← Zp. Then, it receives m and reinterprets
A,B as being created for the randomized δ ′+δm and some random values sa,sb.
This means the prover finds the value sa such that raδ ′ = sa(δ

′+δm). Solving

the equation, we get sa =
ζ

ζ +m
ra (similarly, sb =

ζ

ζ +m
rb). Then it computes

C as in the original Groth16 paper but for sa,sb and δ ′ + δm, instead of δ .
Rewriting, we obtain:

[A]1←
m

∑
j=0

a j [u j(x)]1 +[α]1 + sa
[
δ
′+δm

]
1 ,

[B]2←
m

∑
j=0

a j [v j(x)]2 +[β ]2 + sb
[
δ
′+δm

]
2 ,

[C]1← sb [A]1 + sa [B]1 +
m

∑
j=l+1

a j
[
(u j(x)β + v j(x)α +w j(x))/(δ ′+δm)

]
1

+
[
h(x)t(x)/(δ ′+δm)

]
1− sasb

[
δ
′+δm

]
1 .



Setup, crs← K(R,zR): Similar to the original scheme it picks x,α,β ,δ ← Z∗p, H←H ,
and returns crs defined as the following (by considering the observation in [BGM17]
that γ in the original scheme can be set 1),

(crsP,crsV) := crs←


[α,β ,δ ,{xi}n−1

i=0 ,{u j(x)β + v j(x)α +w j(x)}l
j=0,{

u j(x)β + v j(x)α +w j(x)
δ

}m

j=l+1
,{xit(x)/δ}n−2

i=0 ]1,

[β ,δ ,{xi}n−1
i=0 ]2, [αβ ]T ,H

 .

Prover, π ← P(R,zR,crsP, x⃗ = (a1, . . . ,al), w⃗ = (al+1, . . . ,am)): assuming a0 = 1, it acts
as follows,

1. Selects a random element ζ ← Z∗p, and sets [δ ′]2 := ζ [δ ]2
2. Let A†(X)← ∑

m
j=0 a ju j(X), B†(X)← ∑

m
j=0 a jv j(X), C†(X)← ∑

m
j=0 a jw j(X),

3. Set h(X) = ∑
n−2
i=0 hiX i← (A†(X)B†(X)−C†(X))/t(X),

4. Set [h(x)t(x)/δ ]1← ∑
n−2
i=0 hi

[
xit(x)/δ

]
1,

5. Set ra←r Zp; Set [A]1← ∑
m
j=0 a j

[
u j(x)

]
1 +[α]1 + ra [δ

′]1 ,
6. Set rb←r Zp; Set [B]2← ∑

m
j=0 a j

[
v j(x)

]
2 +[β ]2 + rb [δ

′]2 ,
7. Sets m = H (⃗x ∥ [A]1 ∥ [B]2 ∥ [δ ′]2) , where H : {0,1}∗→Z∗p is a secure hash func-

tion,

8. Set sa =
ζ

ζ +m
ra, sb =

ζ

ζ +m
rb

[C]1 ← sb [A]1 + sa [B]1 + ∑
m
j=l+1 a j

[
(u j(x)β + v j(x)α +w j(x))/δ (ζ +m)

]
1 +[

h(x)t(x)/(δ (ζ +m))
]

1− sasb(ζ +m) [δ ]1,
9. Return π := ([A,C ]1 ,

[
B, δ ′

]
2).

Verifier, {1,0}← V(R,zR,crsV, x⃗ = (a1, . . . ,al),π = ([A,C]1 , [B,δ
′]2)): assuming a0 =

1, and setting m = H (⃗x ∥ [A]1 ∥ [B]2 ∥ [δ ′]2) checks if

[A]1 [B]2 = [αβ ]T +[C]1 [δ
′+δm]2 +

(
l

∑
j=0

a j
[
u j(x)β + v j(x)α +w j(x)

]
1

)
[1]2

and return 1 if the check passes, otherwise return 0.

Simulator, π ← Sim(R,zR,crsV, x⃗ = (a1, . . . ,al), t⃗s): Given the simulation trapdoors
t⃗s := (β ,δ ) acts as follows,

1. Choose random ζ ←r Z∗p and set δ ′ := ζ δ

2. Choose A,B←r Zp
3. Let m = H (⃗x ∥ [A]1 ∥ [B]2 ∥ [δ ′]2)
4. Set [C]1 =

[
(A ·B−∑

l
j=0 a j(u j(x)β + v j(x)α +w j(x))−αβ )/(δ ′+mδ )

]
1

5. Return π := ([A]1 , [B]2 , [C]1 , [δ
′]2 )

Fig. 1. A simulation-extractable variation of Groth16 for R. H is a family of collision resistant
hash functions that map to Z∗p.

Completeness easily follows from these formulae (in fact, it is identical to the
completeness of Groth16 replacing δ by δ ′+δm). Similarly, perfect zero-knowledge



can be argued in a standard way. Simulation extractability is proven by reduction
in the AGM to the knowledge soundness of Groth16.

Since the adversary is algebraic, for each output elements it is possible to
extract a list of coefficients that express it as a linear combination of previously
seen elements. The view of an adversary A that has made a sequence of queries
x⃗1, . . . , x⃗v to Sim(t⃗s, ·), and received answers {π j = ([A j,C j]1, [B j,δ j]2)}v

j=1 is
the set Q′, the union of elements in the crs together with those from the replies
of Sim(t⃗s, ·); namely,

Q′ :=


[
α,β ,δ ,{xi}n−1

i=0 , {u j(x)β + v j(x)α +w j(x)}l
j=0,{

u j(x)β + v j(x)α +w j(x)
δ

}m

j=l+1
, {xit(x)/δ}n−2

i=0

]
1 ,

[β ,δ ,{xi}n−1
i=0 ]2


∪
({[

A j,C j := A jB j−ic j−αβ

δ j+m jδ
,
]

1
, [B j,δ j]2,m j

}v

j=1

)
where ic j = ∑

l
i=0 a j

i (ui(x)β +vi(x)α +wi(x)), x⃗ j = (a j
1, . . . ,a

j
l ), and m j ∈Zp the

message that simulator receives from the RO for each A j,B j,δ j. Let Q′1 be the
elements of Q′ in group G1 and Q′2 the elements in group G2.

Now, assume that the adversary A has produced elements π =([A,C]1, [B,δ ′]2)
that pass the verification equation. This implies that C =(AB−αβ−∑

l
j=0 a j(u j(x)β +

v j(x)α +w j(x)))/(δ ′+mδ ), where m = H (⃗x ∥ [A]1 ∥ [B]2 ∥ [δ ′]2). The coef-
ficients extracted for output element [Y ]i for i ∈ {1,2} corresponding to ele-
ment q ∈ Q′i will be denoted by kY,q, so that for each element Y we have that
Y = ∑q∈Q′i kY,qq.

The reduction proceeds in a series of games, G0, . . . ,G4.

G0: This is the original simulation extractability soundness game. The adversary
wins if the proof π = ([A,C]1 , [B,δ

′]2) for some statement (a1, . . . ,al) is ac-
cepted and it is not the result of some previous query for the same statement.

G1: This game is the same as the previous one except that it aborts if π is ac-
cepted but kδ ′,δ =−m.

G2: This game is the same as the previous one except that it aborts if π is ac-
cepted but for some j = 1, . . . ,v, δ ′ = kδ ′,δ j δ j + kδ ′,δ δ and m = m jkδ ′,δ j −
kδ ′,δ .

G3: This game is the same as the previous one except that it aborts if if π is
accepted but δ ′ ̸= kδ ′,δ δ .

G4: This game is the same as the previous one, except that an abort occurs if π

is accepted but to compute π the adversary uses any of the answers of the
simulation oracle.



From G3 on, it is clear that the reduction can extract ζ = DLOGδ δ ′ from
the adversary, from which it can transform the adversary’s output to a proof for
Groth16 as [A]1, [B]2, [C(ζ +m)]1. Additionally, since in G4 the adversary does
not use any of the answers to the simulation oracle, soundness in that game is
implied by the knowledge soundness of Groth16.

We now proceed to bound the difference in the advantage in these games
of any algebraic adversary A . Clearly, |Pr[G0(A ) = 1]−Pr[G1(A ) = 1]| =
|Pr[G1(A ) = 1]−Pr[G2(A ) = 1]| = 1/p since the output of the random ora-
cle is a uniform value chosen independently of the constants extracted, and the
adversary can only be lucky in guessing this value with probability 1/p.

Next we prove the following lemma:

Lemma 3.1. For all PPT algebraic adversaries A there exists an adversary B
against the (v+2,1)-DLOG Assumption such that

Pr[G2(A ) = 1]≤ Pr[G3(A ) = 1]+AdvB(λ )+negl(λ )

Proof. Both games are identical except if adversary A outputs δ ′ ̸= kδ ′,δ δ . We
show that in this case there exists another adversary B that breaks the (v+2,1)-
DLOG Assumption.

Given some group key gk′ = (p,G1,G2,GT ,e,P ′
1,P2)← BGgen(1λ ), ad-

versary B receives
{

ziP ′
1
}v+2

i=0 ,
{

ziP2
}1

i=0. It then chooses m1, . . . ,mv random
values in Zp. It will store these values and give them as a reply to the hash
queries related to the simulation queries of A . Next, for j = 1, . . . ,v, it defines

δ j = d jz+ f j, f j,d j← Zp and δ = dz+ f , f ,d← Zp.

It programs the public parameters to compute δ and δ j +m jδ roots for any
j, that is, it defines the new group key included in the public parameters to be
gk= (p,G1,G2,GT ,e,P1 = δ ∏

v
j=1(δ j+m jδ )P ′

1,P2). This can be computed
from the input of B since

δ

v

∏
j=1

(δ j +m jδ ) = (dz+ f )
v

∏
j=1

((d j +m jd)z+( f j +m j f ))

is a polynomial of degree v+1 in the indeterminate z.
Then, adversary B samples x,α,β ← Zp and computes the common ref-

erence string honestly based on the new group key gk and sends all this in-
formation to A . Note that this requires to compute some expressions involv-
ing x,α,β divided by δ but B can do that by computing δ−1P1, which is
∏

v
j=1(δ j +m jδ )P ′

1 = ∏
v
j=1(d jz+ f j +m j)P1. The terms in G1 have maximal

degree v+2 so they can be computed by B. Whenever B receives a simulation



query x⃗ j, it sets [A j]1 = [α]1 + ra j [δ j +m jδ ]1 and [B j]2 = [β ]2 + rb j [δ j +m jδ ]2,
declares H (⃗x ∥ [A]1 ∥ [B]2 ∥ [δ j]) and computes

[C j]1 = [
A jB j− ic j−αβ

δ j +m jδ
]1.

For this, it will use the fact that it can compute (δ j + m jδ )
−1P1 as (dz +

f )∏
v
i=1,i ̸= j(diz+ fi +mi)P ′

1.
If adversary A breaks simulation extractability for some x⃗ = (a1, . . . ,a j), it

has produced elements (A,B,C,δ ′) that pass the verification equation so:

C =
AB− ic−αβ

δ ′+mδ
. (1)

We now study the denominator and numerator of this expression.
For a second consider ∆⃗ = (δ ,δ1, . . . ,δv) as formal variables and define the

polynomial

Pδ ′(∆⃗) = kδ ′,1 + kδ ′,β β + kδ ′,δ δ +
n−1

∑
i=0

kδ ′,xixi +
v

∑
j=1

(kδ ′,B j B j + kδ ′,δ j δ j).

The polynomial PB(∆⃗) is defined analogously for the coefficients kB,q, with q ∈
Q′2. On the other hand, we also define RA(∆⃗), RC(∆⃗) in a similar way, except
that the result is not a polynomial but a sum of some rational functions since the
view of A in G1 includes terms that have δ ,δ j +m jδ in the denominator.

If adversary A successfully distinguishes between the two games, kδ ′,δ ̸=
−m, so Pδ ′(∆⃗)+mδ is a polynomial of degree one in δ . Further, there is no j
such that Pδ ′(∆⃗)+mδ = χ(δ j +m jδ ) for some χ ∈ Zp, since this would imply
δ ′ = kδ ′,δ j δ j + kδ ′,δ δ and m = m jkδ ′,δ j − kδ ′,δ , which is also an abort condition.
If A is successful in distinguishing between the two games, Pδ ′(∆⃗) ̸= kδ ′,δ δ ,
and we are left with two possibilities:

(a)

RC(∆⃗) =
RA(∆⃗)PB(∆⃗)− ic−αβ

Pδ ′(∆⃗)+mδ
.

But this equation cannot hold, since as we argued, Pδ ′(∆⃗) +mδ is not a
polynomial that is a multiple of δ , or δ j +m jδ , the only terms that appear
as denominators in any term in RC(∆⃗).

(b) otherwise,

RC(∆⃗)(Pδ ′(∆⃗)+mδ )−RA(∆⃗)PB(∆⃗)+ ic+αβ ̸= 0.



Define

T (∆⃗) = δ

v

∏
j=1

(δ j +m jδ )
(

RC(∆⃗)(Pδ ′(∆⃗)+mδ )

−RA(∆⃗)PB(∆⃗)+ ic+αβ

)
.

Note that this is a polynomial in ∆⃗ , since δ ∏
v
j=1(δ j +m jδ ) cancels out any

of the denominators that appear in the terms in RA(⃗δ ). Replacing δ = dZ+ f
and δ j = d jZ + f j in T we get a polynomial that depends on a single vari-
able T ′(Z). Since C = AB−ic−αβ

δ ′+mδ
, T ′(z) = 0. On the other hand, T ′(Z) ̸= 0

except with probability 1/p. This is justified as follows: if T ′(Z) was 0 all
its coefficients must be 0. In particular, take the leading terms in Z of T ′(Z):
this is an expression involving only d,d j, which are information theoreti-
cally hidden from A . If we think of this polynomial as a multivariate one
of total degree v+ 3 in variables d,d j, the probability that A chooses the
coefficients kA,q,kB,q,kδ ′,q,kC,q such that when evaluated in d,d j this poly-
nomial is 0 can be bounded by (v+3)/p. Therefore, B can solve the DLOG
challenge by factoring T ′ and trying all the possible roots.

Lemma 3.2. For all PPT algebraic adversaries A there exists an adversary B
against the (v+2,1)-DLOG Assumption such that

Pr[G3(A ) = 1]≤ Pr[G4(A ) = 1]+AdvB(λ )+negl(λ )

Proof. Both games are identical except if adversary A outputs a accepting
proof that is built using the output of some simulation query. We show that
in this case there exists another adversary B that breaks the (v+ 2,1)-DLOG
Assumption.

Given some group key gk′ = (p,G1,G2,GT ,e,P ′
1,P2)← BGgen(1λ ), ad-

versary B receives
{

ziP ′
1
}v+1

i=0 ,
{

ziP2
}1

i=0. It then chooses m1, . . . ,mv random
values in Zp. It will store these values and give them as a reply to the hash
queries related to the simulation queries of A . Next, for j = 1, . . . ,v, it defines

α = dαz+ fα , fα ,dα ← Zp β = dβ z+ fβ , fβ ,dβ ← Zp,

and, as in the previous lemma:

δ j = d jz+ f j, f j,d j← Zp and δ = dz+ f , f ,d← Zp.

It programs the public parameters to compute δ and δ j +m jδ roots for any
j, that is, it defines the new group key included in the public parameters to be



gk= (p,G1,G2,GT ,e,P1 = δ ∏
v
j=1(δ j+m jδ )P ′

1,P2). This can be computed
from the input of B since

δ

v

∏
j=1

(δ j +m jδ ) = (dz+ f )
v

∏
j=1

((d j +m jd)z+( f j +m j f ))

is a polynomial of degree v+1 in the indeterminate z.
Then, adversary B samples x← Zp and computes the common reference

string honestly based on the new group key gk and sends all this information
to A . This can be computed from B’s input since these requires to compute
polynomials of degree at most 2 in z in each source group.

Whenever B receives a simulation query x⃗ j, it samples ζ j, fA, j,dA, j, fB, j,dB, j←
Zp, and sets

A j = dA, jz+ fA, j B j = dB, jz+ fB, j δ j = ζ jδ ,

declares m j = H (⃗x j ∥ [A j]1 ∥ [B j]2 ∥ [δ j]) and computes

[C j]1 = [
A jB j− ic j−αβ

δ j +m jδ
]1.

For this, it uses the fact that it can compute δ j+m jδ j roots in G1. If adversary A
distinguishes between both games, it outputs some x⃗ = (a1, . . . ,a j), and (A,B,
C,δ ′) that pass the verification equation and, further, it is possible to extract
some ζ such that δ ′+mδ = (ζ +m)δ , therefore it holds that:

Cδ (ζ +m)−AB+ ic+αβ = 0. (2)

For a second, consider

Y⃗ := (α,β ,δ ,δ1, . . . ,δv,A1, . . . ,Av,B1, . . . ,Bv)

as formal variables. Define the polynomial

PB(⃗Y ) = kB,1 + kB,β β + kB,δ δ +
n−1

∑
i=0

kB,xixi +
v

∑
j=1

(kB,B j B j + kB,δ j .δ j).

Define RA(⃗Y ), RC (⃗Y ) in a similar way, with the coefficients kA,q,kC,q, q∈Q′1 ex-
tracted from the adversary, except that the result is not a polynomial but a sum
of some rational functions since the view of A in G1 includes terms that have
δ or δ j +m jδ in the denominator. Note that PA(⃗Y ) := δ ∏

v
j=1(δ j +m jδ )RA(⃗Y ),

PC (⃗Y ) := δ ∏
v
j=1(δ j +m jδ )RA(⃗Y ) are polynomials in Y⃗ of degree v+ 2 since



all possible denominators are cancelled out. Multiplying on both sides of equa-
tion (2) by δ ∏

v
j=1(δ j +m jδ ), and replacing each group element by the corre-

sponding polynomial, we get the following polynomial:

T (⃗Y ) = PC (⃗Y )(ζ +m)δ −PA(⃗Y )PB(⃗Y )

+δ

v

∏
j=1

(δ j +m jδ )ic(⃗Y )+δ

v

∏
j=1

(δ j +m jδ )αβ . (3)

If adversary A distinguishes between the two games, there is at least one coef-
ficient of PC (⃗Y ) or PA(⃗Y ) accompanying A j or C j which is not zero, or at least
one coefficient of PB(⃗Y ) accompanying δ j or B j which is not zero. We show that
this implies in all cases that T (⃗Y ) ̸= 0.

We start by arguing that kA,α = 1 and kB,β = 1, since otherwise the term αβ

in equation (3) cannot be cancelled out. In other words, RA(⃗Y ) = α + . . . and
PB(⃗Y ) = β + . . ., so PA(⃗Y ) = δ ∏

v
j=1(δ j +m jδ )α + . . .. We next argue all cases

of interest separately:

(a) If the coefficient kB,δ j ̸= 0 for some j, then in PA(⃗Y )PB(⃗Y ) the coefficient of
αδ ∏

v
j=1(δ j+m jδ )δ j is kB,δ j but it is 0 for the rest of the terms (PC can have

no δ j terms because the group is asymmetric, ic(⃗Y ) does not have δ j terms
by definition and the last term has no monomials without β ). Therefore, the
coefficient of this polynomial is not zero and T ′(⃗Y ) ̸= 0.

(b) Similarly, if the coefficient kB,B j ̸= 0 for some j, then in PA(⃗Y )PB(⃗Y ) the
coefficient of αδ ∏

v
j=1(δ j +m jδ )B j is kB,B j , while in the other terms it is 0,

in which case T ′(⃗Y ) ̸= 0.
(c) If the coefficient kA,A j ̸= 0 for some j, then in PA(⃗Y )PB(⃗Y ) the coefficient of

monomial A jβ is kA,A j , while in the other terms it is 0 (because in PC there
can be no β term and ic(⃗Y ) does not have A j terms by definition). Therefore,
T ′(⃗Y ) ̸= 0.

(d) If the coefficient kA,C j ̸= 0 for some j, the analysis is the same as in (b).
Therefore, T ′(⃗Y ) ̸= 0.

(e) If the coefficient kC,A j ̸= 0, the only term with A j would be PC (⃗Y )(ζ j +m)δ

since we ruled out case (c). Therefore, T ′(⃗Y ) ̸= 0.
(f) If the coefficient kC,C j ̸= 0, the only term with C j would be PC (⃗Y )(ζ j +m)δ

since we ruled out case (d). Therefore, T ′(⃗Y ) ̸= 0.

Finally, we show that if T (⃗Y ) ̸= 0, there exists an adversary against the
(v+ 2,1)-DLOG Assumption. Indeed, suppose that T (⃗Y ) ̸= 0. Define the uni-
variate polynomial T ′(Z) as the result of substituting each variable in Y⃗ by an
expression in the same indeterminate Z, as α = dαZ + fα ,β = dβ Z + fβ ,δ j =



d jZ+ f j,δ = dZ+ f . If T ′(Z) ̸= 0 is not zero and we know from expression (2)
that T ′(z) = 0, adversary B can find z by factoring T ′, solving the DLOG
challenge. On the other hand, to argue that T ′(Z) ̸= 0 except with probability
(v+3)/p, we resort to the same argument as in the last step of Lemma 3.1.

This concludes the reduction to the knowledge soundness of Groth16, that
was reduced in the symmetric AGM to the (2n−1)-DLOG Assumption.

4 Empirical Analysis

We evaluate the efficiency of our presented simulation extractable variants of
Groth’s zk-SNARK using a prototype implementation in Arkworks 8 which is an
ecosystem written in Rust for developing and programming with zk-SNARKs.
A prototype implementation of both Groth16 [Gro16] and Groth and Maller’s
zk-SNARK [GM17] are already presented in Arkworks library, and in order
to obtain a fair comparison and a comprehensive outcome, we also present an
efficient implementation of Bowe and Gabizon’s construction [BG18] and our
initial construction [BPR20] in the same library 9

Our empirical analysis are done with the elliptic curves BLS12-381, MNT4-
298, MNT6-298, MNT4-753 and MNT6-753 that BLS12-381 is estimated to
achieve between 117 and 120 bits security [NCC19], and the other four curves
are estimated to achieve respectively 277, 287, 2113, 2137 security [BCTV14]. All
experiments are done on a desktop machine with Ubuntu 20.4.2 LTS, an Intel
Core i9-9900 processor at base frequency 3.1 GHz, and 128GB of memory.
Proof generations are done in the multi-thread mode, with 16 threads, while
proof verifications are done in a single-thread mode.

Following the benchmark strategy in Arkworks library, we report Per-Constraint
Proving Time (PCPT) and verification time for both the proposed constructions
in Sections 3 and A and compare their efficiency with (weak or strong) SE
zk-SNARKs of Groth16 [Gro16], Groth-Maller (GM17) [GM17] and Bowe-
Gabizon (BG18) [BG18]. Motivated by blockchain and large-scale applications
like Zcash [BCG+14], we also compare (deterministic) verifying time of all
constructions for the case that one needs to verify a large number of proofs for a
particular language simultaneously. In the verification step of our constructions,
one needs to compute exponentiation in G2 and GT , which can be optimized by
Multi-Scalar Multiplication (MSM) techniques.

Tab. 2 presents an empirical analysis of our constructions and compares
them with several relevant SE zk-SNARKs for an R1CS instance with 400.000

8 Available on https://github.com/arkworks-rs
9 Source codes of our implementations are publicly available on: https://github.com/
Baghery/ABPR22.

https://github.com/arkworks-rs
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Table 2. A comparison of practical efficiency of our proposed variants of Groth16 along with
the relevant SE zk-SNARKs for arithmetic circuit satisfiability. We report average per-constrain
proving time and verification time of 1,102 and 103 proofs for all zk-SNARKs with several el-
liptic curves. The benchmarks are done with an R1CS instance with 400.000 constrains and 10
input values, and the average of proving times are taken for 100 iterations and the verification
for 103 iterations. Proof generation is done in multi-thread setting with 16 threads, while the ver-
ification is done in the single-thread setting. EC: Elliptic Curve, SE: Simulation Extractability,
PCPT: Per-Constraint Proving Time, Ver.: Verifying, ns: nanosecond, ms: millisecond, s: sec-
onds, B: Byte, WSE: Weak Simulation Extractable, SSE: Strong Simulation Extractable, AGM:
Algebraic Group Model, GGM: Generic Group Model, RO: Random Oracle, CRH: Collision
Resistant Hash. Among the strong SE ones, we have highlighted the most efficient verification.

EC zk-SNARK SE Model PCPT
(ns)

Proof
Size (B)

Ver. 1
Proof

Ver. 102

Proofs
Ver. 103

Proofs
[Gro16, BKSV21] WSE AGM 5026 127.5 1.90 ms 0.190 s 1.90 s

[GM17] SSE GGM 11042 127.5 3.32 ms 0.332 s 3.32 s
[BG18] SSE GGM, RO 5052 223.1 3.52 ms 0.352 s 3.52 sBLS12-381

[BPR20], App. A SSE GGM, CRH 5042 223.1 4.85 ms 0.360 s 3.50 s
Section 3 SSE AGM, RO 5041 191.2 2.39 ms 0.194 s 1.91 s

[Gro16, BKSV21] WSE AGM 4830 149.0 2.67 ms 0.267 s 2.67 s
[GM17] SSE GGM 10025 149.0 3.80 ms 0.380 s 3.80 s
[BG18] SSE GGM, RO 4879 260.7 4.32 ms 0.432 s 4.32 sMNT4-298

[BPR20], App. A SSE GGM, CRH 4881 260.7 4.45 ms 0.311 s 3.05 s
Section 3 SSE AGM, RO 4875 223.5 3.33 ms 0.271 s 2.68 s

[Gro16, BKSV21] WSE AGM 5794 186.2 4.94 ms 0.494 s 4.94 s
[GM17] SSE GGM 11427 186.2 7.07 ms 0.707 s 7.07 s
[BG18] SSE GGM, RO 5831 335.2 8.07 ms 0.807 s 8.07 sMNT6-298

[BPR20], App. A SSE GGM, CRH 5824 335.2 8.34 ms 0.582 s 5.72 s
Section 3 SSE AGM, RO 5810 298.0 6.11 ms 0.501 s 4.97 s

[Gro16, BKSV21] WSE AGM 30247 376.5 29.1 ms 2.91 s 29.1 s
[GM17] SSE GGM 83120 376.5 41.6 ms 4.16 s 41.6 s
[BG18] SSE GGM, RO 30863 658.8 47.3 ms 4.73 s 47.3 sMNT4-753

[BPR20], App. A SSE GGM, CRH 30887 658.8 45.5 ms 3.41 s 33.8 s
Section 3 SSE AGM, RO 30760 564.7 33.9 ms 2.94 s 29.2 s

[Gro16, BKSV21] WSE AGM 33298 470.6 53.6 ms 5.36 s 53.6 s
[GM17] SSE GGM 83121 470.6 76.9 ms 7.69 s 76.9 s
[BG18] SSE GGM, RO 33358 847.1 88.5 ms 8.85 s 88.5 sMNT6-753

[BPR20], App. A SSE GGM, CRH 33359 847.1 85.4 ms 6.33 s 63.1 s
Section 3 SSE AGM, RO 33345 753.0 64.4 ms 5.42 s 53.8 s

constraints and 10 input variables. The reported times are the average values on
100 iterations for proof generation and 10.000 iterations for verification. As it
can be seen, similar to BG18 construction [BG18], provers of our constructions
are almost as efficient as Groth’s protocol, while due to a different NP charac-
terization, the GM17 scheme is considerably less efficient in comparison with
other schemes. For instance, to generate a proof for an arithmetic circuit with
400.000 constraints, with BLS12-381 curve, Groth16, BG18, and both of our
constructions require ≈ 2.01 seconds, while GM17 needs ≈ 4.41 seconds.



Among the compared strong SE constructions, GM17 has the shortest proof
size, namely 2 elements from G1 and 1 element from G2, and our construction
in Section 3 has the second shortest proof size, namely 2 elements from G1 and
2 elements from G2.

In the last two columns of Tab. 2, we report the verification time of all con-
structions for the case that we need to verify 102 or 103 proofs of the same lan-
guage. Once verifying a large number of proofs, our constructions use the MSM
technique to compute the needed exponentiations in all proofs at the same time,
which allows us to save on total verification time. As it can be seen, our con-
struction presented in Section 3 has the most efficient verification among the
strong SE constructions, and above all in the case of verifying a large number
of proofs, the total verification time in both of our constructions improve signif-
icantly using the MSM technique. In particular, the verification of our second
construction has very close efficiency to the original Groth16. For instance, in
the case of BLS12-381, once we verify 100 proofs, the total verification time
for Groth16 is ≈ 0.190 seconds, and for our second construction is ≈ 0.194. As
it can be seen the gap is small and actually the larger the number of proofs we
verify, the smaller this gap gets.

5 Conclusion

Over the last few years, various SE zk-SNARKs have been proposed that achieve
(strong) simulation extractability [GM17, BG18, AB19, Lip22], which is a secu-
rity property stronger than knowledge soundness and prevents attacks from the
adversaries who have seen simulated proofs. Simulation extractability implies
non-malleability of proofs [GM17] and its variant with black-box extraction is
shown to be sufficient for achieving UC-security in NIZK arguments [Gro06].
SE zk-SNARKs allow us to build succinct signature-of-knowledge schemes
[CL06, GM17], and they can also be used to build chameleon hash functions
[KDS20].

In this paper, we revised the SE variation of Groth16 proposed in [BG18]
and presented a new variation. Our initial construction from CANS 2020 ([BPR20],
A) requires 4 pairings in verification, instead of 5 in [BG18], and also avoids
random oracles in exchange for using a collision resistant hash function. It has
a more efficient prover, crs size, and proof size in comparison with [AB19], that
has also 4 pairings in the verification. Our new variant used some subtle mod-
ifications to shorten the proof size and improved the verification of Bowe and
Gabizon’s construction significantly [BG18]. In this variant, we showed that us-
ing a random oracle, we can achieve strong SE in Groth16, at the cost of one
additional G2 element in the proof, and one new exponentiation in G2 in the



verification, where the later introduces negligible overhead to the verification of
Groth16 in the cases that one needs to verify a large number of proofs for the
same circuit (e.g. Zcash [BCG+14]). We evaluated the empirical performance of
our constructions in Arkworks library. Our evaluations showed that our construc-
tions are among the most efficient SE zk-SNARKs. Particularly, in large-scale
applications, the CRS, the prover, and the verifier of our new SE zk-SNARK are
almost as efficient as the original Groth16. Just, in our case the proof consists
of 4 group elements, instead of 3 in the original construction of Groth16. This
seems to be a minimal cost to achieve strong SE in Groth16.
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A A Simulation Extractable zk-SNARK without RO

In this section, we recall the construction of our first (strong) SE variant of
Groth16 based on Bowe and Gabizon’s scheme [BG18] which is presented
in [BPR20].

Scheme Definition. In Fig. 2, we recall the construction of our first variation
of Groth16 [BPR20], that similarly works with quadratic arithmetic programs.
In this construction, the Proof of Knowledge (PoK) of the DLOG of [δ ′]2 w.r.t.
[δ ]2 is changed to another PoK in the GGM that relies on the collision resis-
tance property of the hash function. In Fig. 2, the elements [αβ , t(x),γt(x)]T
are redundant and can in fact be computed from the rest of the elements in the
crs. Alternatively, one can describe Groth16 as corresponding to ζ = 1,γ = 0
and where the proof consists only of [A,C]1 , [B]2. Differences with Groth16 are
highlighted. We briefly give an intuition behind the scheme in the following.

Avoiding Random Oracle. In [BPR20], it is proven that the variation of Groth16
described in Fig. 2, guarantees (1) perfect completeness, 2) perfect zero-knowledge
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and 3) simulation-extractability in the asymmetric GGM. The proof of construc-
tion uses the collision resistance property of the hash function and the GGM.
Roughly speaking, the new variable γ gives some additional guarantees because
to compute t(x) (γ+m)

(δ ′+δm) from D j such that m j ̸= m, it is necessary to know both
1

(δ ′+δm) and γ

(δ ′+δm) , but this is only possible when δ ′+δm = kδ . Then, either
one has the knowledge of the DLOG of δ ′ respect to δ (k−m), which is straight-
forward, or either one has re-used δ ′j and m j from some jth query. The last case
is discarded when one reaches that same message had to be re-used, m = m j,
which breaks collision resistance of the hash.



Setup, crs← K(R,zR): Similar to the original scheme pick x,α,β ,δ ,γ ← Z∗p, H ←H ,
and returns crs defined as the following,

(crsP,crsV) := crs←



[
α,β ,δ ,{xi}n−1

i=0 ,{u j(x)β + v j(x)α +w j(x)}l
j=0,

γt(x)
δ

,

{
u j(x)β + v j(x)α +w j(x)

δ

}m

j=l+1
,

{
xit(x)

δ

}n−2

i=0

]
1, [β ,δ ,{x

i}n−1
i=0 ]2, [αβ , t(x), γt(x) ]T ,H

 .

Prover, π ← P(R,zR,crsP, x⃗ = (a1, . . . ,al), w⃗ = (al+1, . . . ,am)): assuming a0 = 1, it acts
as follows,

1. Selects a random element ζ ← Z∗p, and sets [δ ′]2 := ζ [δ ]2
2. Let A†(X)← ∑

m
j=0 a ju j(X), B†(X)← ∑

m
j=0 a jv j(X),

3. Let C†(X)← ∑
m
j=0 a jw j(X),

4. Set h(X) = ∑
n−2
i=0 hiX i← (A†(X)B†(X)−C†(X))/t(X),

5. Set [h(x)t(x)/δ ′]1← (1/ζ )(∑n−2
i=0 hi

[
xit(x)/δ

]
1),

6. Set ra←r Zp; Set [A]1← ∑
m
j=0 a j

[
u j(x)

]
1 +[α]1 + ra [δ

′]1 ,
7. Set rb←r Zp; Set [B]2← ∑

m
j=0 a j

[
v j(x)

]
2 +[β ]2 + rb [δ

′]2 ,

8. Set [C]1← rb [A]1 + ra

(
∑

m
j=0 a j

[
v j(x)

]
1 +[β ]1

)
+

(1/ζ ) ∑
m
j=l+1 a j(

[
(u j(x)β + v j(x)α +w j(x))/δ

]
1)+

[
h(x)t(x)/δ ′

]
1,

9. Set m = H([A]1 ∥ [B]2 ∥ [C]1 ∥ [δ ′]2) , where H : {0,1}∗ → Z∗p is a secure hash
function,

10. Compute [D]1 =
m

ζ+m

[
t(x)
δ

]
1
+ 1

ζ+m

[
γt(x)

δ

]
1
=
[
(m+γ)t(x)

δ ′+mδ

]
1

11. Return π := ([A,C, D ]1 ,
[
B, δ ′

]
2).

Verifier, {1,0}← V(R,zR,crsV, x⃗ = (a1, . . . ,al),π = ([A,C,D]1 , [B,δ
′]2)): assuming

a0 = 1, and setting m = H([A]1 ∥ [B]2 ∥ [C]1 ∥ [δ ′]2) checks if

1. [A]1 [B]2 = [C]1 [δ
′]2 +

(
∑

l
j=0 a j

[
u j(x)β + v j(x)α +w j(x)

]
1

)
[1]2 +[αβ ]T

2. [D]1 [δ
′+δm]2 = m [t(x)]T +[γt(x)]T (Note that [t(x)]T and [γt(x)]T

are added to the CRS)
and returns 1 if both checks pass, otherwise return 0.

Simulator, π ← Sim(R,zR,crsV, x⃗ = (a1, . . . ,al), t⃗s): Given the simulation trapdoors
t⃗s := (β ,δ ) acts as follows,

1. Choose random ζ ←r Z∗p and set δ ′ := ζ δ

2. Choose A,B←r Zp
3. Let [C]1 = [(A ·B−∑

l
j=0 a j(u j(x)β + v j(x)α +w j(x))−αβ )/δ ′]1

4. Let m = H([A]1 ∥ [B]2 ∥ [C]1 ∥ [δ ′]2)

5. [D]1 =
m

ζ+m

[
t(x)
δ

]
1
+ 1

ζ+m

[
γt(x)

δ

]
1
=
[
(m+γ)t(x)

δ ′+mδ

]
1

6. Return π := ([A,C, D ]1 ,
[
B, δ ′

]
2).

Fig. 2. Our initial strong SE variant of Groth16 for R along with a modification of the Boneh-
Boyen signature. In the protocol, H is a family of collision resistant hash functions that map to
Z∗p [BPR20].
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