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Abstract

Threshold Private Set Intersection (PSI) allows multiple parties to compute the intersection of their
input sets if and only if the intersection is larger than n− t, where n is the size of the sets and t is some
threshold. The main appeal of this primitive is that, in contrast to standard PSI, known upper-bounds
on the communication complexity only depend on the threshold t and not on the sizes of the input sets.

Current Threshold PSI protocols split themselves into two components: A Cardinality Testing phase,
where parties decide if the intersection is larger than some threshold; and a PSI phase, where the
intersection is computed. The main source of inefficiency of Threshold PSI is the former part.

In this work, we present a new Cardinality Testing protocol that allows N parties to check if the
intersection of their input sets is larger than n − t. The protocol incurs in Õ(Nt2) communication
complexity. We thus obtain a Threshold PSI scheme for N parties with communication complexity
Õ(Nt2).

1 Introduction

Suppose Alice holds a set SA and Bob a set SB . Private set intersection (PSI) is a cryptographic primitive
that allows each party to learn the intersection SA ∩ SB and nothing else. In particular, Alice gets no
information about SB \ SA (and vice-versa). The problem has attracted a lot of attention through the
years, with an extended line of work proposing solutions in a variety of different settings (e.g., [Mea86,
FNP04, KS05, DMRY09, DKT10, DCW13, PSZ14, PSSZ15, KKRT16, RR17a, HV17, RR17b, PSWW18,
GN19, GS19a, PRTY19]). Also, numerous applications have been proposed for PSI such as contact discovery,
advertising, etc (see for example [IKN+17] and references therein). More recently, PSI has also been proposed
as a solution for private contact tracing (e.g., [BBV+20]).

Threshold PSI. In this work, we focus on a special setting of PSI called Threshold PSI. Here, the parties
involved in the protocol learn the output if the intersection between the input sets of the parties is very
large, say n− t, where n is the size of the input sets and t is some threshold such that t << n. Otherwise,
they learn nothing about the intersection. This is in contrast with standard PSI where the parties always
get the intersection, no matter its size.

The main reason for considering this problem (apart from its numerous applications, which we discuss
next) is that the amount of communication needed is much smaller than for standard PSI: In particular,
there are threshold PSI protocols whose communication complexity depends only on the threshold t and not
on the size of the input sets as for standard PSI [GS19a].

Despite its theoretical and practical appeal, there are just a few works that consider this problem [HOS17,
GN19, GS19a], and just one of them achieves communication complexity independent of n [GS19a], in the
two party setting.
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1.1 Applications of Threshold PSI

A wide number of applications has been suggested for Threshold PSI in previous works such as applications
to dating apps or biometric authentication mechanisms [GS19a].

One of the most interesting applications for Threshold PSI is its use in carpooling (or ridesharing) apps.
Suppose two (or more) parties are using a carpooling app, which allows them to share a vehicle if their
routes have a large intersection. However, due to privacy issues, they do not want to make their itinerary
public. Threshold PSI solves this problem in a simple way [HOS17]: The parties can engage in a Threshold
PSI protocol, learn the intersection of the routes and, if the intersection is large enough, share a vehicle.
Otherwise, they learn nothing and their privacy is maintained.

PSI using Threshold PSI. Most of current protocols for Threshold PSI (including ours) are splitted
into two parts: i) a Cardinality Testing, where parties decide if the intersection is larger than some threshold
n − t; and ii) secure computation of the intersection of the input sets (which we refer to as the PSI part).
The communication complexity of these two parts should depend only on the threshold t and not on the
input sets’ size n.

Threshold PSI protocols of this form can be used to efficiently compute the intersection, even when no
threshold on the intersection is known a priori by the parties, by doing an exponential search for the right
threshold. In this case, parties can proceed as follows:

1. Run a Cardinality Testing for some t (say t = 1).

2. If it succeeds, perform the PSI part. Else, run again the Cardinality Test for t = 2t.

3. Repeat Step 2 until the Cardinality Testing succeeds for some threshold t and the set intersection is
computed.

By following this blueprint, parties are sure that they overshoot the right threshold by a factor of at most
2. That is, if the intersection is larger than n−t′, then the Cardinality Testing will succeed for t′ ≤ 2t. Thus,
they can compute the intersection incurring only in a factor of 2 overhead over the best insecure protocol.
In other words, PSI protocols can be computed with communication complexity depending on the size of
the intersection, and not on the size of the sets.

This approach can be useful in scenarios where parties suspect that the intersection is large but they do
not know exactly how large it is.

1.2 Our Contributions

In the following, N denotes the number of parties in a multi-party protocol and t is the threshold in a
Threshold PSI protocol. Below, we briefly describe our results.

Multi-party Cardinality Testing. We develop a new Cardinality Testing scheme that allows N parties
to check if the intersection of their input sets, each having size n, is larger than n − t for some threshold
t << n. The protocol needs Õ(Nt2) bits of information to be exchanged.

Along the way, we develop new protocols to securely compute linear algebra related functions (such
as compute the rank of an encrypted matrix, invert a encrypted matrix or even solve an encrypted linear
system). Our protocols build on ideas of previous works [NW06, KMWF07], except that our protocols are
specially crafted for the multi-party case. Technically, we rely heavily on Threshold Public-Key Encryption
schemes which are additively homomorphic (such schemes can be constructed from DDH [Elg85], DCR
[Pai99], or from several pairings assumptions [BBS04, BGN05]) to perform linear operations.

Multi-party Threshold PSI. We then show how our Cardinality Testing protocol can be used to build
a Threshold PSI protocol in the multi-party setting. Our construction achieves communication complexity
of Õ(Nt2).
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1.2.1 Concurrent Work

Recently, Ghosh and Simkin [GS19b] updated their paper with a generalization to the multi-party case which
is similar to the one presented in this paper in Section 4. However, they leave as a major open problem the
design of a new cardinality-test that extends nicely to multiple parties, a problem on which we make relevant
advances in this work.

In a concurrent work. Badrinarayanan, Miao and Rindal [BMR20] also proposed new protocos for
Threshold PSI in the multi-party setting. Their results complement ours. In particular, they propose an
FHE-based approach to solve the same problem as we do with a communication complexity of O(Nt).
However, we remark that the goal of our work was to reduce the assumptions needed for Threshold PSI.
They also propose an TPKE-based protocol that solves a slightly different problem: the parties learn the
intersection if and only if the set difference between the sets is large, that is,

(
∪Ni=0Si

)
\
(
∩Ni=0Si

)
. This

protocol achieves the same communication complexity as ours.

1.3 Technical Outline

We now give a high-level overview of the techniques we use to achieve the results discussed above. For precise
statements, we refer the reader to the technical sections.

1.3.1 Threshold PSI: The Protocol of [GS19a]

Consider two parties Alice and Bob, with their respective input sets SA and SB of size n. Suppose that they
want to know the intersection SA ∩ SB iff |SA ∩ SB | ≥ n − t for some threshold t � n. To compute the
intersection, both parties encode their sets into polynomials PA(x) =

∏n
i (x − ai) and PB(x) =

∏n
i (x − bi)

over a large finite field F, where ai ∈ SA and bi ∈ SB . The main observation of Ghosh and Simkin [GS19a]
is that set reconciliation techniques (developed by Minsky et al. [MTZ03]) can be applied in this scenario:
if |SA ∩ SB | ≥ n− t, then

PA(x)

PB(x)
=
PA∩B(x)

PA∩B(x)

PA\B(x)

PB\A(x)
=
PA\B(x)

PB\A(x)

and, moreover, degPA\B = degPB\A = t. Hence, Alice and Bob just need to (securely) compute O(t)
evaluation points of the rational function PA(x)/PB(x) = PA\B(x)/PB\A(x) and, after interpolation on
these points, Bob can recover the denominator (which reveals the intersection).

Of course, Bob should not be able to recover the numerator PA\B . So, [GS19a] used an Oblivious Linear
Evaluation (OLE) scheme to mask the numerator with a random polynomial that hides PA\B from Bob.

This protocol is only secure if Alice and Bob are absolutely sure that |SA ∩ SB | ≥ n − t. Otherwise,
additional information could be leaked about the respective inputs. Consequently, Alice and Bob should
perform a Cardinality Testing protocol, which reveals if |SA ∩ SN | ≥ n− t and nothing else.

Limitations of the protocol when extending to the multi-party setting. It turns out that the main
source of inefficiency when extending Ghosh and Simkin protocol to the multi-party setting is the Cardinality
Testing they use. In [GS19a], Alice and Bob encode their sets into polynomials QA(X) =

∑n
i x

ai and

QB(X) =
∑n
i x

bi , respectively, where ai ∈ SA and bi ∈ SB . Then, they can check if Q̃(x) = QA(x)−QB(x)
is a sparse polynomial. If it is, we conclude that the set (SA ∪ SB) \ (SA ∩ SB) is small. By disposing O(t)
evaluations of the polynomial Q̃(x) in a Hankel matrix [GJR10] and securely computing its determinant (via
a generic secure linear algebra protocol from [KMWF07]), both parties can determine if |SA ∩ SB | ≥ n− t.
The total communication complexity of this protocol is O(t2).1

However, if we were to naively extend this approach to the multi-party setting, we would have N parties
computing, say,

Q̃(x) = NQ1(x)−Q2(x)− · · · −QN (x)

1Given this, we conclude that the communication complexity of the Threshold PSI protocol of [GS19a] is dominated by this
Cardinality Testing protocol.
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which is a sparse polynomial only if N is small. Moreover, if we were to compute the sparsity of this
polynomial using the same approach, we would have a protocol with communication complexity O((Nt)2).

1.3.2 Our Approach

Given the state of affairs presented in the previous section, it seems we need to take a different approach
from the one of [GS19a] if we want to design an efficient Threshold PSI protocol for multiple parties.

Interlude: Secure Linear Algebra. Recall that in the setting of secure linear algebra (as in [NW06]
and [KMWF07]), there are two parties, one holding an encryption of a matrix Enc(pk,M) and another one
holding the corresponding secret key sk. Their goal is to compute an encryption of a (linear algebra related)
function of the matrix M, such as the rank, the determinant of M or, most importantly, find a solution
x for the linear system Mx = y where both M and y are encrypted. We can easily extend this problem
to the multi-party case: Consider N parties, P1, . . . ,PN , each one holding a share of the secret key of a
Threshold PKE scheme. Additionally, P1 has an encrypted matrix. The goal of all the parties is to compute
an encryption of a (linear algebra related) function of the encrypted matrix.

We observe that the protocols for secure linear algebra presented in [KMWF07] can be extended to the
multiparty setting by replacing the use of an (additively homomorphic) PKE and garbled circuits for an
(additively homomorphic) Threshold PKE2. Hence, our protocols allow N parties to solve a linear system
of the form Mx = y under the hood of a Threshold PKE scheme.

Cardinality Testing via Degree Test of a Rational Function. Consider again the encodings PSi
(x) =∏n

j (x− a(i)
j ) where a

(i)
j ∈ Sj , for N different sets, and the rational function3

PS1
+ · · ·+ PSN

PS1

=
PS1\(∩N

j=1Sj) + · · ·+ PSN\(∩N
j=1Sj)

PS1\(∩N
j=1Sj)

.

Note that, if the intersection ∩Si is larger than n− t, then degPS1\(∩N
j=1Sj) = · · · = degPSN\(∩N

j=1Sj) ≤ t.
Therefore, the Cardinality Testing boils down to the following problem: Given a rational function f(x) =

P̃1(x)/P̃2(x), can we securely decide if deg P̃1 = deg P̃2 ≤ t having access to O(t) evaluation points of f(x)?
Our crucial observation is that, if we interpolate two different rational functions fV and fW on different

two support sets V = {vi, f(vi)} and W = {wi, f(wi)} each one of size 2t, then we have:

1. fV = fW if degP1 = degP2 ≤ t

2. fV 6= fW if degP1 = degP2 > t

except with negligible probability over the uniform choice of vi, wi.
Moreover, interpolating a rational function can be reduced to solving a linear system of equations. Hence,

by using the Secure Linear Algebra tools developed before, we can perform the degree test revealing nothing
else than the output. In other words, we can decide if the size of the intersection is smaller than n− t while
revealing no additional information about the parties’ input sets.

Security of the protocol. We prove security of our Cardinality Testing in the UC framework [Can01].
However, there is a subtle issua in our security proof. Namely, our secure linear algebra protocols cannot
be proven UC-secure since the inputs are encrypted under a public key which, in the UC setting, needs to
come from somewhere.

2We need a bit-conversion protocol such as [ST06] to convert between binary circuits and algebra operations.
3We actually need to randomize the polynomials in the numerator to guarantee correctness, that is, we need to multiply

each term in the numerator by a uniformly chosen element. This is in contrast with the two-party setting where correctness
holds even without randomizing the numerator. However, we omit this step for simplicity.
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We solve this problem by using the Externalized UC framework [CDPW07]. In this framework, the secure
linear algebra ideal functionalities all share a common setup which, in our case, is the public key (and the
corresponding secret key shares). We prove security of our secure linear algebra protocols in this setting.

Since the secure linear algebra protocols are secure if they all share the same public key, then, on the
Cardinality Testing, we just need to create this public key and share it over these functionalities. Thus, we
prove standard UC-security of our Cardinality Testing.

Badrinarayanan et al. [BMR20] also encounter the same problem as we did and they opted to not prove
security of the secure linear algebra protocols individually, but rather prove security only for their main
protocol (where the public key is created and shared among these smaller protocols).

Multi-party PSI. Having developed a Cardinality Testing, we can now focus on securely computing the
intersection. In fact, our protocol for computing the intersection can be seen as a generalization of Gosh

and Simkin protocol [GS19a]. Again, by encoding the sets as above (that is, PSi
(x) =

∏n
j (x − a(i)

j ) where

a
(i)
j ∈ Sj and Sj is the set of party j) and knowing that the intersection is larger than n − t, parties can

securely compute the rational function4 (PS1
+ · · · + PSN

)/PS1
. By interpolating the rational function on

any O(t) points, party 1 can recover the denominator and compute the intersection.
The main difference between our protocol and the one in [GS19a] is that we replace the OLE calls used

in [GS19a] by a Threshold additively homomorphic PKE scheme (which can be seen as the multi-party
replacement of OLE).

1.4 Other Related Work

Oblivious Linear Algebra. Cramer and Damg̊ard [CD01] proposed a constant-round protocol to securely
solve a linear system of unknown rank over a finite field. Since they were mainly focused on round-optimality,
the communication cost of their proposal is Ω(t3) for O(t2) input size. Bouman et al. [BdV18] recently
constructed a secure linear algebra protocol for multiple parties, however they focused on computational
complexity.

Other secure linear algebra schemes in the two-party setting were presented by Nissim and Weinreb in
[NW06] and Kiltz et al. in [KMWF07]. In the following, consider (square) matrices of size t over a field F.
These two works take different approaches: [NW06] obliviously solves linear algebra related problems directly
via Gaussian elimination in O(t2) communication complexity, for a square matrix of size t. However, their
approach has an error probability that decreases polynomially with t. In other words, the error probability
is only sufficiently small when applied to linear system with large matrices. Whereas [KMWF07] has error
probability decreases polynomially with |F|, which is negligible when F is of exponentially size.5

2 Preliminaries

If S is a finite set, then x←$S denotes an element x sampled from S according to a uniform distribution
and |S| denotes the cardinality of S. If A is an algorithm, y ← A(x) denotes the output y after running A
on input x. For N ∈ N, we define [N ] = {1, . . . , N}.

Given two distributions D1, D2, we say that they are computationally indistinguishable, denoted as
D1 ≈ D2, if no probabilistic polynomial-time (PPT) algorithm is able to distinguish them.

Throughout this work, we denote the security parameter by λ.

4Again, we omit the randomization of the polynomials. Actually, without randomization, these methods (including [GS19a])
are exactly the same as the technique for set reconciliation problem in [MTZ03].

5This is important to us since, in the Threshols PSI setting, t� n where t is the threshold and n is the set size. Kiltz et al.
solve linear algebra problems via minimal polynomials, and use adaptors between garbled circuits and additive homomorphic
encryption to reduce round complexity. In this work, we extend Kiltz’s protocol to the multiparty case without using garbled
circuits (otherwise the circuit size would depend on number of parties) while preserving the same communication complexity
for each party (O(t2)).
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2.1 Threshold Public-key Encryption

We present some ideal functionalities regarding threshold public-key encryption (TPKE) schemes. In the
following, N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret key and the corresponding
public key. That is, on input (sid,Pi), FGen outputs (pk, ski) to each party party where (pk, sk1, . . . , skN )←
TPKE.Gen(1λ, N).

Moreover, we define the functionality FDecZero, which allows N parties, each of them holding a secret
share ski, to learn if a ciphertext is an encryption of 0 and nothing else. That is, FDecZero receives as input
a ciphertext c and the secret shares of each of the parties. It outputs 0, if 0 ← Dec(sk, . . .Dec(skN , c) . . . ),
and 1 otherwise. Note that these functionalities can be securely realized using on varies PKE schemes such
as El Gamal PKE or Pailler6PKE [HV17].

We also assume that the underlying TPKE (or plain PKE) is always additively homomorphic, unless
stated otherwise (see Supplementary Material A.1).

2.2 UC Framework and Ideal Functionalities

In this work, we use the UC framework by Canetti [Can01] to analyze the security of our protocols.7

Throughout this work, we only consider semi-honest adversaries, unless stated otherwise. We denote the
underlying environment by Z. For a protocol π and a real-world adversary A, we denote the real-world
ensemble by EXECπ,A,Z Similarly, for an ideal functionality F and a simulator Sim, we denote the ideal-
world ensemble by IDEALF,Sim,Z .

Definition 1. We say that a protocol π UC-realizes F if for every PPT adversary A there is a PPT simulator
Sim such that for all PPT environments Z,

IDEALF,Sim,Z ≈ EXECπ,A,Z

where F is an ideal functionality.

In the following, we present some ideal functionalities that will be recurrent for the rest of the paper.

Multi-Party Threshold Private Set Intersection. This ideal functionality implements the multi-party
version of the functionality above. Here, each of the N parties input a set and they learn the intersection if
and only if the intersection is large enough.

FMTPSI functionality

Parameters: sid, N, t ∈ N known to both parties.

• Upon receiving (sid,Pi, Si) from party Pi, FMTPSI stores Si and
ignores future messages from Pi with the same sid.

• Once FMTPSI has stored all inputs Si, for i ∈ [n], it does the
following: If |S1 \

(
∩Ni=2Si

)
| ≤ t, FMTPSI outputs S∩ = ∩Ni=1Si.

Else, it outputs ⊥.

2.2.1 Externalized UC Protocol with Global Setup

We introduce a notion of protocol emulation from [CDPW07], called externalized UC emulation (EUC),
which is a simplified version of UC with global setup (GUC).

6We will assume the message space of Paillier’s cryptosystem as a field as also mentioned in [KMWF07].
7We refer the reader to [Can01] for a detailed explanation of the framework.
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Definition 2 (EUC-Emulation [CDPW07]). We say that π EUC-realizes F with respect to shared func-
tionality Ḡ (or, in shorthand, that π Ḡ-EUC-emulates φ) if for any PPT adversary A there exists a PPT
adversary Sim such that for any shared functionality Ḡ, we have:

IDEALḠF,Sim,Z ≈ EXECḠπ,A,Z

Notice that the formalism implies that the shared functionality Ḡ exists both in the model for executing
π and also in the model for executing the ideal protocol for F , IDEALF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended to protocols that use several
different shared functionalities (instead of only one).

2.3 Polynomials and Interpolation

We present a series of results that will be useful to analyze correctness and security of the protocols presented
in this work.

The following lemma show how we can mask a polynomial of degree less than t using a uniformly random
polynomial.

Lemma 1 ([KS05]). Let Fp be a prime order field, P (x), Q(x) be two polynomials over Fp such that degP =
degQ = d ≤ t and gcd(P,Q) = 1. Let R1, R2←$Fp such that degR1 = degR2 = t. Then U(x) =
P (x)R1(x) +Q(x)R2(x) is a uniformly random polynomial with degU ≤ 2t.

Note that this result also applies for multiple polynomials as long as they don’t share a common factor
(referring to Theom.2 and Theom.3 of [KS05] for more details).

We say that f is a rational function if f(x) = P (x)
Q(x) for two polynomials P and Q.

The next two lemmata show that we can recover a rational function via interpolation and that this
function is unique.

Lemma 2 ([MTZ03]). Let f(x) = P (x)/Q(x) be rational function where degP (x) = m and degQ(x) = n.
Then f(x) can be uniquely recovered (up to constants) via interpolation from m+n+1 points. In particular,
if P (x) and Q(x) are monic, f(x) can be uniquely recovered from m+ n points.

Lemma 3 ([MTZ03]). Choose V to be a support set8 of cardinality m1 + m2 + 1. Then, there is a unique
rational function f(x) = P (x)/Q(x) that can be interpolated from V , and P (x) has degree at most m1 and
Q(x) has degree at most m2.

3 Obliviously Degree Test for Rational Functions

Suppose we have a rational function f(x) = P (x)/Q(x) where P (x) and Q(x) are two polynomials with
the same degree. In this section, we present a protocol that allows several parties to check if degP (x) =
degQ(x) ≤ t for some threshold t ∈ Z. To this end, and inspired by the works of [NW06, KMWF07],
we present a multi-party protocol to obliviously solve a linear system Mx = y over a finite field F with
communication complexity O(t2kλN), where M ∈ Ft×t, log |F| = k and N is the number of parties involved
in the protocol.

3.1 Oblivious Linear Algebra

In this section, we state the Secure Linear Algebra protocols that we need to build our degree test protocol.
For the sake of briefness, the protocols are presented in Appendix B These protocol all have the following
form: There is a public key of a TPKE that encrypts a matrix M and every party involved in the protocol
has a share of the secret key.

8A support set is a set of pairs (x, y).
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Note that if we let parties Pi input their encrypted matrix Enc(M), then the ideal functionality F
has to know the secret key (by receiving secret key shares from all parties), otherwise F cannot compute
the corresponding function correctly. However, this will cause an unexpected problem in security proof as
mentioned in [BMR20]: The environment Z will learn the secret key as well since it can choose inputs for
all parties. We fix this by relying on global UC framework where exists a shared functionality Ḡ in charge
of distributing key pairs (FGen from Section 2.1).

3.1.1 Oblivious matrix multiplication

We begin by presenting the ideal functionality for a multi-party protocol to jointly compute the product of
two matrices, under a TPKE. The protocol is presented in Appendix B.1.

Ideal functionality. The ideal functionality for oblivious matrix multiplication is presented below.

FOMM functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski
distributed to each party Pi via FGen.

• Upon receiving (sid,P1,Enc(pk,Ml),Enc(pk,Mr)) from party
P1 (where Ml,Mr ∈ Ft×t), FOMM outputs Enc(pk,Ml ·Mr)
to P1 and (Enc(pk,Ml),Enc(pk,Mr),Enc(pk,Ml ·Mr)) to all
other parties Pi, for i = 2, . . . , N .

3.1.2 Securely Compute the Rank of a Matrix

We present the ideal functionality to obliviously compute the rank of an encrypted matrix. The protocol is
presented in Appendix B.2.

Ideal Functionality. The ideal functionality of oblivious rank computation is defined below.

FORank functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski
distributed to each party Pi via FGen.

• Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where
M ∈ Ft×t), FORank outputs Enc(pk, rank(M)) to P1 and
(Enc(pk,M),Enc(pk, rank(M)) to all other parties Pi, for i =
2, . . . , N .

3.1.3 Oblivious Linear System Solver

We now show how N parties can securely solve a linear system using the multiplication protocol above. We
follow the ideas from [KMWF07] to reduce the problem to minimal polynomials, and the only difference is
we focus on multiparty setting.

8



The protocol is presented in Appendix B.5. Informally, we evaluate an arithmetic circuit following the
ideas of [CDN01], and for the unary representation, a binary-conversion protocol [ST06] is required. All of
above protocols can be based on Paillier cryptosystem.

Ideal Functionality. We give an ideal functionality of oblivious linear solve for multiparty as follows.

FOLS functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q ,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

Global Setup: pk public-key of a threshold PKE scheme and ski
distributed to each party Pi via FGen.

• Upon receiving (sid,P1,Enc(pk,M),Enc(pk,y)) from party P1

(assuming there is a solution x for Mx = y), FOLS outputs
Enc(pk,x) such that Mx = y.

3.2 Oblivious Degree Test

We now present the main protocol of this section and the one that will be using in the construction of
Threshold PSI. Given a rational function P (x)/Q(x) (for two polynomials P (x) and Q(x) with the same
degree) and two support sets V1, V2, the protocol allows us to test if the degree of the polynomials is less
than some threshold t. Of course, we can do this using generic approaches like garbled circuits. However, we
are interested in solutions with communication complexity depending on t (even when the degree of P (x) or
Q(x) is much larger than t).

Ideal functionality. The ideal functionality for degree test of rational functions is presented below.

FSDT functionality

Parameters: sid, N, q, n, t ∈ N, F is a field of order q and t is a pre-
defined threshold, known to the N parties involved in the protocol.
pk public-key of a threshold PKE scheme. α1, . . . , α4t+2←$F known
to the N parties.

Global Setup: pk public-key of a threshold PKE scheme and ski
distributed to each party Pi via FGen.

• Upon receiving (sid,P1,Enc(pk, f1), . . . ,Enc(pk, f4t+2)) from
party P1 (where fi = P1(αi)/P2(αi), and P1, P2 are two co-
prime polynomials with same degree t′ (additionally, P2 is
monic), FSDT outputs 0 if t′ ≤ t; otherwise it outputs 1.

Protocol. We present the Protocol 1 for secure degree test which we denote by secDT. The main idea of
the protocol is to interpolate the rational function on two different support sets and check if the result is the
same in both experiments.

9Note that this is the linear system that we need to solve in order to perform rational interpolation [MTZ03].
10The polynomial multiplication can be expressed as matrix multiplication.
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Protocol 1 Secure Degree Test secDT

Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE = (Gen,Enc,Dec).
The parties have access to the ideal functionalities FORank, FOLS, FOMM and FDecZero. The values
{α1, . . . , α4t+2} ←$F4t+2 are also public.

Input: Party P1 inputs {(α1,Enc(pk, f1)), . . . , (α4t+2,Enc(pk, f4t+2))}, where fi = P1(αi)
P2(αi)

, where

P1(x), P2(x) are two polynomials with degree deg(P1) = deg(P2) = t′ = poly(log |F|) and such that
P2(αi) 6= 0 for all i ∈ [2t].

1: P1 sets {(αj ,Enc(pk, fj))}j∈[2t+1] = {(vj ,Enc(pk, fv,j))}j∈[2t+1], and {(αj ,Enc(pk, fj))}j∈{2t+2,...,4t+2} =
{(wj ,Enc(fw,j))}j∈[2t+1]. It homomorphically generates an encrypted linear system consisting of

Enc(pk,Mr) = Enc

pk,

 rt1 . . . 1 −fr,1 · rt−1
1 . . . −fr,1

...
...

...
...

rt2t+1 . . . 1 −fr,2t+1 · rt−1
2t+1 . . . −fr,2t+1




and

Enc(pk,yr) = Enc

pk,

 fr,1 · rt1
...

fr,2t+1 · rt2t+1




for r = {v, w}.9
2: All parties jointly compute Enc(pk, rank(Mr)− rank ([Mr||y]) for r ∈ {v, w} through two invocations of
FORank and mutually decrypt the ciphertext via FDecZero. If the result is different from 0, they abort the
protocol.

3: All parties mutually solve the two linear systems above using FOLS such that each party gets

Enc
(
pk,
(
c

(1)
v ||c(2)

v

))
and Enc

(
pk,
(
c

(1)
w ||c(2)

w

))
, where Mr

[
c

(1)
r

c
(2)
r

]
= yr, for r ∈ {v, w}.

4: All parties compute the polynomials C
(b)
r (x) = xt +

∑t
j=0 c

(b)
r,j+1x

j , for r ∈ {v, w} and b ∈ {1, 2}, and
compute

Enc(pk, z) = Enc(pk, C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

by invoking FOMM.10

5: All parties jointly use FDecZero to check if z = 0. If it is, output 1. Otherwise, output 0.
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Comments. Suppose that, for an interpolation point αi, the rational function f(x) = P (x)/Q(x) is well-
defined but Q(αi) = P (αi) = 0 such that we cannot compute f(αi) by division. In this case 11 , the parties
evaluate P̃ (x) = P (x)/(x−αi) and Q̃(x) = Q(x)/(x−αi) on αi and set f(αi) = P̃ (αi)/Q̃(αi). These points
are called tagged values and this strategy is used in [MTZ03]. In more details, instead of using Enc(pk, fi)

for αi, we will use a tagged pair
(
Enc

(
pk, s

(1)
i

)
,Enc

(
pk, s

(2)
i

))
where s

(1)
i = P1(αi)

x−αi
and s

(2)
i = P2(αi)

x−αi
.

Correspondingly, replace each row of Enc(pk,Mr) and Enc(pk,yr) with

Enc
(
pk,
[
s

(2)
i rti . . . s

(2)
i −s(1)

i rt−1
i . . . −s(1)

i

])
and Enc

(
pk,
[
s

(1)
i rti

])
, respectively.

Also, note that the protocol easily generalizes to rational functions f(x) = P (x)/Q(x) with degP 6= degQ
(which is actually what we use in the following sections). We present the version where degP = degQ for
simplicity. In fact, the case where degP 6= degQ can be reduced to the presented case by multiplying the least
degree polynomial by a uniformly chosen R(x) of degree max{degP (x)− degQ(X),degQ(x)− degP (x)}.

Moreover, if t′ > t, the linear system for rational interpolation might be unsolvable. In this case, there
is no solution which means we cannot interpolate an appropriate rational function on certain support set.
Therefore, the parties just return 0.

Analysis We analyze correctness, security and communication complexity of the protocol. We begin the
analysis with the following auxiliary lemma.

Lemma 4. Let F be a field with |F| = ω(2log λ). Let V = {(vi, f(vi))|∀i ∈ [1, 2t+1]} and W = {(wi, f(wi))|∀i ∈
[1, 2t+ 1]} be two support sets each of them with 2t elements over a field F, with wi←$F, and f(x) := P (x)

Q(x)

is some unknown reduced rational function (i.e., P (x), Q(x) are co-prime), where deg(P ) = deg(Q) = t′ and
t < t′ where t, t′ ∈ poly(λ). Additionally, assume that Q(vi) 6= 0 and Q(wi) 6= 0 for every i ∈ [2t+ 1].

If we recover two rational function fV (x), fW (x) by interpolation on V,W , respectively, then

Pr [fV (x) = fW (x)] ≤ negl(λ)

over the choice of vi, wi.

Proof. Let fV (x) = A(x)/B(x) the rational function recovered by rational interpolation over the support set
V and let f(x) = P (x)/Q(x) be the rational function interpolated over any 2t′ + 1 interpolation points. We
have that fV (vi) = f(vi) for all i ∈ [2t+ 1] and hence

A(vi)

B(vi)
=
P (vi)

Q(vi)
⇔ A(vi)Q(vi) = P (vi)B(vi).

Since gcd(P (x), Q(x)) = 1, then the polynomial P̃ (x) = A(x)Q(x) − P (x)B(x) is different from the null
polynomial. Moreover, vi is a root of P̃ (x), for all i ∈ [2t+ 1], and deg P̃ (x) ≤ t+ t′ (which means that P̃ (x)
has at most t+ t′ roots).

Analogously, let fW = C(x)/D(x) be the rational function resulting from interpolating over the support
set W and let Q̃(x) = C(x)Q(x)−D(x)P (x). We have that Q̃(wi) = 0 for all i ∈ [2t+1]. Hence, if fV = fW ,
then we have that the points wi are also roots of P̃ (x). But, since the points wi are chosen uniformly at
random from F (which is of exponential size when compared to t, t′), then there is a negligible probability
that all wi’s are roots of P̃ (x).

Concretely,

Pr [fV = fW ] ≤ Pr
[
P̃ (wi) = 0∀i[2t]

]
=

2t∏
i

Pr
[
P̃ (wi) = 0

]
=

(
deg P̃

|F|

)2t

11In the case that only Q(αi) = 0, use a different tagged pair (Enc(pk, s
(1)
i ),Enc(pk, 0)).
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which is negligible for |F| ∈ ω(2log λ).

Theorem 1 (Correctness). The protocol secDT is correct.

Proof. The protocol interpolates two polynomials from two different support sets. Then, it checks if the two
interpolated polynomials are the same by computing

C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

which should be equal to 0 if C
(1)
v (x)/C

(2)
v (x) = C

(1)
w (x)/C

(2)
w (x).

If t′ ≤ t, then by Lemma 3, there is a unique rational function can be recovered thus the final output
of the algorithm should be 1. On the other hand, if t′ > t, the linear system can be either unsolvable or
solvable but yielding two different solutions with overwhelming probability by Lemma 4. In this case, the
protocol outputs 0.

Theorem 2. The protocol secDT EUC-securely realizes FSDT with shared ideal functionality FGen in the
(FORank,FOMM, FOLS,FDecZero)-hybrid model against semi-honest adversaries corrupting at most N − 1 par-
ties, given that TPKE is IND-CPA.

Proof (Sketch). The simulator sends the corrupted parties’ input to the ideal functionality and obtains the
output (either 0 or 1). Then, it simulates the ideal functionalities (FORank,FOMM,FOLS,FDecZero) so that the
output in the real-world execution is the same as in the ideal-world execution. In particular, the simulator
is able to recover the secret key shares via FORank,FOMM,FOLS and, thus, simulate FDecZero in the right way.

Indistinguishability of executions holds given that TPKE is IND-CPA.

Communication complexity. When we instantiate FOLS with the protocol from the previous section,
the communication complexity of secDT is O(Nt2).

4 Multi-Party Threshold Private Set Intersection

We present our protocol for Threshold PSI in the multi-party setting. Our protocol to privately compute
the intersection can be seen as a generalization of Ghosh and Simkin protocol [GS19a] where we replace the
OLE by a TPKE (which fits nicer in a multi-party setting). The main difference between our protocol and
theirs is in the cardinality test protocol used.

We begin by presenting the protocol to securely compute a cardinality testing between N sets. Then, we
plug everything together in a PSI protocol.

4.1 Secure Cardinality Testing

Ideal functionality. The ideal functionality for Secure Cardinality Testing receives the sets from all the
parties and output 1 if and only if the intersection between these sets is larger than some threshold. Else,
no information is disclosed. The ideal functionality for multi-party cardinality testing is given as follows.

FMPCT functionality

Parameters: sid, N, n, t ∈ N known to both parties.

• Upon receiving (sid,Pi, Si) from party Pi, FMPCT stores Si and
ignores future messages from Pi with the same sid;

• Once FMPCT has stored all inputs Si, for i ∈ [N ], it does the
following: If |S∩| ≥ n− t, FMPCT outputs 1 to all parties, where
|S∩| = ∩Ni=1Si. Else, it returns 0.

12



Protocol. We introduce our multiparty Protocol 2 (based on degree test protocol). In the following, FGen

be the ideal functionality defined in Section 2.1 and FSDT be the functionality defined in Section 3.2.

Protocol 2 Private Cardinality Test for Multi-party MPCT

Setup: Values α1, . . . , α4t+2←$F, threshold t ∈ N and N parties. Functionalities FGen and FSDT, and a
IND-CPA TPKE TPKE = (Gen,Enc,Dec).

Input: Each party P i inputs a set Si = {a(1)
i , . . . , a

(n)
i } ∈ Fn.

1: Each party Pi sends request (sid, requesti) to FGen and receives a secret key share ski and a public key
pk, which is known to every party involved in the protocol.

2: Each party Pi encodes its set as a polynomial Pi(x) =
∏n
j=1(x− a(j)

i ) and evaluates it on 4t+ 2 points.

That is, it computes Pi(α1), . . . , Pi(α4t+2). It encrypts the points, that is, c
(j)
i ← Enc(pk, ri · Pi(αj)) for

a uniformly chosen ri←$F. Finally, it broadcasts {c(j)i }j∈[4t+2].

3: Party P1 computes d(j) = (
∑N
i=1 c

(j)
i )/P1(αj) for each j ∈ [4t + 2]. Then, sends {αi, d(j)}j for every j,

and sk1 to the ideal functionality FSDT.12 Each party Pi, for i = 2, . . . , N , send ski to FSDT to check if
the degree of the numerator (and the denominator) is at most t.

4: Upon receiving b ∈ {0, 1} from the ideal functionality FSDT, every party outputs b.

Analysis. We now proceed to the analysis of the protocol described above.

Lemma 5. Given n characteristic polynomials with same degree from F[x], denoted as P1(x), . . . , Pn(x), we
argue that, for any j, P ′(x) =

∑n
i=1 ri ·Pi(x) and Pj(x) are relatively prime with probability 1−negl(log |F|)

if P1(x), . . . , Pn(x) are mutually relatively prime, where ri←$F is a uniformly random element.

Proof. Supposing there is a common divisor of two polynomials P ′(x) and Pj(x), since Pj(x) is a charac-
teristic polynomial, we denote (x − s) the common divisor. Therefore, we have P ′(s) = 0 which can be
represented as

∑n
i=1 ri · Pi(s) = 0. However, from the mutually relative primality of P1(x), . . . , Pn(x), we

know that Pi(s) cannot be zero simultaneously which means there exists at least one i∗ to make Pi∗(s) 6= 0.
Moreover, ri are all sampled uniformly from F, the weighted sum of ri will not be zero with all but negligible
probability. This is a contradiction. Therefore, P ′(x) and Pj(x) will share a common divisor only with
negligible probability.

Theorem 3 (Correctness). The protocol MPCT described above is correct.

Proof. Note that the encryption d(j) computed by party P1 are equal to

d(j) = Enc

(
pk,

(
N∑
i=1

ri · Pi(αj)

)
/P1(αj)

)
.

Also, observe that ∑N
i=1 ri · Pi(αj)
P1(αj)

=
P∩iSi(αj) ·

∑N
i ri · PSi\(∩k 6=iSk)(αj)

P∩iSi(αj) · PS1\(∩k 6=1Sk)

=

∑N
i ri · PSi\(∩k 6=iSk)(αj)

PS1\(∩k 6=1Sk)(αj)
,

in this way, we make the numerator and denominator relatively prime except with negligible probability by
Lemma 5.

Observe that deg
∑N
i ri ·PSi\(∩k 6=iSk)(x) ≤ t and degPS1\(∩k 6=1Sk)(x) ≤ t if and only if S∩ ≥ n−t. Hence,

by the correctness of FSDT, the protocol outputs 1 if S∩ ≥ n− t, and 0 otherwise.
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Theorem 4. The protocol MPCT securely realizes functionality FMPCT in the (FGen,FSDT)-hybrid model
against any semi-honest adversaries corrupting up to N − 1 parties, given that TPKE is IND-CPA.

Proof. Assume that the adversary is corrupting N − k parties in the protocol, for k = 1, . . . , N − 1. The
simulator creates the secret keys and the public key of a threshold PKE in the setup phase while simulating
FGen and distributes the secret keys between every party. The simulator Sim takes the inputs (which are
sets of size n, say Si1 , . . . , SiN−k

) of the corrupted parties and send them to the ideal functionality FMPCT.
It receives the output b from the ideal functionality. If b = 0, the simulator chooses k uniformly chosen
sets such that | ∩Ni=1 Si| < n − t and proceed the simulation as the honest parties would do. If b = 1, , the
simulator chooses k uniformly chosen random sets such that | ∩Ni=1 Si| ≥ n − t and proceed the simulation
as the honest parties would do. Note that it can simulate the ideal functionality FSDT since it knows all the
secret keys of the threshold PKE.

Indistinguishability of executions follows immediately from the IND-CPA property of the underlying
threshold PKE scheme.

Communication Complexity. When we instantiate the FSDT with the protocol from the previous section,
each party broadcasts Õ(t2). Hence, the total communication complexity is Õ(Nt2), assuming a broadcast
channel.

4.2 Multi-party Threshold Private Set Intersection Protocol

In this section, we extend Ghosh and Simkin protocol [GS19a] to the multi-party setting using TPKE. We
make use of the cardinality testing designed above to get the Protocol 3.

Protocol 3 Multi-Party Threshold PSI MTPSI

Setup: Given public parameters as follows: Values α1, . . . , α3t+1←$F, threshold t ∈ N and N parties.
Functionalities FGen and FMPCT, and a threshold additively PKE TPKE = (Gen,Enc,Dec).

Input: Each party Pi inputs a set Si = {a(1)
i , . . . , a

(n)
i } ∈ Fn.

1: Each party Pi sends its set Si to FMPCT. If the functionality FMPCT outputs 0, then every party Pi
outputs ⊥ and terminates the protocol.

2: Each party Pi sends request (sid, requesti) to FGen and receives a secret key share ski and a public key
pk, which is known to every party involved in the protocol.

3: for all Party Pi do

4: It encodes its set as a polynomial Pi(x) =
∏n
j=1(x − a(j)

i ) and evaluates it on 3t + 1 points. That is,
it computes Pi(α1), . . . , Pi(α3t+1).

5: It samples Ri(x)←$F[x] such that degRi(x) = t.

6: It encrypts these points using pk, that is, it computes c
(j)
i = Enc(pk, Ri(αj)·Pi(αj)) for every j ∈ [3t+1].

7: It broadcasts {c(j)i }j∈[3t+1].
8: end for
9: Party P1 adds the ciphertexts to get d(j) =

∑N
i c

(j)
i for each j ∈ [3t+ 1]. It broadcasts {d(j)}j∈[3t+1].

10: They mutually decrypt {d(j)}j∈[3t+1] to learn V (j) ← Dec(sk, d
(j)
N ) for j ∈ [3t+ 1].

11: P1 computes the points Ṽ (j) = V (j)/P1(αj) for j ∈ [3t+ 1].

12: P1 interpolates a rational function using the pairs of points (αj , Ṽ
(j)).

13: P1 recovers the polynomial PS1\(∩iSi)(x) in the denominator.

14: P1 evaluates PS1\∩iSi
(x) on every point of its set {a(1)

1 , . . . , a
(n)
1 } to compute ∩iSi. That is, whenever

PS1\∩iSi
(aj1) 6= 0, then aj1 ∈ ∩iSi.

15: It broadcasts the output ∩iSi.
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Analysis. We now proceed to the analysis of the protocol described above. We start by analyzing the
correctness of the protocol and then its security.

Theorem 5 (Correctness). The protocol MTPSI is correct.

Proof. Assume that |S1 \
(
∩Ni=2Si

)
| ≤ t (note that this condition is guaranteed after resorting to the func-

tionality FMPCT in the first step of the protocol). After the execution of the protocol, party P1 obtains the

points V (j) =
∑N
i Pi(αj) ·Ri(αj). Then,

Ṽ (j) =
V (j)

P1(αj)

=

∑N
i Pi(αj) ·Ri(αj)

P1(αj)

=
P∩iSi

(αj) ·
∑N
i PSi\(∩k 6=iSk)(αj) ·Ri(αj)

P∩iSi
(αj) · PS1\(∩k 6=1Sk)(αj)

=

∑N
i PSi\(∩k 6=iSk)(αj) ·Ri(αj)

PS1\(∩k 6=1Sk)(αj)
.

Since P1 has 3t + 1 evaluated points of the rational function above, then it can interpolate a rational
function to recover the polynomial PS1\(∩k 6=1Sk). This is possible because of Lemma 2 and the fact that

deg

(
N∑
i

PSi\(∩k 6=iSk)(αj) ·Ri(αj)

)
≤ 2t and deg

(
PS1\(∩k 6=1Sk)(αj)

)
≤ t.

Having computed the polynomial PS1\(∩k 6=1Sk), party P1 can compute the intersection because the roots
of this polynomial are exactly the elements in S1 \ (∩k 6=1Sk).

Theorem 6. The protocol MTPSI securely realizes functionality FMTPSI in the (FGen,FMPCT)-hybrid model
against any semi-honest adversarie corrupting up to N − 1 parties.

Proof. Let A be an adversary corrupting up to k parties involved in the protocol, for any k ∈ [N − 1]. Let
Pi1 , . . . ,Pik be the corrupted parties.

The simulator Sim works as follows:

1. It sends the inputs of the corrupted parties, Si1 , . . . , Sik , to the ideal functionality FMTPSI. Sim either
receives ⊥ or ∩iSi from the ideal functionality FMTPSI.

2. Sim waits for A to send the corrupted parties’ inputs to the ideal functionality FMPCT. If Sim has
received ⊥ from FMPCT, then Sim leaks 0 to A (and Z) and terminates the protocol. Else, Sim leaks 1
and continues.

3. Sim waits for A to send a request (sid, requestij ) for each of the corrupted parties (that is, for j ∈ [k])

to FGen. Upon receiving such requests, Sim generates (pk, sk1, . . . , skN ) ← Gen(1λ, N) and returns
(pk, skij ) for each of the requests.

4. For each party P` such that ` 6= ij (where j ∈ [k]), Sim picks a random polynomial U`(x) of degree
n−|∩iSi|+t and sends Enc(pk, R`(αj) ·P∩iSi

(αj) ·U`(αj)), where R`(x) is chosen uniformly at random
such that degR`(x) = t. From now on, Sim simulates the dummy parties as in the protocol.

We now argue that both the simulation and the real-world scheme are indistinguishable from the point-
of-view of any environment Z. In the real-world scheme, party P1 obtains the polynomial

V (x) = P∩iSi(x) ·
N∑
i

PSi\(∩k 6=iSk)(x) ·Ri(x)
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evaluated in 3t + 1 points. Assume that P1 is corrupted by A. Even in this case, there is an index ` for
which A does not know the polynomial R`(x). More precisely, we have that

V (x) = P∩iSi
(x) ·

∑
i 6=`

PSi\(∩k 6=iSk)(x) ·Ri(x)

+ PS`\(∩k 6=`Sk)(x) ·R`(x)

 .

First, note that

deg

∑
i 6=`

PSi\(∩k 6=iSk)(x) ·Ri(x)

 = degPS`\(∩k 6=`Sk)(x) ·R`(x) = n− | ∩i Si|+ t ≤ 2t.

Moreover, we have that, for any i ∈ [N ]

degPSi\(∩k 6=iSk) ≤ t,

degRi(x) = t and
gcd

(
PSi\(∩k 6=iSk), PSj\(∩k 6=jSk)

)
= 1

for any j 6= i.
Hence, by Lemma 1, we can build a sequence of hybrids where we replace V (x) by the polynomial

V ′(x) = P∩iSi(x) · U(x)

where degU(x) = n−|∩iSi|+t, as in the ideal-world execution. Indistinguishability of executions follows.

Communication complexity. When we instantiate the ideal functionality FMPCT with the protocol from
the previous section the scheme has communication complexity Õ(Nt2).
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Appendix A Preliminaries Cont’d

A.1 Threshold Public-Key Encryption

In this work, we will use Public-Key Encryption schemes and a variant of it: Threshold Public-key En-
cryption. We now define Threshold Public-key Encryption. Such schemes can be instantiated from several
hardness assumptions such as DDH, DCR or pairing-based assumptions [HV17].

Definition 3 (Threshold Public-Key Encryption). A Threshold Public-Key Encryption (TPKE) scheme is
defined by the following algorithms:

• (pk, sk1, . . . , skN )← Gen(1λ, N) takes as input a security parameter. It outputs a public key pk and N
secret keys (sk1, . . . , skN ).

• c← Enc(pk,m) takes as input a public key pk and a message m ∈ {0, 1}∗. It outputs a ciphertext c.

• c′ ← Dec(ski, c) takes as input one of the secret keys ski and a ciphertext. It outputs a share decryption
c′ of c.

Correctness. For any N ∈ N and any permutation π : [N ]→ [N ], we have that

Pr
[
m← Dec(skπ(N),Dec(skπ(N−1), . . .Dec(skπ(1),Enc(pk,m)) . . . ))

]
= 1

where (pk, sk1, . . . , skN )← Gen(1λ, N).

IND-CPA security. For any N ∈ N, any permutation π : [N ] → [N ] and any adversary A, we require
that

Pr

b← A(c, st) :

(pk, sk1, . . . , skN )← Gen(1λ, N)

(m0,m1, st)← A
(
pk, skπ(1), . . . , skπ(k)

)
b←$ {0, 1}

c← Enc(pk,mb)

 ≤ negl(λ)

for any k < N .

Additive Homomorphism. We also assume that the TPKE (or plain PKE) is homomorphic for additive
operation.13 That is, for all pk, sk1, . . . , skN ) ← Gen(1λ, N), we can define two groups (M,⊕), (C,⊗) such
that, given two ciphertexts c1 ← Enc(pk,m1) and c2 ← Enc(pk,m2), we require that

c1 ⊗ c2 = Enc(pk,m1 ⊕m2).

By abuse of notation, we usually denote the operations of M and C as +.

Ideal Functionalities. We present some ideal functionalities regarding TPKE schemes. In the following,
N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret key and the corresponding
public key. That is, on input (sid,Pi), FGen outputs (pk, ski) to each party party where (pk, sk1, . . . , skN )←
TPKE.Gen(1λ, N).

Moreover, we define the functionality FDecZero, which allows N parties, each of them holding a secret
share ski, to learn if a ciphertext is an encryption of 0 and nothing else. That is, FDecZero receives as input
a ciphertext c and the secret shares of each of the parties. It outputs 0, if 0 ← Dec(sk, . . .Dec(skN , c) . . . ),
and 1 otherwise.

Note that these functionalities can be securely realized using on varies PKE schemes such as El Gamal
PKE or Pailler PKE [HV17].

13From now on, we always assume that PKE and TPKE used in this work fulfill this property, unless stated otherwise.
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A.2 Linear Algebra

We first introduce minimal polynomials of a sequence and of a matrix. Then we present how they can be
used to solve linear algebra related problems.

A.2.1 Minimal Polynomial of a Matrix

Let F be field and V be a vector space over F. An infinite sequence a = (ai)i∈N ∈ V N is linearly recurrent
(over F) if there exists n ∈ N and f0, . . . , fn ∈ F with fn 6= 0 such that

∑n
j=0 fjai+j = 0, for all i ∈ N. We

can define the multiplication of a sequence by a polynomial f ∈ F[x] of degree n by f · a =
∑n
j=0 fjai+j .

The minimal polynomial of a sequence a is the least degree polynomial m such that 〈m〉 = Ann(a) where
Ann(a) is the annihilator ideal of a (that is, the ideal such that every element f of Ann(a) satisfies f ·a = 0).

The minimal polynomial of a matrix A ∈ Fn×n is the least degree polynomial mA over F such that
mA(A) = 0.

We denote the minimal polynomial for the sequence a′ = (uTAiv)i∈N by ma′ , where u,v←$Fn are
uniformly chosen vectors.

The following lemma is rephrased from [KMWF07] and shows how we can compute the minimal polyno-
mial of a matrix A.

Lemma 6 ([KMWF07]). Let A ∈ Fn×n and let mA be the minimal polynomial of matrix A. For u,v←$Fn,
we have mA = ma′ with probability at least 1 − 2 deg(mA)/|F|. Moreover, ma′ can be calculated using a
Boolean circuit of size O(nk log n log k log log k) where k = log |F|

A.2.2 Compute the Rank of a Matrix and Solve a Linear System

We will use the following results from [KDS91]. Recall that a unit upper (resp., lower) triangular Toeplitz
matrix is an upper (resp., lower) triangular Toeplitz matrix 1’s in the diagonal.

Lemma 7 ([KDS91]). Let A ∈ Fn×n of (unknown) rank r. Let U and L be randomly chosen unit upper
triangular and lower triangular Toeplitz matrices in Fn×n, and let B = UAL. Let us denote the i× i leading
principal of B by Bi. The probability that det(Bi) 6= 0 for all 1 ≤ i ≤ r is greater than 1− n2/|F|.

Lemma 8 ([KDS91]). Let B ∈ Fn×n with leading invertible principals up to Br where r is the (unknown)
rank of B. Let X be a randomly chosen diagonal matrix in Fn×n. Then, r = deg(mXB)− 1 with probability
greater than 1− n2/|F|.

To solve a linear system Mx = y, we follow the method of Kiltz et al. [KMWF07] which is based on
Kaltofen and Saunders’s algorithm [KDS91]. We briefly describe the algorithm here: (i) Perturb the linear
system Mx = y to obtain a new system M′x = y′ with the same solution space. The perturbation has the
property that, if M is of rank r, then M′

r , the top-left r× r sub-matrix of M′, is non-singular, except with
negligible probability. (ii) Pick a random vector u ∈ Fn and set y′r to be the first r coordinates of the vector
y′ + M′u. (iii) Solve the linear system M′

rxr = y′r, and denote the solution by ur. (iv) Let u∗ ∈ Fn be a
vector with the first r coordinates ur and the remaining coordinates 0n−r. It can be shown that x = u∗−u
is a uniformly random solution of the system M′x = y′ and thus is a uniformly random solution of the
original system.

Appendix B Oblivious Linear Algebra

B.1 Oblivious Matrix Multiplication

Protocol. The following Protocol 4 allows several parties to jointly compute the (encrypted) product of
two encrypted matrices. Note that the protocol can also be used to compute the encryption of the product
of two encrypted values in F.
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Protocol 4 Secure Multiplication secMult

Setup: Each party Pi has a secret share ski of a secret key for a public key pk of a TPKE scheme TPKE =
(Gen,Enc,Dec).

Input: Party P1 inputs Enc(pk,Ml) and Enc(pk,Mr), where Ml,Mr ∈ Ft×t.
Goal: Every one knows the product Enc(Ml ·Mr).

1: for all party Pi do

2: It samples two random matrices R
(i)
l ,R

(i)
r ←$Ft×t.

3: It computes c
(i)
l = Enc(pk,R

(i)
l ), c

(i)
l = Enc(pk,R

(i)
r ), d

(i)
r = Enc(pk,Ml·R(i)

r ), d
(i)
l = Enc(pk,R

(i)
l ·Mr).

4: It broadcasts {c(i)l , c
(i)
r , d

(i)
l , d

(i)
r }.

5: end for
6: Each party Pi computes c̃(i) = Enc(pk,

∑
j 6=i R

(i)
l ·R

(j)
r ) (using c

(j)
r and R

(i)
l ) and broadcasts c̃(i).

7: All parties mutually decrypt i) Enc(M′
l) := Enc(pk,Ml) +

∑
j c

(j)
l (to obtain M′

l ∈ Ft×t), ii) Enc(M′
r) :=

Enc(pk,Mr) +
∑
j c

(j)
r (to obtain M′

r ∈ Ft×t)
8: for all party Pi do
9: It computes d̃ = Enc(pk,M′

l ·M′
r).

10: It outputs e = d̃−
∑
j d

(j)
l −

∑
j d

(j)
r −

∑
j c̃

(j)

11: end for

Analysis. We proceed to the analysis of the protocol described above.

Lemma 9 (Correctness). The protocol secMult is correct.

Proof. The value outputted by every party is

e = d̃−
∑
j

d
(j)
l −

∑
j

d(j)
r −

∑
j

c̃(j)

= Enc

pk,M′
l ·M′

r −
∑
i

R
(i)
l ·Mr −

∑
i

Ml ·R(i)
r −

∑
j

∑
k 6=j

R
(i)
l ·R

(j)
r


= Enc

pk,

Ml +
∑
j

R
(j)
l

Mr +
∑
j

R(j)
r

−∑
i

R
(i)
l ·Mr−

∑
i

Ml ·R(i)
r −

∑
j

∑
k 6=j

R
(i)
l ·R

(j)
r


= Enc(pk,Ml ·Mr).

So, every party outputs exactly an encryption of the matrix product Ml ·Mr.

Lemma 10 (Security). The protocol secMult securely EUC-realizes FOMM with shared ideal functionality
FGen against semi-honest adversaries corrupting up to N − 1 parties, given that TPKE is IND-CPA.

Proof (Sketch). Assume that the adversary corrupts N − k parties. The simulator takes the inputs from
these parties and send them to the ideal functionality. Upon receiving the encrypted value Enc(pk,Ml ·Mr),
it simulates the protocol as the honest parties would do.

We now prove that no set of at most N − 1 colluding parties can extract information about Ml,Mr.
First, observe that any set of N − 1 parties cannot extract any information about encrypted values that
are not decrypted during the protocol (because there is always a missing secret key share) given that TPKE
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is IND-CPA. Second, we analyze the matrix M′
l (which is decrypted during the protocol). We have that

M′
l = Ml +

∑
j R

(j)
l . Hence, there is always at least one matrix R

(`)
l which is unknown to the adversary

and that perfectly hides the matrix Ml (the same happens M′
r.

Complexity. The communication complexity of the protocol is dominated by the messages carrying the
(encrypted) matrix. Hence, assuming a broadcast channel between the parties, the protocol has communi-
cation complexity of O(Nt2) where t is the size of the input matrices and N the number of parties involved
in the protocol.

B.2 Compute the Rank of a Matrix

Protocol. We now present the Protocol 5 to compute the rank of an encrypted matrix.

Protocol 5 Secure Rank secRank
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE = (Gen,Enc,Dec). The

parties have access to the oblivious matrix multiplication ideal functionality FOMM.
Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t.

1: Each party Pi broadcasts an encrypted uniformly chosen at random unit upper and lower triangu-
lar Toeplitz matrices Enc(pk,Ui) and Enc(pk,Li) and a uniformly chosen at random diagonal matrix
Enc(pk,Xi), where Ui,Li ∈ Ft×t and Xi ∈ Ft×t.

2: Each party Pi computes: i) Enc(pk,X) =
∑
i Enc(pk,Xi), ii) Enc(pk,U) =

∑
i Enc(pk, (

∑
i Ui) − (N −

1)I), and iii) Enc(pk,L) = Enc(pk, (
∑
i Li)− (N − 1)I), where I is the identity matrix.

3: All parties mutually compute Enc(pk,N) = Enc(pk,XUML) via three invocations of FOMM.
4: Each party Pi samples ui,vi←$Ft and broadcasts Enc(pk,ui),Enc(pk,vi).
5: Each party Pi computes Enc(pk,u) =

∑
j Enc(pk,uj) and Enc(pk,v) =

∑
j Enc(pk,vj). Then, it

computes the sequence Enc(a) with 2 log t invocations of FOMM,14where a = {a0, . . . ,a2t−1} and
Enc(pk,aj) = Enc(pk,uNjv) for 0 ≤ j ≤ 2t− 1.

6: All parties mutually compute Enc(pk, r− 1) where r is the degree of ma, the minimal polynomial of the
(encrypted) sequence Enc(a). This can be calculated using a Boolean circuit with size O(t2k log t) (which
can be securely constructed from TPKE [ST06]).

Analysis. We analyze the correctness and security of the protocol.

Lemma 11 (Correctness). The protocol secRank is correct.

Proof. The correctness of the protocol is guaranteed by Lemma 7 and Lemma 8.

Lemma 12 (Security). The protocol secRank securely EUC-realizes FORank with shared ideal functionality
FGen in the FOMM-hybrid model against semi-honest adversaries corrupting up to N − 1 parties, given that
TPKE is IND-CPA.

Proof (Sketch). The simulator takes the corrupted parties input, sends them to the ideal functionality and
simulates the protocol as the honest parties would do. It is easy to see that, even when the adversary
corrupts N − 1 parties, the information is hidden by the TPKE and thus no information on M is leaked to
the adversary by the IND-CPA of the underlying TPKE.

Complexity. Each party broadcasts O(t2k log t) bits of information, where k = log |F|. To see this, note
that the communication of the protocol is dominated by the computation of the circuit that computes the
degree of a and this can be implemented with communication cost of O(t2k log t) [KMWF07]. Assuming a
broadcast channel, the communication complexity is Õ(Nt2)

14We can perform t multiplications in O(log t) calls to FOMM by performing multiplications in a batched fashion [KMWF07].
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B.3 Invert a Matrix

In this section, we present and analyze a protocol that allows N parties to invert an encrypted matrix. In
this setting, each of the N parties holds a secret share of a public key pk of a TPKE. Given an encrypted
matrix, they want to compute an encryption of the inverse of this matrix.

Ideal Functionality. The ideal functionality of oblivious rank computation is defined below.

FOInv functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where M ∈
Ft×t is a non-singular matrix), FORank outputs Enc(pk,M−1) to
P1 and (Enc(pk,M),Enc(pk,M−1)) to all other parties Pi, for
i = 2, . . . , N .

Protocol. We now describe the Protocol 6 that allows N parties to jointly compute the encryption of the
inverse of a matrix, given that this matrix is non-singular.

Protocol 6 Secure Matrix Invert secInv
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE = (Gen,Enc,Dec).
Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t is a non-singular matrix.

1: Each party Pi samples a non-singular matrix Ri←$Ft×t.
2: Set Enc(pk,M′) := Enc(pk,M).
3: for i from 1 to N do
4: Pi calculates Enc(pk,M′) = Enc(pk,RiM

′)
5: Pi broadcasts Enc(pk,M′).
6: end for
7: All parties mutually decrypt the final Enc(pk,M′). Then they compute its inverse to obtain Enc(pk,N′) =

Enc(pk,M′−1
∏
i R
−1
i ).

8: for i from N to 1 do
9: Pi computes Enc(pk,N′) = Enc(pk,N′R−1

i ).
10: Pi broadcasts Enc(pk,N′)
11: end for
12: Finally, P1 outputs Enc(pk,M−1) = Enc(pk,N′).

Analysis. The proofs of the following lemmas follow the same lines as the proofs in the analysis of secMult
protocol. We state the lemmas but omit the proofs for briefness.

Lemma 13. The protocol secInv is correct.

Lemma 14. The protocol secInv securely EUC-realizes FOInv with shared ideal functionality FGen against
semi-honest adversaries corrupting up to N − 1 parties, given that TPKE is IND-CPA.

Complexity. Each party broadcasts O(t2) bits of information. The communication complexity of the
protocol is O(Nt2), assuming a broadcast channel.
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B.4 Secure Unary Representation

Following [KMWF07], we present a protocol that allows to securely compute the unary representation of a
matrix.

Ideal Functionality. The ideal functionality for Secure Unary Representation is given below.

FSUR functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk, r)) from party P1 (where r ∈
F and r ≤ t), FSUR computes (Enc(pk, δ1), . . . ,Enc(pk, δt))
such that δi = 1 if i ≤ r, and δi = 0 otherwise. The
functionality outputs (Enc(pk, δ1), . . . ,Enc(pk, δt)) to P1 and
(Enc(pk, r), (Enc(pk, δ1), . . . ,Enc(pk, δt))) to all other parties Pi,
for i = 2, . . . , N .

Protocol. A protocol for secure unary representation can be implemented with the help of a binary-
conversion protocol [ST06]. That is, given Enc(pk, r), all parties jointly compute Enc(pk, δi), where δi = 1,
if i ≤ r, and δi = 0 otherwise, via a Boolean circuit (which can be securely implemented based on Paillier
cryptosystem).

Communication complexity. We can calculate the result using a Boolean circuit of size O(r log t), thus
the communication complexity is O(Nr log t).

B.5 Solve a Linear System

Protocol. We now present the Protocol 7 that allows multiple parties to solve an encrypted linear system.
In the following, we assume that the system has at least one solution (note that this can be guaranteed using
the secRank protocol).

Analysis.

Lemma 15 (Correctness). The protocol secLS is correct.

Proof. The proof follows directly from [KDS91, KMWF07].

Lemma 16. The protocol secLS securely EUC-realizes FOLS with shared ideal functionality FGen in the
(FORank,FOInv,FSUR)-hybrid model against semi-honest adversaries corrupting up to N−1 parties, given that
TPKE is IND-CPA.

Communication complexity. Each party broadcasts O(t2k log t) bits of information where k = |F|. The
total communication complexity is Õ(t2).
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Protocol 7 Secure Linear Solve secLS
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE = (Gen,Enc,Dec). The

parties have access to the ideal functionalities FORank, FOInv and FSUR.
Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t is a non-singular matrix.

1: All parties jointly compute an encryption of the rank Enc(pk, r) of M via the ideal functionality FORank.
2: Set Enc(pk,M′) := Enc(pk,M) and Enc(pk,y′) := Enc(pk,y).
3: for i from 1 to N do
4: Pi samples two non-singular matrices Ri,Qi from Ft×t. It calculates Enc(pk,M′) = Enc(pk,RiM

′Qi)
and Enc(pk,y′) = Enc(pk,Riy

′). Pi broadcasts Enc(pk,M′),Enc(pk,y′).
5: end for
6: All the parties jointly compute Enc(δ1), . . . ,Enc(δt) by invoking FSUR on input Enc(pk, r). They set

Enc(pk,∆) := Enc

pk,

δ1 . . . 0
...

. . .
...

0 . . . δt


. Finally, they compute Enc(pk,N) := Enc(pk,M′ ·∆ + It −∆),

where It ∈ Ft×t is the identity matrix.
7: All the parties jointly compute Enc(N−1) by invoking FOInv on input Enc(pk,N).
8: Each party Pi samples ui←$Ft and broadcasts (Enc(pk,M′ui),Enc(pk,ui)).
9: All parties jointly compute Enc(pk,u′) = Enc(pk,N−1y′r) by invoking FOMM, where Enc(pk,y′r) =

Enc(pk, (y′ +
∑
j M′uj)∆). Then they set Enc(pk,x) = Enc(pk, (

∑
j uj)− u′).

10: for i from N to 1 do
11: Pi calculates Enc(pk,x) = Enc(pk,Q−1

i x). Pi broadcasts Enc(pk,x).
12: end for
13: P1 outputs Enc(pk,x).
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