
Security and Privacy of Decentralized
Cryptographic Contact Tracing

Noel Danz, Oliver Derwisch, Anja Lehmann?, Wenzel Puenter,
Marvin Stolle, and Joshua Ziemann

Hasso-Plattner-Institute, University of Potsdam

Abstract. Automated contact tracing leverages the ubiquity of smart-
phones to warn users about an increased exposure risk to COVID-19. In
the course of only a few weeks, several cryptographic protocols have been
proposed that aim to achieve such contract tracing in a decentralized
and privacy-preserving way. Roughly, they let users’ phones exchange
random looking pseudonyms that are derived from locally stored keys.
If a user is diagnosed, her phone uploads the keys which allows other
users to check for any contact matches. Ultimately this line of work led
to Google and Apple including a variant of these protocols into their
phones which is currently used by millions of users. Due to the obvi-
ous urgency, these schemes were pushed to deployment without a formal
analysis of the achieved security and privacy features. In this work we
address this gap and provide the first formal treatment of such decen-
tralized cryptographic contact tracing. We formally define three main
properties in a game-based manner: pseudonym and trace unlinkability
to guarantee the privacy of users during healthy and infectious periods,
and integrity ensuring that triggering false positive alarms is infeasible.
A particular focus of our work is on the timed aspects of these schemes,
as both keys and pseudonyms are rotated regularly, and we specify dif-
ferent variants of the aforementioned properties depending on the time
granularity for which they hold. We analyze a selection of practical pro-
tocols (DP-3T, TCN, GAEN) and prove their security under well-defined
assumptions.

1 Introduction

Automated contact tracing is an approach currently used in the Covid-19 pan-
demic to warn individuals that were in contact with infected people, leveraging
their smartphones to record and notice such possible exposure. Most ongoing pro-
posals rely on Bluetooth communication and let the phone continually broadcast
short-lived random beacons, which we call pseudonyms. In the so-called decen-
tralized setting we consider here, the pseudonyms are derived from keys locally
stored by the phone. When a user is diagnosed, she uploads the key material
of the last ∆ days, e.g., ∆ = 14, to a central server. Other users’ phones can
download these keys and test if they received any pseudonyms to which they
match, indicating an increased exposure risk.

? contact author: anja.lehmann@hpi.de



In a stunning effort by researchers and practitioners from various fields, sev-
eral solutions to this problem have been developed and pushed to practical de-
ployment within a few months only. Most notably are the DP-3T [18], TCN [8]
and PACT [7, 19] projects, which led to Google and Apple including a variant of
their protocols in Android and iOS which is now used by numerous nation-wide
Covid warn apps [12, 13].

The common goal of all these projects is to enable contact tracing in a
privacy-preserving and secure manner. In particular, no central server must be
aware of users’ contacts, and their movements must not be traceable through the
broadcast pseudonyms. The challenge thereby is to come up with a simple and
efficient solution that fits the strict bandwidth constraints which was achieved
by the aforementioned projects.

Due to the pressure under which these protocols had to be developed, their
design could not be carefully vouched for through formal security models and
proofs which are otherwise the gold standard in modern cryptography. In fact,
while most of the proposed protocols enjoy a simple design, often relying purely
on symmetric primitives, their desired goals seemed somewhat less clear and have
sparked a vivid discussion of possible and impossible security guarantees [20, 17,
1, 2]. So far, the analysis mostly focused on informal and high-level properties [4,
9, 7, 14], or the discussion and improvement of more generic attack vectors such as
relay and replay attacks [20, 15, 3, 5]. Only recently, the first attempt to formally
capture some of these properties was done by Canetti et al. [6]. We discuss the
relation to our work at the end of this section. In short, we believe they are
complementary as both differ considerably in their focus regarding the model
and analyzed schemes.

1.1 Our Contributions

In this paper we provide the first thorough formal treatment of decentralized
contact tracing (DCT) schemes that are currently deployed. We formally define
their desired and achievable privacy and security properties in form of game-
based definitions and analyze a selection of practical contact tracing protocols.
The paper only considers schemes of the “upload-what-you-sent” type, where
users upload the keys of their broadcast pseudonyms upon infection.

Formal Security Model. The first challenge was to find a common abstraction
of DCT that fits a broad class of protocols, yet allows to express meaningful and
common security and privacy goals. Our focus thereby is on the timed aspects of
DCT which we make explicit through two variables: days d for which key material
is rotated and epochs e for which pseudonyms are derived. We stress that d does
not necessarily have to be 24 hours but the name is rather an illustrative way
to distinguish between a coarse grained and continuously evolving time period d
for the key schedule (which in the protocol specifications varies between 2−24h)
and a short time period e during d (often 10 − 15min, synchronized with the
switching of the Bluetooth MAC address) for which individual pseudonyms are
formed.

2



We identify three main security goals for which we define different variants,
depending on the time granularity for which they must hold.

Pseudonym Unlinkability: It must be infeasible to link pseudomyms of the
same user across different epochs. This property must hold for all “healthy”
periods of a user. That is even when she eventually uploads a tracing key
for some time d−∆, . . . , d, full unlinkabiliy must be preserved for all earlier
days d′ < d −∆. (Note that all considered schemes suggest that users stop
broadcasting pseudonyms after they generated their tracing keys, and thus
there is nothing to model for d′ > d).

Trace Unlinkability: Whereas pseudonym unlinkability guarantees the un-
linkability for pseudonyms of healthy users (or rather during healthy periods
of users), the notion of trace unlinkability further ensures that different pseu-
donyms of the same infected user remain as unlinkable as possible during
the tracing period.

Integrity: Apart from preserving the privacy of users, a DCT scheme must also
be secure, meaning that an adversary cannot trigger a false alarm for an
honest user.

For pseudonym unlinkability we also define post-compromise and forward
security capturing a temporary compromise of the user’s phone.

Analysis of Selected Schemes. After formalizing the desired security prop-
erties, we analyze whether and how they are achieved by a selection of practical
contact tracing protocols. Our selection consists of the three DP-3T protocols,
the TCN scheme and both Google-Apple GAEN versions. The overview of our
analysis is given in Figure 1 and we summarize some particular insights below.
While most of our findings are as expected, this is – to the best of our knowledge
– the first formal study of these protocols, formalizing the achieved properties
and required assumptions.

Guarantees from Cryptography not Time. Our analysis considers all schemes to
be normalized w.r.t. time, i.e., when they use the same time granularity for ro-
tating keys and pseudonyms. This allows to understand the guarantees provided
by the cryptographic algorithm and not the “application layer” decisions. In re-
ality, the protocols come with quite different time recommendations, e.g., DP-3T
recommends key rotation every 2-4 hours, whereas GAEN uses a 24-hour cycle.
Having such shorter times can compensate weaker security guarantees, such as
weak vs. strong integrity in the case of the two simpler DP-3T protocols which
allow replay attacks across epochs (but not across “days”/keys).

Verification is Underspecified. Most specifications do not detail how contact lists
are stored or how exactly verification of contact matches works – in particular
how the time in which pseudonyms are received is taken into account. However,
subtle choices can have a significant impact on the guaranteed integrity. If such a
description was absent, we specify the version that yields the strongest security
guarantees.

3



Fig. 1: Overview of selected DCT schemes and their security in our model.(∗: holds if
all tracing keys are shuffled. ∗∗: holds if no tracing key for the current day is generated)

Non-Standard Assumptions. While most security proofs for the privacy proper-
ties are straightforward, integrity often required non-standard or new assump-
tions for the underlying building blocks. This stems from the use of PRFs (or
alike) for achieving some form of collision resistance for adversarially chosen
keys. For TCN and the two simpler DP-3T protocols new and rather tailored
assumptions for signatures and PRG’s are needed.

DP-3T. The DP-3T protocol family consists of three schemes. The low-cost
(DP3T-LC) and hybrid (DP3T-HYB) scheme derive a full batch of pseudonyms
through a PRG from a daily seed and randomly select a sub-part of the output for
each epoch. The DP3T-LC variant derives the new seed by hashing the old one
(which makes it the only scheme that does not achieve any trace unlinkability),
whereas DP3T-HYB uses independent day keys. Both schemes are vulnerable to
replay attacks across epochs and thus only achieve a weak version of integrity.
This is due to the random shuffle of the PRG output which does not allow to
verify in which epoch a pseudonym was supposed to be broadcast. Both schemes
also make use of a PRF which does not contribute to the security.

The third protocol is called “Unlinkable” (DP3T-UNLINK) and chooses a ded-
icated random seed for every pseudonym. DP3T-UNLINK achieves the strongest
privacy properties. In particular, it is the only scheme that achieves strong trace
unlinkability, which guarantees that pseudonyms of infected users remain un-
linkable across epochs (other schemes only achieve this across days).

TCN. The Temporary Contact Number (TCN) protocol has the most compli-
cated design. For each day it derives a chain of epoch-specific keys through iter-
ated hashing, and using a fresh key pair of a signature scheme as initial random
seed. Relying on the hash chain allows to upload a tracing key for a dedicated
starting epoch estart and hiding the relation for earlier epochs. The signature key
is used to authenticate an uploaded tracing key and to bind its validity to a
strict time interval.

Interestingly, the TCN protocol does not satisfy the strongest notion of
pseudonym unlinkability, which would guarantee unlinkability until the exact
epoch in which the first tracing key was triggered for, as it allows to compute
one more pseudonym than expected. The signature also complicates the privacy
proof and requires a new and tailored assumption.

4



GAEN. The two GAEN protocol versions have the most clean design: they rely
on a PRF or PRP to derive pseudonyms from a day key and on input the current
epoch, and closely resemble the PACT protocol [19]. Whereas the first protocol
version derived all day keys from a single master key, the second and currently
deployed version uses independent day keys. Consequently, the first version was
the only one not to achieve post-compromise or forward security, whereas both
is guaranteed by the current version.

GAEN (as the two simpler DP-3T protocols) does not detail how verification
exactly works and the current API might be vulnerable to released-cases-replay
attacks [20]. These attacks are particularly critical for schemes that derive all
pseudonyms of a day from the same key: If a set of such keys is uploaded by
an infected user, then the last key – belonging to the current day – can be used
by an adversary to trivially derive and broadcast pseudonyms that will trigger
a false alarm.

The German COVID Warn-App built upon the GAEN APIs only uploads the
first 13 of the 14 returned day keys immediately and waits 24h to upload the
last, current key [11]. Ideally, APIs of cryptographic schemes should be clear and
hard to misuse and not require such a deep understanding of returned values.

A solution to already thwart this type of replay attack on the crypto layer,
is to not generate this last key of the current day – which we will assume in our
interpretations of the GAEN protocols. The only schemes that provide a natural
and explicit protection against these attacks are TCN and DP3T-UNLINK.

Related Work. The work by Canetti et al. [6] proposes two contact tracing
protocols that are backed up through formal models and proofs. The focus and
modelling choices in our works are considerably different though: We focus exclu-
sively on upload-what-you-sent type of schemes and make time in form of days
and epochs explicit, as this is crucial for our time-specific definitions. The model
of [6] is broader as it also includes upload-what-you-receive protocols, but time
is abstracted away through considering some “measurement” (possibly contain-
ing time) as input. Canetti et al. [6] formalizes strong security properties in the
UC model, and provides game-based notions for weaker properties only. Therein
the adversary is mostly static, i.e., cannot actively engage with honest users, or
adaptively corrupt their keys. Most notably, their integrity notion excludes most
adversarial behaviour, as only honest users are allowed to upload tracing keys.
In our game-based definitions, the adversary can interact adaptively with honest
users and upload maliciously formed tracing keys in the integrity game.

Finally, our work provides a formal analysis of several deployed protocols,
whereas [6] gives security proofs for their schemes only.

2 Building Blocks: Standard and New Properties

This section lists all building blocks and assumptions needed in our security
analysis, including a number of new – and sometimes strongly tailored – as-
sumptions.

5



2.1 Pseudorandom Functions (PRF,PRP,PRG)

In addition to standard pseudorandomness for PRF, PRP and PRG, we require
some form of preimage resistance. This can be seen as the preimage-resistance
property adapted from unkeyed hash functions to keyed PRF/PRP.

Key-Preimage Resistance (for PRF,PRP) Recently, Farshim et al. [10] defined
collision-resistance for PRFs where it must be infeasible for an adversary to find
(k, k′, x, x′) s.t. PRF(k, x) = PRF(k′, x′). This notion (also adapted to PRP’s)
would be sufficient for the analyzed contact tracing schemes, but is stronger
than what is needed here: The adversary in our games must find such collisions
for an unknown k, and for x = x′. Thus we propose the following notion of
key-preimage resistance.

Definition 1 (PRF/PRP Key-Preimage Resistance). A function F ∈ {PRF,
PRP} is key-preimage resistant, if for all efficient adversaries A and k ←R

{0, 1}τ the following probability is negligible in τ :

Pr[(k′, x)←R AF (k,·)(1τ ) : F (k, x) = F (k′, x)]

In one of the schemes we need a stronger property where it must be infeasible
to produce a key-preimage that leads to a match on a prefix of the outputs. We
define preλ(x) := x1, . . . , xλ to be the function that on input x returns the λ-
bit prefix of x. We say that a PRF has λ-prefix key-preimage resistance if the
above property holds for preλ(F (k, x)) = preλ(F (k′, x)) and with the adversaries
advantage being negligible in λ.

Partial Pre-Image Resistance (for PRG). We need a somewhat similar property
for a PRG. However, here the property needs to be more tailored to the particular
contact tracing schemes: In the DP-3T protocols, a PRG is used to generate the
full batch of pseudonyms for a day and there is no binding of pseudonyms to
epochs. Thus, we must consider the output of the PRG : {0, 1}τ → {0, 1}τ ·` as a
sequence of ` τ -bit sub-strings, and require that it is infeasible to find collisions
among any of such sub-strings for two different seeds. Similar as in key-preimage
resistance of PRF/PRP we provide a relaxed version where the adversary can only
provide one of the seeds.

Given a string x = x1, . . . , x`·τ with |x| = ` · τ , we denote x[i] := xi·τ+1, . . . ,
xi·τ+τ for i ∈ [0, `− 1] to be the i-th τ -length snippet of x.

Definition 2 (PRG Partial Preimage Resistance). A PRG : {0, 1}τ →
{0, 1}τ ·` is partial preimage resistant, if for all efficient adversaries A and s←R

{0, 1}τ , y ← PRG(s) the following probability is negligible in τ :

Pr [s′ ←R A(y)) : y′ ← PRG(s′),∃i, j ∈ [0, `− 1] s.t. y[i] = y′[j]]

2.2 Hash Functions

We will require the standard properties of collision resistance, preimage and
second-preimage resistance of a hash function H : {0, 1}∗ → {0, 1}τ . Preimage

6



resistance guarantees that it is infeasible for an adversary A given an image
y ← H(x) to find a valid preimage x′ such that y = H(x′). Second preimage
resistance is a stronger property requiring that an adversary given a preimage
x must not be able to find a different preimage x′ 6= x such that H(x) = H(x′).
The strongest notion of collision resistance guarantees that an adversary cannot
find two colliding preimages.

Further, we need a new property that guarantees preimage-resistance for
only a λ-prefix of an output. This is required for the DP-3T Unlinkable scheme
which uses only the first 128bits of a hash output as pseudonyms. For collision-
resistance a somewhat similar property, called near-collision resistance is known,
where the outputs can differ in up to λ bits (across the entire output)[16].

Definition 3 (λ-Prefix Preimage Resistance). A hash function H : {0, 1}∗ →
{0, 1}τ is λ-prefix preimage resistant, if for all efficient adversaries A it holds
that the following probability is negligible in λ:

Pr [x←R {0, 1}∗;x′ ←R A(H(x)) : preλ(H(x)) = preλ(H(x′))]

We further need to guarantee that outputs of a hash function look random,
for which we revert to the random oracle model when necessary. In DCT schemes,
hash functions are often invoked on random and (initially) secret inputs though
which allows to rely on a weaker assumption that simply requires the hash
function to preserve the randomness of the inputs. The identity function would
satisfy that notion and would indeed be sufficient for some of the properties we
analyze. However, other properties will require the same hash function to satisfy
also some form of preimage resistance, which will then rule out the use of an
identity function again.

Definition 4 (Randomness Preserving). A hash function H : {0, 1}∗ →
{0, 1}τ is randomness preserving if for all efficient adversaries A it holds that
the following probability is, for x←R {0, 1}τ , negligible in τ :

|Pr[A(H(x)) = 1] − Pr[A(x) = 1]|

Finally, we also need the property of unpredictability for random inputs from
a possibly smaller domain {0, 1}τ ′ . Here the adversary can output a target point
h and wins if for a randomly chosen values x from {0, 1}τ ′ his target point is hit.

Definition 5 (τ ′-Unpredictability). A hash function H : {0, 1}∗ → {0, 1}τ
is unpredictable for random inputs from {0, 1}τ ′ , with τ ′ ≤ τ if for all efficient
adversaries A it holds that the following probability is negligible in τ ′:

Pr
[
h←R A(1τ

′
);x←R {0, 1}τ

′
: H(x) = h

]
2.3 Signature Scheme

The TCN scheme uses a signature S = (KeyGen,Sign,Vf) to authenticate trac-
ing keys, which must satisfy the standard unforgeability property. As the TCN

7



scheme also uses sk as the initial random seed for its key chain, we must further
capture that seeing a signature under sk does not help to to distinguish a ran-
dom string from a hash of the secret key H(sk) which we define as hashed-key
indistinguishability.

We stress that this property is not implied by standard unforgeability: a
signature scheme could simply append the hash to each signature. We can also
not require the more generic property that signatures must be indistinguishable
from random (they cannot be to due to the Vf algorithm).

Definition 6 (Hashed-Key Indistinguishability). A signature scheme S
has hashed-key indistinguishability w.r.t. a hash function H : {0, 1}∗ → {0, 1}τ if

for all efficient adversaries A it holds that Pr[ExpHashKeyInd
A,S,H (τ) = 1] ≤ 1/2+µ(τ).

Experiment ExpHashKeyInd
A,S,H (τ):

(sk, pk)←R KeyGen(1τ ); b←R {0, 1}
if b = 0: h←R {0, 1}τ , else h← H(sk)
b∗ ←R AOSign(pk, h) where OSign(m) returns σ ← Sign(sk,m)
return 1 if b∗ = b

3 Security Model

In this section we present our security model for decentralized contact tracing
(DCT), consisting of game-based definitions for pseudonym and trace unlinka-
bility as well as for integrity.

Before we can formalize these properties we introduce the generic algorithms
of a DCT scheme and their expected behaviour. We also explain the modelling
choices we have made, in particular focusing on the time aspects of such schemes
and their key schedules.

3.1 Syntax & Modelling Choices

Our goal is to analyze and compare a multitude of contact tracing protocols that
all come with different settings and design choices. Thus, the first challenge is
to find a common abstraction of these protocols that can capture the individual
differences yet allows to express meaningful and common security and privacy
goals of the generic concept of DCTs.

Modelling Time. First, we notice that the notion of time is crucial in the con-
text of contact tracing and all schemes – with various degrees of explicitness
– assume a certain key rotation schedule. To reflect this, we model time via
two parameters: a day d = 1, . . . , n and an epoch e = 1, . . . , emax, where emax

denotes the maximum number of epochs a day has. Keys will be rotated for
every new day d and pseudonyms are derived for a particular time (d, e). We
stress that d does not necessarily have to be 24 hours, the name is rather chosen
for illustrative reasons. For simplicity we assume that all users and algorithms

8



have access to the same synchronized time (d, e), without making that explicit
in every algorithm.

We often want to express that a certain time (d, e) was before another time
(d′, e′) which we denote as (d, e) < (d′, e′) and which holds if d < d′ or (d =
d′) ∧ (e < e′).

Algorithms of DCT. We assume that a user’s day key k is initialized through
Init and gets updated for every new day via a Rotate function. Most schemes
will simply use Rotate = Init (which is better for security). Pseudonyms are
generated for a particular time via the NymGen function that gets the current
day key kd and epoch e as input. Received pseudonyms are stored in a contact
list CL through the NymRec algorithm, again also having the current time (d, e)
as additional input.

We assume that users local state comprises the day keys Keys = (kd−∆, . . . ,
kd) for the last ∆ days where ∆ denotes the maximum tracing period (e.g. 14
days). Similarly, we assume that the contact list CL on a day d only contains
the contacts of the last ∆ days.

If a user is tested positive and wants to alert its contacts, she can trigger the
creation of a tracing key t for starting time (dstart, estart) that is within the last
∆ days via the TraceGen algorithm. Focusing on upload-what-you-sent schemes,
this algorithm only gets the local keys Keys as input but not the contact list.
Tracing information is prepared for users through an algorithm TraceTf, in most
schemes this is a simple aggregation (and shuffling) of all received tracing keys.
We again assume that TL is time-aware, i.e., when used on a day d only contains
tracing keys for d−∆, . . . , d.

Finally, users can verify their exposure risk through an algorithm TraceVf
that tests whether there was a match between the locally received pseudonyms
CL and the retrieved list of tracing keys TL.

Definition 7 (DCT). A decentralized contact tracing scheme DCT is a tuple of
algorithms (Init,Rotate,NymGen,NymRec,TraceGen,TraceTf,TraceVf) defined as
follows:

Init(1τ )→ k1. Outputs an initial 1 day key k1 and sets CL← ∅.
Rotate(kd)→ kd+1. On input a day key kd, outputs a new key kd+1.
NymGen(kd, e)→ nym. Outputs a pseudonym for key kd and epoch e.
NymRec(CL, d, e, nym)→ CL′. On input a contact list CL, the current time

d, e and pseudonym nym, outputs an updated contact list CL′.
TraceGen(Keys, dstart, estart)→ t. On input a set of day keys Keys = (kd−∆, . . . ,

kd), a starting day dstart and epoch estart, outputs a tracing key t for the
tracing period (dstart, estart), . . . , (d, e). We assume that the algorithm always
checks that d−∆ ≤ dstart ≤ d and 1 ≤ estart ≤ e.

TraceTf(TL, t)→ TL′. On input the current tracing list TL and a new tracing
key t, outputs an updated list TL′.

TraceVf(CL,TL)→ {0, 1}. On input of a contact list CL and tracing list TL
outputs a bit, where 1 indicates that a match was found.

1 As we assume that all user have synchronized time, the first key would technically
be kd1 , but we write k1 for simplicity.

9



Correctness. For all honestly generated and received pseudonyms, TraceVf must
output 1 if the underlying tracing key is received. That is, for all k1 ← Init(1τ )
and kd ← Rotate(kd−1), it must hold that for a user that received nymdi,ej ←
NymGen(kdi , ej) at time (di, ej) via CL′ ← NymRec(CL, di, ej , nymdi,ej ) where a
trace for kdi was generated via t← TraceGen(Keys, dstart, estart) with kdi ∈ Keys,
and (dstart, estart) < (di, ej) at time (d, e) > (di, ej) and included in a tracing list
TL′ ← TraceTf(TL, t) a match is found, i.e., TraceVf(CL,TL) = 1.

In some of the schemes we will only be able to achieve strong integrity if
TraceGen does not output tracing information for the last, current day. This also
has an effect on the achievable correctness, as contacts on the last day of the
tracing period will not get notified. Thus, for such schemes only a weaker version
of correctness is achieved where the above holds for traces that were generated
on a day d > di (instead of (d, e) > (di, ej)).

Helper function Validity. We assume that the tracing list TL is time-aware and
will only contain keys that are relevant. This means there must be a way to
express and extract for when a tracing key t is claimed to be valid for. All
schemes support this, mostly by simply appending the day (and epoch) infor-
mation with every key. We make this explicit by requiring an additional function
Validity(d, t)→ {(di, ei)} that on input a current day d and tracing key t returns
a set of day-epoch tuples (di, ei) for which the trace claims to be for. We stress
that there is no validation process involved in Validity, its a simple look-up of
the contained information. However, our integrity notion will be done w.r.t. a
specific definition of Validity where the security guarantee is stronger the more
precise and confined Validity is.

What we don’t model. Our DCT abstraction makes a couple of simplifications to
focus on the core features shared among the different schemes:

We model TraceGen to allow for a flexible start day and epoch (dstart, estart)
and assume that the tracing period comprises the entire time from then. The two
most privacy-friendly schemes (DP3T-UNLINK, TCN) provide more flexibility, up
to redacting arbitrary epochs for the exposure keys. We omitted this flexibility
for the sake of simplicity.

NymRec, that prepares the contact list, only gets the pseudonym and current
time as input, whereas some specifications also store additional context infor-
mation such as the signal attenuation with each pseudonym. As our focus are
the core cryptographic procedures and the properties of pseudonyms w.r.t. time,
this is not considered here.

Our verification only checks if a match was found but not how many as
in [6]. In all schemes we analyze, CL simply stores the received pseudonyms (or
hashes thereof) and compares them with deterministically recomputed values
in TraceVf. Thus, for all DCTs with that behaviour a version that outputs the
count of matches could be generically derived from our TraceVf by invoking it
on the individual entries in CL.

Finally, we do not model or detail how the upload of tracing keys is controlled
and orchestrated. Obviously, it is crucial that only truly infected users can upload

10



their tracing keys and that the tracing lists are assembled and provided in a
trustworthy manner. This is orthogonal to the question how pseudonyms are
generated and verified, and an interesting research topic on its own.

3.2 Privacy of DCT

The core privacy property of DCT scheme is unlinkability, ensuring that pseu-
donyms of the same user but for different times cannot be linked. There are two
main versions of this property: pseudonym unlinkability and trace unlinkabil-
ity. The former guarantees the unlinkability of pseudonyms for “healthy” users,
whereas the latter captures the privacy properties that must remain for a user
after she disclosed her tracing key. A comparison between both notions and their
strong and weak variants we define here is given in Figure 2.

Pseudonym Unlinkability This notion guarantees full unlinkability of pseu-
donyms across epochs. We formulate pseudonym unlinkability through a typical
indistinguishability game that an adversary plays with a challenger. The adver-
sary A is given access to two honest users u0, u1 and can adaptively request
their pseudonyms for days and epochs of his choice (via ONymGen). We give the
adversary full control over the epochs, but require him to trigger day (and thus
key) rotation through the ORotate oracle which then updates both of the users’
keys. Eventually, at some day d∗ the adversary is requested to output a challenge
epoch e∗ upon which he receives NymGen(kbd∗ , e

∗) for a randomly selected user
ub. The task of the adversary is to determine b better than by guessing.

All schemes we analyze have deterministic pseudonym generation, and thus
the adversary is not allowed to query ONymGen on the challenge day for the
challenge epoch e∗. All other epochs on the challenge day can be queried though.

Further, we want that unlinkability holds for all time periods where the user
was “healthy” even when she triggers the generation of a tracing key at a later
point. For all days/epochs before the tracing period, unlinkability of pseudonyms
must remain. To model this, we allow A to obtain tracing keys for both users
via the OTraceGen oracle. This oracle is only available after the challenge. In the
experiment for strong pseudonym unlinkability the adversary is allowed to trigger
the creation of tracing keys for a starting time (dstart, estart) which can be as early
as one epoch after the challenge epoch e∗ (on day d∗).

No broadcasting after infection. Note that we do not capture any privacy guaran-
tees for pseudonyms generated after a user uploaded the tracing key. Currently
all schemes suggest that users stop broadcasting and start a new instance of the
protocol after such an event, thus no related pseudonyms are generated after a
tracing key was revealed. Our model can easily be extended if newer schemes
are proposed that do not follow this approach.

Definition 8 (Strong Pseudonym Unlinkability). A DCT scheme provides
strong pseudonym unlinkability if for all efficient A there is a negligible function
µ such that Pr[ExpNymUnlink

A,DCT (τ) = 1] ≤ 1/2 + µ(τ).

11



Fig. 2: Comparison between the variants of pseudonym and trace unlinkability.
Pseudonym unlinkability covers privacy of users before and trace unlinkability dur-
ing the tracing period.

Experiment ExpNymUnlink
A,DCT (τ):

k01 ←R Init(1τ ), k11 ←R Init(1τ ), d← 1
(e∗, st)←R AORotate,ONymGen(1τ )
store current day as challenge day d∗

b←R {0, 1}
nymb ← NymGen(kbd∗ , e

∗)
b∗ ←R AORotate,ONymGen,OTraceGen(st, nymb)
return 1 if b∗ = b and (d∗, e∗) /∈ Q

ORotate()

k0d+1 ←R Rotate(k0d)
k1d+1 ←R Rotate(k1d)
Set d← d+ 1

OTraceGen(u, dstart, estart)

abort if (dstart, estart) ≤ (d∗, e∗)
tu ← TraceGen(Keysu, dstart, estart)
return tu

ONymGen(u, e)

nymu
d,e ← NymGen(keyud , e)

Q← Q ∪ {(d, e)}
return nymu

d,e

Weak Pseudonym Unlinkability. Many contact tracing schemes do not support
a fine-granular starting time when generating the tracing key and only con-
sider a starting day dstart (but not epoch estart). Such schemes cannot achieve
this strong notion as a query to OTraceGen for (dstart, estart) with dstart = d∗ and
estart = e∗+ 1 immediately allows to win the game. Therefor we also propose the
following notion of weak pseudonym unlinkability prohibiting OTraceGen queries
on the challenge day.

Definition 9 (Weak Pseudonym Unlinkability). A DCT scheme provides
weak pseudonym unlinkability if for all efficient adversaries A there is a neg-
ligible function µ such that Pr[ExpNymUnlink

A,DCT (τ) = 1] ≤ 1/2 + µ(τ) where the
NymUnlink experiment is as defined above, with the additional restriction that
OTraceGen(u, dstart, estart) can be invoked only for dstart > d∗.

It is trivial to see that strong pseudonym unlinkability is strictly stronger
than weak pseudonym unlinkability.

Forward and Post-Compromise Secrecy. We are further interested in the security
guarantees in the presence of temporary (key) compromise attacks of honest
users. Thus we grant the adversary additional access to a OCompromise(u) oracle.
The oracle returns all ∆ day keys of the chosen user and also adds all these days
(and all epochs during these days) to the set Q which contains the “forbidden”
times for the challenge query. Clearly, it is inherent in any upload-what-you-
sent scheme that exposing keys for a certain time period d − ∆, . . . , d makes
recomputing and linking pseudonyms for these days trivial and thus the winning
condition must ensure that the challenge key cannot be compromised.

12



Definition 10 (Forward/Post-Compromise Security). A DCT scheme pro-
vides weak/strong pseudonym unlinkability with additional forward and/or post-
compromise security if the adversary in the NymUnlink experiment is additionally
granted access to the OCompromise oracle defined below.

OCompromise is accessible at d for:

– Forward security: d > d∗

– Post-compromise security: d < d∗

OCompromise(u)

Q← Q ∪ {(d−∆, 1), . . . , (d, emax)}
return Keysu

It is easy to see that for all schemes where day keys are generated indepen-
dently, i.e., where Rotate = Init, the OCompromise oracle does not increase A’s
probability of winning the weak or strong pseudonym unlinkability game. Thus,
for such schemes both forward and post-compromise security is already implied
by the standard (either weak or strong) pseudonym unlinkability.

Trace Unlinkability Whereas pseudonym unlinkability captures the unlink-
ability of healthy users (or rather during healthy periods of users), the notion
of trace unlinkability further guarantees that several pseudonyms of the same
infected user remain unlinkable during the tracing period.

The adversary has access to the same ORotate and ONymGen oracles defined
above, allowing him to retrieve pseudonyms of two honest users u0 and u1 for
days and epochs of his choice. Instead of giving him access to user-specific trac-
ing keys, we now provide an oracle OTraceBoth that creates tracing information
for both challenge users and combines them via the TraceTf function before re-
turning it to the adversary. This is strictly necessary as otherwise the adversary
would immediately know to which user the tracing information belongs to, and
thus can win trivially.

Jumping ahead, in the concrete schemes and deployed solutions this will
require a central entity to aggregate and shuffle the tracing keys received by
several infected users before forwarding that information. Interestingly, despite
trace unlinkability being a core design goal behind most contact tracing schemes,
this necessary additional requirement of aggregation and shuffling has not been
made explicit.

The general task of the adversary is the same as in pseudonym unlinkability:
when A on day d∗ outputs a challenge epoch e∗ he is given a pseudonym nymb ←
NymGen(kbd∗ , e

∗) for user ub and has to determine b. As tracing keys are generated
for days and epochs in the past, we make the OTraceBoth oracle only available
after the adversary has received its challenge. Obviously, we allow OTraceBoth

to be called for a starting day dstart that is before the challenge day d∗ as we
want to guarantee unlinkability of pseudonyms during infectious periods. The
adversary is allowed to set different starting dates for both challenge users. The
only requirement is that both starting dates must be before the challenge time,
as otherwise the adversary can distinguish trivially.

13



We define two different variants of this property, depending on the granularity
of unlinkability.

Strong Trace Unlinkability (unlinkability across epochs): In the strongest
sense, all pseudonyms of infected users should remain unlinkable – which is
captured by allowing queries to ONymGen for any epoch except of (d∗, e∗), i.e.,
the exact challenge day and epoch.

Weak Trace Unlinkability (unlinkability across days): A weaker version guar-
antees unlinkability of infected users only across different days, i.e., all pseu-
donyms received during the same day d∗ can be trivially connected as soon
as the tracing key has been uploaded but must still remain unrelated to
pseudonyms received at other days. This weak trace unlinkability notion is
modelled by disallowing any queries to ONymGen for the entire challenge day.

Definition 11 (Strong/Weak Trace Unlinkability). A DCT scheme pro-
vides strong and weak trace unlinkability respectively, if for all efficient A it
holds that Pr[ExpTraceUnlink

A,DCT (τ) = 1] ≤ 1/2 + µ(τ).

Experiment ExpTraceUnlink
A,DCT (τ):

k01 ← Init(1τ ), k11 ← Init(1τ ), d← 1
(e∗, st)←R AORotate,ONymGen(1τ )
store current time d as challenge time d∗

b←R {0, 1}
nymb ← NymGen(kbd∗ , e

∗)
b∗ ←R AORotate,ONymGen,OTraceBoth(st, nymb)
return 1 if b∗ = b and

Strong Unlinkability: (d∗, e∗) /∈ Q;
Weak Unlinkability: (d∗, ∗) /∈ Q;

and 0 otherwise

OTraceBoth(d
0
start, e

0
start, d

1
start, e

1
start)

abort if (dustart, e
u
start) > (d∗, e∗)

t0 ← TraceGen(Keys0, d0start, e
0
start)

t1 ← TraceGen(Keys1, d1start, e
1
start)

TL← TraceTf(TraceTf(∅, t0), t1)
return TL

For schemes with independent day keys, i.e,. where Init = Rotate and the
tracing information simply consists of the collection of affected day keys and
TraceTf performs a shuffle of the individual day keys, weak trace unlinkability
holds naturally.

3.3 Integrity of DCT

Apart from preserving the privacy of users, a cryptographic contact tracing
scheme must also be reliable. We herein focus on false positive attacks, where
an adversary tries to trigger an exposure alarm for an honest user, i.e,. TraceVf
outputs 1 despite the user not having been in contact with any infected user. We
propose a definition for integrity that guarantees the absence of such attacks.

Before introducing our model we explain a number of integrity attacks that
have been discovered for such decentralized contact tracing schemes, and how we
model or exclude them in our notion. We refer to [20] for a detailed discussion.

14



Relay Attacks. In relay attacks the adversary has the capability to immediately
relay received pseudonyms to arbitrary other locations and thereby infuse in-
correct contact histories across honest users. For instance, he could install a
snooping device in a hospital or Covid testing station to fetch pseudonyms of
users that have an increased probability of being tested positive, and relay these
pseudonyms in real-time to a location he aims to impact through the alarm and
quarantine effects.

Solutions to this problem have been proposed, either requiring an interac-
tive protocol for pseudonym generation [20] or being able to take locality into
account [15]. Both require significant changes to the protocols and in/output be-
haviour of the generic algorithms we have defined for DCT scheme. Thus, in our
integrity definition we consider relay attacks as inherent for the type of schemes
we analyze and explain how they are modelled (as “trivial” win) below.

Replay Attacks. Replay attacks are a weaker version of relay attacks, where the
adversary cannot immediately forward the pseudonyms to arbitrary locations,
but only with a certain delay. E.g., first fetching pseudonyms in a hospital, and
later driving across the city to replay these pseudonyms at the target location.
Such attacks can be prevented when TraceVf allows to compare the time in which
a pseudonym was received with the time it was supposed to be broadcast. Most
schemes we analyze provide (or can provide) security against such replay attacks
and we therefore do consider such attacks as successful breaks in our model (with
different degrees of delays we consider for the replay).

Released Cases Replay Attack. A third type of replay attacks exploits that an
adversary might be able to derive and broadcast valid pseudonyms from up-
loaded tracing keys of infected users. As we will see, this is a particular chal-
lenge for schemes that derive all pseudonyms of a day from a single key: A day
key kd uploaded at time (d, e) allows an adversary to derive valid pseudonyms
for (d, e′ > e) that can trivially be used to trigger a false alarm. Such attacks
can be thwarted by carefully designing the TraceGen verification, and we thus
do consider this a non-trivial attack strategy in our model. That is, a scheme
satisfying our integrity notion guarantees the absence of such attacks.

Strong and Weak Integrity. We now present our security model for integrity
where an adversary can interact with honest users and distribute both mali-
ciously formed pseudonyms and malicious tracing information, and wins if this
triggers a false alarm for an honest target user.

In our model the adversary has access to several honest users through the
oracles defined in Figure 3. He can create new instances of users ui through the
ONewUser oracle and subsequently request their pseudonyms, send peudonyms to
them and trigger their generation of tracing keys.

As now the time in which pseudonyms are generated and received in matters,
we do not allow the adversary to set epochs for honest users arbitrarily, but
instead control them globally by the game. The adversary can move days and
epochs ahead through invoking the ORotate oracle.

15



ONewUser()

set `← `+ 1 and U ← U ∪ `
store k`d ←R Init(1τ ), CL[`]← ∅

OGetNym(uS)

abort if uS /∈ U
nym← NymGen(kud , e)
Qnym ← Qnym ∪ {(uS ,A, d, e, nym)}
return nym

ORecNym(uR, nym)

abort if uR /∈ U
CL′[uR]← NymRec(CL[uR], d, e, nym)
Qnym ← Qnym ∪ {(A, uR, d, e, nym)}

OSendNym(uS , uR)

abort if uS or uR /∈ U
nym← NymGen(kuS

d , e)
CL′[uR]← NymRec(CL[uR], d, e, nym)
Qnym ← Qnym ∪ {(uS , uR, d, e, nym)}

ORotate(X) with X ∈ {day, epoch}
if X = epoch and e < emax:

set e← e+ 1
if X = day:
∀u ∈ U : kud+1 ← Rotate(kud )
Set d← d+ 1 and e← 1

OTraceGen(u, dstart, estart)

abort if u /∈ U , set U ← U\u
t← TraceGen(Keysu, dstart, estart)
TL′ ← TraceTf(TL, t)
{(di, ej)} ← Validity(d, t)
∀(di, ej) : Qpos ← Qpos ∪ {(u, di, ej)}

OUploadTrace(t)

TL′ ← TraceTf(TL, t)
{(di, ej)} ← Validity(d, t)
∀(di, ej) : Qpos ← Qpos ∪ {(A, di, ej)}

OGetTL()

return TL

Fig. 3: Oracles for our integrity game. When a contact or tracing list is updated, we
implicitly assume that, e.g., TL′ replaces TL without making that step explicit.

At every time (d, e) the adversary can request, send or exchange honestly or
maliciously crafted pseudonyms with and among honest users:

– OGetNym: A gets a pseudonym nym from an honest user uS
– ORecNym: A sends a pseudonym nym to an honest user uR
– OSendNym: A let uS directly send a pseudonym to uR

For each such query the game stores a tuple ([uS/A], [uR/A], d, e, nym) in
Qnym denoting who send and received the pseudonym and when.

The adversary can adaptively trigger honest users to generate and upload
tracing keys through theOTraceGen oracle for a starting time of his choice. Further,
we allow A to provide arbitrary tracing information himself via the OUploadTrace

oracle which gets added to the current tracing list TL maintained by the game.
The adversary can fetch TL at any time by calling the OGetTL oracle. We assume
that every DCT scheme supports a lightweight pre-processing, where the tracing
list TL when fetched on a day d contains tracing information for days d−∆, . . . , d
only. Overall, our game captures attacks where an adversary actively uploads
malicious tracing information. It does, however, assume honest provisioning of
(possibly malicious) tracing keys.

When uploading a tracing key, either via OUploadTrace or OTraceGen we use the
Validity function to determine the time period for which the trace claims to be

16



valid. The result is stored as tuples ([uS/A], d, e) in Qpos denoting that either
the honest user uS or the adversary was reported infected at time (d, e).

Eventually, the adversary stops and outputs a target user u∗. He wins if
TraceVf(CL[u∗],TL) = 1 for the current tracing list TL and there is no trivial
combination that triggered this alarm. We consider three cases that must not
have occurred:

– u∗ received a pseudonym nym directly from another honest user uS at time
(di, ej) and uS was reported positive at that time (Condition 1).

– u∗ received a pseudonym nym from A at time (di, ej) , which A received from
an honest user uS at the same time and uS was reported positive at that time
(Condition 2a – Relay Attack).

– u∗ received a pseudonym nym at time (di, ej) from A and A uploaded a
tracing key for that time (Condition 2b).

Clearly, (1) and (2b) are inherent and necessary conditions for any DCT
scheme, whereas (2a) could be avoided for schemes that provide security against
relay attacks.

Definition 12 (Strong/Weak Integrity). A DCT scheme provides strong
and weak integrity respectively if for all efficient adversaries A there is a negli-
gible function µ such that Pr[ExpIntegrity

A,DCT (τ) = 1] ≤ µ(τ).

Experiment ExpIntegrity
A,DCT (τ):

d← 1, e← 1, `← 0, TL← ∅
u∗ ←R AONewUser,ORotate,OGetNym,ORecNym,OSendNym,OTraceGen,OUploadTrace,OGetTL(1τ )
retrieve current tracing list TL, and the contact list CL[u∗]
return 1 if TraceVf(CL[u∗],TL) = 1 and
∀(P, u∗, di, ej , nym) ∈ Qnym with di ∈ [d−∆, d] it holds that:
1) if P = uS : @(uS , di, ej) ∈ Qpos

2) if P = A
a) if ∃(uS ,A, di, ej , nym) ∈ Qnym: @(uS , di, ej) ∈ Qpos

b) if @(uS ,A, di, ej , nym) ∈ Qnym: @(A, di, ej) ∈ Qpos

Weak Integrity: condition 2a is relaxed to replay attacks by removing the epoch:
2a∗) if ∃(uS ,A, di, ∗, nym) ∈ Qnym: @(uS , di, ∗) ∈ Qpos

Weak Integrity. Most schemes we analyze do (or can) realize this strong in-
tegrity notion, but for two schemes (the two efficient DP-3T protocols) only a
weaker version is achievable. Therein pseudonyms are only bound to days but
not epochs, and thus replay attacks across epochs are possible. We therefore
also propose a weaker version of integrity by relaxing condition (2a) from relay
to (epoch) replay attacks. Replay attacks across entire days are still prohibited
though. See Figure 4 for a comparison of strong and weak integrity.

17



Fig. 4: Comparison between our integrity notions w.r.t. replay and relay attacks by
an adversary getting pseudonyms from an honest sender uS and forwarding them to
uR. Black lines denote a “trivial“ attack in that model and red ones are valid attack
strategies, i.e., red attacks are infeasible in the respective notion.

Impact of Validity. The winning conditions of our integrity game rely on the
infectious periods of users and the adversary that are determined by the Validity
function that every DCT must (implicitly) define. Roughly, for any time (di, ej)
that is determined through Validity for a tracing key provided by a party P ∈
{us,A}, the adversary only wins if P at time (di, ej) did not also provide a
pseudonym to the target user u∗. As mentioned, there is no guarantee that the
time output by Validity is correct, and an adversary will win the game if he can
cheat in that regard.

The strength of the integrity notion is however impacted by Validity, and
thus security always holds w.r.t. the particular definition that every scheme
provides for that algorithm. The more precise and confined the extracted times,
the stronger is the guaranteed integrity. For instance, integrity w.r.t. a definition
Validity(d, t)→ (∞,∞) would mark all days and epochs to be trivially controlled
by A as soon as he uploads a single tracing key and thus does not provide any
reasonable security anymore. In the schemes we analyze, Validity either recovers
the day or even the precise day/epoch combination for which a key is claimed
to be valid.

Note that the Validity function does not impact the guarantees w.r.t. secu-
rity against the released-cases-replay-attacks described above, as this requires
a mixed setting where a maliciously generated pseudonym matches an honestly
generated trace.

4 Analysis of Selected DCT Schemes

We finally present our formal analysis of a selection of practical contact tracing
protocols. We start with the DP-3T protocol family, and then analyze the TCN
scheme and both Google-Apple GAEN protocol variants.

We start by defining each scheme as an instantiation of our generic DCT syn-
tax, which sometimes requires a few hacks or simplifications that we highlight.
Most specifications do not detail how contact lists are stored or how exactly ver-
ification works. If such a description was absent we opted for the interpretation
that yields the strongest security guarantees.

A high-level schematic comparison of the key scheduling approaches in the
different protocols is given in Figure 5.

18



Fig. 5: High-level comparison of the key schedule and derivation in the different pro-
tocols. The red boxes show the key material that is uploaded if a tracing key starting
from day 1, epoch 2 is generated.

4.1 DP-3T Protocol Family

The Decentralized Privacy-Preserving Proximity Project (DP-3T) is a consor-
tium of researchers from across Europe that proposed and developed several
protocols for privacy-respecting proximity tracing [18]. The first protocol was
the low-cost variant (DP3T-LC) that was published in April 2020, followed by
a more privacy-friendly solution termed Unlinkable protocol (DP3T-UNLINK)
which was finally complemented by a hybrid (DP3T-HYB) solution.

DP-3T Low Cost The so-called low cost protocol was the first proposal by
the DP-3T project and aimed at a simple and cost-efficient solution.

The protocol relies on a hash function H : {0, 1}∗ → {0, 1}τ to rotate keys
across days and uses a nested application of a PRF : {0, 1}τ × {0, 1}τ → {0, 1}τ
and PRG : {0, 1}τ → {0, 1}τ ·emax to generate the full batch of pseudonyms for
one day. To generate tracing information for d −∆ ≤ dstart, . . . , d only a single
key (kdstart) must be uploaded.

As an artifact of our generic syntax, we also require a mapping MAP :
{0, 1}` → {0, 1}`, where ` = log2 emax (for the sake of simplicity we assume
that emax is always a power of 2). This mapping is merely used to pick a random
pseudonym from the full batch generated by the PRG.

Difference to Original. In the White Paper, the scheme generates the full set
of pseudonyms nymd,1|| . . . ||nymd,emax only once per day and for each epoch
chooses a random nymd,ej to return. To fit our syntax, we generate the full
sequence from scratch for every epoch and use MAPd to ensure that a different

19



Init(1τ ):

– k′1 ←R {0, 1}τ , and choose a random map MAP1.
– Return k1 ← (k′1,MAP1).

Rotate(kd) with kd = (k′d,MAPd)

– k′d+1 ← H(k′d), choose a random map MAPd+1.
– Return kd+1 ← (k′d+1,MAPd+1).

NymGen(kd, e) with kd = (k′d,MAPd):

– nymd,1|| . . . ||nymd,emax ← PRG(PRF(k′d,
′′ broadcast key′′)).

– Return nymd,MAPd(e).

NymRec(CL, d, e, nym): Return CL ∪ (nym, d).

TraceGen(Keys, dstart, estart):

– Retrieve kdstart ∈ Keys with kdstart = (k′dstart ,MAPdstart).
– Return t← (k′dstart , dstart, d− 1).

TraceTf(TL, t):

– Return TL′ ← TL ∪ t.
TraceVf(CL,TL):

– For each (k′di , di, dend) ∈ TL: Set d∗ ← di, k
∗
d∗ ← k′di

• While d∗ ≤ dend do:
* nym∗d∗,1|| . . . ||nym∗d∗,emax

← PRG(PRF(k∗d,
′′ broadcast key′′)).

* Add (nym∗d∗,ej , d
∗) to Nyms for ej = 1, . . . , emax.

* k∗d∗+1 ← H(k∗d∗), d
∗ ← d∗ + 1,

– Return 1 if Nyms ∩CL 6= ∅, and 0 otherwise.

Fig. 6: The DP3T-LC Protocol.

pseudonym is selected every time. Clearly, our interpretation is less efficient, but
the final outputs and distributions are the same which is what matters here.

We let TraceGen set dend = d − 1, with d being the current day, as the final
day for which tracing keys will be recomputed in verification, which is necessary
to avoid released-cases replay attacks.

Security of DP3T-LC. The low-cost design pays its price in terms of privacy
as only weak pseudonym unlinkability (w/o post-compromise security) and no
form of trace unlinkability can be guaranteed. It also achieves only weak but not
strong integrity.

Theorem 1. The DP3T-LC protocol satisfies

– weak pseudonym unlinkability with forward secrecy if PRF and PRG are pseu-
dorandom, and H is a random oracle,

– weak integrity if H is a random oracle, PRF is pseudorandom and key-preimage
resistant, and PRG is pseudorandom and partial preimage resistant.

Pseudonym and Trace Unlinkability. The DP3T-LC protocol does neither achieve
post-compromise security nor the strong pseudonym unlinkability, as the expo-
sure of a key kd allows to determine all subsequent day keys and pseudonyms.

20



The proof for weak pseudonym unlinkability with forward security is straight-
forward and referred to Appendix A.1.

DP3T-LC cannot achieve either version of trace unlinkability due to the fact
that all pseudonyms of an infected users are re-derived from a single key (chain),
i.e., all pseudonyms during the entire tracing period are trivially linkable.

Integrity. DP3T-LC does not satisfy strong integrity, due to the random permu-
tation of the daily pseudonyms (which we reflect via the MAP function). This
allows replay attacks of pseudonyms achieved at time (di, ej) at any epoch at
day di and thus allows A to win trivially.

Weak integrity holds w.r.t. Validity(d, t) which parses t = (k′dstart , dstart, dend)
and returns {(di, ej)} for all di = dstart, . . . , dend and ej = 1, . . . , emax.

The proof is given in Appendix A.1 and for the proof sketch we refer to the
DP3T-HYB version which is mostly equivalent, once we argue indistinguishability
of new day keys by assuming H to be a random oracle.

DP-3T Hybrid The hybrid protocol was the last version and aims to provide
a compromise between the efficiency of the low-cost protocol and the stronger
privacy properties of the unlinkable version. It is equivalent to the DP3T-LC
protocol, with the difference that each day key is now generated independently.
Consequently, the tracing key is now a collection of all affected day keys and the
verification no longer recomputes the keys.

Init, NymGen,NymRec are as in DP3T-LC (except that it uses “DP3T − hybrid′′

instead of “broadcast key′′ in the PRF call) .

Rotate(kd) returns Init(1τ ).

TraceGen(Keys, dstart, estart):

– Parse each key kdi ∈ Keys as kdi = (k′di ,MAPdi).
– Return t← ((k′dstart , dstart), . . . , (k

′
d−1, d− 1)).

TraceTf(TL, t):

– Return TL′ ← Shuffle(TL ∪ t).
TraceVf(CL,TL):

– For each (k′di , di) ∈ TL and di < d:
• nym∗i,1|| . . . ||nym∗i,emax

← PRG(PRF(k′di , “DP3T − hybrid′′)).
• Add (nym∗i,e, di) to Nyms for e = 1, . . . , emax.

– Return 1 if Nyms ∩CL 6= ∅, and 0 otherwise.

Fig. 7: The DP3T-HYB Protocol.

Security of DP3T-HYB. As a consequence of the independent day keys, DP3T-HYB
enjoys forward and post-compromise security (for pseudonym unlinkability) and
can also satisfy weak trace unlinkability if a trusted server accumulates and
shuffles the tracing keys of several users. Integrity is again limited to the weak

21



version, as DP3T-HYB uses the same MAP approach as DP3T-LC. The proofs
for the following theorem are in Appendix A.2.

Theorem 2. The DP3T-HYB protocol satisfies

– weak pseudonym unlinkability with forward and post-compromise security if
PRF and PRG are pseudorandom,

– weak trace unlinkability if TraceTf performs the assumed shuffle,
– weak integrity if PRF is pseudorandom and key-preimage resistant, and PRG

is pseudorandom and partial preimage resistant.

Pseudonym and Trace Unlinkability. We note that the DP-3T hybrid protocol
chooses random keys for every day d which ensures that cryptographic material
is entirely independent across different days, from which post-compromise and
forward security follows immediately. Further, the proof for weak pseudonym
unlinkability can then focus solely on the challenge day d∗, the rest is a straight-
forward argumentation that by the pseudorandomness of PRF and PRG different
chunks of the same PRG output cannot be linked.

Weak trace unlinkability holds trivially as DP3T-HYB uses independent day
keys, and only the weak version is aimed for which guarantees unlinkability across
days but not epochs. The weak trace unlinkability game returns the aggregated
tracing list of two honest users and the Shuffle thereby ensures that TL′ does
not reveal any correlation among the contained keys.

It is easy to see that DP3T-HYB does not achieve strong trace unlinkability
as all pseudonyms of an infected user can be linked during a day (during the
infectious period).

Integrity. Weak integrity holds for Validity(d, t) which parses t = {(k′di , di)} and
returns {(di, ej)} for all ej = 1, . . . , emax. Note that as in DP3T-LC we assumed
that TraceGen does not upload any tracing keys for the current day, which is
needed for integrity.

In the proof given in Appendix A.2 we distinguish between two cases: either
A manages to produce a valid trace for an honestly generated pseudonym, or he
predicted a pseudonym of an honest user uS before she uploaded the correspond-
ing trace, i.e., key for the PRF/PRG combination. The latter follows trivially from
the pseudorandomness, and the former requires that it is hard to find (partial)
collisions across both functions.

Discussion (for DP3T-LC and DP3T-HYB). For the security and privacy proper-
ties analyzed in this work, neither the PRF nor MAP (which reflects the random
shuffle of the individual pseudonym snippets of the PRG) are needed. That is,
the PRF to derive the key for the PRG could be omitted without any impact on
the security guarantees. Removing MAP and simply using the pseudonyms in
order, would even increase security as the modified scheme could achieve strong
instead of weak integrity. In addition the contact list must store the epoch e a
pseudonym was received in and only output 1 in TraceVf if there is a match for
a re-computed pseudonym for the same epoch e.

22



DP-3T Unlinkable The DP-3T unlinkable protocol was presented as a secu-
rity improvement over the low-cost approach. It focuses on improving the pri-
vacy properties while sacrificing efficiency in terms of computational and band-
width costs. It uses fully independent key material seedd,e ←R {0, 1}τ for each
epoch (and day) and a hash function H : {0, 1}∗ → {0, 1}τ to derive the epoch-
specific pseudonyms (truncated to λ = 128 bits). It also handles the storage of
received pseudonyms differently, and instead of (nym, d) the contact list now
stores Hout(nym, d, e) leveraging a second hash function Hout : {0, 1}∗ → {0, 1}τ .

Init(1τ ):

– For ej = 1, . . . , emax: choose seedej ←R {0, 1}τ .
– Return k1 ← (seed1, . . . , seedemax).

Rotate(kd) returns Init(1τ ).

NymGen(kd, e) with kd = (seedd,1, . . . , seedd,emax):

– Return nym← Truncλ(H(seedd,e)).

NymRec(CL, d, e, nym): Return CL ∪ {Hout(nym, d, e)}.
TraceGen(Keys, dstart, estart):

– For each kdi ∈ Keys: kdi = (seeddi,1, . . . , seeddi,emax).
– Set t← {(seeddi,e, di, ej)}∀(dstart,estart)≤(di,ej)<(d,e).

TraceTf(TL, t):

– For all (seeddi,e, di, ej) ∈ t : hi ← Hout(Truncλ(H(seeddi,e)), di, ej).
– Set TL′ to be the ordered list of TL ∪ {hi}.
TraceVf(CL,TL):

– Return 1 if CL ∩TL 6= ∅ and 0 otherwise.

Fig. 8: The DP3T-UNLINK Protocol (with λ = 128).

Difference to Original. The original DP3T-UNLINK protocol uses a cuckoo filter
to aggregate the tracing keys and allow for an efficient look up. For simplicity of
our analysis, we directly return the values that would be entered into the filter
(the hash of the pseudonym and the corresponding time) in an “ordered” fashion
(which we will use as a simple shuffle of all transformed tracing keys).

Security of DP3T-UNLINK. This is the strongest protocol analyzed in this paper.
It achieves all privacy related properties trivially through the fact that each
pseudonym is derived from an individual and independent key. The fact that the
contact list includes the full time information d, e (and binds it to the pseudonym
via hashing) makes this the only protocol of the DP-3T family that does not allow
for replay attacks across epochs and thus achieves strong integrity. The simple
proofs are in Appendix A.3.

Theorem 3. The DP3T-UNLINK protocol satisfies
– strong pseudonym unlinkability w. forward & post-compromise security,
– strong trace unlinkability if Hout is a random oracle,
– strong integrity if H is λ-prefix preimage-resistant and randomness preserving,

and Hout is collision resistant and unpredictable.

23



Pseudonym and Trace Unlinkability. Strong pseudonym unlinkability is based
on the mere fact that every pseudonym of an honest user is H(seedd,e) for a fresh
and random key seedd,e per day and epoch. No property for the hash function
H is needed here.

Similarly, strong trace unlinkability follows trivially as the tracing key con-
sists of all individual seeds, where each was used for only one pseudonym and
the seeds have been chosen independently. By assuming that Hout behaves like
a random oracle and ordering tracing keys by this outer hash value, TraceVf al-
ready provides the necessary shuffling of the individual keys that get aggregated
in a tracing list TL.

Integrity. Strong integrity holds for Validity(d, t) that for t = {(seeddi,ej , di, ej)}
returns all {(di, ej)}. This is most confined Validity definition. To prevent released-
cases-replay attacks we assumed that TraceGen does not produce a seed for the
current epoch. The algorithm already produces epoch-specific seeds, i.e., using
a seed for replays at a later epoch is automatically thwarted and we must only
be careful with the final epoch.

Discussion. Storing only the hash h = (nym, d, e) instead of (nym, d, e) in the
users’ contact lists makes it impossible for TraceVf to check if a match occurred
for the “correct” time. This leads to the required assumption of collision re-
sistance for Hout. Storing (nym, d, e) would relax that assumption to second-
preimage resistance (which is needed in another case of the proof) without
harming the other properties.

The security of DP3T-UNLINK requires a number of non-standard properties
of hash functions we introduced in this work. It is easy to see that these properties
would hold naturally if the hash functions are assumed to be random oracles.

4.2 Temporary Contact Number Protocol (TCN)

The Temporary Contact Number (TCN) protocol was proposed by the TCN
Coalition in April 2020 as an open source project [8].

It uses as fresh key pair (sk, pk) of a signature scheme S = (S.KeyGen,S.Sign,
S.Vf) as secret seed for day key from which it iteratively derives epoch specific
keys (chain keys) via a hash function Hin : {0, 1}∗ → {0, 1}τ . The pseudonym
for a particular epoch is then derived by applying an outer hash function Hout :
{0, 1}∗ → {0, 1}τ on the corresponding chain key and current time. See also
Figure 10 for a schematic view of the chain key and pseudonym generation. To
allow tracing for a period starting at (dstart, estart), the user uploads the chaining
key for estart − 1 for dstart and for e = 1 for all following days, together with
the public key from each day. The user also signs each daily trace with the
corresponding secret key.

Difference to Original. The specification does not detail what is stored in CL or
how exactly verification works. We assume that the pseudonym is stored with
the time (d, e) it was received in, and that the trace verification explicitly checks
whether a recomputed pseudonym is valid for the same time. Both is necessary
for strong integrity.

24



Init(1τ ):

– Generate a signature key pair (sk, pk)←R S.KeyGen(1τ ).
– Calculate a key chain ck0, . . . , ckemax with:

ck0 ← Hin(sk)

ckej ← Hin(pk, ckej−1) for ej = 1, . . . emax.

– Return k1 ← (sk, pk, ck0, . . . , ckemax).

Rotate(kd) returns Init(1τ ).

NymGen(kd, e) with kd = (skd, pkd, ckd,0, . . . , ckd,emax):

– Return nym← Hout(d, e, ckd,e).

NymRec(CL, d, e, nym): Return CL ∪ {(nym, d, e)}.
TraceGen(Keys, dstart, estart):

– For each di = dstart, . . . , d and with kdi = (skdi , pkdi , ckdi,0, . . . , ckdi,emax):
• Set ei,start ← estart if di = dstart, and ei,start ← 1 else. // start epoch per report

• Set ei,end ← e− 1 if di = d and ei,end ← emax else. // end epoch per report

• Set repdi ← (pkdi , ckdi,ei,start−1, di, ei,start, ei,end).
• Compute σdi ← S.Sign(skdi , repdi).

– Return t← {(repdi , σdi)}di=dstart,...,d.
TraceTf(TL, t):

– Return TL′ ← Shuffle(TL ∪ t).
TraceVf(CL,TL):

– For each (repdi , σdi) ∈ TL.
• Parse repdi = (pkdi , ckdi,ei,start−1, di, ei,start, ei,end).
• Check that S.Vf(pkdi , repdi , σdi) = 1.
• For all ej = ei,start, . . . , ei,end :

ckdi,ej ← Hin(pkdi , ckdi,ej−1)

nymdi,ej ← Hout(di, ej , ckdi,ej )

add (nymdi,ej , di, ej) to Nyms.
– Return 1 if Nyms ∩CL 6= ∅, and 0 otherwise.

Fig. 9: The TCN Protocol.

Security of TCN. Interestingly, the TCN protocol, despite its hash-chain ap-
proach of epoch specific keys, does not satisfy the strongest notion of pseudonym
unlinkability, but only a slightly weaker variant we define here. It can also satisfy
trace unlinkability (if an appropriate aggregation and shuffling is applied) and
does achieve strong integrity.

We give proof sketches here and refer to Appendix B for more details.

Theorem 4. TCN does not satisfy strong pseudonym unlinkability.

The TCN protocol does not satisfy the strongest notion of pseudonym un-
linkability, as a tracing key generated up from time (dstart, estart) does allow to
recompute pseudonyms up from (dstart, estart − 1). This stems from the fact that
the tracing key includes the chaining key ckdstart,estart−1 which allows to compute

25



Fig. 10: TCN’s generation of internal chain keys and pseudonyms for a day di.

nymdstart,estart−1. The TCN documentation claims that this pseudonym is not “in-
cluded” in the record “because the recipient cannot verify that it is bound to
pk”[8]. While it is true that the computation of the chaining key cannot be veri-
fied, this is irrelevant for privacy and still allows to compute one more pseudonym
than was intended for by the honest user.

Acknowledging the fact that TCN is one of two protocols that allows for
epoch-specific tracing keys, we consider an adapted version of strong pseudonym
unlinkability that takes the peculiarity of TCN into account and allows the ad-
versary to query for tracing keys up from two (instead of one) epochs after the
challenge epoch.

Thus, almost strong pseudonym unlinkability is defined as in Def. 8 with the
difference that OTraceGen(u, dstart, estart) can only be invoked for estart ≥ e∗ + 2 on
the challenge day dstart = d∗.

Theorem 5. The TCN protocol satisfies

– almost strong pseudonym unlinkability with forward and post-compromise se-
curity if Hin is a random oracle, Hout is preimage resistant, and S has hashed-
key indistinguishability,

– weak trace unlinkability (if the assumed shuffle is applied),

– strong integrity if S is unforgeable, Hin is a random oracle and Hout is preimage
resistant and randomness preserving.

Pseudonym and Trace Unlinkability. TCN chooses independent keys for each
day, i.e., post-compromise and forward secrecy is guaranteed by design and it
suffices to consider only the specific day d∗ in which the adversary makes the
challenge query. Assuming Hin to be a random oracle ensures the randomness
of the inner chain keys and the preimage resistance of Hout ensures that the
adversary cannot retrieve chain keys from the pseudonyms. As we are in the
almost strong unlinkability game, the adversary is allowed to retrieve the tracing
key up from epoch e∗+2. The report for d∗ includes a signature under skd∗ with
skd∗ also being the main seed for the entire chain key. Thus, here we need
the newly introduced assumption of hashed-key indistinguishability of S that
guarantees that seeing such a signature does not give A an advantage in learning
anything about H(skd∗) = ckd∗,0.

Weak trace unlinkability follows from the independent day keys and the as-
sumed use of a random shuffle of all entries exposed in TL.

26



Integrity. Strong integrity holds for Validity(d, t) which parses t = {(repdi , σdi)}
with repdi = (pkdi , ckdi,ei,start−1, di, ei,start, ei,end). For each (di, ei,start, ei,end) it
adds {(di, ej)} for ej = ei,start, . . . , ei,end to the output.

The signature ensures that a tracing key is strictly bound to the time intended
by the user. In particular, a tracing key generated until (d, e) cannot be exploited
by an adversary in a released-cases-replay attack in epochs e′ > e on day d. The
other schemes only achieve that by not outputting the key for day d.

Assuming that Hin is a random oracle and Hout is preimage resistant ensures
that A cannot produce a tracing key that triggers a match for an honestly gener-
ated pseudonym. Correctly predicting a pseudonym that matches a tracing key
later uploaded by an honest user is infeasible as Hout is randomness preserving,
and the precise time is stored by NymRec and checked in TraceVf.

Discussion. The use of the signature scheme (and basing the key chain on sk)
is bit of a burden on privacy: it prevents TCN from achieving strong pseudonym
unlinkability and requires a highly artificial assumption for the weaker version.
Its contributions on the achievable integrity notion are also somewhat minor: It
prevents the last tracing key generated at some time (d, e) to be used on any
later epochs (d, ej > e) that day.

Thus, while the signature slightly increases integrity, it also slightly weakens
privacy and a cleaner design could be to omit the generation of (sk, pk) altogether
and base the key chain on a randomly chosen seed only. To still achieve strong in-
tegrity, the TraceGen algorithm would then have to be adapted to output tracing
information for (dstart, estart), . . . , (d−1, emax) instead of (dstart, estart), . . . , (d, e−1).

4.3 Google-Apple Exposure Notification Protocol (GAEN)

We finally turn to the two versions of the Google-Apple Exposure Notification
(GAEN) protocol. The latest version forms the basis for most nation-wide contact
tracing apps in use today.

GAEN 1.0 The first GAEN protocol was presented (but not implemented) in
April 2020 [12]. It relies on a static master key for each user from which day
keys are derived via a PRF : {0, 1}τ × {0, 1}τ → {0, 1}τ and a day-counter.
A pseudonym for day d and epoch e is computed via a second PRF′ : {0, 1}τ ×
{0, 1}τ → {0, 1}τ . For tracing, the user simply uploads all day keys of the affected
time period.

Difference to Original. To fit the protocol into our syntax (and avoid protocol
specific algorithms in our model) we include the master key in every day key.
This allows to model key rotation based on the previous day key. Clearly, this
is quite redundant and a peculiarity of our syntax, but does not impact the
achieved security and privacy properties.

The protocol specification did not detail how the pseudonyms are stored in
the contact list and how exactly the verification works. As for TCN we assume
that (d, e) is stored with every received pseudonym and the time is used in

27



Init(1τ ):

– mk ←R {0, 1}τ , k′1 ← PRF(mk, 1). Return k1 ← (mk, k′1).

Rotate(kd) with kd = (mk, k′d):

– k′d+1 ← PRF(mk, d+ 1). Return kd+1 ← (mk, k′0).

NymGen(kd, e) with kd = (mk, k′d):

– Return nym← Truncλ(PRF′(k′d, e)).

NymRec(CL, d, e, nym): Return CL ∪ {(nym, d, e)}.
TraceGen(Keys, dstart, estart):

– Parse each kdi ∈ Keys as kdi = (mk, k′di).
– Return t← {(k′dstart , dstart), . . . (k

′
d−1, d− 1)}.

TraceTf(TL, t):

– Return TL′ ← Shuffle(TL ∪ t).
TraceVf(CL,TL):

– For each (k′di , di) ∈ TL, di < d, and ej = 1, . . . , emax:
• nymdi,ej ← Truncλ(PRF′(k′di , ej)).
• Add (nymdi,e, di, ej) to Nyms.

– Return 1 if Nyms ∩CL 6= ∅, and 0 otherwise.

Fig. 11: The GAEN 1.0 Protocol (with λ = 128).

verification which allows to achieve strong integrity. Here we further need that
that TraceGen does not output the tracing key of the current day, as the scheme
would be vulnerable to released-cases-replay attacks otherwise.

Security of GAEN 1.0. The first version of the GAEN protocol does not offer any
post-compromise of forward security due to the reliance on a static master key.
Apart from that, it achieves both weak unlinkability properties which is optimal
for schemes that generate daily tracing keys. If contact lists and verification is
handled as assumed in our paper, the protocol satisfies strong integrity.

Theorem 6. The GAEN 1.0 protocol satisfies

– weak pseudonym unlinkability if PRF and PRF′ are pseudorandom,
– weak trace unlinkability if PRF is pseudorandom (and the assumed shuffle is

used)
– strong integrity if PRF,PRF′ are pseudorandom and PRF′ is λ-prefix key-

preimage resistant.

Pseudonym and Trace Unlinkability. It is obvious that neither forward nor post-
compromise security can be achieved as the compromise of the user’s master key
at any time immediately allows to re-compute all day keys and thus pseudonyms.

Strong pseudonym unlinkability cannot be achieved as from the input (dstart,
estart) to TraceGen, the starting epoch is ignored and the returned trace allows to
recompute pseudonyms for e < estart (on dstart). The proofs for weak pseudonym
and weak trace unlinkability are straightforward and omitted to Appendix C.

28



Init(1τ ):

– Return k1 ←R {0, 1}τ .

Rotate(kd) returns Init(1τ ).

NymGen(kd, e):

– Return nym← PRP(PRF(kd, ”RPIK”), e).

NymRec(CL, d, e, nym): Return CL ∪ {(nym, d, e)}.
TraceGen(Keys, dstart, estart) with Keys = kd−∆, . . . , kd.:

– Return t← {(kdstart , dstart), . . . (kd−1, d− 1)}.
TraceTf(TL, t):

– Return TL′ ← Shuffle(TL ∪ t).
TraceVf(CL,TL):

– For each (kdi , di) ∈ TL, for di < d and ej = 1, . . . , emax:
• nymdi,ej ← PRP(PRF(kdi , ”RPIK”), ej).
• Add (nymdi,e, di, ej) to Nyms.

– Return 1 if Nyms ∩CL 6= ∅, and 0 otherwise.

Fig. 12: The GAEN 1.2 Protocol.

Integrity. Strong integrity holds for Validity(d, t) that parses t = {(k′di , di)} and
for each di adds {(di, ej)} for ej = 1, . . . , emax to the list of times. The full proof
is in Appendix C.

We note that, in contrast to DP3T-LC and DP3T-HYB, each pseudonym is
derived deterministically for a particular epoch ej and the user stores both the
day di and epoch ej with each received pseudonym and uses this information to
verify whether a match was found. This is crucial to achieve strong instead of
weak integrity.

GAEN 1.2 The latest version of the GAEN protocol was presented at the end
of April and released in mid May 2020 [13]. Apart from minor differences in the
notation v1.2 is equivalent to v1.1 which was released shortly before.

The main difference to v1.0 is that the protocol now uses truly independent
day keys. It derives pseudonyms via a PRP : {0, 1}τ × {0, 1}τ → {0, 1}τ and
PRF : {0, 1}τ × {0, 1}τ → {0, 1}τ . The tracing key is again simply the collection
of affected day keys.

Difference to Original. The original protocol also supports the encryption of
meta data under an epoch-specific key. This is the reason for the inner PRF
evaluation: it ensures key separation between the pseudonym generation and
encryption. Consequently, the PRF can be ommitted if no encryption is used.

As in v1.0 the specification does not detail how contact lists and verifica-
tion are done and we assume the handling that is optimal for the desired secu-
rity properties: (d, e) is stored with every received pseudonym and recomputed
peudonyms must be valid for the exact time. The specification actually does in-
dicate a weaker version regarding as it mentions that a “ +/- two-hour tolerance

29



window is allowed” between when a pseudonym derived from the trace key was
supposed to be broadcast, and the time at which it was scanned. We further
need that TraceGen does not output any tracing keys for the current day, as the
scheme would be vulnerable to released-cases replay attacks otherwise.

Security of GAEN 1.2. The newer protocol improves upon v1.0 as it naturally
achieves post-compromise and forward security due to the independent day keys.

Theorem 7. The GAEN 1.2 protocol satisfies

– weak pseudonym unlinkability with forward and post-compromise security if
PRP and PRF are pseudorandom,

– weak trace unlinkability (if the assumed shuffle is used),
– strong integrity if PRF,PRP are key-preimage resistant and pseudorandom.

Pseudonym and Trace Unlinkability As v1.0 it achieves only the weak versions of
pseudonym and trace unlinkability due to relying on single day keys from which
all pseudonyms of the day can be derived. The proofs for the weaker versions
are straightforward and in Appendix C.

Integrity. Strong integrity holds for Validity(d, t) that parses t = {(kdi , di)} and
for each di adds {(di, ej)} for ej = 1, . . . , emax to the list of times which are finally
output. According to our specification, the user stores tuples (nym, di, ej) ∈
CL and leverages that information in TraceVf to verify whether a recomputed
pseudonym nym = PRP(PRF(kdi , ”RPIK”), ej)) from (kdi , di) ∈ TL matches
the pseudonym in CL for the same (di, ej).

The key-preimage resistance of PRF,PRP ensures that A cannot produce
traces for honest pseudonyms. The pseudorandomness of both guarantees that
he cannot predict pseudonyms that match with keys later uploaded by honest
users. The full proof is in Appendix C.

Discussion. As the inner PRF is only invoked on a single and fixed input, all
PRF-related assumptions could be relaxed by giving the adversary therein only
a single PRF value as input instead of access to an oracle that can be queried
arbitrarily.

5 Conclusion

We have proposed a formal model for cryptographic contact tracing that allows
to analyze and compare a multitude of practical protocols that have been devel-
oped in the last months. The model gives precise definitions for the privacy and
security guarantees that can be achieved by such schemes. However, we stress
that even achieving the strongest privacy notions in our model is not a guaran-
tee that users will remain anonymous: Our work focuses solely on the privacy
guarantees imposed by the cryptographic values, and not on linkage through
external information that might be kept with received pseudonyms. We again
refer to [20, 17] for a detailed discussion of the inherent privacy limitations and
risks of DCT.

30



To achieve the desired integrity properties by the cryptographic pseudonym
generation and verification itself, we had to make sure that TraceGen never out-
puts key material that is still “valid”. For the simpler DP-3T and the GAEN
schemes that meant that the key of the final day could not be included into
the output. Clearly, this not optimal for the desired functionality, as contacts
of that day will not be notified anymore. The released-cases-replay attack that
this aims to thwart, can also be handled by the central server that prepares
and provides the tracing lists, by keeping all keys it receives as internal state,
and only including all past keys into the current TL. Another option is to use
a similar handling as TCN and let users sign the specific epoch at which they
generated the key, but this will make uploading and verification more costly and
require similarly tailored assumptions on the deployed signature scheme.

Interesting directions for future work would be to extend the model (and
syntax) to capture interactive or location-based schemes that can avoid relay
and sybil attacks [20, 15, 3], or to extend the formal analysis to a broader class
of protocols. Further, our analysis focused on a small part of contact tracing
applications only. In particular, the process of uploading tracing keys and the
required authentication has not been formalized or clearly analyzed so far, and
would benefit from a formal model and clear specifications as well.

References

1. Fraunhofer AISEC. Pandemic contact tracing apps: Dp-3t, PEPP-PT ntk, and
ROBERT from a privacy perspective. IACR ePrint, 2020:489, 2020.

2. Anderson, Castellucia, McCurley, Teague, Troncoso, Vaudenay, andYung. Panel
discussion on contact tracing. Eurocrypt 2020.

3. Crypto Group at I. S. T. Austria. Inverse-sybil attacks in automated contact
tracing. IACR ePrint, 2020:670.

4. Avitabile, Botta, Iovino, and Visconti. Towards defeating mass surveillance and
sars-cov-2: The pronto-c2 fully decentralized automatic contact tracing system.
IACR ePrint, 2020:493.

5. Avitabile, Friolo, and Visconti. Tenk-u: Terrorist attacks for fake exposure notifi-
cations in contact tracing systems. IACR ePrint, 2020:1150.

6. Canetti, Kalai, Lysyanskaya, Rivest, Shamir, Shen, Trachtenberg, Varia, and
Weitzner. Privacy-preserving automated exposure notification. IACR ePrint,
2020:863.

7. Chan, Foster, Gollakota,Horvitz, Jaeger, Kakade, Kohno, Langford, Larson,
Sharma, Singanamalla, Sunshine, and Tessaro. Pact: Privacy sensitive protocols
and mechanisms for mobile contact tracing. arXiv. 2004.03544, 2020.

8. TCN Coalition. TCN Protocol. https://github.com/TCNCoalition/TCN.

9. de Valence. Private contact tracing protocols compared: Dp-3t and cen. https:

//www.zfnd.org/blog/private-contact-tracing-protocols-compared/.

10. Farshim, Orlandi, and Rosie. Security of symmetric primitives under incorrect
usage of keys. IACR Trans. Symmetric Cryptol., 2017(1):449–473.

11. Germany. Corona warn app. https://github.com/corona-warn-app/

cwa-documentation/blob/master/solution_architecture.md.

31



12. Google-Apple. Contact Tracing. Cryptography Specification (preliminary). https:
//covid19-static.cdn-apple.com/applications/covid19/current/static/

contact-tracing/pdf/ContactTracing-CryptographySpecification.pdf, 2020.
13. Google-Apple. Exposure Notification. Cryptography Specification. hhttps://

covid19.apple.com/contacttracing, 2020.
14. Gvili. Security analysis of the COVID-19 contact tracing specifications by apple

inc. and google inc. IACR ePrint, 2020:428.
15. Pietrzak. Delayed authentication: Preventing replay and relay attacks in private

contact tracing. IACR ePrint, 2020:418.
16. Polak and Shamir. Using random error correcting codes in near-collision attacks

on generic hash-functions. In INDOCRYPT, 2014.
17. DP-3T Project. Response to ”Analysis of DP3T. https://github.com/DP-3T/

documents/blob/master/Security%20analysis/Response%20to%20’Analysis%

20of%20DP3T’.pdf.
18. DP-3T Project. White Paper (25.May). https://github.com/DP-3T/documents/

blob/master/DP3T%20White%20Paper.pdf, 2020.
19. MIT PACT Project. The pact protocol technical specification. https://pact.

mit.edu/.
20. Vaudenay. Analysis of DP3T. IACR ePrint, 2020:399.

A Security Proofs for DP-3T

A.1 DP3T-LC

As the DP3T-LC protocol is the same as the DP3T-HYB except for the key sched-
ule, we only give proof sketches here and refer for details to the corresponding
proofs in Appendix A.2.

Weak Pseudonym Unlinkability

Theorem 8. The DP3T-LC protocol satisfies weak pseudonym unlinkability with
forward secrecy if PRF and PRG are pseudorandom, and H is a random oracle.

The DP3T-LC protocol is one of the few protocols that derives the day keys from
the previous one as k′d+1 ← H(k′d). Assuming H to be a random oracle and the
previous key to be secret, new key material is indistinguishable from random.

There are two ways to receive key material of the honest user: 1) via the
OTraceGen and 2) via the OCompromise oracles. As we are in the weak version of
the game, the adversary can query OTraceGen for tracing keys of an honest user
only for dstart > d∗. Likewise, queries to OCompromise are allowed only after day
d∗ + ∆ (as we only consider forward secrecy and the ∆ delay is required by
the security model). In both cases, the earliest key the adversary can obtain
is k′d∗+1 = H(k′d∗). By the preimage resistance of H (which is implied by the
random oracle assumption) the adversary can recover the preimage, and thus
the previous key k′d∗ with negligible probability only.

The rest of the analysis is analogous to the newer hybrid version of the DP-3T
protocol family. We thus refer to the proof of Theorem 10 for details.

32



Weak Integrity

Theorem 9. The DP3T-LC protocol satisfies weak integrity if H is a random
oracle, PRF is pseudorandom and key-preimage resistant and PRG is pseudo-
random and satisfies partial preimage resistance. The protocol does not achieve
strong integrity.

For proving weak integrity we must define the Validity function, which is
used to determine for which days the adversary or an honest user has uploaded
tracing keys for. Here Validity(d, t) which parses t = (k′dstart , dstart, dend) and returns
{(di, ej)} for all di = dstart, . . . , dend.

We again leverage the random oracle assumption to argue that the day keys
of honest user’s behave like fresh keys (until the user eventually uploads a tracing
key). Thus, for the rest of the analysis we refer to the almost analogous proof
of the DP3T-HYB scheme showing that triggering a false-positive alarm either
requires to find a key or partial collision on the PRF and PRG respectively, or to
predict an output of the combined PRF/PRG function. Note that the attacker in
the DP3T-HYB is more powerful than here, as in the hybrid scheme the tracing
keys are independent per day, whereas here keys in TraceVf are re-derived from
the starting key.

The only minor difference is how both schemes prevent released-cased replay
attacks: in DP3T-LC we let a user also include the end day dend, which was d−1
at trace generation, in the tracing key and recompute the pseudonyms until dend.
We also assumed that TraceTf is performed and traces are distributed honestly.
Thus, this has the same effect as TraceGen not releasing any tracing key for the
last day in DP3T-HYB.

A.2 DP3T-HYB

Weak Pseudonym Unlinkability

Theorem 10. The DP3T-HYB protocol satisfies weak pseudonym unlinkability
with forward and post-compromise security if PRF and PRG are pseudorandom.

First, we note that the DP-3T hybrid protocol chooses random keys for every
day d which ensures that cryptographic material is entirely independent across
different days. Thus, it suffices to consider only the specific day d∗ in which the
adversary makes the challenge query (as we can perfectly simulate all oracles
for di 6= d∗ by simply running the normal protocol for keys kudi chosen by the
challenger). Further, as we are in the weak unlinkability game, the adversary can
only query the OTraceGen oracle up from d∗ + 1 which we can trivially simulate
by the key material that is known to the challenger.

Thus, it remains to show that the adversary cannot link nymb to any of the
pseudonyms nymu

d∗,e it can receive from ONymGen during the challenge day d∗

for e 6= e∗. At day d∗ the adversary sees nymu
d∗,1|| . . . ||nymu

d∗,emax
← PRG(s) for

s← PRF(k′
u
d∗ ,
′′DP3T −hybrid′′), where he can request all but nymu

d∗,MAPd∗ (e∗)

from the ONymGen oracle.

33



We can now distinguish two cases: either s is (indistinguishable from) random
or not.

– If s is random, all the adversary sees are different chunks from a proper
PRG output nymd,1|| . . . ||nymd,emax ← PRG(s). Thus, if A can link different
parts of the PRG output, we can turn A into an adversary that breaks the
pseudorandomness assumption from PRG.

– If s is not random we can turn A into an adversary that breaks the pseudoran-
domness assumption from the underlying PRF used to derive s← PRF(k′d,

′′DP3T−
hybrid′′).

Finally, by the independent day keys, post-compromise and forward security
follows immediately.

Weak Integrity

Theorem 11. The DP3T-HYB protocol satisfies weak integrity if PRF is key-
preimage resistant and pseudorandom and PRG is partial collision resistance and
pseudorandom.

First we need to define the Validity function used in the weak integrity game:
Validity(d, t) parses t = {(k′di , di)} and returns {(di, e)} for all e = 1, . . . , emax.
That is, for every infected day, all epochs are in Qpos.

Assuming the adversary wins the weak integrity game, we know that there
must be a key-day tuple (ki, di) ∈ TL and a pseudonym-day tuple (nym, di) ∈
CL[u∗] s.t. for nym∗i,1|| . . . ||nym∗i,emax

← PRG(PRF(ki, ctxt)) there is an e with
nym = nym∗i,e. We can now distinguish two cases:

– nym was received at day di from an honest user uS : Either directly via the
OSendNym oracle or a replay attack using the OGetNym and ORecNym oracle. In
either case, by conditions (1) and (2a) of the game, the adversary only wins
if uS did not upload her tracing key kuS

di
for di. Thus, the key (ki, di) ∈ TL

that led to the match with nymj must either stem from a different honest
user u′ or from the adversary (via OUploadTrace). The former is negligible by
the random choice of keys, and latter event branches into two cases:

• PRF(kuS

di
, ctxt) = PRF(ki, ctxt). The adversary found a key ki that leads

for ctxt to the same output of the PRF as under kuS

di
, and thus the entire

pseudonym sequence derived via the PRG is equivalent. This is negligible
due to the key-collision resistance of PRF.

• PRF(kuS

di
, ctxt) 6= PRF(ki, ctxt). If the PRF leads to two distinct outputs

s 6= s′, a partial collision on the output of the PRG must have occurred.
That is, the adversary found a key s′ for which PRG(s′) contains a τ -bit
snippet that was also output by PRG(s) for s = PRF(kuS

di
, ctxt). Such a

partial collision on PRG is assumed infeasible.

34



– nym was received at day di from the adversary A: By condition (2b), the
adversary only wins if it did not upload a key for di. Thus, the adversarial nym
is a valid pseudonym for an honest user’s key ki triggered through theOTraceGen

oracle. As TraceGen only outputs keys for the past, and user store and verify
the day in which a pseudonym was received in, this implies that the adversary
has predicted part of the output of PRG(PRF(ki, ctxt)) before learning the
randomly chosen ki, which is infeasible due to the pseudorandomness of PRF
and PRG.

A.3 DP3T-UNLINK

Strong Integrity

Theorem 12. The DP3T-UNLINK protocol satisfies strong integrity if H is λ-
prefix preimage-resistant and randomness preserving, and Hout is collision resis-
tant and unpredictable (for random inputs).

First we need to define the Validity function: Validity(d, t) parses a tracing
key t = {(seeddi,ej , di, ej)} and returns all {(di, ej)}.

Assuming the adversary wins the strong integrity game, we know that there
must be an outer hash value h = Hout(Truncλ(H(seeddi,ej ), di, ej)) ∈ TL and
a hash of a pseudonym-day-epoch-tuple h′ = Hout(nym, d

′
i, e
′
j) ∈ CL[u∗] where

h = h′.
Note that for a match it is not directly enforced (or enforceable) that (di, ej) =

(d′i, e
′
j) (which is the case in the other schemes we analyze). However, in our game

we do know when an honest user has received a pseudonym (this is stored in
Qnym) and will use this in our analysis. We first branch the analysis on whether
or not (di, ej) = (d′i, e

′
j) holds.

– (di, ej) = (d′i, e
′
j): A match was found between an uploaded trace (seeddi,ej , di, ej)

that was claimed to be valid for (di, ej) and a pseudonym nym that was re-
ceived at the same (di, ej). As the seed and pseudonym (seemingly) stem from
the same time epoch, the winning condition of the game requires that at most
one of the values was provided by the adversary. We can branch our analysis
accordingly:
• nym was received at time (di, ej) from an honest user uS : Then we know

that nym = Truncλ(H(seeddi,ej ) for an honestly chosen seed seeddi,ej and
that by conditions (1) and (2a) the honest sender of that pseudonym has not
uploaded its seed. Thus, there must be an adversarial uploaded trace seed∗

in TL for which it holds that Hout(nym, di, ej) = Hout(Truncλ(H(seed∗), di, ej)).
Such an event can occur if either Truncλ(H(seed∗)) = Truncλ(H(seeddi,ej )),
i.e., the adversary was able to produce the same pseudonym nym as the
honest user; or Hout(nym, di, ej) = Hout(nym

∗, di, ej) for nym 6= nym∗. The
former contradicts the λ-prefix preimage resistance of H, and the latter the
second preimage resistance of Hout.
• nym was received at time (di, ej) from the adversary A: If nym did come

from the adversary, we know by condition (2b) that A was not allowed to

35



send a trace (seeddi,ej , di, ej) at the same time. Thus there must be a seed
seeddi,ej from on honest user uS for which it holds that Hout(nym, di, ej) =
Hout(Truncλ(H(seeddi,ej ), di, ej)). Note that the honest user u∗ hashes the
received pseudonym nym together with the time (di, ej) it was received
in, i.e., the adversary must have sent nym before the honest sender uS
uploaded its seed.
Again such a match can only occur if nym = Truncλ(H(seeddi,ej ) or if
Hout(nym, di, ej)) = Hout(nym

∗, di, ej) for nym 6= nym∗ (with nym∗ de-
noting the pseudonym derived from the honest seed seeddi,ej ). The former
is negligible by the randomness preserving property of H as seeddi,ej has
been drawn at random from {0, 1}τ . The latter is negligible by the unpre-
dictability property of H.

– (di, ej) 6= (d′i, e
′
j): A match was found for a seed and a pseudonym despite

both of them being for different day-epoch combinations. In this case both
the seed seeddi,ej and the pseudonym nym can stem from the adversary
(and we assume wlog that they do). Due to (di, ej) 6= (d′i, e

′
j), the adversary

must have found a collision on the outer hash function Hout(nym
′, di, ej) =

Hout(nym, d
′
i, e
′
j) for nym′ = Truncλ(H(seeddi,ej )).

B Security Proofs for TCN

Almost Strong Pseudonym Unlinkability

Theorem 13. The TCN protocol satisfies almost strong pseudonym unlinkabil-
ity with forward and post-compromise secrecy if Hin is a random oracle, Hout is
preimage resistant, S has hashed-key indistinguishability.

TCN chooses random keys for every day d, ensuring that keys are independent
across different days. Therefore post-compromise and forward secrecy is guaran-
teed by design and it suffices to consider only the specific day d∗ in which the
adversary makes the challenge query.

Thus, we have to show that the pseudonyms received on a day d∗ at epochs
1, . . . , e′ are unlinkable, where e′ = estart−2 if the adversary invoked the OTraceGen

for dstart = d∗ and estart ≥ e∗ + 2 and e′ = emax else.
First lets consider the case thatA did not call theOTraceGen oracle for d∗. Then

all that A sees in addition to the challenge pseudonym nymb are pseudonyms
nymd∗,ej it can obtain from the ONymGen oracle. Each pseudonym has the form
nymd∗,ej = Hout(d

∗, ej , ckd∗,ej ) where the chain key is computed recursively as
ckd∗,ej = Hin(pkd∗ , ckd∗,ej−1). The inputs to the inner hash function stem from
a secret, randomly chosen key pair (sk, pk) ←R S.KeyGen(1τ ). Thus, assuming
Hin behaves as a random oracle we can conclude that the derived chain keys are
indistinguishable from random. If no tracing key for d∗ is generated, then no
further assumption on the outer hash function Hout would be required. Even the
identity function would be sufficient, as “leaking” a chain key for ej still does
not allow to derive the following chain key for ej + 1: this requires also the key
pk as input, which is kept secret as long as no tracing key is generated.

36



Now, lets extend the analysis and assume a tracing key for starting time
dstart = d∗ and estart ≥ e∗+ 2 is generated. Thus, the adversary receives (repd∗ =
(pkd∗ , ckd∗,estart−1, d

∗, estart), σd∗) with σd∗ = S.Sign(skd∗ , repd∗). To argue that
this information does not increase A’s chance in winning the unlinkability game
we need two further assumptions: First, Hout must be preimage resistant guaran-
teeing that from a pseudonym (for time e < estart−2) it is infeasible to determine
the underlying chain key. This additional assumption is necessary, as now the
public key pkd∗ is known to the adversary, but we still need to enure that an
earlier chain key ckd∗,ej cannot be deduced from Hout(d

∗, ej , ckd∗,ej ).
Second, and maybe more surprisingly, we need a tailored assumption for the

signature scheme guaranteeing that from the signature σd∗ no information about
Hin(sk) can be deduced. This is necessary as the entire chain key is based on
the secrecy of ck0 = Hin(sk). The standard signature property of unforgeabil-
ity is not sufficient, as the signature can be perfectly unforgeable but append
Hin(sk) to every signature. We have introduced the property of hashed-key in-
distinguishability of a signature scheme which guarantees that seeing a signature
computed with sk does not allow the adversary to distinguish Hin(sk) from a
random string.

Putting all together, this means that learning the tracing key for day d∗ and
epoch estart does not reveal information about the chaining keys before estart − 1
and thus the pseudonyms prior to the tracing period (minus 1) remain unlinkable.

Strong Integrity

Theorem 14. The TCN protocol satisfies strong integrity if S is unforgeable, Hin

is a random oracle and Hout is preimage resistant and randomness preserving.

First we need to define the Validity function. Validity(d, t) parses t = {(repdi , σdi)}
with repdi = (pkdi , ckdi,ei,start−1, di, ei,start, ei,end). For each (di, ei,start, ei,end) it
adds {(di, ej)} for ej = ei,start, . . . , ei,end to the output.

Assuming the adversary wins the strong integrity game, we know that there
must be an uploaded report repdi = (pkdi , ckdi,ei,start−1, di, ei,start, ei,end) in TL
that leads to a chainkey ckdi,ej (explicit or via derivation) for (di, ej) and a
pseudonym-day-epoch-tuple (nym, di, ej) ∈ CL[u∗] such that nym = Hout(di, ej , ckdi,ej ).
As the signed report contains both the start and end epoch, and verification only
derives pseudonyms for epochs in between both we now that ei,start ≤ ej ≤ ei,end
by the unforgeability of the signature scheme.

This allows to distinguish two cases:

– nym was received at time (di, ej) from an honest user uS : That is, the
pseudonym nym is derived via the hash chain from a signature key pair
(sk, pk) ←R S.KeyGen(1τ ) generated by the honest user and the honest user
did not upload a tracing key (report) for di. Thus, the adversary must have
provided a report that led to the match for nym.
We assume that the adversary uploads a report that starts on day di and at
epoch ei,start = ej . It is obvious that this gives the adversary the most flex-
ibility, and the cases for ei,start < ej can be derived accordingly. Thus, the

37



adversary has provided a tuple ((pkdi , ckdi,ej−1, di, ej , ei,end), σdi). We know
that it must hold that nym = Hout(di, ej ,Hin(pkdi , ckdi,ej−1)), i.e,. the ad-
versary must have produced a valid preimage for the iterated hash function
Hout(x1,Hin(x2)), which can be translated into a preimage attack on either of
the functions, which we assumed to be infeasible.

– nym was received at time (di, ej) from the adversary A: If the pseudonym
stems directly from the adversary, he was not allowed to upload a report
that affects the time (di, ej). Thus the match was triggered by an honest user
uS who uploaded a tuple ((pkdi , ckdi,ei,start−1, di, ei,start, ei,end), σdi) for ei,start ≤
ej ≤ ei,end that led to the adversarial nym. As the honest user u∗ stores every
received pseudonym with the time (d, e) it was received in, the adversary must
have provided nym before seeing the report of uS . He was able to see other
pseudonyms of uS derived on the same day di though. Consequently, this event
requires A to predict a valid nymdi,ej after seeing nymdi,e′ for e′ = 1, . . . ej−1.
Assuming Hin to be a random oracle, we know that every nymdi,e′ was derived
as nym = Hout(di, e

′, ckdi,e′) for a different random looking ckdi,e′ per epoch
e′. If Hout is further randomness preserving, the adversary’s probability of
predicting a valid nym = nymdi,ej is negligible.

C Security Proofs for GAEN

C.1 GAEN 1.0

Weak Pseudonym Unlinkability

Theorem 15. The GAEN 1.0 protocol satisfies weak pseudonym unlinkability if
PRF and PRF′ are pseudorandom.

In the weak pseudonym unlinkability game the adversary is given access to a
pseudonym oracle ONymGen for two honest user u ∈ {0, 1} and a trace gener-
ation oracle OTraceGen for both where the latter can only be invoked after the
challenge day d∗. Assuming that PRF is a pseudorandom function, we can re-
place the derived day keys of both challenge users with random keys. Now, all
pseudonyms from days di 6= d∗ are unrelated to the challenge pseudonym and
we can focus solely on queries to ONymGen for d∗. On day d∗ the adversary can
receive pseudonyms for all epochs ej 6= e∗ with nymj = Truncλ(PRF′(kud∗ , ej)).
By the pseudorandomness of PRF′ seeing these values cannot help the adversary
to determine to whom nymb belongs.

Weak Trace Unlinkability

Theorem 16. The GAEN 1.0 protocol satisfies weak trace unlinkability if PRF
is pseudorandom and if the assumed shuffle in TraceTf is used.

This is the only scheme that requires an additional assumption to achieve weak
trace unlinkablility, as usually this follows from the independent day keys. Here
the PRF must be secure pseudorandom function, such that different day keys
derived from the same mk cannot be linked.

38



Strong Integrity

Theorem 17. The GAEN 1.0 protocol satisfies strong integrity if PRF,PRF′ are
pseudorandom and PRF′ is λ-prefix key-preimage resistant.

We first note that, in contrast to DP3T-LC and DP3T-HYB, each pseudonym is
derived deterministically for a particular epoch ej and the user stores both the
day di and epoch ej with each received pseudonym and uses this information to
verify whether a match was found. This is crucial to achieve strong instead of
weak integrity.

For the proof we first need to define the Validity function: Validity(d, t) parses
t = {(k′di , di)}. For each di it adds {(di, ej)} for ej = 1, . . . , emax to the list of
positive times.

We assumed that GAEN 1.0 stores (di, ej) in the contact list and uses this
information when testing for match. Thus, by the definition of TraceVf we know
that a match in the integrity game is only found if there is a key (kdi , di) ∈ TL for
which there is an epoch ej such that it matches a nym = Truncλ(PRF′(kdi , ej))
for a tuple (nym, di, ej) ∈ CL[u∗].

Thus, the key and the pseudonym must belong to the same time (di, ej)
which in turn means that not both can be provided by the adversary and we
can consider the following two cases:

– The matching pseudonym nym was received from an honest user uS as nym =
Truncλ(PRF′(k′di , ej)) and by conditions 1 and 2a the tracing key that led to
the match must stem from the adversary. The adversary is allowed to see the
pseudonym via a call to the OGetNym oracle, but he was not allowed to invoke
OTraceGen for uS and di −∆ ≤ dstart ≤ di. This means that A must have up-
loaded a key (k∗di , di) via OUploadTrace such that nym = Truncλ(PRF′(k∗di , ej)).

This allows to break the key-preimage resistance of the PRF′.
– The pseudonym nym stems from the adversary which matches the tracing key

uploaded by an honest user uS and input ej , but uS has not provided that
PRF output. Note that 1) the honest user u∗ stores each received pseudonym
with the time (di, ej) it was received in, 2) TraceGen only outputs keys of the
past, but not the current day. Thus, the adversary must have send nym via
ORecNym to u∗ before learning the underlying key from uS . The probability of
correctly predicting such a PRF output is negligible by the pseudorandomness
of PRF′.

C.2 GAEN 1.2

Weak Pseudonym Unlinkability

Theorem 18. The GAEN 1.2 protocol satisfies weak pseudonym unlinkability
with forward and post-compromise security if PRP and PRF are pseudorandom.

Due to independent day keys, the scheme naturally achieves forward and post-
compromise security. Further, as we are in the weak pseudonym unlinkability
game, the OTraceGen oracle can only be invoked for dstart > d∗. Consequently,

39



we can focus our analysis exclusively on the challenge day d∗. The adversary is
able to learn all pseudonym nymu

d∗,ej
= PRP(PRF(kud∗ , ”RPIK”), ej) for ej 6= e∗

from ONymGen for both honest users u ∈ {0, 1} and must be able to determine b
from nymb = PRP(PRF(kbd∗ , ”RPIK”), e∗). No trace information or keys for d∗

are accessible to A. Thus, it is easy to see that by the pseudorandomnes of PRP
and PRF the pseudonyms seen for other epochs are not helping the adversary to
determine b.

Weak Trace Unlinkability

Theorem 19. The GAEN 1.2 protocol satisfies weak trace unlinkability if the
assumed shuffle in TraceTf is used.

This property already follows from the independent day keys and the additional
assumption that an honest server aggregates and shuffles the received tracing
keys before making them available in the tracing list.

Strong Integrity

Theorem 20. The GAEN 1.2 protocol satisfies strong integrity for Validity de-
fined below if PRF and PRP are key-preimage resistant and pseudorandom.

The proof is mostly analogous to GAEN 1.0: using the same Validity function and
relying on the fact that the user stores tuples (nym, di, ej) ∈ CL and leverages
that information in TraceVf to verify whether a recomputed pseudonym nym =
PRP(PRF(kdi , ”RPIK”), ej)) from (kdi , di) ∈ TL matches the pseudonym in
CL for the same (di, ej).

Thus, assuming the adversary has triggered a positive verification for an
honest user u∗, a match for (nym, di, ej) and (kdi , di) was found, and we can
condition our analysis accordingly:

– nym was received from an honest user uS . We now that (PRF(kdi , ”RPIK”), ej))
where kdi is the key of the honest user, but that user has not uploaded
kdi . Thus, the adversary must have uploaded a matching key (k∗, di) via
OUploadTrace where it holds that either s = s∗ for s = PRF(kdi , ”RPIK”) and
s∗ = PRF(k∗, ”RPIK”) or PRP(s, ej) = PRP(s∗, ej). Both contradicts the
assumed key-preimage resistance of PRF and PRP respectively.

– nym was received from the adversary. If the adversary sent nym he was not
allowed to upload a tracing key for the entire day di. As a match was found,
the pseudonym match was triggered for a key kdi uploaded by an honest user
uS via the OTraceGen oracle. The adversary was allowed to learn pseudonyms
for kdi from uS for any epoch except ej (via queries to ONymGen) and to
eventually learn kdi (via a query to OGetTL). However, as the honest u∗ stores
the received pseudonym together with (di, ej) it was received in and TraceGen
does not upload keys of the current day, the adversary must have sent nym
before learning kdi . Such a prediction is infeasible by the pseudorandomnes
of PRF and PRP.

40


