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Abstract
There is a significant interest in securely computing functionalities with guaranteed output de-
livery, a.k.a., fair computation. For example, consider a 2-party n-round coin-tossing protocol
in the information-theoretic setting. Even if one party aborts during the protocol execution, the
other party has to receive her outcome. Towards this objective, every round, the sender of that
round’s message, preemptively prepares a defense coin, which is her output if the other party
aborts prematurely. Cleve and Impagliazzo (1993), Beimel, Haitner, Makriyannis, and Eran
Omri (2018), and Khorasgani, Maji, and Mukherjee (2019) show that a fail-stop adversary can
alter the distribution of the outcome by Ω(1/

√
n).

However, preparing the defense coin is computationally expensive. So, the parties would
prefer to update their defense coin only sparingly or when indispensable. Furthermore, if parties
delegate their coin-tossing task to an external server, it is even infeasible for the parties to stay
abreast of the progress of the protocol and keep their defense coins in sync with the protocol
evolution. Therefore, this paper considers lazy coin-tossing protocols, where parties update their
defense coins only a total of d times during the protocol execution. Is it possible that using only
d � n defense coin updates a fair coin-tossing protocol is robust to O (1/

√
n) change in their

output distribution?
This paper proves that being robust to O(1/

√
n) change in the output distribution necessarily

requires that the defense complexity d = Ω(n), thus ruling out the possibility mentioned above.
More generally, our work proves that a fail-stop adversary can bias the outcome distribution
of a coin-tossing protocol by Ω

(
1/
√
d
)
, a qualitatively better attack than the previous state-

of-the-art when d = o(n). That is, the defense complexity of a coin-tossing protocol, not its
round complexity, determines its security. We emphasize that the rounds where parties calculate
their defense coins need not be a priori fixed; they can depend on the protocol’s evolution itself.
Finally, we translate this fail-stop adversarial attack into black-box separation results for lazy
coin-tossing protocols.

The proof relies on an inductive argument using a carefully crafted potential function to
precisely account for the quality of the best attack on coin-tossing protocols. Previous approaches
fail when the protocol evolution reveals information about the defense coins of both the parties,
which is inevitable in lazy coin-tossing protocols. Our analysis decouples the defense complexity of
coin-tossing protocols from its round complexity to guarantee fail-stop attacks whose performance
depends only on the defense complexity of the coin-tossing protocol; irrespective of their round
complexity.

Keywords and phrases Discrete-time Martingale, Coin-tossing Protocols, Fair Computation, De-
fense Complexity, Fail-stop Adversary, Black-box Separation
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1 Introduction

Guaranteed output delivery is a desirable attribute of secure computation protocols. Secure
computation of functionalities with guaranteed output delivery ensures that even if a party
aborts during the execution of the protocol, the other party still obtains her output. Defining
security and constructing secure protocols in this setting for general functionalities has been
a field of highly influential research [Cle86, CI93, GHKL08, GK10, BLOO11, ALR13, Ash14,
Mak14, ABMO15]. This paper studies the fundamental 2-party coin-tossing functionality in
this setting. Our motivation underlying the study and our contributions are best exemplified
in the context of the following representative problem.

Representative Motivating Problem. Alice and Bob are interested in generating
multiple (shared) random coins; each of them is heads (independently) with probability X0.
Instead of undertaking this computationally heavy task themselves, they delegate it to a
dedicated third-party cloud computing service (refer to Figure 1 for illustration). This cloud
computing service spawns two processes to generate each coin (one on behalf of Alice and
one on behalf of Bob) and runs one instance of an n-round 2-party coin-tossing protocol
between these two processes. Upon the completion of the protocol, Alice’s process reports
its outcome back to Alice and, likewise, Bob’s process reports its outcome back to Bob.

However, there is a threat that the cloud computing platform gets infected by a virus that
can eavesdrop on the communication between the processes participating in the coin-tossing
protocol instances. Based on the communication, the adversary can terminate the processes
before they report back their respective outcomes to Alice and Bob. In order to defend
against the complete loss of their computation, the processes report back intermediate coin
outcomes every t rounds to safeguard the partial progress of their computation. Ideally, one
would like to set t = 1 to keep Alice/Bob abreast of the progress in the coin-tossing protocol.

The computation of these defense coins, however, is computationally expensive. Each
process has to sample a complete transcript that honestly extends the partial transcript
generated so far. This extension is computationally expensive without the knowledge of the
other process’s internal state [JVV86, BGP00]. Furthermore, reporting back to Alice/Bob
introduces network latency that is multiple orders of magnitude larger than the low-latency
of the coin-tossing protocol among processes on the same processor (see, for example,
https://gist.github.com/hellerbarde/2843375). Inevitably, by the time Alice/Bob receive their
defense coin, the coin-tossing protocol would have already progressed significantly ahead.
Consequently, only large values of t are achievable.

Given n, t, and X0, the insecurity of any coin-tossing protocol instance is the maximum
change in the output distribution that the virus causes by killing the processes. In this
scenario, the following questions are but natural. How much insecurity (as a function of n,
t, and X0) should Alice and Bob anticipate? Equivalently, given a particular tolerance for
security, how frequently should Alice and Bob update their defense coins?

Looking Ahead. All previous works [CI93, BHMO18, KMM19] are applicable only for
the particular case of t = 1. They prove that the insecurity in the coin-tossing protocol
mentioned above (qualitatively) behaves as X0(1−X0)√

n
. This bound leaves open the possibility

https://gist.github.com/hellerbarde/2843375
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Figure 1 Illustration of Alice and Bob delegating the generation of one coin toss to a cloud
service where parties are lazy to obtain their defense coins.

that one might increase the time t between updating defenses (a.k.a., parties lazily update
their defenses) without sacrificing the security of the protocol. Existing proof techniques
break down entirely when the evolution of the coin-tossing protocol between consecutive
updates of Alice’s and Bob’s defense coins reveals information about both of their defense
coins, which is indeed possible for t > 2 (see Figure 4 for a concrete example). To circumvent
this challenge, we introduce a new inductive proof strategy demonstrating that the insecurity
is at least X0(1−X0)√

n/t
, a qualitatively better lower bound when t = o(1). Note that d := n/t,

referred to as the defense complexity of the protocol, is the total number of defense coins
received by Alice and Bob during the protocol execution. In general, we demonstrate that
the defense complexity of the protocol, not the round complexity, is key to determining the
insecurity of a coin-tossing protocol. Intuitively, for example, our result implies that a high
round-complexity coin tossing protocol is vulnerable if parties do not frequently update their
defense coins. We emphasize that the decision of whether to update the defense coin or not
in a round may depend on the evolution of the protocol itself.

1.1 Discussion on Previous Approaches
Consider a 2-party n-round coin-tossing protocol such that the probability of the outcome
being 1 is X0, and the probability of the outcome being 0 is 1−X0. Let X = (X0, X1, . . . , Xn)
represent the Doob’s martingale corresponding to this protocol where Xi represents the
expected outcome conditioned on the first i messages of the transcript. Note that Xn ∈
{0, 1}, because at the end of the protocol, both parties agree on the outcome being 0 or
1 with certainty. Previous works [CI93, KKR18, BHMO18, KMM19] prove the existence
of a (randomized) round τ ∈ {1, 2, . . . , n} such that the expected magnitude of the gap
|Xτ −Xτ−1| is Ω

(
X0(1−X0)√

n

)
. We clarify that the round τ being randomized implies that

it can depend on the partial transcript generated during the protocol. Such a round τ ,
intuitively, is susceptible to attacks because there is a significant gap between the knowledge
of the two parties regarding the (expected) outcome of the protocol.

In fair coin-tossing protocols [Cle86, CI93, GHKL08] (i.e., coin-tossing protocols with
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guaranteed output delivery), if one of the parties aborts prematurely, then the other party
still has to output 0 or 1. Intuitively, the two parties carry private defense coins, which
they regularly update as the protocol progresses. If a party aborts, then the other party
outputs her defense coin. Without loss of generality, one can assume that the parties update
their defense coin as part of their next message computation in the protocol execution. For
example, without loss of generality, assume that Alice plays the role of the party that sends
the first message in the coin-tossing protocol. Then, Alice updates her defense coin every
odd round, and Bob updates his defense coin every even round.

A crucial property of information-theoretic protocols is the following. The expectation
of Alice’s defense coin (conditioned on the partial transcript) does not change after Bob
sends the next message in the protocol, and (likewise) the expectation of Bob’s defense
coin does not change after Alice sends the next message in the protocol. For example,
the expected value of Bob’s defense coin immediately before and after Alice sends her
message in round 3 is the same. Previous works consider the message exposure filtration
{∅, T } = M0 ⊆ M1 ⊆ · · · ⊆ Mn = 2T corresponding to the protocol.1 They identify the
susceptible (randomized) round τ witnessing an Ω

(
X0(1−X0)√

n

)
gap in the martingale. Next,

they use this round τ as a template to identify a fail-stop attack on the coin-tossing protocol
and change the output distribution by Ω

(
X0(1−X0)√

n

)
. This transference crucially relies on

the fact that the expectation of the defense coin of the receiver in round τ immediately
before and after the τ -th message is identical.

Now consider the scenario where parties update their defense coins lazily. Suppose the
parties update their defenses in rounds 1 6 i1 < i2 < · · · < id 6 n. We clarify that the
rounds {i1, i2, . . . , id} can be randomized as well, i.e., they depend on the partial transcripts
during the protocol execution, refer to Figure 2. Furthermore, note that the parity of the
round ik implicitly identifies the party updating her defense coin. The randomized defense
rounds are very natural to consider. For example, continuing the motivating example from
the introduction, the next message computation of a delegated protocol may depend on the
partial transcript of the delegated protocol. If, for instance, the protocol evolves into a state
where the next-message-generation becomes time consuming for the processes of the cloud,
then Alice and Bob can use this opportunity to reduce their lag in the knowledge of the
protocol’s evolution.

Suppose one considers the message exposure filtration {∅, T } = M0 ⊆ M1 ⊆ · · · ⊆
Mn = 2T , then the fail-stop attack shall ensure that the output distribution changes
only by Ω(X0(1−X0)/

√
n). On the other hand, one can instead consider the filtration

{∅, T } = F0 ⊆ F1 ⊆ · · · ⊆ Fd ⊆ Fd+1 = 2T , where Fk (for 1 6 k 6 d) corresponds to
exposing all the protocol messages up to (the randomized) round ik, and Fd+1 represents
exposing the full transcript. We emphasize that the σ-field Fk may simultaneously expose
multiple rounds of messages sent by both the parties in addition to the messages already
exposed by Fk−1. Let Y = (Y0 = X0, Y1, . . . , Yd, Yd+1) represent the martingale such that
Yk is the expectation of the outcome conditioned on the first ik messages in the protocol.
Note that Yd+1 is the expected outcome at the end of the protocol and, therefore, we have
Yd+1 ∈ {0, 1}.

Indeed, by applying [CI93, KKR18, BHMO18, KMM19], there exists a τ ∈ {1, 2, . . . , d, d+ 1}
for this filtration such that the gap in parties’ knowledge of the outcome between rounds

1 The set T represents the set of all possible transcripts in the protocol. The set 2T represents the set of
all possible subsets of T .
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Figure 2 The tree represents the protocol tree of the coin-tossing protocol. Gray dotted lines
represent the n rounds of the protocol. The dashed lines represent the d = 3 defense rounds. Any
complete protocol execution (root to leaf path in the tree) encounters the defense rounds i1, i2,
and i3 in that particular order. For example, we consider two transcripts τ and τ ′, and illustrate
that they encounter i1, i2, and i3 in that order. The σ-fields F1, F2, and F3 expose messages till
encountering i1, i2, and i3, respectively. The σ-field F4 reveals the entire protocol transcript.

iτ−1 and iτ is Ω
(
X0(1−X0)/

√
d
)
. However, the transference of τ into a fail-stop attack on

the coin-tossing protocol fails. This failure is attributable to the fact that the expectation of
the defense coins of both parties may change between rounds iτ−1 and iτ because Fτ may
expose messages by both parties in addition to the messages already exposed by Fτ−1 (refer
to Figure 4 and Figure 5 for concrete examples).

Towards resolving this impasse, we employ a new potential function enabling an inductive
proof for this problem; generalizing the approach of Khorasgani et al. [KMM19]. This new
proof considers the message exposure filtration {∅, T } = M0 ⊆ M1 ⊆ · · · ⊆ Mn = 2T
while, simultaneously, ensuring a fail-stop attack on (information-theoretic) coin-tossing
protocols that changes their output distribution by Ω

(
X0(1−X0)/

√
d
)
. Finally, these

attacks naturally translate into black-box separation results for (appropriately restricted-
versions of) fair coin-tossing protocols as considered in [DLMM11, HOZ13, DMM14].

1.2 Our Contributions
A 2-party (n, d)-coin-tossing protocol with bias-X0 is an n-round 2-party coin-tossing protocol
(with output {0, 1}) such that the expected outcome of the protocol is X0, and parties
update their defense coins in d rounds. The defense complexity d is a function of the round
complexity n. Furthermore, the decision of a party to update her defense coin may depend
on the partial transcript of the protocol itself. A protocol is ε-unfair if there exists a fail-stop
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strategy for one of the parties to deviate the output distribution of the honest party by ε in
statistical distance. Our main result is the following theorem.

I Theorem 1 (Attacks on Coin-Tossing Protocol with Lazy Defense). There exists a universal
positive constant c, such that for any X0 ∈ [0, 1] and 2-party (n, d)-coin-tossing protocol with
bias-X0 is (at least) c ·X0(1−X0)/

√
d-unfair.

Before our result, we knew that 2-party (n, n)-coin-tossing protocol with bias-X0 is Ω(X0(1−X0)/
√
n)

unfair [CI93, BHMO18, KMM19]. Our work, motivated by interesting cryptographic ap-
plications discussed in the introduction, decouples the round complexity and the defense
complexity of coin-tossing protocols for a more fine-grained study of fair coin-tossing func-
tionalities. We show that the defense complexity, not the round complexity, of coin-tossing
protocols determines the security of coin-tossing protocols. For example, a coin-tossing
protocol with high round complexity but a small defense complexity shall be very unfair.
In particular, when d = o(n) it is impossible for an n-round coin-tossing protocol to be
O(1/

√
n)-unfair, for a constant X0 ∈ (0, 1).

Finally, this fail-stop attack on coin-tossing protocols translates into black-box separation
results. Existing techniques leverage the fail-stop attack of Theorem 1 to rule out the
construction of fair coin-tossing protocols by using one-way functions in a black-box manner
for a broad class of protocols.

I Corollary 1 (Black-box Separation). There exists a universal positive constant c such that,
for any X0 ∈ [0, 1], there is no construction of a 2-party (n, d)-coin-tossing protocols with
bias-X0 that is < c ·X0(1−X0)/

√
d-unfair and uses one-way functions in a black-box manner

(restricted to the classes of protocols considered by [DLMM11, HOZ13, DMM14]).

When d = o(n), our corollary provides new black-box separation results that do not follow
from prior techniques.

1.3 Technical Overview
Our proof proceeds by induction on the defense complexity d of the coin-tossing protocol to
lower bound the performance of the best fail-stop attack on the protocol. The proof of the
inductive step for this result proceeds by another induction on the number of rounds m until
the first time a party updates her defense coins. In particular, this second-level induction
crucially avoids degrading the estimate of the best fail-stop attack’s performance on the
coin-tossing protocol as a function of m. In effect, the quality of the fail-stop attack depends
only on d and is insensitive to the round complexity n of the protocol, thus circumventing
the hurdles encountered by previous works.

1.3.1 Score Function & Inductive Hypothesis
Consider any n-round coin-tossing protocol π with bias-X0 and defense complexity d, the
inductive argument maintains a lower bound to the performance of the best cumulative attack
possible on this coin-tossing protocol.

For any stopping time2 τ in the protocol, we associate a score to τ measuring its
susceptibility to fail-stop attacks. For a partial transcript v ∈ τ , its contribution to the
score is the sum of the change in the output distribution that Alice can cause by aborting

2 A stopping time in a protocol is a set of prefix-free partial transcripts.
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at that partial transcript, and the change in the output distribution that Bob can cause by
aborting at that partial transcript. We emphasize that the same partial transcript v ∈ τ may
contribute to both Alice and Bob’s attacks. Explicitly, the two possible attacks are as follows.
The sender of the message can abort after generating (but not sending) the last message of
the partial transcript v. The receiver may abort immediately after receiving the last message
of the partial transcript v. Both these fail-stop strategies may be effective attacks in the
scenario of coin-tossing protocols with lazy defense. The score of a stopping time τ is the sum
of all the contributions of v ∈ τ . The optimal score associated with a protocol π, represented
by Opt(π), is the maximum score achievable by a stopping time in that protocol.

Using induction on d, we prove that, for any protocol π with bias-X0 and defense
complexity d,

Opt(π) > Γ2d ·X0(1−X0),

where Γi = 1√
(
√

2+1)(i+2)
(refer to Theorem 3). We remark that, indeed, it is possible to

tighten the constants involved in the lower bound with a more careful analysis; however,
such a tighter analysis does not qualitatively improve the bound.3

1.3.2 Base Case: d = 0
In the case when the defense complexity of π is d = 0, parties begin with their respective
default defense coins and never update them. Irrespective of the round complexity n,
our objective is to demonstrate a fail-stop attack on the (n, d = 0)-coin-tossing protocol
with bias-X0 that changes the output distribution of the honest party by Ω(X0(1−X0))
statistical distance. Note that obtaining an attack whose effectiveness does not degrade
with the round complexity n even for this simple case cannot be obtained from previous
techniques [CI93, BHMO18, KMM19] (refer to the protocol in Figure 4).

We proceed by induction on the round complexity n. Consider the base case of n = 1, a
one-round protocol where Alice sends the first message in the protocol. Section 4.1.1 proves
that Opt(π) > X0(1−X0).

The inductive step for n > 2 is the non-trivial part of the proof. The case of n = 2 is
representative enough to highlight all the key ideas to handle any general n > 2. Alice and
Bob have defense coins such that their respective expected values are DA

0 and DB
0 before

the protocol began. Alice sends the first message in the protocol, and Bob sends the second
message in the protocol. Suppose the first message sent by Alice is M1 = i, which happens
with probability p(i). Conditioned on the first message being M1 = i, the expected value of
(a) the outcome be x(i)

1 , (b) Alice’s defense coin be dA,(i)
1 , and (c) Bob’s defense coin be DB

0 .
By aborting at the message M1 = i, we obtain the following contribution to the score4∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ .
By deferring the attack to the residual (n− 1) round protocol conditioned on M1 = i, by the

3 One can convert the optimal d-round protocol of Khorasgani et al. [KMM19] to construct an (n, d)-
protocol that makes progress only when parties update their defense coin; thus, demonstrating the
qualitative optimality of our lower bounds.

4 Recall that we are considering the sum of the change in the output distribution caused by Alice when
she aborts (which is

∣∣∣x(i)
1 −D

B
0

∣∣∣) and the change in the output distribution caused by Bob when he

aborts (which is
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣).
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inductive hypothesis, we obtain the following contribution to the score

> x
(i)
1

(
1− x(i)

1

)
.

The optimal stopping time can ensure the maximum of these two contributions, thus,
obtaining a contribution of

> max
(∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ , x(i)
1

(
1− x(i)

1

))
.

We prove a key technical lemma5 (Lemma 1) proving the following lower bound to the
quantity above.

>
1
2 ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)
.

Overall, at the root of the protocol tree, the score of the optimal stopping-time is lower-
bounded by ∑

i

p(i) · 1
2 ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)
.

Let us define the multivariate function f below

f(x, y, z) := x(1− x) + (x− y)2 + (x− z)2.

Let fz(x, y) represent the function f(x, y, z) where z is a constant. Then, the function fz(x, y)
is convex. Likewise, the function fy(x, z) is also convex. Recall that

∑
i p

(i) · x(i)
1 = X0

and
∑
i p

(i) · dA,(i)
1 = DA

0 . Note that DB
0 is a constant, and, therefore, one can use Jensen’s

inequality on f , to push the expectation inside, obtaining the following lower bound.

>
1
2 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

This bound is minimized when DA
0 = X0 and DB

0 = X0. So, we obtain the lower-bound

>
1
2 ·X0 (1−X0) .

For n > 2, we rely on the fact that the expected value of the receiver’s defense coin
in every round does not change. So, Jensen’s inequality applies to f , and we move the
lower-bound one round closer to the root. Iterative application of Jensen’s inequality brings
the lower-bound to the root, where it is identical to the expression above and is independent
of the round complexity n of the protocol. Subsection 4.1 and Appendix C.1 provides full
proof.

1.3.3 Inductive Step for d > 1
The inductive step of the proof shall proceed by induction on m > 1, the round where a
party first updates her defense coins. Again, our objective is to obtain a lower bound that is
independent of m.

5 As an aside, we remark that this technical lemma is sufficiently powerful and immediately subsumes the
lower bounds of Khorasgani et al. [KMM19].
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Consider the base case of m = 1. So, we have an (n, d)-coin-tossing protocol with bias-X0
and Alice sends the first message and updates her defense. Suppose the first message set by
Alice is M1 = i, which happens with probability p(i). Conditioned on the first message being
M1 = i, the expected value of (a) the outcome be x(i)

1 , (b) Alice’s updated defense coin be
d

A,(i)
1 , and (c) Bob’s defense coin be DB

0 . In the remaining subprotocol, there are only d− 1
defense updates. Therefore, the score in that subprotocol is at least Γ2(d−1) · x

(i)
1 (1− x(i)

1 ),
by the induction hypothesis. So, using arguments similar to the case of d = 0 and n = 2
presented above, by appropriately deciding to either abort at M1 = i or deferring the attack
to the subtree we get a score of

> max

∣∣∣x(i)
1 − d

A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ , Γ2(d−1) · x
(i)
1

(
1− x(i)

1

)
︸ ︷︷ ︸

By inductive hypothesis

 .

Using Lemma 1 and Jensen’s inequality (because the first message does not reveal any
information regarding Bob’s default defense), we conclude that there is a stopping time with
score

> Γ2(d−1)+1·

X0 (1−X0) +
(
X0 −

∑
i

p(i) · dA,(i)
1

)2

+
(
X0 −DB

0
)2

 > Γ2d−1·X0 (1−X0) .

Observe that the expected value of the “updated Alice defense coin” appears in the first
lower bound above; instead of the expected value of Alice’s default defense DA

0 . However,
the final lower bound does not depend on the updated defense.

Finally, consider the inductive step of m > 2. The special case of m = 2 illustrates all the
primary ideas. So, we have an (n, d)-coin-tossing protocol with bias-X0, Alice sends the first
message, and Bob sends the second message and updates his defense coin. Suppose the first
message set by Alice is M1 = i, which happens with probability p(i). Conditioned on the
first message being M1 = i, the expected value of (a) the outcome be x(i)

1 , (b) Alice’s defense
coin be dA,(i)

1 , and (c) Bob’s defense coin be DB
0 . For every i, using the above argument, we

get that there exists a stopping time in the subprotocol rooted at M1 = i with a score of

> Γ2d−1 · x(i)
1 (1− x(i)

1 ).

So, a stopping time by deciding to either abort at M1 = i or deferring the attack to a later
point in time can obtain score of

>max

∣∣∣x(i)
1 − d

A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ , Γ2d−1 · x(i)
1

(
1− x(i)

1

)
︸ ︷︷ ︸

By previous argument


>Γ2d ·

(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

The last inequality is an application of Lemma 1 and the fact that the expected value of
Alice defense coins at the end of first round is identical to DA

0 (because Alice does not update
her defense coins in the first round).

For m > 2, we use Jensen’s inequality on f and the fact that the receiver’s defense coins
do not update in the protocol to rise one round up in the protocol tree. In this step, the
constant Γ2d does not change. So, iterating this procedure, we reach the root of the protocol



10 Coin Tossing with Lazy Defense: Hardness of Computation Results

where we get a lower-bound of

Γ2d ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

> Γ2d ·X0(1−X0)

for the maximum score of the stopping time. Subsection 4.2 and Appendix C.2 provides the
full proof.

1.3.4 Randomized Defense Coin Update Rounds
In general, the round where parties update their defense coin in a coin-tossing protocol may
be randomized. More formally, parties in a coin-tossing protocol decide on updating their
defense coins as follows. Suppose the partial transcript generated so far in the protocol is
(M1,M2, . . . ,Mi). The party sending the next message Mi+1 in the protocol decides whether
to update her defense coin or not based on the partial transcript (M1,M2, . . . ,Mi). If the
party decides to update her defense coin, then she updates her defense coin based on her
private view.

The defense complexity of a coin-tossing protocol with randomized rounds for defense coin
updates is (at most) d if during the generation of any complete transcript (M1,M2, . . . ,Mn)
the total number of defense coin updates is 6 d. The proofs mentioned above generalize to
this setting naturally. Section 5 (using Figure 3 for intuition) extends the proofs outlined
above to this general setting.

2 Preliminaries

2.1 Martingales and Related Definitions
Suppose (X,Y ) is a discrete joint distribution, then the conditional expectation of X given
that Y = y, for any y such that Pr[Y = y] > 0, is defined as E[X|Y = y ] =

∑
x x · Pr[X =

x|Y = y] where Pr[X = x|Y = y] = Pr[X=x,Y=y]
Pr[Y=y] . The conditional expectation of X given

Y , denoted by E[X|Y ], is defined as the random variable that takes value E[X|Y = y ] with
probability Pr[Y = y].

A discrete time random process {Xi}ni=0 is a sequence of random variables where the
random variable Xk denotes the value of process at time k.

Let (M1,M2, . . . ,Mn) be a joint distribution defined over sample space Ω = Ω1 × Ω2 ×
· · · × Ωn such that for any i ∈ {1, . . . , n}, Mi is a random variable over Ωi. A random
variable Xj defined over Ω is said to be M1, . . . ,Mj measurable if there exists a deterministic
function fj : Ω1 × Ω2 × · · · × Ωn → R such that Xj = fj(M1,M2, . . . ,Mj) i.e. the value of
Xj is determined by the random variables M1,M2, . . . ,Mj and in particular, it does not
depend on random variables Mj+1, . . . ,Mn. A discrete time random process {Xi}ni=0 is said
to be a discrete time martingale with respect to another sequence {Mi}ni=1 if it satisfies the
two following conditions for any time values 1 6 k 6 n and 0 6 r 6 `:

E[|Xk|] <∞
E[X`|M1,M2, . . . ,Mr ] = Xr

which means that at any time, given the current value and all values from the past, the
conditional expectation of random process at any time in the future is equal to the current
value. For such a martingale, a random variable τ : Ω → {0, 1, . . . , n} is called a stopping
time if the random variable 1{τ6k} is M1, . . . ,Mk measurable. One can verify that for
a given function g : Ω1 × · · · × Ωn → R, the random sequence {Zi}ni=0 where for each i,
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Zi = E[f(M1, . . . ,Mn)|M1, . . . ,Mi ] is a martingale with respect to the sequence {Mi}ni=1.
This martingale is called the Doob’s martingale.

2.2 Coin-tossing Protocols with Fixed Defense Rounds

Let us first define the coin-tossing protocol with fixed defense rounds.

I Definition 1 ((X0, n,A,B)-coin tossing protocol). Let π be an n-round coin tossing protocol,
where Alice and Bob speak in alternate rounds to determine the outcome of the tossing of
a X0-bias coin, i.e., the probability of head is X0. Without loss of generality, assume that
Alice sends the first message. Therefore, Alice (resp., Bob) will be speaking in the odd (resp.,
even) rounds. Let A ⊆ [n] ∩ Odd and B ⊆ [n] ∩ Even.6 During the protocol execution, Alice
and Bob shall defend in the following manner.

Alice and Bob both prepare a defense before the beginning of the protocol based on their
private tape. We refer to this defense as Alice’s and Bob’s defense at round 0.
At any round i ∈ [n], if Alice is supposed to speak (i.e., i ∈ Odd) and i ∈ A, she shall
prepare a new defense based on her private view, which is, her private tape and the first
i − 1 messages exchanged. Otherwise, i.e., i /∈ A, she shall not prepare a new defense
and simply set her defense for the previous round as her defense for this round. That
is, Alice keeps her defense unchanged for this round. Bob’s defense is prepared in the
similar manner.
At an odd round i ∈ [n], Alice is supposed to speak and she might decide to abort the
protocol. If Alice aborts, Bob shall output his defense for this round as defined above.
Alice’s output when Bob aborts is defined in the similar manner.

For brevity, we refer to such coin-tossing protocols as an (X0, n,A,B)-coin tossing protocol.
We refer to the expectation of the outcome of the protocol, i.e., X0, as the root-color. We
refer to the size of the set A ∪ B as the defense complexity of the coin-tossing protocol.7

We provide a few representative examples in Appendix A. The following remarks provide
additional perspectives to this definition.

I Remark 1. We clarify that a party does not update her defense during a round where she
does not send a message in the protocol. For example, at an odd round i, Bob does not
update his defense. This is because Bob’s private view at round i, i.e., Bob’s private tape,
and the first i− 1 messages, is a deterministic function of Bob’s private view at round i− 1,
i.e., Bob’s private tape and the first i − 2 messages. Therefore, Bob’s defense strategy to
update his defense at round i is simulatable by a defense strategy to update his defense at
round i− 1. Hence, without loss of generality, parties only update their respective defenses
during a round that they are supposed to speak. This simplification shall not make the
protocol any more vulnerable.

I Remark 2. In particular, if we set A to be [n] ∩ Odd and B to be [n] ∩ Even, this is the
fair coin-tossing protocol that has been widely studied in the literature.

6 We use [n] to denote the set {1, 2, . . . , n}. Odd (resp., Even) represents the set of all odd (resp., even)
positive integers.

7 Note that the defense complexity is less than or equal to the round complexity.
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2.2.1 Notation
Let us denote the message exchanged between two parties in an n-round protocol by
M1,M2, . . . ,Mn. For i ∈ [n], let Xi be the expected outcome conditioned on the first i
messages, i.e., M1, . . . ,Mi. We also refer to the expected outcome Xi as the color at time i.
Let DA

i (resp., DB
i ) represents the expectation of the Alice’s (resp., Bob’s) defense at round

i conditioned on the first i messages. Note that Xi, DA
i and DB

i are M1, . . . ,Mi measurable.
In particular, X0, DA

0 and DB
0 are constants.

Throughout our proof, the following inequality will be useful.

I Theorem 2 (Jensen’s inequality). If f is a multivariate convex function, then E
[
f
(
~X
)]

>

f
(

E
[
~X
])

, for all probability distributions ~X over the domain of f .

3 Our Results on Fixed Defense Rounds

In this section, we shall present our main results on the coin-tossing protocols with fixed
defense rounds. In Section 5, we present how one can generalize the proof strategies to
coin-tossing protocols with randomized defense rounds.

Intuitively, our results state that the vulnerability of a coin-tossing protocol depends
solely on the defense complexity and is irrespective of the round complexity.

Let us first define the following score function which captures the susceptibility of a
protocol with respect to a stopping time.

I Definition 2. Let π be a (X0, n,A,B)-coin tossing protocol. Let P ∈ {A,B} be the party
who sends the last message of the protocol. For any stopping time τ , define

Score(π, τ) := E
[
1(τ 6=n)∨(P 6=A) ·

∣∣Xτ −DA
τ

∣∣+ 1(τ 6=n)∨(P 6=B) ·
∣∣Xτ −DB

τ

∣∣] .
We clarify that the binary operator ∨ in the expression above represents the boolean OR
operation.

The following remarks provide additional perspectives to this definition.

I Remark 3. Suppose we are in a round τ , where Alice is supposed to speak. The color Xτ

corresponds to Alice’s message being m∗τ . We note that, in a coin-tossing protocol with lazy
defense, both Alice and Bob can deviate the outcome by aborting appropriately. Alice can
attack by aborting when her next message turns out to be m∗τ without sending it to Bob.
By our definition, this attack ensures a deviation of

∣∣Xτ −DB
τ

∣∣. On the other hand, Bob
can also attack this message by aborting the next round upon receiving the message m∗τ .
This attack might be successful because Alice’s defense is lazy and she does not update her
defense at round τ . Bob’s attack will deviate the distribution of the outcome by

∣∣Xτ −DA
τ+1
∣∣.

However, note that Alice is not supposed to speak at the (τ + 1)th round, her defense at
(τ + 1)th round is identical to her defense at τ th round. Hence, the deviation of Bob’s attack
is also

∣∣Xτ −DA
τ

∣∣. We emphasize that, in fair coin-tossing protocols where parties update
their defenses every round, this attack by Bob, possibly, is ineffective.

I Remark 4. We note that the above remark has a boundary case, i.e., the last message of
the protocol. Without loss of generality, assume that Alice sends the last message of the
protocol. Note that, unlike previous messages, Bob cannot abort anymore after receiving
the last message from Alice, since the protocol has ended. Therefore, our score function
should exclude

∣∣Xτ −DA
τ

∣∣ when τ = n. Hence, in the definition of our score function, we
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have an indicator function 1. Intuitively, this boundary case needs to be accounted in our
score; however, we emphasize that, this boundary case does not significantly alter our proof
strategy.

I Remark 5. Looking ahead, we elaborate how one translates our score function into fail-stop
attacks by Alice and Bob. Fix a stopping time τ that witnesses a large susceptibility. To
construct the attacks by Alice, we partition the stopping time τ into two sets depending
on whether Xτ > DA

τ or not. Similarly, for Bob’s attacks, we partition the stopping time τ
into two sets depending on whether Xτ > DB

τ or not. These four (fail-stop) attack strategies
correspond to Alice or Bob deviating the outcome towards 0 or 1, respectively. Note that the
sum of the biases achieved by these four attacks is identical to the score function. Therefore,
by averaging arguments, one of these four attacks can deviate the protocol by at least
1
4 · Score (π, τ). We clarify that, in light of Remark 3, the portions of the stopping time τ
that contribute to Alice attacks and the portions that contribute to Bob attacks need not be
mutually exclusive.

Given an (X0, n,A,B)-coin-tossing protocol π, we are interested in the optimal stopping
time τ that maximizes Score (π, τ). This quantity represents the susceptibility of the protocol.
Hence, we have the following definition.

I Definition 3. For any coin-tossing protocol π, we define

Opt(π) := max
τ

Score(π, τ).

With these definitions, we are ready to present our main theorem, which states the
following.

I Theorem 3. For all root-color X0 ∈ [0, 1] and defense complexity d ∈ N, and any
(X0, n,A,B)-coin-tossing protocol π where d = |A ∪ B|, we have

Opt(π) > Γ2d ·X0(1−X0),

where Γi := 1√
(√2+1)(i+2)

for all i ∈ {0, 1, . . . }.

Asymptotically, we have Γi ' 0.64/
√
i. Note that the lower bound is only associated with

the root-color X0 and defense complexity d of the protocol π.
We present the proof of Theorem 3 in Section 4. In light of Remark 5 above, we can

directly translate this theorem into a fail-stop attack strategy.

I Corollary 2. For any (X0, n,A,B)-coin-tossing protocol, with defense complexity d, there
exists a fail-stop attack strategy for either Alice or Bob that deviates the protocol by at least

1
4 ·

X0(1−X0)√(√
2 + 1

)
(2d+ 2)

.

4 Proof of Theorem 3

In this section, we shall prove Theorem 3 using mathematical induction on the defense
complexity d of the coin-tossing protocol. In Subsection 4.1, we prove the base case, i.e.,
d = 0. In Subsection 4.2, we prove the inductive step. We stress that although the base case
is conceptually simple, its proof already captures most of the technical challenges involved in
proving the general inductive step.

Throughout the proof, we use the following key technical lemma repeatedly. We defer
the proof of Lemma 1 to Appendix B.
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I Lemma 1 (Key technical Lemma). For all P ∈ [0, 1] and Q ∈ [0, 1/2], if P,Q satisfies

P −Q− P 2Q > 0,

then, for all x, α, β ∈ [0, 1], we have

max (P · x(1− x) , |x− α|+ |x− β|) > Q ·
(
x(1− x) + (x− α)2 + (x− β)2) .

In particular, for any k > 1, the constraints are satisfied, if we set P = Γk−1 := 1√
(√2+1)(k+1)

and Q = Γk := 1√
(√2+1)(k+2)

.

4.1 Base Case: d = 0
The base case is that the defense complexity d is 0, i.e., both A and B are empty sets, and
hence parties only prepare their defenses before the beginning of the protocol and never
update it (see the example in Figure 4).

To prove the base case, we shall prove the following stronger statement that clearly implies
that Theorem 3 is correct for the base case. We prove the following lemma by induction on
the round complexity n, where n = 1 and n = 2 serve as the base cases.

I Lemma 2 (Base Case of d = 0). For any n-round protocol π with defense complexity d = 0,

1. If n = 1,
Opt(π) > X0 (1−X0) .

2. If n > 2,
Opt(π) > 1

2 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

I Remark 6. We remark that DA
0 = DB

0 = X0 is the only Alice’s and Bob’s defense that
optimizes our lower bound for the n > 2 case. In general, we do not claim that they are the
optimal defenses that minimize the score of the optimal stopping time. Our bound is simply
a lower bound.

4.1.1 Round Complexity n = 1
Let us start with the simplest case, i.e., when n = 1. Here, we have a one-round protocol π.
Without loss of generality, assume that Alice sends the only message. The only attack is by
Alice to abort her message and thus we pick our stopping time to be τ = 1. This gives us

Score(π, τ) = E
[∣∣X1 −DB

1
∣∣] .

Recall that X1 ∈ {0, 1} and Pr[X1 = 1] = X0. Moreover, regardless of what Alice’s first
message is, the expectation of Bob’s defense for the first round, i.e., DB

1 , remains the same
and is exactly the expectation of his defense at the beginning of the protocol, i.e., DB

0 .
Therefore,

Score(π, τ) = (1−X0) ·
∣∣0−DB

0
∣∣+X0 ·

∣∣1−DB
0
∣∣ .

To lower-bound the score mentioned above, observe that

(1−X0)DB
0 +X0(1−DB

0 ) > X0(1−X0) + (X0 −DB
0 )2 > X0(1−X0).

Hence, for any coin-tossing protocol π with n = 1, Opt(π) > X0 (1−X0).
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4.1.2 Round Complexity n = 2
Next, we consider the case when n = 2. Let π be a two-round protocol, where Alice sends
the first message and Bob sends the second message. Without loss of generality, assume that
there are ` possible first messages that Alice can send, namely {1, 2, . . . , `}. The probability
of the first message being i, i.e., M1 = i, is p(i). For all i ∈ [`], conditioned on first message
being i, let X1 = x

(i)
1 and DA

1 = d
A,(i)
1 . Again, regardless of what Alice’s first message is, the

expectation of Bob’s defense DB
1 remains the same as DB

0 . Therefore, if we stop at message
M1 = i, this contributes to our score function by∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ .
On the other hand, conditioned on Alice’s first message being i, the remaining protocol
is exactly a one-round protocol with root-color x(i)

1 . By our analysis above, the optimal
stopping time for this sub-protocol will yield a score of at least x(i)

1

(
1− x(i)

1

)
. Hence, the

optimal stopping time will decide on whether to stop at first message being i or continue to
a stopping time in the mentioned sub-protocol, depending on which of these two strategies
yield a larger score. This will contribute to the score function by at least

max
(∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ , x(i)
1

(
1− x(i)

1

))
.

Using Lemma 1 with P = 1 and Q = 1/2, we get

max
(∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ , x(i)
1

(
1− x(i)

1

))
>

1
2 ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)
.

Therefore, the optimal stopping time will have score

∑̀
i=1

p(i) ·max
(∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ , x(i)
1

(
1− x(i)

1

))
>

1
2 ·
∑̀
i=1

p(i) ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)

(i)
>

1
2 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

,

Let us elaborate on inequality (i).

1. One can verify that for any constant c, the function f(x, y) := x(1−x)+(x−y)2 +(x−c)2

is a bivariate convex function. The Hessian matrix of f is positive semi-definite.
2. Since (X0, X1) forms a martingale, we have

∑`
i=1 p

(i) · x(i)
1 = E[X1 ] = X0.

3. Since Alice never updates her defense, Alice’s defense (DA
0 , D

A
1 ) forms a martingale as

well, which impies that
∑`
i=1 p

(i) · dA,(i)
1 = E

[
DA

1
]

= DA
0 .

Given these observations, applying Jensen’s inequality on f(x, y) := x(1− x) + (x− y)2 +(
x−DB

0
)2 gives us inequality (i).

This completes the proof of Lemma 2 for n = 2. In general, for the case when n > 2, the
proof is essentially the same as n = 2 case and hence we omit it here. Appendix C.1 presents
the complete proof.
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4.2 Inductive Step
In this section, we prove that for all d0 > 1, if Theorem 3 holds for defense complexity
d = d0 − 1, then it is also correct for d = d0. Together, with the proof of base case, i.e.,
d = 0, we complete the proof of Theorem 3.

Our analysis is based on the index of the round that, for the first time, some party
updates her defense. Let us call the index of this round m. To prove the inductive step,
we shall prove the following stronger statement that clearly implies the inductive step. We
prove the following lemma by induction on the index of the first defense round m, where
m = 1 and m = 2 serve as the base cases.

I Lemma 3 (Inductive Step of any d > 1). For any coin-tossing protocol π with defense
complexity d = d0,

1. If m = 1,
Opt(π) > Γ2d0−1 · (X0 (1−X0)) .

2. If m > 2,

Opt(π) > Γ2d0 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

4.2.1 First defense round: m = 1
Let us start with m = 1. In this case, we have some (X0, n,A,B) protocol π, with defense
complexity d0 = |A ∪ B| and assume, without loss of generality, Alice sends the first message.
m = 1 implies that Alice updates her defense in the first round, i.e., 1 ∈ A. Assume that
there are ` possible first messages that Alice can send, namely {1, 2, . . . , `}. For all i ∈ [`],
the probability of the first message being i is p(i) and conditioned on the first message being
i, X1 = x

(i)
1 and DA

1 = d
A,(i)
1 and the rest (n − 1) rounds forms a sub-protocol πi that is

a (x(i)
1 , n− 1,A′,B′) protocol where A′ and B′ are obtained respectively by reducing each

index inside A\{1} and B by 1. Clearly, the defense complexity of πi is |A′ ∪ B′| = d0 − 1.
By our induction hypothesis (that Theorem 3 is true for d = d0 − 1), there exists a stopping
time of this sub-protocol that yields a score of at least

Γ2(d0−1) · x
(i)
1

(
1− x(i)

1

)
.

On the other hand, if we stop when message i happens as the first message, the score will
increase by ∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ .
Again, note that, regardless of Alice’s messages, the expectation of Bob’s defense shall remain
the same and equals to DB

0 . The optimal stopping time will decide on whether to stop at first
message being i, by comparing which one yields a higher score. Therefore, it will contribute
to our score by at least

max
(

Γ2(d0−1) · x
(i)
1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣) .
By invoking Lemma 1 with P = Γ2(d0−1) and Q = Γ2d0−1, we get that, for any i

max
(

Γ2(d0−1) · x
(i)
1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣)
> Γ2d0−1 ·

(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)
.
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Hence, the score corresponding to optimal stopping time will be at least

∑̀
i=1

p(i) ·max
(

Γ2(d0−1) · x
(i)
1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣)
> Γ2d0−1 ·

∑̀
i=1

p(i) ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)

(ii)
> Γ2d0−1 ·

(
X0 (1−X0) +

(
X0 − E

[
DA

1
])2 +

(
X0 −DB

0
)2)

> Γ2d0−1 ·X0 (1−X0) .

Similar to the previous cases, inequality (ii) is also a consequence of Jensen’s inequality.
However, we emphasize a crucial point, which is that, since Alice updates her defense in the
first round, in general, (DA

0 , D
A
1 ) need not be a martingale and so E

[
DA

1
]
does not necessarily

equal to DA
0 .

4.2.2 First defense round: m = 2

Next, we consider the case m = 2. Let π be a (X0, n,A,B) protocol. Without loss of
generality, assume Alice sends the first message and Bob sends the second message. m = 2
implies that Alice does not update her defense in the first round, while Bob does update his
defense in the second round, i.e. 1 /∈ A and 2 ∈ B. Again, assume that there are ` different
messages that Alice can send as the first message, namely {1, 2, . . . , `}. For all i ∈ [`], the
probability of first message being i is p(i) and conditioned on first message being i, X1 = x

(i)
1

and DA
1 = d

A,(i)
1 . Furthermore, conditioned on the first message being i, the rest (n − 1)

rounds forms a (x(i)
1 , n− 1,A′,B′) sub-protocol πi. Here, A′ is obtained by reducing each

index inside A by 1. Similarly, B′ is obtained by reducing each index inside B by 1. Clearly,
πi has the same defense complexity as π, which is d0. Plus, it falls into the category m = 1,
since Bob speaks first now and he does update his defense in the first round, i.e., 1 ∈ B′. By
our analysis in the m = 1 case, there exists a stopping time for πi that guarantees a score of
at least

Γ2d0−1 · x(i)
1

(
1− x(i)

1

)
.

On the other hand, if we stop when message i happens, the score will increase by∣∣∣x(i)
1 − d

A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣ .
Again, we note that, regardless of Alice’s message, the expectation of Bob’s defense remains
the same and equals DB

0 . Therefore, the optimal stopping time will decide on whether to
stop at first message being i depending on which quantity is larger, i.e.,

max
(

Γ2d0−1 · x(i)
1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣) .
By invoking Lemma 1 with P = Γ2d0−1 and Q = Γ2d0 , we get

max
(

Γ2d0−1 · x(i)
1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣)
> Γ2d0 ·

(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)
.
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This will yield a total score of at least

∑̀
i=1

p(i) ·max
(

Γ2d0−1 · x(i)
1

(
1− x(i)

1

)
,
∣∣∣x(i)

1 − d
A,(i)
1

∣∣∣+
∣∣∣x(i)

1 −DB
0

∣∣∣)
> Γ2d0 ·

∑̀
i=1

p(i) ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)

(iii)
> Γ2d0 ·

(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

Here, inequality (iii) is again the consequence Jensen’s inequality. And, in comparison to
the analysis when m = 1, here, since Alice does not update her defense in the first round,
(DA

0 , D
A
1 ) indeed forms a martingale.

This proves that Lemma 3 holds for m = 2. In general, for the case when m > 2, the
proof is essentially the same as the case m = 2, and hence we omit it here. Appendix C.2
presents the complete proof.

5 Generalization to Protocols with Randomized Rounds for Updating
Defense

In this section, we present a proof overview of how one can generalize our proof strategies to
protocols with randomized defense rounds.

In an n-round coin-tossing protocol with d-randomized defense rounds, each party will
decide on whether to update their defenses based on the transcript so far. The upper bound
d ensures that, for any full execution of the protocol, i.e., M1 = m∗1,M2 = m∗2, . . . ,Mn = m∗n,
the total number of defense updates from both parties is bounded by d.

We use i1, i2, . . . , id to represent the 1st, 2nd, . . . , dth round, in which parties update their
defenses. Unlike fixed defense round case, i1, . . . , id are random variables depending on
the transcript of the protocol. Moreover, for all j ∈ [d], whether ij 6 k is (M1, . . . ,Mk−1)-
measurable.

I Remark 7. If during a full execution of the protocol, i.e., M1 = m∗1,M2 = m∗2, . . . ,Mn =
m∗n, parties update their defenses d∗(< d) times, without loss of generality, we can simply
pick any d−d∗ rounds where parties do not update their defense and consider them to be the
rounds where parties do update their defense. Therefore, i1, . . . , id are always well-defined.

For a bias-X0 coin-tossing protocol with d-randomized defense rounds, we shall prove
the same results as the fixed defense round case. That is, either Alice or Bob has a fail-stop
attack strategy that deviates the protocol by

1
4 · Γ2d ·X0(1−X0).

We devote the rest of this section to prove this result. Since the proof is essentially identical
to the fixed defense case, we shall present only a proof overview in this submission.

In the same manner, the proof will show a lower bound on the score of the optimal
stopping time. Translating this score into a fail-stop attack strategy is identical to the
fixed defense round case (see Remark 5). The proof on the lower bound will again use
mathematical induction on the defense complexity d.

Firstly, the base case is when d = 0, i.e., both parties only prepare defenses before the
beginning of the protocol and never update them. In this case, there is no difference between
randomized defense rounds and fixed defense rounds. Hence, the proof will be identical.
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M1
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=
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Lemma 1

Lemma 1
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d− 1

Defense
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Je
ns
en
’s

Figure 3 A representative example of a protocol with randomized rounds for updating defense
coins. Black nodes represent the first time party updates their defense. For instance, when Alice’s
first message M1 = 0, Bob will update his defense in round 2. Our proof proceeds by first applying
Lemma 1 on the nodes at round i1 + 1 and then again applying Lemma 1 on the nodes at round i1.
Finally, one can “lift” the lower bound on each node at round i1 all the way to the root of the tree
using Jensen’s inequality.

Secondly, for the inductive step, let us use Figure 3 as a representative example. The
proof shall proceed in the following steps.

1. Consider the subtree rooted at round i1 + 1, i.e., the shaded subtree in Figure 3. By our
definition, this subtree will be a sub-protocol with (d− 1)-randomized defense rounds.
Hence, by our induction hypothesis, there exists a stopping time that yields a score of at
least Γ2d−2 ·X(1−X), where X is the color at the root, i.e., the node at round i1 + 1.

2. Secondly, consider whether we pick the root of this subtree, i.e., the node at round i1 + 1
as our stopping time, or we continue on this node. Similar to the proof in fixed defense
rounds, by invoking Lemma 1 and applying Jensen’s inequality, one can prove that for
each subtree rooted at nodes at round i1, i.e., the black node in Figure 3, there exists a
stopping time that yields a score of at least Γ2d−1 ·X(1−X).

3. Next, we consider whether we pick the node at round i1 as our stopping time, or we
continue to the subtree rooted at this node. By invoking Lemma 1, one can show that,
for each node at round i1, either we stop at this node or we pick a stopping time for the
subtree rooted at this node, this will yield a score of at least

Γ2d ·
(
X(1−X) + (X − dA)2 + (X − dB)2) .

Here, X, dA and dB are the expected outcome, expected Alice’s defense and expected
Bob’s defense, respectively, at this node.
The crucial point is that at these nodes (at round i1), no party has updated their defense
yet.8 Therefore, dA (resp., dB) is the expectation of the defense Alice (resp., Bob) prepares

8 Recall our score function. By picking a node as stopping time, our score function considers two types
of attack. Let m∗ be the last message of the path from the root to this node. Either the party who
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before the beginning of the protocol conditioned on the transcript so far, i.e., the path
from the root to the node at round i1.

4. Finally, one can repetitively use Jensen’s inequality to “lift” this lower bound to the root
of the tree and show that the optimal stopping time yields a score of at least

Γ2d ·
(
X0(1−X0) + (X0 −DA

0 )2) + (X0 −DB
0 )2) .

This can be done because (i) Since no party update their defenses, the expectation of
Alice’s and Bob’s defenses form a martingale; (ii) for every message exposure filtration,
information of at most one party’s defense will be revealed; (iii) the convexity of our
lower bound, that is, function f(x, y) := x(1− x) + (x− y)2 + (x− c)2 is convex for any
constant c.
(Take Figure 3 as an example. One shall first apply Jensen’s inequality at the node in
round 1 with M1 = 1. And then apply Jensen’s inequality at the root of the tree.)

This completes the proof overview.

prepares m∗ aborts without sending m∗ or the party who receives m∗ aborts immediately after receiving
m∗. For a node at round i1, when those two attacks happen, no party has updated their defenses yet.
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A Some Examples

We use Maj to denote the majority function. In this section we present coin-tossing protocols
where the message in the protocol divulge information about Alice’s and Bob’s defense coins
because they prepare the defense coins lazily.

Figure 4 is a (X0 = 1/2, n = 3,A = ∅,B = ∅)-coin-tossing protocol. The defense
complexity, i.e., d = |A ∪ B|, is 0.

Alice Bob
x1, u2, x3

$←− {0, 1} u1, x2, u3
$←− {0, 1}

Set DA
0 = Maj(x1, u2, x3) Set DB

0 = Maj(u1, x2, u3)

DA
1 = DA

0
M1 = x1 DB

1 = DB
0

DA
2 = DA

1
M2 = x2 DB

2 = DB
1

DA
3 = DA

2
M3 = x3 DB

3 = DB
2

Outcome := Maj (x1, x2, x3)

Figure 4 A 3-round Majority protocol where both parties never update their defense.

The following Figure 5 is a (X0 = 1/2, n = 5,A = {3},B = {2})-coin-tossing protocol.
The defense complexity, i.e., d = |A ∪ B|, is 2.

Alice Bob
x1, u2, x3, u4, x5

$←− {0, 1} u1, x2, u3, x4, u5
$←− {0, 1}

Set DA
0 = Maj(x1, u2, x3, u4, x5) Set DB

0 = Maj(u1, x2, u3, x4, u5)

DA
1 = DA

0
M1 = x1 DB

1 = DB
0

DA
2 = DA

1
M2 = x2 Update DB

2 = Maj(x1, x2, u3, x4, u5)

Update DA
3 = Maj(x1, x2, x3, u4, x5) M3 = x3 DB

3 = DB
2

DA
4 = DA

3
M4 = x4 DB

4 = DB
3

DA
5 = DA

4
M5 = x5 DB

5 = DB
4

Outcome := Maj(x1, x2, x3, x4, x5)

Figure 5 A 5-round Majority protocol where Alice updates her defense at round 3 and Bob
updates his defense at round 2.
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B Proof of Lemma 1

In this section, we prove Lemma 1, which states the following.
I Lemma (Restatement of Lemma 1). For all P ∈ [0, 1] and Q ∈ [0, 1/2], if P,Q satisfies

P −Q− P 2Q > 0,

then for all x, α, β ∈ [0, 1], we have

max (P · x(1− x) , |x− α|+ |x− β|) > Q ·
(
x(1− x) + (x− α)2 + (x− β)2) .

In particular, for any n > 1, the constraints are satisfied, if we set P = Γn−1 = 1√
(√2+1)(n+1)

and Q = Γn = 1√
(√2+1)(n+2)

.

Proof. We first note that it suffices to show that

max (P · x(1− x), |x− α|) > Q · x(1− x) + 2Q · (x− α)2. (1)

If this is correct, then we also have

max (P · x(1− x), |x− β|) > Q · x(1− x) + 2Q · (x− β)2.

Together, they imply that

max (P · x(1− x), |x− α|+ |x− β|)

>
1
2

(
max (P · x(1− x), |x− α|) + max (P · x(1− x), |x− β|)

)
> Q ·

(
x(1− x) + (x− α)2 + (x− β)2) .

x
x1 x20 1α

|x− α|
Px(1− x)
Qx(1− x) + 2Q(x− α)2

Figure 6 Pictorial summary of Equation 1.

To show Equation 1, let x1 be the x-coordinate of the left intersection point of{
y = Px(1− x)
y = α− x
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and x2 be the x-coordinate of the right intersection point of{
y = Px(1− x)
y = x− α

Note that, for Equation 1, the RHS is convex on the entire domain, i.e., [0, 1]. And LHS is
piece-wise concave on [0, x1], [x1, x2] and [x2, 1] respectively. Therefore, to prove Equation 1,
it suffices to verify it at x = 0, x1, x2 and 1. It is trivial to verify it for x = 0 and x = 1 since
2Q 6 1 and |x− α| 6 1. Furthermore, because of symmetry along x = 1/2 axis, it suffices to
show this inequality just for x = x1 and all α ∈ [0, 1].9

Specifically, we get

x1 = P + 1−
√

(P + 1)2 − 4Pα
2P .

And this inequality is equivalent to, for all α ∈ [0, 1],

Px1(1− x1) > Qx1(1− x1) + 2Q(x1 − α)2,

which is equivalent to

(P −Q)
(

(P + 1)−
√

(P + 1)2 − 4Pα
)(

(P − 1) +
√

(P + 1)2 − 4Pα
)

− 2Q
(

(P + 1)− 2Pα−
√

(P + 1)2 − 4Pα
)2

> 0

Define
γ :=

√
(P + 1)2 − 4Pα,

which means
α = (P + 1)2 − γ2

4P .

And since α ∈ [0, 1], we have γ ∈ [1− P, 1 + P ]. Now, we can simplify the above inequality
as, for all γ ∈ [1− P, 1 + P ],

h(γ) := (P −Q)(P + 1− γ)(P − 1 + γ)− 2Q
(
P + 1− γ − (P + 1)2 − γ2

2

)2

> 0 (2)

Note that
h(1− P ) = h(1 + P ) = 0,

and hence, to prove Equation 2, it suffices to show that h′′(γ) 6 0 on [1− P, 1 + P ]. We get
that

h′′(γ) =− 2(P −Q)− 2Q
(

1 ·
(
P + 1− γ − (P + 1)2 − γ2

2

)
+ 2(γ − 1)2 + 1 ·

(
P + 1− γ − (P + 1)2 − γ2

2

))
=− 2(P −Q)− 2Q

(
−P 2 + 3(γ − 1)2)

Hence, for all γ ∈ [1− P, 1 + P ],

h′′(γ) 6 h′′(1) = −2(P −Q− P 2Q) 6 0.

This completes the proof. J

9 If we verify the inequality for x = x1 when we set α = c, this would imply the correctness of the
inequality for x = x2 when we set α = 1− c.
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C Missing Proofs

C.1 Base Case
In this section, we complete the proof of Lemma 2. We have already shown the lemma is
correct for n = 1 and n = 2. Here, we show how one can inductively prove that, for all n > 2,
and any n-round protocol π with defense complexity d = 0,

Opt(π) > 1
2 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

We only need to show the inductive step.
Now, suppose the statement is correct for n = n0 − 1 and consider an arbitrary n0-round

protocol π. Without loss of generality, assume Alice sends the first message and there are `
possible first messages, namely {1, 2, . . . , `}. For all i ∈ [`], the probability of the first message
being i is p(i) and conditioned on the first message being i, X1 = x

(i)
1 and DA

1 = d
A,(i)
1 .

Again, regardless of Alice’s message, Bob’s defense DB
1 remains the same and is equal to DB

0 .
Note that by conditioning on i occurs as the first message, the remaining protocol forms
a (n0 − 1)-round protocol πi with root-color x(i)

1 . And Alice’s and Bob’s defense prepared
before the beginning of this sub-protocol are Alice’s and Bob’s defense prepared for the first
round in the original protocol, which are dA,(i)

1 and DB
0 respectively. Using our induction

hypothesis, for all i ∈ [`], there exists a stopping times τi for this sub-protocol πi, such that

Score (πi, τi) >
1
2 ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)
.

Now, by picking our stopping time τ as the combination of τ1, τ2, . . . , τ`, we have

Score (π, τ) =
∑̀
i=1

p(i) · Score (πi, τi)

>
1
2 ·
∑̀
i=1

p(i) ·
(
x

(i)
1

(
1− x(i)

1

)
+
(
x

(i)
1 − d

A,(i)
1

)2
+
(
x

(i)
1 −DB

0

)2
)

>
1
2 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

The last inequality follows from the same reasoning as inequality (i), i.e., by applying Jensen’s
inequality on function x(1− x) + (x− y)2 + (x− c)2 and using the fact that (DA

0 , D
A
1 ) and

(X0, X1) both are martingales and thus DA
0 = E

[
DA

1
]
and X0 = E[X1 ].

This completes the proof of Lemma 2.

C.2 Inductive Step
In this section, we complete the proof of Lemma 3. We have already shown the lemma is
correct for m = 1 and m = 2. Here, we show how one can inductively prove that, for all
m > 2, let π be an (X0, n,A,B) protocol that has defense complexity d0 = |A ∪ B| and the
very first defense update happens at round m. Then

Opt(π) > Γ2d0 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

We only need to show the inductive step.
Assume that the statement is correct for m = m0−1 and let us consider the case m = m0.

Let π be an (X0, n,A,B) protocol that has defense complexity d0 = |A ∪ B| and the very
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first defense update happens at round m0. Without loss of generality, assume Alice sends
the first message that has ` possibilities, namely {1, 2, . . . , `}. For all i ∈ [`], the probability
of the first message being i is p(i). And conditioned on the first message being i, X1 = x

(i)
1

and DA
1 = d

A,(i)
1 . Furthermore, conditioned on the first message being i, we are left with

a sub-protocol πi that has defense complexity d0 and the first defense update happens at
round m0 − 1. Note that Alice’s and Bob’s defense prepared before the beginning of this
sub-protocol are exactly equal to their defense in the first round of the original protocol, that
is dA,(i)

1 and DB
0 . Using our induction hypothesis, we know there exists a stopping time τi

such that

Score (πi, τi) > Γ2d0 ·
(
X0 (1−X0) +

(
X0 − dA,(i)

1

)2
+
(
X0 −DB

0
)2
)
.

Now, we pick our stopping time of protocol π as the combination of all the stopping times τi
of sub-protocol πi. This would yield a score of at least

Score(π, τ) =
∑̀
i=1

p(i) · Score (πi, τi)

> Γ2d0 ·
∑̀
i=1

p(i) ·
(
X0 (1−X0) +

(
X0 − dA,(i)

1

)2
+
(
X0 −DB

0
)2
)

> Γ2d0 ·
(
X0 (1−X0) +

(
X0 −DA

0
)2 +

(
X0 −DB

0
)2)

.

Again, we apply Jensen’s inequality and use the fact that, since Alice does not update her
defense in the first round, (DA

0 , D
A
1 ) is a martingale.

This completes the proof of Lemma 3.
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