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Abstract In this short note we analyze the low order assumption in the imaginary quadratic number fields. We
show how this assumption is broken for Mersenne primes. We also provide a description on how to possible attack
this assumption for other class of prime numbers leveraging some new mathematical tool coming from higher
(cubic) number fields.

Keywords: public-key cryptography, IQC, VDF, class group
2010 Mathematics Subject Classification: 94A60, 11Y40

1 INTRODUCTION
Cryptography based on class groups of imaginary quadratic orders (IQ cryptography, IQC) is a fascinating area

pioneered by Buchmann and Williams in [6]. After a long hiatus where IQC did not find any obvious real life
application Lipmaa had the idea to make use of IQ’s techniques to build secure accumulators without trusted setup
[15], leveraging the unknown order property of class groups of imaginary quadratic fields. In the last years we have
seen this unknown order property used as a basis to build Verifiable Delay Functions (VDF) [25, 19], cryptographic
accumulators and vector commitments for blockchain applications [5] and polynomial commitment used for zero
knowledge [7]. The security of some of this primitives (VDF in the specific case pointed out in [8]) are bound
to two complexity assumptions: the low order assumption [8, Definition 1] and the adaptive root assumption [8,
Definition 2] with the adaptive root assumption implying the low order assumption.
Breaking the low order assumption consists in finding an element ` ∈ 𝐺 and an integer 𝑑 < 2_ such that ` ≠ 1𝐺
and `𝑑 = 1𝐺 . Given an odd integer 𝑁 with unknown factorization the low order assumption is believed to hold for
the group (Z/𝑁Z)×/{±1}. The low order assumption in RSA groups has been extensively analyzed in [21].
In this paper we are going to analyze in more details the low order assumption in the class group of an imaginary
quadratic number fields.

2 LOW ORDER ASSUMPTION IN THE CLASS GROUP OF AN IMAGINARY
QUADRATIC NUMBER FIELD

For class group of the number field Q(√−𝑝) , with 𝑝 ≡ 3 (mod 4) we know that the class number (the class
group order) is odd and it is believed hard to compute when |𝑝 | is large. The low order assumption in the class
group of an imaginary quadratic field has not been studied much and is one of the goal for this work. While the
Cohen-Lenstra heuristics [9] suggest that the class group often contains elements of small odd order it seems out
of reach by current techniques to find such low order forms. In [22, §2] Shanks provides some interesting relations
that can help to shade some light and one in particular caught our attention: if

Δ = 2𝑝 − 1

then
ℎ(−Δ) ≡ 0 (mod 𝑝 − 2)

and the associated low order element is of the form

(2, 1, 2𝑝−3).

This relation tells us that the low order assumption is violated for Mersenne primes. Other relations exist but
require an even class number and are out of our scope. Shanks gives some other hint in [23]: for negative
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discriminants Δ = 8𝑘 − 1 the class number ℎ must satisfy ℎ ≥ 1 + 𝑙𝑜𝑔2 𝑘 . Furthermore if the class number respects
ℎ(1 − 8𝑘) = 6𝑛 ± 1 then

Δ =
2ℎ+2 − (2𝑢 + 𝑣)2

𝑣2

with odd 𝑣 and (2𝑢 + 𝑣) when ℎ is prime and > 3. It is interesting to note that assigning 𝑣 = 1 and 𝑢 = 0 gives
exactly the formula for Mersenne primes above.

2.1 DIOPHANTINE EQUATIONS AND CLASS NUMBERS
We have seen above that the low order assumption is broken for a really narrow set of primes namely Mersenne

primes. Mersenne primes are number of the form

Δ = 2𝑝 − 1

So far about 50 Mersenne primes have been discovered making the set of Mersenne primes extremely sparse. In
this section we focus on searching for other classes of possible weak primes with regard to the low order assumption
in the class group of an imaginary quadratic number field. The weakness of Mersenne primes extends to denser
families of discriminants, and the following theorem gives a simple example.

Theorem 1. If 𝐷 = 4𝑢3 − 1 with 𝑢 ∈ Z>0, then the low order assumption is violated for the group of classes of
primitive binary quadratic forms with discriminant −𝐷.

Proof. Let 𝐷 = 4𝑢3 − 1 for some 𝑢 > 0, let 𝜔𝐷 = (1 +
√
−𝐷)/2 and consider the ideal 𝐼 = (𝑢, 𝜔𝐷) in the ring

Z[𝜔𝐷] with norm 𝑢. Then 𝐼3 = (𝑢3, 𝜔3
𝐷
) is contained in the principal ideal (𝜔𝐷) and since both have norm 𝑢3,

they are equal. Also, for 𝑢 > 1, 𝐼 is not principal since for 𝑎, 𝑏 ∈ Z we have

𝑁 (𝑎 + 𝑏𝜔𝐷) = (𝑎 + 𝑏/2)2 + 𝑏2𝐷/4 ≥ 𝐷/4 > 𝑢

so the class of 𝐼 has order 3. �

Replacing 𝑢 with 2 and 3 with 𝑝 − 2, i.e., 𝐷 = 2𝑝 − 1, proves the Mersenne case (although one has to argue
slightly more, namely that the smaller powers of 𝐼 are not principal because the smallest norm of a principal ideal
is 2𝑝 except for principal ideals arising from integers).

Let us increase the level of generality, and exhibit the source of the weakness of the above examples. In
particular, the general case will imply that primes of the form

Δ = 𝑘2𝑛 − 1

are also weak. This class of primes can leverage on some of the fastest primality tests so far discovered [20] and
could be appealing to implementers due to its attractive performance 1. The generalisation, which actually allows
to construct elements of arbitrary prescribed order 𝑡, is a consequence of a result of Mollin.

Theorem 2 (Mollin [16]). Let 𝐷 be a squarefree number and let 𝜎 = 2 when 𝐷 ≡ 3 (mod 4) and 𝜎 = 1 otherwise.
Assume further that 𝐷 = 𝜎2𝑚𝑡 − 𝑏2 where 𝑡 > 1, 𝑚 > 1 and 𝑏 > 0 are integers such that 𝑏 ≠ 2𝑚𝑡/2 − 1 if 𝑡 is
even and 𝑏 ≠ b𝜎𝑚𝑡/2c if 𝑡 is odd. Then the ideal (𝑚, (𝑏 +

√
−𝐷)/𝜎) has order 𝑡 in the ideal class group of the

imaginary quadratic field Q(
√
−𝐷).

Corollary 1. Let 𝐷 = 4𝑚𝑡 − 𝑏2 be a prime number, where 𝑏 and 𝑡 are odd positive integers such that 𝑏 ≠ b2𝑚𝑡/2c.
Then the ideal (𝑚, (𝑏 +

√
−𝐷)/2) has order 𝑡 in the ideal class group of the imaginary quadratic field Q(

√
−𝐷).

Let us show an example

Example 1. Let us use as discriminant
𝐷 = −40407597268924803882495478254939792927447222948200447 this corresponds to the entry 𝑘 = 27 and
𝑛 = 170 in [20, Table 2]. This meets the requirements of Theorem 1. We can easily compute 𝑐 =

3√
𝑘2𝑛−2 =

216172782113783808 and obtain the primitive integral binary cubic form

𝐶 (𝑥, 𝑦) = 𝑎𝑥3 − 3𝑐𝑥𝑦2 + 𝑑𝑦3.

computing the Hessian of C gives

𝑞 = (216172782113783808,−1, 46730671726813448656774466962980864)

that is an element of order 3, as expected.
1Chia Network blockchain showed a mild interest on using this class of prime numbers, which eventually waned.
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Example 2. Now, let us describe a method to generate a prime discriminant of given bit-length 𝐵, for any specified
order 𝑡. First, let 𝑚 be an integer such that 4𝑚𝑡 > 2𝐵. Now, we have 𝐷 = 4𝑚𝑡 − 𝑏2 ∈

[
2𝐵−1, 2𝐵

)
if and only if

𝑏 ∈ 𝐼𝑚 =

(√
4𝑚𝑡 − 2𝐵,

√︁
4𝑚𝑡 − 2𝐵−1

]
.

The interval 𝐼𝑚 contains at least
⌊
2𝐵−1/

(
2
√

4𝑚𝑡 − 2𝐵−1
)⌋

− 1 many (positive) odd integers. We deduce that
it is non-empty as long as 4𝑚𝑡 ≤ 22𝐵−6. We deduce the following algorithm: sample an integer 𝑚 such that
2𝐵 < 4𝑚𝑡 ≤ 22𝐵−6 (for instance, uniformly at random), then sample an odd integer 𝑏 in 𝐼𝑚 (again, for instance,
uniformly at random), and let𝐷 = 4𝑚𝑡−𝑏2. If𝐷 is prime, return it; otherwise, resample𝑚 and 𝑏. Heuristically, the
algorithm succeeds after an expected number of trials in𝑂 (𝐵). Each trial essentially costs one primality test. Note
that this heuristic can only hold if there are sufficiently many candidate values for 𝑚 satisfying 2𝐵 < 4𝑚𝑡 ≤ 22𝐵−6.
If 𝐵 ≥ 𝑡 + 4, then there are at least 2(𝐵−2)/𝑡 such candidates, and for this quantity to be at least Ω(𝐵), one needs
𝐵/log(𝐵) = Ω(𝑡), i.e., 𝐵 = Ω(𝑡 log(𝑡)).

Using this technique with 𝑡 = 3, we found the following 1024-bit discriminant in less than a second:

𝐷 =

90 035 739 086 996 044 929 657 295 449 404 992 608 896 161 982 818 704 624 734 545 126 784 028 963 989
295 482 427 666 032 414 206 561 507 869 372 584 648 836 724 700 200 371 898 954 392 245 245 061 968 868
946 034 239 811 453 054 998 654 002 278 345 259 090 130 728 036 489 542 703 762 200 445 320 432 567 297
903 573 341 236 871 804 843 115 533 230 239 855 019 834 217 874 752 991 665 910 141 469 207 698 903,

𝑚 =

218 925 934 949 261 543 544 131 625 221 968 979 300 603 770 996 540 319 121 619 328 205 259 561 011 675
695 262 296 776 163 956 169 855 807 215 003 614 736 153 253 911 225 535 737 483 310 178 391 503 421 503
126 566 813 360 030 441 650 898 331 150 601 389 570 907 140 746,

𝑏 =

204 868 796 081 378 472 490 247 325 165 671 636 711 884 728 224 614 750 308 617 553 085 204 382 480 494
821 887 676 095 206 218 471 133 987 706 972 957 990 417 280 683 317 514 601 460 199 389 917 407 988 118
574 795 366 336 656 502 721 606 330 850 022 303 048 868 820 453 167 198 073 828 043 334 470 361 185 906
258 137 355 516 080 070 634 344 790 004 109 343 866 901 004 192 450 532 710 354 505 639 728 221.

Example 3. For fixed 𝑡, the following straightforward GP script (see [18]) produces pairs (𝑚, 𝑏) satisfying the
hypotheses of Corollary 1 by sampling random 𝐵-bit integers. We thus obtain negative prime discriminants 𝑏2−4𝑚𝑡

with 𝑡𝐵 + 2 bits together with a binary quadratic form (𝑚, 𝑏, 𝑚𝑡−1) of low order 𝑡 in the corresponding classgroup.

loword(B, t) =
{
while(1,
my(b = random(2^B), m = random(2^B), mt = m^t);
D = 4*mt - b^2;
if (D <= 0 || b == sqrtint(4*mt) || !isprime(D), next);
q = qfbred(Qfb(m, b, mt / m));
q0 = q^0; /* trivial class */
if (q == q0 || q^t != q0, error()); /* paranoia */
return([t, m, b]));

}
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Trying it for 𝐵 = 16 for consecutive primes 𝑡, we obtain in about 3 seconds:

𝑡 form (𝑚, 𝑏, ∗) of order 𝑡
3 (22182, 21373, ∗)
5 (30680, 36619, ∗)
7 (22862, 59303, ∗)
11 (23366, 26165, ∗)
13 (29532, 28003, ∗)
17 (29454, 9733, ∗)
19 (10874, 3913, ∗)
23 (13310, 20463, ∗)
29 (31418, 64623, ∗)
31 (11885, 61429, ∗)
37 (45748, 24609, ∗)
41 (61340, 50381, ∗)
43 (245, 30283, ∗)
47 (3962, 53951, ∗)
53 (36034, 58875, ∗)
59 (32910, 64843, ∗)

These examples show how easy it is to construct discriminants together with a low order element in their
class group without computing the class number. The likelihood that such a discriminant is chosen at random is
negligible, though. On the other hand, given 𝐷, it seems hard to prove that a given number is not of the form
specified by Corollary 1 in general, even for a fixed order 𝑡 ≥ 3 : it amounts to proving that the given hyperelliptic
curve has no integer points.

In real life deployments, in order to meet the quantum annoyance property defined in [12], the Chia blockchain2

picks a new random discriminant every 10 minutes. A different situation might arise though if a special prime is
chosen to meet specific optimization requirements.

3 CONSTRUCTING MALICIOUS DISCRIMINANTS
In this section, we investigate an alternative method to design discriminants together with an ideal of order 3.

It has the advantage of being very elementary, and allows for easy control of the bits (or digits) of the discriminant.
The technique dates back to Nagell [17], who used it to prove that for any 𝑛 ≥ 1, there exist (constructively)
infinitely many imaginary quadratic fields with a class of order 𝑛. It has since been extended to exhibit various
subgroup structures in class groups, yet we only need the simplest case 𝑛 = 3.

For any discriminant Δ < 0, the norm of the algebraic number 𝛼 = 𝑥 + 𝑦
√
Δ ∈ Q(

√
Δ) is 𝑁 (𝛼) = 𝑥2 − Δ𝑦2.

This element 𝛼 generates a principal ideal (𝛼) of the same norm, which, by construction, is principal. Now, if 𝑧 is
a prime number, and 𝑁 (𝛼) = 𝑧3, we can deduce that (𝛼) factors as a product of 3 prime ideals of norm 𝑧. Indeed 𝑧
cannot be inert in Q(

√
Δ), and either (𝛼) = 𝔷3 or (𝛼) = (𝑧)𝔷 where 𝔷 is a prime ideal above 𝑧. The case (𝛼) = (𝑧)𝔷

is equivalent to 𝑧 dividing 𝑥 and 𝑦 and 𝔷 is then principal. The case (𝛼) = 𝔷3 implies that 𝔷 has order 1 or 3 in the
class group.

Given Δ, finding an element 𝛼 whose norm is a third power of a prime seems computationally hard. However,
one can hope to find elements of order 3 in a class group by generating Δ a posteriori. First fix a prime number 𝑧,
then choose any integers 𝑥 and 𝑦 such that 𝑦2 divides 𝑧3 − 𝑥2, and define

Δ =
𝑥2 − 𝑧3
𝑦2 .

From [13, Lemme 5], the induced ideal 𝔷 is non-principal (hence, of order 3) as soon as 2𝑦 and 𝑧 are coprime, and
𝑧 <

√︁
|Δ|/4. To generate a discriminant with this method, one can fix a prime 𝑧 a priori, then find suitable values

of 𝑥 and 𝑦. Setting 𝑦 = 1 ensures 𝔷 has order 3, and actually makes this method a particular case of Section 2.1.
One can generate a corresponding prime discriminant of prescribed bit-length 𝐵 in a way similar to Example 2, at
the cost of essentially 𝑂 (𝐵) primality tests.

3.1 DISCRIMINANTS WITH PRESCRIBED BITS
The above strategy allows to find ‘random looking’ discriminants together with a class of order 3 in the

corresponding class group. It does not allow to fix the discriminant a priori. However, we now show that it

2https://chia.net/.
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is possible to fix half the bits of the discriminant. Let 𝛿 a 𝐵/2-bit integer. We are looking for a discriminant
Δ = −(𝛿 + 2𝐵/2𝛿′), with 𝛿′ another 𝐵/2-bit integer.

Choose a 𝐵/3-bit prime number 𝑧 so that the quadratic equation 𝑥2 ≡ 𝛿 + 𝑧3 mod 2𝐵/2 has a solution, and
choose 𝑥 a 𝐵/2-bit long solution. Now, let Δ = 𝑧3 − 𝑥2. As above, the prime ideals above 𝑧 in Q(

√
Δ) are either

principal or of order 3 in the class group, and now the 𝐵/2 least significant bits of Δ are given by 𝛿.

4 BINARY CUBIC FORMS AND THEIR RELATIONSHIP TO THE BINARY QUADRATIC
FORMS

It is well known that there is a close relationship between binary cubic forms of discriminant Δ = −27𝐷 and
ideal class group of the quadratic field L = Q = (

√
𝐷). This section summarizes parts of [14, Chapter 3]. Given a

primitive integral binary cubic form in the form

𝐶 (𝑥, 𝑦) = 𝑎𝑥3 + 3𝑏𝑥2𝑦 + 3𝑐𝑥𝑦2 + 𝑑𝑦3 .

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z. Let 𝑄 be the Hessian of 𝐶. Then we have

𝑄 = 9𝑞, where 𝑞 = (𝑏2 − 𝑎𝑐, 𝑏𝑐 − 𝑎𝑑, 𝑐2 − 𝑏𝑑) .

The discriminant of the binary quadratic form 𝑞 is equal to

𝐷 = −3𝑏2𝑐2 + 4𝑎𝑐3 + 4𝑏3𝑑 − 6𝑎𝑏𝑐𝑑 + 𝑎2𝑑2 .

Now there is a well defined map between the 𝑆𝐿2 (Z)-class of 𝐶 and the 𝑆𝐿2 (Z)-class of the Hessian 𝑄. Let
𝐶𝑙+ (𝑏𝑐 𝑓 (Δ)) be the set of 𝑆𝐿2 (Z)-class of binary cubic forms of discriminant Δ = −27𝐷, let 𝐶𝑙+L [3] be the
3-torsion subgroup of the narrow ideal class group of the quadratic field L = Q = (

√
𝐷) and let 𝐶𝑙+ (𝑏𝑞 𝑓 (𝐷)) [3]

be the 𝑆𝐿2 (Z)-classes of binary quadratic forms isomorphic to 𝐶𝑙+L [3], than the map is given by:

𝜑 : 𝐶𝑙+ (𝑏𝑐 𝑓 (Δ)) −→ 𝐶𝑙+ (𝑏𝑞 𝑓 (𝐷)) [3]

𝜑 : [(𝑎, 3𝑏, 3𝑐, 𝑑)] −→ [(𝑏2 − 𝑎𝑐, 𝑏𝑐 − 𝑎𝑑, 𝑐2 − 𝑏𝑑)]

This allows to exhibit elements of order 3 in class groups of quadratic fields without even computing the class
number. Unfortunately, the corresponding algorithms are more expensive than class group computations.

4.1 BHARGAVA CUBES AND ORDER 3 IDEAL CLASSES
A great way to visualize the correspondence defined in section 4 is using the work by Manjul Bhargava. In his

cornerstone paper [4] Bhargava introduced a new composition law for binary quadratic fields (about 200 years after
Gauss) and 13 new composition laws for higher degree number fields using what is now known as the Bhargava
cube. He noticed that when putting numbers on the corners of a cube (representing a 2 × 2 × 2 matrix) as below

𝑒 𝑓

𝑎 𝑏

𝑔 ℎ

𝑐 𝑑

the cube can be sliced into pairs of 2 × 2 matrices in three different ways

𝑀1 =

[
𝑎 𝑏

𝑐 𝑑

]
𝑁1 =

[
𝑒 𝑓

𝑔 ℎ

]

𝑀2 =

[
𝑎 𝑐

𝑒 𝑔

]
𝑁2 =

[
𝑏 𝑑

𝑓 ℎ

]
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𝑀3 =

[
𝑎 𝑒

𝑏 𝑓

]
𝑁3 =

[
𝑐 𝑔

𝑑 ℎ

]
From these slicing, it is now possible to construct three quadratic forms having the same discriminant:

𝑄1 (𝑥, 𝑦) = − det(𝑀1𝑥 − 𝑁1𝑦)

𝑄2 (𝑥, 𝑦) = − det(𝑀2𝑥 − 𝑁2𝑦)

𝑄3 (𝑥, 𝑦) = − det(𝑀3𝑥 − 𝑁3𝑦)

Bhargava observed that the product of these three quadratic forms is the identity for the classic Gauss composition,
and that any three quadratic forms with trivial product arrises from such a cube. Next step is to impose some
symmetry to the cube (in this case forming a triply symmetric cube):

𝑏 𝑐

𝑎 𝑏

𝑐 𝑑

𝑏 𝑐

Just as symmetric square matrix defines a quadratic form, a triply symmetric cube defines a cubic form: the above
cube induces the cubic form

𝑎𝑥3 + 3𝑏𝑥2𝑦 + 3𝑐𝑥𝑦2 + 𝑑𝑦3.

We also know from the discussion above that this cube defines three binary quadratic forms whose product is the
identity. So this triply symmetric cube also parametrizes an order in a quadratic fields together with three ideal
classes of trivial product. The symmetries in the cube imply that all three quadratic forms are actually the same,
therefore it is a quadratic form of order 1 or 3. Next step has been suggested by Bhargava in [3] where he points out
that the method described by Belabas in [1] could be used to enumerate order 3 ideal classes in quadratic orders.
Let us run through an example.

Example 4. Assume we want to find an element of order 3 for the binary quadratic form with discriminant
Δ = −470551. −Δ is a prime number equal to 7 (mod 8). Now using the algorithm in [1] we can generate the
reduced defining polynomial for the binary cubic form having discriminant 33Δ = 12704877. This outputs the
binary cubic form 5𝑥3 + (3 · 11)𝑥2𝑦 − (3 · 17)𝑥𝑦2 − 26𝑦3 that is equivalent to the following Bhargava cube:

11 −17

5 11

−17 −26

11 −17

This triple symmetric cube is formed by composing twice the following binary quadratic form of order 3: 206𝑥2 +
57𝑥𝑦 + 575𝑦

Some comment about the example above: we were able to find an element of order 3 without computing the
class number of the binary quadratic form. All using a combination of Belabas algorithm and Bhargava cube.
Unfortunately, the algorithm listing fields with |𝑑𝑖𝑠𝑐 | in the range [𝑋 −𝑌, 𝑋] has complexity𝑂 (𝑋3/4 +𝑌 ) (see [2]);
in our example 𝑌 = 0 so we can find an element of order 3 in time about 𝑂 (𝑋3/4). This is more expensive than
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computing the full class group per se. The variant introduced by Cremona in [11, Algorithm 2] also runs in time
𝑂 (𝑋3/4).

Finally, Daniel Shanks’s CUFFQI algorithm [24] constructs all cubic fields of a fixed fundamental discriminant
𝑋 in time polynomial in log |𝑋 | (see Renate Scheidler’s paper in [14, Chapter 4]) but it requires as input the 3-part
of the class group of the quadratic field with that discriminant (that is actually what we are looking for!). More
generally, given the class group and units of a number field 𝐾 , the same techniques using class field theory and
virtual units allow to visualize elements of arbitrary order 𝑡 in the class group by exhibiting unramified extensions
of degree 𝑡 of 𝐾 , given by a list of irreducible polynomials, see [10]. The complexity is again dominated by the
time needed to compute the class number and class group structure.

5 CONCLUSIONS
ICQ leverages on some well known topic in number theory but many of the assumptions are new in the field

of cryptography. The low order assumption is an important assumption that is at the core of some cryptographic
primitives: Verifiable Delay Functions, accumulators, polynomial commitments. In this work we were able to break
the low order assumption in the class group of an imaginary quadratic number field for some really special class
of prime numbers and we have shown how it is possible to construct malicious discriminants having prescribed
properties. For applications leveraging the low order assumption over imaginary quadratic field we recommend to
generate the discriminant at random and to avoid to mandate fixed discriminants. We hope that this work provides
some incentive for researchers to think about this new problems.
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