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Abstract. We develop an individual simulation technique that explicitly makes use of partic-
ular properties/structures of a given adversary’s functionality. Using this simulation technique,
we obtain the following results.

1. We construct the first protocols that break previous black-box barriers of [Xiao, TCC’11
and Alwen et al., Crypto’05] under the standard hardness of factoring, both of which are
polynomial time simulatable all a-priori bounded polynomial size distinguishers:
• Two-round selective opening secure commitment scheme.
• Three-round concurrent zero knowledge and concurrent witness hiding argument for

NP in the bare public-key model.
2. We present a simpler two-round weak zero knowledge and witness hiding argument for

NP in the plain model under the sub-exponential hardness of factoring. Our technique also
yields a significantly simpler proof that existing distinguisher-dependent simulatable zero
knowledge protocols are also polynomial time simulatable against all distinguishers of
a-priori bounded polynomial size.

The core conceptual idea underlying our individual simulation technique is an observation of
the existence of nearly optimal extractors for all hard distributions: For any NP-instance(s) sam-
pling algorithm, there exists a polynomial-size witness extractor (depending on the sampler’s
functionality) that almost outperforms any circuit of a-priori bounded polynomial size in terms
of the success probability.

1 Introduction

1.1 Background

The simulation paradigm [GMR89] plays a pivotal role in complexity-based cryptography, which
takes the reductionist approach to prove the security of a given cryptosystem. In a typical security
proof, we devise a reduction algorithm, which invokes as a subroutine the adversary that claims to
break the target cryptosystem, to crack the underlying hard problem. In this process, the reduction
algorithm needs to simulate the honest parties for the adversary in order to exploit its power. For
most interactive cryptographic protocols, simulating the adversary’s view is actually the essential
part of the reduction.

The most commonly used simulation strategy is black-box simulation, which appears very re-
strictive since the black-box simulator ignores the internal workings of the adversary completely.
Indeed, starting from the seminal work of Impagliazzo and Rudich [IR89], a lot of impossibility
results regarding black-box simulation were proved in a variety of settings. In the last two decades,
several new simulation techniques, notably the PCP-based non-black-box simulation [Bar01] and the
recently distinguisher-dependent simulation [JKKR17, BKP19] techniques, were developed to get
around certain black-box barriers on the round-complexity of cryptographic protocols. However, for
many basic protocols, it still remains unclear whether the known black-box impossibility results on



their round-complexity might be overcome using new (non-black-box) reduction/simulation tech-
niques. In this paper, we consider the round-complexity of several related fundamental protocols:
selective opening secure commitments and zero knowledge protocols.

Commitment scheme secure under the selective opening attacks. In a selective opening attack
against a commitment scheme, the receiver observes many commitments and is allowed to ask the
committer to open some of them. Dwork et al. [DNRS03] put forward the notion of selective open-
ing security and asked if we can construct such a commitment that the unopened commitments in the
selective opening attack still stay hiding. As showed in [DNRS03], this problem has a deep connec-
tion with the existence of 3-round (non-trivial) zero knowledge and the soundness of the Fiat-Shamir
heuristics.

Bellare et al. [BHY09] constructed the first selective opening secure commitment. The high-
level idea of their construction (and the follow-up from [ORSV13] by Ostrovsky et al.) is as follows.
The receiver generates a trapdoor for an equivocal trapdoor commitment scheme, and proves of
knowledge of the trapdoor via a cut-and-choose type protocol; the committer then uses this trapdoor
commitment scheme to commit to a value. In simulation, the simulator first extracts the trapdoor
by rewinding the receiver, and then can open a commitment to any value it wishes. So far, the best
known construction of (simulation-based notion of) selective opening secure commitment requires
three rounds [ORSV13].

There is an obstacle to further reduce the round-complexity of selective opening secure com-
mitment. Note that in a two-round scheme4 the receiver sends only one message and the standard
black-box simulator/extractor that treats the (possibly malicious) receiver as a black-box would fail.
Indeed, Xiao [Xia11, Xia13] proved that it is impossible to achieve selective opening security in 2
rounds with a black-box simulator.

Zero knowledge protocols in two and three rounds. Early constructions of zero knowledge proofs
(with statistical soundness) [GMR89] and arguments (with computational soundness) [BCC88] are
quite simple and round-efficient: only three messages are exchanged in a session. However, this
round efficiency is achieved at the cost of huge soundness error. The work [FLS99] provides a very
popular method – the so-called FLS-paradigm – to construct four round zero knowledge argument
with negligible soundness error. In the FLS-paradigm, a zero knowledge protocol for proving some
NP statement x ∈ L proceeds in two phases. In the first phase, the verifier generates two puzzles
and proves to the prover that he knows a solution to one of these puzzles; In the second phase, the
prover proves to the verifier that either the statement being proven is true or he knows a solution to
one of puzzles. Both proofs are carried out using a witness indistinguishable proof of knowledge. In
simulation, an efficient simulator is able to extract a solution to one of these puzzles from a malicious
verifier and then carry out the second phase using the solution just extracted as a witness.

Whether there are 3-round zero knowledge protocols with negligible soundness error based on
standard assumptions for non-trivial languages is still a widely open problem. On the negative side,
the work [GK96] showed that it is impossible to achieve 3-round zero knowledge argument or proof
via black-box simulation. Similar impossibility results [IH09, Pas11] hold even for a relaxed no-
tion of zero knowledge–witness hiding protocol [FS90]. Recently, Fleischhacker et al. [FGJ18] and
Canetti et al. [CCH+19] extended this impossibility result to non-black-box simulation technique,
and gave very strong negative evidence against the existence of 3-round zero knowledge proofs for
non-trivial languages.

In their recently work [JKKR17], Jain et al. observed that a good distinguisher may leak some
useful secrets of the verifier in certain settings, which will enable a successful simulation of the ver-
ifier’s view. They developed a distinguisher-dependent simulation technique and constructed three-
round delayed-input weak ε-distributional zero knowledge [DNRS03] from standard assumptions

4 The round-complexity of a commitment scheme refers to the one of its committing phase. In this paper we
focus on commitment schemes with a non-interactive opening phase.
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in a model where the simulator is allowed to depend on the distinguisher. Very recently, Bitansky
et al. [BKP19] introduced a homomorphic trapdoor paradigm and presented a three-round weak ε-
zero knowledge argument in the same model, but their simulator works for any individual statement
(rather than in the distributional setting). Both constructions of [JKKR17, BKP19] can be made into
two rounds assuming certain sub-exponential hardness.
Concurrent zero knowledge protocols and the bare public key (BPK) model. Dwork et al. [DNS98]
formalized the notion of concurrent zero knowledge in a setting where multiple sessions of the same
protocol take place, and a malicious verifier is allowed to fully control the message scheduling. A
protocol is called concurrent zero knowledge if it preserves zero knowledge even in this concur-
rent setting. Prabhakaran et al. [PRS02] refined the analysis of the simulators of [KP01, RK99] and
proved (almost) logarithmic (Õ(log n)) round-complexity is sufficient for concurrent zero knowl-
edge protocol, which almost matches the black-box lower bound of [CKPR01]. In his breakthrough
work [Bar01], Barak introduced a non-black-box simulation technique that makes use of the mali-
cious verifier’s code in simulation, and generated a long-line follow-up works (e.g., [DGS09, CLP13,
BP15], just to name a few) to reduce the round-complexity of concurrent zero knowledge. However,
despite decades of intensive research, the known constant-round constructions [CLP15a, FKP19] of
concurrent zero knowledge still require non-standard assumptions.

Canetti et al. [CGGM00] introduced a very attracting model–the BPK model–to further reduce
the round-complexity of stronger notions of zero knowledge, such as concurrent zero knowledge and
resettable zero knowledge (which allows a verifier to reset the prover). In this model, each verifier
deposits a public key in a public file and stores the associated secret key before any interaction
with the prover begins. A huge advantage of this model is that, the trapdoors/secret keys useful for
the simulator are fixed in advance, and if a simulator obtained all these trapdoors, it can simulate
any session in a straight-line manner. Many constructions [Vis06, YZ07, DL07, DFG+11, SV12] of
concurrent/resettable zero knowledge in this model follows the FLS paradigm in which the verifier
proves knowledge of his secret key in the first phase, and thus they require at least four rounds.

The question of whether we can achieve concurrent zero knowledge in fewer rounds in the
BPK model is also subject to black-box limitations: As showed in [APV05], it is impossible to
achieve concurrent black-box zero knowledge with concurrent (even sequential) soundness (defined
in [MR01]) in three rounds in this model.

1.2 Motivation

In black-box simulations mentioned above, a simulator usually needs to extract a piece of secret
information from the adversary and then use it in order to mimic the honest parties (without knowing
their private inputs). For such an extraction to go through, we usually design protocols so that the
adversary is required to provide a proof of knowledge of such a piece of secret information. This
incurs several additional rounds of interaction given the state-of-the-art constructions of proof of
knowledge.

Indeed, Barak showed the adversary’s code and internal workings allow us to break black-box
barriers in certain settings. His non-black-box simulation technique relies on the PCP mechanism
and often gives rise to complicated and (relatively) round-inefficient constructions. So far, for almost
all known simulation techniques (including Barak’s non-black-box simulation), the simulator is uni-
versal and is able to work for any adversary. This is in sharp contrast to the individual simulators, as
required in most of security definitions, which switches the order of qualifiers ∃ Sim ∀ Adv:

– Universal Simulation: ∃ Sim ∀ Adv, Sim fools all efficient distinguishers.
– Individual Simulation: ∀ Adv ∃ Sim, Sim fools all efficient distinguishers.

Literally, an individual simulator is only required to work for a given individual adversary, thus we
can assume that the simulator “knows/hardwires” any useful properties/structures (if exists) of this
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adversary’s functionality, not just its code. This makes individual simulators more powerful than
universal/black-box ones. Under the widely believed hardness of reverse engineering5, we cannot
expect an efficient universal simulator to be able to figure out some useful property/structure about
the adversary’s functionality from its code. A natural question arises:

Can we develop individual simulations to break the known black-box barriers?

A motivating example is the black-box lower bound on round-complexity of concurrent zero
knowledge [CKPR01], in which Canetti et al. constructed an explicit concurrent verifier strategy (for
an arbitrary almost logarithmic round proof system) whose view cannot be simulated by any efficient
black-box simulator (unless the statement being proven is trivial). However, as already showed in
[Den17], an individual simulator can simulate this adversary’s view in a straightforward way when
given as input a crucial functionality of a subroutine of the adversary. This demonstrates the potential
power of individual simulations, but does not give a proof of the concurrent zero knowledge of the
underlying protocol, which requires us to show for any efficient verifier we can build a successful
individual simulator.

1.3 Summary of Our Results

In this paper we develop an individual simulation technique that explicitly makes use of particular
properties/structures of the adversary’s functionality, and achieve several constructions for selective
opening secure commitment and zero knowledge arguments that break the known black-box lower
bounds on their round-complexity.

As our main conceptual contribution, we show that for any NP-instance(s) sampling algorithm,
there exists a nearly optimal individual witness extractor (depending on the sampler’s functionality)
that almost outperforms any circuit of a-priori bounded size. Combining this extraction strategy with
an algebraic technique for Blum’s encryption scheme, we obtain the following results.

The first protocols that break previous black-box barriers. We construct the first protocols that
break black-box barriers of [APV05, Xia11, Xia13]6 under the standard hardness of factoring, both
of which are polynomial time simulatable against all a-priori bounded polynomial size distinguishers
with small distinguishing gap:

– Two-round selective opening secure commitment scheme.
– Three-round concurrent zero knowledge and concurrent witness hiding argument for NP in the

bare public-key model.

All these protocols are quasi-polynomial time simulatable against all polynomial-size distinguishers
with a negligible distinguishing gap.

Simpler construction and analysis of zero knowledge protocols. We present a construction of
two-round weak zero knowledge and witness hiding argument for NP in the plain model under the
sub-exponential hardness of factoring, which is much simpler than the constructions in [JKKR17,
BKP19, DK18, BGI+17]. Our technique also yields a significantly simpler proof of the equivalence
theorem of [CLP15b]) for existing distinguisher-dependent simulatable zero knowledge protocols
in [JKKR17, BKP19], showing that these protocols are also polynomial time simulatable against all
distinguishers of a-priori bounded polynomial size.

5 Under this assumption, the work [DGL+16] showed a limitation of universal simulation in a particular
setting.

6 It is easy to verify that these black-box barriers also hold with respect to the weak simulatability we achieve
in this paper.

4



1.4 Individual Extraction and Simulation: An Overview

Recall that the standard simulation-based security definitions only require that for every adversary,
there exists a simulator that can fool all efficient distinguishers. This means such an existential
simulator, like distinguishers, can depend on any properties/structures of the functionality of the
given specific verifier.

Imagine that we have an extremely concise two-round FLS-type protocol (A,B) in which B
sends an NP instance y in the first round, with these properties:

1. A solution to the instance y generated by a adversary B enables the simulator to efficiently
generate B’s view that is indistinguishable from the real interaction;

2. Distinguishing the honest A’s message from even a dummy message is equivalent to extracting
a solution to y from B

In this scenario, for a given adversary B, there are only two cases in which a normal simulator
(rather than a distinguisher-dependent one) will win: a) the simulator succeeds to extract a solution
to y from B, or, b) no efficient algorithm can extract a solution to y except for negligible probability.
In the former case, by the first property of (A,B), regardless of whether the distinguisher knows the
solution, the simulator can reconstructB’s view successfully; in the latter case, the distinguisher does
not know the solution either, and thus by the second property of (A,B), a simulator can generate a
dummy second message to fool the distinguisher.

Nearly optimal extractors for single-instance Samplers. Note that the above solution extraction
algorithm–the key subroutine of the simulator–can also be individual: It can depend on any prop-
erty/structure of the individual adversary B, besides being given the same input as B.

To simulate B’s view, one naive approach is to apply the best possible extractor (in terms of suc-
cess probability) to extract a solution then simulate. An issue with this approach is that the success
probability of an extractor may increase with its size. This makes it hard to control the size of the
extractor (and the simulator).

In this paper, we consider a weak simulation security–(T, ε)-simulatability: The simulator is
required only against distinguishers of size T with distinguishing gap less than ε. Note that this
notion is stronger than the distinguisher-dependent simulatability defined in [CLP15b, JKKR17],
where the simulator depends on the specific distinguishing algorithm, not just its size.

We view B as a single-instance sampler, and show that for any B there exists of a good extractor
that outperforms all circuits of size T (given the same input as the extractor) with at most gap ε. The
basic proof strategy is to keep iterating to include new powerful circuits into the extractor until we
have a desired one.

Subtleties. One should be careful when carrying out this proof strategy. First, the number of iterations
in this process may depend on the security parameter n, and this may cause some difficulties in
controlling the size of the final circuit family Ext; second, in the asymptotic setting, when we add
a new circuit family to the extractor, this family may work only when the security parameter n
is greater than a specific n0. Thus, it is possible that the iterative procedure keeps increasing the
number n0, and therefore we are not able to specify any n′0 so that the final circuit family Ext works
for all n > n′0.

To get around these difficulties, we use the a-priori fixed T and ε as a global guideline, and do
local iterations at each parameter n7: In each iteration of this process, we have an extractor Ext at

7 We would like to stress that one cannot expect this process to be constructive.
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the beginning and ask: Does there exist another instance solver C of size T , given the same input as
Ext, such that

Pr [y ← B : C extracts a solution to y but Ext fails] > ε?

If so, then we have a new extractor: On input y, it runs the Ext first, and if Ext fails then runs C
to extract a solution to y. This will increase the success probability of the extractor by at least ε;
otherwise, we return the current extractor Ext.

It is not hard to verify that, after at most 1
ε steps, we will have an extractor Ext of size at most

O(T 1
ε ) such that, the event that Ext fails to extract a solution to y but some other circuit of size T

succeeds happens with probability at most ε.

The dependence on the functionality of the sampler. We give two examples to illustrate how the
nearly optimal extractor Ext intrinsically depends on the functionality of the sampler. Consider the
following two image-sampling algorithms for some one-way permutation g: (a) use randomness y
and then generate an image x = g(y), and (b) sample a random string x from the co-domain of g.
Then, for the former sampler, there is a nearly optimal extractor (taking the sampler’s randomness
y) that can simply output the pre-image y of the given sampled image x with probability 1; for the
latter, a dummy algorithm (with success probability 0) is also an optimal extractor (this is almost
best possible since g is one-way).

With this nearly optimal extractor, we now have an individual simulator for B: it first applies this
nearly optimal individual extractor Ext to extract a solution to y generated by B and then simulates
in a somewhat straightforward manner (see below). Note that this simulator inherently depends on
the functionality of the adversary (instance sampler) since the nearly optimal extractor does, and that
it will fool all distinguishers8 of size T except for probability at most ε.

Now, if the protocol (A,B) satisfies the above two properties, we have a good individual sim-
ulator against all distinguishers of size T . Our remaining task is to construct protocols with such
properties.

A suitable building block for such protocols is the well-known encryption scheme based on the
hardness of factoring. The public key of the encryption scheme is a Blum integer N , and the secret
key is a prime factor of N . A ciphertext of a bit b is given by c = (fN (s), h(s) ⊕ b), where fN :
QRN → QRN defined by fN (s) = s2 modN and h is the hardcore of fN . A key property (implied
by [TW87]) of this encryption scheme we will make use of is the equivalence between distinguishing
ciphertexts and extracting a secret key, even if the public key N is maliciously generated (may NOT
be a Blum integer9).

Constructions. With these extraction and construction ideas in mind, we construct selective opening
secure commitment and zero knowledge arguments as follows.

Two-round selective opening secure commitment: In the committing phase, we have the receiver
generate a Blum integer N for the committer; upon receiving N , the committer uses the trapdoor
commitment scheme (a prime factor of N serves as a trapdoor) [FS89] to compute a commitment
c, encrypts it bit-wise under the public-key N and sends these encryptions to the receiver; In the
opening phase, the committer sends the opening of c to the receiver, and the latter decrypts the
encryptions received in the first phase and accepts if the plaintext is c and the opening received is a
valid opening of c. This construction relies on polynomial hardness of factoring.

Three-round weak concurrent zero knowledge in the BPK model: In the key registration phase, each
verifier generates two Blum integers (N0, N1) as its public-key, and stores two prime factors (q0, q1),

8 One can think of a distinguisher as a solution extractor since they are essentially equivalent because of the
property 2. of (A,B).

9 In this case, we view any prime factor of N as a secret key.
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qi|Ni for i ∈ {0, 1}. In the proof phase, the prover and the verifier execute the three round parallel
version of Blum’s protocol (Let a session be of the form (a, e, z)) in which the prover proves “the
statement to be proven is true or I know a prime factor of one of the two integers”, and in addition,
the prover encrypts the last message z bit-wise under each of verifier’s public key. The verifier
decrypts all these ciphertexts and obtains ẑ and z̃, and accepts if ẑ = z̃ and the underlying transcript
is accepting. This construction relies on polynomial hardness of factoring.

Two-round weak zero knowledge in the plain model: The verifier sends a Blum integerN (and stores
one prime factor) to the prover, and the prover computes a commitment c to n zeros, sends back
c together with ciphertexts (encrypted bit-wise under N ) of a NIWI proof for “the statement to be
proven is true or I know a prime factor of N”. The verifier decrypts the ciphertexts, and accepts if
the plaintexts forms an accepting NIWI proof. This construction relies on sub-exponential hardness
of factoring.

A difficulty in the individual simulations for composable protocols. At a high level, our simu-
lation strategy for these protocols are quite simple: The simulator first applies the nearly optimal
extractor to obtain the corresponding witness for each session, and if the extractor succeeds, then it
can simulate this session in a straightforward manner; otherwise, it sends a dummy message in the
last round of the protocol.

The simulator for the commitment scheme. Suppose that a malicious receiver R∗ initiates k sessions
in parallel. In the committing phase, for each i ∈ [k], the simulator first runs the nearly optimal
extractor and tries to obtain a prime factor of Ni sent by R∗, and commits to 0 via the trapdoor
commitment scheme and obtains a commitment ci, then sends encryptions of ci; In the opening
phase, upon receiving {bi}i∈I and the index set I , then the simulator opens ci in the following way:
If bi = 0, open it in an honest way; if bi = 1 and the extractor succeeds to extract a prime factor
of Ni, then use it as trapdoor and open ci to value 1; else send (bi = 1, dec′) to R∗, where the
decommiment (bi = 1, dec′) is a valid opening of some commitment c′i. (In other words, in the
third case, the simulator pretends that the ciphertexts it sent in the committing phase is bit-wise
encryptions of c′i.)

The simulators for zero knowledge protocols are much simpler. For concurrent zero knowledge pro-
tocol in the BPK model, after the key registration phase, for each pair (N0, N1) registered by a
malicious V ∗, the simulator first tries to extract a prime factor of one of (N0, N1) using the nearly
optimal extractor; if this extraction is successful, then the simulator can simulate any session un-
der (N0, N1) successfully; otherwise, the simulator simply computes encryptions of all zeros under
both public keys in the last round. The same simulation strategy works also for the zero knowledge
protocol in the plain model.

One must be careful in proving that these simulations are indistinguishable from the real interac-
tion against any distinguisher of a-priori bounded size T except for small probability ε. A technical
subtlety arises in such proofs due to the composition of the first two protocols. Let us take the exam-
ple of the simulator for the commitment scheme. As usual, the proof of (T, ε)-simulatability is done
by a hybrid argument. We construct a sequence of hybrid non-uniform simulators, gradually switch-
ing from the simulation to the real interaction, so that a consecutive pair of simulators, say the i-th
and the (i+ 1)-th simulators, behave differently only in the i-th session in the case that the extractor
fails to factor Ni, and then prove that any two consecutive simulations are indistinguishable except
for a very small probability by contradiction: For any Dn of size T that distinguishes the i-th and
the (i + 1)-th simulations with a large distinguishing gap, we use Dn to construct a circuit An that
contradicts the optimality of the nearly optimal extractor. However, to exploit the power of Dn, An
needs also to simulate other sessions for Dn, which in turn requires An to know prime factors for
some other Nj’s (j 6= i) obtained by the extractor. (otherwise An needs to run the extractor on its
own, which results in the circuit An of size larger than the extractor and thus makes no sense.)
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Nearly optimal extractors for multi-instance samplers. We prove a stronger result of the existence
of nearly optimal extractors for all multiple-instance sampling algorithms to address the above issue.
Specifically, for any polynomial t and any t-instance sampler, we show there exists a nearly optimal
extractor such that, for every i ∈ [t], for any circuit C of a-prior bound size that is given the output
of the extractor, the probability that C solves the i-th instance but the extractor fails is small. This
result is proved by a similar argument as above, but a more delicate iterative procedure is required.

Binding/soundness: Trust the adversary. At first glance, the binding and soundness properties
of the first two protocols seem to be problematic. For the binding of our commitment scheme, a
usual proof-by-contradiction approach is to construct a reduction with oracle access to the cheating
committer to factor the public key N . A problem with this approach is that the reduction itself does
not know the corresponding secret key (i.e., a prime factor of N ), and as a consequence, it cannot
decrypt the message from the committer to obtain the commitment c and determine whether the
opening sent by the cheating committer is a valid decommitment of c. Here we use a “trust the
adversary” trick to save the proof: Since the cheating committer can make the honest receiver (who
knows the secret key) accept two different decommitments, these decommitments should be valid
for the same commitment c. Hence, in reduction, the reduction algorithm can trust the committer
and simply assume that the two decommitments are both valid for some unknown c.

A similar but more subtle problem occurs in the proof of soundness of the zero knowledg pro-
tocol in the BPK model. In this case, a usual reduction algorithm keeps one secret key of Ni (for
a random i ∈ {0, 1}) in the public key pair (N0, N1), and wants to use the power of the cheating
prover to factor N1−i. However, such a reduction seems to fail for the following cheating P ∗: At
the begining P ∗ somehow magically factors both N0 and N1 and obtains q0 and q1; in its last step,
it compute z0 and z1 using witnesses q0 and q1 respectively, and sends to the verifier encryptions of
z0 and z1 under the public keys N0 and N1 respectively. Note that the reduction can decrypt only
the encryptions under public key Ni, and hence it can only obtain a prime factor of Ni by rewind-
ing P ∗ (using the special soundness of Blum’s protocol). However, this issue is taken care by the
verification step in which the honest verifier decrypts all encryptions and check if the two last round
messages z0 and z1 are equal and both acceptable. Thus, such a cheating P ∗ cannot make an honest
verifier accept at all, and therefore is not a successful cheating prover. In other words, for a success-
ful cheating prover, the reduction algorithm can trust that the two last round messages of Blum’s
protocol encrypted under both public keys are equal. This is the key to the proof of soundness.

1.5 Related Work and Discussion

On upgrading the distinguisher-dependent simulatable zero knowledge. As mentioned earlier,
it is proved in [CLP15b] that, in the plain model, distinguisher-dependent simulatable zero knowl-
edge protocols (such as [JKKR17, BKP19]) satisfy the stronger notion of (T, ε)-simulatabibility.
However, this “distinguisher-dependent simulation then upgrade” approach to (T, ε)-simulatability
seems to work only for standalone zero knowledge protocols in the plain model. Note that the equiv-
alence theorem of [CLP15b] says nothing about zero knowledge in other models/settings, or other
cryptographic primitives, like the commitment schemes under parallel composition and concurrent
zero knowledge in the BPK model considered in this paper.

The equivalence theorem of [CLP15b] was proved via the minimax theorem, which leads to a
complicated proof10. Our proof of existence of a nearly optimal extractor is quite simple and easy to
understand, and it can also be used to upgrade existing constructions of [JKKR17, BKP19]. How-
ever, it is unclear if our technique could be used to prove the full version of the equivalence theorem

10 See https://eprint.iacr.org/2013/260.pdf for the detailed proof.
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of [CLP15b]. The zero knowledge protocols presented in this paper are much simpler than the coun-
terpart protocols in [JKKR17, BKP19, DK18, BGI+17]. For example, constructions in [JKKR17]
need to parallelize the underlying Σ-protocol with a single bit challenge, or make use of garbled
circuits; the construction in [BKP19] is even more heavier and complicated (mainly due to the usage
of FHE and obfuscation).

Other notions of selective opening security for commitments. The work of [BHY09] also intro-
duced the notion of selective opening security under concurrent composition, where a malicious
receiver is allowed to interact with the committers concurrently. This notion is stronger than the
selective opening security under parallel composition considered in this paper. However, as proved
in [ORSV13], we cannot achieve such a security in the full-fledged concurrent setting if the simu-
lator does not know the distribution of the message committed to by the honest committer. Another
related notion is the indistinguishability-based selective opening security, which can be achieved by
any statistical hiding (standalone) commitment scheme [BHY09].

Conditional disclosure schemes and extractable one-way functions. A conditional disclosure
scheme can be viewed as interactive version of witness encryption [AIR01, BP12, PA17]. It is a
useful tool for constructing protocols of low round-complexity, such as the three round zero knowl-
edge protocol of [BKP19], but the usage of such a scheme often requires an additional sub-protocol
to make sure a (malicious) party indeed knows a relevant witness. The protocols in this paper do not
need such an extra sub-protocol, and therefore is significantly simpler than previous constructions.

Another related notion is the extractable one way functions [Dam91, CD08, BCPR14], for which
the only way to compute an image of the function is by “knowing” the corresponding pre-image.
More formally, an extractable one-way function guarantees that for any efficient adversary, there
exists an efficient extractor such that it can always extract an pre-image as long as the adversary
outputs an image. To date, the known constructions of such a function still requires somewhat non-
standard assumptions.

(T, ε)-security in practice. A silent feature of the notion of (T, ε)-simulatability is that the we
need not embed the parameters T and ε into the protocol instructions. That is, we can have a single
construction that achieves (T, ε)-simulatability for any polynomial T and any inverse polynomial ε,
which stands in sharp contrast to Barak’s n-bounded concurrent zero knowledge argument, whose
construction depends on the a-priori upper-bound n on the number of total sessions allowed. From a
practical point of view, we think the weak notion of (T, ε)-simulatability is good enough in practice:
For any fixed security parameter λ, any constants κ and ε, it already achieves a concrete (κ, ε)-
simulatability, since there always exist T and ε satisfying T (λ) > κ and ε(λ) < ε.

1.6 Organization

We present relevant definitions in section 2. In section 3, we prove the existence of nearly optimal
extractors for all hard distribution samplers. In section 4, we give a formal proof of the equivalence
between distinguishing ciphertexts and extracting a secret key for the factoring-based encryption
scheme. In the last three sections, we give our main results on selective opening secure commit-
ment, weak concurrent zero knowledge in the BPK model and the two-round weak zero knowledge
respectively.

2 Preliminaries

Throughout the paper, we let n be the security parameter. We write the set {1, 2, ...,m} as [m], and
the set {i, i + 1, ..., j} as [i, j]. We denote by x̄ = {xi}i∈[k] ← D̄k the process of sampling k
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times x from D independently. A function negl(n) is called negligible if it vanishes faster than any
inverse polynomial. We write {Xn}n∈N

c
≈ {Yn}n∈N to indicate that the two distribution ensembles

{Xn}n∈N and {Yn}n∈N are computationally indistinguishable.

A Blum integer N is a product of two primes p, q satisfying p, q ≡ 3 mod 4. We denote by
Blum(1n) the algorithm that on input a security parameter n outputs a Blum integer N and one of
its prime factors q, where the corresponding two prime factors are of length n.

Commitment and trapdoor commitment schemes. Commitment schemes are “digital” safes. For-
mally, a commitment scheme (C,R) is a two-phase protocol between a committer C and a receiver
R. To commit to a bit b ∈ {0, 1}, C(b) and R execute the committing phase of (C,R) (denoted by
(C,R)Com) and generate a commitment transcript Com(b); To decommit Com(b), C andR execute
the opening phase of (C,R) (denoted by (C,R)Open) and reveal a decommitment (b, dec), and R
accepts if the decommitment is valid.

Definition 1 (Commitment Scheme). A two-phase protocol (C,R) is called a commitment scheme
if it satisfies the following two properties:

– Binding: For every committer C∗ of polynomial-size, the probability of the following event is
negligible: C∗ interacts with R and generates a commitment Com(b) in the committing phase,
and then produces two decommitments (b, dec) and (b′, dec′) with b 6= b′ in two executions of
the opening phase.

– Hiding: For every receiver R∗ of polynomial size, the commitments Com(0) and Com(1) are
computational indistinguishable.

A trapdoor commitment scheme is a commitment scheme with an additional property: Given a
trapdoor, C can later open a commitment to different values. In [FS89], Feige and Shamir showed
how to transform Blum’s 3-round interactive proof into a trapdoor commitment scheme. In our
construction of selective opening secure commitment, we need a version of Feige-Shamir trapdoor
commitment based on factoring. Using a standard commitment (built from the factoring assumption)
Com as a building block, our trapdoor commitment scheme (TDGen,TDCom,Open, Fakeopen)
proceeds as follows.

– TDGen: On input the security parameter n, TDGen generates (N, q) ← Blum(1n). Define an
NP relation {(N, q) : q|N}, and transform (N, q) into a graph G and an associated Hamiltonian
cycle H ⊆ G. Output ((N,G), q).

– TDCom: On input G, a bit b and randomness r, if b = 0, pick a random permutation π and
commit to the adjacency matrix of π(G); if b = 1, pick a random cycle H ′ and commit to the
adjacency matrix of H ′. In both cases, we use commitment scheme Com when committing to
the adjacency matrix.

– Open: On input (G,TDCom(G, b, r), b, r), if b = 0, send π and open the entire adjacency
matrix of π(G); if b = 1, open the non-zero entries in the adjacency matrix of H ′ (i.e., open the
cycle H ′). We denote by (b, dec) the decommitment of the commiment TDCom(G, b, r).

– Fakeopen: On input (G,H,TDCom(G, 0, r), b, r), open to b in the same way as Open by
settingH ′ = π(H). Note that only when TDCom commits to 0, the commitment can be opened
to both 0 and 1.

A crucial property. Our construction of a selective opening secure commitment scheme relies on
the following property of the above trapdoor commitment scheme, which can be easily proved by
applying standard hybrid argument to the underlying commitment scheme Com:
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{(c, (1, dec)) : c← TDCom(G, 1, r); (1, dec)← Open(G,TDCom(G, 1, r), 1, r)} and
{(c, (1, dec)) : c← TDCom(G, 0, r); (1, dec)← Fakeopen(G,H,TDCom(G, 0, r), 1, r)}
are indistinguishable.

(T, ε)-secure under selective opening attacks. Consider a k-parallel composition of a commitment
scheme (C,R). A committer Ck and a receiver R∗ execute the committing phase k times in parallel
and generate k commitments {ζi}i∈[k] to b̄ = b1||b2|| · · · ||bk, each ζi is a commitment to bi. In a
selective opening attack, R∗ chooses a set I ∈ I (possibly depending the commitments received)
and asks the committer Ck to open the commitments {ζi}i∈I , where I is the family of subset of [k].
Informally, the commitment scheme (C,R) is said to be secure under selective opening attacks if
the remaining unopened commitments still stay secret.

Definition 2 ((T, ε)-secure under selective opening attacks). Let k be an arbitrary polynomial in
n, and B be a distribution on {0, 1}k, and I be the family of subset of [k]. A commitment scheme
(C,R) is (T, ε)-secure under selective opening attacks if for any polynomial T , any inverse polyno-
mial ε, any polynomial size B, and any polynomial size R∗, there exists a polynomial size Sim such
that for any distinguisher Dn of size T , Dn cannot tell apart the following two distributions

– (Ck(b̄), R∗): b̄ ← B; {ζi}i∈[k] ← (Ck(b̄), R∗)Com; I ← R∗({ζi}i∈[k]); {(bi, deci)}i∈I ←
(Ck(b̄), R∗)Open; OutR∗ ← R∗({(bi, deci)}i∈I). Output (b̄, I, OutR∗), and,

– SIM: b̄← B; I ← SimR∗ ; OutSim ← SimR∗({bi}i∈I)). Output (b̄, I, OutSim),

with probability greater than ε, i.e.,

|Pr[Dn((Ck(b̄), R∗)) = 1]− Pr[Dn(SIM) = 1]| < ε.

Delayed input argument, WI, WH and (T, ε)-ZK. Let L be an NP language and RL be its asso-
ciated relation. An interactive argument system (P, V ) for L is a pair of parties of polynomial size,
in which the prover P wants to convince the verifier V of some statement x ∈ L. We denote by
(P, V )(x) the output of V at the end of interaction on common input x, and by ViewPV (x) the view
of the verifier in the real interaction. Without loss of generality, we have the verifier V outputs 1
(resp. 0) if V accepts (resp. rejects).

In this paper we consider delayed-input interactive arguments, in which the common input to
both parties is the size of the statement x, and the verifier receives x only in the last round. Note
that in a delayed-input interactive argument, a malicious prover may choose statement depending
on the history, and thus such an argument needs to satisfy a stronger notion of soundness–adaptive
soundness.

Definition 3 (Delayed-Input Interactive Argument). A pair of parties (P, V ) of polynomial size
is called a delayed-input interactive argument system for language L if the following conditions
hold:

– Completeness: For every x ∈ L, w ∈ RL(x), V accepts the transcripts at the end of interaction
with P (x,w) with probability negligibly close to 1.

– Adaptive Soundness: For every prover P ∗ of polynomial size that chooses x /∈ L adaptively,
depending on the interaction history, V rejects at the end of interaction with P ∗ with probability
negligibly close to 1.

Definition 4 (Witness Indistinguishability). An interactive argument (P, V ) for language L is
said to be witness indistinguishable (WI) if for any polynomial-size V ∗, any {(x,w0, w1)}x∈L such
that both (x,w0) and (x,w1) ∈ RL, it holds that

{ViewP (w0)
V ∗ }x∈L

c
≈ {ViewP (w1)

V ∗ }x∈L.
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A delayed-input argument is witness hiding [FS90] over some hard distribution {Xn}n ∈ N on
a language L if for a random x ← Xn, no verifier can extract a witness after interacting with the
prover with noticeable probability.

Definition 5 (Distribution of Hard Instances). Let L be an NP language. We say a distribution
ensemble {Xn}n∈N is hard for RL if for any polynomial-size circuit family {Mn}n∈N,

Pr [Mn(Xn) ∈ RL(Xn)] < negl(n).

Definition 6 (Delayed-Input Witness Hiding). Let L be an NP language, {(Xn,Wn)}n∈N be
a distribution ensemble over RL. We say a delayed-input argument (P, V ) is witness hiding for
{(Xn,Wn)}n∈N if for any polynomial-size circuit V ∗,

Pr [(P (Wn), V ∗)(Xn) ∈ RL(Xn)] < negl(n).

A delayed-input argument system is zero knowledge if the view of the (even malicious) verifier
in an interaction can be efficiently reconstructed. In this paper, we consider a weak version of zero
knowledge–(T, ε)-zero knowledge, in which the indistinguishability gap between the real interaction
and the simulation is at most ε against any T -size distinguisher.

Definition 7 (Delayed-input (T, ε)-zero knowledge). We say that a delayed-input interactive ar-
gument (P, V ) for language L is (T, ε)-zero-knowledge if for any polynomial T , any inverse poly-
nomial ε, any polynomial-size V ∗, there exists a circuit Sim of polynomial size such that for any
x ∈ L and any probabilistic T -size circuit {Dn}n∈N and sufficiently large n, it holds that∣∣∣Pr[Dn(ViewPV ∗(x)) = 1]− Pr[Dn(Sim(x)) = 1]

∣∣∣ < ε.

Concurrent zero knowledge with concurrent soundness in the BPK model. The bare public-key
model (BPK model) simply works in two phases: the key-registration phase and the proof phase. In
the key-registration phase, each verifier registers a public-key pk (the honest verifier is supposed to
store the corresponding secret key sk) on a public-file F before the proof phase. In the proof phase,
on a common input x, the prover and the verifier interact under the verifier’s public key.

Definition 8 (Completeness). An interactive argument (P, V ) for a language L in the BPK model
is called complete if for all x ∈ L, P (w) make V to accept x with probability negligibly close to 1.

Concurrent soundness in the BPK model. A malicious concurrent prover P ∗ is allowed to launch
the following attack: In the proof phase, on input a pubic key pk, P ∗ initiates polynomially many
sessions, in each of which it chooses a statement x adaptively (based on the history so far), and fully
controls the message scheduling in the entire interaction with V .

Definition 9 (Concurrent Soundness in the BPK model). An interactive argument (P, V ) for a
language L in the BPK model is called concurrent sound if for all malicious concurrent prover P ∗,
the probability that it makes V accept a false statement x /∈ L is negligible.

Concurrent (T, ε)-zero knowledge in the BPK model. A malicious concurrent verifier V ∗ is allowed
to generate an arbitrary file F of polynomially many public keys in the key-registration phase. In
the proof phase, it receives s (for some polynomial s) statements x̄ = {xi}i∈[s], and initiates at
most s sessions under public keys on F . During the entire interaction, V ∗ fully controls the message
scheduling.
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Definition 10 (Concurrent (T, ε)-zero knowledge In the BPK model). An interactive argument
(P, V ) for language L is called concurrent (T, ε)-zero-knowledge if for any polynomial T , any
inverse polynomial ε, any polynomial-size concurrent V ∗, any polynomial s, there exists a circuit
Sim of polynomial size such that for any Yes instances x̄ = {xi}i∈[s], for any probabilistic T -size
circuit {Dn}n∈N and sufficiently large n it holds that∣∣∣Pr[Dn(ViewP (F )

V ∗ (x̄)) = 1]− Pr[Dn(Sim(x̄)) = 1]
∣∣∣ < ε.

For a distribution ensemble {Xn}n∈N of hard instances in NP language L, we define concurrent
witness hiding argument in the BPK model.

Definition 11 (Concurrent Witness Hiding in the BPK Model). An interactive argument (P, V )
for language L is called witness hiding if for any polynomial-size concurrent V ∗, any polynomial s
and any hard distribution ensemble {(Xn,Wn)}n∈N over RL, it holds that

Pr[(P (W̄ s
n, F ), V ∗)(X̄s

n) ∈ RL(Xn)] < negl(n).

3 The Existence of nearly optimal Extractors for all Hard Distributions

In this section we prove the existence of nearly optimal extractors for all NP-instance(s) sampling
algorithms. Essentially, we show that, for any NP-instance(s) sampler, any polynomial T , any inverse
polynomial ε, and any circuit family Cn of size T , there exists an efficient extractor such that the
probability that Cn extracts a witness for an instance generated by the sampler but the extractor fails
is at most ε. Furthermore, if the extractor is allowed to be of quasi-polynomial size, then the same
result holds with respect to negligible ε.

Let Samp be an arbitrarily sampling algorithm over an NP language L and {Yn}n∈N be its input
distribution ensemble. Throughout this paper, we assume that the input y ← Yn to Samp includes
its randomness. (Thus one can view Samp as a deterministic algorithm.)

Lemma 1. [nearly optimal (T, ε)-Extractor] Let Samp be as above. Let f : {0, 1}∗ → {0, 1}∗ be
an arbitrary (not necessarily efficient-computable) function.

1. For every polynomial T , every inverse polynomial ε, there exists a probabilistic circuit family
Ext := {Extn}n∈N of polynomial size such that for every probabilistic circuit family {Cn}n∈N
of size T ,

Pr

[y ← Yn;x← Samp(y);
w ← Extn(x, y, f(y));
w′ ← Cn(x, y, f(y))

:
(x,w) /∈ RL ∧
(x,w′) ∈ RL

]
< ε(n). (1)

We call Ext a (T, ε)-extractor.
2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-polynomial size such

that for every probabilistic circuit family {Cn}n∈N of polynomial size, the above probability is
negligible.

Remark 1. Jumping ahead, in our protocols the receiver/verifier will play the role of the hard in-
stance sampler. For all our constructions, we need not take the function f into account since they just
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compute a hard instance based solely on their random tape. However, when our protocols are used
as a sub-protocol in some big protocols or in the settings of [JKKR17, BKP19], the receiver/verifier
may compute a hard instance based on some history y, and the simulator may need certain secret
information f(y) (e.g., an opening of a commitment in history y) to go through. In such cases, it is
more flexible to allow the extractor to take as additional input f(y).

As mentioned in the introduction, the basic idea underlying the proof is to keep iterating to
include new powerful circuits into the extractor until we have a desired one. For applications, we
need a stronger and robust version of Lemma 1 for samplers that output multiple instances, which
we prove below.

Fix a polynomial t and consider a t-instance sampler Samp that is given y as input and outputs
t instances of NP language L, (x1, x2, ·, ·, ·, xt) ← Samp(y), where y is drawn from distribution
Yn.

Lemma 2. [the nearly optimal (T, ε)-Extractor for t-Instance Sampler] Let L be an NP language
and poly be the size of the circuits for deciding the NP-relation RL. Let Samp be an arbitrarily
t-instance sampling algorithm over L with input distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ →
{0, 1}∗ be an arbitrary (not necessarily efficient-computable) function.

1. For every polynomial T , every inverse polynomial ε, there exists a probabilistic circuit family
Ext := {Extn}n∈N of sizeO( tε (T+poly)), such that for every j ∈ [t], every probabilistic circuit
family {Cn}n∈N of size T ,

Pr

[ y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));
w′j ← Cn({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

]
< ε(n), (2)

where the probability takes over the randomness choice of y, and the random tapes for that for
Extn and Cn.

2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-polynomial size such that
for every j ∈ [t] and every probabilistic circuit family {Cn}n∈N of polynomial size, the above
probability is negligible.

Remark 2. Note that in the above lemma we allow the circuit Cn to take the output of Extn as input.
This does not matter for a single-instance sampler. However, as we shall see in section 5 and 6, this
property is critical for hybrid arguments to go through in the composable settings.

Lemma 2 says there is an extractor for the multi-instance sampler that is nearly optimal for
solving instances in every coordinate j ∈ [t]. As mentioned in the introduction, the basic proof
strategy is to keep including new powerful circuits into the extractor until we have a desired one. We
argue the existence of such a nearly optimal extractor via the following delicate iterative procedure.
In each outer iteration i ∈ [ tε ], for every j ∈ [t] we ask if there is circuit C(i)

n,j that, taking as input
the output of the current Extn, can be used to increase the success probability of solving the j-th
instance xj by (at least) ε, and if so, then we add Cn,j to Extn.

Proof. (of Lemma 2.) For every j ∈ [t], we define ]j composition of two circuits Extn and Cn,j in
the following way:

Extn]jCn,j({xk}k∈[t], y, f(y)):
1. Sampling a random tape for Extn, obtain {wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));
2. If (xj , wj) ∈ RL, return {wk}k∈[t];
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3. Sampling a random tape for Cn,j , obtain w′j ← Cn,j({xk}k∈[t], {wk}k∈[t], y, f(y));
4. If (xj , w

′
j) ∈ RL, then wj ← w′j and return {wk}k∈[t]; otherwise, return {wk}k∈[t].

Note that the order of executions of these two circuits matters here since we have the second
circuit take as input the output of the first circuit. This applies to each iteration of the following
construction, and the final circuit Extn will execute all these Cin,j in the order of their appearance.
Let Ext(0)

n be a dummy circuit that outputs t zeros. For an arbitrary t-instance Samp, we construct
a nearly optimal extractor Extn as follows11.

Constructing circuit Extn for the t-instance Samp:
1. Extn ← Ext(0)

n ;
2. For i = 1 to t

ε , do:
2.1 For j = 1 to t, do:

If ∃ a circuit C(i)
n,j of size T s.t.

Pr

 y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′j ← C
(i)
n,j({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

 ≥ ε(n), (3)

then Extn ← Extn]jC(i)
n,j ;

2.2 If for any j ∈ [t], @ C(i)
n,j satisfying (3), then break and return Extn.

3. Return Extn

We now show that the Extn constructed above satisfies Lemma 2. We first make the following
two observations:

1. For any j′ 6= j, the circuit Extn ]j′ C(i)
n,j′ solves the j-th instance xj with exactly the same

probability of Extn. This is because in the above composition Cn,j is only invoked to correct
the witness wj obtained by Extn.

2. For each new C
(i)
n,j , the circuit Extn]j C(i)

n,j increases the success probability of solving the j-th
instance xj by (at least) ε:

Pr

[
y ← Yn; {xk}k∈[t] ← Samp(y);

{w′′k}k∈[t] ← Extn]jC(i)
n,j({xk}k∈[t], y, f(y))

: (xj , w
′′
j ) ∈ RL

]
= Pr

[
y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn(x, y, f(y))

: (xj , wj) ∈ RL
]

+ Pr

 y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′j ← C
(i)
n,j({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL


≥Pr

[
y ← Yn; {xk}k∈[t] ← Samp(y);

{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y))
: (xj , wj) ∈ RL

]
+ ε(n).

11 We would like to stress that in this construction the number of outer iterations may reach t
ε
. Notice that in

each iteration, the quality of the current extractor may have impact on the answer to the question of whether
or not there exists a new satisfactory circuit C(i)

n,j since the new target circuit is given the output of the current

extractor. Thus, even if there does not exists a satisfactory C
(i)
n,j in the i-th outer iteration, we cannot rule out

the possibility that we will find a satisfactory C
(i+1)
n,j in the (i + 1)-th outer iteration, because the extractor

would become more powerful as iterations proceed.
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Note that if in some outer iteration i ≤ t
ε , no new circuit is added to Extn in any inner iteration

j ∈ [t], then the iterative process will return a desirable circuit Extn as required in Lemma 2;
otherwise, the following two events must happen during the entire iterative process: (a) There are
(at least) t

ε circuits C(i)
n,j of size T that are added to Extn, and (b) For each j ∈ [t] the number of

circuits C(im)
n,j (im ∈ [ tε ]) added to Extn is at most 1

ε . The latter event (b) holds because of the two

observations mentioned above, which imply that adding more than 1
ε circuits C(im)

n,j would yield an
extractor with success probability of solving the j-th instance greater than 1.

Putting (a) and (b) together, we have that, for every j, exactly 1
ε circuitsC(im)

n,j are added to Extn,
and the final circuit Extn returned solves the j-th instance with probability 1. It is easy to verify that
the size of the final Extn is of at most O( tε (T + poly)). This concludes Lemma 2.

For the second part of this lemma, one can set T and ε to be nω(1) and 1
nω(1) respectively,

construct the circuit family Ext = {Extn}n∈N of size nω(1) in a similar way. ut

4 Extracting the Secret Key of a Variant of Rabin’s Encryption Scheme

We are now going to apply Lemma 2 to a variant of a factoring-based encryption scheme, and show
the existence of a nearly optimal secret-key extractor, such that the probability that an arbitrary
bounded-size circuit family succeeds in distinguishing ciphertexts but the extractor fails to extract a
secret key is very small.

We consider an encryption scheme based on Rabin’s trapdoor one-way permutations. Let N be
a Blum integer of length n, and QRN be the set of quadratic residues (mod N ). Rabin’s trapdoor
one way permutation fN : QRN → QRN (with a prime factor of N as its trapdoor) is defined as
fN (s) = s2 mod N . The one-wayness of fN is based on the fact that different square roots lead to
factor N . Specifically, given a circuit A of size T that inverts fN (s) with probability ε, by Lemma
10 in [TW87], we have a circuit of size O(T 1

ε ) that can factor N with probability negligibly close
to 1.

Let h(·) be an arbitrary hard-core function of fN (·)12. We follow the classic approach and obtain
the following semantically secure bit encryption scheme (Gen = Blum,Enc,Dec). The public key
is a randomly generated Blum integer N , and the secret key is a prime factor of N :

– EncN : To encrypt a bit b, the encryption algorithm Enc selects a random s ∈ QRN (which can
be done by selecting a random t ∈ ZN and then set s to be t2 mod N ), and computes fN (s) and
h(s)⊕ b. Enc outputs the ciphertext c = (fN (s), h(s)⊕ b);

– DecN : To decrypt a ciphertext c, the decryption algorithm Dec uses the secret key to invert the
first part of c, and then computes h(s) and outputs b.

The semantic security follows from the hardness of factoring assumption: A good ciphertext
distinguisher will give rise to an efficient algorithm that finds square roots modulo N , which can be
used to factor N .

In our constructions of commitment and zero knowledge protocols, we will have one party gen-
erate one (or two) public key(s) of the above encryption scheme and use one secret key to decrypt

12 The constructions of the hardcore of fN (·) appeared in [ACGS88, GL89]. Note that, when using the
Goldreich-Levin hardcore function [GL89], we need to change the description of our encryption scheme a
little bit, since the Goldreich-Levin hardcore function is actually constructed for the permutation f ′N (s, r) =
(fN (s), r) (where |r| = |s|).
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the messages from the other party. We would like to stress that, in case that a malicious party gen-
erates a non-Blum integer as its public key, the function fN in the encryption may no longer be a
permutation. Fortunately, such a malicious behavior only causes difficulty for the malicious party to
decrypt the ciphertext computed by the honest party, and does not affect the property –the equiva-
lence between distinguishing ciphertexts and factoring– that is required to establish simulatability
of our protocols.

We now give a formal statement of this property with respect to the encryption scheme above.
Here we slightly abuse these notations, and define fN : QRN → QRN and the “encryption”
function EncN (b) := (fN (s), h(s)⊕ b) over an arbitrary (positive) integer N .

Lemma 3. [Implied by [GL89, ACGS88, TW87]] For any positive integer N of length n and any
inverse polynomial δ(n), if there exists a probabilistic circuit family {An}n∈N of size T such that
for any auxiliary input α ∈ {0, 1}∗,

Pr[b← {0, 1}; c← EncN (b);An(c,N, α) = b′ : b = b′] ≥ 1

2
+ δ(n)

then there exists a probabilistic circuit family {Bn}n∈N of size O( 1
δ5n

3T ) that can factor N with
probability

Pr[q ← Bn(N,α) : q|N ] ≥ 1− negl(n).

Proof sketch. The hardcore theorems [GL89, ACGS88] state that, given a successful distinguisher
An of size T for the “encryption” function EncN with advantage δ, we can construct a new circuit
of size O( 1

δ4n
3T ) that computes the square roots modulo N with roughly the same successful

probability. If δ is an inverse polynomial, then by [TW87] such a square root circuit can be used to
factor the integer N in size O( 1

δ5n
3T ) with probability negligibly close to 1.

Applying Lemma 2 to a t-integer sampler {Ni}i∈[t] ← Samp, we can show that there exists a
nearly optimal extractor Ext for Samp such that for every j if Ext fails to extract a prime factor of
Nj , then no circuit of a-prior bounded size can distinguish a ciphertext (except for small advantage).
Formally, we prove the following result.

Lemma 4. Let t be a polynomial, and Samp be an arbitrarily t-integer sampling algorithm with
input distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be an arbitrary (not necessarily
efficiently computable) function.

1. For any polynomial T , any inverse polynomial ε, there exists a probabilistic circuit family
Ext := {Extn}n∈N of polynomial-size such that for every probabilistic circuit family {An}n∈N
of size T , for every j ∈ [t], we have

Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {qi}i∈[t], {Ni}i∈[t], j, y, f(y))

:
b = b′ ∧
qj - Nj


<

1

2
Pr

[
y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y))
: qj - Nj

]
+ ε(n).

2. There exists a probabilistic circuit family Ext of quasi-polynomial size such that for every prob-
abilistic circuit family {Cn}n∈N of polynomial size, the above holds with respect to a negligible
function ε.
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Proof. Fix a j ∈ [t]. By Lemma 2, we have a circuit family {Extn}n∈N of size O( tε6n
3T ) such that

for any probabilistic circuit family {Bn}n∈N of size O( 1
ε5n

3T ) it holds

Pr

 y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
q′j ← Bn({Ni}i∈[t], {qi}i∈[t], y, f(y))

:
q′j |Nj ∧
qj - Nj

 < ε(n)

4
. (4)

For an arbitrary circuit family {An}n∈N of size T , and for every α = (y, {Ni}i∈[t], {qi}i∈[t]),
we define the probability

pα := Pr

[
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))
: b = b′

]
,

and define the set

GAn :=

α = (y, {Ni}i∈[t]︸ ︷︷ ︸
α′

, {qi}i∈[t]) :

{Ni}i∈[t] = Samp(y) ∧
∃re s.t. {qi}i∈[t] = Extn(re, α

′, f(y))

∧ qj - Nj ∧ pα ≥ 1
2 + ε(n)

2

 ,

where re is a random tape for ExtN .

In what follows, we always let α be (y, {Ni}i∈[t], {qi}i∈[t]) generated in the random experiment
y ← Yn; {Ni}i∈[t] ← Samp(y); {qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y)). Note that

Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:
b = b′ ∧
qj - Nj



= Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:

b = b′ ∧
qj - Nj ∧
pα ≥ 1

2 + ε(n)
2



+ Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:

b = b′ ∧
qj - Nj ∧
pα <

1
2 + ε(n)

2



= Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:
b = b′∧
α ∈ GAn

 (5)

+ Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:

b = b′ ∧
qj - Nj ∧
pα <

1
2 + ε(n)

2

 (6)

We now analyze the two terms (5) and (6) above. For the term (5), we let the circuit family
{Bn}n∈N be the one guaranteed by lemma 3 for {An}n∈N. Observe that,
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Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:
b = b′ ∧
α ∈ GAn


<Pr

[
y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y))
: α ∈ GAn

]

= Pr

 y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
q′j ← Bn({Ni}i∈[t], {qi}i∈[t], y, f(y))

:
α ∈ GAn
∧ q′j |Nj


+ Pr

 y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
q′j ← Bn({Ni}i∈[t], {qi}i∈[t], y, f(y))

:
α ∈ GAn
∧ q′j - Nj


<
ε

4
+ Pr

 y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
q′j ← Bn({Ni}i∈[t], {qi}i∈[t], y, f(y))

:
α ∈ GAn
∧ q′j - Nj

 (by inequality (4))

=
ε

4
+ Pr

[ y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
q′j ← Bn({Ni}i∈[t], {qi}i∈[t], y, f(y))

: q′j - Nj

∣∣∣∣∣α ∈ GAn
]

Pr
[
α ∈ GAn

]
<
ε

4
+ negl(n).

The last inequality follows from Lemma 3 combined with the fact that the condition of “α ∈ GAn”
implies thatAn correctly guesses the plaintext for a given random ciphertext with probability greater
than 1

2 + ε
2

13.

For the term (6), we can also give an upperbound by definition of GAn :

Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

:

b = b′ ∧
qj - Nj ∧
pα <

1
2 + ε(n)

2



= Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

: b = b′

∣∣∣∣∣ qj - Nj ∧pα <
1
2 + ε(n)

2

Pr

[
qj - Nj ∧
pα <

1
2 + ε(n)

2

]

<Pr


y ← Yn; {Ni}i∈[t] ← Samp(y);

{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));
b← {0, 1}; c← EncNj (b);

b′ ← An(c, {Ni}i∈[t], {qi}i∈[t], y, f(y))

: b = b′

∣∣∣∣∣ qj - Nj ∧pα <
1
2 + ε(n)

2

Pr[qj - Nj ]

<

(
1

2
+
ε(n)

2

)
Pr [qj - Nj ] .

With these two upperbounds on terms (5) and (6), we conclude the first part of Lemma 4. By
taking (T, ε) to be (nω(1), 1

nω(1) ), the second part follows. ut
13 Observe that Lemma 3 holds with respect to every N and any auxiliary input, and here one can view

(y, {Ni}i∈[t],i 6=j , {qi}i∈[t], f(y)) as the auxiliary input to An and Bn.
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5 Selective Opening (T, ε)-Secure Commitment Scheme

We use the following ingredients in our construction of a selective opening secure commitment
scheme:

– The trapdoor commitment (TDGen,TDCom,Open,Fakeopen) described in section 2;
– The variant of Rabin’s encryption scheme presented in section 4.

With these two building blocks, we construct a selective opening secure commitment scheme
as follows. In the committing phase, we have the receiver run the trapdoor generator and produce
(N, q) (q|N ) and transform (N, q) into (G,H), then sendN and the graphG to the committer; upon
receiving N , the committer invokes TDCom and generates a commitment c, encrypts c bit-by-bit
under the public key N , and sends all these encryptions to the receiver. In the opening phase, the
committer simply sends the opening of c to the receiver, who decrypts the ciphertexts received in the
committing phase using secret keys q and obtains c, and checks whether the opening received from
the committer is a valid decommitment of c.

Formally, our selective opening secure commitment scheme proceeds as follows.

Protocolsoa:

Committing phase:
R −→ C: ((N,G), q)← TDGen(1n). Send (N,G).
C −→ R: c = c1||c2|| · · · ||c` ← TDCom(G, b, r), {ζi ← EncN (ci)}i∈[`].

Send {ζi}i∈[`].
Opening Phase:
C −→ R: Send (b, dec)← Open(G,TDCom(G, b, r), b, r).

R: c← {DecN (ζi, q)}i∈[`]. Accept iff (b, dec) is a valid opening of c.

Theorem 1. Assuming the standard hardness of factoring, Protocolsoa is a commitment scheme
that satisfies the following properties:

1. (T, ε)-security under selective opening attacks.
2. Full security under selective opening attacks with a quasi-polynomial simulator.

Note that the second property follows directly from the first property and the second part of
Lemma 4. We now prove the first property in the next two subsections.

5.1 Computational Binding Property

Suppose that there is a malicious adversary C∗ that can open a random commitment to two different
values with noticeable probability δ. We construct an efficient algorithm Factor, which uses C∗ as
a subroutine, to break the factoring assumption.

Factor plays the role of the honest receiver R, except that it doesn’t check if a decommitment
is consistent with the plaintext c encrypted in the ciphertexts received in the committing phase.
More specifically, given a Blum integer N as input, Factor transforms it into a graph G, and sends
(N,G) to C∗ as its first message; upon receiving C∗’s committing phase message and two different
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decommitments (b, dec) and (b′, dec′) (with b 6= b′), Factor applies the standard extractor to these
decommitments, and if it extracts a prime factor q of N , outputs it.

Note that a successful opening in a real interaction implies at least that the decommitment re-
ceived by R is a valid opening of the plaintext c encrypted by C∗ in the committing phase. That
means, in case C∗ successfully opens a commitment to two different decommitments (b, dec) and
(b′, dec′) in the real world, one can alway extract a prime factor of N from only the two decommit-
ments (without the need for knowledge of the plaintext c). Thus, the above algorithm Factor will
output a prime factor of N with probability δ, breaking the factoring assumption.

5.2 (T, ε)-Security Under Selective Opening

Our simulation strategy for a k-parallel selective opening attacker R∗ is quite simple in spirit.
When receiving the first k integersN1, N2, ..., Nk, the simulator applies the nearly optimal extractor
against T -size circuits and tries to extract a prime factor for each Ni, if it succeeds for some Ni,
then the i-th commitment becomes equivocal and can be opened to different values; if it fails for Ni,
then, in the eye of a T -size distinguisher, the i-th commitment is also “equivocal”, since it is unable
to extract a secret key of Ni either, and hence unable to tell whether the commitment c determined
by the decommitment (b′, dec′) received is the very plaintext encrypted in the ciphertexts.

To give a formal description of the simulator, we introduce the following notations. (In what
follows, we ignore the function f considered in section 3 and 4.)

– {Yn}n∈N : the distribution ensemble of the randomnesses for the k-parallel selective opening
receiver R∗.

– Algorithm Samp is defined to be the committing phase ofR∗: y←Yn, {Ni, Gi}i∈[k]← R∗(y),
output {Ni}i∈[k].

– (T ′, δ) := ((kTc + T ), εk` ). Here Tc and T denote the size of the committer C and the distin-
guisher Dn respectively. ε is the advantage of the distinguisher that we tolerate. Note that our
goal is to show that an arbitrary circuit of size T cannot distinguish a simulation from the real
interaction with advantage greater than ε.

For the above sampling algorithm Samp, Lemma 4 guarantees that there exists a nearly optimal
(T ′, δ = ε

k` )-extractor Ext := {Extn}n∈N against any plaintext-extractor of size T ′. Let B be a k-bit
message distribution.

Consider the following distribution SIM generated by Sim.

SIM:
1. y ← Yn; {Ni, Gi}i∈[k] ← R∗; b̄ = b1||b2|| · · · ||bk ← B;
2. Sim runs Extn({Ni}i∈[k], y) and obtains {qi}i∈[k].
3. Sim computes k commitments to 0 independently, ci ← TDcom(Gi, 0, ri),

1 ≤ i ≤ k, ζi ← {EncNi(cij)}j∈[`], and sends {ζi}i∈[k] to R∗.
4. Upon receiving I ← R∗({ζi}i∈[k]) and {bi}i∈I , Sim opens {ζi}i∈I in the

following way:

(a) If bi = 0, open ζi to (bi = 0, deci) in an honest way;
(b) If qi|Ni and bi = 1, run Fakeopen(Gi, Hi, c

i, 0, ri) to open ζi to (bi =
1, deci), where Hi is a simple cycle of Gi, transformed from (Ni, qi);

(c) If qi - Ni and bi = 1, compute a commitment c̃i ← TDcom(Gi, 1, r̃i) to
1, and set the opening of ζi to be the decommitment (1, deci) of c̃i.

5. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).
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We use hybrid argument to prove that SIM is indistinguishable from the real interaction between
R∗ and Ck. Consider the following sequence of hybrid experiments, in each of which we allow Sim
to take the message b̄ as an auxiliary input.

Define SIM0 to be SIM. For 1 ≤ m ≤ k, SIMm acts in the same way as SIMm−1 except that
Sim in SIMm computes the m-th commitment cm to bm in step 3 and opens it honestly in step 4
when m ∈ I .

Note that SIMk is identical to the real interaction. To conclude the proof of Theorem 1, it remains
to show that, for every distinguisher Dn of size T , for all 1 ≤ m ≤ k,

|Pr[Dn(SIMm−1) = 1]− Pr[Dn(SIMm) = 1]| < ε

k
. (7)

We now construct a sequence of sub-hybrids to establish the inequality (7). Fix an m ∈ [k]. For
0 ≤ t ≤ `, consider the hybrid SIMm

t :

SIMm
t :

1. Run step 1 and 2 of SIM and obtain b̄, {Ni, Gi}i∈[k] and {qi}i∈[k].
2. On input b̄, Sim runs TDcom and generates the first m − 1 commitments to

b1, b2, ..., bm−1, and the last k −m − 1 commitments to 0, and then encrypts
these commitments bit-wise and obtains {ζi}i∈[k]\m. Sim computes the m-th
commitment in the following way:

(a) If qm|Nm or bm = 0, Sim computes a commitment cm to 0 and generates
ζm correspondingly.

(b) If qm - Nm and bm = 1, it computes a commitment cm to 0 and a commit-
ment c̃m to 1, and the bit-wise encryptions ζm of ĉm = cm1 ||···||cmt ||c̃mt+1||·
· · ||c̃m` , where cmj and c̃mj are the j-th bit of cm and c̃m respectively.

Sim sends {ζi}i∈[k] to R∗.
3. Upon receiving I ← R∗({ζi}i∈[k]), Sim does the following: for i ∈ [m−1]∩I ,

open ζi in an honest way; for i ∈ [m+ 1, k] ∩ I , open ζi according to the step
4 of SIM; for i = m ∈ I , Sim opens ζi according to the step 4 of SIM except
that, in the case of qm - Nm and bm = 1, it sets the opening of ζm to be the
decommitment of c̃m (already computed in the previous step).

4. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).

Observe that when t = 0, SIMm
0 computes the commitment cm to 0 in case qm - Nm and

bm = 1, and sets its opening to be the decommitment of an independent commitment c̃m to 1. That
is, SIMm

0 acts exactly in the same way as SIMm−1. We conclude the inequality (7) by the following
two lemmas.

Lemma 5. SIMm
`

c
≈ SIMm.

Lemma 6. For all 1 ≤ t ≤ `, and for all distingshuier Dn of size T ,

|Pr[Dn(SIMm
t−1) = 1]− Pr[Dn(SIMm

t ) = 1]| < ε

k`
.

.

Proof. (of Lemma 5) Note that the only difference between SIMm
` and SIMm is that, in case qm|Nm

and bm = 1, the former commits to 0 but the latter commits to 1. Recall that, once a trapdoor qm
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has been obtained, the simulator Sim in SIMm
` can open the commitment cm to any value. Lemma 5

follows directly from this observation and the property of the underlying trapdoor commitment
scheme presented in section 2. ut

Proof. (of lemma 6) We prove this lemma by contradiction. Fix a t ∈ [`]. Note that SIMm
t acts

exactly in the same way as SIMm
t−1 except that, in case qm - Nm and bm = 1, Sim in hybrid SIMm

t

encrypts the t-th bit of cm (a commitment to 0) in step 2(b) but in SIMm
t−1 it encrypts the t-th bit of

c̃m (a commitment to 1).

Suppose, towards a contradiction, that there exists a distinguisher Dn of size T such that

|Pr[Dn(SIMm
t−1) = 1]− Pr[Dn(SIMm

t ) = 1]| > ε

kl
. (8)

We fix a k-bit message b̄ with bm = 1 such that the above inequality holds14. Denote by SIMm
t−1(b̄)

and SIMm
t−1(b̄) be the hybrids with the fixed b̄ accordingly, and by Eventf the event qm - Nm in

SIMm
t−1 and SIMm

t . Note that conditioning on Eventf happens, SIMm
t−1 is identical to SIMm

t . Thus,
the above inequality implies

|Pr[Dn(SIMm
t−1(b̄)) = 1]− Pr[Dn(SIMm

t (b̄)) = 1]|
=|Pr[Dn( SIMm

t−1(b̄)) = 1 ∧ Eventf ] + Pr[ Dn(SIMm
t−1(b̄)) = 1 ∧ Eventf ]

− Pr[ Dn(SIMm
t (b̄)) = 1 ∧ Eventf ]− Pr[ Dn(SIMm

t (b̄)) = 1 ∧ Eventf ]|
=|Pr[ Dn(SIMm

t−1(b̄)) = 1) = 1 ∧ Eventf ]−Pr[ Dn(SIMm
t (b̄)) = 1 ∧ Eventf ]|

>
ε

kl
. (9)

Consider the following circuit An,b̄ (with b̄ hardwired in) and experiment ExpAn,b̄ .

ExpAn,b̄ :
1. y ← Yn; {Ni, Gi}i∈[k] ← R∗(y).
2. {qi}i∈[k] ← Extn({Ni}i∈[k], y). If qm|Nm, abort and output “⊥”; otherwise,

continue.
3. Choose a random bit ct from {0, 1}, ζ ← EncNm(ct);
4. On input (ζ, {qi}i∈[k], {Ni}i∈[k], y), An,b̄ acts in the same way as step 2 of

SIMm
t and obtains {ζi}i∈[k]. Suppose that cm and c̃m are the two commitments

to 0 and 1 respectively generated in the step 2(b) of SIMm
t .

5. An,b̄ updates {ζi}i∈[k] by replacing the t-th encryption in ζm with ζ. An,b̄
computes the last two steps of SIMm

t and obtains (b̄, I, OutSim).
6. An,b̄ invokes Dn on (b̄, I, OutSim). If Dn outputs 1, outputs c̃mt (the t-th bit of

c̃m); otherwise, outputs cmt .

Note that the size of An,b̄ is of O(kTc + T ). It is easy to verify that (assuming without loss of
generality that the quantity in the absolute value (9) is positive):

14 Note that the inequality (8) takes over the random choices from B, so there always exists a b̄ such that the
inequality holds. Observe that if the m-th bit of such a b̄ is 0, then SIMm

t−1 is identical to SIMm
t , which

breaks the inequality (8).
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Pr


y ← Yn; {Ni}i∈[k] ← Samp(y);
{qi}i∈[k] ← Extn({Ni}i∈[k], y);
ct ← {0, 1}; ζ ← EncNm(ct);

c′t ← An,b̄(ζ, {qi}i∈[k], {Ni}i∈[k],m, y)

:
c′t = ct ∧
qm - Nm


= Pr

[
ExpAn,b̄ :

c′t = c̃mt ∧
qm - Nm

∣∣∣∣∣ ct = c̃mt

]
Pr
[
ct = c̃mt

]
+ Pr

[
ExpAn,b̄ :

c′t = cmt ∧
qm - Nm

∣∣∣∣∣ct = cmt

]
Pr[ct = cmt ]

>
1

2
Pr

[
Dn(SIMm

t−1(b̄)) = 1
∧ Eventf

]
+

1

2
Pr

[
Dn(SIMm

t (b̄)) = 0
∧ Eventf

]
=

1

2
Pr

[
Dn(SIMm

t−1(b̄)) = 1
∧ Eventf

]
+

1

2

(
Pr[Eventf ]− Pr

[
Dn(SIMm

t (b̄)) = 1
∧ Eventf

])
>

1

2
Pr[Eventf ] +

ε

k`
(by inequality (9))

=
1

2
Pr[Eventf ] + δ.

This contradicts Lemma 4. ut

6 Concurrent(T,ε)-Zero Knowledge and Witness Hiding in the BPK Model

In this section we present a very simple three-round concurrent (T, ε)-zero knowledge and witness
hiding argument for NP in the BPK model. The construction relies on the polynomial hardness of
factoring, and makes use of only two simple building blocks: the factoring-based encryption and the
three round parallel version of Blum’s protocol (PB, VB). Let a transcript of (PB, VB) be of the form
(a, e, z), and P 1

B and P 2
B be the first and the second prover steps respectively.

In the key registration phase, an honest verifier generates two Blum integers N0 and N1 of
length n, and stores two prime factors q0 and q1, qi|Ni for each i ∈ {0, 1}. It registers (N0, N1)
as his public-key. In the proof phase, on input the verifier’s public key (N0, N1) and the statement
x ∈ L, the prover and the verifier execute (PB, VB) in which PB proves the statement “x ∈ L OR
∃q s.t. q|N0 or q|N1”. Denote such a prover by PB(x∨N0∨N1)).

The formal description of our protocol follows.

Protocolczk:

Common input: x ∈ RL, (N0, N1).
Private input to P : w s.t. (x,w) ∈ RL.

P −→ V : Send a← P 1
B (x ∨N0 ∨N1)).

V −→ P : Send e← VB.

P −→ V : z = z1||z2||···||z` ← P 2
B (x∨N0∨N1), {ζi,j ← EncNi(zj)}i∈{0,1}j∈[`].

Send {ζ0,j}j∈[`] and {ζ1,j}j∈[`].

V : ẑ ← {DecN (ζ0,j , q0)}j∈[`], z̃ ← {DecN (ζ1,j , q1)}j∈[`]. Accept iff
ẑ = z̃ and (a, e, ẑ) is accepting.
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Theorem 2. Under the standard hardness assumption of factoring, Protocolczk is an argument that
satisfies the following properties:

1. Concurrent (T, ε)-zero knowledge with concurrent soundness.
2. Concurrent witness hiding.
3. Concurrent zero knowledge with quasi-polynomial time simulator.

Completeness of Protocolczk is obvious. We analyze its concurrent soundness in section 6.1,
and prove the concurrent (T, ε)-zero knowledge, the second and third properties in section 6.2.

6.1 Concurrent Soundness

Suppose, towards a contradiction, that a cheating concurrent prover P ∗ initiates k sessions and
makes the verifier accept a false statement x /∈ L with noticeable probability δ in one session.
We can then construct an efficient algorithm Factor using P ∗ as a subroutine to factor a randomly
chosen Blum integer with noticeable probability. Factor takes a Blum integer N as input, chooses
two primes p, q (≡ 3 mod 4) and a random i ∈ {0, 1}, sets Ni to be pq, N1−i to be N . In the key
registration phase, Factor registers (N0, N1) as his public key and keeps q as its secret key.

In the proof phase, Factor chooses a random session, say session s, and plays the role of the
verifier in the following way: Upon receiving the last message of session s from P ∗, Factor decrypts
it using q and obtains a transcript (a, e, z); if (a, e, z) is accepting, then Factor rewinds P ∗ to the
point when it just sent out the first prover message of session s, and sends another challenge e′ to
the P ∗ and obtains a new transcript (a, e′, z′); if the new transcript is also accepting, then Factor
computes a prime q′ from these two transcripts.

It is easy to verify that:

1. The probability that P ∗ cheats successfully on session s is δ
k .

2. A successful cheating on session s means it will pass an honest verifier’s check, which in turn
implies that at least the both collections of ciphertexts in the last message can be decrypted to
the same accepting z.

3. With probability at least δ
2k , P ∗ produces a message a on which it will make an honest verifier

accept.
4. Hence, Factor obtains two accepting sessions with the same first message a of session s with

probability at least δ3

23k3 . Given these two accepting transcripts, it can compute a prime factor
q of Nβ for some β ∈ {0, 1} with probability negligibly close to 1. It follows from the above
second property that the extracted prime factor q′ is independent of the secret key (prime factor
q of Ni) that Factor uses to decrypt the prover last messages. Thus, if the two sessions obtained
by Factor are accepting, then it can compute a prime factor q′ of N1−i (= N ) with probability
negligibly close to 1

2 .

We can now conclude that the probability of q′|N(= N1−j) is at least negligibly close to 1
2 ·

δ3

23k3 ,
which breaks the factoring assumption.

6.2 Concurrent (T, ε)-Zero Knowledge,WH and Quasi-Polynomial Simultability

We begin by proving the concurrent (T, ε)-zero knowledge property. Consider an arbitrary con-
current adversary V ∗ of polynomial size. We show there exists a simulator of polynomial size to
establish the weak zero knowledge property.
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Suppose that V ∗ registers k public keys {(N i
0, N

i
1)}i∈[k] and initiates at most s sessions. As

before, the simulator applies the nearly optimal extractor to factor all integers registered by V ∗

in the key registration phase. Once the simulator extracts a prime factor of one of (N i
0, N

i
1), it can

complete any session under the public key (N i
0, N

i
1) successfully; if it fails for a public key (N i

0, N
i
1),

the simulator computes encryptions of zeros as its last message in the sessions under the public key
(N i

0, N
i
1).

Let Yn be the distribution of V ∗’s randomness, and the sampling algorithm Samp to be the V ∗’s
registration step. Set (T ′, δ) to be ((s(2`Tenc + Tp) + T ), ε

4s` ), where Tenc, Tp and T are the size
of Enc, the honest prover of the Blum protocol (PB, VB) and the distinguisher respectively, and
ε is the advantage of the distinguisher that we tolerate. By Lemma 4 we have a polynomial-size
(T ′, δ = ε

4` )-extractor Ext := {Extn}n∈N against any circuit family of size T ′.

On input s Yes instances x̄ = {xi}i∈[s] , the simulator proceeds as follows.

Sim(x̄):
1. y ← Yn, {(N i

0, N
i
1)}i∈[k] ← V ∗(y).

2. {(qi0, qi1)}i∈[k] ← Extn({(N i
0, N

i
1)}i∈[k], y).

3. For a session under the public key (N i
0, N

i
1), do the following:

(a) If qi0|N i
0 or qi1|N i

1, complete this session using the extracted prime factor
as witness.

(b) Otherwise, produce an honest message a in its first step. Upon receiv-
ing a challenge e, set z = 0`, and compute {EncNi0(zj)}i∈[`] and
{EncNi1(zj)}i∈[`] as the last message of this session.

4. Output the entire history when V ∗ terminates.

We are ready to prove the first part of Theorem 2. Suppose, towards a contradiction, that there
exists a distinguisher Dn of size T such that

|Pr[Dn(ViewPV ∗)(x̄)) = 1]− Pr[Dn(Sim(x̄)) = 1]| > ε. (10)

We order all s sessions according to its appearance, and construct the following hybrid simulators
with all witnesses hardwired: Define Sim0(x̄, w̄) be the Sim(x̄, w̄), and Simk(x̄, w̄) as in the same
way except that in each of the first k sessions it uses the real witness to complete a proof. Clearly,
Sims(x̄, w̄) is identical to the real interaction. From (10), there must exist a m ∈ [s] such that

|Pr[Dn(Simm−1(x̄, w̄)) = 1]− Pr[Dn(Simm(x̄, w̄)) = 1]| > ε

s
. (11)

Fix such a m, and for t ∈ [2`], consider the sub-hybrid simulator Simm
t (x̄, w̄):

Simm
t (x̄, w̄):

1. Run step 1,2 of Simm(x̄, w̄) and obtain {(N i
0, N

i
1)}i∈[k] and {(qi0, qi1)}i∈[k].

2. For the session m under the public key (Nm
0 , N

m
1 ), do the following:

(a) If qi0|N i
0 or qi1|N i

1, act in the same way as Simm(x̄).
(b) Otherwise, produce an honest message a in its first step. Upon receiving

a challenge e, produce an accepting z using the real witness, set z′ =
0t||z2`−t, where z2`−t is the suffix of z||z, and encrypt the first half bits of
z′ under N i

0, their second half bits under N i
1.

For any other session, act in the same way as Simm−1(x̄, w̄).
3. Output the entire history when V ∗ terminates.
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Observe that Simm
2`(x̄, w̄) = Simm(x̄, w̄). It follows from the witness indistinguishability of the

Blum protocol that Simm
0 (x̄, w̄)

c
≈ Simm−1(x̄, w̄) (with a negligible distinguishing gap). By (11),

there must exist a t ∈ [2`] such that

|Pr[Dn(Simm
t−1(x̄)) = 1]− Pr[Dn(Simm

t (x̄)) = 1]| > ε

4s`
. (12)

Note that the only difference between Simm
t−1(x̄) and Simm

t (x̄) lies in the t-th ciphertext in case
that the extractor fails to find any prime factors of the public key. Similar to the proof in the previous
section, we design a circuit An,x̄,w̄ of size T ′ = s(2`Tenc + T ) + T and an experiment ExpAn,x̄,w̄ :

ExpAn,x̄,w̄ :
1. y ← Yn, {(N i

0, N
i
1)}i∈[k] ← V ∗(y).

2. {(qi0, qi1)}i∈[k] ← Extn({(N i
0, N

i
1)}i∈[k], y). If qm0 |Nm

0 or qm1 |Nm
1 , then out-

put “⊥”; otherwise, continue.
3. b← {0, 1}, ct ← EncNmβ (b) (if t ≤ `, β = 0; otherwise β = 1).
4. On input (ct, {(qi0, qi1)}i∈[k], {(N i

0, N
i
1)}i∈[k], y) An,x̄,w̄ runs the step 2 of

Simm
t (x̄) and obtains a transcript. Suppose that, in this transcript, z is the last

message of the underlying (PB, VB).
An,x̄,w̄ updates this transcript by replacing the t-th encryption in the last mes-
sage of session m with ct.

5. An,x̄,w̄ invokes Dn on the updated transcript. If Dn outputs 1, An,x̄,w̄ outputs
the t-th bit of z||z; otherwise, outputs 0.

By applying the same reasoning used in the proof of Lemma 6, it follows from the inequality (12)
that the circuit An,x̄,w̄ contradicts Lemma 4. This concludes the first part of Theorem 2.

The second part of Theorem 2 follows from the fact that (concurrent) (T, ε)-zero knowledge
implies (concurrent) witness hiding (see [JKKR17] for the detailed proof). Here we just describe the
underlying idea. For a given malicious verifier V ∗ of size T that can output a witness of a statement
drawn from Xn at the end of a session with probability greater than some inverse polynomial ε, as
we showed above, there exists a simulator of polynomial size such that V ∗ cannot distinguish the
real interaction from simulation with probability greater than ε

2 . Combining the simulator and V ∗,
we will have a circuit family of polynomial size that breaks the hardness of Xn. Quasi-polynomial
simulatability follows again from the second part of Lemma 4 directly.

7 Simpler (T,ε)-Zero Knowledge and analysis in the Plain Model

In this section we present a very simple delayed-input 2-round (T, ε)-zero knowledge argument for
NP, and then sketch how to use our simulation technique to give a significantly simpler proof that
the distinguisher-dependent simulatable zero knowledge protocols of [JKKR17, BKP19] also satisfy
the stronger notion of (T, ε)-zero knowledge.

We build such an argument on a quasi-polynomial extractable perfectly binding commitment
scheme Com [Pas03] (which can be based on sub-exponential hardness of factoring) and a NIWI
proof system (PWI, VWI)

15.

As usual, we denote by PWI(x ∨ (N, c)) the prover of the NIWI proof system that proves to the
verifier the statement “x ∈ L OR ∃ q such that c is a commitment to q and q|N”

15 One can also use two-round WI (such as [DN00]) here. We use NIWI (such as [GOS06]) to simplify our
construction.
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Protocolzk:

Private input to P : w s.t. (x,w) ∈ RL.

V −→ P : (N, q)← Blum(1n). Send N to P .
P −→ V : c← Com(0n), z = z1||z2||···||z` ← PWI(x∨(N, c)), {ζj ← EncN (zj)}j∈[`].

Send x, c and {ζj}j∈[`] to V .
V : z ← {DecN (ζj , q)}j∈[`]. Accept iff (x, z) is accepting.

Theorem 3. Under the sub-exponential hardness assumption of factoring, Protocolzk is a delayed-
input interactive argument that satisfies all the following properties:

1. Delayed-input (T, ε)-zero knowledge.
2. Delayed-input witness hiding.
3. Delayed-input zero knowledge with quasi-polynomial time simulator.

The soundness of this protocol is straightforward. Note that a cheating prover P ∗ on a false
statement x /∈ L with noticeable success probability δ implies that the message c sent by P ∗ is a
commitment to a prime factor of N . This leads to a simple quasi-polynomial factoring algorithm
Factor with success probability at least δ that breaks the sub-exponential hardness assumption of
factoring: On input an integer N , it plays the role of the verifier and sends it to P ∗; upon receiving
the message c, it extracts a prime factor of N from c in quasi-polynomial time.

The properties of (T, ε)-zero knowledge, witness hiding and quasi-polynomial simulatability of
Protocolzk follows immediately by a straightforward adaptation of the argument in the proof of
Theorem 2.

Upgrade the distinguisher-dependent simulations. The work of [CLP15b] shows that existing
distinguisher-dependent simulatable zero knowledge protocols of [JKKR17, BKP19] are also (T, ε)-
zero knowledge. We note that both constructions of [JKKR17, BKP19] enjoy the two properties of
(A,B) listed in section 1.4, hence our individual simulation technique can also be applied to prove
that they satisfy the stronger notion of (T, ε)-zero knowledge. For their 3-round protocols, one can
view the verifier step as an NP instance (to which a solution will enable a successful simulation)
sampler that takes as input its randomness and the first prover message a and outputs an instance
(verifier message). To show the (T, ε)-zero knowledge property, we can construct an individual sim-
ulator in a similar way. The simulator applies a nearly optimal extractor (which is also given certain
secret information f(a) about the message a as an additional input16) to the sampler/verifier and
tries to extract the corresponding witness, and then follows the residual strategy of the distinguisher-
dependent simulator in [JKKR17, BKP19] after their extraction from the distinguisher oracle.
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