
Payment Trees: Low Collateral Payments for
Payment Channel Networks?

Maxim Jourenko1, Mario Larangeira1,2, and Keisuke Tanaka1

1 Department of Mathematical and Computing Sciences,
School of Computing,

Tokyo Institute of Technology.
Tokyo-to Meguro-ku Oookayama 2-12-1 W8-55, Japan.
{jourenko.m.ab@m, mario@c, keisuke@is}.titech.ac.jp

2 Input Output Hong Kong.
mario.larangeira@iohk.io

http://iohk.io

Abstract. The security of blockchain based decentralized ledgers relies
on consensus protocols executed between mutually distrustful parties.
Such protocols incur delays which severely limit the throughput of such
ledgers. Payment and state channels enable execution of offchain pro-
tocols that allow interaction between parties without involving the con-
sensus protocol. Protocols such as Hashed Timelock Contracts (HTLC)
and Sprites (FC’19) connect channels into Payment Channel Networks
(PCN) allowing payments across a path of payment channels. Such a
payment requires each party to lock away funds for an amount of time.
The product of funds and locktime is the collateral of the party, i.e.,
their cost of opportunity to forward a payment. In the case of HTLC,
the locktime is linear to the length of the path, making the total collateral
invested across the path quadratic in size of its length. Sprites improved
on this by reducing the locktime to a constant by utilizing smart con-
tracts. Atomic Multi-Channel Updates (AMCU), published at CCS’19,
introduced constant collateral payments without smart contracts. In this
work we present the Channel Closure attack on AMCU that allows a
malicious adversary to make honest parties lose funds. Furthermore, we
propose the Payment Trees protocol that allows payments across a PCN
with linear total collateral without the aid of smart contracts. A com-
petitive performance similar to Sprites, and yet compatible to Bitcoin.

Keywords: Blockchain, Payment Channel, HTLC, Collateral.

1 Introduction

Blockchain based decentralized ledgers as introduced by Nakamoto [10] have
enjoyed popularity and received interest from the research community and prac-

? This work was supported by the Input Output Cryptocurrency Collaborative Re-
search Chair funded by IOHK, JST CREST JPMJCR14D6, JST OPERA, JSPS
KAKENHI 16H01705, 17H01695.

http://iohk.io

2 Jourenko et al.

titioners. Consensus protocols allow these ledgers to be operated by mutually
distrustful parties at the cost of limited throughput. For example, Visa as a
centralized system can process orders of magnitude more transactions within a
given time frame than the most prominent blockchains as Bitcoin and Ethereum.

The main motivation for the development of offchain protocols is to close the
gap in transaction throughput. The idea is to allow parties to interact with each
other without interacting with the ledger, while still being able to use it to resolve
disputes. Offchain protocols operate on channels that are created between two
parties. Channels hold a state which can be enforced on the ledger. Payment
channels [4,11,12] store the number of coins the two parties have locked inside
that channel. Offchain protocols provide a means to alter this state arbitrarily
often and thus improving the transaction throughput in the overall system.

Individual channels can be extended to channel networks, e.g. PCNs Light-
ning [12] and Raiden [1]. This is done using techniques, such as HTLC [12,2],
that allow for payments of b ∈ N coins across a path of payment channels of
length n ∈ N. This is performed by executing the same payment on each chan-
nel within the payment path atomically. All parties on the payment path have
to lock the payment amount for a duration of up to locktime. The opportunity
cost a party has to invest is the collateral [9] which equals the payment amount
b multiplied by the locktime. In turn, parties can impose fees to invest collateral.
In the case of HTLC, a party’s collateral equals O(nb∆) in the worst-case where
∆ is a parameter of the underlying ledger and is the upper limit of the time it
takes for a transaction to be included in the ledger.

High collateral investments can be exploited by malicious adversaries to per-
form grieving and denial-of-service attacks. For example, an attacker might op-
erate a channel to collect fees by forwarding payments. However, payments might
be routed through competing channels instead. In order to sabotage the com-
peting option, the attacker can route a payment through these channels without
the intent of executing it, locking the competing channel’s coins for the entirety
of the locktime. During this time these channels experience a denial-of-service
scenario by being unable to forward any other payments, losing fees that the at-
tacker can collect through their own channel. Performing this attack on a large
scale can result in denial-of-service for the whole PCN. On a lower scale, a griever
might force parties to lock away their funds for as long as possible by delaying
their cooperation until the very last moment. An alternative form of this attack
involves routing multiple low value payments through a competing channel, up
until a point where the channel cannot add any further HTLCs even though
they do have enough coins. In the case of the Lightning network, these types of
denial-of-service attacks can lock up to 5 coins for up to 2 weeks. 3

For HTLC the total collateral locked over a whole payment path is O(n2b∆)
and therefore quadratic in the payment paths length. Sprites [9] reduce the col-
lateral of each party to O(b(n+∆)) and the total collateral to O(bn(n+∆)) by
utilizing a smart contract. This is considered to be constant and linear respec-

3 https://cointelegraph.com/news/developer-reveals-biggest-unsolvable-lightning-
attack-vector.

Payment Trees: Low Collateral Payments for Payment Channel Networks 3

tively, since n << ∆ such that n + ∆ < 2∆. Sprites mitigate the damage done
by a possible attacker but its implementation is limited to ledgers with smart
contract capability. The Atomic Multi-Channel Updates (AMCU) protocol [7]
is an attempt to close this gap and enable payments with constant collateral
on ledgers without smart contract capabilities. However, even though AMCU is
formalized as a functionality within Canetti’s UC Framework [3], the very last,
but crucial step, of the updateState function does not seem to be presented in
the description of the AMCU protocol, and neither addressed by the simulator
in [7]. This gap results in a vulnerability that can be exploited by a malicious
adversary to steal funds from honest parties.

This work addresses this gap and proposes a protocol that improves in the
individual and total collateral values.

Related Work. Payment channels [4,11,12] themselves allow only for offchain
payments between two parties. Offchain protocols such as HTLCs [12,2] and
Sprites [9] allow to perform payments across paths of channels allowing for the
implementation of PCNs. Prominent examples are the Lightning Network [12]
and Raiden [1]. Although offchain protocols exist that create new virtual chan-
nels out of two existing channels as Perun [5,6] and Lightweight Virtual Payment
Channels [8], this work focuses on performing individual payments across a PCN.
In the following we consider a payment of b ∈ N coins across a path of n ∈ N
channels involving parties P0, . . . ,Pn.

The most prominent technique is based on HTLCs [12,2], which are scripts
that perform conditional payments within a channel: The payer locks funds into
the contract that are paid out if the payee can present a secret x such that
y = H(x) where H is a cryptographic hash function. Otherwise, after time
locktime the payment times-out and the payer can reclaim their funds. This
contract is replicated along all channels within a payment path. The payment
is performed as soon as Pn reveals x to their predecessor who then learns the
value of x allowing them to claim the payment from their predecessor in turn. An
attacker Pi, 0 < i ≤ n might attempt to delay revelation of x to their predecessor
until briefly before expiration of the locktime. To allow Pi−1 to forward x in time,
their locktime needs to be increased by at least ∆. This results in a locktime in
O(n∆) and a total locktime in Θ(n2∆).

Sprites [9] aim to reduce the locktime of a party up to a constant O(n+∆)
where n << ∆. This is done by setting up a smart contract entity called Preim-
ageManager, s.t. submitting x to the PreimageManager allows to broadcast it to
all nodes within a payment path in at most n communication rounds. The pro-
tocol requires creation of a smart contract, making it unavailable to script based
ledgers as Bitcoin. AMCU [7] attempts to close this gap, i.e. compatibility with
Bitcoin, by introducing an approach for constant locktime payments without
the need of smart contracts. AMCU sets up payments on each channel within a
payment path that are performed on the condition that an Enable transaction is
created, upon which all payments are performed atomically. However, this En-
able transactions results in several issues. For one, its size grows linearly in the
payment path’s length, making its implementation prohibitive for ledgers which

4 Jourenko et al.

have an upper limit for block size and transaction size. Moreover, no party has
control over all of the Enable transaction’s inputs. A malicious adversary can
make two parties collaborate to double spend one of the Enable transaction’s
inputs, such that no party is able to enforce the payment on the ledger. If the
double-spending is timed appropriately, this can lead to an attacker stealing
funds from honest parties. Details are shown in Section 3.

Jourenko et al. [8] proposed an offchain protocol that takes two channels γA
and γB as input, one between PA and PI and one between PI and PB and creates
a new channel γv between PA and PB . As this approach is not optimized for
individual payments, using it for this purpose would result in excessive collateral
as parties would need to lock away more coins for a longer duration as in existing
approaches. However, we re-use techniques from the lightweight virtual payment
channel construction for the Payment Tree protocol.

Our Contributions. Our contributions are threefold. 1) We present an at-
tack on AMCU performed by a malicious adversary. 2) We present Payment
Trees that allow for payments across paths within a PCN without the need
of smart contracts, requiring only logarithmic individual collateral O(b∆ log n)
while requiring only linear total collateral O(nb∆) such that its performance is
comparable to Sprites. 3) We provide efficiency and security analysis of Payment
Trees, proving the properties Balance Security and Liveness.

Structure. In the remainder of this work, first, we provide background to this
work in Section 2. We give an outline of the Channel Closure attack in Section 3.
Next we introduce Payment Trees in Section 4 followed by efficiency and security
analysis in Section 5. We conclude in Section 6.

2 Background

Notation. Throughout this work we make frequent use of tuples. We use short-
hand notations to reference entries as follows. Let (a1, a2, . . . , an) be a definition
of a tuple of type A and let α be an instantiation of A. Then α.ai equals the
i-th entry of α.

The UTXO Paradigm. A UTXO is a tuple of the form (b, π) where b ∈ N is an
amount of coins and π ∈ {0, 1}∗ is a script. The b coins of the UTXO are claimed
by providing a witness w ∈ {0, 1}∗ s.t. π(w) = True. The state of the ledger is
represented by a set of UTXO Sutxo, which can be changed by a transaction of
the form (Uin, Uout, t) where t ∈ N is the (absolute) timelock represented as a
point in time, Uout is the list of unique UTXO for the outputs of the transaction,
and Uin is the set of transaction inputs of the form (ref(u), wu) where ref(u) is
the pointer to the UTXO u, and wu is the witness.

A transaction (Uin, Uout, t) needs to fulfill the following conditions. (1) The
locktime has passed, i.e. t ≤ τ where τ is the current time, (2) all witnesses
are valid, i.e. ∀(ref(u), w) ∈ Uin : u.π(w) = True (3) the coins within the

Payment Trees: Low Collateral Payments for Payment Channel Networks 5

newly created UTXO are less or equal to those in the transaction’s inputs, i.e.
Σ(ref(u),w)∈Uin

u.b ≥ Σu∈Uout
u.b, (4) all UTXOs in the transaction’s inputs exist

and have not yet been spent, i.e. ∀(ref(u), w) ∈ Uin : u ∈ Sutxo. The transac-
tion has the following effect on the ledger. All UTXO referenced within Uin are
removed from Sutxo and all UTXO defined in Uout are added to Sutxo. A trans-
action T is included in the ledger within a duration ∆ ∈ N. Condition (4) implies
that no UTXO can be claimed by two different transactions. After sending T
to the ledger, if within time ∆ another transaction T ′ claiming a subset of the
same UTXOs as T is sent to the ledger, it would result in a race condition, in
which it is non-deterministic whether T or T ′ will change the ledger’s state.

Transaction Graph. All transactions included in the ledger form a directed and
acyclic graph. The set of all transactions form its vertices. An edge (T0, T1) from
transaction T0 to transaction T1 exists, if T1’s inputs contain a pointer to one of
T0’s outputs, i.e. ∃u : u ∈ T0.Uout∧ (ref(u), w) ∈ T1.Uin. Note that a transaction
can only be included in a ledger if all of its ancestors have been included in the
ledger before. In the remainder of this work we reference sets of transactions
that are connected to form a sub-tree as transaction trees.

Scripting. The most common script included in UTXOs specifies its owner by
requiring a signature of the transaction that spends the UTXO with the recipi-
ent’s verification key. Additionally we make use of scripts specifying a 2-out-of-2
multisignature with verification keys of two parties P and P ′. This enforces that
the respective UTXO can only be spent with the consent of both P and P ′ ef-
fectively creating a shared wallet between both parties. In the remainder of this
work UTXOs requiring 2-out-of-2 multisignatures are termed Funding UTXO.

Channels. A channel γ between two parties consists of sub-protocols setup, clo-
sure and dispute. In setup both parties create a transaction Trf containing a
Funding UTXO between each other which locks their funds into the channel.
They create a transaction tree with the Funding UTXO as its ancestor that rep-
resents the channel which we reference in the remainder of this work as channel-
tree. Only after the channel-tree is created and either party holds signatures of
its transactions, both parties sign and commit Trf to the ledger while holding off
commitment of transactions within the channel-tree. Both parties can perform
closure of the channel by committing a transaction to the ledger that spends
the Funding UTXO unlocking the channel’s funds according to its most recent
state. In case of a dispute, the dispute sub-protocol enforces the channel’s state
by committing the channel-tree’s transactions onto the ledger.

Offchain Protocols perform a state transition of a channel by transforming its
channel-tree. Any honest party must be able to enforce the new channel’s state
which might require an explicit invalidation step that disables commitment of
an older version of the channel-tree or allows for punishment of a party that
does so. An efficiency requirement of offchain protocols is that performing them
n ∈ N times grows the channel-tree by at most O(1) transactions.

6 Jourenko et al.

Invalidation by Timelock. Timelocks can be used to define at which point a
transaction can be committed to the ledger. Assume there are two transactions
that spend the same UTXO, but which have timelocks that are 1) in the future
and 2) have a difference of at least∆. In this case parties can enforce commitment
of the transaction with the lower timelock to the ledger. The transaction with
the lower timelock invalidates the transaction with the higher timelock.

Payment Channel Networks. Let P0,P1, . . . ,Pn, n ∈ N be parties where par-
ties Pi−1 and Pi, i ∈ {1, . . . , n} control channel γi. Individual channels can be
connected to form a Payment Channel Network (PCN) by means of an offchain
protocol that performs a payment of b ∈ N coins from P0 to Pn by replicating
the payment on each channel γi within a payment path γ1, . . . , γn from P0 to
Pn. The collateral investment of party Pj , 1 ≤ j ≤ n − 1 equals bTj . Such a
payment is performed by (1) extending each channel-tree with a (conditional)
payment, (2) triggering all payments atomically, making them enforceable on the
ledger and (3) consolidating the payment within each individual channel, such
that they can be enforced without the previously created channel-tree exten-
sions. Note that the consolidation step is necessary. Otherwise the channel-tree
would grow depending on the number of payments performed which effectively
would only delay, not avoid commitment of transactions to the ledger.

Hash Time Locked Contract can be used to perform payments within a PCN as a
offchain protocol. Let H be a cryptographic hash function. A payment of b coins
from P0 and Pn is performed by extending each channel γi on the path γ1, . . . , γn
with a HTLC performing a conditional payment from Pi−1 to Pi: If Pi reveals a
secret x s.t. y = H(x) they can claim b coins, otherwise after expiration of time
Ti Pi−1 can reclaim the b coins they paid into the conditional payment contract.
The payment is executed by having each party, starting with Pn, reveal secret
x to their predecessor, proving that they may claim the payment by committing
the transaction tree of the channel to the ledger. Both parties can consolidate the
payment by updating the channel-tree’s state to reflect that payment instead. As
soon as a party learns x they can forward it to their predecessor to reclaim the
funds they forwarded to their successor s.t. the payment is performed atomically
in all channels along the payment path. Timelocks Ti have to be picked such that,
if Pi does not reveal x until the very last moment, Pi−1 has to have enough
time to claim the coins from their predecessor. Therefore it is required that
Ti ≥ Tt+1 + ∆. It follows that a party’s collateral is O(nb∆) whereas the total

collateral of all parties is
∑n−1
i=0 b(n− i)∆ = b∆n(n−1)

2 ∈ O(n2b∆).

Lightweight Virtual Payment Channel. Jourenko et al. [8] proposed an offchain
protocol that takes two channels γA and γB as input, one between PA and PI
and one between PI and PB and creates a new channel γv between PA and PB .
This is done by splitting off coins from the original channels γA and γB . A Merge
transaction spends the coins that were split off and creates a Funding UTXO for
the new channel. Party PI has to lock away the same amount of coins as both
PA and PB in form of a collateral. The protocol allows PI to enforce setup and

Payment Trees: Low Collateral Payments for Payment Channel Networks 7

tear-down of the virtual channel atomically, while losing their collateral if they
fail to do so. This, on the one hand, punishes PI if they act maliciously and on
the other hand secures funds for PA and PB . The construction can be applied
iteratively to create payment channel between parties that lie apart multiple
hops within the underlying PCN.

However, using virtual channels is unpractical for individual payments. For
one, PI needs to lockup their funds during the full duration of the virtual chan-
nel which results in a long locktime and therefore a high collateral. Moreover,
PB and γI need to invest the same amount of funds into channels γB and γA
respectively as PA. Therefore, not all payments that are possible with HTLCs
can be performed with virtual channels: That is every party Pi needs to have
a balance of b coins in both γi and γi+1, whereas for HTLCs they only need b
coins in channel γi+1.

Funding UTXOs 1) Setup 2) Lock 3) Consume4) Enable

u𝖿𝗎𝗇𝖽𝗂𝗇𝗀,𝒫0,𝒫1

u𝖿𝗎𝗇𝖽𝗂𝗇𝗀,𝒫1,𝒫2

u𝖿𝗎𝗇𝖽𝗂𝗇𝗀,𝒫n−1,𝒫n

After time : T𝗅𝗈𝖼𝗄
b coins to 𝒫0

After time : T𝗅𝗈𝖼𝗄
b coins to 𝒫1

After time : T𝗅𝗈𝖼𝗄
b coins to 𝒫n−1

b coins to 𝒫1

b coins to 𝒫2

b coins to 𝒫n

Setup Tx

Setup Tx

Setup Tx

Lock Tx

Lock Tx

Lock Tx

Enable Tx Consume Tx

Consume Tx

Consume Tx

…

…

…

Fig. 1: Informal illustration of AMCU as a transaction-tree.

AMCU. Although the Sprites protocol reduces a party’s collateral to O(b(n +
∆)), AMCU is the first proposal to reduce the collateral for UTXO based ledger
that do not use smart contracts.

To perform an offchain payment AMCU operates in four phases in which the
transaction tree shown in Figure 1 is created. 1) In a Setup phase b coins from
Pi−1’s balance are split up from the channel using the Setup transaction. 2) In
the Lock phase the Lock transaction is created which spends Pi−1’s b coins from
the Setup transaction and pays out all coins back to Pi−1 after expiration of
time Tlock. 3) In the Consume phase the parties create a Consume transaction

8 Jourenko et al.

paying the b coins to Pi, however, instead of spending the Setup transaction
it spends a not-as-of-yet created Enable transaction. 4) In the Finalize phase,
first a Disable transaction is created that spends the Enable transaction after
expiration of time Tlock and returns the b coins to Pi−1 in the same manner as
the Lock transaction does. Lastly the Enable transaction is created spending b
coins of all Setup transactions on the payment path and creating the UTXOs
that are spent by each channel’s Consume and Disable transactions.

AMCU achieves atomic payment across the whole payment path by creating
the Consume transactions to have the Enable transaction as common ancestor.
As soon as it is signed, all Consume transactions can be committed to the ledger,
thus rendering each payment on the payment path enforceable. However, this
approach is impractical. The size of the Enable transaction grows as the number
of its inputs and outputs increases and therefore its size grows linearly with the
payment path’s length n. Payments across long paths cannot be performed if
the size of the Enable transaction exceeds the limits of a transaction’s size.

The security of the AMCU protocol is attempted to be proven within Canet-
tis UC Framework [3] by presenting a simulator that shows that the AMCU
protocol realizes an ideal functionality PCN+. However, while its updateState
function, that is used to perform payments across a payment path, concludes
with a consolidation step that atomically applies the payment on each individ-
ual channel within the payment path, this step is skipped within the AMCU
protocol and not addressed by the simulator. Exactly this gap between ideal
functionality and protocol is a vulnerability that allows a malicious adversary to
have corrupted parties potentially steal funds from honest parties. We introduce
the Channel Closure Attack formally in Section 3, in which a pair of intermedi-
ate parties within a payment path can steal funds from honest parties executing
the AMCU protocol.

3 The Channel Closure Attack on AMCU

In the following let P0, . . . ,Pn be parties where parties Pi−1 and Pi, i ∈ {1, . . . , n}
control channel γi. Let Si be the setup transaction and Li be the Lock transac-
tion for channel γi respectively. The parties perform a payment of b ∈ N coins
over the payment channel path γ1, . . . , γn using the AMCU protocol. If the ad-
versary can influence the order of channel consolidation then the attack can be
performed with n ≥ 2 where at most n− 1 channels are consolidated atomically.
Otherwise, we require n ≥ 3 where at most n − 2 channels are consolidated
atomically.

The Vulnerability. While the Enable transaction is the core of the AMCU con-
struction, it also seems to be its vulnerability. While the Enable transaction
receives inputs from each channel, no party has control over all channels within
the payment path. At any time, two parties sharing a channel can maliciously
spend a UTXO that is provided as input of the transaction, or as input to any
of its ancestors within the transaction tree. When this happens, the Enable

Payment Trees: Low Collateral Payments for Payment Channel Networks 9

transaction cannot be committed to the ledger and all parties have their coins
refunded through Lock transactions. Effectively, no party can enforce payment
after execution of the AMCU protocol. On top of that, an adversary can take
this further, performing a Channel Closure attack to steal funds from honest
parties. We remark that PCN payments require a consolidation step in which
a payment is included within the parties’ individual channels. While the func-
tionality PCN+, that models AMCU, correctly performs this consolidation step,
the AMCU protocol itself does not. Second, performing the consolidation step
atomically on all channels is highly non-trivial as atomic operations on multiple
channels is exactly the problem statement that protocols such as HTLCs, Sprites
and AMCU themselves attempt to solve.

Informally, an adversary can attack AMCU by corrupting two parties Pi
and Pi+1 that share channel γi along a payment path. First, parties cooperate
in execution of the protocol right until after creation of the Enable transac-
tion at which point the protocol concludes. We observe that if the protocol is
not followed up by a consolidation step as in the ideal functionality PCN+, Pi
and Pi+1 can close their channel γi maliciously, e.g. by double-spending the
UTXO used as input into their Setup transaction. This prohibits commitment
of the Setup transaction to the ledger and, as it is the ancestor of the Enable
transaction which in-turn is common ancestor of all Consume transactions, no
Consume transaction can be committed to the ledger, effectively reverting the
payment. After the execution of the protocol, no party can enforce the payment
by committing the Consume transactions. Performing the payment requires a
final consolidation step, as defined in functionality PCN+, allowing any party to
enforce the payment on their ledger through the channels they participate in.

It is essential that the consolidation step is done atomically on all channels
within a payment path, as otherwise this could lead to honest parties losing
funds. However, this step is non-trivial as performing a state transition on mul-
tiple channels atomically is the very problem statement HTLCs, Sprites and
AMCU approach to solve. In the following we present the Channel Closure At-
tack that allows a malicious adversary to have corrupted parties steal funds
from honest parties as long as at most n− 2 out of n channels are consolidated
atomically.

The Adversary. The adversary is created according to AMCU’s adversarial
model. At beginning of the protocol, the adversary can corrupt n − 1 parties
s.t. it receives the party’s internal state and all subsequent incoming and out-
going communication is routed through them instead. This corruption is static
and the adversary cannot switch corrupted parties or corrupt any additional
parties during execution of the protocol. The adversary is malicious and can de-
viate from the protocol arbitrarily, however, it is computationally polynomially
bounded.

The adversary succeeds if the set of corrupted parties holds strictly more
funds compared to when all Consume transactions are committed to the ledger.

10 Jourenko et al.

The Approach. The corrupted parties steal coins by, first, executing the protocol
correctly until the consolidation phase. They pick a party Pi, i ∈ {1, . . . , n}
where channel γi is consolidated before γi+1. After they receive coins through
consolidation of γi, two parties γj−1 and γj close channel j such that Pi has
their money returned through the Lock transaction Li+1 instead of forwarding
the coins. There are a few edge cases: (1) If i = j + 1 then channel γi+1 is
controlled by the corrupted parties, so we require γi is consolidated before γi+2

instead. (2) If i = n then Pi is already the payment’s recipient. In this case, we
require P0 to be corrupted as well, such that Pn receives their funds before P0

pays them out.

Channel Closure Attack. The adversary picks i, j ∈ {1, . . . , n}, i 6= j such
that following conditions hold. (1) If i 6= j − 1, then γi is consolidated before
γ(i+1) mod n, otherwise γi is consolidated before γ(i+2) mod n. (2) If γ(j+1) mod n

is consolidated before γ(i+1) mod n then γ(j−1) mod n is consolidated before the
channel γ(i+1) mod n. The adversary corrupts Pi, Pj−1 and Pj . If i = n the
adversary also corrupts P0. Upon starting the protocol, the adversary behaves
honestly and collaborates with the execution of the AMCU protocol up until
the Consolidation step. After Pi receives funds through consolidation of γi, they
do not respond to any parties requesting consolidation of their channels, but
instead the adversary orders Pj−1 and Pj to close γj by spending the UTXO
that is the input of their Setup transaction Sj .

Discussion. In the general case the adversary needs to corrupt at least 4 parties,
thus the attack requires n ≥ 4. However, if the adversary can influence the order
in which channels are consolidated, in the case of n ≥ 3 they can always pick
1 ≤ i = j−1 ≤ n−2 and reduce the parties they need to corrupt to 2. Moreover,
note that if the order in which channels are consolidated is not known a-priori,
the adversary has to guess values for i and j. We assume the adversary picks
values for i and j randomly out of a uniform distribution of all possible values,
i.e. 1, . . . , n. The probability to guess one out of n parties for the value for i
equals at least 1/n. As i 6= j, the value of j has to be guessed out of n−1 parties
which equals a probability of at least 1/(n − 1). Thus the probability for the
adversaries success is at least 1/((n− 1)n) which is not negligible.

4 Our Payment Tree Construction

We describe the construction of a payment tree in respect to our running ex-
ample. Let P0,P1, . . . ,Pn, n ∈ N be parties where parties Pi−1 and Pi, i ∈
{1, . . . , n} control channel γi. The protocol performs a payment of b ∈ N coins
from P0 to Pn. The value τ ∈ N represents the current time, whereas ∆ ∈ N is
the maximum time it takes for a transactions to be included in the ledger after
committing it.

Payment Trees: Low Collateral Payments for Payment Channel Networks 11

Alice
& Bob

1) Channel Alice & Bob

Alice : XA − b

Bob
& Charlie

Bob : XB

Bob : X′ B − b
Charlie : XC

Alice & Bob :
(XA + XB) − b

1) Split

Alice & Bob :
b

Bob & Charlie:
(X′ B + XC) − b

1) Split

Bob & Charlie:
b

2Δ
2) Merge

Alice & Charlie : b
Bob : b

1) Channel Bob & Charlie

Channel Tree

Channel Tree

2Δ+4Δ
Alice: b

4Δ
1) Refund

Alice: b

3Δ
3) Punish

Alice: b
Δ

5) Consolidation

Bob: b
2) Refund

4Δ
1) Refund

Bob: b

3Δ
3) Punish

Charlie: b

Δ
5) Consolidation

Charlie: b

2Δ+Δ
4) Payment / Consolidation

Charlie: b

Fig. 2: Transaction Tree of a payment of b coins across 2 hops. Transactions
are represented by boxes with round corners containing the UTXO they create,
whereas referenced UTXOs in inputs are indicated implicitly by arrows origi-
nating from the UTXO that is spent. Red numbers indicate timelocks. Numbers
atop the transaction indicate order of construction whereas transactions with
the same number are constructed atomically. Payment channel sub-trees are
represented as boxes with straight edges forming a black box.

Overview. We illustrate our approach in Figure 2 for a two-hop payment, i.e.
for the case of n = 2. It is designed such that it can be extended to payment
paths of arbitrary lengths. The overall approach is to take two channels, one
between parties Alice and Bob, one between Bob and Charlie and construct a
payment tree that creates a Funding UTXO between Alice and Charlie which
both can use to perform an offchain payment. Within this construction, Bob has
a special role as intermediary. As the intermediary Bob is the only party which
has control over both channels and none of the channels can be closed before the
end of construction without Bob’s consent. The Payment Tree protocol enables
Bob to enforce correctness of the construction. However, while empowering the
intermediary Bob, if he fails to enforce correctness we can blame him as acting
maliciously and hold him accountable. This is done by paying out Bob’s collateral
to the other parties as punishment, preventing loss of their funds.

Transaction Types. We use three types of transactions during our construction.
Split transactions are used to split off coins from one channel, making them
available to our construction in form of a Funding UTXO. The coins for the
Funding UTXO are paid by the party with the lower index within the payment
path. Payout transactions take a Funding UTXO as input and pay the money to
one of the two parties involved in the Funding UTXO. Lastly, the Merge transac-
tion is used to combine the Funding UTXOs that were split off two channels by

12 Jourenko et al.

taking them as input, paying out the intermediary’s coins out as collateral and
creating a Funding UTXO between the two remaining non-intermediary parties.

Two Hop Payments. The payment is executed within 6 steps as shown in Figure
2 where the numbers next to the transaction indicate in which step a transac-
tion is created. The transactions within each step are created atomically which
is done using two techniques. 1) As any transaction can be committed to the
ledger only when all of its ancestors can be committed to the ledger, we create
transaction-trees atomically by, first, creating the whole transaction-tree and,
second, signing its root afterwards. 2) We use the ATOMIC SIGN protocol that
allows an intermediary party to enforce creation of two transactions atomically.
We use timelocks to assign priorities to transactions. A transaction that has a
higher priority than another has a timelock of at least ∆ lower such that any
party can enforce commitment of the transaction that has the higher priority.

A payment proceeds within 6 steps. 1) Similar to AMCU [7] and Lightweight
Virtual channels [8] we extend each channel-tree with an additional Funding
UTXO via a Split transaction. The coins within the Funding UTXO’s are paid
by the parties with lower index within the payment path. The Refund payout
transactions refund those coins after time 4∆. 2) A Merge transaction spends
these Funding UTXO. With a timelock of 2∆ the Merge transaction has a higher
priority than the Refund transactions. The UTXO created by the Merge trans-
action is refunded after time 2∆ + 4∆. 3) Punish transactions are created that
payout Bob’s collateral. As they have a timelock of 3∆ they have a lower priority
than the Merge transaction such that Bob is able to avoid payout by committing
the Merge transaction as soon as its timelock expires. However, on the other side
the Punish transactions are used to secure Alice’s and Charlie’s coins as they
are next in priority in case the Merge transaction cannot be committed to the
ledger. 4) Alice and Charlie perform a payment by spending their shared Fund-
ing UTXO on top of the Merge transaction with a Payment transaction that has
a lower timelock and thus higher priority than the Refund transaction. 5) Con-
solidation payout transactions spend the Split transaction’s Funding UTXOs
replicating the payment within the two original channels. These have a lower
timelock and thus higher priority than the Merge transaction. 6) Using the Con-
solidation transactions Bob can enforce payment from Alice, whereas Charlie can
enforce payment from Bob. This allows both pairs of parties to safely consolidate
the payment within their respective channels. Note that Refund and Payment
transactions which spend the Merge transaction’s Funding UTXOs have time-
locks set symmetric to the Refund and Consolidation transaction that spend the
Split transactions’ Funding UTXOs. This allows replication of the construction
using Funding UTXO created in Merge transactions instead of Split transactions,
extending the approach to payment paths of arbitrary length as shown in Fig-
ure 7. The construction is applied in a balanced manner by forming a balanced
binary tree of transactions and minimizing the transaction tree’s height.

Payment Trees: Low Collateral Payments for Payment Channel Networks 13

Algorithm 1 Atomically signing two Payout transaction

1: function ATOMIC SIGN(Tr0, T r1)
Require: Tr0, T r1 are Payout transactions between three parties.
2: f0, f1 ← FUTXO(Tr0),FUTXO(Tr1)
3: PI ← INTERMEDIARY(f0, f1)
4: PA,PB ← COUNTERPARY(f0,PI),COUNTERPARY(f1,PI)
5: SIGN(Tr0, {PA}, {PI}), SIGN(Tr1, {PB}, {PI})
6: SIGN(Tr0, {PI}, {PA}), SIGN(Tr1, {PI}, {PB})
7: end function

Fig. 3: Algorithm that takes two Payout transactions as input and allows the
intermediary party to enforce that either both or no transaction is fully signed.

The Payment Tree Protocol. In the following, first we formally define Split,
Payout and Merge transactions, before introducing algorithms 1 to 4 making up
the Payment Tree protocol.

Split Transactions are of form Trsplit = (Uin, Uout, t) where Uin = {ref(fγ)} con-
sist of one Funding UTXO provided by the channel-tree of γ, Uout = {fchange, fpay}
consists of two Funding UTXO. It holds that fchange.b+fpay.b = fγ and fpay.b = b.
Moreover, fγ .π = fchange.π = fpay.π, i.e. all Funding UTXO are shared between
the same parties. The function call SPLIT(γ, b, t) creates a Split transaction as
described above and returns fpay. Analogously a function call to UNSPLIT(γ)
consolidates the transaction into the channel by updating the channel’s balance
distribution with the split off balance. Additionally it sets up a channel between
both parties by constructing a channel-tree with Funding UTXO fchange as root.
Informally, it takes a channel and extends it with a Funding UTXO holding b
coins which we can use in our construction. Although we represent this by using
a Split transactions as it is done with Virtual Channels and AMCU, it could be
included similarly as conditional payments from HTLCs by placing a Funding
UTXO instead of a HTLC contract.

Merge Transactions are of form Trmerge = (Uin, Uout, t) where Uin = {fpay,0, fpay,1}
and Uout = {fpay, ucollateral}. The two Funding UTXO that are provided as in-
put fpay,0 and fpay,1 are shared between parties PA and PB as well as between
parties PB and PC respectively. The newly created Funding UTXO fpay in the
output is shared between parties PA and PC . The other UTXO within the out-
puts is ucollateral which pays out funds to PB . Lastly it holds that the coins in all
UTXO are equal, i.e. fpay,0.b = fpay,1.b = fpay.b = ucollateral.b = b. The function
call MERGE(fpay,0, fpay,1, t) is a short-hand notation to construct a Merge trans-
action as above. We extend the helper function OUT UTXO to accept a Merge

14 Jourenko et al.

transaction as input as well. In this case it returns UTXO fpay. The helper func-
tion IN UTXO takes a Merge transaction as input and outputs the UTXOs that
are used within its inputs, i.e. fpay,0, fpay,1. Informally the transaction takes the
pay-Funding UTXOs of two transactions as input, creates a Funding UTXO be-
tween the two parties that did not share a Funding UTXO prior (here: PA and
PB), and pays out the collateral of the third party (here: PC).

Payout Transactions are of form Trpayout = (Uin, Uout, t) where Uin = {f} is a
Funding UTXO and Uout = {upayout}. It holds that upayout pays out funds to
a party P and f.b = upayout.b. The function call PAYOUT(f,P, t) constructs
a Payout transaction as described above. Moreover we extend helper function
IN UTXO to take a Payout transaction as input in which case it outputs the
UTXO f . Payout transactions are used at several points within our construction
as Refund, Punish, Payment and Consolidation transactions depending on their
purpose as shown in Figure 2.

Helper Functions. Function SIGN(Tr, PS , PR) is used to sign and exchange sig-
natures of transactions. It takes a transaction Tr and two sets of parties PS
and PR as input. Each party in PS signs Tr and sends the signature to each
party in PR. This includes verification of signatures by the recipients. Func-
tion PARTIES takes a Funding UTXO as input and outputs a set containing
the two parties of which a signature is required to spend the UTXO. Func-
tion INTERMEDIARY(f0, f1) takes two Funding UTXO f0, f1 as input, if an
intermediary exists, i.e. |PARTIES(f0) ∩ PARTIES(f1)| = 1, then it returns the
intermediary P ∈ PARTIES(f0) ∩ PARTIES(f1). Otherwise it returns ⊥. Func-
tion COUNTERPARY(f,P) takes a Funding UTXO and a party as input, if
P ∈ PARTIES(f), then it returns its counterparty PC ∈ (PARTIES(f)) \ {P}.

Atomic Signatures. We assume a setting with two channels between three par-
ties. Protocol ATOMIC SIGN is shown in Algorithm 1. It enables the interme-
diary party to enforce that two transactions - one on each channel - are created
atomically. This is done by having the intermediary party provide signatures to
both transactions only after they received all signatures from its counterparties.

Merging Channels. Protocol MERGE as shown in Algorithm 2 takes two Fund-
ing UTXO f0, f1, an amount of coins b and a time t as input where f0 is shared
between parties PA and PI , f0 is shared between parties PI and PB and it holds
that f0.b = f1.b = b. It creates a Merge transactions with timelock t+2∆ spend-
ing both Funding UTXO, paying out b coins to PI and containing a Funding
UTXO holding b coins, which are paid out to PA after time t+2∆+4∆ by means
of a Payout transaction. This transaction tree is created atomically as its root,
which is the Merge transaction, is signed last. Only after each party holds a fully
signed instance of the Merge transaction, two Punish transactions spending f0
and f1 and paying out b coins to PA and PB respectively are created atomically
using ATOMIC SIGN. These have timelocks equal to t+ 3∆. Note that the cre-
ation of the Merge transaction must not re-distribute funds, i.e. the funds in f0

Payment Trees: Low Collateral Payments for Payment Channel Networks 15

Algorithm 2 Construction Step of a Payment Tree

1: function MERGE(f0, f1, b, t)
2: PI ← INTERMEDIARY(f0, f1)
3: PA,PB ← COUNTERPARY(f0,PI),COUNTERPARY(f1,PI)
4: Trmrg ← MERGE(f0, f1, t+ 2∆)
5: Trrefund ← PAYOUT(OUT UTXO(Trmrg),PA, t+ 6∆)
6: Trpunish,A ← PAYOUT(f0,PA, t+ 3∆)
7: Trpunish,B ← PAYOUT(f1,PC , t+ 3∆)
8: SIGN(Trrefund, {PA,PB}, {PA,PB})
9: SIGN(Trmrg, {PA,PB ,PI}, {PA,PB ,PI})

10: ATOMIC SIGN(Trpunish,A, T rpunish,B) return Trmrg

11: end function

Fig. 4: Creation of a Funding UTXO between two counterparties. The intermedi-
ary Party can enforce atomic construction while Punish transactions are created
to make it accountable if it fails to do so.

are paid by PA and the funds in f1 are paid by PI . The Punish transactions are
used to secure the funds within the Merge transaction by paying out funds to
PA and PB , if the Merge transaction cannot be committed to the ledger.

Consolidation. Algorithm 3 takes a Merge transaction as input, invalidates it by
creating two Payout transactions atomically using the ATOMIC SIGN protocol
that spend the Merge transaction’s inputs. Both consolidation transactions per-
form a payment by giving the funds to the payee. Note that the protocol can be
adjusted to cancel a payment by refunding the funds to the payer instead.

Payment Trees. Algorithm 4 performs a payment from P0 to Pn by iteratively
merging Funding UTXO, s.t. the Merge transactions form the nodes of a bal-
anced binary tree as illustrated in Figure 7. The algorithm takes following inputs.
(1) The payment path γ1, . . . , γn, (2) the payment amount b and (3) time tmin.
The value tmin is negotiated by the parties and represents the maximum amount
of time the parties have to execute the protocol. The dispute protocol starts if
the protocol is not concluded until tmin. Note that even existing methods as
HTLCs have to account for tmin.

In the following we refer to a certain depth within this binary tree as level,
beginning with Split transactions on level 0. The algorithm maintains lists of
Funding UTXOs F UTXOi for each level i ≥ 0 of the binary tree, as well as
lists of Merge transactions MRGj for each level j ≥ 1 of the binary tree. The
algorithm proceeds as follows. Add a Funding UTXO from each Split transaction
to F UTXO0 in order (4 - 7) and create the Payment Tree by iterative use of the
MERGE protocol level-by-level (8 - 18). The Merge transactions and Funding

16 Jourenko et al.

Algorithm 3 Deconstructing Step of a Payment Tree

1: function CONSOLIDATE(Trmrg)
2: f0, f1 ← IN UTXO(Trmrg)
3: PI ← INTERMEDIARY(f0, f1)
4: PA,PB ← COUNTERPARY(f0,PI),COUNTERPARY(f1,PI)
5: TrA ← PAYOUT(f0,PB , t+∆)
6: TrB ← PAYOUT(f1,PC , t+∆)
7: ATOMIC SIGN(TrA, T rB)
8: end function

Fig. 5: Taking a Merge transactions, invalidating it and atomically updating the
state on the two original Funding UTXO.

UTXOs created on level j are added to lists MRGj and F UTXOj respectively
and in order (12 - 13). Note that if there is an uneven amount of Funding UTXO
within a level, we leave the odd one to be used in the level above instead (15 - 17).
The payment is executed after construction is concluded (19). Afterwards the
payment tree is deconstructed in reverse order by executing the CONSOLIDATE
protocol on each Merge transaction (20 - 24). Lastly the Split transactions are
removed and consolidation within all original channels concludes (25 - 27).

Dispute. This protocol is executed at time tmin if the payment tree protocol has
not come to conclusion in an orderly manner. Every honest party submits their
transactions to the ledger as soon as their respective timelocks expire. This will
result in commitment of the payment tree onto the ledger where transactions are
committed in order of their priority. If a Merge transaction cannot be committed
to the ledger, refunds and payments are done via Punish transactions.

5 Collateral Efficiency and Security Analysis

In this section we discuss properties of the Payment Tree construction using the
ongoing example of a payment of b coins across channels γ1, . . . , γn.

Efficiency. Figure 8 depicts the efficiency properties of Payment Trees, compar-
ing it to existing approaches. We compare two metrics. (1) The collateral and
(2) the number of transactions that have to be committed to the ledger in case
of dispute. We do this for individual parties, as well as over the whole payment.

We observe that commitment of each Merge transaction unlocks the col-
lateral of one party. To commit a Merge transaction located on level i of the
payment tree it needs to commit i transactions beforehand, i.e. i − 1 Merge
transaction as well as a Split transaction. This will happen at time 2∆i. As the

Payment Trees: Low Collateral Payments for Payment Channel Networks 17

Algorithm 4 Payment Tree Construction

1: function PaymentTree(γ1, γ2, . . . , γn, b, tmin)
2: F UTXOi ← [], 0 ≤ i ≤ d(logn)− 1e
3: MRGi ← [], 1 ≤ i ≤ dlogne
4: for 1 ≤ i ≤ n do
5: fi ← SPLIT(γi, b, tmin)
6: Append fi to F UTXO0

7: end for
8: for i = 0 until i = d(logn− 1)e do
9: for 0 ≤ j ≤ b|F UTXOi|/2c do

10: Retrieve f2j , f2j+1 from F UTXOi

11: Trmrg,j ← MERGE(f2j , f2j+1, b, tmin + 2i∆)
12: Append OUT UTXO(Trmrg,j) to F UTXOi+1

13: Append Trmrg,j to MRGi+1

14: end for
15: if |F UTXOi| mod 2 = 1 then
16: Remove last entry of F UTXOi and append to F UTXOi+1

17: end if
18: end for
19: TrPayment ← PAYOUT(OUT UTXO(MRGdlogne[0]),Pn, tmin + 2∆ logn+∆)
20: for i = dlogne until i = 1 do
21: for Trmrg in MRGi do
22: CONSOLIDATE(Trmrg)
23: end for
24: end for
25: for 1 ≤ i ≤ n do
26: UNSPLIT(γi)
27: end for
28: end function

Fig. 6: Construction of a full payment tree in the shape of a balanced binary
tree, execution of a payment and subsequent deconstruction.

height of the Payment tree is limited by dlog ne it follows that any party invests
b2∆i ∈ O(b∆ log n) collateral and has to commit i+ 1 ∈ O(log n) transactions.
Regarding the total payment, we observe that there are n

2i Merge transactions
on level i of the payment tree. It follows that the total collateral equals the sum∑dlogne
i=1 b2∆i n2i = b2∆n

∑dlogne
i=1

i
2i . As

∑∞
i=1

i
2i = 2 and each part of the sum is

positive, it follows that the total collateral b2∆n
∑dlogne
i=1

i
2i < 4b∆n ∈ O(b∆n)

is linear in the length of the payment path n. The number of transactions can be
computed in a similar fashion, however, an intuitive approach is to recall that
the transactions form a balanced binary tree of height 1 + dlog ne which has at
most 21+dlogne ≤ 2n ∈ O(n) nodes.

18 Jourenko et al.

A B C …E N
Split Split

Merge 
A, C

D

…
…

Split Split

…

Split…

Merge
C, E

Merge 
(N-2), N

Merge 
A, E

Merge 
A, N

Fig. 7: Transaction tree forming a payment tree. The shape represents a balanced
binary tree.

Method pp Collateral pp Tr. Total Collateral Total Tr. Smart Contracts

HTLC [12,2] O(b∆n) O(1) O(b∆n2) O(n) No
Sprites [9] O(b(n+∆)) O(1) O(b(n+∆)n) O(n) Yes

Payment Tree O(b∆ logn) O(logn) O(b∆n) O(n) No

Fig. 8: Comparison of the performance of Payment Trees across the whole pay-
ment (Total) and individually per party (pp).

Although the collateral any individual party has to invest is logarithmic,
therefore higher than Sprites but lower than HTLCs, the total collateral incurred
over the whole payment is linear in the path’s length. This is comparable to the
performance of Sprites and is by a factor of n lower than the total collateral of
HTLCs. A trade-off of Payment Trees is that an individual party might have
to commit up to O(log n) many transactions which is the case if they act as
intermediary of the Merge transaction on the top-most level of the payment
tree. Nevertheless the total number of transactions over the whole payment is
comparable to both, HTLCs and Sprites. Payment Trees provide a performance
comparable to Sprites without requiring a ledger with smart contract capability.

Security. First, we define our communication and adversarial models and there-
after define and show two properties of our construction which are Balance Se-
curity as defined in Theorem 1 and Liveness as defined in Theorem 2.

Communication Model. Communication between parties occurs in rounds. Any
message sent within one round is available to the recipient at the beginning of
the next round. The duration of any round has an upper limit.

Adversarial Model. We define an Adversary A consistent with related work
[8,7,9]: At the beginning of protocol execution, the adversary can statically cor-
rupt up to n of n+ 1 parties, receiving their internal state and having all com-
munication to and from these parties be routed through the adversary. The

Payment Trees: Low Collateral Payments for Payment Channel Networks 19

adversary is malicious and can make any corrupted party deviate from the pro-
tocol. Moreover, within each communication round, the adversary can delay and
re-order all messages sent.

Theorem 1 (Balance Security). Outside of performing the intended pay-
ment, the sum of a honest party’s coins is not reduced by participation in the
Payment Tree protocol.

Sketch of Proof. First, we consider the case in which the adversary does not de-
viate from the protocol, but stops collaboration mid-way. We observe that due
to the order in which transactions are (atomically) created, the funds accessi-
ble for any party within Merge- and Payment transaction is unchanged, except
when executing the payment between P0 and P1 explicitly. Any party receives
their Funds by having the transaction tree be committed to the ledger. Even if
a corrupted party acts as intermediary and stops collaboration after receiving
signatures and before providing signatures themselves. As only they risk losing
funds due to Punish transactions, having them selectively commit and withhold
transactions does not result in the loss of funds of their counterparties.

Next, we consider the case where the adversary corrupts two parties to
double-spend a Funding UTXO that is the input of a Merge transaction. As-
sume P ∈ {P1, . . . ,Pn−1} is neither payer or payee of the overall payment and
is honest. Moreover, the adversary double spends a Funding UTXO that is the
input of a Merge transaction Trmrg,A on level i. Note that for this to happen, the
party that acts as intermediary of Trmrg,A must be corrupted as either Funding
UTXO that is input of Trmrg,A requires its signature to spend it. If P is not
part of a transaction that is descendant of Trmrg,A they are unaffected and do
not lose funds. Otherwise, if they are part of Trmrg,A they are not the interme-
diary party as they are honest and they will receive b coins through a Punish
transaction. If they are not part of Trmrg,A, let j, i < j ≥ log n be the lowest
level on which they are part of a Merge transaction that has Trmrg,A as descen-
dant. Then they must not be the intermediary, as otherwise, they would have
a descendant of Trmrg,A on a lower level. Therefore they are not intermediary
and receive b coins through a Punish transaction on that level. However, as they
are neither P0 nor Pn they act as intermediary of a Merge transaction on level
k, j < k < log n which is descendant of Trmrg,A. On that level P has to pay out
b coins through one Punish transaction. Note that P does not pay out b coins
through two Punish transactions as otherwise they could commit the Merge
transaction instead to avoid payout of any Punish transaction. Moreover, any
party is intermediary of a Merge transaction only once within the transaction.
Overall, P’s balance equals b− b = 0 s.t. they do not lose funds. The reasoning
for P0 and Pn is analogous. As they are on the top level of the Payment Tree,
they have a Merge transaction that is descendant of Trmrg,A and therefore do
receive b coins. However, they are never intermediary of a Merge transaction, s.t.
their balance is b coins. Therefore, P0 and Pn do not lose coins independently
of whether they performed the payment between each other or not. ut

20 Jourenko et al.

Theorem 2 (Liveness). Eventually any honest party receives access to their
coins through UTXOs spendable with a witness consisting of a signature corre-
sponding to their verification key.

Sketch of Proof. All honest parties commit the transactions they are involved in
as soon as their timelocks expire. First, we note that any transaction containing
a Funding UTXO is created atomically with a Payout transaction that pays out
the funds to a party that receives exclusive access to it. Therefore, the adversary
cannot have funds being locked within a Funding UTXO they share control
of indefinitely. Although all transactions have increasingly higher timelocks, all
transactions can be committed to the ledger by time tmin + 2∆ log n + 4∆.
By this time, no funds are locked within a Funding UTXO and any funds can
be claimed by one party exclusively through Payout transactions. As Balance
Security holds, no party loses funds when all Payout transactions are committed
to the ledger s.t. for any party it holds that by time tmin + 2∆ log n+ 4∆ they
have exclusive access to all their funds. ut

6 Conclusion

In this work we introduced Payment Trees, a protocol for scalable payments
within a PCN with logarithmic individual collateral and linear total collateral.
Although, as trade-off in the worst case a party needs to commit a logarithmic
amount of transactions to the ledger in case of a Dispute, the total amount of
transactions committed to the ledger is linear which is equal to related work, i.e.
HTLCs and Sprites. Payment Trees provide competitive performance to state-of-
the-art approaches as Sprites, while having fewer restrictions to its employability
by not requiring smart contract capability of its underlying ledger, thus providing
the first alternative to HTLCs.

References

1. Raiden network. raiden.network, accessed: 2018-09-03
2. Bowe, S., Hopwood, D.: Hashed Time-Locked Contract transactions.

https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki (2017), [On-
line; accessed 29-August-2020]

3. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (Feb 2007). https://doi.org/10.1007/978-3-540-70936-7 4

4. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on Self-Stabilizing Systems. pp.
3–18. Springer (2015)

5. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment hubs
over cryptocurrencies. In: Perun: Virtual Payment Hubs over Cryptocurrencies.
IEEE (2017)

6. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 949–966. ACM (2018)

https://doi.org/10.1007/978-3-540-70936-7_4

Payment Trees: Low Collateral Payments for Payment Channel Networks 21

7. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with
constant collateral in bitcoin-compatible payment-channel networks. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 801–815. ACM Press
(Nov 2019). https://doi.org/10.1145/3319535.3345666

8. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
Cryptology ePrint Archive, Report 2020/998 (2020), https://eprint.iacr.org/
2020/998

9. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Heidelberg (Feb 2019).
https://doi.org/10.1007/978-3-030-32101-7 30

10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
11. PDecker, C., Russel, R., Osuntokun, O.: eltoo: A simple layer2 protocol for bitcoin.

See https://blockstream.com/eltoo.pdf (2017)
12. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-

ments. See https://lightning. network/lightning-network-paper. pdf (2016)

https://doi.org/10.1145/3319535.3345666
https://eprint.iacr.org/2020/998
https://eprint.iacr.org/2020/998
https://doi.org/10.1007/978-3-030-32101-7_30

	Payment Trees: Low Collateral Payments for Payment Channel Networks

