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Abstract. Ciphertext indistinguishability under chosen plaintext at-
tacks is a standard security notion for public key encryption. It crucially
relies on the usage of good randomness and is trivially unachievable if
the randomness is known by the adversary. Yilek (CT-RSA’10) defined
security against resetting attacks, where randomness might be reused
but remains unknown to the adversary. Furthermore, Yilek claimed that
security against adversaries making a single query to the challenge or-
acle implies security against adversaries making multiple queries to the
challenge oracle. This is a typical simplification for indistinguishability
security notions proven via a standard hybrid argument. The given proof,
however, was pointed out to be flawed by Paterson, Schuldt, and Sibborn
(PKC’14). Prior to this work, it has been unclear whether this simplifi-
cation of the security notion also holds in case of resetting attacks.

We remedy this state of affairs as follows. First, we show the strength of
resetting attacks by showing that many public key encryption schemes
are susceptible to these attacks. As our main contribution, we show that
the simplification to adversaries making only one query to the challenge
oracle also holds in the light of resetting attacks. More precisely, we
show that the existing proof can not be fixed and give a different proof
for the claim. Finally, we define real-or-random security against resetting
attacks and prove it equivalent to the notion by Yilek which is of the
form left-or-right.
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1 Introduction

Encryption is a fundamental cryptographic primitive to achieve confidentiality
between communicating parties. The main distinction is between symmetric key
encryption and public key encryption. The former requires the communicating
parties to exchange a symmetric key a priori, which the latter does not. An
encryption scheme is deemed secure if a ciphertext does not leak information
about the underlying plaintext. This is typically modelled as an indistinguisha-
bility game in which the adversary has to distinguish between the encryption of
two messages of its choice, so-called left-or-right security.



For public key encryption schemes this mandates the usage of probabilistic
algorithms for encryption to achieve security. This is in contrast to symmetric
key encryption schemes which can use a nonce that has to be unique for each
encryption but does not have to be chosen at random [24]. The classical secu-
rity notion for public key encryption (IND-CPA) implicitly assumes that fresh
randomness can be used for every encryption. This is modelled by letting the
challenger encrypt using fresh random coins for every query.

The natural question that arises is what happens when this assumption is
not true. Clearly, security is elusive if the randomness is known by the adver-
sary which can simply re-encrypt its challenge messages using this randomness.
Another scenario, and simultaneously the focus of this paper, is one in which
the randomness is unknown to the adversary but might be reused across several
encryptions. The practical relevance of this scenario has been shown by Risten-
part and Yilek [23] who demonstrated how TLS can be attacked with reused
randomness due to virtual machine snapshots. Based on this, Yilek [28] intro-
duced security against resetting attacks. In this setting, the adversary can force
the challenger to reuse a randomness across several encryptions. This setting has
later been generalised to security against related randomness attacks by Pater-
son et al. [20] and Matsuda and Schuldt [18]. For related randomness attacks,
the adversary can specify a function which is applied to the (reused) randomness
generated by the challenger and the outcome of the function is the randomness
that is used to actually encrypt. All notions introduced in [18, 20, 28] are in the
left-or-right style. The adversary queries two messages to its challenge oracle,
the oracle encrypts either the left or the right message, and the adversary tries
to distinguish these cases.

Security should always hold with respect to adversaries making multiple
queries to the challenge oracle. For IND-CPA-like security notions, schemes are
often proven secure against adversaries making only one query to the challenge
oracle [3,8,9,11,15]. It is folklore that this implies security in the desired case of
multiple queries via a standard hybrid argument. Yilek [28] argues that the same
holds also for resetting attacks and provides a proof sketch for the claim. Later,
however, Paterson et al. [20] pointed out that the proof is flawed as it results in a
prohibited query by the reduction. They further argued that they could neither
prove Yilek’s claim nor give a separation to disprove it. Thus, prior to this work,
it has been unclear whether security against a single challenge query implies
security against multiple challenge queries in the light of resetting attacks.

1.1 Our Contribution

In this work we revisit the resetting attack model proposed by Yilek [28]. First,
we define a class of public key encryption schemes which we show to be insecure
in this model. We then prove several schemes insecure by showing that they lie
in the defined class. As our main contribution, we close the aforementioned gap
by showing that security against a single query to the challenge oracle indeed
implies security against multiple queries to the challenge oracle even against re-
setting attacks, hereby confirming the claim made in [28]. More precisely, we first

2



investigate the flawed proof in [28] and give an adversary that distinguishes the
different hybrid games in the proof almost perfectly. We then nevertheless prove
the claim by giving a different proof approach, which only yields an additional
factor of 2 compared to the claimed bound in [28]. Finally, we define real-or-
random security against resetting attacks and prove the equivalence between
the existing left-or-right and our new real-or-random security notion.

1.2 Related Work

Garfinkel and Rosenblum [13] pointed out a theoretical threat to the security of
a virtual machine, due to the possibility of snapshots. The practical relevance of
this threat has later been shown by Ristenpart and Yilek [23], who demonstrated
attacks on TLS. Based on these, Yilek [28] defined security against resetting
attack, which models the threat pointed out in [13]. Later, Paterson et al. [20] and
Matsuda and Schuldt [18] generalised this to security against related randomness
attack.

Bellare et al. [5] gave a public key encryption scheme which still achieves a
meaningful security notion, yet qualitatively worse than IND-CPA, even if the
randomness is bad. The same setting is also considered by Bellare and Hoang [6].
Huang et al. [14] study nonce-based public key encryption schemes in order to
avoid the issue of bad randomness. Closer to our setting is the work by Wang
et al. [27], which studies both resetting attacks and bad randomness, yet for
authenticated key exchange.

1.3 Organization of the Paper

Section 2 covers the necessary background for this work. In Section 3 we show
that several public key encryption schemes are susceptible to resetting attacks.
Our main contribution is given in Section 4, where we restore the claim made
in [28] by giving a different proof. The definition of real-or-random security
against resetting attacks and the proof of its equivalence with the left-or-right
security is given in Section 5.

2 Preliminaries

2.1 Notation

For an integer x, the set {1, . . . , x} is denoted by [x]. We use game-based
proofs [7, 26]. For a game G and an adversary A, we write GA ⇒ y if the game
outputs y when played by A. In our case, the game output will either be true
or false, indicating whether the adversary has won the game. Analogously, we
write AG ⇒ y to denote that A outputs y when playing game G. We only use
distinguishing games in which the adversary has to guess a randomly chosen
bit b. To scale the advantage of an adversary A to the interval from 0 to 1, its
advantage in a distinguishing game G is defined as

AdvG(A) = 2 Pr[GA ⇒ true]− 1 .
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Reformulation to adversarial advantage yields

AdvG(A) = 2 Pr[GA ⇒ true]− 1

= 2
(
Pr[GA ⇒ true ∧ b = 0] + Pr[GA ⇒ true ∧ b = 1]

)
− 1

= 2
(
Pr[GA ⇒ true | b = 0] Pr[b = 0]

+ Pr[GA ⇒ true | b = 1] Pr[b = 1]
)
− 1

= Pr[GA ⇒ true | b = 0] + Pr[GA ⇒ true | b = 1]− 1

= Pr[AG ⇒ 0 | b = 0] + Pr[AG ⇒ 1 | b = 1]− 1

= Pr[AG ⇒ 0 | b = 0]− Pr[AG ⇒ 0 | b = 1] .

Analogously, we get

AdvG(A) = Pr[AG ⇒ 1 | b = 1]− Pr[AG ⇒ 1 | b = 0] .

A public key encryption Σ is a triple of three algorithms KGen, Enc, and Dec,
where

– KGen : N→ SK×PK is the key generation algorithm which takes a security
parameter1 as input and outputs a secret key and a public key.

– Enc : PK ×M × R → C is the encryption algorithm which maps a public
key, a message, and a randomness to a ciphertext.

– Dec : SK× C →M is the decryption algorithm which outputs a message on
input a secret key and a ciphertext.

By SK, PK, M, C, and R we denote the secret key space, public key space,
message space, ciphertext space, and randomness space, respectively.

2.2 Security Against Resetting Attacks

Yilek [28] defines security against resetting attacks, which extends the standard
notion of IND-CPA.2 This models a scenario in which the randomness used to
encrypt might be reused, for instance, when performed on a virtual machine
using snapshots. The security game is displayed in Fig. 1. The adversary gets
access to a challenge left-or-right oracle LR-Enc and aims to distinguish which
of its messages it encrypts. In addition, the adversary gets an encryption oracle
Enc which allows to encrypt using arbitrary, adversarial chosen public keys. The
crucial part is that the adversary specifies an index for both oracles to determine
which randomness is used to encrypt, i.e., repeating an index results in a repeated
randomness. This is also the reason for the additional encryption oracle. In the
classical IND-CPA setting, there is no need for this oracle since the adversary
can encrypt locally.

1 We will often omit this input.
2 In [28] the notion is also extended to the IND-CCA case, which is not relevant for

this work.
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Game LR-RA

b←$ {0, 1}
(sk∗, pk∗)←$ KGen()

b′ ← ALR-Enc,Enc(pk∗)

return (b′ = b)

oracle LR-Enc(m0,m1, i)

if f [i] = ⊥
f [i]←$R

r∗ ← f [i]

if b = 0

c ← Enc(pk∗,m0; r∗)

else

c ← Enc(pk∗,m1; r∗)

return c

oracle Enc(pk,m, i)

if f [i] = ⊥
f [i]←$R

r∗ ← f [i]

c ← Enc(pk,m; r∗)

return c

Fig. 1: Security game to define LR-RA security using different randomnesses.

Yilek gives two lemmas to simplify the notion. One lemma shows that we
can restrict the notion to a single randomness which is used for every encryption
query by the adversary. The other lemma, identified as flawed in [20], claims that
we can restrict the adversary to a single query to its left-or-right oracle LR-Enc.
Below we recall the former.

Lemma 1 ([28, Lemma 1]). Let Σ be a PKE scheme and the game LR-RA be
defined as in Fig. 1. Then for any adversary A, making q queries to LR-Enc and
querying in total t different indices to LR-Enc and Enc, there exists an adversary
B, making q queries to LR-Enc and querying only a single index to LR-Enc and
Enc such that

AdvLR-RA
Σ (A) ≤ tAdvLR-RA

Σ (B) .

Lemma 1 allows to simplify the security game by choosing one randomness r∗ at
the beginning of the game which is used for every query by the adversary. The
simplified security game LR-RA is displayed in Fig. 2.

Game LR-RA

b←$ {0, 1}
(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ALR-Enc,Enc(pk∗)

return (b′ = b)

oracle LR-Enc(m0,m1)

if b = 0

c ← Enc(pk∗,m0; r∗)

else

c ← Enc(pk∗,m1; r∗)

return c

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

Fig. 2: Security game to define LR-RA security.

To exclude trivial wins, Yilek [28] defines equality-pattern respecting adver-
saries. Intuitively, these are adversaries which never repeat a message to their
encryption oracles and do not make two challenge queries which are equal in
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the left message but different in the right message, or vice versa. Below we for-
mally define such adversaries.3 Note that this definition is necessary to achieve
a meaningful security notion, but is not an immoderate restriction imposed on
the adversary.

Definition 2. Let A be an adversary playing LR-RA which makes q queries to
LR-Enc. Let E be the set of messages m such that A makes a query (pk∗,m)
to Enc. Let (m1

0 ,m
1
1 ), . . . , (mq

0 ,m
q
1 ) be the queries to LR-Enc. We say that A is

equality-pattern respecting if

– for all b ∈ {0, 1} and i ∈ [q ], mi
b /∈ E and

– for all b ∈ {0, 1} and i 6= j, mi
b = mj

b =⇒ mi
1−b = mj

1−b.

The LR-RA advantage of an adversary is defined as follows.

Definition 3. Let Σ = (KGen, Enc, Dec) be a public key encryption scheme and
the game LR-RA be defined as in Fig. 2. For any equality-pattern respecting
adversary A, its LR-RA advantage is defined as

AdvLR-RA(A) := 2 Pr[LR-RAA ⇒ true]− 1 .

3 LR-RA-Insecure Public Key Encryption Schemes

To show that the security notion LR-RA is strictly stronger than the classical
notion of ciphertext indistinguishability (IND-CPA), Yilek gives a separation
example, i.e., a PKE scheme that is IND-CPA-secure but LR-RA-insecure. The
scheme follows the standard hybrid encryption idea and combines an arbitrary
public key encryption scheme with the one-time pad encryption. The concrete
scheme4 is displayed in Fig. 3. The core observation is that in the resetting attack
case, the same one-time key will be used for every query as it is derived from
the (reused) randomness. By making one query to the oracle Enc, the adversary
learns this one-time key which it can then use to decrypt its challenge query.

This clearly shows that the LR-RA security notion is stronger than the clas-
sical IND-CPA security notion. However, the attack does not exploit a weakness
in the scheme. It essentially bypasses the security by using the one-time pad
in an insecure way, namely, using a key twice. We emphasise that this specific
attack no longer works if the one-time pad encryption is replaced with a secret
key encryption scheme for which using the same secret key does not affect the
security. Furthermore, the idea behind the hybrid encryption scheme is to avoid
encrypting a large message using a (costly) public key encryption. Since a key for
the one-time pad has the same length as the message, instantiating the hybrid
encryption scheme with the one-time pad defeats its main advantage. The given

3 Note that this definition is tailored to the single randomness setting. The equivalent,
more complicated definition for multiple randomnesses (see, e.g., [28, Appendix A])
is irrelevant for this work and therefore omitted.

4 In [28] the schemes also consists of a MAC to achieve CCA security which we omit
here for simplicity.
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KGen(λ)

(sk, pk)← KGen
P (λ)

return (sk, pk)

Enc(pk,m; r)

k , r∗ ← r

c1 ← Enc
P (pk, k ; r∗)

c2 ← k ⊕m

return c ← (c1, c2)

Fig. 3: Separation example given in [28]. Algorithms KGenP and EncP are the key
generation and encryption algorithm of the underlying PKE scheme, respectively.

separation is therefore more of theoretical interest and raises the question how
critical resetting attacks are in practice.

In this section, we show that resetting attacks are devastating in practice
by showing that many PKE schemes are susceptible to these attacks. To this
end, in Section 3.1, we define a class of public key encryption schemes that we
call PK-splittable and show that such schemes are LR-RA-insecure. We then
show, in Section 3.2, that every PKE scheme following the LWE-based scheme
by Regev [22], several code-based encryption schemes, and any instantiation of
the hybrid encryption scheme - i.e., not just the one using the one-time pad -, lie
in this class of encryption schemes. Hence all these scheme are insecure against
resetting attacks.

3.1 A Class of LR-RA-Insecure PKE Schemes

We define the term PK-splittable for public key encryption schemes. Intuitively,
these are schemes for which the public key and the ciphertext can be divided
into two parts such that: 1. each part of the public key affects exactly one part
of the ciphertext and 2. only one part of the ciphertext depends on the message
that is encrypted. Below we give the formal definition.

Definition 4. Let Σ = (KGen, Enc, Dec) be a public key encryption scheme,
where PK = PKf ×PKg with PKg 6= ∅ and C = X ×Y. If there exist functions
f : PKf × R ×M → X and g : PKg × R → Y such that for any public key
pk = (pkf , pkg) it holds that

Enc(pk,m; r) = (f(pkf , r ,m), g(pkg, r)) ,

then we say that Σ is a PK-splittable public key encryption scheme with core
encryption function f and auxiliary encryption function g.

From Definition 4 it is easy to see that PK-splittable public key encryption
schemes are LR-RA insecure. First, the adversary makes a query to the chal-
lenge oracle LR-Enc on two randomly chosen messages to obtain a challenge
ciphertext. Then it queries both messages to the oracle Enc but on a public key
which differs from the challenge public key only in the part affecting the aux-
iliary encryption function g. To determine the secret bit, the adversary simply
compares the output of the core encryption function f for its queries. This is
formalised in the following theorem.
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Theorem 5. For any PK-splittable public key encryption scheme Σ, there exists
an adversary A such that

AdvLR-RA(A) = 1 .

Proof. We construct the following adversary A playing LR-RA. Upon receiving
the target public key pk∗ = (pk∗f , pk

∗
g), A chooses two messages m0 and m1

at random and queries (m0,m1) to LR-Enc to obtain a challenge ciphertext c.
Subsequently, A runs KGen to obtain a public key pk′ = (pk′f , pk

′
g), sets pk =

(pk∗f , pk
′
g), and queries both (pk,m0) and (pk,m1) to Enc to obtain ciphertexts c0

and c1. Let cf0 , cf1 , and cf be the core encryption function parts of the ciphertext

c0, c1, and c, respectively. If cf = cf0 , A outputs 0. If cf = cf1 , it outputs 1.
Since Σ is a PK-splittable scheme, we have c0 = (f(pk∗f , r

∗,m0), g(pk′g, r
∗))

and c1 = (f(pk∗f , r
∗,m1), g(pk′g, r

∗)). The ciphertext c depends on the secret
bit b of the game LR-RA. If b = 0, c equals (f(pk∗f , r

∗,m0), g(pk∗g, r
∗)) and if

b = 1, it equals (f(pk∗f , r
∗,m1), g(pk∗g, r

∗)). Hence, if b = 0, the core encryption
function part of the ciphertext c is equal to the core encryption function part of
c0. Likewise, if b = 1, the core encryption function parts of c and c1 are equal.
This enables A to perfectly distinguish the cases b = 0 and b = 1.

It remains to argue that A is a valid adversary against LR-RA. Since it queries
m0 and m1 both to LR-Enc and Enc it looks like A is not equality-pattern respect-
ing. However, the property equality-pattern respecting only prohibits querying a
message to LR-Enc which has been queried to Enc together with the target public
key. Our adversary never queries Enc on the target public key since it replaces
pk∗g, i.e., the part that affects the auxiliary encryption function, for both queries.
Hence the set E is empty which yields that A is an equality-pattern respecting
adversary. ut

3.2 Real-World PKE Schemes that are LR-RA-Insecure

The backbone of many lattice-based encryption schemes [3,10,12,16,17,19,21,25]
is the LWE-based public key encryption scheme due to Regev [22], which is
displayed in Fig. 4 (for sake of simplicity we give the scheme in a generic form
without specifying concrete sets). It is easy to see that from the two ciphertext
parts c1 and c2, only c1 depends on the message. Furthermore, each entry of
the public key (a and b) affects exactly one ciphertext part. Thus, this scheme
is PK-splittable. A similar argument applies to the code-based PKE schemes
HQC [1], RQC5 [2], and ROLLO-II [4], which are also displayed in Fig. 4 (again
in a generic form for sake of simplicity). For all schemes, only c2 is affected
by the message and the public key can be split into a core encryption function
and auxiliary encryption function related part (for ROLLO-II there is no core
encryption function related part of the public key). This is formalised in the
lemma below, the proof is given in Appendix A.1.

5 RQC is very much akin to HQC, hence we provide the description and the formal
proofs only for HQC.

8



KGen(λ; r)

a, s, e← r

b← as + e

pk← (a, b)

sk← s

return (sk, pk)

Enc(pk,m; r)

parse pk as (a, b)

e1, e2, d← r

c1 ← bd + e1 + Encode(m)

c2 ← ad + e2

return c ← (c1, c2)

KGen(λ; r)

h,x,y,G← r

s← x + hy

pk← (h, s,G)

sk← (x,y)

return (sk, pk)

Enc(pk,m; r)

parse pk as (h, s,G)

r1, r2, e← r

c1 ← r1 + hr2

c2 ← mG + sr2 + e

return c ← (c1, c2)

KGen(λ; r)

x,y← r

h← x−1y

pk← h

sk← (x,y)

return (sk, pk)

Enc(pk,m; r)

parse pk as h

e1, e2 ← r

c1 ← e1 + e2h

c2 ← m ⊕ Hash(Supp(e1, e2))

return c ← (c1, c2)

Fig. 4: LWE-based public key encryption schemes (left) and code-based public
key encryption schemes HQC (middle) and ROLLO-II (right).

Lemma 6. The LWE-based public key encryption scheme and the code-based
public key encryption schemes HQC and ROLLO-II (cf. Fig. 4) are PK-splittable.

Corollary 7. The LWE-based public key encryption schemes and the code-based
public key encryption schemes HQC and ROLLO-II are LR-RA insecure. For
each scheme there exists an adversary A such that

AdvLR-RA(A) = 1 .

Proof. Follows directly from Theorem 5 and Lemma 6. ut

Now we turn our attention towards the security of the hybrid encryption scheme
against resetting attacks. As discussed above, the attack proposed in [28] exploits
the insecurity of the one-time pad when a key is used more than once. The
attack no longer works when using an arbitrary symmetric key encryption scheme
instead of the one-time pad, as the adversary does not learn the symmetric
key from a single query. However, we show that the hybrid encryption scheme
(cf. Fig. 5) is PK-splittable, irrespective of the underlying schemes. This shows
that any instantiation is susceptible to resetting attacks.

Lemma 8. Let (KGenP , EncP , DecP ) be a public key encryption scheme and
(EncS , DecS) be a symmetric key encryption scheme. The resulting hybrid en-
cryption scheme (KGen, Enc, Dec), see Fig. 5, is a PK-splittable scheme.

Proof. The scheme written as a PK-splittable scheme is displayed in Fig. 5. ut

Corollary 9. The hybrid encryption scheme is LR-RA insecure. There exists
an adversary A such that

AdvLR-RA(A) = 1 .

Proof. Follows directly from Theorem 5 and Lemma 8. ut
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KGen(λ)

(sk, pk)← KGen
P (λ)

return (sk, pk)

Enc(pk,m; r)

k , r∗, r ′ ← r

c1 ← Enc
P (pk, k ; r∗)

c2 ← Enc
S(k ,m; r ′)

return c ← (c1, c2)

KGen(λ; r)

(sk, pk)← KGen
P (λ; r)

pkg ← pk

pkf ← ∅
return (sk, (pkf , pkg))

Enc(pk,m; r)

parse pk as (pkf , pkg)

c1 ← g(pkg, r)

c2 ← f(pkf , r ,m)

return c ← (c1, c2)

f(pkf , r ,m)

parse pkf as ∅
k , r∗, r ← r

return Enc
S(k ,m; r ′)

g(pkg, r)

parse pkg as pk

k , r∗, r ← r

return Enc
P (pk, k ; r∗)

Fig. 5: Left: Hybrid encryption scheme combining a public key encryption scheme
(KGenP , EncP , DecP ) and a symmetric key encryption scheme (EncS , DecS).
Right: Hybrid encryption scheme written as a PK-splittable scheme.

4 Left-or-Right Security against Resetting Attacks

In this section, we show that security against adversaries making a single query to
the challenge oracle implies security against adversaries making multiple queries
to the challenge oracle. This confirms the claim made in [28] by using a different
proof that does not suffer from the issue pointed out in [20]. In Section 4.1 we
recall the proof given in [28] and its flaw that has been identified in [20]. We
construct an adversary which distinguishes the hybrid games almost perfectly,
which entails that the existing proof can not be fixed. We then give a different
proof for the claim in Section 4.2.

4.1 Shortcomings of Yilek’s Proof

We specify two special queries, which are not forbidden by Definition 2. It turns
out that these queries are the ones that invalidate the proof in [28]. First, after
making a query (m0,m1) to LR-Enc, the adversary can make the same query to
LR-Enc. We call this a repeating query. Second, after making a query (m0,m1)
to LR-Enc, the adversary can query (m1,m0) to LR-Enc. We call this a flipping
query.

The proof in [28] uses a sequence of hybrid games H0, . . . ,Hq (cf. Fig. 6).
In Hi, the first i queries are answered by encrypting the right message m1,
while the remaining q − i queries are answered by encrypting the left message
m0. By construction, H0 and Hq equal game LR-RA with secret bit b = 0 and
b = 1, respectively. To bound two consecutive hybrids Hi−1 and Hi, the following
reduction Ri is constructed. Each query by A to Enc is forwarded by Ri to its
own oracle Enc. The first i − 1 challenge queries are answered by querying the
left message to Enc, the last q−i challenge queries by querying the right message
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to Enc, in both cases together with the target public key pk∗. The i-th challenge
query is forwarded by Ri to its own challenge oracle LR-Enc.

We now elaborate why the reduction does not work if the adversary makes
a repeating query or a flipping query.6 Let (m0,m1) be the i-th challenge query
by A. Let j, k > i and, wlog, assume that the j-th and k-th query are (m0,m1)
and (m1,m0), respectively. Thus, the j-th query is a repeating query and the
k-th query is a flipping query. For the j-th query, the reduction would query its
oracle Enc on m0 and for the k-th query it would query it on m1. Neither of
these two queries is allowed, as both m0 and m1 have been queried to LR-Enc.
Thus, this makes the reduction not equality-pattern respecting.

At the first glance, this looks like an issue in the reduction, but we show
that the issue lies in the hybrid games. More precisely, we give an equality-
pattern respecting adversary that can distinguish two consecutive hybrid games
with probability 1. This adversary rules out any proof using these hybrid games,
thereby preventing a simple fix of the proof in [28].

Lemma 10. Let Σ = (KGen, Enc, Dec) be a perfectly correct public key encryp-
tion scheme and Hi be the hybrid game displayed in Fig. 6. For any i ∈ [q ], there
exists an adversary Ai such that

Pr[AHi
i ⇒ 0]− Pr[AHi−1

i ⇒ 0] = 1 .

Game Hi

b←$ {0, 1}
ctr ← 0

(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ALR-Enc,Enc(pk∗)

oracle LR-Enc(m0,m1)

ctr ← ctr + 1

if ctr ≤ i
c ← Enc(pk∗,m1; r∗)

else

c ← Enc(pk∗,m0; r∗)

return c

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

Fig. 6: Hybrid games in the proof in [28].

Proof. For i ∈ [q − 1], we construct the following adversary Ai. The first i − 1
and the last q− i−1 queries are randomly chosen messages that have never been
queried. For the i-th query, Ai picks two messages m0 and m1 at random and
queries LR-Enc on (m0,m1) to obtain a ciphertext ci. For the (i + 1)-th query,
Ai invokes LR-Enc on the flipping query (m1,m0), resulting in a ciphertext ci+1.
If ci = ci+1, Ai outputs 0. Otherwise, it outputs 1.

In game Hi−1, both the i-th and the (i+1)-th query are answered by encrypt-
ing the left message. Since the i-th and (i + 1)-th queries by Ai are (m0,m1)
and (m1,m0), this yields ci ← Enc(pk∗,m0; r∗) and ci+1 ← Enc(pk∗,m1; r∗).

6 The issue described in [20] corresponds to the issue for flipping queries we show here.
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Then we have ci 6= ci+1 since the scheme is perfectly correct. In game Hi,
the i-th query is answered by encrypting the right message instead. This yields
ci ← Enc(pk∗,m1; r∗) and ci+1 ← Enc(pk∗,m1; r∗). Hence we have ci = ci+1.

The adversary Aq performs q − 2 challenge queries on random messages,
followed by querying first (m1,m0) and then (m0,m1). The same argument as
above allows A to distinguish with probability 1. ut

Remark 11. When considering public key encryption schemes with negligible
probability for decryption failures, the distinguishing advantage decreases neg-
ligibly. That is because the ciphertexts ci and ci+1 for the message m0 and m1

might be equal in Hi−1. Nevertheless, two consecutive hybrids can be distin-
guished almost perfectly.

4.2 Alternative Proof for Yilek’s Claim

Having established that the proof approach in [28] does not work, we now turn
our attention towards providing a different proof for the statement. Recall that
the flawed proof uses a single hybrid argument over the number of queries by the
adversary. To deal with the issue of flipping and repeating queries, we change the
overall approach as follows. First, instead of a single hybrid argument where we
switch from encryption of the left messages to encryption of the right messages,
we use two hybrid arguments: one where we first switch from encrypting the
left messages to encrypting random messages and one where we switch from
encrypting random messages to encrypting the right messages. Second, instead
of doing the hybrid argument over the number of queries, we do the hybrid
argument over the number of distinct queries, i.e., non-repeating queries, by the
adversary. The former change avoids the issue of flipping queries while the latter
change circumvents the issue of repeating queries.

Below we state our main result. It shows that, in the case of resetting at-
tacks, security against adversaries making a single query to their challenge oracle
implies security against adversaries making multiple queries to their challenge
oracle. It confirms the claim in the flawed lemma in [28] at the cost of an addi-
tional factor of 2 in the bound.

Theorem 12. Let Σ = (KGen, Enc, Dec) be a public key encryption scheme and
the LR-RA security game be defined as in Fig. 2. Then for any equality-pattern
respecting adversary A making q distinct queries to LR-Enc, there exists an
equality-pattern respecting adversary R making 1 query to LR-Enc, such that

AdvLR-RA
Σ (A) ≤ 2q AdvLR-RA

Σ (R) .

Proof. We prove the theorem using hybrid games L0, . . . , Lq ,R0, . . . ,Rq which
are displayed in Fig. 7. In game Li, the first i distinct challenge queries are
answered by encrypting a random message while the remaining q − i distinct
challenge queries are answered by encrypting the left message. Game Ri is de-
fined analogously except that the right message, rather than the left message, is
encrypted. Note that, in any game, repeating queries are answered by looking

12



Games Li, Ri

b←$ {0, 1}
ctr ← 0

Q ← ∅
(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ALR-Enc,Enc(pk∗)

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

oracle LR-Enc(m0,m1) in Li

if ∃c s.t. (m0,m1, c) ∈ Q
return c

ctr ← ctr + 1

if ctr ≤ i
m∗ ←$M
c ← Enc(pk∗,m∗; r

∗)

else

c ← Enc(pk∗,m0; r∗)

Q ←∪ (m0,m1, c)

return c

oracle LR-Enc(m0,m1) in Ri

if ∃c s.t. (m0,m1, c) ∈ Q
return c

ctr ← ctr + 1

if ctr ≤ i
m∗ ←$M
c ← Enc(pk∗,m∗; r

∗)

else

c ← Enc(pk∗,m1; r∗)

Q ←∪ (m0,m1, c)

return c

Fig. 7: Hybrid games Li and Ri used to prove Theorem 12.

up the previous response in the set Q. From this description we can deduce that
hybrid games L0 and R0 correspond to the game LR-RA with secret bit b = 0 and
b = 1, respectively. Furthermore, hybrid games Lq and Rq are identical, as they
both answer all q distinct challenge queries by encrypting a random message.
Thus we have

AdvLR-RA(A) = Pr[ALR-RA ⇒ 0 | b = 0]− Pr[ALR-RA ⇒ 0 | b = 1]

= Pr[AL0 ⇒ 0]− Pr[AR0 ⇒ 0]

= Pr[AL0 ⇒ 0]− Pr[ALq ⇒ 0] + Pr[ARq ⇒ 0]− Pr[AR0 ⇒ 0]

≤
q∑
i=1

(
Pr[ALi−1 ⇒ 0]− Pr[ALi ⇒ 0]

)
+

q∑
i=1

(
Pr[ARi ⇒ 0]− Pr[ARi−1 ⇒ 0]

)
.

To bound the consecutive hybrids Li−1 and Li, we construct the following adver-
sary Bi playing LR-RA. On input pk∗, Bi runs A on input pk∗. When A makes a
query m to Enc, Bi forwards m to its own oracle Enc and the response back to A.
For the first i − 1 distinct queries (m1

0 ,m
1
1 ), . . . , (mi−1

0 ,mi−1
1 ) by A to LR-Enc,

Bi responds by querying its oracle Enc on a random message m∗ ← $M and
the target public key pk∗ to obtain a ciphertext that it forwards to A. For the
i-th distinct query (mi

0,m
i
1), Bi chooses m∗ ←$M, queries (mi

0,m∗) to its oracle
LR-Enc, and sends the response back to A. For the last q − i distinct queries
(mi+1

0 ,mi+1
1 ), . . . , (mq

0 ,m
q
1 ) by A to LR-Enc, Bi queries its oracle Enc q− i times

on mi+1
0 , . . . ,mq

0 together with the target public key pk∗ and forwards the re-
sponse to A. For all these distinct queries, Bi stores the queried messages along
with the returned ciphertext in a set Q. For any repeating query, Bi returns the
same ciphertext which it looks up in the set Q. When A halts and outputs a bit
b′, Bi outputs b′.

13



Recall that the proof in [28] does not hold since the reduction has to make a
forbidden query. Since our reduction makes only one query to LR-Enc, we have
to ensure that it never queries its oracle Enc on one of the messages queried to
LR-Enc. The critical part is the simulation of the oracle LR-Enc for A using the
oracle Enc. By construction, Bi queries LR-Enc on (mi

0,m∗), where mi
0 is from

the i-th query (mi
0,m

i
1) to LR-Enc by A and m∗ is a randomly chosen message

by Bi. Prior to this query, Bi invokes Enc only on random messages, hence the
probability that one of these is equal to either mi

0 or m∗ is negligible. Subsequent
to its challenge query, Bi queries Enc on the left messages that A queries to its
challenge oracle. We know that the only queries of the form (mi

0, ·) are repeating
queries, i.e., (mi

0,m
i
1). Any query (mi

0,m
′) where m ′ 6= mi

1 is excluded as A is
equality-pattern respecting. Since repeating queries are answered using the set
Q, they do not involve an oracle query by Bi. Hence Bi is a valid adversary, i.e.,
equality-pattern respecting, playing LR-RA.

By construction we have that Bi simulates Li−1 and Li if its own challenge
bit b is 0 and 1, respectively. This yields

Pr[ALi−1 ⇒ 0]− Pr[ALi ⇒ 0] ≤ Pr[BLR-RA
i ⇒ 0 | b = 0]− Pr[BLR-RA

i ⇒ 0 | b = 1]

≤ AdvLR-RA(Bi) .

Analogously, we can construct adversaries Ci to bound consecutive hybrid games
Ri−1 and Ri with the following two differences. First, for the i-th distinct query
(mi

0,m
i
1) by A, Ci queries its own challenge oracle LR-Enc on (m∗,m

i
1), for a

randomly chosen message m∗, and sends the result back to A. For the last q − i
distinct queries (mi+1

0 ,mi+1
1 ), . . . , (mq

0 ,m
q
1 ) by A, Ci invokes its oracle Enc on

the right messages, i.e., mi+1
1 , . . . ,mq

1 , and sends the responses back to A. At
the end, Ci outputs b′, where b′ is the output of A.

Just as above, Ci simulates Ri if b = 0 and Ri−1 if b = 1, which yields

Pr[ARi ⇒ 0]− Pr[ARi−1 ⇒ 0] ≤ Pr[CLR-RA
i ⇒ 0 | b = 0]− Pr[CLR-RA

i ⇒ 0 | b = 1]

≤ AdvLR-RA(Ci) .

Let R be the adversary with the highest advantage among B1, . . . ,Bq , C1, . . . , Cq .
Then it holds that

AdvLR-RA(A) ≤
q∑
i=1

(
Pr[ALi−1 ⇒ 0]− Pr[ALi ⇒ 0]

)
+

q∑
i=1

(
Pr[ARi ⇒ 0]− Pr[ARi−1 ⇒ 0]

)
≤

q∑
i=1

(
AdvLR-RA(Bi)

)
+

q∑
i=1

(
AdvLR-RA(Ci)

)
≤ 2q AdvLR-RA(R) .

This proves the claim. ut
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We briefly discuss why the issue of the proof in [28] does not occur here. In [28],
the reduction did not work as the adversary can query LR-Enc on (m0,m1) in the
i-th query and later make a flipping query (m1,m0). Then the reduction would
query (m0,m1) to its oracle LR-Enc and later m1 to its oracle Enc which makes
the reduction not equality-pattern respecting. The adversary can do the same in
our case. However, our reduction invokes its oracle LR-Enc on (m0,m∗), rather
than (m0,m1), which allows it to later invoke its oracle Enc on m1. The issue of
repeating queries does not occur as the reduction never makes an oracle query
when the adversary makes a repeating query.

5 An Equivalent Security Notion

In this section we study security against resetting attacks in a real-or-random
sense. In Section 5.1, we first define the corresponding security game and then
show that security against adversaries making a single query to the challenge or-
acle implies security against adversaries making multiple queries to the challenge
oracle. In classical security notions for public key encryption, it is known that
left-or-right security and real-or-random security are equivalent. In Section 5.2,
we show that this equivalence also holds for resetting attacks. As a side effect,
these results yield a modular proof for our main result Theorem 12, which we
give in Section 5.3.

5.1 Real-or-Random Security against Resetting Attacks

In Fig. 8 we give the real-or-random security game RR-RA against resetting at-
tacks. It is easy to see that this notion is unachievable, even when imposing the
standard equality-pattern restrictions on the adversary (cf. Definition 2). An
adversary simply queries the same message twice to its real-or-random oracle
RR-Enc. In case b = 0, it obtains the same ciphertext since the same message is
encrypted under the same randomness. In case b = 1, however, the ciphertexts
will be different (even though they used the same randomness) as two differ-
ent messages will be encrypted. This allows the adversary to distinguish with
overwhelming probability.

Game RR-RA

b←$ {0, 1}
(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ARR-Enc,Enc(pk∗)

return (b′ = b)

oracle RR-Enc(m)

if b = 0

c ← Enc(pk∗,m; r∗)

else

m∗ ←$M
c ← Enc(pk∗,m∗; r

∗)

return c

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

Fig. 8: Security game to define RR-RA security.

15



To circumvent this trivial win, we can use the security game as displayed in
Fig. 9. The game keeps a list of messages queried to the real-or-random oracle
and ensures that, in case b = 1, the same random message is encrypted when
the adversary queries the same challenge message. In the game displayed in
Fig. 9 this is done via the table f . This prevents the trivial attack described
above. However, it also renders repeating queries obsolete as it does not give the
adversary any additional information.

Game RR-RA

b←$ {0, 1}
(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ARR-Enc,Enc(pk∗)

return (b′ = b)

oracle RR-Enc(m)

if b = 0

c ← Enc(pk∗,m; r∗)

else

if f [m] = ⊥
f [m]←$M

m∗ ← f [m]

c ← Enc(pk∗,m∗; r
∗)

return c

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

Fig. 9: Real-or-random security dealing with repeating queries.

Due to this, we stick with the security game displayed in Fig. 8 and exclude
repeating queries via the definition of equality-pattern respecting. Instead of
having two different definitions for equality-pattern respecting, depending on
the left-or-right and real-or-random case, we use the unified definition below. It
extends Definition 2 to also cover real-or-random adversaries.

Definition 13. Let ALR and ARR be adversaries playing LR-RA and RR-RA,
respectively. Let further ELR (resp. ERR) be the set of messages m such that ALR
(resp. ARR) makes a query (pk∗,m) to Enc. Let (m1

0 ,m
1
1 ), . . . , (mq

0 ,m
q
1 ) be the

queries that ALR makes to LR-Enc and m1, . . . ,mq be the queries of ARR to
RR-Enc.
We say that ALR is equality-pattern respecting if

– for all b ∈ {0, 1} and i ∈ [q ], mi
b /∈ ELR and

– for all b ∈ {0, 1} and i 6= j, mi
b = mj

b =⇒ mi
1−b = mj

1−b.

We say that ARR is equality-pattern respecting if

– for all i ∈ [q ], mi /∈ ERR and

– for i 6= j it holds that mi 6= mj.

Just as for the left-or-right case, the real-or-random (RR-RA) advantage of an
adversary is defined as its advantage over random guessing scaled to the interval
from 0 to 1.
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Definition 14. Let Σ = (KGen, Enc, Dec) be a public key encryption scheme
and the game RR-RA be defined as in Fig. 8. For any equality-pattern respecting
adversary A, its RR-RA advantage is defined as

AdvRR-RA(A) := 2 Pr[RR-RAA ⇒ true]− 1 .

We now show that real-or-random security against adversaries making a single
query to the challenge oracle RR-Enc implies real-or-random security against
adversaries making multiple queries to the challenge oracle RR-Enc. It turns out
that the standard hybrid technique, which failed in the left-or-right case, works
for this setting. This stems from the fact that the real-or-random adversary
submits only one message to its challenge oracle. This makes it impossible to
make a flipping query which was the main issue in the left-or-right setting.

Theorem 15. Let Σ be a public key encryption scheme and the game RR-RA be
defined as in Fig. 8. Then for any equality-pattern respecting (cf. Definition 13)
adversary A making q queries to its challenge oracle RR-Enc, there exists an
equality-pattern respecting adversary B making 1 query to RR-Enc such that

AdvRR-RA
Σ (A) ≤ q AdvRR-RA

Σ (B) .

Game Hi

b←$ {0, 1}
(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ALR-Enc,Enc(pk∗)

oracle LR-Enc(m)

c← c+ 1

if c ≤ i
m∗ ←$M
c ← Enc(pk∗,m∗; r

∗)

else

c ← Enc(pk∗,m; r∗)

return c

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

Fig. 10: Hybrid games used to prove Theorem 15.

Proof. The theorem can be proven using a standard hybrid argument. We use
q + 1 hybrid games H0, . . . ,Hq which are displayed in Fig. 10. In hybrid Hi, the
first i queries are answered by encrypting a random message, while the remaining
q− i queries are answered by encrypting the message provided by the adversary.
It holds that

AdvRR-RA(A) ≤ 2 Pr[RR-RAA ⇒ true]− 1

≤ Pr[ARR-RA ⇒ 0 | b = 0]− Pr[ARR-RA ⇒ 0 | b = 1]

≤ Pr[AH0 ⇒ 0]− Pr[AHq ⇒ 0]

≤
q∑
i=1

(
Pr[AHi−1 ⇒ 0]− Pr[AHi ⇒ 0]

)
.
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We construct the following adversary Bi to bound the distinguishing advantage
between Hi−1 and Hi. It runs A on the same public key pk∗ it receives as input
and answers any query to Enc by A using its own oracle Enc. For the first i− 1
challenge queries m1, . . . ,mi−1 by A, Bi invokes its oracle Enc on randomly
chosen messages. For the i-th query mi, Bi invokes its own challenge oracle on
mi and sends the obtained ciphertext back to A. For the last q − i queries
mi+1, . . . ,mq by A, Bi invokes its oracle Enc on mi+1, . . . ,mq .

The adversary Bi perfectly simulates Hi−1 and Hi forA if its own challenge bit
is 0 and 1, respectively. To show that Bi is equality-pattern respecting, we have to
show that it never repeats a query to RR-Enc and never queries a message to both
RR-Enc and Enc. The former is trivial as Bi makes exactly one query to RR-Enc.
For the latter, recall that only challenge queries by A that are answered using
Enc can be problematic (otherwise, A would not be equality-pattern respecting).
Since A is equality-pattern respecting, all its queries are on fresh messages, which
yields that Bi never queries its challenge message also to Enc. Hence we have

AdvRR-RA(A) ≤
q∑
i=1

(
Pr[AHi−1 ⇒ 0]− Pr[AHi ⇒ 0]

)
≤

q∑
i=1

(
AdvRR-RA(Bi)

)
.

Let B be the adversary with the highest advantage among B1, . . . ,Bq . Then

AdvRR-RA(A) ≤
q∑
i=1

(
AdvRR-RA(Bi)

)
≤ q AdvRR-RA(B) ,

which proves the claim. ut

5.2 Real-or-Random and Left-or-Right Security are Equivalent

In this section we show that our real-or-random security notion against resetting
attacks is equivalent to the left-or-right security notion given in [28]. We show
the equivalence by proving two lemmas. The former shows that left-or-right se-
curity implies real-or-random security while the latter shows that real-or-random
security implies left-or-right security. The proofs appear in Appendix A.2 and
Appendix A.3, respectively.

Lemma 16. Let Σ be a public key encryption scheme and the games RR-RA and
LR-RA be defined as in Fig. 8 and Fig. 2, respectively. Then for any equality-
pattern respecting (cf. Definition 13) adversary A making q queries to its chal-
lenge oracle RR-Enc, there exists an equality-pattern respecting (cf. Definition 13)
adversary B making q distinct queries to LR-Enc such that

AdvRR-RA
Σ (A) ≤ AdvLR-RA

Σ (B) .
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Lemma 17. Let Σ be a public key encryption scheme and the games RR-RA and
LR-RA be defined as in Fig. 8 and Fig. 2, respectively. Then for any equality-
pattern respecting (cf. Definition 13) adversary A making q distinct queries to
its challenge oracle LR-Enc, there exists an equality-pattern respecting (cf. Defi-
nition 13) adversary B making q queries to RR-Enc such that

AdvLR-RA
Σ (A) ≤ 2 AdvRR-RA

Σ (B) .

5.3 A Modular Proof for Yilek’s Claim

Having established the equivalence between left-or-right and real-or-random via
Lemma 16 and Lemma 17, we can leverage Theorem 15 to prove Theorem 12
more modular.

Proof (of Theorem 12). From Lemma 17, Theorem 15, and Lemma 16 there
exist equality-pattern respecting adversaries B, C, and R, respectively, where

– B makes q real-or-random queries,
– C makes 1 real-or-random query, and
– R makes 1 left-or-right query,

such that

AdvLR-RA
Σ (A)

(17)

≤ 2 AdvRR-RA
Σ (B)

(15)

≤ 2q AdvRR-RA
Σ (C)

(16)

≤ 2q AdvLR-RA
Σ (R) .

This proves the claim. ut
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- kyber: A cca-secure module-lattice-based KEM. In 2018 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018, pages 353–367. IEEE, 2018.

9. Tore Vincent Carstens, Ehsan Ebrahimi, Gelo Noel Tabia, and Dominique Unruh.
On quantum indistinguishability under chosen plaintext attack. IACR Cryptol.
ePrint Arch., 2020:596, 2020.

10. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. SABER. Technical report, National Institute of Stan-
dards and Technology, 2019. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-2-submissions.
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15. Juliane Krämer and Patrick Struck. Encryption schemes using random oracles:
From classical to post-quantum security. In Jintai Ding and Jean-Pierre Tillich,
editors, Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020, pages 539–558. Springer, Heidelberg, 2020.

20

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


16. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages
319–339. Springer, Heidelberg, February 2011.

17. Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang,
Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC. Technical report, National
Institute of Standards and Technology, 2019. available at https://csrc.nist.

gov/projects/post-quantum-cryptography/round-2-submissions.
18. Takahiro Matsuda and Jacob C. N. Schuldt. Related randomness security for

public key encryption, revisited. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 280–311. Springer, Heidelberg,
March 2018.

19. Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian
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A Appendix

A.1 Proof of Lemma 6

Proof. The LWE-based public key encryption scheme and the code-based public
key encryption schemes HQC and ROLLO-II written as PK-splittable schemes
are displayed in Fig. 11. ut

KGen(λ; r)

a, s, e← r

b← as + e

pkf ← b

pkg ← a

sk← s

return (sk, (pkf , pkg))

Enc(pk,m; r)

parse pk as (pkf , pkg)

c1 ← f(pkf , r ,m)

c2 ← g(pkg, r)

return c ← (c1, c2)

f(pkf , r ,m)

parse pkf as b

e1, e2, d← r

x← bd + e1 + Encode(m)

return x

g(pkg, r)

parse pkg as a

e1, e2, d← r

return ad + e2

KGen(λ; r)

h,x,y,G← r

s← x + hy

pkf ← (s,G)

pkg ← h

sk← (x,y)

return (sk, (pkf , pkg))

Enc(pk,m; r)

parse pk as (pkf , pkg)

c1 ← g(pkg, r)

c2 ← f(pkf , r ,m)

return c ← (c1, c2)

f(pkf , r ,m)

parse pkf as (s,G)

r1, r2, e← r

return mG + sr2 + e

g(pkg, r)

parse pkg as h

r1, r2, e← r

return r1 + hr2

KGen(λ; r)

x,y← r

h← x−1y

pkg ← h

pkf ← ∅
sk← (x,y)

return (sk, (pkf , pkg))

Enc(pk,m; r)

parse pk as (pkf , pkg)

c1 ← g(pkg, r)

c2 ← f(pkf , r ,m)

return c ← (c1, c2)

f(pkf , r ,m)

parse pkf as ∅
e1, e2 ← r

E ← Supp(e1, e2)

return m ⊕ Hash(E)

g(pkg, r)

parse pkg as h

e1, e2 ← r

return e1 + e2h

Fig. 11: The LWE-based PKE scheme (left) and the code-based PKE schemes
HQC (middle) and ROLLO-II (right) written as PK-splittable schemes.

A.2 Proof of Lemma 16

Proof. The adversary B runs A on the same public key pk∗ that it receives. The
oracle Enc for A is simulated by B using its own oracle Enc. When A makes
a challenge query mi, B chooses a random message m∗ and invokes its own
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challenge oracle of (mi,m∗) and sends the response back to A. When A outputs
its guess b′, B outputs b′ as its own guess.

It is easy to see that B perfectly simulates game RR-RA with secret bit b for
A, where b coincides with the secret bit that B is asked to find in game LR-RA.
Likewise, B is equality-pattern respecting. Every challenge query is on two fresh
messages since one is the message by A which never repeats a challenge message
and the other one is always sampled at random, i.e., B makes only distinct
queries. Every query to Enc stems from a query to Enc by A. ut

A.3 Proof of Lemma 17

Proof. This proof resembles the proof of Theorem 12. We use three hybrid games
H0, H1, and H2 which are displayed in Fig. 12. It holds that H0 corresponds to
game LR-RA with secret bit b = 0. The same holds for H2 except that the secret
bit b is 1. This yields

AdvLR-RA(A) ≤ 2 Pr[LR-RAA ⇒ true]− 1

≤ Pr[ALR-RA ⇒ 0 | b = 0]− Pr[ALR-RA ⇒ 0 | b = 1]

≤ Pr[AH0 ⇒ 0]− Pr[AH2 ⇒ 0]

≤ Pr[AH0 ⇒ 0]− Pr[AH1 ⇒ 0] + Pr[AH1 ⇒ 0]− Pr[AH2 ⇒ 0] .

To bound the first difference, we construct the following adversary B1. It runs A
on the same public key pk∗. Queries by A to Enc are forwarded by B1 to its own
oracle Enc as are the responses back to A. For every distinct challenge query
(mi

0,m
i
1) by A, B1 invokes its own challenge oracle RR-Enc on mi

0 and sends the
received ciphertext back to A. Every repeating query is answered with the same
ciphertext using a set Q. When A outputs a bit b′, B1 forwards b′ as its own
output.

Game Hi

b←$ {0, 1}
Q ← ∅
(sk∗, pk∗)←$ KGen()

r∗ ←$R

b′ ← ALR-Enc,Enc(pk∗)

oracle Enc(pk,m)

c ← Enc(pk,m; r∗)

return c

oracle LR-Enc(m0,m1) in H1

if ∃c s.t. (m0,m1, c) ∈ Q
return c

m∗ ←$M
c ← Enc(pk,m∗; r

∗)

Q ←∪ (m0,m1, c)

return c

oracle LR-Enc(m0,m1) in H0

if ∃c s.t. (m0,m1, c) ∈ Q
return c

c ← Enc(pk,m0; r∗)

Q ←∪ (m0,m1, c)

return c

oracle LR-Enc(m0,m1) in H2

if ∃c s.t. (m0,m1, c) ∈ Q
return c

c ← Enc(pk,m1; r∗)

return c

Fig. 12: Hybrid games used to prove Lemma 17.
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If the secret bit b in game RR-RA equals 0, B1 perfectly simulates H0 for A as
it receives back the encryption of the left message. On the other hand, if b = 1, B1
receives back the encryption of a random message, hence it perfectly simulates
H1. It remains to argue that B1 is equality-pattern respecting. It clearly does not
query Enc on on any message that it queries to RR-Enc as this would entail that
A is not equality-pattern respecting. It also never repeats a query to RR-Enc
since it queries it exactly on the left messages that A queries to LR-Enc. Since
repeating queries by A are answered using set Q, the only possibility would be
that A makes two queries (mi

0,m
i
1) and (mj

0 ,m
j
1) with mi

0 = mj
0 and mi

1 6= mj
1 .

As an equality-pattern respecting adversary, A never makes such queries. Thus
we have

Pr[AH0 ⇒ 0]− Pr[AH1 ⇒ 0] ≤ Pr[BRR-RA
i ⇒ 0 | b = 0]− Pr[BRR-RA

i ⇒ 0 | b = 1]

≤ AdvRR-RA(B1) .

In the same way, we can construct an adversary B2 to bound the advantage
of A in distinguishing H1 and H2. The difference is that B2 forwards the right
message of A as its own challenge message to RR-Enc and when A outputs a bit
b′, B2 outputs 1 − b′. It holds that B2 perfectly simulates H1 and H2 if its own
challenge bit b equals 1 and 0, respectively. Equality-pattern respecting follows
by the same argument as above. This yields

Pr[AH1 ⇒ 0]− Pr[AH2 ⇒ 0] ≤ Pr[BRR-RA
i ⇒ 1 | b = 1]− Pr[BRR-RA

i ⇒ 1 | b = 0]

≤ AdvRR-RA(B2) .

Let B be the adversary with higher advantage among B1 and B2, then we have

AdvLR-RA(A) ≤ Pr[AH0 ⇒ 0]− Pr[AH1 ⇒ 0] + Pr[AH1 ⇒ 0]− Pr[AH2 ⇒ 0]

≤ AdvRR-RA(B1) + AdvRR-RA(B2)

≤ 2 AdvRR-RA(B) .

This proves the claim. ut

Remark 18. The proof is very much akin the one for Theorem 12, where H0 and
H2 correspond to L0 and R0, respectively, while H1 equals Lq = Rq .
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