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Abstract. The boomerang and rectangle attacks are adaptions of differential crypt-
analysis that regard the target cipher E as a composition of two sub-ciphers, i.e.,
E = E1 ◦ E0, to construct a distinguisher for E with probability p2q2 by concatenat-
ing two short differential trails for E0 and E1 with probability p and q respectively.
According to the previous research, the dependency between these two differential
characteristics has a great impact on the probability of boomerang and rectangle
distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such
dependency that regards E as three parts, i.e., E = E1 ◦Em ◦E0, where Em contains
the dependency between two differential trails, satisfying some differential propagation
with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et
al. have proposed a general framework to identify the actual boundaries of Em and
systematically evaluate the probability of Em with any number of rounds, and applied
their method to accurately evaluate the probabilities of the best SKINNY’s boomerang
distinguishers. In this paper, using a more advanced method to search for boomerang
distinguishers, we show that the best previous boomerang distinguishers for SKINNY
can be significantly improved in terms of probability and number of rounds. More
precisely, we propose related-tweakey boomerang distinguishers for up to 19, 21, 23,
and 25 rounds of SKINNY-64-128, SKINNY-128-256, SKINNY-64-192 and SKINNY-128-384
respectively, which improve the previous boomerang distinguishers of these variants
of SKINNY by 1, 2, 1, and 1 round respectively. Based on the improved boomerang
distinguishers for SKINNY, we provide related-tweakey rectangle attacks on 23 rounds
of SKINNY-64-128, 24 rounds of SKINNY-128-256, 29 rounds of SKINNY-64-192, and 30
rounds of SKINNY-128-384. It is worth noting that our improved related-tweakey rect-
angle attacks on SKINNY-64-192, SKINNY-128-256 and SKINNY-128-384 can be directly
applied for the same number of rounds of ForkSkinny-64-192, ForkSkinny-128-256
and ForkSkinny-128-384 respectively. CRAFT is another SKINNY-like tweakable block
cipher for which we provide the security analysis against rectangle attack for the
first time. As a result, we provide a 14-round boomerang distinguisher for CRAFT in
the single-tweak model based on which we propose a single-tweak rectangle attack
on 18 rounds of this cipher. Moreover, following the previous research regarding
the evaluation of switching in multiple rounds of boomerang distinguishers, we also
introduce new tools called Double Boomerang Connectivity Table (DBCT), LBCT �, and
UBCT� to evaluate the boomerang switch through the multiple rounds more accurately.
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1 Introduction
The security of the Internet of Things (IoT) and other constrained environment such as
RFID systems is an emerging concern which may not be addressed using conventional
solutions. To address this concern many solutions and primitives have been proposed by
the designers so far. In this direction, the lightweight cryptography (LWC) competition
of the National Institute of Standards and Technology (NIST) was started with the aim
of standardization for such constrained environments, and candidates of the first and the
second rounds have been announced in April and September 2019, respectively. While
NIST-LWC aims to standardize lightweight Authenticated Encryption with Associated
Data and Hash functions, during the last decade researchers have done an extensive effort
to provide a strong foundation for lightweight block ciphers and as a result, a dozen
elegant lightweight block ciphers have been designed, to just name some, CRAFT [BLMR19],
SKINNY [BJK+16a], PRESENT [BKL+07], MIBS [ISSK09], SIMON [BSS+15], SPECK [BSS+15],
MIDORI [BBI+15], PRINTcipher [KLPR10], PRINCE [BCG+12] and GIFT [BPP+17].

SKINNY [BJK+16a] is a family of lightweight tweakable block ciphers using a substitution
permutation network (SPN) structure. It has received a great deal of cryptanalytic
attention. It is also used as the underlying block cipher of three submissions to the
lightweight cryptography competition held by NIST, including SKINNY-AEAD [BJK+20],
ForkAE [ALP+19], and Romulus [IKMP20]. On the other hand, many advances have been
recently proposed for both distinguisher phase [BC18,CHP+18,SQH19,WP19], and key
recovery phase [ZDM+20] of boomerang attack which is one of the most efficient attacks
on reduced SKINNY. Therefore, reevaluating the security of SKINNY against the boomerang
attack is necessary. In this paper, using a better way to search for boomerang distinguishers
of SKINNY in which switching, as well as the clustering effects are considered, we improve
the boomerang distinguishers of SKINNY [SQH19], under the related-tweakey setting at
first. Next, building upon the improved boomerang distinguishers and using the novel key
recovery attack introduced in [ZDM+20], we improve the rectangle attacks on reduced
SKINNY in the related-tweakey setting.

CRAFT is among the recent tweakable block ciphers, proposed at FSE 2019 by Beierle
et al. Besides the designers’ extensive security analysis, independent researchers also
analyzed the security of the cipher against various attacks. More precisely, Hadipour
et al. [HSN+19], extended the designers’ security analysis and provided more efficient
distinguishers based on differentials, zero correlations and integral attacks. Moghaddam
and Ahmadian [MA19] evaluated the security of this cipher against truncated differential
cryptanalysis. Although the designers have not had any security claim against related-key
attacks and even presented a full round deterministic related key distinguisher for the
cipher, ElSheikh et al. [EY19] also presented new distinguishers for CRAFT in this mode
and also extended it to full round key recovery attack. [GSS+20] is the latest work on
the security analysis of CRAFT which exploits the special properties of CRAFT to provide
weak-tweakey truncated differential distinguishers of CRAFT in the single-key model, where
they introduced a related-tweak 15-round differential characteristic with probability of
2−54, which can be extended to 19-round key-recovery attack. However, to the best of
our knowledge, there is no publicly reported security evaluation of CRAFT against the
boomerang attack. Hence, we are motivated to present the first security analysis of this
cipher against the boomerang attack.

Our contribution

Applying a heuristic approach to search for boomerang distinguishers in which we consider
the ladder switch effect, we significantly improve the best previous boomerang distinguishers
of SKINNY-n-2n and SKINNY-n-3n [LGS17,SQH19], for n ∈ {64, 128}. For instance, while the
best-published boomerang distinguisher for 18 rounds of SKINNY-128-256 [LGS17,SQH19],
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has probability 2−77.83, we have provided a new boomerang distinguisher covering the
same number of rounds with probability 2−40.77. Besides, our boomerang distinguishers
for SKINNY-128-256, cover up to 21 rounds of this variant of SKINNY, whereas the best
previous boomerang distinguisher for SKINNY-128-256 can reach up to 19 rounds of this
cipher [LGS17,SQH19]1. In other words, we improve the boomerang distinguisher of SKINNY-
128-256 by two rounds in this paper. As another example, while the best boomerang
distinguisher for SKINNY-128-384 so far, reaches up to 24 rounds and has the probability
of 2−107.86 [LGS17,SQH19]2, we introduce a new boomerang distinguisher for the same
number of rounds of SKINNY-128-384 with probability 2−87.39, which can be extended to
provide a boomerang distinguisher for 25 rounds of this variant with probability 2−116.59.
We also improve the boomerang distinguishers of SKINNY-64-128 and SKINNY-64-192 by
one round. To the best of our knowledge, our boomerang distinguishers for SKINNY-n-2n
and SKINNY-n-3n when n ∈ {64, 128}, are the best related-tweakey distinguishers so far
for these variants of SKINNY in terms of the number of rounds. Table 8 summarizes our
results for boomerang distinguishers of SKINNY.

To demonstrate the usefulness of our searching strategy for boomerang distinguishers,
we also apply it to CRAFT, and provide boomerang distinguishers for CRAFT for the first
time. Interestingly, our finding shows that the boomerang attack is very promising on
reduced CRAFT compared to the other statistical attacks in the single-tweak model, such as
differential cryptanalysis, especially if we aim to provide a practical attack. For instance,
taking advantage of the ladder switch effect, we introduce a boomerang distinguisher with
the probability 1 for 6 rounds of CRAFT, which can be extended to 8 rounds with the
probability of 2−8. As another example, while the probability of the best previously known
distinguisher for 9 rounds of the cipher in the single-tweak model is 2−40.20, we present a
practical single-tweak boomerang distinguisher for the same number of rounds with the
probability of 2−14.76, which is much higher and can be easily verified by an ordinary
personal computer. Table 2 summarizes the probability of our boomerang distinguishers
for 6 to 14 rounds of CRAFT in comparison to the best previous single-tweak distinguishers.
Moreover, we have experimentally verified the correctness of our boomerang distinguishers
for up to 12 rounds as it can be seen in Table 2.

Based on the introduced boomerang distinguishers, we also provide related-tweakey
rectangle attacks on SKINNY-n-2n and SKINNY-n-3n, for n ∈ {64, 128}, and a single-tweak
rectangle attack on CRAFT. As a result, by attacking on 29, 24 and 30 rounds of SKINNY-64-
192, SKINNY-128-256 and SKINNY-128-384, to the best of our knowledge, we could improve
the best previous attacks on these variants of SKINNY by 2, 1 and 2 rounds respectively
in terms of the number of attacked rounds. For SKINNY-64-128, we provide a 23-round
related-tweakey rectangle attack with memory and time complexity of 260.9 and 2120.7,
while the best previous related-tweakey rectangle attack covers the same number of rounds
with memory and time complexity of 2124 and 2125.91 respectively. On CRAFT, our attack
reaches 18 rounds in the single-tweak model, which is the first application of rectangle
attack on CRAFT as well as the best attack on this cipher so far in terms of the number of
attacked rounds in the single-tweak model. Table 1 summarizes our key recovery attacks
on SKINNY’s variants as well as CRAFT.

Furthermore, we have introduced some new tools to formulate the dependency between
the upper and lower differential trails of boomerang distinguishers, including DBCT, DBCT`

and DBCTa. We also introduce new variants of UBCT, LBCT and BCT including UBCT�,
LBCT �, BCT� and BCT �which are useful to consider the clustering effect in boomerang
cryptanalysis.

All of our codes to search for boomerang distinguishers of SKINNY and CRAFT and
1The best previous boomerang distinguisher for SKINNY-128-256, is an 18-round distinguisher proposed

in [LGS17,SQH19], which can be extended up to 19 rounds with probability 2−97.53.
2The best previous boomerang distinguisher for SKINNY-128-384 is a 22-round distinguisher proposed

in [LGS17,SQH19], which can be extended up to 24 rounds with probability 2−107.86.
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Table 1: Summary of results of the key recovery attacks on the variants of SKINNY and CRAFT.
Scheme #rounds Data Memory Time Attack Ps Reference

SKINNY-64-128 23/36 260.54 260.9 2120.7 Rectangle 0.977 This paper
SKINNY-64-192 29/40 261.42 280 2178 Rectangle 0.977 This paper
SKINNY-128-256 24/48 2125.21 2125.54 2209.85 Rectangle 0.977 This paper
SKINNY-128-384 30/56 2125.29 2125.8 2361.68 Rectangle 0.977 This paper

CRAFT 18/32 260.92 284 2101.7 Rectangle 0.977 This paper
SKINNY-64-128 23/36 262.47 2124 2125.91 Impossible 1 [LGS17]
SKINNY-64-192 27/40 263.5 280 2165.5 Rectangle 0.916 [LGS17]
SKINNY-128-256 23/48 2124.47 2248 2251.47 Impossible 1 [LGS17]
SKINNY-128-384 28/56 2122 2122.32 2315.25 Rectangle 0.8315 [ZDM+20]

the discovered boomerang characteristics, as well as the required codes for experimental
verification of our practical distinguishers, are publicly available via the following link:

https://github.com/hadipourh/Boomerang

Outline.

The rest of the paper is organized as follows: in Section 2, we present the required
preliminaries for boomerang and rectangle attacks. Section 3 is dedicated to introducing
new tools for boomerang cryptanalysis, and Section 4 describes our method to search
for boomerang distinguishers. In Section 5, after giving a brief description of CRAFT, we
propose boomerang distinguishers for up to 14 rounds of CRAFT, for which we apply our
new tools to model the dependency between the upper and lower differentials over up
to 7 rounds of CRAFT. Next, in Section 6, after giving a brief description of SKINNY, we
introduce new boomerang distinguishers for SKINNY-n-2n and SKINNY-n-2n. Building upon
the improved boomerang distinguishers, we mount key recovery attacks against reduced
CRAFT and SKINNY in Section 7. Lastly, we conclude the paper in Section 8.

2 Preliminaries
In this section, we briefly review the boomerang attack.

2.1 Boomerang Attack and Sandwich Attack
The boomerang attack, proposed by David Wagner [Wag99], treats a block cipher E as
the composition of two sub-ciphers E0 and E1, for which there exist short differentials
∆1 → ∆2 and ∇2 → ∇3 of probabilities p and q respectively. The two differentials are then
combined in a chosen plaintext and ciphertext attack setting to construct a long boomerang
distinguisher as shown Figure 1(left). Let E(P ) and E−1(C) denote the encryption of P
and the decryption of C, respectively. Then the boomerang framework works as follows.

• Repeat the following steps many times.

1. P1 ← random(1n) and P2 ← P1 ⊕∆1.
2. C1 ← E(P1) and C2 ← E(P2).
3. C3 ← C1 ⊕∇3 and C4 ← C2 ⊕∇3.
4. P3 ← E−1(C3) and P4 ← E−1(C4).
5. Check if P3 ⊕ P4 = ∆1.
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Figure 1: Basic boomerang attack (left) and Sandwich attack (right)

In the last step, if P3⊕P4 = ∆1 holds, then a right quartet (P1, P2, P3, P4) is found such
that P1 ⊕P2 = P3 ⊕P4 = ∆1 and C1 ⊕C3 = C2 ⊕C4 = ∇3. Let eα,β,β′ denote the event :
(x1⊕x2 = α)∧ (x1⊕x3 = β)∧ (x2⊕x4 = β′), and eα, eα′ , eβ and eβ′ , represent the events
x1 ⊕ x2 = α, x1 ⊕ x2 = α′, x1 ⊕ x3 = β and x2 ⊕ x4 = β′ in Figure 1 (left) respectively.
Hence, Pr(P3 ⊕ P4 = ∆1) =

∑
α,β,β′ Pr(P3 ⊕ P4 = ∆1|eα,β,β′).Pr(eα,β,β′). Note that, if

eα,β,β′ holds in Figure 1(left), then α′ = x3 ⊕ x4 = α⊕ β ⊕ β′. Additionally, assume that
pα = Pr(∆1

E0−−→ α) and qβ = Pr(β E1−−→ ∇3) for α, β ∈ Fn2 . Under the assumption that
three conditions eα, eβ , and eβ′ in Figure 1(left) are independent, we have:

Pr(P3 ⊕ P4 = ∆1) =
∑

α,α′,β,β′

pα′pαqβqβ′ ≥
∑
α=α′

p2
α

∑
β=β′

q2
β ≥ p2q2,

where p = Pr(∆1 → ∆2) and q = Pr(∇2 → ∇3). Therefore, p2q2 can be a lower bound for
the probability of generating a right quartet.

In practical cases, the two differentials of a boomerang distinguisher are not independent
and the dependency between them can not be neglected as studied in [Mur11,BK09]. In
order to handle the dependency, Dunkelman et al. proposed the sandwich attack [DKS10,
DKS14]. As shown in Figure 1(right), the sandwich attack regards E as the composition
of three sub-ciphers E0, Em and E1, where the middle part Em specifically handles the
dependency. Let r be the probability of generating a right quartet for Em in Figure 1(right),
when its input and output differences are fixed differences ∆2, and ∇3 respectively, i.e.:

r = Pr
(
E−1
m (Em(x1)⊕∇3)⊕ E−1

m (Em(x2)⊕∇3) = ∆2|x1 ⊕ x2 = ∆2
)
.

Furthermore, let eα, eα′ , eβ and eβ′ , denote the events x1⊕x2 = α, x3⊕x4 = α′, y1⊕y3 = β,
and y2 ⊕ y4 = β′, respectively. Then, for the probability of the whole boomerang
distinguisher in Figure 1(right), we have:

Pr (P3 ⊕ P4 = ∆1) =
∑

α,α′,β,β′

Pr(P3 ⊕ P4 = ∆1|eα,α′,β,β′).Pr(eα′ |eα, eβ , eβ′).Pr(eα, eβ , eβ′),
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where eα,α′,β,β′ , denote the condition (x1⊕x2 = α)∧(y1⊕y3 = β)∧(y2⊕y4 = β′)∧(x3⊕x4 =
α′). Assuming that eα, eβ and eβ′ , are three independent events, and pα = Pr(∆1

E0−−→ α),
and qβ = Pr(β E1−−→ ∇4), for α, β ∈ Fn2 , we have:

Pr (P3 ⊕ P4 = ∆1) =
∑

α,α′,β,β′

pα.pα′ .Pr(eα′ |eα, eβ , eβ′).qβ .qβ′ ≥
∑
α,β

p2
α.r.q

2
β ≥ p2q2r,

where p = Pr(∆1
E0−−→ ∆2) and q = Pr(∇3

E1−−→ ∇4), for fixed differences ∆2,∇3 ∈ Fn2 in
Figure 1(right). Hence, p2q2r is a lower bound for the probability of the whole boomerang
distinguisher.

2.2 BCT Framework
The boomerang connectivity table (BCT) was introduced by Cid et al. in [CHP+18] to
evaluate r theoretically when Em was composed of a single S-box layer. Later, the BCT is
extended and used to calculate r for Em with multiple layers [SQH19,WP19]. Here, we
recall some important tables of S-boxes and relevant definitions which play a core role
when calculating the probability of boomerang distinguishers.

The differences of an S-box in the boomerang distinguisher are shown in Figure 2.
Alternatively, we use arrows with superscripts to denote the relationship between differences.
The horizontal arrows illustrate the propagation of differences in upper and lower differential
characteristics while the diagonal arrows are used to show which differences in the upper
and lower trails are affected by each other. The difference distribution table (DDT) and the
BCT are two basic tables of the S-box.

Figure 2: Differences of an S-box on four facets

Definition 1 (Difference Distribution Table). Let S be a function from Fn2 to Fn2 . The
difference distribution table (DDT) is a two-dimensional table defined by

DDT(∆1,∆2) = #{x ∈ Fn2 : S(x)⊕ S(x⊕∆1) = ∆2}, where ∆1,∆2 ∈ Fn2 .

Definition 2 (Boomerang Connectivity Table [CHP+18]). Let S be a permutation of Fn2 .
The boomerang connectivity table (BCT) of S is a two-dimensional table defined by
BCT(∆1,∇2) = #{x ∈ Fn2 : S−1(S(x)⊕∇2)⊕S−1(S(x⊕∆1)⊕∇2) = ∆1}, where ∆1,∇2 ∈ Fn2 .

Let XDDT(∆1,∆2) and YDDT(∆1,∆2) denote the sets of valid inputs and outputs of
differential ∆1 → ∆2 respectively. Namely,

XDDT(∆1,∆2) , {x ∈ Fn2 : S(x)⊕ S(x⊕∆1) = ∆2},
YDDT(∆1,∆2) , {S(x) ∈ Fn2 : x ∈ Fn2 , S(x)⊕ S(x⊕∆1) = ∆2}.
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Then BCT can be calculated with XDDT or YDDT, as studied in [BC18,SQH19]. That is

BCT(∆1,∇2) =
∑
∇1

#(XDDT(∇1,∇2) ∩ (XDDT(∇1,∇2)⊕∆1))

=
∑
∆2

#(YDDT(∆1,∆2) ∩ (YDDT(∆1,∆2)⊕∇2)), (1)

where ∆1 and ∇2 are called crossing differences [SQH19]. As can be seen, whether the
intersection of XDDT(∇1,∇2) and XDDT(∇1,∇2)⊕∆1 (resp. YDDT(∆1,∆2) and YDDT(∆1,∆2)⊕
∇2) is empty or not depends on the crossing difference ∆1 (resp. ∇2). In particular, if the
crossing difference ∆1 (resp. ∇2) for an S-box is random and uniformly distributed, the
probability that the boomerang returns for this S-box is exactly

∑
∇1

(DDT(∇1,∇2)/2n)2

(resp.
∑

∆2
(DDT(∆1,∆2)/2n)2), which is identical to the probability calculation of the

classical boomerang distinguisher.
To help calculate the probability of Em with multiple rounds, two more tables were

introduced in the literature.

Definition 3 (Upper BCT3 [WP19]). Let S be a permutation of Fn2 . The upper boomerang
connectivity table (UBCT) of S is a three-dimensional table defined by

UBCT(∆1,∆2,∇2) , #{x ∈ Fn2 : S−1(S(x)⊕∇2)⊕ S−1(S(x⊕∆1)⊕∇2) = ∆1,

S(x)⊕ S(x⊕∆1) = ∆2} where ∆1,∆2,∇2 ∈ Fn2 .

To see the counterpart of this table for the Feistel case refer to [BHL+20].

Definition 4 (Lower BCT4 [SQH19]). Let S be a permutation of Fn2 . The lower boomerang
connectivity table (LBCT) of S is a three-dimensional table defined by

LBCT(∆1,∇2,∇1) , #{x ∈ Fn2 : S−1(S(x)⊕∇2)⊕ S−1(S(x⊕∆1)⊕∇2) = ∆1,

x⊕ S−1(S(x)⊕∇2) = ∇1} where ∆1,∇2,∇1 ∈ Fn2 .

Based on the previous works, some new tables of S-box will be proposed in the next
sections and used to calculate r for boomerang distinguishers of CRAFT, and SKINNY.

3 New Tools for Boomerang Cryptanalysis
In this section, we introduce for S-boxes some new tables which can be used to model the
dependency between upper and lower differential paths in boomerang distinguishers. When
one constructs boomerang distinguishers for SPN ciphers, there may exist two S-boxes in
a row (in two rounds) that are active in both trails of the boomerang. Figure 3 (middle)
shows the differences of such two S-boxes, where ‘∗’ stands for any possible difference, ∆1
and ∇3 are known.

Figure 3: Differences of DBCT` (left), DBCT (middle) and DBCTa (right)

3In [WP19], this table is called Boomerang Difference Table BDT.
4In [SQH19], this table is denoted by DBCT
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At first glance, we could build a two-dimensional table to record the number of values
making the boomerang return for these two S-boxes. However, in the middle of two rounds,
there is usually an operation of adding key material. The key addition does not affect
the differences before or after, but the key is unknown and prevents us from building a
table in the way that we generate the DDT and the BCT. However, in the case where the
random subkey assumption holds, such a table can be built, as shown in algorithm 1. For
convenience, we call this table double boomerang connectivity table (DBCT).

Algorithm 1: Building DBCT
Input: S-box S

1 Initialize an empty table DBCT with 2n × 2n entries;
2 for ∆1 = 0→ 2n − 1 do
3 for ∇3 = 0→ 2n − 1 do
4 num = 0;
5 for ∆ = 0→ 2n − 1 do
6 if DDT(∆1,∆) > 0 and BCT(∆,∇3) > 0 then
7 for ∇ = 0→ 2n − 1 do
8 Y∩DDT = YDDT(∆1,∆) ∩ (YDDT(∆1,∆)⊕∇);
9 if Y∩DDT 6= ∅ then

10 num += DDT(∆1,∆) · LBCT(∆,∇3,∇) · #Y∩DDT
#YDDT(∆1,∆) ;

11 end
12 end
13 end
14 end
15 DBCT(∆1,∇3) = num;
16 end
17 end

Note that, if YDDT forms an affine subspace, then the line 10 of algorithm 1 becomes
num += DDT(∆1,∆) · LBCT(∆,∇3,∇) as YDDT(∆1,∆) equals YDDT(∆1,∆)⊕∇ when their
intersection is not empty. Recall that a mapping is planar if the XDDT and YDDT of all its
differentials form affine subspaces [DR07]. Particularly, S-boxes which only have nonzero
DDT entries 2 and 4 are planar. Therefore, the S-box of CRAFT is planar, and each entry of
its DBCT is an integer ranging from 0 to 22n.

Additionally, we introduce two variants of DBCT, i.e., DBCT` and DBCTa as shown in Fig-
ure 3, where the differential of one S-box is fixed. Moreover, DBCT`(∆1,∆2,∇3), DBCTa(∆1,
∇2,∇3) can be precomputed by adapting algorithm 1, as shown in algorithm 2 and algo-
rithm 3 in the appendix.

We also introduce new tables to consider the clustering effect in the middle part of
boomerang distinguishers. As it is illustrated in Figure 4, the differences in the same
positions at two faces of boomerang distinguisher should not necessarily be the same,
particularly in the middle part. For instance, ∆0

2 and ∆′02 in Figure 4 denote the differences
in the same position of cipher during the encryption and decryption respectively, which
can take different values in two faces of boomerang distinguisher. ∇0

3 and ∇′03 in Figure 4,
can be different in the same way. Accordingly, we define UBCT� and LBCT �similar to UBCT
and LBCT respectively as follows:

UBCT�(∆1,∆′1,∇2,∆2) := #{S(x) ∈ Fn2 |S(x) ∈ YDDT(∆1,∆2) : S(x) ∈ YDDT(∆′1,∆2)⊕∇2}.
LBCT �(∆1,∇2,∇′2,∇1) := #{x ∈ Fn2 |x ∈ XDDT(∇1,∇2) : x ∈ XDDT(∇1,∇′2)⊕∆1}.

BCT� and BCT �, can also be defined as follows as the two alternatives of BCT, where the
input or the output differences are not the same in two faces of boomerang distinguisher
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Figure 4: Cluster of sandwich distinguishers

respectively:

BCT�(∆1,∆′1,∇2) := #{x ∈ Fn2 : S−1(S(x)⊕∇2)⊕ S−1(S(x⊕∆1)⊕∇2) = ∆′1}.
BCT �(∆1,∇2,∇′2) := #{x ∈ Fn2 : S−1(S(x)⊕∇2)⊕ S−1(S(x⊕∆1)⊕∇′2) = ∆1}.

4 Our Strategy to Search for Boomerang Distinguishers
We use a heuristic approach to find a boomerang distinguisher which can be divided into
the following steps:

1. The first step is searching for truncated differential characteristics with the minimum
number of active S-boxes taking into account the switching effect in multiple rounds.
For this step, we borrow the idea of MILP-based automated search method for
truncated differential characteristic proposed in [CHP+17], which takes into account
the ladder switch effect in two middle rounds of boomerang distinguisher. However,
we change it a little to consider the switch effect in more than two rounds. We also
use a weighted objective function in our model to obtain a boomerang distinguisher
with a higher probability.
Suppose that we are looking for a boomerang distinguisher covering r0 + rm + r1
rounds as illustrated in Figure 5, where the first r0 and last r1 rounds are represented
in red and blue and denoted by E0 and E1 respectively. Moreover, the middle rm
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rounds, where the first r0 + rm and last r1 + rm rounds overlap, is illustrated in green
and denoted by Em. Firstly, we generate a word-oriented MILP model consisting
of constraints corresponding to truncated differential characteristics for the first
r0 + rm and for the last r1 + rm rounds based on the independent binary variables
respectively.
Let u0, . . . , ut−1 denote the activeness of S-boxes in last rm rounds of Em ◦E0 and
l0, . . . , lt−1 denote the activeness of S-boxes in first rm rounds of E1 ◦Em, such that
ui and li correspond to the same S-box’s position for all 0 ≤ i ≤ t− 1. In order to
model the switching effect in r-round middle part Em, we introduce t new binary
variables s0, . . . , st−1 linking ui and li for all 0 ≤ i ≤ t− 1 as follows:

ui − si ≥ 0, li − si ≥ 0, − ui − li + si ≥ −1.

Accordingly, si = 1 if and only if ui = li = 1. Let binary variables ũ0, . . . , ũm−1
and l̃0, . . . , l̃n−1 denote the activity of S-boxes in the first r0 and last r1 rounds
respectively. Assuming that w0, w1 and wm are positive integers, the objective is to
minimize:

m−1∑
i=0

w0.ũi +
t−1∑
j=0

wm.sj +
n−1∑
k=0

w1.l̃k.

Given that the terms ũ =
∑m−1
i=0 w0.ũi and l̃ =

∑n−1
k=0 w1.l̃k are equally more effective

than s =
∑t−1
j=0 wm.sj in the probability of the boomerang distinguisher, w0, w1 and

wm, are chosen such that w0 = w1 ≥ wm.

Figure 5: Main parameters of our word-oriented MILP tool to search for boomerang distinguishers

2. At the second step, based on the discovered truncated differential characteristics for
E0 and E1, we look for the best actual differential trails satisfying the given active-cell
positions for these parts which form upper and lower differential paths of boomerang
distinguisher respectively. This is done using the separate bit-oriented MILP/SAT
models for E0 and E1. Then, by fixing the input and output differences of actual
differential paths for E0 and E1, and taking into account the clustering effect, we
compute the differential effects for E0 and E1, which are represented by p and q
respectively. Note that, there might not exist an actual differential characteristic
instantiating the discovered truncated differential characteristic. If so, we go to the
first step and repeat the process by a new truncated differential characteristic.

3. Although the ladder switch effect is considered to obtain the upper and lower dif-
ferential paths in our method, they are obtained using independent bit-oriented
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MILP/SAT models at step 2. Hence, the upper and lower differential paths in a dis-
covered boomerang distinguisher might be incompatible [Mur11]. The compatibility
of the upper and lower differential paths in a discovered boomerang distinguisher is
checked by experimentally evaluating the probability of the r-round middle part at
this step. Assume that ∆2 and ∇3 are the output and input differences of the upper
and lower differential paths respectively. The compatibility of the upper and lower
differential paths is checked by experimentally evaluation of the following probability:

r = Pr
(
E−1
m (Em(x1)⊕∇3)⊕ E−1

m (Em(x2)⊕∇3) = ∆2|x1 ⊕ x2 = ∆2
)
.

We can go to the next step if r > 0, otherwise, we return to the first step.

4. At this step, to correctly evaluate the size of Em, where contains the dependency
between the upper and lower differential paths, we use the algorithm proposed by
Song et al. in [SQH19]. More precisely, we extend both E0 and E1 with probability 1
at first. Next, to determine the correct upper boundary of Em, we prepend additional
rounds to Em as long as the lower crossing differences are not uniformly distributed.
In the same way, to determine the lower boundary of Em, we append further rounds
to Em as long as the upper crossing differences are not uniformly distributed. In
other words, additional rounds are added to Em as long as the probability of the
new Em is higher than what is estimated by p2q2r. If this is done, the formula p2q2r,
will be a good estimate.

5. If the size of Em is changed at the previous step, taking into account the clustering
effect, we compute the probabilities p and q corresponding to the new E0 and
E1 respectively. To do so, by fixing the input/output differences of E0 and E1,
we compute the differential effects and store the results into p and q respectively.
Besides the experimental value, using the BCT framework we provide a theoretical
bound for r, i.e. the probability of the middle part Em, when it is possible from
the computational complexity point of view. Finally, using the formula p2q2r, we
compute the probability of the whole boomerang distinguisher.

To find the truncated differential characteristics in step 1, we use the MILP model and
then Gurobi [GO21] as the solver. For SKINNY, given that the key schedule is linear, we
use a semi-word-based MILP model to find a truncated differential characteristic where
the key schedule is encoded bitwise, whereas the data path is encoded word-wise. In
the second step, where we look for the real differential trails instantiating the discovered
truncated trails, we use both the SMT/SAT and the MILP bit-based models. More
precisely, for CRAFT and SKINNY-64-128 and SKINNY-64-192, we use CryptoSMT [Ste]5 to
instantiate the truncated pattern with the best differential trails, as well as computing
the differential effect in steps 2, 4, and 5. However, concerning 128-bit block versions
of SKINNY, i.e., SKINNY-128-256 and SKINNY-128-384, we would highly prefer to use the
MILP-based method introduced by [AST+17], since some probability exponents in DDT of
SKINNY’s 8-bit S-box are non-integer, and encoding the objective functions with non-integer
coefficients and addition of non-integer numbers in MILP models are much easier and
straightforward in comparison to the SMT-based or SAT-based methods. Given that
Gurobi allows to find multiple solutions rather than merely one optimal solution6, we use
it as the MILP solver to compute the differential effect for 128-bit block versions of SKINNY
as well.

5CryptoSMT supports two SMT solvers including STP [GD07] and Boolector [NPB15], and one SAT
solver namely CryptoMiniSat [Soo16], where CryptoMiniSat is used to compute the differential effect.

6To find multiple solutions with Gurobi we set the parameter PoolSearchMode to 2.
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Table 2: Summary of our results and the other known single-tweak attacks on CRAFT. ST ,
stands for single-tweak, and the boomerang, differential effect, truncated differential, linear hull,
impossible differential, integral, and zero-correlation cryptanalysis are respectively denoted by
B, D, T D, LH, ID, INT and ZC. The probabilities highlighted in red have been verified
experimentally.

Attack # Rounds Probability Reference

ST -D

10 2−62.61 [BLMR19]
9 2−40.20

[HSN+19]
10 2−44.89

11 2−49.79

12 2−54.48

13 2−59.13

14 2−63.80

ST -TD 12 2−36 [MA19]
ST -LH 14 2−62.12

[BLMR19]ST -ID 13 -
ST -INT 13 -
ST -ZC 13 -

ST -B

6 1

Section 5

7 2−4

8 2−8

9 2−14.76

10 2−19.83

11 2−24.90

12 2−34.89

13 2−44.89

14 2−55.85

5 Boomerang Distinguishers for Reduced-Round CRAFT

In this section, after giving a brief description of CRAFT, we introduce boomerang dis-
tinguishers for reduced rounds CRAFT covering up to 14 rounds of this cipher. Table 2
summarizes our results on boomerang distinguishers of CRAFT and Table 3 briefly describes
the notations we use through this section.

5.1 A Brief Description of CRAFT

CRAFT is a lightweight tweakable block cipher which has been introduced in FSE 2019
by Beierle et al. [BLMR19]. This block cipher supports 64-bit message, 128-bit key and
64-bit tweak and its round function is composed of involutory building blocks. The
input 64-bit plaintext m = m0‖m1‖ · · · ‖m14‖m15 is used to initiate a 4× 4 internal state
IS = I0‖I1‖ · · · ‖I14‖I15 as follows:

IS =


I0 I1 I2 I3
I4 I5 I6 I7
I8 I9 I10 I11
I12 I13 I14 I15

 =


m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15


where Ii,mi ∈ F4

2. The internal state is then going through 32 rounds Ri, i ∈ 0, · · · , 31,
to generate a 64-bit ciphertext. As is depicted in Figure 6, each round, excluding the
last round, includes five functions, i.e., MixColumn (MC), AddRoundConstants (ARC),
AddTweakey (ATK), PermuteNibbles (PN), and S-box (SB). The last round only includes
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Table 3: Notations for CRAFT.
Symbol Meaning
⊕ XOR operation
|| Concatenation of bits
% modulo operation
T The 64-bit tweak input
K The 128-bit master key
TKi The main tweaks that are made based on the T and K (i = 0, 1, 2, 3)
Xi The internal state before the Mix-Columns (MC) in round i
Yi The internal state after the MixColumn (MC) in round i
Zi The internal state before the PermuteNibbles (PN) in round i
Wi The internal state before the S-boxes (SB) in round i
Si[j] jth cell of a state S, in round i, where 0 ≤ j ≤ 15, e.g. X2[5] denotes 5th

cell of internal state before MC in round 2
Si[j ∼ l] jth to lth cells of state Si, in round i, where 0 ≤ j ≤ l ≤ 15, e.g. Y2[7 ∼ 9]

denotes 7th, 8th and 9th cells of internal state after MC in round 2
TKi[j] jth cell of TKi, where 0 ≤ j ≤ 15, e.g. X1[6] denotes 6th cell of internal

state before SC in round 1
∆S Forward difference in a state S
∇S Backward difference in a state S
Y Hexadecimal representation of an arbitrary value Y ∈ F4

2, where we are
using typewriter style

MC, ARC and ATK, i.e., R31 = ATK31 ◦ ARC31 ◦MC, while for any 0 ≤ i ≤ 30, Ri =
SB ◦ PN ◦ATKi ◦ARCi ◦MC.

Figure 6: A round of CRAFT

The MC layer is the multiplication of the internal state by a 4 × 4 involutory binary
matrix. In each round i, after MC, two round dependent constant nibbles ai = (ai3, ai2, ai1, ai0)
and bi = (bi2, bi1, bi0) are XOR-ed with I4 and I5 respectively, where ai0 and bi0 are the
least significant bits. A 4-bit LFSR is used to update a and a 3-bit LFSR is used to
update b. They are initialized by values (0001) and (001), respectively and updated to
ai+1 = (ai1 ⊕ ai0, ai3, ai2, ai1), and bi+1 = (bi1 ⊕ bi0, bi2, bi1) from i-th round to i+ 1-th round.

After AddRoundConstants (ARC), a 64-bit round tweakey is XOR-ed with IS. The
tweakey schedule of CRAFT is rather simple. Given the secret keyK = K0‖K1 and the tweak
T ∈ {0, 1}64, where Ki ∈ {0, 1}64, four round tweakeys TK0 = K0 ⊕ T , TK1 = K1 ⊕ T ,
TK2 = K0⊕Q(T ) and TK3 = K1⊕Q(T ) are generated, where given T = T0‖T1‖ · · · ‖T14
‖T15, Q(T ) = T12‖T10‖T15‖T5‖T14‖T8‖T9‖T2‖T11‖T3‖T7‖T4‖T6‖T0‖T1‖T13. Then at the
round Ri, TKi%4 is XOR-ed with the IS, where the rounds start from i = 0.

The next function is PermuteNibbles (PN) which is applying an involutory permutation P
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over nibbles of IS, where given IS = I0‖I1‖ · · · ‖I14‖I15, P (IS) = I15‖I12‖I13‖I14‖I10‖I9
‖I8‖I11‖I6‖I5‖I4‖I7‖I1‖I2‖I3‖I0. The final function is a non-linear layer in which a 4-bit
S-box which has been borrowed from MIDORI [BBI+15] is applied on each nibble. One can
refer to [BLMR19], to see more details about CRAFT’s specification.

5.2 Boomerang Distinguishers for 6 to 8 Rounds of CRAFT
Applying our searching method for boomerang distinguishers of CRAFT, we discovered that
up to 6 rounds of this cipher can be distinguished from a random permutation using a
boomerang distinguisher with probability one. For instance, let the input and output
differences of 6-round boomerang distinguisher of CRAFT be chosen as follows:

∆X0 = 000α 0000 000α 0000, ∇X6 = 0000 0000 0β000 0000,

where α, β ∈ F4
2 \ {0}. Figure 7 represents the forward and backward propagation of ∆X0,

and ∇X6 over 6 rounds of CRAFT respectively, where yellow and green squares denote the
nonzero and any differences respectively. It can be seen that there is not any interaction
between the active S-boxes of upper and lower differential trails in Figure 7. Therefore,
due to the switching effect, the boomerang returns with probability 1.

Figure 7: A 6-round boomerang distinguisher of CRAFT

Next, by extending the discovered 6-round boomerang distinguisher one round backward,
we construct a 7-round boomerang distinguisher, which is illustrated in Figure 17. Table 4
specifies the input and output differences of our 7-round boomerang distinguisher for
CRAFT.

Table 4: Specification of boomerang distinguisher for 7 rounds of CRAFT
r0 = 0, rm = 7, r1 = 0, p = 1, q = 1, r = 2−4, p2 · q2 · r = 2−4

∆X0 00A0 00AA 0000 00A0 ∇X7 0000 0000 0A00 0000

As it can be seen in Figure 17, the upper differential path depends on whether γ = γ′,
and there are still some nonzero upper and lower crossing differences even after 7 rounds
which reveals that there is dependency between the upper and lower differential paths
throughout the 7 rounds in Figure 17. Let r1 and r2 be the probability of boomerang
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distinguisher in cases where γ = γ′, and γ 6= γ′ respectively. Consequently, the probability
of the provided 7-round boomerang distinguisher is r = r1 · Pr(γ = γ′) + r2 · Pr(γ 6= γ′).

If γ = γ′, as illustrated in Figure 17, the upper and lower differential trails have only
one active S-box in common. Let γ and β denote the output differences of the common
active S-box in upper and lower differential paths respectively. The red frames in Figure 17
represent the propagation of difference β to show where this difference is originated from.
As it is visible, the difference β has not been affected by the upper differential path. On
the other hand, β is almost uniformly distributed. In conclusion, we have

r1 =
∑

γ∈{5,A,D,F}

(
DDT(A, γ)

24

)2
=

∑
γ∈{5,A,D,F}

(2−2)2 = 2−2,

and r1 · Pr(γ = γ′) = 2−2 · 2−2 = 2−4. Due to the fact that 0 ≤ r2 · Pr(γ 6= γ′) ≤ 1, we
can conclude that r ≥ 2−4. According to the experimental evaluation, r = 2−3.97, which
validates the provided lower bound and also confirms that r2, contributes less in the total
probability r in comparison to r1.

Table 5: Specification of the boomerang distinguisher for 8 rounds of CRAFT
r0 = 0, rm = 8, r1 = 0, p = 1, q = 1, r = 2−8, p2 · q2 · r = 2−8

∆X0 00A0 00AA 0000 00A0 ∇X8 0000 0A00 0000 A000

By extending the discovered 7-round boomerang distinguisher one round forwards, we
construct an 8-round boomerang distinguisher whose specification is provided by Table 5.
Figure 18 represents the propagation of the input/output differences in our 8-round
boomerang distinguisher. As illustrated, the propagation of the input difference depends
on whether (γ = γ′) ∧ (δ = δ′). In the Figure 18, it is supposed that (γ = γ′) ∧ (δ = δ′).
It can be seen that nonzero differences exist even after 8 rounds in both forward and
backward propagation of input and output differences respectively, which means the whole
of these 8 rounds contain dependency.

Let r1 and r2 be the probability of the 8-round boomerang distinguisher, when (γ =
γ′) ∧ (δ = δ′), and (γ 6= γ′) ∨ (δ 6= δ′) respectively. Hence, the entire probability of the 8-
round boomerang distinguisher is r = r1 ·Pr((γ = γ′)∧(δ = δ′))+r2 ·Pr((γ 6= γ′)∨(δ 6= δ′)).
Since, two relations γ = γ′, and δ = δ′ are statistically independent, we have:

r = r1 · Pr(γ = γ′) · Pr(δ = δ′) + r2 · Pr((γ 6= γ′) ∨ (δ 6= δ′)).

On the other hand, the upper and lower differential trails in Figure 18, have only two
active cells in common, and there is not any interaction between other active cells in
upper and lower differential trails, and the lower crossing difference β is almost uniformly
distributed. The red frames depict where the difference β is originated from. It can be seen
that it has not been affected by the upper differential trail. The upper crossing difference
α, is also uniformly distributed, and as it’s depicted by blue frames, it is also independent
of the lower differential trail. Therefore, the probability that the boomerang returns when
(γ = γ′) ∧ (δ = δ′) is:

r1 =
∑

γ∈{5,A,D,F}

∑
δ∈{5,A,D,F}

(
DDT(A, γ)

24

)2
·
(

DDT(δ, A)
24

)2
= 2−4.

Besides, Pr(γ = γ′) = Pr(δ = δ′) = 2−2. Consequently, r ≥ 2−8. The experimental
evaluation shows that the boomerang returns with probability r = 2−7.92, which confirms
the provided lower bound and also shows that the total probability r is almost determined
by r1. The experimental evaluation follows the pseudo-code in Subsection 2.1. More
precisely, we firstly choose a key as well as a tweak at random and perform 215 boomerang
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queries and count the number of right quartets. We repeat this test for 1000 randomly
generated keys and tweaks and compute the average number of right quartets.

5.3 Probability of the Middle Part in Boomerang Distinguishers for 9
to 14 Rounds of CRAFT

During the search for boomerang distinguishers covering 9 to 14 rounds of CRAFT, we
observed that many boomerang distinguishers for these number of rounds have a common
active pattern in the 7-round middle part. In other words, there are many boomerang
distinguishers for 9 to 14 rounds of CRAFT that can be constructed by extending a 7-round
boomerang distinguisher, such that the dependency between the upper and lower differential
trails doesn’t exist outside the 7-round middle part. Therefore, for the sake of simplicity, we
chose a 7-round middle part and then constructed the boomerang distinguishers for 9 to 14
rounds based on it. Figure 9 shows the 7-round boomerang distinguisher with the following
input/output differences, which is expandable to construct 9-/10-/11-/12-/13-/14-round
boomerang distinguishers of CRAFT.

∆X0 = 0000 0A00 0000 0000, ∇X7 = 0000 0A00 0000 0000.

Next, let us calculate the probability of this 7-round boomerang distinguisher. In
Figure 9, the input difference of the upper trail and the output difference of the lower trail
is given; green squares denote any possible difference while yellow squares denote nonzero
differences. Due to the weak diffusion of the linear layer of CRAFT, it can be seen that
the difference after 7 rounds is not random enough as there are still nonzero differences
in state a′ and H (see Figure 9). That is, the crossing differences throughout the whole
distinguisher are not random enough, which means there is a strong dependency between
the upper trail and the lower trail.

We further investigate the dependency of the two trails with the help of notations
DDT−−→ and BCT−−→. As can be seen from Figure 9, the dependency of the two trails can be
modularized into two DBCT` and two DBCTa which affect each other.

Let DBCTtotal be the product of the four DBCT, i.e.,

DBCTtotal = DBCT`(A5, B9, c5) · DBCT`(B9, C12, d1)·
DBCTa(E′1, f ′12, g

′
9) · DBCTa(F ′5, g′9, h5),

where the variables are differences depicted in Figure 9 and particularly the each color
denotes any variable marked by the box of that color. Let

Prtotal = Pr(d1
2 DDT←−−− f ′12) · Pr(c5

3 DDT←−−− f ′12)·

Pr(C12
2 DDT−−−→ E′1) · Pr(C12

3 DDT−−−→ F ′5),

then the probability of the 7-round boomerang distinguisher for a fixed pair (A5, h5) is:

r = 2−8·n ·
∑
B9

∑
C12

∑
g′9

∑
f ′12

∑
c5

∑
d1

∑
E′1

∑
F ′5

DBCTtotal · Prtotal. (2)

If (A5, h5) = (A, A), then r = 2−10.39. Based on Equation 2, we evaluate r for all
(A5, h5) ∈ {(i, j)|1 ≤ i ≤ 15, 1 ≤ j ≤ 15}, and arrange the results into a 15 × 15 matrix
which is denoted by R7r = [r]i,j , where ri,j is the value of r, when (A5, h5) = (i, j). The
matrix R7r is represented in Appendix C. To evaluate the accuracy of the lower bound
expressed by Equation 2, we also carried out experiments on the 7-round boomerang
distinguisher in Figure 9 and arranged the experimental probabilities in matrix R7r

e which is
displayed in Appendix C. To experimentally evaluate the probability for each input/output
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Figure 8: Visualization for the BCT of CRAFT’s S-box (left) and the probability matrix R7r(right)

difference we follow the pseudo-code in Subsection 2.1 such that we choose a random key
and master tweak at first and then perform 228 boomerang queries. We repeat this test
for 100 random keys and master tweaks and compute the average of returned boomerangs.
Comparing the theoretical and the empirical probabilities for all (i, j) ∈ F4

2 × F4
2, confirms

the high accuracy of the derived formula. Figure 8 visualizes the matrix R7r. It is visible
that the maximum value of ri,j is obtained when (i, j) = (A, A). Another interesting
information obtained from Figure 8, is that after A four other difference values including
5, 7, D, and F give a much better probability compared to other difference values. This
observation is not by chance and can be explained by referring to the DDT and BCT of
CRAFT’s S-box. According to the DDT of CRAFT’s S-box which is described in Figure 19, the
set S = {5, 7, A, D, F} has a special property as follows:

∀ x ∈ S ∃ y ∈ S s.t. DDT(x, y) = 4
∀ x ∈ S ∀ y /∈ S s.t. DDT(x, y) ≤ 2.

Hence, given that CRAFT’s S-box is 4-uniform, we expect that the differences from S
result in a higher clustering effect. On the other hand, as it can be seen in Figure 8 (left),
BCT(A, A) = 16. Therefore, it is expected that a boomerang returns with a higher probability
when the nonzero entries of input and output differences are chosen from S, especially
when they are all equal to A. As another interesting observation, comparing the visual
representations for BCT of CRAFT’s S-box Figure 8 (left) and R7r Figure 8 (right) reveals
that there is a high similarity between the positions of maximum entries in BCT of CRAFT’s
S-box and R7r, which reflects the influence of CRAFT’s S-box on the boomerang behavior
of several rounds. In the next sections, we extend the 7-round boomerang distinguisher
E7r
m , to construct a longer boomerang distinguisher up to 14 rounds of CRAFT.

5.4 Boomerang Distinguishers for 9 to 14 Rounds of CRAFT
9-Round Boomerang Distinguisher

In order to construct a 9-round boomerang distinguisher for CRAFT, we extend the 7-round
distinguisher E7r

m in Subsection 5.3, by one round in both directions. Accordingly, as
represented in Figure 9, the input and output differences of the 9-round distinguisher are
chosen as follows:

∆X0 = 0A00 0000 0A00 0000, ∇X9 = 0000 0000 0A00 0000,
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to maximize the differential effect for the extended parts which are included in E0 and E1.
Given that the lower and the upper crossing differences in E7r

m , can be seen as uniform
after 7 rounds, we consider the extended parts including the one round ahead and the
one round behind, as E0 and E1 respectively. Let ∆Xi

1 = 0000 0i00 0000 0000, and
∇Xj

8 = 0000 0j00 0000 0000, denote the input and output differences of the 7-round

middle part Em respectively, where i, j ∈ F4
2 \ {0}. Besides, let pi = Pr(∆X0

E1r
0−−→ ∆Xi

1),

and qj = Pr(∇Xj
8

E1r
1−−→ ∇X9). If (i, j) = (A, A), then p2

i q
2
jR

7r
10,10 = 2−18.39, where

R7r is the matrix defined in Subsection 5.3. Taking into account the clustering effect,
p9r
bm =

∑15
i=1
∑15
j=1 p

2
i q

2
jR

7r
i,j = 2−15.43, gives a more accurate lower bound for the probability

of the 9-round boomerang distinguisher. However, according to the experimental evaluation,
p9r
bm = 2−14.50. To empirically evaluate the probability we choose a random key as well as
a random tweak and then perform 228 boomerang queries. After repeating this test for
1000 random keys and tweaks we compute the average of right quartets. The main reason
for this gap between the theoretical bound and the empirical approximation of p9r

bm, is
assuming that the differences are equal in two sides of boomerang distinguisher, whereas
they can take different values indeed.

More precisely, the differences at positions A5, and h5, can take different values in two
faces of boomerang. Accordingly, using the UBCT� and LBCT �, we provide a more accurate
theoretical bound for the probability of 9-round boomerang distinguisher as follows:

p9r
bm(U ′9, v9) = 2−12·n

∑
A51

∑
A52

∑
b9

∑
B9

∑
c5

∑
c12

∑
C12

∑
d1

∑
E′1

∑
f ′12

∑
F12

∑
g′9

∑
F ′5

∑
G9

∑
h51

∑
h52

BCTt ·Prt,

(3)
where n = 4, and BCTt and Prt are defined as follows:

BCTt = DDT(U ′9, A51) · DDT(U ′9, A52) · UBCT�(A51, A52, b9, B9)
· LBCT(B9, c5, b9) · UBCT(B9, c12, C12) · LBCT(C12, d1, c12)
· UBCT(E′1, f ′12, F12) · LBCT(F12, g

′
9, f
′
12) · UBCT(F ′5, g′9, G9)

· LBCT �(G9, h51, h52, g
′
9) · DDT(h51, v9) · DDT(h52, v9),

Prt = Pr(d1
2 DDT←−−− f ′12) Pr(c5

3 DDT←−−− f ′12)

· Pr(C12
2 DDT−−−→ E′1) · Pr(C12

3 DDT−−−→ F ′5).

(A51, A52) and (h51, h52) denote the differences at position A5 and h5 in the two faces of
boomerang distinguisher respectively. Evaluation of p9r

bm(U ′9, v9), when (U ′9, v9) = (A, A),
yields p9r

bm = 2−14.76, which is very close to the experimental value of p9r
bm. One can see

that, the experimental values of p9r
bm and the theoretical value which is obtained using

Equation 3, are also close for other values of (U ′9, v9) ∈ (Fn2 \ {0},Fn2 \ {0}) . It confirms
our assumption that there is no dependency out of the 7-round middle part, as Equation 3
has been derived based on the assumption that the upper and lower crossing differences
H5 and a5, are both uniformly distributed.

The above observation, motivated us to model the 7-round middle part by a four-
dimensional matrix instead of a two dimensional matrix, using two new S-box tables UBCT�,
and LBCT �. Let A51, and A52, be the differences in two sides of boomerang at position A5.
Similarly h51, and h52, denote the differences in two sides of boomerang at position h5.
To obtain a more accurate bound for the boomerang distinguishers that are constructed
by extending our 7-round boomerang distinguisher, we define the 4-dimensional matrix
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R7r
i,j,k,l, as follows:

R7r[i, j, k, l] = 2−8·n
∑
b9

∑
B9

∑
c5

∑
c12

∑
C12

∑
d1

∑
E′1

∑
f ′12

∑
F12

∑
g′9

∑
f ′12

∑
F ′5

∑
G9

LBCT(B9, c5, b9)

· UBCT�(A51, A52, b9, B9) · UBCT(B9, c12, C12) · LBCT(C12, d1, c12)
· UBCT(E′1, f ′12, F12) · LBCT(F12, g

′
9, f
′
12) · UBCT(F ′5, g′9, G9)

· LBCT �(G9, h51, h52, g
′
9) · Prt,

(4)

where n = 4, A51 = i, A52 = j, h51 = k, and h52 = l. Hereafter, we use this matrix to
provide a lower bound for the probability of the extended distinguishers based on E7r

m .
Appendix G gives a more efficient formula to evaluate R7r[i, j, k, l].

10-Round Boomerang Distinguisher

As illustrated in Figure 9, if the 7-round boomerang distinguisher E7r
m , is extended

two rounds forwards, and one round backward, a 10-round boomerang distinguisher is
constructed with the following input and output differences:

∆X0 = 0A00 0000 0A00 0000, ∇X10 = 0000 0A00 0000 A000.

Let E1r
0 and E2r

1 , depict the extended parts corresponding to one round ahead and two
rounds behind respectively. Furthermore, we consider rounds 2 to 8 as Em. Let pi =
Pr(∆X0

E1r
0−−→ ∆Xi

1), and qj = Pr(∇Xj
8
E2r

1−−→ ∇X10), where ∆Xi
1 = 0000 0i00 0000 0000,

and ∇Xj
8 = 0000 0j00 0000 0000, for i, j ∈ F4

2 \ {0}. Then, a lower bound for the
probability of our 10-round boomerang distinguisher is:

p10r
bm =

15∑
i=1

15∑
j=1

15∑
k=1

15∑
l=1

pipjqkqlR
7r
i,j,k,l = 2−19.83.

However, based on the experimental evaluation, p10r
bm = 2−18.17. In the experiments, we

choose a random key as well as a random master tweak at first and perform 229 boomerang
queries. We repeat this test for 100 randomly generated keys and tweaks and compute
the average number of successes. As it can be seen there is a gap between the theoretical
bound and the empirical value of p10r

bm , which is originated from the assumption v′1 = v′9,
for the lower differential trail in Figure 9. As it can be seen in Figure 9, it is supposed
that v′1 = v′9, whereas the differences v′1 and v′9, should not necessarily be the same in the
10-round boomerang distinguisher. Given that the output differences of active S-boxes in
the last round of the 10-round boomerang distinguisher are equal to A, the input differences,
i.e. v′1 and v′9, can take an arbitrary value from {5, A, D, F}. As a result, in theoretical
evaluation of p10r

bm , we have considered only 4 possible cases out of 16 possible cases for
v′ = 0000 0v′900 0000 v′1000. Hence, applying the theoretical formulas provided for the
7-round middle part E7r

m , i.e. Equation 2 or Equation 4, to compute the probability of
longer boomerang distinguishers, only gives a lower bound for the probability of boomerang
distinguisher covering more than 9 rounds.

One may construct a 10-round boomerang distinguisher by extending the 7-round
boomerang distinguisher E7r

m , two rounds backward and one round forwards. However, as
it can be seen in Figure 9, due to the symmetry between the upper and lower differential
trails, the total probability of this distinguisher, is the same as the probability of the
former one.
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11-Round Boomerang Distinguisher

An 11-round boomerang distinguisher for CRAFT can be constructed by extending the
7-round boomerang distinguisher E7r

m , two rounds forwards and backward. As it can be
seen in Figure 9, the input and output differences of this 11-round boomerang distinguisher,
are as follows:

∆X0 = A000 AA00 0000 A000, ∇X11 = 0000 0A00 0000 A000.

Let E2r
0 and E2r

1 , denote the extended parts ahead and behind respectively, and Em
includes the 7-round at the middle. Assuming that the input/output differences of Em
are ∆Xi

2 = 0000 0i00 0000 0000, and ∇Xj
9 = 0000 0j00 0000 0000, respectively, and

pi = Pr(∆X0
E2r

0−−→ ∆Xi
2), and qj = Pr(∇Xj

9
E2r

1−−→ ∇X11), for all i, j ∈ F4
2, a lower bound

for the probability of the 11-round boomerang distinguisher is:

p11r
bm =

15∑
i=1

15∑
j=1

15∑
k=1

15∑
l=1

pipjqkqlR
7r
i,j,k,l = 2−24.90.

We also accomplished experiments to verify the above bound. To do so, we chose a
random key and tweak at first and performed 233 boomerang queries. We iterated this test
for 100 randomly chosen keys and tweaks and observed that 1509.65 boomerangs return on
average. Hence, the empirical probability is p11r

bm = 2−22.44. To find the reason of this gap
between the theoretical bound and the experimental approximation, note that in Figure 9,
it is supposed that U1 = U9, whereas U1 and U9 can take different values. In addition, it
is supposed that v′1 = v′9, while v′1 and v′9 should not necessarily be the same.

12 to 14-Round Boomerang Distinguisher

One can extend the 7-round boomerang distinguisher E7r
m , 3 rounds backward and 2 rounds

forwards to obtain a 12-round boomerang distinguisher for CRAFT. The input/output
differences of the 12-round boomerang distinguisher are shown in Table 16, and the
input and output differences of the 7-round middle part are assumed to be ∆Xi

3 =
0000 0i00 0000 0000, and ∇Xj

10 = 0000 0j00 0000 0000, respectively, where i, j ∈ F4
2\{0}.

Assuming that pi = Pr(∆X0
E3r

0−−→ ∆Xi
3), and qj = Pr(∇Xj

10
E2r

1−−→ ∇X12), a lower bound for
the probability of the 12-round boomerang distinguisher is

∑15
i=1
∑15
j=1 p

2
i q

2
jR

7r
i,j = 2−35.49.

Taking into account that the input and output differences of the middle part should not
necessarily be the same in two sides of boomerang distinguisher, the following formula gives
a more accurate lower bound for the probability of the 12-round boomerang distinguisher:

p12r
bm =

15∑
i=1

15∑
j=1

15∑
k=1

15∑
l=1

pipjqkqlR
7r
i,j,k,l = 2−34.89.

According to the experimental evaluations, the probability that the boomerang returns,
is 2−32.11, which validates the provided lower bound. To empirically approximate the
probability we choose a random key and tweak at first and perform 237 boomerang queries.
We iterate this experiment for 100 random keys and tweaks and count the average number of
right quartets. Table 16 provides a right quartet for the 12-round boomerang distinguisher.
Similarly, we can extend the 7-round boomerang distinguisher E7r

m to build 13 and 14
rounds boomerang distinguishers with probabilities p13r

bm = 2−44.89, and p14r
bm = 2−60.33

respectively. Table 14 and Table 15 express the specification of the extended boomerang
distinguishers based on E7r

m for 13 and 14 rounds of CRAFT respectively.
Although due to the restricted computing power we have not evaluated the experimental

probability of the extended boomerang distinguishers for 13 and 14 rounds of CRAFT, we
expect that the boomerang returns with a probability higher than what is estimated above
as we have not considered the entire clustering effect inside the boomerang distinguisher.
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5.5 A Dedicated Boomerang Distinguisher for 14 Rounds of CRAFT
In the previous section, we showed that there exists a 7-round boomerang distinguisher
for CRAFT that can be extended up to 14 rounds. However, for convenience, we used a
common middle part to construct the boomerang distinguishers covering 9 to 14 rounds
of CRAFT. Thus, it may be possible to find a better distinguisher in terms of probability
if we search for a dedicated boomerang distinguisher for each case. Here, we provide
a dedicated boomerang distinguisher with a higher probability for 14 rounds of CRAFT.
Table 6 describes the specification of a dedicated boomerang distinguisher for 14 rounds of
CRAFT, and Figure 10 illustrates three different parts of this distinguisher, i.e., E0, E1 and
Em.

As shown in Figure 10, the upper and lower differential paths are strongly interrelated
and there are many common active S-boxes in the middle part. Hence, to avoid the
complicated formulas we switch to the experimental approach to provide a lower bound
for the probability of this boomerang distinguisher. Let consider the 8-round middle part
including rounds 4 to 11 as Em. As it can be seen in Figure 10, there exist only one active
cell in both input and output differences of Em. On the other hand, each of the input
and output differences can take different values in two faces of boomerang. Consequently,
there are in total 154 = 50625 possible combinations for the input/output differences of
Em in two sides of boomerang distinguisher. However, due to the restricted computing
power, we let the differences in active input and output cells of Em, to be different in two
sides of boomerang only if they are taken from S = {5, 7, A, D, F}, otherwise, we assume
that they are the same in two faces of boomerang. Thus, we consider only 54 + 102 = 725
cases out of 50625 possible combinations for the input/output differences of Em. Let
∆Xi

3 = 0000 00i0 0000 0000, and ∇Xj
11 = 0000 j000 0000 0000, for all i, j ∈ F4

2 \ {0}.
For each of 725 possible combinations, the input and output differences of Em in two sides
of boomerang are fixed, and the probability that the boomerang returns is experimentally
evaluated. Then, for all i, j, k, l ∈ S, the results are arranged into:

R8r
i,j,k,l := Pr{E−1

m

(
Em (x)⊕∇Xk

11
)
⊕ E−1

m

(
Em

(
x⊕∆Xi

3
)
⊕∇X l

11
)

= ∆Xj
3},

and for all i, j ∈ F4
2 \ S ∪ {0}, the results are stored into Ri,j , such that:

R8r
i,j := Pr{E−1

m

(
Em (x)⊕∇Xj

11

)
⊕ E−1

m

(
Em

(
x⊕∆Xi

3
)
⊕∇Xj

11

)
= ∆Xi

3}.

Next, we show that the dependency doesn’t exist outside Em. To this end, we firstly
assume that the lower and upper crossing differences are uniformly distributed outside
Em. Based on this assumption, the following formula:∑

i∈S

∑
j∈S

∑
k∈S

∑
l∈S

pipjqkqlR
8r
i,j,k,l = 2−25.65,

where pi = Pr(∆X2
E1r

0−−→ ∆Xi
3), and qj = Pr(∇Xj

11
E1r

1−−→ ∇X12), for all i, j ∈ F4
2 \ {0},

and ∆X2 = A000 0000 A000 0000, and ∇X12 = 0000 A000 0000 0000, must give the same
value as the experimental probability of the 10-round boomerang distinguisher that is
constructed by appending one round before and after the Em, in Figure 10. we empirically
assessed the probability of the 10-round boomerang distinguisher composing of rounds 3
to 12 in Figure 10. To this end, we firstly chose a random key and tweak and perform
228 boomerang queries. This test was iterated for 1000 randomly chosen keys and tweaks
and 4.93 boomerang returned on average. Hence the experimental probability is 2−25.70,
which is very close to the above approximation and therefore confirms our assumption.
Consequently, a lower bound for the probability of the 14-round boomerang distinguisher
is: ∑

i,j,k,l∈S

pipjqkqlR
8r
i,j,k,l +

∑
i,j∈F4

2\S∪{0}

p2
i q

2
jR

8r
i,j = 2−55.85 + 2−66.70 ≈ 2−55.85,
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where pi = Pr(∆X0
E3r

0−−→ ∆Xi
3), and qj = Pr(∇Xj

11
E3r

1−−→ ∇X14), for all i, j ∈ F4
2 \ {0}. It

is visible that the total probability is almost determined by the first term.

Table 6: Specification of a dedicated boomerang distinguisher for 14 rounds of CRAFT
r0 = 3, rm = 8, r1 = 3,

∑
pipjqkqlR

8r
i,j,k,l = 2−55.80; i, j ∈ F4

2 \ {0}
∆X0 00AA 00A0 A00A 00A0 ∆Xi

3 0000 00i0 0000 0000
∇Xj

11 0000 j000 0000 0000 ∇X14 00A0 0000 0AA0 A000

0000A00000000000 0000000000A00000 0000000000A00000 0000A00000000A00 0000A00000000A00 00A000000AA0A000 00A000000AA0A000

0000A00000000000

00AA00A0A00A00A0 000000A000000000A0000000A0000000 A0000000A0000000000A00AA0000000A 000A00AA0000000A 000000A000000000

00000000A0000000000000A000000000

Figure 10: A dedicated boomerang distinguisher for 14 rounds of CRAFT with the form 3 + 8 + 3

5.6 Boomerang Distinguishers of CRAFT in the Related-Tweak Model

We have investigated the boomerang behavior of CRAFT in the related-tweak model also.
In contrast to the single tweak model where the boomerang distinguishers have significant
advantages against the basic differential distinguishers, the outcome was not promising in
terms of the number of rounds compared to the current best differential distinguishers in
the related tweak model. It shows that the boomerang attack is less efficient than the basic
differential attack for CRAFT in the related tweak model. It is worth noting, we expected
this behavior and it is not surprising. More precisely, on one hand, the differences that
are introduced by the tweakey schedule accelerate the diffusion of uniformly distributed
differences which reduces the number of rounds that can be covered by the middle part.
On the other hand, the clustering effect in the related-tweak model is weaker in comparison
with the single tweak model for CRAFT. Hence, the outcome is not promising in this model
compared to the previous related tweak differential cryptanalysis [BLMR19].
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Table 7: Notations for SKINNY.
TK1i Tweakey state TK1 in round i. TK2i and TK3i are defined similarly
TKi ith round tweakey. This is equal to the result of XORing the first and

the second rows of TK1i and TK2i for SKINNY-n-2n and TK1i, TK2i
and TK3i for SKINNY-n-3n

Xi Internal state before SC in round i
Yi Internal state before ART in round i
Zi Internal state before SR in round i
Wi Internal state before MC in round i
Si[j] jth cell of state Si, where 0 ≤ j ≤ 15, e.g. X1[6] denotes 6th cell of

internal state before SC in round 1
Si[j ∼ l] jth to lth cells of state Si, in round i, where 0 ≤ j ≤ l ≤ 15, e.g. Y2[6 ∼ 8]

denotes 6th, 7th and 8th cells of internal state before ART in round 2
TK[j] jth cell of TK, where 0 ≤ j ≤ 15, e.g. X1[6] denotes 6th cell of internal

state before SC in round 1
∆S Forward difference in a state S
∇S Backward difference in a state S
Y Hexadecimal representation of arbitrary value Y ∈ F4

2, where we are
using typewriter style.

6 Boomerang Distinguishers for Reduced-Round SKINNY

In this section, we first briefly review the specification of SKINNY and its previous boomerang
distinguishers, and then present improved boomerang distinguishers for different variants
of SKINNY. Table 7 briefly describes the notations we use through this section of the paper.

6.1 A Brief Description of SKINNY

SKINNY is a family of lightweight tweakable block ciphers using SPN strcuture and following
the tweakey framework from [JNP14], in its design. Each family member of SKINNY is
represented by SKINNY-n-t, where n represents the block size (n ∈ {64, 128}), and t
represents the tweakey size (t ∈ {n, 2n, 3n}). In other words, the six main variants of
SKINNY are SKINNY-64-64, SKINNY-64-128, SKINNY-64-192, SKINNY-128-128, SKINNY-128-
256, and SKINNY-128-384 with 32, 36, 40, 40, 48, and 56 rounds, respectively.

The internal state of SKINNY is considered as a 4 × 4 matrix, where each entry is a
nibble in the n = 64 case, or a byte in the n = 128 case. In both cases, the internal state
IS = I0‖I1‖ · · · ‖I14‖I15 is arranged row-wise into a 4× 4 array, where Ii ∈ F4

2 (or F8
2).

As illustrated in Figure 11, each round of SKINNY performs five basic operations on
the cipher internal state, including SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR), and MixColumns (MC). The first operation which is performed on
the internal state in each round is SubCells (SC), in which depending on the block size,
a 4-bit Sbox (for 64-bit block size) or a 8-bit Sbox (for 128-bit block size) is applied
on each cell of the internal state. The next operation is AddConstant (AC) where some
round-dependent constants are XORed to the first column of the cipher internal state.
Then, in AddRoundTweakey (ART), as represented in Figure 11, the first and second rows
of the tweakey state are XORed with the corresponding rows of the internal state. In
ShiftRows (SR) layer, each cell in row j is rotated to the right by j cells.

In the MixColumns (MC) layer, each column of the internal state is multiplied by 4× 4
binary matrix. The tweakey state of SKINNY can contain both key and tweak materials
and it is arranged as a collection of z 4 × 4 array of nibbles (for 64-bit block size) or
bytes (for 128-bit block size), where z = t/n. The tweakey state arrays are denoted by
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Figure 11: The round function and tweakey schedule of SKINNY

TK1 when z = 1, TK1 and TK2 when z = 2, and TK1, TK2, and TK3 when z = 3.
Let TKi[j] represents the j’th cell of TKi for i ∈ {1, 2, 3}. The tweakey schedule of
SKINNY is a linear algorithm in which, firstly, a cell-wised permutation PT is applied
on each tweakey state, i.e. TKi[j] ← TKi[PT [j]] for all i ∈ {1, 2, 3} and 0 ≤ j ≤ 15
where PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Then, every cell of the first and
second rows of TK2 (where TK2 is used) and TK3 (when TK3 is used) are individually
updated with an LFSR. For complete details of the round function, and tweakey scheduling
algorithm, one can refer to [BJK+16b].

Table 8: Summary of our results in comparison to the best previous results in [SQH19] for
boomerang distinguishers of SKINNY. The probabilities highlighted in red have been verified
experimentally. The Roman numbers represent the corresponding distinguisher in our paper. The
probabilities denoted by §, correspond to the distinguishers that can be obtained by extending
the distinguishers proposed in [SQH19].

Probability
Version n #Rounds Our Distinguisher [SQH19]

SKINNY-n-2n

64
17 2−26.54(II) 2−29.78

18 2−37.90(II) 2−45.14§
19 2−51.08(II) 2−65.62§

128

18 2−40.77 (II) 2−77.83

19 2−58.33 (II) 2−97.53§
20 2−85.31 (I) 2−128.65§
21 2−114.07 (II) 2−171.77§

SKINNY-n-3n

64 22 2−38.84 (I) 2−42.98

23 2−52.84 (I) 2−67.36§

128

22 2−40.57 (I) 2−48.30

23 2−56.47 (I) 2−75.86§
24 2−87.39 (I) 2−107.86§
25 2−116.59 (I) 2−141.66§

In [LGS17], Liu et al., provided related-tweakey rectangle attacks against SKINNY. After
that, in EUROCRYPT 2018, Cid et al. introduced the BCT in [CHP+18] and applied it to
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accurately evaluate the probability of generating the right quartet for two middle rounds
of boomerang distinguishers proposed in [LGS17]. At FSE 2019, Song et al. proposed a
generalized framework to identify the actual boundaries of Em which contains dependency
of the two differential paths of boomerang distinguisher and systematically evaluate the
probability of Em with any number of rounds. Using their method, Song et al. proved that
the probability of four boomerang distinguishers proposed in [LGS17] are much higher than
previously evaluated. To the best of our knowledge, the results of Song et al. in [SQH19]7,
are the best-published results for boomerang distinguishers of SKINNY so far. In this
section we introduce new boomerang distinguishers for SKINNY-64-128, SKINNY-64-192,
SKINNY-128-256, and SKINNY-128-284, which are remarkably better than the best previous
boomerang distinguishers of SKINNY in terms of probability and number of rounds. Table 8,
summarizes our results on boomerang distinguishers for SKINNY-n-2n and SKINNY-n-3n,
where they are compared with the best previous ones.

Firstly, we investigated the best previous boomerang distinguishers in [SQH19], to
see for how many rounds they can be extended. To this end, by keeping the middle part
and the tweakey’s difference of the proposed distinguishers unchanged, we extend them
some rounds forwards and backward. Then, by fixing the input and output differences
of Em, we look for the best differential trails covering the extended E0 and E1. After
that, taking into account the clustering effect, we compute p and q. In conclusion, given
that r is known from [SQH19], we compute the total probability using p2q2r formula.
The summary of our results concerning this search is given in Table 17. As it can be
seen, the best previous boomerang distinguishers of SKINNY-64-128, SKINNY-128-256 and
SKINNY-128-384 proposed in [SQH19] and [LGS17], can be extended up to 18, 19, and 24
rounds respectively, whereas the best previous boomerang distinguisher for 22 rounds of
SKINNY-64-192, can not be extended for a higher number of rounds at all.

Based on the results in [SQH19], where it is proved that the upper and lower differential
paths in boomerang distinguishers of SKINNY can be dependent up to 6 rounds, we searched
for the boomerang distinguisher of SKINNY taking into account the 6-round middle part
as Em. Given that the boomerang distinguishers for 8-bit versions of SKINNY, cover more
number of rounds [SGSL18] in comparison to the 4-bit versions, and 8-bit S-boxes are
heavy for MILP/SAT solvers, applying our searching method on 8-bit versions of SKINNY
is more time-consuming. Accordingly, we applied a dedicated method to find boomerang
distinguishers for SKINNY to speed up the search. Due to the structural similarity between 4-
bit and 8-bit versions of SKINNY, our idea is to use the discovered boomerang distinguishers
for 4-bit versions, in discovering boomerang distinguishers for 8-bit versions. Once a
boomerang distinguisher is discovered for 18 rounds of SKINNY-64-128, we use the middle
part of the discovered boomerang distinguisher to find a boomerang distinguisher for 18
rounds of SKINNY-128-256, as well as 22 rounds of SKINNY-128-384. To do so, we divide 18
(and 22) rounds of SKINNY-128-256 (and SKINNY-128-384) into three parts such that Em
includes the 6-round middle part. Then, we look for the best differential trails for the first
and last parts, i.e., E0 and E1 satisfying the active pattern of the input and output in the
discovered Em. The discovered boomerang distinguishers for 22 rounds of SKINNY-64-192
can be used to discover boomerang distinguishers for 22 rounds of SKINNY-128-384 in the
same way. As a result, the discovered boomerang distinguishers have a common active
pattern in the middle part.

Throughout applying our searching method for boomerang distinguishers on SKINNY,
we observed that a suitable boomerang distinguisher for 18 rounds of SKINNY-64-128 and
SKINNY-128-256, can be extended up to 19 and 21 rounds of these variants respectively.
Besides, we observed that a suitable boomerang distinguisher for 22 rounds of SKINNY-64-
192 and SKINNY-128-384 can be extended up to 23 and 25 rounds respectively. Among all of

7 [SQH19] focused on giving a more accurate probability of existing boomerang distinguishers rather
than searching for boomerang distinguishers covering more rounds.

26



the discovered boomerang distinguishers using our dedicated searching method, we picked
the two best ones called the boomerang distinguisher I, and boomerang distinguisher II,
which are presented in the next sections.

6.2 Boomerang Distinguisher I for SKINNY
In this section, we present the details of boomerang distinguisher I for different variants
of SKINNY. This distinguisher is constructed using our dedicated method to search for
boomerang distinguishers of SKINNY, where we first discover a suitable boomerang distin-
guisher for 18 rounds of SKINNY-64-128 and then use its middle part to discover boomerang
distinguishers for other variants of SKINNY. That is why the active pattern in the middle
part of boomerang distinguisher I is the same for all variants of SKINNY. We first focus on
the boomerang distinguisher I for SKINNY-64-128 and SKINNY-128-256.

Boomerang Distinguisher I for SKINNY-64-128 and SKINNY-128-256

Table 9 describes the specification of the boomerang distinguisher I for 18 rounds of
SKINNY-64-128 and Figure 12 represents the upper and lower differential trails of this
boomerang distinguisher, where the yellow squares stand for active cells and green squares
represent any differences as before. Hex numbers at the top of the state squares are exact
differences specified by the differential trails. The horizontal dashed lines in Figure 12,
separate E0, Em and E1. It can be seen that each one of E0, E1 and Em includes 6 rounds,
such that the middle part Em, is composed of rounds R7 to R12, over which the upper
and lower differential trails are extended with probability 1 towards each other.

Table 9: Specification of boomerang distinguisher I for 18 rounds of SKINNY-64-128
r0 = 6, rm = 6, r1 = 6, p = 2−2.41, q = 2−8, r = 2−19.16, p2.q2.r = 2−39.98

∆TK1 00000000C0000000 ∆TK2 00000000F0000000
∆X0 0000000000000008 ∆X6 0000000000040000
∇TK1 0000000000004000 ∇TK2 0000000000007000
∇X12 0000000000000000 ∇X18 0454000404070404

Next, we compute the probability of the middle part Em, where we assume to include
the dependency between the upper and lower differential trails. As illustrated in Figure 12,
most of the common active S-boxes between the upper and lower differential trails, appear
in rounds R8 to R10. Hence, we start with computing the probability for intermediate
rounds consisting of rounds R8 to R10. It can be seen that c′9 and D′1, in lower and upper
differential trails respectively, are almost uniformly distributed. On the other hand, due to
the weak diffusion of the linear layer, the difference d′1 in lower differential trail, does not
diffuse to more cells. In addition, d′1, should not necessarily take an identical value in two
sides of boomerang. Consequently, assuming that d′1,1 and d′1,2, denote the different values
of difference d′1, in two sides of boomerang, and c′9 and D′1 are uniformly distributed, the
probability of the 3-round middle part including rounds R8 to R10 can be computed as
follows:

p3r
m = 2−13·n ·

∑
d′14

∑
C9

∑
d′4

∑
C13

∑
d′1,1

∑
d′1,2

DBCT(B11, d
′
14) · DDT2(B11, C9)

· DBCT`(B11, C13, d
′
4) · BCT(C9, d

′
14)

· DBCTa(C13, d
′
4, e
′
13) · BCT(C ′10, d

′
4)

· DDT(d′1,1, e1).DDT(d′1,2, e1) · DDT(d′14, e
′
13) = 2−11.55,

where n = 4, B11 = 2, C ′10 = D, and e1 = e′13 = 5. Experimental value of p3r
m is 2−11.70,

which is very close to the provided theoretical value. Next, we append round R11, and
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Figure 12: Boomerang distinguisher I for 18 rounds of SKINNY-64-128 with the form 6 + 6 + 6

provide a formula to theoretically evaluate the probability for the 4-round intermediate
part including rounds R8, R9, R10, and R11. To this end, note that the difference e′13
has not to be identical in two faces of boomerang. Thus, assuming that e′13,1 and e′13,2
represents the differences at position e′13, in two sides of boomerang, we have:

p4r
m = 2−15·n ·

∑
d′14

∑
C9

∑
d′4

∑
C13

∑
d′1,1

∑
d′1,2

∑
e′13,1

∑
e′13,2

∑
D′4

DBCT(B11, d
′
14) · DDT2(B11, C9)

· BCT(C9, d
′
14) · BCT(C ′10, d

′
4) · DBCT`(B11, C13, d

′
4)

· DDT(C13, D
′
4) · LBCT �(D′4, e′13,1, e

′
13,2, d

′
4)

· DDT(d′1,1, e1) · DDT(d′1,2, e1) · (DDT(d′14, e
′
13,1) + DDT(d′14, e

′
13,2)) = 2−13.73,

where n = 4, B11 = 2, C ′10 = D, e1 = 5, and f13 = 2. Based on the experimental evaluations,
p4r
m = 2−13.89 which is very close to the provided theoretical value. It should be noted that,
providing an accurate formula for high number of rounds in which the clustering effect
in the middle part can be considered, is not only complicated, but also evaluating such a
formula in our boomerang distinguishers is a computationally hard problem, especially for
8-bit versions of SKINNY. In conclusion, to avoid the complicated formulas, and with the
aim of providing a more accurate bound, we switch to the experimental approach.

As illustrated in Figure 12, the lower crossing differences after 6 rounds are not enough
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random, as there are still nonzero differences in state a′. On the other hand, four rounds
ahead and four rounds behind the 6-round Em, are fully passive, and we can be sure that
there does not exist dependency out of the 6-round middle part, as after propagating the
lower and upper differential trails by four more rounds forwards and backward, the crossing
differences can be seen as perfectly uniform. Note that the input and output differences of
Em in Figure 12 are imposed by the tweakey differences. Given that, the tweakey schedule
is linear, and the master tweakey difference is fixed, the only possible combination for
the input/output differences of Em in Figure 12, is ∆X6 = 0000000000040000, ∇X12 =
0000000000000000. Therefore, by fixing the input/output differences of Em, by ∆X6, and
∇X12 respectively, we can simply evaluate the experimental probability of the 6-round
middle part.

To assess the empirical probability of intermediate Em with 6 rounds in Figure 12,
we chose a tweakey at random following the pseudo-code in Appendix I, we perform 226

boomerang queries. We repeat this test for 1000 randomly chosen tweakey and count the
average number of right quartets. Accordingly, the probability of Em is 2−19.16. For the
full 18-round distinguisher, taking into account the clustering effect, the probability of
the first and last 6 rounds can be simply calculated using the automatic methods based
on MILP/SAT which are p = 2−2.41 and q = 2−8, respectively. In conclusion, a lower
bound for the probability of full 18-round boomerang distinguisher I for SKINNY-64-128
is p2q2r = 2−39.98. We experimentally verified the correctness of this bound. To do
so, we accomplished several random experiments such that each experiment includes
241 random boomerang queries in total, and computed the average number of returned
boomerangs. More precisely, to accomplish an experiment consisting of 241 random
boomerang queries, we performed 512 parallel experiments, each of which includes 216

bunches of 216 random boomerang queries where a random fixed tweakey was used in each
bunch and a random plaintext was used in every single query. As a result, we observed
that about 3.71 boomerangs return on average. Table 22 provides a right quartet for this
distinguisher.

The boomerang distinguisher I for 18 rounds of SKINNY-64-128 can be extended one
round backward, to construct a 19-round boomerang distinguisher, whose specification is
provided in Table 10, which improves the previous results by one round. Also, as it can
be seen in Figure 12, removing the last round of 18-round boomerang distinguisher I for
SKINNY-64-128, results in a 17-round boomerang distinguisher with probability 2−27.98,
which is better than the 17-round boomerang distinguisher proposed in [LGS17], in terms
of probability.

Table 10: Specification of boomerang distinguisher I for 19 rounds of SKINNY-64-128
r0 = 7, rm = 6, r1 = 6, p = 2−9, q = 2−8, r = 2−19.16, p2.q2.r = 2−53.16

∆TK1 C000000000000000 ∆TK2 F000000000000000
∆X0 2000001001001000 ∆X7 0000000000040000
∇TK1 0000400000000000 ∇TK2 0000700000000000
∇X13 0000000000000000 ∇X19 0454000404070404

As mentioned before, to find a boomerang distinguisher for 18 rounds of SKINNY-128-
256, we divide it into three 6-round parts and then look for the best differential trails
for E0 and E1, satisfying the input/output activeness pattern of the discovered Em in
boomerang distinguisher I for SKINNY-64-128. Due to the structural similarity between the
SKINNY-64-128 and SKINNY-128-256, we found an 18-round boomerang distinguisher for
SKINNY-128-256 with the same activeness pattern as 18-round boomerang distinguisher I
for SKINNY-64-128. The large block size of SKINNY-128-256 lets us to extend the discovered
boomerang distinguisher I for SKINNY-128-256 up to 21 rounds of this cipher, which improves
the previous distinguisher by two rounds. The specification of boomerang distinguisher I
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for 18 to 21 rounds of SKINNY-128-256 are described in Table 18.

Boomerang Distinguisher I for SKINNY-64-192 and SKINNY-128-384

Table 11 describes the specification of boomerang distinguisher I for 22 rounds of SKINNY-
64-192, and Figure 13 illustrates the upper and lower differential trails of this distinguisher.
E0 and E1 are composed of the first and last 8 rounds, respectively, and the 6-round
middle part has been considered as Em. It can be seen that the activeness pattern in
the middle part of this distinguisher is exactly the same as the activeness pattern of the
middle part in boomerang distinguisher I for SKINNY-64-128.

Next, we show that Em in Figure 13, contains entire dependency between the upper
and lower differential trails. The propagation of lower differences with probability 1 over
the Em in Figure 13, shows that there are still non-zero differences even after 6 rounds.
Hence, the upper and lower differential trails are dependent in Em. On the other hand,
6 rounds before and after Em, are passive and the upper and lower crossing differences
are uniformly distributed after 6 rounds propagation in forward and backward directions,
respectively. Consequently, Em contains entire dependency between the upper and lower
differential trails in Figure 13. Given that the input/output differences of the middle part
Em are induced from the tweakey differences and therefore, are fixed, we experimentally
evaluate the probability of the middle part, for the fixed input/output differences shown
in Figure 13. Our experimental evaluation follows the pseudo-code given in Appendix I,
where we chose a tweakey at random and then perform N = 226 boomerang queries. After
iteration of this test for 1000 randomly chosen tweakey we count the average number of
right quartets. Next, taking into account the clustering effect, we compute p and q which
are given in Table 11. Lastly, using the p2q2r formula we provide a lower bound for the
probability of boomerang distinguisher. We also experimentally verified the correctness of
the constructed distinguisher. To do so, we performed several experiments each of which
consists of 240 boomerang queries where a new random tweakey is used for each bunch of
220 queries, and observed that about 2.26 right quartets are discovered on average. Table 23
provides a right quartet satisfying the boomerang distinguisher I for SKINNY-64-192.

Table 11: Specification of boomerang distinguisher I for 22 rounds of SKINNY-64-192. ∆T K =
∆T K1||∆T K2||∆T K3, and ∇T K = ∇T K1||∇T K2||∇T K3

r0 = 8, rm = 6, r1 = 8, p = 2−2.41, q = 2−7, r = 2−20.02, p2.q2.r = 2−38.84

∆TK 0000000001000000 000000000B000000 0000000008000000
∆X0 0000000000000200 ∆X8 00000000000A0000
∇TK 0000000000200000 0000000000300000 0000000000D00000
∇X14 0000000000000000 ∇X22 5605060000450605

Boomerang distinguisher I for SKINNY-64-192, can be extended one round backward,
which results in a 23-round boomerang distinguisher whose specification is given by
Table 12, whereas the best previous boomerang distinguisher for 22 rounds of SKINNY-64-
192 in [LGS17], can’t be extended for 23 rounds of this version.

Table 12: Specification of boomerang distinguisher I for 23 rounds of SKINNY-64-192
r0 = 9, rm = 6, r1 = 8, p = 2−9.41, q = 2−7, r = 2−20.02, p2.q2.r = 2−52.84

∆TK 0100000000000000 0B00000000000000 0800000000000000
∆X0 0400100000010010 ∆X9 00000000000A0000
∇TK 0020000000000000 0030000000000000 00D0000000000000
∇X15 0000000000000000 ∇X23 5605060000450605

In the same way, we also found a boomerang distinguisher for 22 rounds of SKINNY-
128-384 with the same activeness pattern as boomerang distinguisher I for 22 rounds of
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Figure 13: Boomerang distinguisher I for 22 rounds of SKINNY-64-192 with the form 8 + 6 + 8

SKINNY-64-192. The large block size of SKINNY-128-384, allows us to extend the discovered
boomerang distinguisher I for 22 rounds of SKINNY-128-384, up to 25 rounds of this cipher,
whereas the best previous boomerang distinguisher of this variant in [LGS17], can be
extended up to 24 rounds. Table 19 describes the specifications of boomerang distinguisher
I for 22 to 25 rounds of SKINNY-128-384. Thanks to the high probability of boomerang
distinguisher I for 22 rounds of SKINNY-128-384, we could experimentally verify it. Our
experimental verification follows the same configuration as the experimental verification of
boomerang distinguisher I for 18 rounds of SKINNY-64-128. Table 24 represents one of the
right quartets that were discovered during our experiments.

6.3 Boomerang Distinguisher II for SKINNY-64-128 and SKINNY-128-
256

Throughout our search for boomerang distinguishers of SKINNY, we discovered a boomerang
distinguisher which was a little better than boomerang distinguisher I for SKINNY-64-128
and SKINNY-128-256, in terms of probability, which is introduced here as boomerang
distinguisher II for these variants of SKINNY. Due to our strategy to search for boomerang
distinguishers of SKINNY, the activeness pattern of the middle part in boomerang distin-
guisher II is also the same for 18 rounds of SKINNY-64-128 and SKINNY-128-256. Therefore,
we represent both of them in Figure 14.

In Figure 14, the hex numbers inside the squares represent the exact differences of upper
and lower differential trails in boomerang distinguisher II for SKINNY-128-256, whereas
the hex number at the top of the state arrays represent the exact difference of upper and
lower differential trails in boomerang distinguisher II for SKINNY-64-128. As illustrated in
Figure 14, four rounds before and after Em, are fully passive which shows Em contains
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Figure 14: Boomerang distinguisher II for 18 and 19 rounds of SKINNY-64-128, and 18 to 21
rounds of SKINNY-128-256

entire dependency between the upper and lower differential trails. A lower bound can be
computed for the probability of this distinguisher as before. As it is shown in Figure 14,
the 18-round boomerang distinguisher II for SKINNY-64-128 can be extended one round
backward to construct a 19-round boomerang distinguisher for this variant of SKINNY.
Similarly, the boomerang distinguisher II for SKINNY-128-256 can be extended up to 21
rounds of this variant. The full specification of boomerang distinguisher II for SKINNY-64-
128 and SKINNY-128-256 are given in Table 20 and Table 21, respectively. Following the
same configuration as the empirical verification of boomerang distinguisher I for 18 rounds
of SKINNY-64-128, we experimentally verified the correctness of boomerang distinguisher II
for 18 rounds of SKINNY-128-256. Table 25 represents one of the right quartets discovered
during our experiments. It is worth noting that the boomerang distinguisher II for 18
rounds of SKINNY-128-256 is the first practical boomerang distinguisher for 18 rounds of
SKINNY-128-256 that can be verified practically without consuming too much computing
power.

7 Rectangle Attacks on Reduced-Round SKINNY and CRAFT

In this section, based on the new distinguishers introduced in the previous section for
SKINNY, i.e. distinguisher I/II, and the 14-round boomerang distinguisher of CRAFT
in Figure 10, we present improved related-tweakey rectangle attacks on reduced SKINNY
and CRAFT. Through this section, we follow the generalized framework for key recovery
which has been recently proposed by Zhao et al. [ZDM+20], based on the same notations
as much as possible. Hence, we define Eb as a part of the cipher when backtracking the
trail from the input difference of the boomerang distinguisher in backward direction under
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related-tweakey difference ∆TK for nb round(s). Similarly, we can define Ef as a part
of the cipher when propagating the trail from the output difference of the boomerang
distinguisher in forward direction under related-tweakey difference ∇TK for nf round(s).
Each cell has c bits and we use rb (resp. rf ) to denote the number of unknown bits in
the input difference of Eb ( resp. output difference of Ef ). The notation mb (resp. mf ) is
used to denote the number of involved bits of the sub-tweaks in Eb (resp. Ef ). To have
s quartets satisfying the distinguisher, we need y structures of plaintexts where for each
structure we assign all possible values to the unknown cells of the plaintexts (rb bits) and
we also should have y =

√
s · 2n/2−rb/

√
p2 · r · q2. The number of messages queried under

each related-tweakey is defined as M = y · 2rb .

7.1 Related-Tweakey Rectangle Attack on Reduced-Round SKINNY-64-
192

Through the attacks on SKINNY-64-192 and other variants, we use the below properties of
SKINNY [ZDM+20,SMB18]:

• Given that the round-tweak is XORed with internal state after the SC layer and
also AC, SR and MC layers are linear, we can do key recovery at Y0 of Eb by defining
∆Y0 = SR−1 ◦ MC−1(∆1) ⊕ ∆TK0, where ∆1 is the difference at the input of the
boomerang distinguisher (see Figure 15). Hence, it does not necessary to guess this
round’s sub-tweak.

• Similarly we can start the key recovery attack at W−nb+1 of Eb, by defining the
equivalent tweak ETK by using ETK = MC ◦ SR(TKrb−1).

• Given the ciphertext C, we can decrypt MC and SR layers of the last round of Ef .
Hence, we use SR−1 ◦ MC−1(C) for the key recovery attack. For the last two rows
that are not affected by the sub-tweak, we can also invert SC layer also.

Besides we recall the below lemma from [ABC+17,LGS17]:

Lemma 1. For the SKINNY’s S-box, the equation S(x+ ∆i) + S(x) = ∆o has one solution
x on average for ∆i,∆o 6= 0.

Following Figure 15, we prefix three rounds at the beginning and three rounds at
the end of the distinguisher I for SKINNY-64-192, which includes 23 rounds, to conduct a
related-tweakey boomerang attack on 29 rounds of the cipher. Hence, Eb includes rounds
−2, −1, 0 and Ef includes rounds 24, 25, 26. In the attack process, rb = 13 ·c, mb = 16 ·c,
rf = 16 · c and mf = 20 · c, where c = 4. We should satisfy y =

√
s · 2n/2−rb/

√
p2 · r · q2

which is y = 2 · 232−52/
√

2−52.84 = 27.42 for s = 4 and M = y · 2rb = 259.42. The attack
procedure is as follows:

1. In data collection, we construct y structures at W−2 of Eb, each structure include 2rb
possible values for the unknown cells to achieve M = y ·2rb different plaintexts. Next,
each plaintext (P ) is encrypted under four related tweaks TK1, TK2 = ∆TK⊕TK1,
TK3 = ∇TK ⊕ TK1 and TK4 = ∆TK ⊕ TK3 to receive (C1, C2, C3, C4). Then,
(P,C1), (P,C2), (P,C3) and (P,C4) are respectively stored in four separate lists as
L1, L2, L3 and L4, where L2 and L4 are stored in hash tables H1 and H2 respectively,
indexed by the rb bits of plaintexts.

2. We guess a value for the mb bits of the sub-tweaks of TK1 that are involved in Eb
and do as follows:
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0100000000000000
0B00000000000000
0800000000000000

0000020000000000
0000010000000000
0000070000000000

0400100000010010

5605060000450605

Figure 15: A 29-round key recovery attack against SKINNY-64-192

(a) We create two sets S1 and S2 and for each pair (P1, C1) ∈ L1, using the
guessed bits of TK1 we partially encrypt it up to Y0, XOR it with the expected
intermediate difference at Y0, i.e. ∆Y0, decrypt it partially using TK2 = TK1⊕
∆TK to achieve P2 and find related (P2, C2) ∈ H1 and store (P1, C1), (P2, C2)
in the set S1. We do a similar approach for P3 ∈ L3 and P4 ∈ L4/H2 and store
the related pairs (P3, C3), (P4, C4) in the set S2. Hence, the size of each set S1
and S2 is M = y · 2rb = 259.42. It is clear:

{∀((P1, C1), (P2, C2)) ∈ S1 :(P1, C1) ∈ L1, (P2, C2) ∈ L2,

EbTK1(P1)⊕ EbTK2(P2) = ∆Y0}

and

{∀((P3, C3), (P4, C4)) ∈ S2 :(P3, C3) ∈ L3, (P4, C4) ∈ L4,

EbTK3(P3)⊕ EbTK4(P4) = ∆Y0}
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(b) Assuming the known bits at the output difference includes n− rf bits, while we
are propagating from ∇4 as the output difference of the distinguisher toward
the ciphertext, we use those n− rf bits of C1 and n− rf bits of C2 to put S1 to
hash table H3. Next, for any ((P3, C3), (P4, C4)) ∈ S2 we try to find an entry
((P1, C1), (P2, C2)) ∈ H3 such that (C1, C3) and (C2, C4) collide in n−rf known
bits. We remove any entry in S2/H3 that does not collide at all. The remaining
quartets will be about M2 · 2−2(n−rf ). However, in our case of SKINNY-64-192,
n− rf = 0 and the remaining quartets will be (259.42)2 · 22·(0) = 2118.84.

(c) We then initialize a list of 2mf counters, i.e. 280, each of them corresponds to a
choice for the active mf bits of sub-tweaks of the last three rounds.

(d) For each surviving quartet from Step 2b, we do the key recovery step by step
as follows:
i. We partially decrypt the ciphertext pairs (C1, C3) and determine their

related Z26 sates. Since the last two rows of Z26 are not affected by TK26, we
can also determineX26[8 ∼ 15]. Given that ∆X26[1] = ∆X26[5] = ∆X26[13]
and we know ∆Y26[1] and ∆Y26[5], so on average we achieve one solutions
for each of TK[12] and TK[9]. Besides, ∆X26[7] = ∆X26[11]⊕∆X26[15]
and we know ∆Y26[7]. Therefore, on average we achieve one solutions for
TK[10].

ii. Next, we partially decrypt the ciphertext pairs (C2, C4), and in a similar
approach we determine the candidates for TK[9],TK[10] and TK[12] and
determine whether they are matched with the retrieved values in the
previous steps. It happens with the probability of 2−12 and about 2−12 ·
2118.84 = 2106.84 quartets are remaining.

iii. Given TK[12] and TK[9] we can decrypt the second column of Y26 and
determine ∆Y25[1], ∆Y25[4], ∆Y25[11] and ∆Y25[14] for any quartet.

iv. Next, we guess TK[14] and partially decrypt the first column of Y26 and
determine Y25[13] for any quartet.

v. For any right pair of (C1, C3) and (C2, C4), we should have ∆X25[13] =
∆X25[1]. On the other hand, for any (C1, C3) and (C2, C4) we have Y25[13]
and ∆Y25[1] and we can determine ∆X25[1]. Given ∆X25[1] and ∆Y25[1],
for both (C1, C3) and (C2, C4) of any quartets, we should receive identical
solution for TK[6]. Therefore the remaining quartets will be 24 · 2106.84 ·
2−4 = 2106.84.

vi. Given TK[10], we can partially decrypt the last column of Y26 and deter-
mine ∆Y25[3], ∆Y25[6] and Y25[9] for any quartet.

vii. Next, we guess TK[15] and partially decrypt the third column of Y26 and
determine ∆Y25[2], ∆Y25[5] and Y25[8] for any quartet.

viii. For any right pair of (C1, C3) and (C2, C4), we should have ∆X25[5] =
∆X25[9]⊕∆X25[13]. Hence, given that we have Y25[9], Y25[13] and ∆Y25[5]
for any (C1, C3) and (C2, C4) we can determine ∆X25[9], ∆X25[13] and
∆X25[5]. Given ∆X25[5] and ∆Y25[5] we should receive identical solution
for TK[0], for both (C1, C3) and (C2, C4) of any quartet. Therefore the
remaining quartets will be 24 · 2106.84 · 2−4 = 2106.84.

ix. Next, we guess TK[8] and partially decrypt the last column of Y26 and
determine Y25[12] the remaining quartets.

x. For any right pair of (C1, C3) and (C2, C4), we should have ∆X25[4] =
∆X25[8]⊕∆X25[12]. Hence, given that we have Y25[12], Y25[8] and ∆Y25[4]
for any (C1, C3) and (C2, C4) we can determine ∆X25[4]. Given ∆X25[4] and
∆Y25[4] we should receive identical solution for TK[7], for both (C1, C3)
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and (C2, C4) of any quartet. Therefore the remaining quartets will be
24 · 2106.84 · 2−4 = 2106.84.

xi. Next, we guess TK[13] and partially decrypt the third column of Y26 to
determine Y25[15] and X25[15] for any quartet.

xii. For any right pair of (C1, C3) and (C2, C4), we should have ∆X25[15] =
∆X25[3]. Hence, given that we have X25[15] and ∆Y25[3] for any (C1, C3)
and (C2, C4) we should receive identical solution for TK[2], for both (C1, C3)
and (C2, C4) of any quartet. Therefore the remaining quartets will be
24 · 2106.84 · 2−4 = 2106.84.

xiii. Similarly, we guess TK[11] and partially decrypt the last first column of
Y26 to determine ∆Y25[0], ∆Y25[7] and Y25[10] for any quartet.

xiv. For any right pair of (C1, C3) and (C2, C4), we should have ∆X25[15] =
∆X25[7]. Hence, given that we have X25[15] and ∆Y25[7] for any (C1, C3)
and (C2, C4) we should receive identical solution for TK[4], for both (C1, C3)
and (C2, C4) of any quartet. Therefore the remaining quartets will be
24 · 2106.84 · 2−4 = 2106.84.

xv. Then we partially decrypt the second column of Z25 of (C1, C3) to determine
the value and differences at Z24[1], Z24[4],Z24[11] and Z24[14]. Given that
we have the difference value at X24[1] we achieve one solution for each of
TK[14]. We also know the expected difference of X24[11] and a wrong key
will remain with the probability of 2−4. Hence, about 2−4 · 2106.84 = 2102.84

quartets are remaining.
xvi. We also partially decrypt the second column of Z25 of (C2, C4) to determine

the value and differences at Z24[1], Z24[4],Z24[11] and Z24[14] and determine
whether the differences at X24[1] and X24[11] are satisfied. Hence, about
2−8 · 2102.84 = 294.84 quartets are remaining.

xvii. We then partially decrypt the last column of Z25 of (C1, C3) to determine
the values and differences at Z24[3], Z24[6],Z24[9] and Z24[12]. Given that
we have the difference value at X24[3] we achieve one solution for TK[10].

xviii. Next, we partially decrypt the last column of Z25 of (C2, C4) to determine
the values and differences at Z24[3], Z24[6],Z24[9] and Z24[12] and determine
whether the differences at X24[3] is satisfied. Hence, about 2−4 · 294.84 =
290.84 quartets are remaining.

xix. We guess TK[5] and partially decrypt the first column of Z25 of (C1, C3)
to determine the value and differences at Z24[0], Z24[7],Z24[10] and Z24[13].
Given that we have the difference values at X24[0] we achieve one solution
for TK[13]. Besides, we have the difference at X24[10] and X24[13] and
the probability of mapping the values of X24[10] and X24[13] for (C1, C2)
to that differences will happen with the probability of 2−8. Hence, about
24 · 290.84 · 2−8 = 286.84 quartets are remaining.

xx. Then, we partially decrypt the first column of Z25 of (C2, C4) to deter-
mine the values and differences at Z24[0], Z24[7],Z24[10] and Z24[13] and
determine whether the differences at X24[0], X24[7], X24[10]and X24[13]
are satisfied. Hence, about 2−12 · 286.84 = 274.84 quartets are remaining.

xxi. We guess TK[3] and TK[1] and partially decrypt the third column of Z25
of (C1, C3) to determine the value and differences at Z24[2], Z24[5],Z24[8]
and Z24[15]. Given that we have the difference values at X24[5] we achieve
one solution for TK[8] and since we also have the difference at X24[15] the
probability of mapping the values of X24[15] for (C1, C2) to that differences
will happen with the probability of 2−4. Hence, about 28 ·274.84 ·2−4 = 278.84

quartets are remaining.
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xxii. Then, we partially decrypt the third column of Z25 of (C2, C4) to determine
the values and differences at Z24[2], Z24[5],Z24[8] and Z24[15] and determine
whether the differences at X24[2], X24[5], X24[8]and X24[15] are satisfied.
The remaining quartets are about 2−8 · 278.84 = 270.84, to be used to count
for the 80-bit sub-tweaks involved in Ef .

xxiii. We select the first 2mf−h candidates for the mf bits of the sub-tweaks
and do exhaustive search for the remaining 192−mb − h = 108 bits of the
master key based on each candidate, for h = 20.

xxiv. Go to item 2 if there is not the correct key.

Given that mb = 64 the amount of table look-ups are 3 · 2mb ·M = 2125.01, to create the
lists. To do the first filtering at Steps 2(d)i and 2(d)ii, we should do one round decryption
for the survived quartets that are 2118.84 quartets and costs 2118.84 · 1

29 = 2113.98 and should
be repeated for any guess of mb, leads to 2177.98. Next, through Steps 2(d)iii to 2(d)xiv we
should do one round encryption which costs 2106.84 · 1

29 = 2101.99 and should be repeated
for any guess of mb, leads to 2165.99. We should do another round decryption for the
survived quartets after Step 2(d)xiv through the rest of the attack, that are 2102.84 quartets,
and costs 2102.84 · 1

29 = 297.99 and again should be repeated for any guess of mb, leads to
2161.99. It is the dominant complexity of the rest of the attack up to the Step 2(d)xxii.
In item 2(d)xxiii, the complexity is 2mb · 2192−mb−h = 2172, for h = 20. Hence, the total
time complexity will be almost 2178. The data complexity of the attack is 4 ·M = 261.42

chosen plaintexts. The memory complexity is 4 ·M +M + 2mf = 5 · 259.42 + 280 ≈ 280.
The signal/noise ratio is SN = p2·r·q2

2−n = 2−52.84

2−64 = 211.16 and the success probability is
Ps = 0.976.

A similar attack can be conducted on other variants of SKINNY as well. Based on the
parameter-set that is depicted in Table 13, a summary of the key recovery attacks has
been presented in Table 1. Following this we achieved the below results:

1. We prefix two rounds at the beginning and two rounds at the end of the distinguisher II
for SKINNY-64-128, which includes 19 rounds, to conduct a related-tweakey boomerang
attack on 23 rounds of the cipher. In this process rb = 8 · 4, mb = 8 · 4, rf = 13 · 4
and mf = 12 · 4. We should satisfy y = 226.54 for s = 4 and it results M = 258.54.
Given that mb = 32 the amount of table look-ups are 292.12, to create the lists. To
do the first filtering, based on the ciphertexts, we should inverse the last round’s
MC-layer which costs less than 256.01. We should also do one round decryption for
the survived quartets that are 293.08 quartets and costs 232 · 293.08 · 1

23 = 2120.56.
In item 2(d)xxiii, the complexity is 2mb · 2128−mb−h = 288, for h = 40. Given
that the complexity of the other steps are negligible, the time complexity will be
approximately 4M + 2120.56 + 288 ≈ 2120.7. The data complexity of the attack is
260.54 chosen plaintexts. The memory complexity is 5 · 258.54 + 248 ≈ 260.9. The
signal/noise ratio is 212.92 and the success probability is Ps = 0.977.

2. We extend the 21-round boomerang distinguisher I against SKINNY-128-256 to 24
rounds key recovery attack. It worth noting that distinguisher II has better probability
but distinguisher I provides lower total complexity in key recovery, based on our
analysis. Through the attack, we prefix a round at the beginning and two rounds
at the end of the distinguisher I for SKINNY-128-256, which includes 21 rounds, to
conduct a related-tweakey boomerang attack on 24 rounds of the cipher. In this
process rb = 0, mb = 0, rf = 14 ·8 and mf = 13 ·8. In this attack, we have y = 2123.21

for s = 4 and M = 2123.21. Given that mb = 0 the amount of table look-ups are
2124.8, to create the lists. To do the first filtering, based on the ciphertexts, we should
inverse the last round’s MC-layer and a cell of SC-layer which costs less than 2120.63.
We should also do one round decryption for the survived quartets that are 2214.43
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Table 13: Summary of the used parameters through our key recovery attacks on the variants
of SKINNY and CRAFT, where D, nD, nb and nf respectively denote the used distinguisher, the
number of rounds of the distinguisher, the number of rounds appended and the number of rounds
prepended.

Scheme D nD nb nf rb mb rf mf p2 · r · q2 M h
SKINNY-64-128 Table 20 19 2 2 32 32 52 48 2−51.08 258.54 40
SKINNY-64-192 Table 12 23 3 3 52 64 64 80 2−52.84 259.42 20
SKINNY-128-256 Table 18 21 1 2 0 0 112 104 2−116.43 2123.21 88
SKINNY-128-384 Table 19 25 3 2 104 120 128 120 2−116.59 2123.29 104

CRAFT Figure 10 14 1 3 24 24 44 84 2−55.85 260.92 72

quartets and costs 2209.84. In item 2(d)xxiii, the complexity is 2168 for h = 88. Given
that the complexity of the other steps are negligible, the time complexity will be
approximately 4M + 2209.84 + 2168 ≈ 2209.85. The data complexity of the attack is
2125.21 chosen plaintexts. The memory complexity is 5 · 2123.21 + 2104 = 2125.54. The
signal/noise ratio is 211.57, the success probability is Ps = 0.977.

3. We prefix three rounds at the beginning and two rounds at the end of the distin-
guisher I for SKINNY-128-384, which includes 25 rounds, to conduct a related-tweakey
boomerang attack on 30 rounds of the cipher. In this process rb = 13 · 8, mb = 15 · 8,
rf = 16 · 8 and mf = 15 · 8. We should satisfy y = 219.29 for s = 4 and M = 2123.29.
Given that mb = 120 the amount of table look-ups are 2244.88, to create the lists.
We should also inverse the last round’s MC-layer and a cell of SC-layer which costs
less than 2120.43. We should also do one round decryption for the survived quartets
that are 2246.59 quartets and costs 2120 · 2246.59 · 1

30 = 2361.68. In item 2(d)xxiii, the
complexity is 2280, for h = 104. Given that the complexity of the other steps are
negligible, the time complexity will be approximately 4M + 2361.68 + 2280 ≈ 2361.68.
The data complexity of the attack is 2125.29 chosen plaintexts and the memory
complexity is 2125.8. The signal/noise ratio is SN = p2·r·q2

2−n = 2−116.59

2−128 = 211.41 and
the success probability is Ps = 0.977.

7.2 Single-Tweakey Rectangle Attack on CRAFT

Similar to the attack on SKINNY variants, described in Subsection 7.1 and based on almost
the same notations whenever it is applicable, in this section we use the best boomerang
distinguisher covering 14 rounds of CRAFT, to provide a key-recovery attack on 18 rounds
of the cipher in the single-tweakey model as it is depicted in Figure 16.

Through the attack, given that the round-tweak is XORed with the internal state
after the MC layer, we can ignore this layer and construct the structures of plaintexts on
Yi of the first round of Eb. Besides, given the ciphertexts, it is possible to decrypt the
last round’s SB and PN layers of Ef . Besides, the MC layer is linear and we can filter the
ciphertexts at the Xi of the last round. Besides, we can verify the difference of the output
of the distinguisher at Wi of the first round of Ef . Hence, it is not necessary to guess this
round’s sub-tweak, i.e. the first round of Ef .

Following Figure 16, we prefix a round at the beginning and three rounds at the
end of the dedicated distinguisher for CRAFT, which includes 14 rounds, to conduct a
related-tweakey boomerang attack on 18 rounds of the cipher. In this process rb = 24 bits,
mb = 24 bits, rf = 44 bits and mf = 84 bits. However, mf and mb have 4 bits overlap
(TK0[13] which we highlighted it in purple) and the effective value of mf = 80 bits. In
this attack, we have y = 2 · 232−24/

√
2−58.85 = 236.92 for s = 4 and M = y · 2rb = 260.92.

The attack procedure is as follows:
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Figure 16: A 18-round key recovery attack against CRAFT

1. In data collection, we construct y = 236.92 structures at Y0, each structure include
2rb possible values for the unknown cells to achieve M = y · 2rb = 260.92 different
plaintexts. Next, each plaintext (P ) is encrypted under tweaks TK to receive the
ciphertext C. Then, (P,C) is stored in a list L1 and also stored in a hash table H1,
indexed by the rb bits of plaintexts.

2. We guess a value for the mb bits of the sub-tweaks that are involved in Eb and do
as follows:

(a) For each pair (P1, C1) ∈ L1, using the guessed sub-tweaks, we partially encrypt
it up to X1, XOR it with the intermediate difference at X1, decrypt it partially
using the guessed sub-tweaks to achieve P2 and find related (P2, C2) ∈ H1 and
store (P1, C1), (P2, C2) in a set S1 that its size will be M = y · 2rb = 260.92. It
is clear: ∀ ((P1, C1), (P2, C2)) ∈ S1 : (P1, C1) ∈ L1, (P2, C2) ∈ L2, EbTK(P1)⊕
EbTK(P2) = ∆1.

(b) Assuming the known cells at the output difference includes n− rf = 20 bits,
while we are propagating from ∇4 toward the ciphertext, we use those n− rf
bits of C1 and n − rf bits of C2 to put S1 to hash table H2. Next, for any
((P1, C1), (P2, C2)) ∈ S1 we try to find a different entry ((P3, C3), (P4, C4)) ∈ H2
such that (C1, C3) and (C2, C4) collide in n− rf known bits. We remove any
entry in S1/H2 that does not collide at all. The remaining quartets will be
M2 · 2−2(n−rf ), i.e. (260.92)2 · 22·(−20) = 281.85.

(c) We then initialize a list of 2mf counters, i.e. 280, each corresponds to a choice
for the active mf bits of sub-tweaks of the last two rounds.

(d) For each surviving quartet from Step 2b, we do the key recovery step by step
as follows:

i. For any right pair (C1, C3), the differences should satisfy ∆Y16[3] =
∆Y16[7] = ∆Y16[15], ∆Y16[2] = ∆Y16[10] and ∆Y16[0] = ∆Y16[12] and
also respectively ∆Z16[3] = ∆Z16[7] = ∆Z16[15], ∆Z16[2] = ∆Z16[10] and
∆Z16[0] = ∆Z16[12].
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ii. We guess TK1[11] and TK1[14], partially decrypt Z17[11] and Z17[14]
to determine whether ∆Z16[7] = ∆Z16[3] for both (C1, C2) and (C2, C4).
Hence, about 28 · 281.85 · 2−8 = 281.85 quartets are remaining.

iii. We guess TK1[4], TK1[12] and TK1[13], partially decrypt Z17[4] and
Z17[13] to determine whether ∆Z16[2] = ∆Z16[10] for both (C1, C2) and
(C2, C4). Hence, about 212 · 281.85 · 2−8 = 285.85 quartets are remaining.

iv. Given TK1[4] and TK1[12] from the previous step, we guess TK1[0] and
TK1[8] and partially decrypt the firs column of Z17 to determine Z16[1],
Z16[6], Z16[10] and Z16[15]. Next we determine whether ∆Z16[3] = ∆Z16[15]
for both (C1, C2) and (C2, C4). Hence, about 28·285.85·2−8 = 285.85 quartets
are remaining.

v. Given Z16[15], we guess TK0[15] to determine whether Z15[0] = 0xA for
both (C1, C2) and (C2, C4). Hence, about 24 · 285.8 · 2−8 = 281.85 quartets
are remaining.

vi. Given Z16[10], we guess TK0[10] to determine whether ∆Z15[4] = 0xA for
both (C1, C2) and (C2, C4). Hence, about 24 · 281.85 · 2−8 = 277.85 quartets
are remaining.

vii. Given TK1[13], we guess TK1[1] and TK1[9] to determine Z16[5] and
Z16[12] and also guess TK1[15] to determine Z16[0]. Next, we verify whether
∆Z16[0] = ∆Z16[12] is satisfied for both both (C1, C2) and (C2, C4). Hence,
about 212 · 277.85 · 2−8 = 281.85 quartets are remaining.

viii. Given Z16[12], we guess TK0[12] to determine whether ∆Z15[1] = 0xA for
both (C1, C2) and (C2, C4). Hence, about 24 · 281.85 · 2−8 = 277.85 quartets
are remaining.

ix. Given TK1[14], we guess TK1[2] and TK1[10] to determine Z16[4] and
Z16[13]. We know TK0[13] from mb and we can determine Z15[2] and verify
whether ∆Z15[2] = 0xA for both (C1, C2) and (C2, C4). Hence, about
28 · 277.85 · 2−8 = 277.85 quartets are remaining.

x. Given Z16[4], Z16[12] and TK0[12], we guess TK0[4] to determine whether
∆Z15[10] = 0xA for both (C1, C2) and (C2, C4). Hence, about 24 · 277.85 ·
2−8 = 273.85 quartets are remaining.

xi. Given Z16[5], Z16[13] and TK0[13], we guess TK0[5] to determine whether
∆Z15[9] = 0xA for both (C1, C2) and (C2, C4). Hence, about 24 · 273.85 ·
2−8 = 269.85 quartets are remaining.

xii. Given TK1[13], we guess TK1[5] to determine Z16[9] and about 24 · 269.85 ·
2−8 = 273.85 quartets are remaining at this point.

xiii. Given Z16[1], Z16[9], Z16[13] and TK0[13], we guess TK0[1] and TK0[9] to
determine whether ∆Z15[12] = 0xA for both (C1, C2) and (C2, C4). Hence,
about 28 · 273.8 · 2−8 = 273.8 quartets are remaining, to be used to count for
the 80-bit sub-tweaks involved in forward part.

xiv. We select the first 2mf−h candidates for the mf bits of the sub-tweaks
and do exhaustive search for the remaining 128−mb − h = 32 bits of the
master key based on each candidate, for h = 72.

xv. Go to item 2 if there is not the correct key.

Given that mb = 24, the amount of table look-ups are 3 · 2mb ·M = 286.51, to create the
lists. To do the first filtering, based on the ciphertexts, we should inverse the last round’s
MC-layer which costs less than 2 ·M · 1

18 = 257.83. We should also do one round decryption
for the survived quartets that are 281.85 quartets and costs 224 · 281.85 · 1

18 = 2101.68. The
complexity of Step item 2(d)xiv is 2mb · 2128−mb−h = 256 for h = 72 and the complexity
of Step item 2(d)ii to Step item 2(d)xiii is less than 28 · 285.85 · 2

18 = 290.68. Hence, the
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time complexity will be approximately 4M + 2101.68 + 256 + 290.68 ≈ 2101.7. The data
complexity of the attack is M = 260.92 chosen plaintexts. The memory complexity is
4 ·M + 2mf = 4 · 260.92 + 284 ≈ 284. The signal/noise ratio is SN = 28.15 and the success
probability is Ps = 0.976.

8 Conclusion
In this paper, we extended the recent advances in boomerang cryptanalysis of block ciphers
by introducing new concepts entitled Double Boomerang Connectivity Table, DBCT (which is
an extension to Boomerang Connectivity Table (BCT)), UBCT�, and LBCT �. We also applied
a more advanced method to search for boomerang distinguishers. Next, we employed this
technique and provided the first security analysis of CRAFT against the boomerang attack
in the single-tweak model for which the designers have not reported the security bound
against this attack. Our analysis showed that reduced rounds of CRAFT have a strong
boomerang effect. For example, we presented a deterministic distinguisher for 6 rounds of
the cipher. For other rounds, up to 14 rounds, we also provided boomerang distinguishers
that outperform other previously known distinguishers in the single-tweak model, for the
same number of rounds. In addition, based on the 14-round boomerang distinguisher for
CRAFT, we provided a single-tweak rectangle attack on 18 rounds of this cipher.

We also applied our heuristic approach to search for boomerang distinguishers of
SKINNY in the related-tweakey model. As a result, we could considerably improve the best
previous boomerang distinguishers of SKINNY-n-2n and SKINNY-n-3n for n ∈ {64, 128}.
Then, building upon the improved boomerang distinguishers, we could improve the best
previous attacks on SKINNY-64-128, SKINNY-64-192, SKINNY-128-256, and SKINNY-128-384,
in the related-tweakey setting. It is worth noting that, our improved related-tweakey
rectangle attacks on SKINNY-64-192, SKINNY-128-256, and SKINNY-128-384, can be directly
applied for the same number of rounds of ForkSkinny-64-192, ForkSkinny-128-256, and
ForkSkinny-128-384.
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Algorithm 2: Building DBCT`

Input: S-box S
1 Initialize an empty table DBCT` with 2n × 2n × 2n entries;
2 for ∆1 = 0→ 2n − 1 do
3 for ∇3 = 0→ 2n − 1 do
4 for ∆2 = 0→ 2n − 1 do
5 num = 0;
6 if DDT(∆1,∆2) > 0 and BCT(∆2,∇3) > 0 then
7 for ∇ = 0→ 2n − 1 do
8 Y∩DDT = YDDT(∆1,∆2) ∩ (YDDT(∆1,∆2)⊕∇);
9 if Y∩DDT 6= ∅ then

10 num += DDT(∆1,∆2) · LBCT(∆2,∇3,∇) · #Y∩DDT
#YDDT(∆1,∆2) ;

11 end
12 end
13 end
14 DBCT`(∆1,∆2,∇3) = num;
15 end
16 end
17 end

Algorithm 3: Building DBCTa

Input: S-box S
1 Initialize an empty table DBCTa with 2n × 2n × 2n entries;
2 for ∆1 = 0→ 2n − 1 do
3 for ∇3 = 0→ 2n − 1 do
4 for ∇2 = 0→ 2n − 1 do
5 num = 0;
6 if DDT(∇2,∇3) > 0 and BCT(∆1,∇2) > 0 then
7 for ∆ = 0→ 2n − 1 do
8 X∩DDT = XDDT(∇2,∇3) ∩ (XDDT(∇2,∇3)⊕∆);
9 if X∩DDT 6= ∅ then

10 num += DDT(∇2,∇3) · UBCT(∆1,∆,∇2) · #X∩DDT
#XDDT(∇2,∇3) ;

11 end
12 end
13 end
14 DBCTa(∆1,∇2,∇3) = num;
15 end
16 end
17 end
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B Boomerang Distinguishers for 7 and 8 Rounds of CRAFT

Figure 17: A 7-round boomerang distinguisher for CRAFT

Figure 18: An 8-round boomerang distinguisher for CRAFT
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C Probability Matrix of E7r
m

R7r =



2−14.07 2−13.45 2−14.38 2−14.07 2−13.67 2−14.35 2−14.20 2−14.36 2−14.07 2−13.58 2−14.38 2−14.07 2−13.99 2−14.36 2−14.01

2−13.45 2−13.42 2−14.28 2−13.45 2−14.07 2−14.28 2−13.97 2−14.24 2−13.45 2−13.83 2−14.28 2−13.45 2−14.29 2−14.28 2−14.30

2−14.38 2−14.28 2−14.35 2−14.35 2−13.33 2−14.30 2−13.53 2−14.81 2−14.36 2−12.68 2−14.33 2−14.38 2−13.31 2−14.33 2−13.23

2−14.07 2−13.45 2−14.35 2−14.07 2−13.67 2−14.38 2−14.20 2−14.36 2−14.07 2−13.58 2−14.36 2−14.07 2−13.99 2−14.38 2−14.01

2−13.67 2−14.07 2−13.33 2−13.67 2−12.05 2−13.33 2−12.27 2−14.27 2−13.67 2−11.26 2−13.33 2−13.67 2−11.97 2−13.33 2−11.86

2−14.35 2−14.28 2−14.30 2−14.38 2−13.33 2−14.35 2−13.53 2−14.81 2−14.38 2−12.68 2−14.33 2−14.36 2−13.31 2−14.33 2−13.23

2−14.20 2−13.97 2−13.53 2−14.20 2−12.27 2−13.53 2−12.49 2−14.34 2−14.20 2−11.46 2−13.53 2−14.20 2−12.24 2−13.53 2−12.07

2−14.36 2−14.24 2−14.81 2−14.36 2−14.27 2−14.81 2−14.34 2−14.97 2−14.36 2−13.84 2−14.81 2−14.36 2−14.37 2−14.81 2−14.35

2−14.07 2−13.45 2−14.36 2−14.07 2−13.67 2−14.38 2−14.20 2−14.36 2−14.07 2−13.58 2−14.35 2−14.07 2−13.99 2−14.38 2−14.01

2−13.58 2−13.83 2−12.68 2−13.58 2−11.26 2−12.68 2−11.46 2−13.84 2−13.58 2−10.39 2−12.68 2−13.58 2−11.18 2−12.68 2−11.03

2−14.38 2−14.28 2−14.33 2−14.36 2−13.33 2−14.33 2−13.53 2−14.81 2−14.35 2−12.68 2−14.30 2−14.38 2−13.31 2−14.35 2−13.23

2−14.07 2−13.45 2−14.38 2−14.07 2−13.67 2−14.36 2−14.20 2−14.36 2−14.07 2−13.58 2−14.38 2−14.07 2−13.99 2−14.35 2−14.01

2−13.99 2−14.29 2−13.31 2−13.99 2−11.97 2−13.31 2−12.24 2−14.37 2−13.99 2−11.18 2−13.31 2−13.99 2−11.89 2−13.31 2−11.78

2−14.36 2−14.28 2−14.33 2−14.38 2−13.33 2−14.33 2−13.53 2−14.81 2−14.38 2−12.68 2−14.35 2−14.35 2−13.31 2−14.30 2−13.23

2−14.01 2−14.30 2−13.23 2−14.01 2−11.86 2−13.23 2−12.07 2−14.35 2−14.01 2−11.03 2−13.23 2−14.01 2−11.78 2−13.23 2−11.66



R7r
e =



2−13.90 2−12.99 2−14.18 2−13.86 2−13.48 2−14.18 2−13.92 2−14.04 2−13.86 2−13.41 2−14.25 2−13.90 2−13.83 2−14.18 2−13.80

2−12.98 2−12.43 2−13.68 2−13.01 2−13.35 2−13.64 2−13.42 2−13.48 2−13.02 2−13.21 2−13.66 2−12.99 2−13.60 2−13.65 2−13.58

2−14.20 2−13.66 2−14.26 2−14.17 2−13.20 2−14.21 2−13.34 2−14.33 2−14.17 2−12.56 2−14.21 2−14.24 2−13.20 2−14.22 2−13.06

2−13.90 2−13.00 2−14.18 2−13.89 2−13.49 2−14.23 2−13.94 2−14.06 2−13.88 2−13.43 2−14.19 2−13.85 2−13.79 2−14.20 2−13.76

2−13.49 2−13.31 2−13.18 2−13.50 2−11.96 2−13.20 2−12.06 2−13.69 2−13.45 2−11.10 2−13.19 2−13.47 2−11.84 2−13.22 2−11.69

2−14.16 2−13.63 2−14.17 2−14.22 2−13.21 2−14.24 2−13.33 2−14.34 2−14.19 2−12.56 2−14.27 2−14.17 2−13.20 2−14.20 2−13.06

2−13.96 2−13.40 2−13.34 2−13.97 2−12.04 2−13.33 2−12.07 2−13.81 2−13.97 2−11.12 2−13.33 2−13.97 2−11.98 2−13.34 2−11.67

2−14.07 2−13.53 2−14.35 2−14.03 2−13.67 2−14.34 2−13.76 2−14.39 2−14.03 2−13.22 2−14.37 2−14.04 2−13.80 2−14.35 2−13.69

2−13.87 2−12.99 2−14.17 2−13.87 2−13.51 2−14.22 2−13.97 2−14.00 2−13.93 2−13.39 2−14.20 2−13.85 2−13.87 2−14.21 2−13.79

2−13.41 2−13.24 2−12.56 2−13.39 2−11.11 2−12.53 2−11.11 2−13.22 2−13.41 2−10.11 2−12.58 2−13.39 2−11.02 2−12.55 2−10.72

2−14.23 2−13.66 2−14.19 2−14.14 2−13.23 2−14.19 2−13.32 2−14.33 2−14.14 2−12.58 2−14.20 2−14.16 2−13.23 2−14.22 2−13.06

2−13.86 2−12.98 2−14.21 2−13.85 2−13.48 2−14.17 2−13.97 2−14.02 2−13.86 2−13.39 2−14.22 2−13.87 2−13.84 2−14.18 2−13.81

2−13.83 2−13.61 2−13.17 2−13.82 2−11.87 2−13.20 2−11.99 2−13.78 2−13.84 2−11.03 2−13.18 2−13.83 2−11.76 2−13.21 2−11.56

2−14.18 2−13.69 2−14.19 2−14.19 2−13.21 2−14.27 2−13.31 2−14.36 2−14.21 2−12.53 2−14.23 2−14.16 2−13.23 2−14.20 2−13.03

2−13.82 2−13.59 2−13.08 2−13.79 2−11.68 2−13.07 2−11.70 2−13.65 2−13.78 2−10.73 2−13.05 2−13.78 2−11.56 2−13.07 2−11.32



D DDT of CRAFT’s S-box

Figure 19: DDT of CRAFT’s S-box
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E Relation Between New and The Previous S-box Tables

DBCT`(∆1,∆2,∇3) =
∑
∇2

UBCT(∆1,∇2,∆2) · LBCT(∆2,∇3,∇2).

DBCTa(∆1,∇2,∇3) =
∑
∆2

UBCT(∆1,∇2,∆2) · LBCT(∆2,∇3,∇2).

DBCT(∆1,∇3) =
∑
∆2

DBCT`(∆1,∆2,∇3) =
∑
∇2

DBCTa(∆1,∇2,∇3).

UBCT�(∆1,∆1,∇2,∆2) = UBCT(∆1,∇2,∆2).
LBCT �(∆1,∇2,∇2,∇1) = LBCT(∆1,∇2,∇1).

F Reformulating the Probability Calculation of 7-round
Boomerang Distinguisher of CRAFT

In this section we re-evaluate the probability of the 7-round boomerang distinguisher of
CRAFT, using the previous boomerang connectivity tables.

UBCTtot =UBCT(A5, b9, B9) · LBCT(B9, c5, b9)
· UBCT(B9, c12, C12) · LBCT(C12, d1, c12)
· UBCT(E′1, f ′12, F12) · LBCT(F12, g

′
9, f
′
12)

· UBCT(F ′5, g′9, G9) · LBCT(G9, h5, g
′
9).

Prtotal = Pr(d1
2 DDT←−−− f ′12) · Pr(c5

3 DDT←−−− f ′12)·

Pr(C12
2 DDT−−−→ E′1) · Pr(C12

3 DDT−−−→ F ′5).

R7r[A5, h5] = 2−8·n ·
∑
b9

∑
B9

∑
c5

∑
c12

∑
C12

∑
d1

∑
E′1

∑
f ′12

∑
F12

∑
g′9

∑
F ′5

∑
G9

UBCTtot · Prtot.

In order to reduce the complexity of evaluating the above formula, we can divide the
formula to some smaller pieces, and evaluate the smaller parts at first, as follows.

M1(A5, B9, c5) =
∑
b9

UBCT(A5, b9, B9) · LBCT(B9, c5, b9),

M2(B9, C12, d1) =
∑
c12

UBCT(B9, c12, C12) · LBCT(C12, d1, c12),

M3(E′1, f ′12, g
′
9) =

∑
F12

UBCT(E′1, f ′12, F12) · LBCT(F12, g
′
9, f
′
12),

M4(F ′5, g′9, h5) =
∑
G9

UBCT(F ′5, g′9, G9) · LBCT(G9, h5, g
′
9),

M12(A5, c5, C12, d1) =
∑
B9

M1(A5, B9, c5) ·M2(B9, C12, d1),

M34(E′1, f ′12, F
′
5, h5) =

∑
g′9

M3(E′1, f ′12, g
′
9) ·M4(F ′5, g′9, h5).
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After evaluating the above tables, the probability is obtained according to the following
formula:

R7r[A5, h5] = 2−8·n ·
∑
c5

∑
C12

∑
d1

∑
E′1

∑
f ′12

∑
F ′5

M12(A′5, c5, C12, d1)·M34(E′1, f ′12, F
′
5, h5)·Prtot.

G A More Efficient Formula to Compute R7r

A more efficient formula for computing the four-dimensional matrix R7r[i, j, k, l], can be
obtained as follows.

M1(A51, A52, B9, c5) =
∑
b9

UBCT�(A51, A52, b9, B9) · LBCT(B9, c5, b9),

M2(B9, C12, d1) =
∑
c12

UBCT(B9, c12, C12) · LBCT(C12, d1, c12),

M3(E′1, f ′12, g
′
9) =

∑
F12

UBCT(E′1, f ′12, F12) · LBCT(F12, g
′
9, f
′
12),

M4(F ′5, g′9, h51, h52) =
∑
G9

UBCT(F ′5, g′9, G9) · LBCT �(G9, h51, h52, g
′
9),

M12(A51, A52, c5, C12, d1) =
∑
B9

M1(A51, A52, B9, c5) ·M2(B9, C12, d1),

M34(E′1, f ′12, F
′
5, h51, h52) =

∑
g′9

M3(E′1, f ′12, g
′
9) ·M4(F ′5, g′9, h51, h52).

After constructing the above tables, R7r[i, j, k, l] can be evaluated according to the following
formula:

R7r[i, j, k, l] = 2−8·n ·
∑
c5

∑
C12

∑
d1

∑
E′1

∑
f ′12

∑
F ′5

M12(A51 = i, A52 = j, c5, C12, d1)

·M34(E′1, f ′12, F
′
5, h51 = k, h52 = l)

· Prtot,

where Prtot, is calculated as follows.

Prtotal = Pr(d1
2 DDT←−−− f ′12) · Pr(c5

3 DDT←−−− f ′12)·

Pr(C12
2 DDT−−−→ E′1) · Pr(C12

3 DDT−−−→ F ′5).

H Boomerang Distinguishers for 13 and 14 Rounds of
CRAFT

Table 14: The extended boomerang distinguisher based on E7r
m for 13 rounds of CRAFT

r0 = 3, rm = 7, r1 = 3,
∑
pipjqkqlR

7r
i,j,k,l = 2−44.89; i, j, k, l ∈ F4

2 \ {0}

pi = Pr(∆X0
E3r

0−−→ ∆Xi
3), qj = Pr(∇Xj

10
E3r

1−−→ ∇X13)
∆X0 00AA 000A 0AA0 000A ∆Xi

3 0000 0i00 0000 0000
∇Xj

10 0000 0j00 0000 0000 ∇X13 0A00 0000 0AA0 000A
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Table 15: The extended boomerang distinguisher based on E7r
m for 14 rounds of CRAFT

r0 = 3, rm = 7, r1 = 4,
∑
pipjqkqlR

7r
i,j,k,l = 2−60.33; i, j, k, l ∈ F4

2 \ {0}

pi = Pr(∆X0
E3r

0−−→ ∆Xi
3), qj = Pr(∇Xj

10
E4r

1−−→ ∇X14)
∆X0 00AA 000A 0AA0 000A ∆Xi

3 0000 0i00 0000 0000
∇Xj

10 0000 0j00 0000 0000 ∇X14 A000 AA00 000A 0AA0

Table 16: The input/output differences, plus a right quartet for 12-round boomerang distinguisher
k 1e97469ac59c9ea9fe87e344887e3ee5
t c1bd0a3437864c1f

∆X0 00aa000a0aa0000a ∇X12 00000a000000a000
p1 7f39ad1a3683588f c1 bb6372ede46edf5e
p2 7f93ad103c235885 c2 67da6cd68f591770
p3 4329c595f6d51b67 c3 bb6378ede46e7f5e
p4 4383c59ffc751b6d c4 67da66d68f59b770

I Boomerang Framework in The Related-Tweakey Setting

Let ETK(P ) and E−1
TK(C) represents the encryption of P and the decryption of C under a

tweakey TK, respectively. Then the pseudo-code of the related-tweakey boomerang attack
is as follows.

• TK1 ← random()

• TK2 ← TK1 ⊕∆TK, TK3 ← TK1 ⊕∇TK, TK4 ← TK1 ⊕∆TK ⊕∇TK.

• Repeat the following steps N times.

1. P1 ← random(1n) and P2 ← P1 ⊕∆P .

2. C1 ← ETK1(P1) and C2 ← ETK2(P2).

3. C3 ← C1 ⊕∇C and C4 ← C2 ⊕∇C.

4. P3 ← E−1
TK3

(C3) and P4 ← E−1
TK4

(C4).

5. Check if P3 ⊕ P4 = ∆P .

J Parameters of The Extended Boomerang Distinguishers
Based on Distinguishers in [LGS17] and [SQH19]

Table 17 briefly describes the main parameters of the extended boomerang distinguishers
based on boomerang distinguishers proposed in [LGS17], and [SQH19].
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Table 17: Boomerang distinguishers for SKINNY proposed by [LGS17] and [SQH19]. The
probabilities denoted by †, correspond to the distinguishers that are obtained by extending the
distinguishers proposed in [LGS17] and [SQH19].

Version n #Rounds E0 Em E1 p2q2r
r0 p rm r r1 q

n-2n

64
17 6 2−2.41 6 2−12.96 5 2−6 2−29.78

18 7 2−10.09 6 2−12.96 5 2−6 2−45.14†
19 7 2−10.09 6 2−12.96 6 2−16.24 2−65.62†

128

18 7 2−25.19 5 2−11.45 6 2−8 2−77.83

19 8 2−35.04 5 2−11.45 6 2−8 2−97.53†
20 8 2−35.04 5 2−11.45 7 2−23.56 2−128.65†
21 9 2−56.60 5 2−11.45 7 2−23.56 2−171.77†

n-2n

64 22 9 2−9.83 5 2−10.50 8 2−6.41 2−42.98

23 10 2−22.02 5 2−10.50 8 2−6.41 2−67.36†

128

22 9 2−11.51 5 2−9.88 8 2−7.70 2−48.30

23 10 2−25.30 5 2−9.88 8 2−7.70 2−75.88†
24 10 2−25.30 5 2−9.88 9 2−23.70 2−107.88†
25 11 2−42.20 5 2−9.88 9 2−23.70 2−141.68†
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K The Specification of Boomerang Distinguishers

Table 18: Boomerang distinguisher I for 18, 19, 20 and 21 rounds of SKINNY-128-256
18: r0 = 6, rm = 6, r1 = 6, p = 2−3.68, q = 2−8, r = 2−19.15, p2.q2.r = 2−42.51

∆TK1 = 0000000000000000f000000000000000
∆TK2 = 0000000000000000fc00000000000000
∆X0 ∆X6

00000000000000000000000000000080 00000000000000000000001000000000
∇TK1 = 000000000000000000000000fc000000
∇TK2 = 00000000000000000000000067000000
∇X12 ∇X18

00000000000000000000000000000000 00202020000000200020000c00200020
19: r0 = 7, rm = 6, r1 = 6, p = 2−11.68, q = 2−8, r = 2−19.15, p2.q2.r = 2−58.51

∆TK1 = f0000000000000000000000000000000
∆TK2 = fc000000000000000000000000000000
∆X0 ∆X7

02000000000020000020000020000000 00000000000000000000001000000000
∇TK1 = 00000000fc0000000000000000000000
∇TK2 = 00000000670000000000000000000000
∇X13 ∇X19

00000000000000000000000000000000 00202020000000200020000c00200020
20: r0 = 8, rm = 6, r1 = 6, p = 2−25.08, q = 2−8, r = 2−19.15, p2.q2.r = 2−85.31

∆TK1 = 000000000000000000f0000000000000
∆TK2 = 000000000000000000fe000000000000
∆X0 ∆X8

00000100010100010100010000d50000 00000000000000000000001000000000
∇TK1 = 00000000000000000000fc0000000000
∇TK2 = 00000000000000000000330000000000
∇X14 ∇X20

00000000000000000000000000000000 00202020000000200020000c00200020
21: r0 = 8, rm = 6, r1 = 7, p = 2−25.08, q = 2−23.56, r = 2−19.15, p2.q2.r = 2−116.43

∆TK1 = 000000000000000000f0000000000000
∆TK2 = 000000000000000000fe000000000000
∆X0 ∆X8

00000100010100010100010000d50000 00000000000000000000001000000000
∇TK1 = 00000000000000000000fc0000000000
∇TK2 = 00000000000000000000330000000000
∇X14 ∇X21

00000000000000000000000000000000 80910000008080808011008000918000
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Table 19: Boomerang distinguisher I for 22 to 25 rounds of SKINNY-128-384
22: r0 = 8, rm = 6, r1 = 8, p = 2−3, q = 2−7, r = 2−20.57, p2.q2.r = 2−40.57

∆TK1 = 0000000000000000002a000000000000
∆TK2 = 00000000000000000079000000000000
∆TK3 = 00000000000000000033000000000000
∆X0 ∆X8

00000000000000000000000000080000 00000000000000000000004000000000
∇TK1 = 00000000000000000000540000000000
∇TK2 = 000000000000000000000f0000000000
∇TK3 = 00000000000000000000f80000000000
∇X14 ∇X22

00000000000000000000000000000000 10100010001000000000071000100010
23: r0 = 9, rm = 6, r1 = 8, p = 2−10.95, q = 2−7, r = 2−20.57, p2.q2.r = 2−56.47

∆TK1 = 002a0000000000000000000000000000
∆TK2 = 00790000000000000000000000000000
∆TK3 = 00330000000000000000000000000000
∆X0 ∆X9

00110000020000000000000200000200 00000000000000000000004000000000
∇TK1 = 00005400000000000000000000000000
∇TK2 = 00000f00000000000000000000000000
∇TK3 = 0000f800000000000000000000000000
∇X15 ∇X23

00000000000000000000000000000000 10100010001000000000071000100010
24: r0 = 10, rm = 6, r1 = 8, p = 2−26.41, q = 2−7, r = 2−20.57, p2.q2.r = 2−87.39

∆TK1 = 0000000000000000000000000000002a
∆TK2 = 0000000000000000000000000000003c
∆TK3 = 00000000000000000000000000000067
∆X0 ∆X10

80000000008080808000800000000c80 00000000000000000000004000000000
∇TK1 = 00000000000000005400000000000000
∇TK2 = 00000000000000008700000000000000
∇TK3 = 0000000000000000f000000000000000
∇X16 ∇X24

00000000000000000000000000000000 10100010001000000000071000100010
25: r0 = 10, rm = 6, r1 = 9, p = 2−26.41, q = 2−21.60, r = 2−20.57, p2.q2.r = 2−116.59

∆TK1 = 0000000000000000000000000000002a
∆TK2 = 0000000000000000000000000000003c
∆TK3 = 00000000000000000000000000000067
∆X0 ∆X10

80000000008080808000800000000c80 00000000000000000000004000000000
∇TK1 = 00000000000000005400000000000000
∇TK2 = 00000000000000008700000000000000
∇TK3 = 0000000000000000f000000000000000
∇X16 ∇X25

00000000000000000000000000000000 08104040505000400840400058100040
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Table 20: Boomerang distinguisher II for 17, 18 and 19 rounds of SKINNY-64-128
17 : r0 = 6, rm = 6, r1 = 5, p = 2−2.41, q = 2−2, r = 2−17.72, p2.q2.r = 2−26.54

∆TK1 000000000C000000 ∆TK2 000000000F000000
∆X0 0000000000000800 ∆X6 0000000004000000
∇TK1 0000000000000040 ∇TK2 0000000000000070
∇X12 0000000000000000 ∇X17 0200000002000200
18 : r0 = 6, rm = 6, r1 = 6, p = 2−2.41, q = 2−7.68, r = 2−17.72, p2.q2.r = 2−37.90

∆TK1 000000000C000000 ∆TK2 000000000F000000
∆X0 0000000000000800 ∆X6 0000000004000000
∇TK1 0000000000000040 ∇TK2 0000000000000070
∇X12 0000000000000000 ∇X18 3101010000710101

19 : r0 = 7, rm = 6, r1 = 6, p = 2−9, q = 2−7.68, r = 2−17.72, p2.q2.r = 2−51.08

∆TK1 0C00000000000000 ∆TK2 0F00000000000000
∆X0 0200100000010010 ∆X7 0000000004000000
∇TK1 0000004000000000 ∇TK2 0000007000000000
∇X13 0000000000000000 ∇X19 3101010000710101
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Table 21: Boomerang distinguisher II for 18, 19, 20 and 21 rounds of SKINNY-128-256
18: r0 = 6, rm = 6, r1 = 6, p = 2−3, q = 2−7.29, r = 2−20.19, p2.q2.r = 2−40.77

∆TK1 = 00000000000000000002000000000000
∆TK2 = 00000000000000000080000000000000
∆X0 ∆X6

00000000000000000000000000200000 00000000000000000006000000000000
∇TK1 = 0000000000000000000000000000f800
∇TK2 = 0000000000000000000000000000cf00
∇X12 ∇X18

00000000000000000000000000000000 40400040004000000000184000400040
19: r0 = 7, rm = 6, r1 = 6, p = 2−11.78, q = 2−7.29, r = 2−20.19, p2.q2.r = 2−58.33

∆TK1 = 00020000000000000000000000000000
∆TK2 = 00800000000000000000000000000000
∆X0 ∆X7

00200000010000000000000100000100 00000000000000000006000000000000
∇TK1 = 000000000000f8000000000000000000
∇TK2 = 000000000000cf000000000000000000
∇X13 ∇X19

00000000000000000000000000000000 40400040004000000000184000400040
20: r0 = 8, rm = 6, r1 = 6, p = 2−27.32, q = 2−7.29, r = 2−20.19, p2.q2.r = 2−89.41

∆TK1 = 00000000000000000000000000000002
∆TK2 = 00000000000000000000000000000040
∆X0 ∆X8

04000000000404040400040000000104 00000000000000000006000000000000
∇TK1 = 000000000000000000000000f8000000
∇TK2 = 00000000000000000000000067000000
∇X14 ∇X20

00000000000000000000000000000000 40400040004000000000184000400040
21: r0 = 8, rm = 6, r1 = 7, p = 2−27.32, q = 2−19.62, r = 2−20.19, p2.q2.r = 2−114.07

∆TK1 = 00000000000000000000000000000002
∆TK2 = 00000000000000000000000000000040
∆X0 ∆X8

04000000000404040400040000000104 00000000000000000006000000000000
∇TK1 = 000000000000000000000000f8000000
∇TK2 = 00000000000000000000000067000000
∇X14 ∇X21

00000000000000000000000000000000 40000404040400044004040044000004

Table 22: A right quartet satisfying the boomerang distinguisher I for 18 rounds of SKINNY-64-128
k1 3494d8c130c487bd 6e42d1c2f71ef823
k2 3494d8c1f0c487bd 6e42d1c2071ef823
k3 3494d8c130c4c7bd 6e42d1c2f71e8823
k4 3494d8c1f0c4c7bd 6e42d1c2071e8823
p1 98adaabd5cfff8a7 c1 8323a64a80b77a4f
p2 98adaabd5cfff8af c2 ed42621b9cf1fa1c
p3 c3e70c62cf12e3eb c3 8777a64e84b07e4b
p4 c3e70c62cf12e3e3 c4 e916621f98f6fe18
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Table 23: A right quartet satisfying boomerang distinguisher I for 22 rounds of SKINNY-64-192
k1 a7f3c98000f138c713fbd314efd27203aa8271d92399b77a
k2 a7f3c98001f138c713fbd314e4d27203aa8271d92b99b77a
k3 a7f3c98000d138c713fbd314efe27203aa8271d92349b77a
k4 a7f3c98001d138c713fbd314e4e27203aa8271d92b49b77a
p1 fcc345999253b1b4 c1 83a25b965cd61acf
p2 fcc345999253b3b4 c2 06a279380ba4ab42
p3 e9f1dd00c6387727 c3 d5a75d965c931cca
p4 e9f1dd00c6387527 c4 50a77f380be1ad47

Table 24: A right quartet satisfying boomerang distinguisher I for 22 rounds of SKINNY-128-384
k1 k2

2c2c5fc838b8a48195e627dd67da0590
0ffb5fb4094b88996352a459dacc8706
f9e6ce319e72b23359da10c0b41550c3

2c2c5fc838b8a48195cc27dd67da0590
0ffb5fb4094b8899632ba459dacc8706
f9e6ce319e72b23359e910c0b41550c3

k3 k4
2c2c5fc838b8a48195e673dd67da0590
0ffb5fb4094b88996352ab59dacc8706
f9e6ce319e72b23359dae8c0b41550c3

2c2c5fc838b8a48195cc73dd67da0590
0ffb5fb4094b8899632bab59dacc8706
f9e6ce319e72b23359e9e8c0b41550c3

p1 c1
8b68483d7e54a1140cb4ad56f5cfacc9 23820cc9011c130afeac8b879c7967aa

p2 c2
8b68483d7e54a1140cb4ad56f5c7acc9 8325b6082c46116050ed125f66cb9f15

p3 c3
9442ed20a6934b4c50925ffcf0d0526e 33920cd9010c130afeac8c979c6967ba

p4 c4
9442ed20a6934b4c50925ffcf0d8526e 9335b6182c56116050ed154f66db9f05

Table 25: A right quartet satisfying boomerang distinguisher II for 18 rounds of SKINNY-128-256
k1 a733ade942312ce0503c3e528aa0c417cb47c7dad8bcefbc3f8131b6375d98de
k2 a733ade942312ce0503e3e528aa0c417cb47c7dad8bcefbc3f0131b6375d98de
k3 a733ade942312ce0503c3e528aa03c17cb47c7dad8bcefbc3f8131b6375d57de
k4 a733ade942312ce0503e3e528aa03c17cb47c7dad8bcefbc3f0131b6375d57de

p1 c1
8d9a13adfc4d3d8046145385edc26a21 eb871cd1bbd5c3de4503f64d3b6fdb11

p2 c2
8d9a13adfc4d3d8046145385ede26a21 eb9d9bdfaaeded28d773172b082e82de

p3 c3
91b30cc8898c0324631b80319a5745de abc71c91bb95c3de4503ee0d3b2fdb51

p4 c4
91b30cc8898c0324631b80319a7745de abdd9b9faaaded28d7730f6b086e829e
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