
Towards Post-Quantum Security for
Cyber-Physical Systems: Integrating PQC into

Industrial M2M Communication?

Sebastian Paul(B) and Patrik Scheible

Corporate Sector Research and Advance Engineering, Robert Bosch GmbH,
Renningen, 70465 Stuttgart, Germany

sebastian.paul2@de.bosch.com

Abstract. The threat of a cryptographically relevant quantum com-
puter contributes to an increasing interest in the field of post-quantum
cryptography (PQC). Compared to existing research efforts regarding
the integration of PQC into the Transport Layer Security (TLS) pro-
tocol, industrial communication protocols have so far been neglected.
Since industrial cyber-physical systems (CPS) are typically deployed
for decades, protection against such long-term threats is needed. In
this work, we propose two novel solutions for the integration of post-
quantum (PQ) primitives (digital signatures and key establishment) into
the industrial protocol Open Platform Communications Unified Architec-
ture (OPC UA): a hybrid solution combining conventional cryptography
with PQC and a solution solely based on PQC. Both approaches provide
mutual authentication between client and server and are realized with
certificates fully compliant to the X.509 standard. We implement the
two solutions and measure and evaluate their performance across three
different security levels. All selected algorithms (Kyber, Dilithium, and
Falcon) are candidates for standardization by the National Institute of
Standards and Technology (NIST). We show that Falcon is a suitable
option — especially — when using floating-point hardware provided by our
ARM-based evaluation platform. Our proposed hybrid solution provides
PQ security for early adopters but comes with additional performance
and communication requirements. Our solution solely based on PQC
shows superior performance across all evaluated security levels in terms
of handshake duration compared to conventional OPC UA but comes at
the cost of increased sizes for handshake messages.

Keywords: Cyber-Physical Systems · Post-Quantum Cryptography ·
X.509 Certificates · Authentication · Key Establishment · OPC UA.

1 Introduction

Google’s recent shot at quantum supremacy attracted much public attention,
but the road to a stable and large-scale quantum computer is still long and

? The final authenticated version is available online at https://doi.org/10.1007/978-3-
030-59013-0 15.

https://doi.org/10.1007/978-3-030-59013-0_15
https://doi.org/10.1007/978-3-030-59013-0_15


2 S. Paul and P. Scheible

uncertain [5]. Once one is built, however, it will be able to solve mathematical
problems previously thought to be intractable. As a consequence, public key
primitives that have become the “security backbone” of our digital society will
be broken. This threat can be mitigated by deploying new cryptographic primi-
tives that withstand attacks from both quantum and traditional computers, i. e.
post-quantum cryptography. NIST addressed this issue by starting a PQC stan-
dardization process in 2016, which is currently in its second round.1 Eventually,
NIST will standardize quantum-resistant key encapsulation mechanisms (KEMs)
and digital signature algorithms (DSAs).

A migration to new primitives requires various forms of cryptographic agility,
which typically is not present in existing systems [31, 40]. Therefore, research
how to securely and effectively integrate PQC into protocols and applications
is required. Furthermore, it is essential to plan for the cryptographic transition,
especially for devices with long life spans and high security requirements. Several
governmental institutes have proposed to use hybrid modes for this cryptographic
transition [9, 18]. In such a hybrid mode at least two cryptographic primitives
are applied simultaneously. On the one hand, a hybrid approach implies various
advantages: 1) As long as one of the involved schemes remains unbroken the “entire”
security property holds. Therefore, early adopters can benefit from additional
security against quantum adversaries but don’t have to fully rely on relatively
new primitives; 2) Being compliant to industrial or governmental standards that
have not been updated yet to include PQC; 3) Provide backward compatibility
to legacy devices. On the other hand, hybrid modes negatively affect performance
and increase the required communication bandwidth as well as memory footprint.

One domain where components have long life spans and many industrial (or
even governmental) regulations are in place are industrial control systems (ICS).
In recent years, ICS have shifted away from isolated networks and serial commu-
nication towards highly connected networks and TCP/IP-based communication,
ultimately, providing access to the Internet. In fact, modern industrial com-
munication has shifted away from proprietary protocols towards standardized
machine-to-machine (M2M) protocols such as OPC UA [34, 42, 50]. Taking into
consideration that CPS deployed today could still be in use when a cryptograph-
ically relevant quantum computer is available, a migration plan towards PQC
is highly recommended. Such a migration plan is even more critical regarding
confidentiality, because any communication passively recorded today can be
retroactively decrypted once sufficiently powerful quantum computers become
available. The fact that attacks related to industrial espionage play a major role
in ICS further emphasizes the need for long-term confidentiality of transmitted
data [49]. Although authentication can not be broken retroactively, we consider
a preliminary investigation beneficial. As components of ICS are seldom updated
during their long lifetime, they should support PQ DSAs rather sooner than
later. As a consequence, we address the integration of PQC (KEM and DSA)
into the widespread industrial communication protocol OPC UA in this work.

1 As of June 2020, the second round is in its final stage; NIST plans to either conduct
a third round or to directly announce a final selection of algorithms.



Towards Post-Quantum Security for Cyber-Physical Systems 3

Previous research efforts largely focused on the integration of PQC into common
Internet protocols, mainly, concentrating on PQ key exchange. To the best of
our knowledge, this is the first work that evaluates the integration of PQC into
an industrial protocol.

Contribution. In this work, we integrate quantum-resistant means of key estab-
lishment and authentication into OPC UA’s security handshake demonstrating
that industrial CPS are capable of handling the increased cost of PQC. The main
contributions of our work are summarized as follows:

→ We investigate all lattice-based schemes of NIST’s second round standardiza-
tion process with regards to a security-size trade-off and conduct a standalone
performance analysis of promising candidates on our evaluation platform.

→ We propose two novel integrations of PQC into OPC UA’s security hand-
shake: Hybrid OPC UA and PQ OPC UA. The first makes use of hybrid
constructions for key exchange, digital signatures, and X.509 certificates.
The latter is solely based on PQ schemes including PQ X.509 certificates.
Both solutions do not alter the existing structure of the security handshake,
and our hybrid approach provides backward compatibility to legacy devices.
Besides that, we present a novel way for verifying hybrid X.509 certificates
using the cryptographic library mbedTLS.

→ We implement and evaluate the two solutions on our ARM-based evaluation
platform and provide detailed performance measurements for three different
NIST security levels. By combining post-quantum key exchange and post-
quantum digital signatures we evaluate the total impact of PQC on OPC UA.

→ Finally, we show that our PQ solution outperforms conventional OPC UA
in terms of handshake duration at all evaluated security levels. In addition,
in four of our six instantiations we make use of Falcon’s highly efficient
floating-point implementation, which — to the best of our knowledge — has
previously not been examined in performance studies.

Outline. In Section 2, we introduce the reader to OPC UA and its security
mechanisms, and we provide preliminaries on PQC. Section 3 highlights related
work. In Section 4, we describe our two integrations of PQC into OPC UA.
The performance measurements of our two proposed solutions are presented in
Section 5. Section 6 concludes our paper.

2 Preliminary Background

2.1 OPC UA in Industrial Communication

OPC UA has been specified by the International Electrotechnical Commission
(IEC) in the standard series 62541. Furthermore, OPC UA is widely considered a
de facto standard for future industrial applications. Because of its service-oriented
architecture, OPC UA offers a standardized interface to exchange data between



4 S. Paul and P. Scheible

industrial applications independent from manufacturer of automation technology.
Recently, it has also been adopted by popular cloud services demonstrating
its increasing popularity [7, 33]. OPC UA offers two modes for the transfer of
information: a client-server mode and a relatively new publish-subscribe mode [34].
In this work, we focus on the client-server mode, since it is widely deployed in
current automation systems and fully supported by open-source implementations.

OPC UA provides mutual authentication based on X.509 certificates and
it ensures integrity and confidentiality of communication. The bottom layer of
OPC UA’s security architecture handles the transmission and reception of infor-
mation. A secure channel is created within the communication layer and is crucial
for meeting the aforementioned security objectives. The exchange of information
is realized within sessions, which are logical connections between clients and
servers. The following description of OPC UA’s certificate-based authenticated
key exchange is based on the relevant parts of its official specification [35, 36].
After a transport connection has been established between client and server, the
client requests EndpointDescriptions, which later allow him to access services or
information offered by the server. In addition, an EndpointDescription contains in-
formation required for the security handshake: server certificate, message security
mode, and security policy. The server certificate contains the authenticated public
key of the server, which the client verifies before initiating the security handshake.
OPC UA offers different message security modes for established sessions: None,
SignOnly, and SignAndEncrypt. The set of cryptographic mechanisms used during
the handshake phase and in subsequent sessions are specified using SecurityPolicy
Profiles. For example, the security policy Basic256Sha256 uses RSA2048 to
encrypt/decrypt (RSA-OAEP) and sign/verify messages (RSA-PKCS1.5) during
the security handshake; symmetric keying material is derived using the hash
function SHA256 in a pseudorandom function (PRF); within sessions, AES256 in
Cipher Block Chaining mode is used for encryption, and a keyed-hash message
authentication code (HMAC) based on SHA256 is used for signatures. In contrast
to TLS, OPC UA so far only offers a security handshake that relies on RSA.2 In
essence, it is based on encrypting random client and server nonces that are used
to derive session keys.

The following characteristics of the security handshake are specified in the
SecureChannel Service Set. First, the client sends an OpenSecureChannel Request
(OSC Req.) to the server. This request contains a cryptographically secure random
number (client nonce), a client certificate (including a certificate chain), and a
requested lifetime for the secure channel. The request message is encrypted using
the authenticated public key of the server and signed using the secret key of the
client. In case the verification of the client certificate succeeds, decryption and
signature verification take place. Afterwards, the server generates a cryptographic
random number (server nonce). In order to derive the required session keys, both
nonces serve as inputs to a PRF. Two sets of symmetric keys are derived this

2 It should be noted that the OPC Foundation plans to standardize a security policy
that supports Diffie-Hellman (DH) key exchange based on elliptic curve cryptography
(ECC) in the near future [37].



Towards Post-Quantum Security for Cyber-Physical Systems 5

way: one is associated with the server and the other is associated with the client.
The message body of the OpenSecureChannel Response (OSC Rsp.) contains a
server nonce and a revised lifetime, the server certificate is placed in the security
header of the response message. Secure channels are identified by security tokens,
which expire after a specified lifetime. The revised lifetime tells the client when
to renew the secure channel. The response message itself is encrypted using the
client’s authenticated public key and signed using the server’s private key. After
decryption and signature verification, the client derives the keying material from
its own nonce and the received server nonce by applying the same PRF as the
server. Finally, client and server end up with an identical set of cryptographic
keys completing OPC UA’s security handshake. The security properties of this
handshake have been formally analyzed and the entire security architecture has
been investigated in previous works [17, 43].

2.2 Post-Quantum Cryptography

Once a cryptographically relevant quantum computer becomes available, current
public key primitives based on the mathematical problem of integer factorization
(RSA) and (elliptic curve) discrete logarithm (DH and ECDH) will be broken
because of Shor’s quantum algorithm [45]. The last decade has seen an increased
interest from academia and industry in finding novel cryptosystems that can
withstand attacks from quantum computers. In essence, one needs to find a NP-
hard problem that is not solvable in polynomial-time by quantum and classical
computers.

PQ schemes can be grouped into five families: code-based, lattice-based,
hash-based, multivariate, and supersingular EC isogeny cryptography. Out of
the five families lattice-based cryptography has arguably attracted the most
attention in research: 12 of the remaining 26 schemes in NIST’s standardization
process are based on lattice problems. Besides that, lattice schemes offer efficient
implementations, reasonably sized public keys and ciphertexts, as well as strong
security properties [32]. Consequently, we focus on lattice-based cryptography in
this work.

A lattice consists of a set of points in a n-dimensional space with a periodic
structure. By using n-linearly independent vectors any point in this structure
can be reproduced. The security of lattice-based cryptographic primitives are
based on NP-hard problems of high-dimensional lattices, such as the shortest
vector problem (SVP). All lattice schemes submitted to NIST’s standardization
process rely on variants of the learning with errors (LWE) problem, learning
with rounding (LWR) problem, or NTRU. These problems can be related to
aforementioned NP-hard lattice problems via reductions. We investigate the
following lattice-based KEMs for potential integration into OPC UA: CRYSTALS-
Kyber [6], FrodoKEM [2], LAC [51], NewHope [1], NTRU [20], NTRU-Prime [10],
Round5 [8], Saber [22], and ThreeBears [27]. In addition, we investigate the
following lattice-based signature schemes: CRYSTALS-Dilithium [24], Falcon [25],
and qTESLA [11]. Table 2 and Table 3 in Appendix A list all lattice-based
schemes considered in this work including characteristics of their parameter sets.



6 S. Paul and P. Scheible

NIST defined five security levels corresponding to different security strengths
in bits for its PQC standardization process. We focus on level 1, 3, and 5 in this
work. NIST security level 1 corresponds to 128 bit (classical) security, whereas
level 3 and 5 correspond to 192 bit and 256 bit security respectively. KEMs consist
of a triple of algorithms: key generation, encapsulation, and decapsulation. Key
generation is a probabilistic algorithm that generates a public and private key
pair. The probabilistic encapsulation requires a public key as input and generates
a shared secret and the corresponding ciphertext. Input to the decapsulation
algorithm is a ciphertext and a private key, it either returns a shared secret or
an error. Many lattice-based schemes show a small (cryptographically negligible)
failure probability during the decapsulation step, in such cases a shared secret
can not be derived. Typically, KEMs offer either indistinguishability under cho-
sen plaintext attack (IND-CPA) or indistinguishability under chosen ciphertext
attack (IND-CCA). IND-CPA offers security against passive adversaries, i. e. no
information is learned by observing ciphertexts being transmitted. IND-CCA
offers a stronger notion of security and provides security in presence of active ad-
versaries. For the integration into OPC UA we rely on an ephemeral key exchange
scheme. Any KEM can be easily transformed into an ephemeral key exchange
as follows. An initiator generates a public and private key pair and sends its
ephemeral public key to a receiving entity. The receiving entity generates a ran-
dom secret, encrypts it using the received ephemeral public key (encapsulation),
and sends the resulting ciphertext back to the initiator. Ultimately, the initiator
decrypts the received ciphertext using its ephemeral private key (decapsulation)
giving both parties a shared random secret.

Similar to KEMs, signature schemes consist of a triple of algorithms: key
generation, signature generation, and signature verification. Key generation
returns a public and private key pair. Signature generation takes a private key and
a given message to produce a signature. The deterministic signature verification
algorithm takes a public key, a message, and a signature and either rejects
or accepts the signature. The standard security notion for DSAs is existential
unforgeability under chosen message attack (EUF-CMA). NIST required all
submitted signature schemes to reach this notion. For specific details of the
schemes, we refer the reader to the corresponding specifications.

3 Related Work

There have been a lot of research efforts integrating PQC into widespread
Internet protocols such as TLS, SSH (Secure Shell), and IKEv2 (Internet Key
Exchange version 2). Since OPC UA’s security handshake is loosely inspired by
TLS’s handshake protocol, we focus on previous works in this area. In general,
existing integration studies can be grouped into the following three categories:
standardization efforts, implementation works, and experimental studies. Two
active Internet Engineering Task Force (IETF) Internet-Drafts exist that describe
the integration of hybrid key exchange into TLS 1.2 [19] and TLS 1.3 [47]. Many
experimental studies have been conducted under real network conditions [15,



Towards Post-Quantum Security for Cyber-Physical Systems 7

30, 46] or under lab conditions [21, 39]. In aforementioned studies, the authors
typically make use of already existing open source implementations of PQC. For
example, Open Quantum Safe provides prototypical integrations of PQ schemes
into the the popular library OpenSSL [48]. Other works exist where PQC has
been either integrated into embedded libraries [16] or has been optimized for
specific platforms [29]. Our implementations of PQ schemes are mainly based
on PQClean3, which provides portable implementations for an easy integration
into other codebases. When investigating authentication, another difficulty must
be dealt with: a long-term public key is involved, which is typically stored and
distributed via certificates. Previous works proposed hybrid certificates for the
post-quantum transition where extension fields are used to bind an additional
public key to an entity using an additional PQ signature scheme [12, 14]. In
addition, the impact of hybrid and PQ certificates on various Internet protocols
has been investigated [28, 46].

Since it enables confidentiality against future quantum adversaries, hybrid
key exchange has so far attracted the most attention. If authentication and
key exchange are considered, they are typically evaluated separately, hence not
showing the entire impact of PQC on protocols. Hybrid authentication has been
addressed, but it was evaluated separately from key exchange and no performance
measurements were conducted [21]. The authors of [16] investigated the combined
impact of PQ key exchange and authentication on TLS for embedded devices,
but only considered one set of PQ primitives at one security level.

4 Integration of PQC into OPC UA

4.1 Hybrid OPC UA

In hybrid modes, different options for combining cryptographic material exist.
We use the XOR-then-MAC combiner from [13] regarding confidentiality of data,
which is provably secure against fully quantum adversaries. Besides the integration
of a hybrid key exchange scheme, we need to convey two long-term public keys
and two digital signatures for authenticity and integrity. For reasons of backward
compatibility, we work with X.509 certificates that consist of two non-critical
extensions as proposed in [12]. The first contains the public key of the additional
PQ signature scheme, the second holds the signature over the certified data.
Messages are signed independently from each other using two different signature
schemes. The security properties of this concatenation combiner have been
investigated in [14]. While the merits of a hybrid key exchange are obvious, there
is a slightly weaker need for hybrid authentication and hybrid digital signatures.
However, applications will have to support conventional and PQ schemes in order
to be backward compatible with applications, which have not been upgraded yet.
Therefore, we also consider hybrid signatures and authentication in this work to
fully understand its impact on OPC UA.

3 https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean


8 S. Paul and P. Scheible

The integration of hybrid modes into the security handshake of OPC UA
requires modifications to the SecureChannel Service Set. We define a new security
policy Hybrid{1,3,5} Basic256, which the server suggests to the client within
the GetEndpoints Response. In our approach, this response contains the hybrid
X.509 certificate (including the certificate chain). First, the client verifies the
entire certificate chain assuming a hybrid root certificate has been preinstalled. In
addition to a random client nonce, the ephemeral key generation function of a PQ
KEM needs to be called (pkPQ, skPQ). The hybrid OSC Req. is initialized using
the client nonce, pkPQ, and the security settings obtained from the GetEndpoints
Response. The additional public key is positioned within the security header,
which also includes the hybrid client certificate. Before the request is sent to the
server in form of an OPC UA message, it is signed using the aforementioned
hybrid signature scheme: A hash is computed over the entire message that is
then signed conventionally and by a PQ signature scheme. According to the
specification of OPC UA, the sequence header, the message body containing
the client nonce, and the message footer containing RSA-padding fields and
signatures are encrypted. We avoid expensive RSA encryption/decryption by
placing the additional values of our hybrid solution (pkPQ and PQ signature)
outside the encrypted message parts.

Once the server receives the request, it verifies the hybrid client certificate
(including the certificate chain). After the certificate verification, the convention-
ally encrypted message parts are decrypted and the two signatures are verified.
As in conventional OPC UA, the server then creates his server nonce. For our
proposed hybrid mode, the encapsulation function of the respective PQ KEM
is called using the received public key pkPQ as input. This generates a cipher-
text ctpq and a shared secret sspq. In order to maintain the original structure
of OPC UA’s security handshake, we expand the shared secret using a PRF
to obtain additional nonce values. Further calls to PRFs generate two types of
keying material: a conventional set and a post-quantum set. In a subsequent
step, the two sets are combined using XOR. To complete the XOR-then-MAC
combiner, we compute a MAC over the ciphertext ctpq and the original server and
client nonce using the generated server’s symmetric signing key. The ciphertext
and MAC are placed in the security header. We keep the server nonce inside
the body of the response message alongside the revised lifetime of the secure
channel. The response message is signed using the aforementioned concatenation
combiner. After signing the message, the sequence header, the message body,
and message footer are encrypted. Again, this avoids expensive encryption of
additional, potentially large values (ctpq, MAC, and PQ signature).

The client receives the response, conventionally decrypts it, and verifies the
included hybrid signature. Utilizing the received PQ ciphertext ctpq and the
client’s own PQ secret key skpq, the corresponding decapsulation function of the
respective KEM is called, which outputs the shared secret sspq. As in processing
the OSC Req., this shared secret is expanded to create additional nonce values.
Having obtained all required nonces, we generate two types of keying material
(conventional and PQ) and combine them using XOR. We verify the received



Towards Post-Quantum Security for Cyber-Physical Systems 9

MAC by using the computed symmetric signing key completing our hybrid
security handshake.

4.2 Post-Quantum OPC UA

Once PQ schemes have been standardized, they will be adopted in protocols
and will be considered state-of-the-art. Consequently, hybrid modes will not be
required any longer. For our PQ OPC UA solution, we keep the structure of the
original security handshake but replace conventional asymmetric primitives with
PQ key encapsulation and digital signature schemes.

We introduce a new security policy PQ{1,3,5}, which is sent to the client
in GetEndpoints Response. The conveyed server certificate contains a single PQ
public key and is signed with a PQ signature scheme. The client verifies the
server certificate including the certificate chain. Again, we assume the PQ root
certificate has been preinstalled on both client and server. The generation of
the OSC Req. is the same as in our hybrid mode. First, a random client nonce
is created and then the ephemeral key pair of a PQ KEM (pkPQ, skPQ). Since
we base the key exchange of our PQ solution solely on a PQ KEM, we do not
require secrecy of the random client and server nonce. As a consequence, sequence
header, message body, and message footer of the OSC Req. and OSC Rsp. are
sent unencrypted. The resulting OSC Req. is signed using the client’s private PQ
signing key, the certificate containing the corresponding PQ public key is part of
the request message sent to the server.

The server verifies the PQ client certificate (including the certificate chain) and
the signature of the OSC Req. using the client’s authenticated public key. After
the verification step, the encapsulation function of the KEM is invoked resulting in
a ciphertext (ctPQ) and shared secret (ssPQ). Besides that, we generate a random
server nonce. The shared secret and both random nonces serve as input to a PRF.
We consider the output of the PRF our master secret. Subsequently, we use the
master secret as input to another PRF to obtain symmetric keying material. By
keeping the random nonces from the conventional security handshake and by
using them as input to the first PRF we ensure that both parties contribute to
the master secret. The OSC Rsp. contains the generated ciphertext, the server
certificate, the server nonce, and the revised lifetime of the secure channel. The
response is signed using the server’s private PQ signing key, and the signature is
appended to the response message.

Once the client receives the OSC Rsp., the signature is verified using the
server’s authenticated public key. Then, the client calls the decapsulation function
of the PQ KEM resulting in the shared secret (ssPQ). Again, this shared secret
serves as input to a PRF alongside the client and server nonce. The output is fed
to another PRF to compute the final keying material. Server and client derive
the same keying material, which is used in subsequent communication sessions.
This completes OPC UA’s handshake solely based on PQ schemes: Client and
server are mutually authenticated via PQ certificates and signatures; Keying
material is derived using a key exchange scheme based on a PQ KEM.



10 S. Paul and P. Scheible

64

128

192

256

320

S
e
c
u

ri
ty

 E
s
ti

m
a
te

 [
b

it
]

Public Key + Ciphertext [bytes]

Kyber
LAC
NewHope
NTRU-HRSS
NTRU Prime
Saber
Three Bears
Round5
Frodo

128

192

256

10 K 30 K 50 K

(a) Key encapsulation mechanisms.

64

128

192

256

320

S
e
c
u

ri
ty

 E
s
ti

m
a
te

 [
b

it
]

Public Key + Signature [bytes]

Dilithium

Falcon

qTESLA

64

128

192

256

1 K 2 K 3 K 4 K 5 K

(b) Digital signature algorithms.

Fig. 1: Security-size trade-off for lattice-based quantum-resistant schemes.

4.3 Selection of Quantum-Resistant Primitives

In principle, our generic approach allows us to integrate any KEM and DSA. Our
criteria for the selection of quantum-resistant schemes are as follows. We require
lattice-based algorithms that offer a balanced trade-off in terms of estimated
security, public key + ciphertext/signature size, and performance, since the time
to establish a secure channel should not substantially increase. In addition, we
only consider algorithms that are part of NIST’s ongoing PQC standardization
process (Round 2). Consequently, their official specification should offer vari-
ous parameter sets that cover different security levels; KEMs should provide
IND-CCA. Integration into OPC UA needs to be possible without any modifi-
cations to cryptographic algorithms, since we do not want to invalidate any of
their security claims.

Security-Size Trade-Off. First, we study the trade-off in terms of security
and size of all remaining lattice-based Round 2 submissions. The size metric is
important to allow for an easy integration into existing protocols. In our case,
the size metric for KEMs consists of the public key and ciphertext size, since
both need to be transmitted in our proposed solutions. Regarding DSAs, we use
public key and signature size as metric. Both are transmitted via certificates
to other nodes during the handshake. Considering the security metric, we use
security strength estimations provided in the specification of each submission.
These figures are based on the estimated cost of the best known attacks against
the underlying lattice-problem, typically core-SVP hardness is evaluated.

Figure 1 shows the trade-off for estimated security and size for lattice-based
schemes remaining in NIST’s PQC process. Note that for submissions containing
multiple schemes or multiple parameter sets we only consider one scheme or
one set of parameters. In case of NTRU, we consider the recommended KEM
parameter set NTRU-HRSS; for NTRU Prime, we only consider the parameter
sets of Streamlined NTRU Prime. For Round 5, which specifies a total of 21



Towards Post-Quantum Security for Cyber-Physical Systems 11

0.70

0.95

1.20

1.45

1.70

1.95

2.20

Kyber Saber Round5

Key Generation

Encapsulation

Decapsulation
M

il
li

o
n

 C
y
c

le
s

(a) Level 1 parameter sets.

M
il

li
o

n
 C

y
c

le
s

1.25

1.75

2.25

2.75

3.25

3.75

4.25

Kyber Saber Round5

Key Generation

Encapsulation

Decapsulation

(b) Level 3 parameter sets.

M
il

li
o

n
 C

y
c

le
s

2.25

2.75

3.25

3.75

4.25

4.75

5.25

Kyber Saber Round5

Key Generation

Encapsulation

Decapsulation

(c) Level 5 parameter sets.

Fig. 2: Average performance of selected key encapsulation mechanisms.

parameter sets, we only consider their specified IND-CCA secure KEM with ring
parameter set and no error correction, i. e. R5ND CCA 0d KEM.

Our evaluation shows that parameter sets for Kyber (Kyber512, Kyber768, and
Kyber1024), Round 5 (R5ND 1CCA 0d, R5ND 3CCA 0d, and R5ND 5CCA 0d),
and Saber (LightSaber, Saber, and FireSaber) offer a very good trade-off in terms
of public key + ciphertext size and estimated security strength. Consequently,
we select these three schemes for a further performance evaluation. From the
trade-off in Figure 1a, LAC seems like another promising candidate. However,
attacks on LAC that allow to fully recover the secret key have been discovered
decreasing our trust in this scheme [23, 26]. We do not select other schemes for
further evaluation, as their parameter sets imply an imbalanced security-size
trade-off (NTRU-HRSS, NewHope, and Frodo), they have not attracted much
attention in previous experimental studies (Three Bears and NTRU Prime), or
known attacks significantly reduce their security estimations (LAC).

The security-size trade-off for digital signature schemes is shown in Figure 1b.
After an update to its Round 2 specification, qTESLA only provides provably-
secure parameter sets that come with very large sizes for signatures and public
keys. Ultimately, we select the remaining two signature algorithms — Falcon and
Dilithium — for a further performance evaluation. Both seem to be promising
signature algorithms, since public key and signature are reasonably sized and
they provide parameter sets for different security strengths (level 1: Falcon512
and Dilithium2, level 3: Dilithium4, level 5: Falcon1024).

Preliminary Performance Evaluation. We continue with an evaluation of
the standalone performance of the selected algorithms on our target platform —
Raspberry Pi 3 Model B (see Section 5.2). In order to obtain cycle-accurate
measurements, we added a kernel extension that enables access to the CPU
cycle count register [3]. Our goal is to select parameter sets for three security
levels with a balanced trade-off in terms of security, size, and performance.
Our implementations of Kyber and Saber are based on code from PQClean.
Round 5 has not been integrated there; consequently, we work with code from
the official Round 5 submission4. Figure 2 shows the average cycle counts of 100

4 https://github.com/round5/code/tree/master/configurable

https://github.com/round5/code/tree/master/configurable


12 S. Paul and P. Scheible

0

25

50

75

100

RSA2048
(PKCS1.5)

ECDSA
(SECP256R1)

Falcon512
(EMU)

Falcon1024
(EMU)

Falcon512
(FPU)

Falcon1024
(FPU)

Dilithium2 Dilithium4

Sign Verify

0

3

6

9

12

Falcon512
(FPU)

Falcon1024
(FPU)

Dilithium2 Dilithium4

M
il

li
o

n
 C

y
c

le
s

Fig. 3: Average performance of selected digital signature algorithms.

executions of the selected KEMs. Across all security levels Kyber shows the best
performance. Considering all processing steps of KEMs, Kyber is significantly
faster than Round 5 (in average 3.6× 106 cycles at each security level) and
also faster than Saber (in average 1.5× 106 cycles at each security level). In
comparison, the standalone performance of an ECDH key exchange based on
SECP256R1, which corresponds to security level 1, takes 6.9× 107 cycles on our
evaluation platform, whereas Kyber512 only takes 2.9× 106 cycles. Kyber has
also been part of several previous studies resulting in similar assessment of its
performance [16, 39]. Consequently, we select the three parameter sets of Kyber
for instantiating our solutions.

Having analyzed KEMs, we turn to the two selected signature schemes.
Exploiting Falcon’s floating-point arithmetic requires an underlying hardware
floating-point unit (FPU) to support double-precision floating-point as defined
by the IEEE 754 standard [41]. For devices without hardware FPU an implemen-
tation exists that emulates floating-point precision (Falcon-EMU). The ARMv8
instruction set of the Raspberry Pi 3 fulfills the aforementioned requirement,
which allows us to evaluate both implementations, i. e. Falcon-FPU and Falcon-
EMU [4]. Our implementation of Dilithium is based on code from PQClean, for
the implementation of Falcon we make use of reference code from the official
website5. Figure 3 shows the average cycle counts of signature generation and
verification of the selected DSAs in comparison with ECDSA and RSA over 100
executions. Please note, we do not report performance measurements of key
generation, since generation of new signing keys is typically required only rarely.
Enabling floating-point operations by using Falcon-FPU increases signature gen-
eration in average 11.4 times compared to Falcon-EMU. Furthermore, Falcon’s
highest security parameter set is even 1.9× 106 cycles faster than Dilithium’s
level 1 configuration in case floating-point operations are enabled. All param-
eter sets of Dilithium and Falcon-FPU outperform the conventional ECDSA
SECP256R1, which corresponds to security level 1. The total runtime (signature
generation plus verification) of SECP256R1 corresponds to 3.2× 107 cycles on our
evaluation platform. In comparison, Falcon512-FPU only takes 4.7× 106 cycles
and Dilithium2 1.1× 107 cycles. Since Falcon provides very efficient sizes for
signatures and public key and since our evaluation platform is able to use Falcon’s

5 https://falcon-sign.info

https://falcon-sign.info


Towards Post-Quantum Security for Cyber-Physical Systems 13

floating-point arithmetic, we select it for instantiating our proposed solutions.
However, Falcon does not offer a parameter set covering security level 3, thus
for the instantiation regarding that security strength we work with Dilithium4.
Besides that, we are not aware of any works that have shown fundamental
weaknesses in either Falcon or Dilithium, and both have been part of previous
experimental studies [39, 46].

In accordance with our initial requirements, we instantiate our two proposed
solutions with the following algorithms: We use Kyber512 and Falcon512-FPU re-
garding NIST security level 1, for security level 3 we use Kyber768 and Dilithium4,
and for level 5 we work with Kyber1024 and Falcon1024-FPU.

5 Experimental Results and Evaluation

5.1 Implementation Notes

We rely on an open-source OPC UA stack, open62541 [38], to implement our two
solutions. Integration of hybrid key exchange, hybrid authentication, and hybrid
signatures requires significant changes to the codebase of open62541. To allow
for backward compatibility with non-hybrid aware nodes we implement a new
security policy Hybrid{1,3,5} Basic256. We add the respective parts of the hybrid
key exchange based on KEMs to the client and server code. The key derivation
function is adapted to generate two sets of keying material and to combine these
two sets using XOR. For our KEM combiner construction, the MAC creation and
verification is added as part of the hybrid key exchange. The handling of hybrid
authentication based on certificates is integrated and hybrid signature creation
and verification is added to the source code. The quantum-resistant signature is
appended to the message buffer (not encrypted), while the additional PQ public
key and ciphertext of the respective KEM and MAC-value are added to the
security header. Our PQ solution requires fewer modifications and uses the new
security policy PQ{1,3,5}. The KEM-based key exchange is integrated in client
and server code. In addition, the generation and verification of PQ signatures
and the verification of PQ certificates is implemented. The handling of request
and response message needs to be adapted accordingly.

Available tools for generating hybrid certificates either make use of combiners
that are not fully backward compatible [48] or implement only a small subset
of PQ schemes [12]. Because of these limitations, we implement a new software
package capable of creating hybrid and PQ certificates. Our software is capable
of creating the X.509 certificate structure from scratch and can freely modify
the desired fields. In our case, we rely on two non-critical extensions for storing
the additional public key and signature. Open62541 uses the cryptographic
library mbedTLS for all security relevant functions including the verification of
certificates. Therefore, the certificate chain and the trusted root certificates are
passed to the verification function provided by mbedTLS. We are able to use this
function without modifications, since our generated hybrid certificates are fully
compliant to the X.509 standard. The verification function of mbedTLS allows
to provide an optional callback function as parameter that is called after each



14 S. Paul and P. Scheible

Table 1: Message and certificate sizes for both solutions (in bytes).

Solution

OSC Req. OSC Rsp. Cert. Chain
Single
Cert.

Attch.
CA Cert.

Single
Cert.

Attch.
CA Cert.

Single
Cert.

Attch.
CA Cert.

Conventional (RSA2048) 1,597 2,373 1,601 2,377 908 1,750

H
y
b
ri
d 1 (Kyber512 + Falcon512 + RSA2048) 4,698 7,147 4,670 7,119 2,515 4,964

3 (Kyber768 + Dilithium4 + RSA2048) 11,945 17,929 11,885 17,869 6,050 12,034
5 (Kyber1024 + Falcon1024 + RSA2048) 7,770 11,755 7,806 11,791 4,051 8,036

P
Q

1 (Kyber512 + Falcon512) 3,618 5,472 3,593 5,447 1,924 3,778
3 (Kyber768 + Dilithium4) 10,211 15,598 10,154 15,541 5,457 10,844
5 (Kyber1024 + Falcon1024) 6,562 9,952 6,601 9,991 3,460 6,850

certificate in the chain was verified. We use this callback mechanism to verify the
additional PQ signature inside the custom extension of our hybrid certificates. It
should be noted that verification of PQ certificates takes place outside mbedTLS,
since we did not integrate our selected PQ schemes into the embedded TLS
library. Instead, we rely on its mechanism to parse encoded certificates, which
required minor changes to mbedTLS because of unique algorithm identifiers used
in our PQ X.509 certificates.

5.2 Measurement Setup

Our setup resembles a typical use case for OPC UA within an industrial network:
Two CPS (e. g. control unit and gateway) wish to exchange data which requires
the establishment of a secure channel. We select the Raspberry Pi 3 Model B as
our evaluation platform. It features a 1.2 GHz quad-core CPU (ARM Cortex-A53),
1024 MB RAM, and requires a SD-card to store operating system and software.
As affordable single-board computer Raspberry Pis have become very popular
prototyping platforms even for industrial use cases [44]. The two Raspberry Pis
are connected to the same network via their 100 Mbit Ethernet interfaces, one is
instantiated as OPC UA client and the other as OPC UA server. For our timing
measurements we rely on the same kernel extensions introduced in Preliminary
Performance Evaluation (see Section 4.3). Since our measurements also include
network round-trip time and overhead of the network stack, we report the time
elapsed until completion of the OPC UA handshake in milliseconds. Therefore,
we convert the cycle counts obtained from the two Raspberry Pis to milliseconds.

Besides complete handshake duration, we report the performance of OPC UA’s
security handshake in terms of message and certificate size. Our baseline measure-
ment considers a conventional OPC UA security handshake using security policy
Basic256Sha256. Both solutions are evaluated at three NIST security levels (see
Section 4.3). This leads to a total of six different test cases: Hybrid-{1,3,5} and
PQ-{1,3,5}. In addition, we evaluate each test case in two different scenarios
regarding included certificates. In the first scenario, only a single device certificate
(Single Cert.) is conveyed. The second scenario assumes that OPC UA client and
server are part of a larger industrial network containing intermediate certificate



Towards Post-Quantum Security for Cyber-Physical Systems 15

320

340

360

380

400

Conventional Hybrid-1 Hybrid-3 Hybrid-5

Single Cert. Attch. CA Cert.

T
im

e
 [

m
s

]

(a) Hybrid OPC UA.

0

100

200

300

400

Conventional PQ-1 PQ-3 PQ-5

Single Cert. Attch. CA Cert.

0

10

20

30

40

50

PQ-1 PQ-3 PQ-5

T
im

e
 [

m
s

]

(b) PQ OPC UA.

Fig. 4: Comparison of average handshake duration at different security levels.

authorities (CA). In this case, the certificate chain contains the device and one
attached intermediate CA certificate (Attch. CA Cert.). For each of the above test
cases and the two scenarios, we record the establishment of 100 secure channels
and state average values.

5.3 Results and Evaluation

Hybrid OPC UA. Table 1 shows the impact of our hybrid security handshake
on the size of the OSC Req. and OSC Rsp. message at different security levels.
Besides that, certificate sizes for both scenarios are reported. As expected, because
of the hybrid mode the message sizes increase at all levels. The highest increment
compared to conventional OPC UA can be observed at security level 3: In case
an additional CA certificate is attached, the size of the OSC Req. and OSC Rsp.
message increases in average 7.5 times. Considering certificate sizes, the smallest
increase is observed with certificates containing an additional Falcon512 public
key and signature (factor of 2.8).

Figure 4a shows the results of the conducted performance measurements. As
expected, the duration of the handshake increases at all security levels. However,
the most time during the handshake is spent conventionally decrypting and
signing the request and response message. In case a single hybrid certificate is
conveyed, the fastest observed hybrid handshake adds only 11.9 ms to the total
duration (Hybrid-1), while the slowest leads to an overhead of 42.6 ms (Hybrid-3).
The extra time spent verifying an attached intermediate CA certificate is clearly
visible in Figure 4a and correlates to the reported verification times in Figure 3.
Since our implementation of Falcon makes use of floating-point operations, the
overhead in Hybrid-1 and Hybrid-5 remains very small. Because both nodes are
connected via fast network interfaces, the larger message sizes have only little
impact on the total duration of the handshake: Sending the response and request
message in Hybrid-3 with an intermediate CA certificate attached takes 0.4 ms.

PQ OPC UA. Table 1 also shows the message and certificate sizes for our
solution solely based on PQC. Similar to our hybrid solution, we observe that



16 S. Paul and P. Scheible

all message sizes as well as certificate sizes increase at all security levels due to
the larger public keys and signatures of the integrated PQ schemes. Besides that,
instantiations using Falcon show a significantly lower overhead.

The results of our performance measurements (see Figure 4b), however,
show a significant improvement compared to OPC UA’s conventional security
handshake. Across all security levels our PQ solution is in average 11.5 times faster
than conventional OPC UA. The fact that we omit all cryptographic operations
based on RSA from OPC UA’s conventional security handshake substantially
increases its performance. With a handshake duration of just 28.6 ms, PQ-5 (single
certificate) is even faster than PQ-3 with 41.8 ms. As the signature generation
and verification times of Falcon and Dilithium are generally slower than Kyber’s
KEM functions, client and server spend most of the time during the handshake
performing operations of the respective DSA. For example, deriving symmetric
keying material requires 3.5 ms compared to 10.2 ms spent on the creation and
verification of signatures in PQ-1. Similar to our hybrid approach, message sizes
have only little impact on the overall duration of the security handshake.

Both our solutions demonstrate that Falcon is preferable over Dilithium in
case both communicating nodes are capable of using its efficient floating-point
arithmetic. Our Hybrid-5 and PQ-5 solution even leads to significantly less
overhead — in terms of handshake duration and size — than Hybrid-3 and PQ-3.
Since message sizes do not negatively impact the performance of the security
handshake as much as slower algorithms do, we recommend to use Dilithium2 in
case security level 1 is required and floating-point support can not be assumed.

6 Conclusion

In this work, we proposed two novel solutions for the integration of PQC (key
establishment and digital signatures) into the security handshake of the industrial
M2M protocol OPC UA. Our first solution considers hybrid key exchange, hybrid
authentication, and hybrid signatures, while the second is solely based on quantum-
resistant primitives. Compared to other previous works, this approach allowed us
to investigate the total impact of PQC.

After the description of our two solutions, we selected three algorithms
based on an investigation of all lattice-based schemes submitted to NIST’s
PQC standardization process. Subsequently, we instantiated our two solutions
at three different NIST security levels using the respective parameter sets of
Kyber{512,768,1024} for key establishment and Falcon{512,1024}-FPU or Dili-
thium4 for digital signatures. In our performance measurements, we compared
the handshake duration of both solutions to that of conventional OPC UA for
different security levels and certificate scenarios. Our hybrid integration leads to
acceptable overhead in terms of latency and message sizes, while our PQ solution
significantly outperforms conventional OPC UA at all security levels in terms of
handshake duration. OPC UA provides mutual authentication based on X.509
certificates. Our hybrid solution works with hybrid certificates using non-critical
extension fields to achieve backward compatibility with non-hybrid aware clients



Towards Post-Quantum Security for Cyber-Physical Systems 17

and servers. Furthermore, our described verification of hybrid certificates using
mbedTLS applies to use cases outside the industrial domain. Ultimately, our
two solutions provide comprehensive insights into the feasibility of integrating
PQC into OPC UA and demonstrate that PQC is practical for ICS. Falcon and
Dilithium are efficient options for PQ signature schemes; in case floating-point
support is available, Falcon provides faster performance at smaller public key and
signature sizes. In our two solutions, Kyber showed very efficient performance
throughout all evaluated security levels. As future work, we will continue to
investigate our two solutions, especially with regards to time-sensitive industrial
applications and a formal security analysis of our proposed integrations including
a detailed threat model. In addition, we plan to evaluate our proposed solutions
in industrial networks under realistic conditions.

Acknowledgment. The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Research (BMBF) under the
project “FLOQI” (ID 16KIS1074).

A Algorithm Overview

Table 2: Conventional and PQ KEMs evaluated in this work.

KEM
NIST

Category
Intractable
Problem

Classical
Security

PQ
Security

sk
(bytes)

pk
(bytes)

ct
(bytes)

Failure
Rate

Frodo640

1

LWE 144 bit 103 bit 19888 9616 9720 2−139

Kyber512 Module LWE 111 bit 100 bit 1632 800 736 2−178

LAC-128 Ring LWE 147 bit 133 bit 512 544 712 2−116

LightSaber Module LWR 125 bit 114 bit 1568 672 736 2−120

NewHope512 Ring LWE 112 bit 101 bit 1888 928 1120 2−213

NTRU-HRSS NTRU 136 bit 123 bit 1450 1138 1138 –

R5ND-1CCA-0d General LWR 125 bit 115 bit 16 676 740 2−157

SECP256R1 EC Discrete Log. 128 bit – 32 65 65 –
SNTRUP653 NTRU 129 bit 117 bit 1518 994 897 –

BabyBear 2 Module LWE 154 bit 140 bit 40 804 917 2−156

Frodo976

3

LWE 209 bit 150 bit 31296 15632 15744 2−200

Kyber768 Module LWE 181 bit 164 bit 2400 1184 1088 2−164

LAC-192 Ring LWE 286 bit 259 bit 1024 1056 1188 2−143

R5ND-3CCA-0d General LWR 186 bit 174 bit 16 983 1103 2−154

Saber Module LWR 203 bit 185 bit 2304 992 1088 2−136

SNTRUP761 NTRU 153 bit 139 bit 1763 1158 1039 –

MamaBear 4 Module LWE 235 bit 213 bit 40 1194 1307 2−206

FireSaber

5

Module LWR 283 bit 257 bit 3040 1312 1472 2−165

Frodo1344 LWE 274 bit 196 bit 43088 21520 21632 2−253

Kyber1024 Module LWE 254 bit 230 bit 3168 1568 1568 2−174

LAC-256 Ring LWE 320 bit 290 bit 1024 1056 1424 2−122

NewHope1024 Ring LWE 257 bit 233 bit 3680 1824 2208 2−216

PapaBear Module LWE 314 bit 280 bit 40 1584 1697 2−256

R5ND-5CCA-0d General LWR 253 bit 238 bit 16 1349 1509 2−145

SNTRUP857 NTRU 175 bit 159 bit 1999 1322 1184 –



18 S. Paul and P. Scheible

Table 3: Conventional and PQ DSAs evaluated in this work.

DSA
NIST

Category
Intractable
Problem

Classical
Security

PQ
Security

sk
(byte)

pk
(byte)

signature
(byte)

RSA2048 < 1 Integer Factorization 112 bit – 256 259 256

Dilithium2

1

Module LWE 100 bit 91 bit 2800 1184 2044
Falcon512 NTRU 114 bit 103 bit 1281 897 690
qTESLAp-I Ring LWE 151 bit 140 bit 5184 14880 2592
SECP256R1 EC Discrete Logarithm 128 bit – 32 65 73

Dilithium3 2 Module LWE 141 bit 128 bit 3504 1472 2701

Dilithium4
3

Module LWE 174 bit 158 bit 3856 1760 3366
qTESLAp-III Ring LWE 305 bit 279 bit 12352 38432 5664

Falcon1024 5 NTRU 263 bit 230 bit 2305 1793 1330

References

1. Alkim, E., Avanzi, R., Bos, J.W., Ducas, L., de la Piedra, A., et al.: NewHope.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

2. Alkim, E., Bos, J.W., Ducas, L., Longa, P., Mironov, I., et al.: FrodoKEM. NIST
Post-Quantum Cryptography Standardization: Round 2 (2019)

3. Arcus, M.: Using the Cycle Counter Registers on the Raspberry Pi 3
(2018), https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-
registers-on-the-raspberry-pi-3/

4. Arm Limited: Arm Architecture Reference Manual: Armv8 (2020), https://static.
docs.arm.com/ddi0487/fb/DDI0487F b armv8 arm.pdf, ID040120

5. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., et al.: Quantum
supremacy using a programmable superconducting processor. Nature 574, 505–510
(2019). https://doi.org/10.1038/s41586-019-1666-5

6. Avanzi, R., Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., et al.: CRYSTALS-Kyber.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

7. AWS Blog: Converting industrial protocols with AWS IoT Greengrass
(2019), https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-
aws-iot-greengrass/

8. Baan, H., Bhattacharya, S., Fluhrer, S., Garcia-Morchon, O., Laarhoven, T., et al.:
Round5. NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

9. Barker, E., Chen, L., Davis, R.: Recommendation for Key-Derivation Methods in
Key-Establishment Schemes. Special Publication 800-56C Revision 2. NIST (2020).
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft

10. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

11. Bindel, N., Akleylek, S., Alkim, E., Bareto, P.S.L.M., Buchmann, J., et al.: qTESLA.
NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

12. Bindel, N., Braun, J., Gladiator, L., Stöckert, T., Wirth, J.: X.509-Compliant
Hybrid Certificates for the Post-Quantum Transition. Journal of Open Source
Software 4, 1606 (2019). https://doi.org/10.21105/joss.01606

13. Bindel, N., Brendel, J., Fischlin, M., Concalves, B., Stebila, D.: Hybrid Key En-
capsulation Mechanisms and Authenticated Key Exchange. In: Post-Quantum
Cryptography. PQCrypto 2019. pp. 206–226. No. 11505 in LNCS, Springer (2019).
https://doi.org/10.1007/978-3-030-25510-7 12

https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3/
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3/
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://doi.org/10.1038/s41586-019-1666-5
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-iot-greengrass/
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-iot-greengrass/
https://doi.org/10.6028/NIST.SP.800-56Cr2-draft
https://doi.org/10.21105/joss.01606
https://doi.org/10.1007/978-3-030-25510-7_12


Towards Post-Quantum Security for Cyber-Physical Systems 19

14. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a
Quantum-Resistant Public Key Infrastructure. In: Post-Quantum Crypto-
graphy. PQCrypto 2017. pp. 384–405. No. 10346 in LNCS, Springer (2017).
https://doi.org/10.1007/978-3-319-59879-6 22

15. Braithwaite, M.: Experimenting with Post-Quantum Cryptography (2016), https:
//security.googleblog.com/2016/07/experimenting-with-post-quantum.html

16. Bürstinghaus-Steinbach, K., Krauß, C., Niederhagen, R., Schneider, M.: Post-
Quantum TLS on Embedded Systems. Cryptology ePrint Archive, Report
2020/308 (2020), https://eprint.iacr.org/2020/308

17. BSI: OPC UA Security Analysis (2017), https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html

18. BSI: Migration zu Post-Quanten-Kryptografie. Handlungsempfehlungen des BSI
(2020), https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-
Quanten-Kryptografie, (available only in German)

19. Campagna, M., Crockett, E.: Hybrid Post-Quantum Key Encapsulation Methods
(PQ KEM) for Transport Layer Security 1.2 (TLS). Internet-Draft (work in progress)
(2019), https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-
01

20. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., et al.: NTRU. NIST
Post-Quantum Cryptography Standardization: Round 2 (2019)

21. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH. Cryptology ePrint Archive, Report
2019/858, 1–24 (2019), https://eprint.iacr.org/2019/858

22. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER: Mod-LWR based
KEM. NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

23. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing Attacks
on Error Correcting Codes in Post-Quantum Schemes. In: Proceedings of ACM
Workshop on Theory of Implementation Security Workshop - TIS’19. pp. 2–9. ACM
Press (2019). https://doi.org/10.1145/3338467.3358948

24. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., et al.: CRYSTALS-
Dilithium. NIST Post-Quantum Cryptography Standardization: Round 2 (2019)

25. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., et al.: Falcon:
Fast-Fourier Lattice-based Compact Signatures over NTRU. NIST Post-Quantum
Cryptography Standardization: Round 2 (2019)

26. Guo, Q., Johansson, T., Yang, J.: A Novel CCA Attack Using Decryption Errors
Against LAC. In: Advances in Cryptology – ASIACRYPT 2019, pp. 82–111. Springer
(2019). https://doi.org/10.1007/978-3-030-34578-5 4

27. Hamburg, M.: ThreeBears. NIST Post-Quantum Cryptography Standardization:
Round 2 (2019)

28. Kampanakis, P., Panburana, P., Daw, E., van Geest, D.: The Viability of Post-
Quantum X.509 Certificates. Cryptology ePrint Archive, Report 2018/063, 1–18
(2018), https://eprint.iacr.org/2018/063

29. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report
844, 1–22 (2019), https://eprint.iacr.org/2019/844

30. Kwiatkowski, K., Valenta, L.: The TLS Post-Quantum Experiment (2019), https:
//blog.cloudflare.com/the-tls-post-quantum-experiment/

31. McGrew, D.: Cryptographic Agility in the Real World. In: Cryptographic Agility
and Interoperability: Proceedings of a Workshop. pp. 34–38. National Academies
Press (2016). https://doi.org/10.17226/24636

https://doi.org/10.1007/978-3-319-59879-6_22
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://eprint.iacr.org/2020/308
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://eprint.iacr.org/2019/858
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1007/978-3-030-34578-5_4
https://eprint.iacr.org/2018/063
https://eprint.iacr.org/2019/844
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://doi.org/10.17226/24636


20 S. Paul and P. Scheible

32. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-Quantum Crypto-
graphy, pp. 146–191. Springer (2008). https://doi.org/10.1007/978-3-540-88702-7 5

33. Microsoft Azure: What is Connected Factory IoT solution accelerator?
(2019), https://docs.microsoft.com/en-gb/azure/iot-accelerators/iot-accelerators-
connected-factory-features

34. OPC Foundation: OPC UA Specification. Part 1 - Overview and Concepts Release
1.04 (2017)

35. OPC Foundation: OPC UA Specification. Part 4 - Services Release 1.04 (2017)
36. OPC Foundation: OPC UA Specification. Part 6 - Mappings Release 1.04 (2017)
37. OPC Foundation: OPC UA Roadmap (2020), https://opcfoundation.org/about/

opc-technologies/opc-ua/opcua-roadmap/
38. Palm, F., Gruner, S., Pfrommer, J., Graube, M., Urbas, L.: Open source as en-

abler for OPC UA in industrial automation. In: 2015 IEEE 20th Conference on
Emerging Technologies & Factory Automation (ETFA). pp. 1–6. IEEE (2015).
https://doi.org/10.1109/ETFA.2015.7301562

39. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking Post-Quantum Cryptography
in TLS. Cryptology ePrint Archive, Report 2019/1447 (2019)

40. Paul, S., Niethammer, M.: On the importance of cryptographic agility
for industrial automation. at - Automatisierungstechnik 67, 402–416 (2019).
https://doi.org/10.1515/auto-2019-0019

41. Pornin, Thomas: PQClean - Falcon implementations (integer-only code, constant-
time) (2019), https://github.com/PQClean/PQClean/pull/210#issuecomment-
513827611

42. Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., Knoll, A.: OPC UA versus
ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols. In:
2019 IEEE International Conference on Industrial Technology (ICIT). pp. 955–962
(2019). https://doi.org/10.1109/ICIT.2019.8755050

43. Puys, M., Potet, M.L., Lafourcade, P.: Formal Analysis of Security Properties
on the OPC-UA SCADA Protocol. In: Computer Safety, Reliability, and Se-
curity, pp. 67–75. No. 9922 in LNCS, Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-45477-1 6

44. Sfera Labs: Strato Pi: Industrial Raspberry Pi (2020), https://www.sferalabs.cc/
strato-pi/

45. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26, 1484–1509
(1997). https://doi.org/10.1137/S0097539795293172

46. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-Quantum Authentication in
TLS 1.3. NDSS Symposium 2020 (2020). https://doi.org/10.14722/ndss.2020.24203

47. Stebila, D., Fluhrer, S., Gueron, S.: Design issues for hybrid key exchange in TLS
1.3 (2019), https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01

48. Stebila, D., Mosca, M.: Post-quantum Key Exchange for the Internet and the Open
Quantum Safe Project. In: Selected Areas in Cryptography - SAC 2016. pp. 14–37.
Springer (2017). https://doi.org/10.1007/978-3-319-69453-5 2

49. Verizon: Data Breach Investigations Report (2020), https://enterprise.verizon.com/
resources/reports/2020/2020-data-breach-investigations-report.pdf

50. Wollschlaeger, M., Sauter, T., Jasperneite, J.: The Future of Industrial
Communication. IEEE Industrial Electronics Magazine 11, 17–27 (2017).
https://doi.org/10.1109/MIE.2017.2649104

51. Xianhui, L., Yamin, L., Dingding, J., Haiyang, X., Jingnan, H., et al.: LAC. NIST
Post-Quantum Cryptography Standardization: Round 2 pp. 1–28 (2019)

https://doi.org/10.1007/978-3-540-88702-7_5
https://docs.microsoft.com/en-gb/azure/iot-accelerators/iot-accelerators-connected-factory-features
https://docs.microsoft.com/en-gb/azure/iot-accelerators/iot-accelerators-connected-factory-features
https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/
https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/
https://doi.org/10.1109/ETFA.2015.7301562
https://doi.org/10.1515/auto-2019-0019
https://github.com/PQClean/PQClean/pull/210#issuecomment-513827611
https://github.com/PQClean/PQClean/pull/210#issuecomment-513827611
https://doi.org/10.1109/ICIT.2019.8755050
https://doi.org/10.1007/978-3-319-45477-1_6
https://www.sferalabs.cc/strato-pi/
https://www.sferalabs.cc/strato-pi/
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.14722/ndss.2020.24203
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://doi.org/10.1007/978-3-319-69453-5_2
https://enterprise.verizon.com/resources/reports/2020/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020/2020-data-breach-investigations-report.pdf
https://doi.org/10.1109/MIE.2017.2649104

	Towards Post-Quantum Security for Cyber-Physical Systems: Integrating PQC into Industrial M2M Communication

